1
|
Chilosi M, Piciucchi S, Ravaglia C, Spagnolo P, Sverzellati N, Tomassetti S, Wuyts W, Poletti V. "Alveolar stem cell exhaustion, fibrosis and bronchiolar proliferation" related entities. A narrative review. Pulmonology 2024:S2531-0437(24)00092-8. [PMID: 39277539 DOI: 10.1016/j.pulmoe.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/11/2024] [Accepted: 05/27/2024] [Indexed: 09/17/2024] Open
Affiliation(s)
- M Chilosi
- Department of Medical Specialities/Pulmonology Ospedale GB Morgagni, Forlì I
| | - S Piciucchi
- Department of Radiology, Ospedale GB Morgagni, Forlì I.
| | - C Ravaglia
- Department of Medical Specialities/Pulmonology Ospedale GB Morgagni, Forlì (I); DIMEC, Bologna University, Forlì Campus, Forlì I, Department
| | - P Spagnolo
- Respiratory Disease Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - N Sverzellati
- Scienze Radiologiche, Department of Medicine and Surgery, University Hospital Parma, Parma, Italy
| | - S Tomassetti
- Department of Experimental and Clinical Medicine, Careggi University Hospital, Florence, Italy
| | - W Wuyts
- Pulmonology Department, UZ Leuven, Leuven, Belgium
| | - V Poletti
- Department of Medical Specialities/Pulmonology Ospedale GB Morgagni, Forlì (I); DIMEC, Bologna University, Forlì Campus, Forlì I, Department; Department of Respiratory Diseases & Allergy, Aarhus University, Aarhus, Denmark
| |
Collapse
|
2
|
Kim WS, Min S, Kim SK, Kang S, An S, Criado-Hidalgo E, Davis H, Bar-Zion A, Malounda D, Kim YH, Lee JH, Bae SH, Lee JG, Kwak M, Cho SW, Shapiro MG, Cheon J. Magneto-acoustic protein nanostructures for non-invasive imaging of tissue mechanics in vivo. NATURE MATERIALS 2024; 23:290-300. [PMID: 37845321 PMCID: PMC10837075 DOI: 10.1038/s41563-023-01688-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 09/12/2023] [Indexed: 10/18/2023]
Abstract
Measuring cellular and tissue mechanics inside intact living organisms is essential for interrogating the roles of force in physiological and disease processes. Current agents for studying the mechanobiology of intact, living organisms are limited by poor light penetration and material stability. Magnetomotive ultrasound is an emerging modality for real-time in vivo imaging of tissue mechanics. Nonetheless, it has poor sensitivity and spatiotemporal resolution. Here we describe magneto-gas vesicles (MGVs), protein nanostructures based on gas vesicles and magnetic nanoparticles that produce differential ultrasound signals in response to varying mechanical properties of surrounding tissues. These hybrid nanomaterials significantly improve signal strength and detection sensitivity. Furthermore, MGVs enable non-invasive, long-term and quantitative measurements of mechanical properties within three-dimensional tissues and in vivo fibrosis models. Using MGVs as novel contrast agents, we demonstrate their potential for non-invasive imaging of tissue elasticity, offering insights into mechanobiology and its application to disease diagnosis and treatment.
Collapse
Affiliation(s)
- Whee-Soo Kim
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, Republic of Korea
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
- Department of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul, Republic of Korea
| | - Sungjin Min
- Department of Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Su Kyeom Kim
- Department of Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Sunghwi Kang
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, Republic of Korea
- Department of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul, Republic of Korea
- Department of Chemistry, Yonsei University, Seoul, Republic of Korea
| | - Soohwan An
- Department of Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Ernesto Criado-Hidalgo
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Hunter Davis
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Avinoam Bar-Zion
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Dina Malounda
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Yu Heun Kim
- Department of Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Jae-Hyun Lee
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, Republic of Korea
- Department of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul, Republic of Korea
| | - Soo Han Bae
- Severance Biomedical Science Institute, Yonsei Biomedical Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
- Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jin Gu Lee
- Department of Thoracic and Cardiovascular Surgery, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Minsuk Kwak
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, Republic of Korea
- Department of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul, Republic of Korea
| | - Seung-Woo Cho
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, Republic of Korea.
- Department of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul, Republic of Korea.
- Department of Biotechnology, Yonsei University, Seoul, Republic of Korea.
| | - Mikhail G Shapiro
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, Republic of Korea.
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA.
- Department of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul, Republic of Korea.
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA, USA.
- Howard Hughes Medical Institute, Pasadena, CA, USA.
| | - Jinwoo Cheon
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, Republic of Korea.
- Department of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul, Republic of Korea.
- Department of Chemistry, Yonsei University, Seoul, Republic of Korea.
| |
Collapse
|
3
|
Ragnoli B, Fusco F, Pignatti P, Cena T, Valente G, Malerba M. Bronchial Progenitor Cells in Obstructive and Neoplastic Lung Disease: A Pilot Study. J Clin Med 2024; 13:609. [PMID: 38276115 PMCID: PMC10816161 DOI: 10.3390/jcm13020609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/15/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024] Open
Abstract
The alteration of progenitor/stem cells present in the airway epithelium has been observed in patients with COPD. Smoking exposure induces remodeling patterns in bronchial progenitor cells (BPCs), encompassing squamous metaplasia, hyperplasia of basal and of mucus-secreting cells, and the depletion of ciliated and non-mucous secretory cells. Our aim was to assess the expression of p63 and vimentin as potential markers of airway remodeling and the regulation of stem cell populations in obstructive and neoplastic lung disease patients. A retrospective single-center observational study was conducted, including patients undergoing bronchoscopy with bronchial biopsies for suspected lung cancer. p63 and vimentin expression were evaluated via immunohistochemical analysis. There were 25 patients, of which 21 with COPD were included, and 17 were diagnosed with lung cancer. We observed that FEV1% was negatively correlated with p63+ basal cell number (r = -0.614, p = 0.019) and positively correlated with vimentin expression (r = 0.670; p = 0.008). p63 was significantly higher in biopsies from the trachea and main bronchi compared to more distal areas (p = 0.040), whereas vimentin was prevalent in the more distal areas (p = 0.042). Our preliminary data suggest the initial evidence of structural changes in BPCs among patients with COPD and lung cancer. Further research efforts are warranted to investigate additional morphologic and functional respiratory parameters in these patients.
Collapse
Affiliation(s)
| | - Federica Fusco
- Laboratory of Pathology, Az. Ospedaliera Maggiore della Carità, 28100 Novara, Italy;
| | - Patrizia Pignatti
- Allergy and Immunology Unit, Istituti Clinici Scientifici Maugeri IRCCS Pavia, 27100 Pavia, Italy;
| | - Tiziana Cena
- Epidemiological Observatory Service, ASL VC, 13100 Vercelli, Italy;
| | - Guido Valente
- Laboratory of Pathology, Department of Traslational Medicine, School of Medicine, University of Eastern Piedmont, 28100 Novara, Italy;
| | - Mario Malerba
- Respiratory Unit, S. Andrea Hospital, 13100 Vercelli, Italy;
- Laboratory of Pathology, Department of Traslational Medicine, School of Medicine, University of Eastern Piedmont, 28100 Novara, Italy;
| |
Collapse
|
4
|
Badaoui M, Chanson M. Intercellular Communication in Airway Epithelial Cell Regeneration: Potential Roles of Connexins and Pannexins. Int J Mol Sci 2023; 24:16160. [PMID: 38003349 PMCID: PMC10671439 DOI: 10.3390/ijms242216160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/19/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Connexins and pannexins are transmembrane proteins that can form direct (gap junctions) or indirect (connexons, pannexons) intercellular communication channels. By propagating ions, metabolites, sugars, nucleotides, miRNAs, and/or second messengers, they participate in a variety of physiological functions, such as tissue homeostasis and host defense. There is solid evidence supporting a role for intercellular signaling in various pulmonary inflammatory diseases where alteration of connexin/pannexin channel functional expression occurs, thus leading to abnormal intercellular communication pathways and contributing to pathophysiological aspects, such as innate immune defense and remodeling. The integrity of the airway epithelium, which is the first line of defense against invading microbes, is established and maintained by a repair mechanism that involves processes such as proliferation, migration, and differentiation. Here, we briefly summarize current knowledge on the contribution of connexins and pannexins to necessary processes of tissue repair and speculate on their possible involvement in the shaping of the airway epithelium integrity.
Collapse
Affiliation(s)
| | - Marc Chanson
- Department of Cell Physiology & Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland;
| |
Collapse
|
5
|
Dann E, Cujba AM, Oliver AJ, Meyer KB, Teichmann SA, Marioni JC. Precise identification of cell states altered in disease using healthy single-cell references. Nat Genet 2023; 55:1998-2008. [PMID: 37828140 PMCID: PMC10632138 DOI: 10.1038/s41588-023-01523-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 09/05/2023] [Indexed: 10/14/2023]
Abstract
Joint analysis of single-cell genomics data from diseased tissues and a healthy reference can reveal altered cell states. We investigate whether integrated collections of data from healthy individuals (cell atlases) are suitable references for disease-state identification and whether matched control samples are needed to minimize false discoveries. We demonstrate that using a reference atlas for latent space learning followed by differential analysis against matched controls leads to improved identification of disease-associated cells, especially with multiple perturbed cell types. Additionally, when an atlas is available, reducing control sample numbers does not increase false discovery rates. Jointly analyzing data from a COVID-19 cohort and a blood cell atlas, we improve detection of infection-related cell states linked to distinct clinical severities. Similarly, we studied disease states in pulmonary fibrosis using a healthy lung atlas, characterizing two distinct aberrant basal states. Our analysis provides guidelines for designing disease cohort studies and optimizing cell atlas use.
Collapse
Affiliation(s)
- Emma Dann
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Ana-Maria Cujba
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Amanda J Oliver
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Kerstin B Meyer
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Sarah A Teichmann
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK.
- Theory of Condensed Matter Group, The Cavendish Laboratory, University of Cambridge, Cambridge, UK.
| | - John C Marioni
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK.
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge, UK.
- Genentech, San Francisco, CA, USA.
| |
Collapse
|
6
|
Hewitt RJ, Puttur F, Gaboriau DCA, Fercoq F, Fresquet M, Traves WJ, Yates LL, Walker SA, Molyneaux PL, Kemp SV, Nicholson AG, Rice A, Roberts E, Lennon R, Carlin LM, Byrne AJ, Maher TM, Lloyd CM. Lung extracellular matrix modulates KRT5 + basal cell activity in pulmonary fibrosis. Nat Commun 2023; 14:6039. [PMID: 37758700 PMCID: PMC10533905 DOI: 10.1038/s41467-023-41621-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Aberrant expansion of KRT5+ basal cells in the distal lung accompanies progressive alveolar epithelial cell loss and tissue remodelling during fibrogenesis in idiopathic pulmonary fibrosis (IPF). The mechanisms determining activity of KRT5+ cells in IPF have not been delineated. Here, we reveal a potential mechanism by which KRT5+ cells migrate within the fibrotic lung, navigating regional differences in collagen topography. In vitro, KRT5+ cell migratory characteristics and expression of remodelling genes are modulated by extracellular matrix (ECM) composition and organisation. Mass spectrometry- based proteomics revealed compositional differences in ECM components secreted by primary human lung fibroblasts (HLF) from IPF patients compared to controls. Over-expression of ECM glycoprotein, Secreted Protein Acidic and Cysteine Rich (SPARC) in the IPF HLF matrix restricts KRT5+ cell migration in vitro. Together, our findings demonstrate how changes to the ECM in IPF directly influence KRT5+ cell behaviour and function contributing to remodelling events in the fibrotic niche.
Collapse
Affiliation(s)
- Richard J Hewitt
- National Heart and Lung Institute, Imperial College London, London, SW7 2AZ, UK
- Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London, SW3 6NP, UK
| | - Franz Puttur
- National Heart and Lung Institute, Imperial College London, London, SW7 2AZ, UK
| | - David C A Gaboriau
- Facility for Imaging by Light Microscopy, National Heart and Lung Institute, Imperial College London, London, SW7 2AZ, UK
| | | | - Maryline Fresquet
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK
| | - William J Traves
- National Heart and Lung Institute, Imperial College London, London, SW7 2AZ, UK
| | - Laura L Yates
- National Heart and Lung Institute, Imperial College London, London, SW7 2AZ, UK
| | - Simone A Walker
- National Heart and Lung Institute, Imperial College London, London, SW7 2AZ, UK
| | - Philip L Molyneaux
- National Heart and Lung Institute, Imperial College London, London, SW7 2AZ, UK
- Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London, SW3 6NP, UK
| | - Samuel V Kemp
- Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London, SW3 6NP, UK
- Department of Respiratory Medicine, Nottingham University Hospitals NHS Trust, City Campus, Hucknall Road, Nottingham, NG5 1PB, UK
| | - Andrew G Nicholson
- Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London, SW3 6NP, UK
| | - Alexandra Rice
- Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London, SW3 6NP, UK
| | - Edward Roberts
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK
| | - Rachel Lennon
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK
| | - Leo M Carlin
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK
- School of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - Adam J Byrne
- National Heart and Lung Institute, Imperial College London, London, SW7 2AZ, UK
| | - Toby M Maher
- National Heart and Lung Institute, Imperial College London, London, SW7 2AZ, UK
- Keck Medicine of USC, 1510 San Pablo Street, Los Angeles, CA, 90033, USA
| | - Clare M Lloyd
- National Heart and Lung Institute, Imperial College London, London, SW7 2AZ, UK.
| |
Collapse
|
7
|
Kircali MF, Turanli B. Idiopathic Pulmonary Fibrosis Molecular Substrates Revealed by Competing Endogenous RNA Regulatory Networks. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2023; 27:381-392. [PMID: 37540140 DOI: 10.1089/omi.2023.0072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic progressive fibrotic disease of the lung with poor prognosis. Fibrosis results from remodeling of the interstitial tissue. A wide range of gene expression changes are observed, but the role of micro RNAs (miRNAs) and circular RNAs (circRNA) is still unclear. Therefore, this study aimed to establish an messenger RNA (mRNA)-miRNA-circRNA competing endogenous RNA (ceRNA) regulatory network to uncover novel molecular signatures using systems biology tools. Six datasets were used to determine differentially expressed genes (DEGs) and miRNAs (DEmiRNA). Accordingly, protein-protein, mRNA-miRNA, and miRNA-circRNA interactions were constructed. Modules were determined and further analyzed in the Drug Gene Budger platform to identify potential therapeutic compounds. We uncovered common 724 DEGs and 278 DEmiRNAs. In the protein-protein interaction network, TMPRSS4, ESR2, TP73, CLEC4E, and TP63 were identified as hub protein coding genes. The mRNA-miRNA interaction network revealed two modules composed of ADRA1A, ADRA1B, hsa-miR-484 and CDH2, TMPRSS4, and hsa-miR-543. The DEmiRNAs in the modules further analyzed to propose potential circRNA regulators in the ceRNA network. These results help deepen the understanding of the mechanisms of IPF. In addition, the molecular leads reported herein might inform future innovations in diagnostics and therapeutics research and development for IPF.
Collapse
Affiliation(s)
- Muhammed Fatih Kircali
- School of Medicine, Marmara University, Istanbul, Türkiye
- Department of Bioengineering, Faculty of Engineering, Marmara University, Istanbul, Türkiye
| | - Beste Turanli
- Department of Bioengineering, Faculty of Engineering, Marmara University, Istanbul, Türkiye
| |
Collapse
|
8
|
Horan G, Ye Y, Adams M, Parton A, Cedzik D, Tang S, Brown EA, Liu L, Nissel J, Carayannopoulos LN, Gaudy A, Schafer P, Palmisano M, Ramirez-Valle F. Safety, Pharmacokinetics, and Antifibrotic Activity of CC-90001 (BMS-986360), a c-Jun N-Terminal Kinase Inhibitor, in Pulmonary Fibrosis. Clin Pharmacol Drug Dev 2023. [PMID: 37378860 DOI: 10.1002/cpdd.1294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 05/10/2023] [Indexed: 06/29/2023]
Abstract
Approved treatments for idiopathic pulmonary fibrosis have tolerability concerns and limited efficacy. CC-90001, a c-Jun N-terminal kinase inhibitor, is under investigation as a therapy for fibrotic diseases. A Phase 1b safety, pharmacokinetics, and pharmacodynamics study of oral CC-90001 (100, 200, or 400 mg) administered once daily for 12 weeks was conducted in patients with pulmonary fibrosis (NCT02510937). Sixteen patients with a mean age of 68 years were studied. The most common treatment-emergent adverse events were nausea and headache; all events were of mild or moderate intensity. Pharmacokinetic profiles were similar between the patients in this trial and healthy adults in previous studies. Forced vital capacity increased in the 200- and 400-mg cohorts from baseline to Week 12, and dose-dependent reductions in fibrosis biomarkers were observed. Antifibrotic activity of CC-90001 was also evaluated in vitro in transforming growth factor beta 1 (TGF-β1)-stimulated cells. CC-90001 reduced in vitro profibrotic gene expression in both lung epithelial cells and fibroblasts, supporting a potential direct antifibrotic action of c-Jun N-terminal kinase inhibition in either or both cell types. Overall, CC-90001 was generally safe and well tolerated, and treatment was associated with forced vital capacity improvement and reductions in profibrotic biomarkers.
Collapse
Affiliation(s)
| | - Ying Ye
- Bristol Myers Squibb, Princeton, NJ, USA
| | - Mary Adams
- Bristol Myers Squibb, Princeton, NJ, USA
| | | | | | | | | | | | - Jim Nissel
- Bristol Myers Squibb, Princeton, NJ, USA
| | | | | | | | | | | |
Collapse
|
9
|
Arai W, Konno T, Kohno T, Kodera Y, Tsujiwaki M, Shindo Y, Chiba H, Miyajima M, Sakuma Y, Watanabe A, Kojima T. Downregulation of angulin-1/LSR induces malignancy via upregulation of EGF-dependent claudin-2 and TGF-β-dependent cell metabolism in human lung adenocarcinoma A549 cells. Oncotarget 2023; 14:261-275. [PMID: 36961882 PMCID: PMC10038356 DOI: 10.18632/oncotarget.27728] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2023] Open
Abstract
Abnormal expression of bicellular tight junction claudins, including claudin-2 are observed during carcinogenesis in human lung adenocarcinoma. However, little is known about the role of tricellular tight junction molecule angulin-1/lipolysis-stimulated lipoprotein receptor (LSR). In the lung adenocarcinoma tissues examined in the present study, expression of claudin-2 was higher than in normal lung tissues, while angulin-1/LSR was poorly or faintly expressed. We investigated how loss of angulin-1/LSR affects the malignancy of lung adenocarcinoma cell line A549 and normal human lung epithelial (HLE) cells. The EGF receptor tyrosine kinase inhibitor AG1478 prevented the increase of claudin-2 expression induced by EGF in A549 cells. Knockdown of LSR induced expression of claudin-2 at the protein and mRNA levels and AG1478 prevented the upregulation of claudin-2 in A549 cells. Knockdown of LSR induced cell proliferation, cell migration and cell metabolism in A549 cells. Knockdown of claudin-2 inhibited the cell proliferation but did not affect the cell migration or cell metabolism of A549 cells. The TGF-β type I receptor inhibitor EW-7197 prevented the decrease of LSR and claudin-2 induced by TGF-β1 in A549 cells and 2D culture of normal HLE cells. EW-7197 prevented the increase of cell migration and cell metabolism induced by TGF-β1 in A549 cells. EW-7197 prevented the increase of epithelial permeability of FITC-4kD dextran induced by TGF-β1 in 2.5D culture of normal HLE cells. In conclusion, downregulation of angulin-1/LSR induces malignancy via EGF-dependent claudin-2 and TGF-β-dependent cell metabolism in human lung adenocarcinoma.
Collapse
Affiliation(s)
- Wataru Arai
- Department of Thoracic Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
- Department of Cell Science, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Takumi Konno
- Department of Cell Science, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Takayuki Kohno
- Department of Cell Science, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Yuki Kodera
- Department of Respiratory Medicine and Allergology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Mitsuhiro Tsujiwaki
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Yuma Shindo
- Department of Thoracic Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
- Department of Cell Science, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hirofumi Chiba
- Department of Respiratory Medicine and Allergology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Masahiro Miyajima
- Department of Thoracic Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Yuji Sakuma
- Department of Molecular Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Atsushi Watanabe
- Department of Thoracic Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Takashi Kojima
- Department of Cell Science, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
10
|
Huang G, Liang J, Huang K, Liu X, Taghavifar F, Yao C, Parimon T, Liu N, Dai K, Aziz A, Wang Y, Waldron RT, Mou H, Stripp B, Noble PW, Jiang D. Basal Cell-derived WNT7A Promotes Fibrogenesis at the Fibrotic Niche in Idiopathic Pulmonary Fibrosis. Am J Respir Cell Mol Biol 2023; 68:302-313. [PMID: 36318668 PMCID: PMC9989475 DOI: 10.1165/rcmb.2022-0074oc] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 11/01/2022] [Indexed: 12/25/2022] Open
Abstract
Loss of epithelial integrity, bronchiolarization, and fibroblast activation are key characteristics of idiopathic pulmonary fibrosis (IPF). Prolonged accumulation of basal-like cells in IPF may impact the fibrotic niche to promote fibrogenesis. To investigate their role in IPF, basal cells were isolated from IPF explant and healthy donor lung tissues. Single-cell RNA sequencing was used to assess differentially expressed genes in basal cells. Basal cell and niche interaction was demonstrated with the sLP-mCherry niche labeling system. Luminex assays were used to assess cytokines secreted by basal cells. The role of basal cells in fibroblast activation was studied. Three-dimensional organoid culture assays were used to interrogate basal cell effects on AEC2 (type 2 alveolar epithelial cell) renewal capacity. Perturbation was used to investigate WNT7A function in vitro and in a repetitive bleomycin model in vivo. We found that WNT7A is highly and specifically expressed in basal-like cells. Proteins secreted by basal cells can be captured by neighboring fibroblasts and AEC2s. Basal cells or basal cell-conditioned media activate fibroblasts through WNT7A. Basal cell-derived WNT7A inhibits AEC2 progenitor cell renewal in three-dimensional organoid cultures. Neutralizing antibodies against WNT7A or a small molecule inhibitor of Frizzled signaling abolished basal cell-induced fibroblast activation and attenuated lung fibrosis in mice. In summary, basal cells and basal cell-derived WNT7A are key components of the fibrotic niche, providing a unique non-stem cell function of basal cells in IPF progression and a novel targeting strategy for IPF.
Collapse
Affiliation(s)
| | | | - Kevin Huang
- Division of Pulmonary, Women's Guild Lung Institute
| | - Xue Liu
- Division of Pulmonary, Women's Guild Lung Institute
| | | | - Changfu Yao
- Division of Pulmonary, Women's Guild Lung Institute
- The Board of Governors Regenerative Medicine Institute
| | | | - Ningshan Liu
- Division of Pulmonary, Women's Guild Lung Institute
| | - Kristy Dai
- Division of Pulmonary, Women's Guild Lung Institute
| | - Adam Aziz
- Division of Pulmonary, Women's Guild Lung Institute
| | | | | | - Hongmei Mou
- The Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, Massachusetts
| | - Barry Stripp
- Division of Pulmonary, Women's Guild Lung Institute
- The Board of Governors Regenerative Medicine Institute
| | - Paul W Noble
- Division of Pulmonary, Women's Guild Lung Institute
| | - Dianhua Jiang
- Division of Pulmonary, Women's Guild Lung Institute
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California; and
| |
Collapse
|
11
|
Principi L, Ferrini E, Ciccimarra R, Pagani L, Chinello C, Previtali P, Smith A, Villetti G, Zoboli M, Ravanetti F, Stellari FF, Magni F, Piga I. Proteomic Fingerprint of Lung Fibrosis Progression and Response to Therapy in Bleomycin-Induced Mouse Model. Int J Mol Sci 2023; 24:ijms24054410. [PMID: 36901840 PMCID: PMC10002924 DOI: 10.3390/ijms24054410] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 02/25/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic lung disease characterized by the aberrant accumulation of extracellular matrix in the lungs. nintedanib is one of the two FDA-approved drugs for IPF treatment; however, the exact pathophysiological mechanisms of fibrosis progression and response to therapy are still poorly understood. In this work, the molecular fingerprint of fibrosis progression and response to nintedanib treatment have been investigated by mass spectrometry-based bottom-up proteomics in paraffin-embedded lung tissues from bleomycin-induced (BLM) pulmonary fibrosis mice. Our proteomics results unveiled that (i) samples clustered depending on the tissue fibrotic grade (mild, moderate, and severe) and not on the time course after BLM treatment; (ii) the dysregulation of different pathways involved in fibrosis progression such as the complement coagulation cascades, advanced glycation end products (AGEs) and their receptors (RAGEs) signaling, the extracellular matrix-receptor interaction, the regulation of actin cytoskeleton, and ribosomes; (iii) Coronin 1A (Coro1a) as the protein with the highest correlation when evaluating the progression of fibrosis, with an increased expression from mild to severe fibrosis; and (iv) a total of 10 differentially expressed proteins (padj-value ≤ 0.05 and Fold change ≤-1.5 or ≥1.5), whose abundance varied in the base of the severity of fibrosis (mild and moderate), were modulated by the antifibrotic treatment with nintedanib, reverting their trend. Notably, nintedanib significantly restored lactate dehydrogenase B (Ldhb) expression but not lactate dehydrogenase A (Ldha). Notwithstanding the need for further investigations to validate the roles of both Coro1a and Ldhb, our findings provide an extensive proteomic characterization with a strong relationship with histomorphometric measurements. These results unveil some biological processes in pulmonary fibrosis and drug-mediated fibrosis therapy.
Collapse
Affiliation(s)
- Lucrezia Principi
- Clinical Proteomics and Metabolomics Unit, Department of Medicine and Surgery, University of Milano-Bicocca, 20854 Monza, Italy
| | - Erica Ferrini
- Department of Veterinary Science, University of Parma, 43122 Parma, Italy
| | - Roberta Ciccimarra
- Department of Veterinary Science, University of Parma, 43122 Parma, Italy
| | - Lisa Pagani
- Clinical Proteomics and Metabolomics Unit, Department of Medicine and Surgery, University of Milano-Bicocca, 20854 Monza, Italy
| | - Clizia Chinello
- Clinical Proteomics and Metabolomics Unit, Department of Medicine and Surgery, University of Milano-Bicocca, 20854 Monza, Italy
| | - Paolo Previtali
- Clinical Proteomics and Metabolomics Unit, Department of Medicine and Surgery, University of Milano-Bicocca, 20854 Monza, Italy
| | - Andrew Smith
- Clinical Proteomics and Metabolomics Unit, Department of Medicine and Surgery, University of Milano-Bicocca, 20854 Monza, Italy
| | - Gino Villetti
- Experimental Pharmacology & Translational Science Department, Chiesi Farmaceutici S.p.A., 43122 Parma, Italy
| | - Matteo Zoboli
- Department of Veterinary Science, University of Parma, 43122 Parma, Italy
| | | | - Franco Fabio Stellari
- Experimental Pharmacology & Translational Science Department, Chiesi Farmaceutici S.p.A., 43122 Parma, Italy
- Correspondence: (F.F.S.); (I.P.)
| | - Fulvio Magni
- Clinical Proteomics and Metabolomics Unit, Department of Medicine and Surgery, University of Milano-Bicocca, 20854 Monza, Italy
| | - Isabella Piga
- Clinical Proteomics and Metabolomics Unit, Department of Medicine and Surgery, University of Milano-Bicocca, 20854 Monza, Italy
- Correspondence: (F.F.S.); (I.P.)
| |
Collapse
|
12
|
Phenotypic Characterization of Colorectal Liver Metastases: Capsule versus No Capsule and the Potential Role of Epithelial Mesenchymal Transition. Cancers (Basel) 2023; 15:cancers15041056. [PMID: 36831399 PMCID: PMC9954628 DOI: 10.3390/cancers15041056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/31/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
Background: Colorectal liver metastases (CRLM) can be encased in a fibrous capsule separating cancer from normal liver tissue, which correlates with increased patient survival. This study investigated the cellular and molecular components of capsule formation and the possible role of epithelial mesenchymal transition (EMT). Methods: From 222 patients with CRLM, 84 patients (37.8%) were categorized to have CRLM encased with a capsule. A total of 34 CRLM from 34 selected patients was analyzed in detail by EMT pathway-profiling and custom PCR arrays to identify differences in gene expression between CRLM with (n = 20) and without capsule (n = 14). In parallel, those 34 CRLM were used to analyze 16 gene products at the metastasis margin via immunohistochemistry. Results: Encapsulated CRLM showed an elevated expression of signal transduction pathways and effector molecules involved in EMT. E-cadherin and keratin-19 were more prevalent, and transcription as well as translation (immunohistochemistry) of pGSK-3-β, SOX10, tomoregulin-1, and caldesmon were increased. By contrast, the loss of E-cadherin and the prevalence of snail-1 were increased in CRLM without capsule. Collagen I and III and versican were identified as capsule components with extracellular matrix fibers running concentrically around the malignant tissue and parallel to the invasive front. Caldesmon was also demonstrated as a capsule constituent. Conclusions: The fibrous capsule around CRLM can be produced by cells with mesenchymal characteristics. It functions as a protective border by both the features of fiber architecture and the inhibition of invasive growth through EMT recruiting mesenchymal cells such as myofibroblasts by transformation of surrounding epithelial or even carcinoma cells. By contrast, EMT demonstrated in non-encapsulated CRLM may lead to a more mesenchymal, mobile, and tissue-destructive carcinoma cell phenotype and facilitate malignant spread.
Collapse
|
13
|
Huang Y, Guzy R, Ma SF, Bonham CA, Jou J, Schulte JJ, Kim JS, Barros AJ, Espindola MS, Husain AN, Hogaboam CM, Sperling AI, Noth I. Central lung gene expression associates with myofibroblast features in idiopathic pulmonary fibrosis. BMJ Open Respir Res 2023; 10:10/1/e001391. [PMID: 36725082 PMCID: PMC9896241 DOI: 10.1136/bmjresp-2022-001391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 01/13/2023] [Indexed: 02/03/2023] Open
Abstract
RATIONALE Contribution of central lung tissues to pathogenesis of idiopathic pulmonary fibrosis (IPF) remains unknown. OBJECTIVE To ascertain the relationship between cell types of IPF-central and IPF-peripheral lung explants using RNA sequencing (RNA-seq) transcriptome. METHODS Biopsies of paired IPF-central and IPF-peripheral along with non-IPF lungs were selected by reviewing H&E data. Criteria for differentially expressed genes (DEG) were set at false discovery rate <5% and fold change >2. Computational cell composition deconvolution was performed. Signature scores were computed for each cell type. FINDINGS Comparison of central IPF versus non-IPF identified 1723 DEG (1522 upregulated and 201 downregulated). Sixty-two per cent (938/1522) of the mutually upregulated genes in central IPF genes were also upregulated in peripheral IPF versus non-IPF. Moreover, 85 IPF central-associated genes (CAG) were upregulated in central IPF versus both peripheral IPF and central non-IPF. IPF single-cell RNA-seq analysis revealed the highest CAG signature score in myofibroblasts and significantly correlated with a previously published activated fibroblasts signature (r=0.88, p=1.6×10-4). CAG signature scores were significantly higher in IPF than in non-IPF myofibroblasts (p=0.013). Network analysis of central-IPF genes identified a module significantly correlated with the deconvoluted proportion of myofibroblasts in central IPF and anti-correlated with inflammation foci trait in peripheral IPF. The module genes were over-represented in idiopathic pulmonary fibrosis signalling pathways. INTERPRETATION Gene expression in central IPF lung regions demonstrates active myofibroblast features that contributes to disease progression. Further elucidation of pathological transcriptomic state of cells in the central regions of the IPF lung that are relatively spared from morphological rearrangements may provide insights into molecular changes in the IPF progression.
Collapse
Affiliation(s)
- Yong Huang
- Division of Pulmonary & Critical Care Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Rob Guzy
- Section of Pulmonary & Critical Care Medicine, University of Chicago, Chicago, Illinois, USA
| | - Shwu-Fan Ma
- Division of Pulmonary & Critical Care Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Catherine A Bonham
- Division of Pulmonary & Critical Care Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Jonathan Jou
- Department of Surgery, University of Illinois, Peoria, Illinois, USA
| | - Jefree J Schulte
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, Wisconsin, USA
| | - John S Kim
- Division of Pulmonary & Critical Care Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Andrew J Barros
- Division of Pulmonary & Critical Care Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Milena S Espindola
- Division of Pulmonary & Critical Care Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Aliya N Husain
- Department of Pathology, University of Chicago, Chicago, Illinois, USA
| | - Cory M Hogaboam
- Division of Pulmonary & Critical Care Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Anne I Sperling
- Division of Pulmonary & Critical Care Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Imre Noth
- Division of Pulmonary & Critical Care Medicine, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
14
|
Liu D, Xu C, Jiang L, Zhu X. Pulmonary endogenous progenitor stem cell subpopulation: Physiology, pathogenesis, and progress. JOURNAL OF INTENSIVE MEDICINE 2023; 3:38-51. [PMID: 36789358 PMCID: PMC9924023 DOI: 10.1016/j.jointm.2022.08.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/09/2022] [Accepted: 08/13/2022] [Indexed: 06/18/2023]
Abstract
Lungs are structurally and functionally complex organs consisting of diverse cell types from the proximal to distal axis. They have direct contact with the external environment and are constantly at risk of various injuries. Capable to proliferate and differentiate, pulmonary endogenous progenitor stem cells contribute to the maintenance of lung structure and function both under homeostasis and following injuries. Discovering candidate pulmonary endogenous progenitor stem cell types and underlying regenerative mechanisms provide insights into therapeutic strategy development for lung diseases. In this review, we reveal their compositions, roles in lung disease pathogenesis and injury repair, and the underlying mechanisms. We further underline the advanced progress in research approach and potential therapy for lung regeneration. We also demonstrate the feasibility and prospects of pulmonary endogenous stem cell transplantation for lung disease treatment.
Collapse
Affiliation(s)
- Di Liu
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Chufan Xu
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Lai Jiang
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Xiaoyan Zhu
- Department of Physiology, Navy Medical University, 800 Xiangyin Road, Shanghai 200433, China
| |
Collapse
|
15
|
Jaeger B, Schupp JC, Plappert L, Terwolbeck O, Artysh N, Kayser G, Engelhard P, Adams TS, Zweigerdt R, Kempf H, Lienenklaus S, Garrels W, Nazarenko I, Jonigk D, Wygrecka M, Klatt D, Schambach A, Kaminski N, Prasse A. Airway basal cells show a dedifferentiated KRT17 highPhenotype and promote fibrosis in idiopathic pulmonary fibrosis. Nat Commun 2022; 13:5637. [PMID: 36163190 PMCID: PMC9513076 DOI: 10.1038/s41467-022-33193-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 09/07/2022] [Indexed: 11/10/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a fatal disease with limited treatment options. In this study, we focus on the properties of airway basal cells (ABC) obtained from patients with IPF (IPF-ABC). Single cell RNA sequencing (scRNAseq) of bronchial brushes revealed extensive reprogramming of IPF-ABC towards a KRT17high PTENlow dedifferentiated cell type. In the 3D organoid model, compared to ABC obtained from healthy volunteers, IPF-ABC give rise to more bronchospheres, de novo bronchial structures resembling lung developmental processes, induce fibroblast proliferation and extracellular matrix deposition in co-culture. Intratracheal application of IPF-ABC into minimally injured lungs of Rag2-/- or NRG mice causes severe fibrosis, remodeling of the alveolar compartment, and formation of honeycomb cyst-like structures. Connectivity MAP analysis of scRNAseq of bronchial brushings suggested that gene expression changes in IPF-ABC can be reversed by SRC inhibition. After demonstrating enhanced SRC expression and activity in these cells, and in IPF lungs, we tested the effects of saracatinib, a potent SRC inhibitor previously studied in humans. We demonstrate that saracatinib modified in-vitro and in-vivo the profibrotic changes observed in our 3D culture system and novel mouse xenograft model.
Collapse
Affiliation(s)
- Benedikt Jaeger
- Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
- German Center for Lung Research, BREATH, Hannover, Germany
| | - Jonas Christian Schupp
- German Center for Lung Research, BREATH, Hannover, Germany
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT, USA
- Department of Pulmonology, Hannover Medical School, Hannover, Germany
| | - Linda Plappert
- Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
- German Center for Lung Research, BREATH, Hannover, Germany
| | - Oliver Terwolbeck
- Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
- German Center for Lung Research, BREATH, Hannover, Germany
| | - Nataliia Artysh
- Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
- German Center for Lung Research, BREATH, Hannover, Germany
- Department of Pulmonology, Hannover Medical School, Hannover, Germany
| | - Gian Kayser
- Institute of Surgical Pathology, University Medical Center, Freiburg, Germany
| | - Peggy Engelhard
- Department of Pneumology, University Medical Center, Freiburg, Germany
| | - Taylor Sterling Adams
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Robert Zweigerdt
- Leibniz Research Laboratories for Biotechnology and Artificial Organs, Hannover Medical School, Hannover, Germany
| | - Henning Kempf
- Leibniz Research Laboratories for Biotechnology and Artificial Organs, Hannover Medical School, Hannover, Germany
| | - Stefan Lienenklaus
- Institute for Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| | - Wiebke Garrels
- Institute for Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| | - Irina Nazarenko
- Institute for Infection Prevention and Hospital Epidemiology, Medical Center - University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Danny Jonigk
- German Center for Lung Research, BREATH, Hannover, Germany
- Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - Malgorzata Wygrecka
- Department of Biochemistry, Faculty of Medicine, Justus Liebig University, Gießen, Germany
| | - Denise Klatt
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Naftali Kaminski
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Antje Prasse
- Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany.
- German Center for Lung Research, BREATH, Hannover, Germany.
- Department of Pulmonology, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
16
|
Duhig EE. Usual interstitial pneumonia: a review of the pathogenesis and discussion of elastin fibres, type II pneumocytes and proposed roles in the pathogenesis. Pathology 2022; 54:517-525. [PMID: 35778287 DOI: 10.1016/j.pathol.2022.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 05/11/2022] [Accepted: 05/22/2022] [Indexed: 10/17/2022]
Abstract
The pathogenesis of idiopathic pulmonary fibrosis (IPF) and its histological counterpart, usual interstitial pneumonia (UIP) remains debated. IPF/UIP is a disease characterised by respiratory restriction, and while there have been recent advances in treatment, mortality remains high. Genetic and environmental factors predispose to its development and aberrant alveolar repair is thought to be central. Following alveolar injury, the type II pneumocyte (AEC2) replaces the damaged thin type I pneumocytes. Despite the interstitial fibroblast being considered instrumental in formation of the fibrosis, there has been little consideration for a role for AEC2 in the repair of the septal interstitium. Elastin is a complex protein that conveys flexibility and recoil to the lung. The fibroblast is presumed to produce elastin but there is evidence that the AEC2 may have a role in production or deposition. While the lung is an elastic organ, the role of elastin in repair of lung injury and its possible role in UIP has not been explored in depth. In this paper, pathogenetic mechanisms of UIP involving AEC2 and elastin are reviewed and the possible role of AEC2 in elastin generation is proposed.
Collapse
Affiliation(s)
- Edwina E Duhig
- Sullivan Nicolaides Pathology, The John Flynn Hospital, Tugun, Qld, Australia; UQ Thoracic Research Centre, The Prince Charles Hospital, Chermside, Qld, Australia; Faculty of Medicine, The University of Queensland, Herston, Qld, Australia.
| |
Collapse
|
17
|
Uthaya Kumar DB, Motakis E, Yurieva M, Kohar V, Martinek J, Wu TC, Khoury J, Grassmann J, Lu M, Palucka K, Kaminski N, Koff JL, Williams A. Bronchial epithelium epithelial-mesenchymal plasticity forms aberrant basaloid-like cells in vitro. Am J Physiol Lung Cell Mol Physiol 2022; 322:L822-L841. [PMID: 35438006 PMCID: PMC9142163 DOI: 10.1152/ajplung.00254.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 04/03/2022] [Accepted: 04/13/2022] [Indexed: 11/22/2022] Open
Abstract
Although epithelial-mesenchymal transition (EMT) is a common feature of fibrotic lung disease, its role in fibrogenesis is controversial. Recently, aberrant basaloid cells were identified in fibrotic lung tissue as a novel epithelial cell type displaying a partial EMT phenotype. The developmental origin of these cells remains unknown. To elucidate the role of EMT in the development of aberrant basaloid cells from the bronchial epithelium, we mapped EMT-induced transcriptional changes at the population and single-cell levels. Human bronchial epithelial cells grown as submerged or air-liquid interface (ALI) cultures with or without EMT induction were analyzed by bulk and single-cell RNA-Sequencing. Comparison of submerged and ALI cultures revealed differential expression of 8,247 protein coding (PC) and 1,621 long noncoding RNA (lncRNA) genes and revealed epithelial cell-type-specific lncRNAs. Similarly, EMT induction in ALI cultures resulted in robust transcriptional reprogramming of 6,020 PC and 907 lncRNA genes. Although there was no evidence for fibroblast/myofibroblast conversion following EMT induction, cells displayed a partial EMT gene signature and an aberrant basaloid-like cell phenotype. The substantial transcriptional differences between submerged and ALI cultures highlight that care must be taken when interpreting data from submerged cultures. This work supports that lung epithelial EMT does not generate fibroblasts/myofibroblasts and confirms ALI cultures provide a physiologically relevant system to study aberrant basaloid-like cells and mechanisms of EMT. We provide a catalog of PC and lncRNA genes and an interactive browser (https://bronc-epi-in-vitro.cells.ucsc.edu/) of single-cell RNA-Seq data for further exploration of potential roles in the lung epithelium in health and lung disease.
Collapse
Affiliation(s)
- Dinesh Babu Uthaya Kumar
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, Connecticut
| | - Efthymios Motakis
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut
| | - Marina Yurieva
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut
| | | | - Jan Martinek
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut
| | - Te-Chia Wu
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut
| | - Johad Khoury
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Jessica Grassmann
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut
| | - Mingyang Lu
- Department of Bioengineering, Northeastern University, Boston, Massachusetts
- Center for Theoretical Biological Physics, Northeastern University, Boston, Massachusetts
| | - Karolina Palucka
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, Connecticut
| | - Naftali Kaminski
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Jonathan L Koff
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Adam Williams
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, Connecticut
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| |
Collapse
|
18
|
Chakraborty A, Mastalerz M, Ansari M, Schiller HB, Staab-Weijnitz CA. Emerging Roles of Airway Epithelial Cells in Idiopathic Pulmonary Fibrosis. Cells 2022; 11:cells11061050. [PMID: 35326501 PMCID: PMC8947093 DOI: 10.3390/cells11061050] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 12/24/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a fatal disease with incompletely understood aetiology and limited treatment options. Traditionally, IPF was believed to be mainly caused by repetitive injuries to the alveolar epithelium. Several recent lines of evidence, however, suggest that IPF equally involves an aberrant airway epithelial response, which contributes significantly to disease development and progression. In this review, based on recent clinical, high-resolution imaging, genetic, and single-cell RNA sequencing data, we summarize alterations in airway structure, function, and cell type composition in IPF. We furthermore give a comprehensive overview on the genetic and mechanistic evidence pointing towards an essential role of airway epithelial cells in IPF pathogenesis and describe potentially implicated aberrant epithelial signalling pathways and regulation mechanisms in this context. The collected evidence argues for the investigation of possible therapeutic avenues targeting these processes, which thus represent important future directions of research.
Collapse
|
19
|
Suezawa T, Kanagaki S, Korogi Y, Nakao K, Hirai T, Murakami K, Hagiwara M, Gotoh S. Modeling of lung phenotype of Hermansky-Pudlak syndrome type I using patient-specific iPSCs. Respir Res 2021; 22:284. [PMID: 34736469 PMCID: PMC8570015 DOI: 10.1186/s12931-021-01877-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/22/2021] [Indexed: 01/12/2023] Open
Abstract
Background Somatic cells differentiated from patient-specific human induced pluripotent stem cells (iPSCs) could be a useful tool in human cell-based disease research. Hermansky–Pudlak syndrome (HPS) is an autosomal recessive genetic disorder characterized by oculocutaneous albinism and a platelet dysfunction. HPS patients often suffer from lethal HPS associated interstitial pneumonia (HPSIP). Lung transplantation has been the only treatment for HPSIP. Lysosome-related organelles are impaired in HPS, thereby disrupting alveolar type 2 (AT2) cells with lamellar bodies. HPSIP lungs are characterized by enlarged lamellar bodies. Despite species differences between human and mouse in HPSIP, most studies have been conducted in mice since culturing human AT2 cells is difficult. Methods We generated patient-specific iPSCs from patient-derived fibroblasts with the most common bi-allelic variant, c.1472_1487dup16, in HPS1 for modeling severe phenotypes of HPSIP. We then corrected the variant of patient-specific iPSCs using CRISPR-based microhomology-mediated end joining to obtain isogenic controls. The iPSCs were then differentiated into lung epithelial cells using two different lung organoid models, lung bud organoids (LBOs) and alveolar organoids (AOs), and explored the phenotypes contributing to the pathogenesis of HPSIP using transcriptomic and proteomic analyses. Results The LBOs derived from patient-specific iPSCs successfully recapitulated the abnormalities in morphology and size. Proteomic analysis of AOs involving iPSC-derived AT2 cells and primary lung fibroblasts revealed mitochondrial dysfunction in HPS1 patient-specific alveolar epithelial cells. Further, giant lamellar bodies were recapitulated in patient-specific AT2 cells. Conclusions The HPS1 patient-specific iPSCs and their gene-corrected counterparts generated in this study could be a new research tool for understanding the pathogenesis of HPSIP caused by HPS1 deficiency in humans. Supplementary Information The online version contains supplementary material available at 10.1186/s12931-021-01877-8.
Collapse
Affiliation(s)
- Takahiro Suezawa
- Department of Drug Discovery for Lung Diseases, Graduate School of Medicine, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan.,Watarase Research Center, Kyorin Pharmaceutical Co. Ltd., Shimotsuga-gun, Tochigi, Japan
| | - Shuhei Kanagaki
- Watarase Research Center, Kyorin Pharmaceutical Co. Ltd., Shimotsuga-gun, Tochigi, Japan
| | - Yohei Korogi
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kazuhisa Nakao
- Watarase Research Center, Kyorin Pharmaceutical Co. Ltd., Shimotsuga-gun, Tochigi, Japan
| | - Toyohiro Hirai
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Koji Murakami
- Watarase Research Center, Kyorin Pharmaceutical Co. Ltd., Shimotsuga-gun, Tochigi, Japan
| | - Masatoshi Hagiwara
- Department of Anatomy and Developmental Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shimpei Gotoh
- Department of Drug Discovery for Lung Diseases, Graduate School of Medicine, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan. .,Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| |
Collapse
|
20
|
Kojima T, Shindo Y, Konno T, Kodera Y, Arai W, Miyakawa M, Ohwada K, Tanaka H, Tsujiwaki M, Sakuma Y, Kikuchi S, Ohkuni T, Takano K, Watanabe A, Kohno T. Dysfunction of epithelial permeability barrier induced by HMGB1 in 2.5D cultures of human epithelial cells. Tissue Barriers 2021; 10:1972760. [PMID: 34538217 DOI: 10.1080/21688370.2021.1972760] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Airway and intestinal epithelial permeability barriers are crucial in epithelial homeostasis. High mobility group box 1 (HMGB1), increased by various stimuli, is involved in the induction of airway inflammation, as well as the pathogenesis of inflammatory bowel disease. HMGB1 enhances epithelial hyperpermeability. Two-and-a-half dimensional (2.5D) culture assays are experimentally convenient and induce cells to form a more physiological tissue architecture than 2D culture assays for molecular transfer mechanism analysis. In 2.5D culture, treatment with HMGB1 induced permeability of FITC-dextran into the lumen formed by human lung, nasal and intestinal epithelial cells. The tricellular tight junction molecule angulin-1/LSR is responsible for the epithelial permeability barrier at tricellular contacts and contributes to various human airway and intestinal inflammatory diseases. In this review, we indicate the mechanisms including angulin-1/LSR and multiple signaling in dysfunction of the epithelial permeability barrier induced by HMGB1 in 2.5D culture of human airway and intestinal epithelial cells.
Collapse
Affiliation(s)
- Takashi Kojima
- Department of Cell Science, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Yuma Shindo
- Department of Cell Science, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan.,Department of Thoracic Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Takumi Konno
- Department of Cell Science, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Yuki Kodera
- Department of Cell Science, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan.,Department of Respiratory Medicine and Allergology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Wataru Arai
- Department of Cell Science, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan.,Department of Thoracic Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Maki Miyakawa
- Department of Cell Science, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan.,IBD Hospital, Sapporo, Japan
| | - Kizuku Ohwada
- Department of Cell Science, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan.,Department of Otolaryngology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | | | - Mitsuhiro Tsujiwaki
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Yuji Sakuma
- Department of Molecular Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Shin Kikuchi
- Department of Anatomy, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Tsuyoshi Ohkuni
- Department of Otolaryngology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Kenichi Takano
- Department of Otolaryngology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Atsushi Watanabe
- Department of Thoracic Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Takayuki Kohno
- Department of Cell Science, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
21
|
Yaqub N, Wayne G, Birchall M, Song W. Recent advances in human respiratory epithelium models for drug discovery. Biotechnol Adv 2021; 54:107832. [PMID: 34481894 DOI: 10.1016/j.biotechadv.2021.107832] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/08/2021] [Accepted: 08/30/2021] [Indexed: 12/12/2022]
Abstract
The respiratory epithelium is intimately associated with the pathophysiologies of highly infectious viral contagions and chronic illnesses such as chronic obstructive pulmonary disorder, presently the third leading cause of death worldwide with a projected economic burden of £1.7 trillion by 2030. Preclinical studies of respiratory physiology have almost exclusively utilised non-humanised animal models, alongside reductionistic cell line-based models, and primary epithelial cell models cultured at an air-liquid interface (ALI). Despite their utility, these model systems have been limited by their poor correlation to the human condition. This has undermined the ability to identify novel therapeutics, evidenced by a 15% chance of success for medicinal respiratory compounds entering clinical trials in 2018. Consequently, preclinical studies require new translational efficacy models to address the problem of respiratory drug attrition. This review describes the utility of the current in vivo (rodent), ex vivo (isolated perfused lungs and precision cut lung slices), two-dimensional in vitro cell-line (A549, BEAS-2B, Calu-3) and three-dimensional in vitro ALI (gold-standard and co-culture) and organoid respiratory epithelium models. The limitations to the application of these model systems in drug discovery research are discussed, in addition to perspectives of the future innovations required to facilitate the next generation of human-relevant respiratory models.
Collapse
Affiliation(s)
- Naheem Yaqub
- UCL Centre for Biomaterials in Surgical Reconstruction and Regeneration, Department of Surgical Biotechnology, Division of Surgery & Interventional Science, University College London, London NW3 2PF, UK
| | - Gareth Wayne
- Novel Human Genetics, GlaxoSmithKline, Stevenage SG1 2NY, UK
| | - Martin Birchall
- The Ear Institute, Faculty of Brain Sciences, University College London, London WC1X 8EE, UK.
| | - Wenhui Song
- UCL Centre for Biomaterials in Surgical Reconstruction and Regeneration, Department of Surgical Biotechnology, Division of Surgery & Interventional Science, University College London, London NW3 2PF, UK.
| |
Collapse
|
22
|
Busch SM, Lorenzana Z, Ryan AL. Implications for Extracellular Matrix Interactions With Human Lung Basal Stem Cells in Lung Development, Disease, and Airway Modeling. Front Pharmacol 2021; 12:645858. [PMID: 34054525 PMCID: PMC8149957 DOI: 10.3389/fphar.2021.645858] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 04/29/2021] [Indexed: 12/18/2022] Open
Abstract
The extracellular matrix (ECM) is not simply a quiescent scaffold. This three-dimensional network of extracellular macromolecules provides structural, mechanical, and biochemical support for the cells of the lung. Throughout life, the ECM forms a critical component of the pulmonary stem cell niche. Basal cells (BCs), the primary stem cells of the airways capable of differentiating to all luminal cell types, reside in close proximity to the basolateral ECM. Studying BC-ECM interactions is important for the development of therapies for chronic lung diseases in which ECM alterations are accompanied by an apparent loss of the lung's regenerative capacity. The complexity and importance of the native ECM in the regulation of BCs is highlighted as we have yet to create an in vitro culture model that is capable of supporting the long-term expansion of multipotent BCs. The interactions between the pulmonary ECM and BCs are, therefore, a vital component for understanding the mechanisms regulating BC stemness during health and disease. If we are able to replicate these interactions in airway models, we could significantly improve our ability to maintain basal cell stemness ex vivo for use in in vitro models and with prospects for cellular therapies. Furthermore, successful, and sustained airway regeneration in an aged or diseased lung by small molecules, novel compounds or via cellular therapy will rely upon both manipulation of the airway stem cells and their immediate niche within the lung. This review will focus on the current understanding of how the pulmonary ECM regulates the basal stem cell function, how this relationship changes in chronic disease, and how replicating native conditions poses challenges for ex vivo cell culture.
Collapse
Affiliation(s)
- Shana M. Busch
- Hastings Center for Pulmonary Research, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Zareeb Lorenzana
- Hastings Center for Pulmonary Research, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Amy L. Ryan
- Hastings Center for Pulmonary Research, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Southern California, Los Angeles, CA, United States
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
23
|
Paw M, Wnuk D, Jakieła B, Bochenek G, Sładek K, Madeja Z, Michalik M. Responsiveness of human bronchial fibroblasts and epithelial cells from asthmatic and non-asthmatic donors to the transforming growth factor-β 1 in epithelial-mesenchymal trophic unit model. BMC Mol Cell Biol 2021; 22:19. [PMID: 33711932 PMCID: PMC7953709 DOI: 10.1186/s12860-021-00356-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 03/01/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The asthma-related airway wall remodeling is associated i.a. with a damage of bronchial epithelium and subepithelial fibrosis. Functional interactions between human bronchial epithelial cells and human bronchial fibroblasts are known as the epithelial-mesenchymal trophic unit (EMTU) and are necessary for a proper functioning of lung tissue. However, a high concentration of the transforming growth factor-β1 (TGF-β1) in the asthmatic bronchi drives the structural disintegrity of epithelium with the epithelial-to-mesenchymal transition (EMT) of the bronchial epithelial cells, and of subepithelial fibrosis with the fibroblast-to-myofibroblast transition (FMT) of the bronchial fibroblasts. Since previous reports indicate different intrinsic properties of the human bronchial epithelial cells and human bronchial fibroblasts which affect their EMT/FMT potential beetween cells derived from asthmatic and non-asthmatic patients, cultured separatelly in vitro, we were interested to see whether corresponding effects could be obtained in a co-culture of the bronchial epithelial cells and bronchial fibroblasts. In this study, we investigate the effects of the TGF-β1 on the EMT markers of the bronchial epithelial cells cultured in the air-liquid-interface and effectiveness of FMT in the bronchial fibroblast populations in the EMTU models. RESULTS Our results show that the asthmatic co-cultures are more sensitive to the TGF-β1 than the non-asthmatic ones, which is associated with a higher potential of the asthmatic bronchial cells for a profibrotic response, analogously to be observed in '2D' cultures. They also indicate a noticeable impact of human bronchial epithelial cells on the TGF-β1-induced FMT, stronger in the asthmatic bronchial fibroblast populations in comparison to the non-asthmatic ones. Moreover, our results suggest the protective effects of fibroblasts on the structure of the TGF-β1-exposed mucociliary differentiated bronchial epithelial cells and their EMT potential. CONCLUSIONS Our data are the first to demonstrate a protective effect of the human bronchial fibroblasts on the properties of the human bronchial epithelial cells, which suggests that intrinsic properties of not only epithelium but also subepithelial fibroblasts affect a proper condition and function of the EMTU in both normal and asthmatic individuals.
Collapse
Affiliation(s)
- Milena Paw
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-378, Kraków, Poland
| | - Dawid Wnuk
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-378, Kraków, Poland
| | - Bogdan Jakieła
- Division of Molecular Biology and Clinical Genetics, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Grażyna Bochenek
- Department of Internal Medicine, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Krzysztof Sładek
- Department of Internal Medicine, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Zbigniew Madeja
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-378, Kraków, Poland
| | - Marta Michalik
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-378, Kraków, Poland.
| |
Collapse
|
24
|
Pathophysiology of Lung Disease and Wound Repair in Cystic Fibrosis. PATHOPHYSIOLOGY 2021; 28:155-188. [PMID: 35366275 PMCID: PMC8830450 DOI: 10.3390/pathophysiology28010011] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/08/2021] [Accepted: 03/08/2021] [Indexed: 12/11/2022] Open
Abstract
Cystic fibrosis (CF) is an autosomal recessive, life-threatening condition affecting many organs and tissues, the lung disease being the chief cause of morbidity and mortality. Mutations affecting the CF Transmembrane Conductance Regulator (CFTR) gene determine the expression of a dysfunctional protein that, in turn, triggers a pathophysiological cascade, leading to airway epithelium injury and remodeling. In vitro and in vivo studies point to a dysregulated regeneration and wound repair in CF airways, to be traced back to epithelial CFTR lack/dysfunction. Subsequent altered ion/fluid fluxes and/or signaling result in reduced cell migration and proliferation. Furthermore, the epithelial-mesenchymal transition appears to be partially triggered in CF, contributing to wound closure alteration. Finally, we pose our attention to diverse approaches to tackle this defect, discussing the therapeutic role of protease inhibitors, CFTR modulators and mesenchymal stem cells. Although the pathophysiology of wound repair in CF has been disclosed in some mechanisms, further studies are warranted to understand the cellular and molecular events in more details and to better address therapeutic interventions.
Collapse
|
25
|
Li J, Pan C, Tang C, Tan W, Zhang W, Guan J. miR-184 targets TP63 to block idiopathic pulmonary fibrosis by inhibiting proliferation and epithelial-mesenchymal transition of airway epithelial cells. J Transl Med 2021; 101:142-154. [PMID: 32989231 PMCID: PMC7815506 DOI: 10.1038/s41374-020-00487-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 08/23/2020] [Accepted: 08/26/2020] [Indexed: 11/09/2022] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) of epithelium and airway epithelial cell proliferation disorder are key events in idiopathic pulmonary fibrosis (IPF) pathogenesis. During EMT, epithelial cell adhesion molecules (EpCAM, such as E-cadherin) are downregulated, cytokeratin cytoskeletal transforms into vimentin-based cytoskeleton, and the epithelial cells acquire mesenchymal morphology. In the present study, we show abnormal upregulation of tumor protein p63 (TP63) and downregulation of miR-184 in IPF. Transforming growth factor beta 1 (TGF-β1) stimulation of BEAS-2B and A549 cell lines significantly increased the protein levels of Tp63, alpha-smooth muscle actin (α-SMA), and vimentin, but decreased EpCAM protein levels, and promoted viability of both BEAS-2B and A549 cell lines. TP63 knockdown in BEAS-2B and A549 cell lines significantly attenuated above-described TGF-β1-induced fibrotic changes. miR-184 targeted TP63 3'-UTR to inhibit Tp63 expression. miR-184 overexpression within BEAS-2B and A549 cell lines also attenuated TGF-β1-induced fibrotic changes. miR-184 overexpression attenuated bleomycin-induced pulmonary fibrosis in mice. Moreover, TP63 overexpression aggravated TGF-β1-stimulated fibrotic alterations within BEAS-2B and A549 cells and significantly reversed the effects of miR-184 overexpression, indicating miR-184 relieves TGF-β1-stimulated fibrotic alterations within BEAS-2B and A549 cells by targeting TP63, while TP63 overexpression reversed miR-184 cellular functions. In conclusion, the miR-184/TP63 axis modulates the TGF-β1-induced fibrotic alterations in epithelial cell lines and bleomycin-induced pulmonary fibrosis in mice. Therefore, these results confirm that the miR-184/TP63 axis is involved in IPF progression.
Collapse
Affiliation(s)
- Jianmin Li
- Department of Pulmonary and Critical Care Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, Hunan, PR China
| | - Chanyuan Pan
- Department of Pulmonary and Critical Care Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, Hunan, PR China
| | - Chao Tang
- Department of Pulmonary and Critical Care Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, Hunan, PR China
| | - Wenwen Tan
- Department of Pulmonary and Critical Care Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, Hunan, PR China
| | - Weiwei Zhang
- Department of Traditional Chinese Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, Hunan, PR China
| | - Jing Guan
- Department of Science and Education, The First Hospital of Changsha, Changsha, 410008, Hunan, PR China.
| |
Collapse
|
26
|
Sun L, Dong H, Zhang W, Wang N, Ni N, Bai X, Liu N. Lipid Peroxidation, GSH Depletion, and SLC7A11 Inhibition Are Common Causes of EMT and Ferroptosis in A549 Cells, but Different in Specific Mechanisms. DNA Cell Biol 2020; 40:172-183. [PMID: 33351681 DOI: 10.1089/dna.2020.5730] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) induced by transforming growth factor-β1 (TGF-β1) is thought to be involved in the pathogenesis of pulmonary fibrosis. Emerging evidence suggested that there are some common causes between ferroptosis and pulmonary fibrosis. The interaction of EMT and ferroptosis and its mechanism were investigated by detecting the expression levels of α-smooth muscle actin (α-SMA), E-cadherin, solute carrier family 7 member 11 (SLC7A11), and glutathione peroxidase 4 (GPX4) and measuring the contents of reactive oxygen species (ROS), malondialdehyde (MDA), and glutathione (GSH). The cellular morphology and ultrastructure of mitochondria were studied by microscope and transmission electron microscope (TEM), respectively. The results showed that ferroptosis in A549 cells was induced by Erastin, which decreased the expression levels of E-cadherin (E-Ca), α-SMA, and SLC7A11, accompanied with ROS and MDA increase, as well as GSH decrease. TGF-β1 promoted ultrastructure variation of mitochondria similar to ferroptosis and mesenchymal changes in morphology during EMT of A549 cells, accompanied with reduced GSH content and expression of SLC7A11, as well as ROS and MDA increase. Ferrostatin-1 (Fer-1) recovered ferroptosis induced by Erastin, but had no effect on the morphological change caused by TGF-β1. Furthermore, Fer-1 reduced ROS and MDA production, and increased SLC7A11 expression in the early subsequently increased GSH. However, the effects of Fer-1 on above indicators were different in time. The expression of GPX4 had no significant change during EMT induced by TGF-β1 and ferroptosis induced by Erastin in A549 cells. It is indicating that Erastin promoted the de-epithelialization of lung epithelial cells, but inhibited the process of myofibroblast differentiation; Fer-1 could partially inhibit EMT induced by TGF-β1, but reverse ferroptosis induced by Erastin. TGF-β1 could delay the ferroptosis, but could not prevent it. Lipid peroxidation, GSH depletion, and SLC7A11 inhibition are common causes of EMT and ferroptosis in A549 cells, but different in specific mechanisms. The exact effects of GPX4 involved in EMT and ferroptosis in A549 cells need further study.
Collapse
Affiliation(s)
- Lulu Sun
- Clinical Medicine Laboratory, Binzhou Medical University Hospital, Binzhou, P.R. China
| | - Hongliang Dong
- Clinical Medicine Laboratory, Binzhou Medical University Hospital, Binzhou, P.R. China
| | - Weiqun Zhang
- Dental Implant Department, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, P.R. China
| | - Nan Wang
- Clinical Medicine Laboratory, Binzhou Medical University Hospital, Binzhou, P.R. China
| | - Na Ni
- Clinical Medicine Laboratory, Binzhou Medical University Hospital, Binzhou, P.R. China
| | - Xuelian Bai
- Clinical Medicine Laboratory, Binzhou Medical University Hospital, Binzhou, P.R. China
| | - Naiguo Liu
- Clinical Medicine Laboratory, Binzhou Medical University Hospital, Binzhou, P.R. China
| |
Collapse
|
27
|
Veith C, Hristova M, Danyal K, Habibovic A, Dustin CM, McDonough JE, Vanaudenaerde BM, Kreuter M, Schneider MA, Kahn N, van Schooten FJ, Boots AW, van der Vliet A. Profibrotic epithelial TGF-β1 signaling involves NOX4-mitochondria cross talk and redox-mediated activation of the tyrosine kinase FYN. Am J Physiol Lung Cell Mol Physiol 2020; 320:L356-L367. [PMID: 33325804 DOI: 10.1152/ajplung.00444.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is characterized by a disturbed redox balance and increased production of reactive oxygen species (ROS), which is believed to contribute to epithelial injury and fibrotic lung scarring. The main pulmonary sources of ROS include mitochondria and NADPH oxidases (NOXs), of which the NOX4 isoform has been implicated in IPF. Non-receptor SRC tyrosine kinases (SFK) are important for cellular homeostasis and are often dysregulated in lung diseases. SFK activation by the profibrotic transforming growth factor-β (TGF-β) is thought to contribute to pulmonary fibrosis, but the relevant SFK isoform and its relationship to NOX4 and/or mitochondrial ROS in the context of profibrotic TGF-β signaling is not known. Here, we demonstrate that TGF-β1 can rapidly activate the SRC kinase FYN in human bronchial epithelial cells, which subsequently induces mitochondrial ROS (mtROS) production, genetic damage shown by the DNA damage marker γH2AX, and increased expression of profibrotic genes. Moreover, TGF-β1-induced activation of FYN involves initial activation of NOX4 and direct cysteine oxidation of FYN, and both FYN and mtROS contribute to TGF-β-induced induction of NOX4. NOX4 expression in lung tissues of IPF patients is positively correlated with disease severity, although FYN expression is down-regulated in IPF and does not correlate with disease severity. Collectively, our findings highlight a critical role for FYN in TGF-β1-induced mtROS production, DNA damage response, and induction of profibrotic genes in bronchial epithelial cells, and suggest that altered expression and activation of NOX4 and FYN may contribute to the pathogenesis of pulmonary fibrosis.
Collapse
Affiliation(s)
- Carmen Veith
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont.,Department of Pharmacology and Toxicology, NUTRIM School of Nutrition, Translational Research and Metabolism, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Milena Hristova
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Karamatullah Danyal
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Aida Habibovic
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Christopher M Dustin
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - John E McDonough
- Laboratory of Respiratory Diseases, Department of Chronic Diseases, Metabolism, and Ageing, KU Leuven, Leuven, Belgium
| | - Bart M Vanaudenaerde
- Laboratory of Respiratory Diseases, Department of Chronic Diseases, Metabolism, and Ageing, KU Leuven, Leuven, Belgium
| | - Michael Kreuter
- Center for Interstitial and Rare Lung Diseases, Pneumology, Thoraxklinik, Heidelberg University Hospital, Heidelberg, Germany.,Translational Lung Research Center Heidelberg (TLRC), Member of the German Center for Lung Research (DZL), Heidelberg, Germany
| | - Marc A Schneider
- Translational Research Unit, Thoraxklinik, Heidelberg University Hospital, Heidelberg, Germany.,Translational Lung Research Center Heidelberg (TLRC), Member of the German Center for Lung Research (DZL), Heidelberg, Germany
| | - Nicolas Kahn
- Center for Interstitial and Rare Lung Diseases, Pneumology, Thoraxklinik, Heidelberg University Hospital, Heidelberg, Germany.,Translational Lung Research Center Heidelberg (TLRC), Member of the German Center for Lung Research (DZL), Heidelberg, Germany
| | - Frederik J van Schooten
- Department of Pharmacology and Toxicology, NUTRIM School of Nutrition, Translational Research and Metabolism, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Agnes W Boots
- Department of Pharmacology and Toxicology, NUTRIM School of Nutrition, Translational Research and Metabolism, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Albert van der Vliet
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
| |
Collapse
|
28
|
Quaresma MC, Pankonien I, Clarke LA, Sousa LS, Silva IAL, Railean V, Doušová T, Fuxe J, Amaral MD. Mutant CFTR Drives TWIST1 mediated epithelial-mesenchymal transition. Cell Death Dis 2020; 11:920. [PMID: 33106471 PMCID: PMC7588414 DOI: 10.1038/s41419-020-03119-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 10/07/2020] [Accepted: 10/08/2020] [Indexed: 12/12/2022]
Abstract
Cystic fibrosis (CF) is a monogenetic disease resulting from mutations in the Cystic Fibrosis Transmembrane conductance Regulator (CFTR) gene encoding an anion channel. Recent evidence indicates that CFTR plays a role in other cellular processes, namely in development, cellular differentiation and wound healing. Accordingly, CFTR has been proposed to function as a tumour suppressor in a wide range of cancers. Along these lines, CF was recently suggested to be associated with epithelial–mesenchymal transition (EMT), a latent developmental process, which can be re-activated in fibrosis and cancer. However, it is unknown whether EMT is indeed active in CF and if EMT is triggered by dysfunctional CFTR itself or a consequence of secondary complications of CF. In this study, we investigated the occurrence of EMT in airways native tissue, primary cells and cell lines expressing mutant CFTR through the expression of epithelial and mesenchymal markers as well as EMT-associated transcription factors. Transepithelial electrical resistance, proliferation and regeneration rates, and cell resistance to TGF-β1induced EMT were also measured. CF tissues/cells expressing mutant CFTR displayed several signs of active EMT, namely: destructured epithelial proteins, defective cell junctions, increased levels of mesenchymal markers and EMT-associated transcription factors, hyper-proliferation and impaired wound healing. Importantly, we found evidence that the mutant CFTR triggered EMT was mediated by EMT-associated transcription factor TWIST1. Further, our data show that CF cells are over-sensitive to EMT but the CF EMT phenotype can be reversed by CFTR modulator drugs. Altogether, these results identify for the first time that EMT is intrinsically triggered by the absence of functional CFTR through a TWIST1 dependent mechanism and indicate that CFTR plays a direct role in EMT protection. This mechanistic link is a plausible explanation for the high incidence of fibrosis and cancer in CF, as well as for the role of CFTR as tumour suppressor protein.
Collapse
Affiliation(s)
- Margarida C Quaresma
- University of Lisboa, Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, C8 bdg, 1749-016, Campo Grande, Lisboa, Portugal
| | - Ines Pankonien
- University of Lisboa, Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, C8 bdg, 1749-016, Campo Grande, Lisboa, Portugal
| | - Luka A Clarke
- University of Lisboa, Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, C8 bdg, 1749-016, Campo Grande, Lisboa, Portugal
| | - Luís S Sousa
- University of Lisboa, Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, C8 bdg, 1749-016, Campo Grande, Lisboa, Portugal
| | - Iris A L Silva
- University of Lisboa, Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, C8 bdg, 1749-016, Campo Grande, Lisboa, Portugal
| | - Violeta Railean
- University of Lisboa, Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, C8 bdg, 1749-016, Campo Grande, Lisboa, Portugal
| | - Tereza Doušová
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University and University Hospital Motol, V Uvalu 84, 15006, Prague, Czech Republic
| | - Jonas Fuxe
- Division of Pathology, Department of Laboratory Medicine (LABMED), Karolinska Institutet and Karolinska University hospital, Huddinge, Stockholm, Sweden
| | - Margarida D Amaral
- University of Lisboa, Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, C8 bdg, 1749-016, Campo Grande, Lisboa, Portugal.
| |
Collapse
|
29
|
Kodera Y, Kohno T, Konno T, Arai W, Tsujiwaki M, Shindo Y, Chiba H, Miyakawa M, Tanaka H, Sakuma Y, Watanabe A, Takahashi H, Kojima T. HMGB1 enhances epithelial permeability via p63/TGF-β signaling in lung and terminal bronchial epithelial cells. Tissue Barriers 2020; 8:1805997. [PMID: 32857676 PMCID: PMC7714505 DOI: 10.1080/21688370.2020.1805997] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/30/2020] [Accepted: 07/31/2020] [Indexed: 12/28/2022] Open
Abstract
High mobility group box 1 (HMGB1) is involved in the induction of airway inflammation and injury in patients with chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF). HMGB1 increased by transforming growth factor-β1 (TGF-β1), impairs airway epithelial barrier function in the lung. In the present study, to investigate how HMGB1 affects the barrier of normal human lung epithelial (HLE) cells, monolayer cells (2D culture) and bronchial-like spheroid cells (2.5 D Matrigel culture), which have lumen formation, were pretreated with TGF-β type I receptor kinase inhibitor EW-7197 before treatment with HMGB1. In 2D culture, treatment with HMGB1 decreased expression of angulin-1/LSR, TRIC and CLDN-1, -4, -7 and increased that of CLDN-2. Pretreatment with EW-7197 prevented the changes of all tight junction molecules induced by HMGB1. In 2.5D Matrigel culture, treatment with HMGB1 induced permeability of FITC-dextran (FD-4) into the lumen, whereas pretreatment with EW-7197 prevented the hyperpermeability of FD-4 into the lumen caused by HMGB1. In 2.5D Matrigel culture, knockdown of transcription factor p63 prevented the hyperpermeability induced by HMGB1 as well as pretreatment with EW-7197. In the 2D culture of HLE cells with HMGB1, knockdown of p63 increased the level of angulin-1/LSR and CLDN-4, while pretreatment with EW-7197 enhanced the increase of CLDN-4 induced by knockdown of p63. Immunohistochemical analysis of IPF, CLDN-2, HMGB1 and p63 revealed that their levels were higher in the regenerative epithelium of the terminal bronchial region than in normal epithelium. HMGB1 induces epithelial permeability of HLE cells via p63/TGF-β signaling in normal lung and IPF.
Collapse
Affiliation(s)
- Yuki Kodera
- Department of Respiratory Medicine and Allergology, Sapporo Medical University School of Medicine, Sapporo, Japan
- Department of Cell Science, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Takayuki Kohno
- Department of Cell Science, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Takumi Konno
- Department of Cell Science, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Wataru Arai
- Department of Cell Science, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
- Department of Thoracic Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Mitsuhiro Tsujiwaki
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Yuma Shindo
- Department of Cell Science, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
- Department of Thoracic Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hirofumi Chiba
- Department of Respiratory Medicine and Allergology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Maki Miyakawa
- Department of Cell Science, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
- IBD Center, Sapporo Kosei General Hospital, Sapporo, Japan
| | - Hiroki Tanaka
- IBD Center, Sapporo Kosei General Hospital, Sapporo, Japan
| | - Yuji Sakuma
- Department of Molecular Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Atsushi Watanabe
- Department of Thoracic Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hiroki Takahashi
- Department of Respiratory Medicine and Allergology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Takashi Kojima
- Department of Cell Science, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
30
|
Parekh KR, Nawroth J, Pai A, Busch SM, Senger CN, Ryan AL. Stem cells and lung regeneration. Am J Physiol Cell Physiol 2020; 319:C675-C693. [PMID: 32783658 PMCID: PMC7654650 DOI: 10.1152/ajpcell.00036.2020] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 08/03/2020] [Accepted: 08/03/2020] [Indexed: 12/20/2022]
Abstract
The ability to replace defective cells in an airway with cells that can engraft, integrate, and restore a functional epithelium could potentially cure a number of lung diseases. Progress toward the development of strategies to regenerate the adult lung by either in vivo or ex vivo targeting of endogenous stem cells or pluripotent stem cell derivatives is limited by our fundamental lack of understanding of the mechanisms controlling human lung development, the precise identity and function of human lung stem and progenitor cell types, and the genetic and epigenetic control of human lung fate. In this review, we intend to discuss the known stem/progenitor cell populations, their relative differences between rodents and humans, their roles in chronic lung disease, and their therapeutic prospects. Additionally, we highlight the recent breakthroughs that have increased our understanding of these cell types. These advancements include novel lineage-traced animal models and single-cell RNA sequencing of human airway cells, which have provided critical information on the stem cell subtypes, transition states, identifying cell markers, and intricate pathways that commit a stem cell to differentiate or to maintain plasticity. As our capacity to model the human lung evolves, so will our understanding of lung regeneration and our ability to target endogenous stem cells as a therapeutic approach for lung disease.
Collapse
Affiliation(s)
- Kalpaj R Parekh
- Department Surgery, Division of Cardiothoracic Surgery, University of Iowa, Iowa City, Iowa
| | - Janna Nawroth
- Hastings Center for Pulmonary Research, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Southern California, Los Angeles, California
| | - Albert Pai
- Department Surgery, Division of Cardiothoracic Surgery, University of Iowa, Iowa City, Iowa
| | - Shana M Busch
- Hastings Center for Pulmonary Research, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Southern California, Los Angeles, California
| | - Christiana N Senger
- Hastings Center for Pulmonary Research, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Southern California, Los Angeles, California
| | - Amy L Ryan
- Hastings Center for Pulmonary Research, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Southern California, Los Angeles, California
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, California
| |
Collapse
|
31
|
Chia SB, Nolin JD, Aboushousha R, Erikson C, Irvin CG, Poynter ME, van der Velden J, Taatjes DJ, van der Vliet A, Anathy V, Janssen-Heininger YMW. Glutaredoxin deficiency promotes activation of the transforming growth factor beta pathway in airway epithelial cells, in association with fibrotic airway remodeling. Redox Biol 2020; 37:101720. [PMID: 32971362 PMCID: PMC7509797 DOI: 10.1016/j.redox.2020.101720] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 09/02/2020] [Accepted: 09/11/2020] [Indexed: 12/14/2022] Open
Abstract
S-glutathionylation of reactive protein cysteines is a post-translational event that plays a critical role in transducing signals from oxidants into biological responses. S-glutathionylation can be reversed by the deglutathionylating enzyme glutaredoxin (GLRX). We have previously demonstrated that ablation of Glrx sensitizes mice to the development of parenchymal lung fibrosis(1). It remains unclear whether GLRX also controls airway fibrosis, a clinical feature relevant to asthma and chronic obstructive pulmonary disease, and whether GLRX controls the biology of airway epithelial cells, which have been implicated in the pathophysiology of these diseases. In the present study we utilized a house dust mite (HDM) model of allergic airway disease in wild type (WT) and Glrx-/- mice on a C57BL/6 background prone to develop airway fibrosis, and tracheal basal stem cells derived from WT mice, global Glrx-/- mice, or bi-transgenic mice allowing conditional ablation of the Glrx gene. Herein we show that absence of Glrx led to enhanced HDM-induced collagen deposition, elevated levels of transforming growth factor beta 1 (TGFB1) in the bronchoalveolar lavage, and resulted in increases in airway hyperresponsiveness. Airway epithelial cells isolated from Glrx-/- mice or following conditional ablation of Glrx showed spontaneous increases in secretion of TGFB1. Glrx-/- basal cells also showed spontaneous TGFB pathway activation, in association with increased expression of mesenchymal genes, including collagen 1a1 and fibronectin. Overall, these findings suggest that GLRX regulates airway fibrosis via a mechanism(s) that involve the plasticity of basal cells, the stem cells of the airways.
Collapse
Affiliation(s)
- Shi B Chia
- Department of Pathology and Laboratory Medicine, University of Vermont College of Medicine, Burlington, VT, 05405, USA
| | - James D Nolin
- Department of Pathology and Laboratory Medicine, University of Vermont College of Medicine, Burlington, VT, 05405, USA; Center for Genes, Environment and Health, National Jewish Health, Denver, CO, 80206, USA
| | - Reem Aboushousha
- Department of Pathology and Laboratory Medicine, University of Vermont College of Medicine, Burlington, VT, 05405, USA
| | - Cuixia Erikson
- Department of Pathology and Laboratory Medicine, University of Vermont College of Medicine, Burlington, VT, 05405, USA
| | - Charles G Irvin
- Department of Medicine, University of Vermont College of Medicine, Burlington, VT, 05405, USA
| | - Matthew E Poynter
- Department of Medicine, University of Vermont College of Medicine, Burlington, VT, 05405, USA
| | - Jos van der Velden
- Department of Pathology and Laboratory Medicine, University of Vermont College of Medicine, Burlington, VT, 05405, USA
| | - Douglas J Taatjes
- Department of Pathology and Laboratory Medicine, University of Vermont College of Medicine, Burlington, VT, 05405, USA
| | - Albert van der Vliet
- Department of Pathology and Laboratory Medicine, University of Vermont College of Medicine, Burlington, VT, 05405, USA
| | - Vikas Anathy
- Department of Pathology and Laboratory Medicine, University of Vermont College of Medicine, Burlington, VT, 05405, USA
| | - Yvonne M W Janssen-Heininger
- Department of Pathology and Laboratory Medicine, University of Vermont College of Medicine, Burlington, VT, 05405, USA.
| |
Collapse
|
32
|
Invernizzi R, Lloyd CM, Molyneaux PL. Respiratory microbiome and epithelial interactions shape immunity in the lungs. Immunology 2020; 160:171-182. [PMID: 32196653 PMCID: PMC7218407 DOI: 10.1111/imm.13195] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/17/2020] [Accepted: 02/17/2020] [Indexed: 12/11/2022] Open
Abstract
The airway epithelium represents a physical barrier to the external environment acting as the first line of defence against potentially harmful environmental stimuli including microbes and allergens. However, lung epithelial cells are increasingly recognized as active effectors of microbial defence, contributing to both innate and adaptive immune function in the lower respiratory tract. These cells express an ample repertoire of pattern recognition receptors with specificity for conserved microbial and host motifs. Modern molecular techniques have uncovered the complexity of the lower respiratory tract microbiome. The interaction between the microbiota and the airway epithelium is key to understanding how stable immune homeostasis is maintained. Loss of epithelial integrity following exposure to infection can result in the onset of inflammation in susceptible individuals and may culminate in lung disease. Here we discuss the current knowledge regarding the molecular and cellular mechanisms by which the pulmonary epithelium interacts with the lung microbiome in shaping immunity in the lung. Specifically, we focus on the interactions between the lung microbiome and the cells of the conducting airways in modulating immune cell regulation, and how defects in barrier structure and function may culminate in lung disease. Understanding these interactions is fundamental in the search for more effective therapies for respiratory diseases.
Collapse
Affiliation(s)
- Rachele Invernizzi
- Inflammation, Repair and Development SectionNational Heart and Lung InstituteImperial CollegeLondonUK
| | - Clare M. Lloyd
- Inflammation, Repair and Development SectionNational Heart and Lung InstituteImperial CollegeLondonUK
| | - Philip L. Molyneaux
- Inflammation, Repair and Development SectionNational Heart and Lung InstituteImperial CollegeLondonUK
- Department of Respiratory MedicineInterstitial Lung Disease UnitRoyal Brompton HospitalLondonUK
| |
Collapse
|
33
|
Knight DA, Grainge CL, Stick SM, Kicic A, Schuliga M. Epithelial Mesenchymal Transition in Respiratory Disease: Fact or Fiction. Chest 2020; 157:1591-1596. [PMID: 31952949 DOI: 10.1016/j.chest.2019.12.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 11/20/2019] [Accepted: 12/13/2019] [Indexed: 12/20/2022] Open
Affiliation(s)
- Darryl A Knight
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia; Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Callaghan, NSW, Australia; Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC, Canada; Australian Respiratory Epithelium Consortium, Perth, WA, Australia.
| | - Christopher L Grainge
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Callaghan, NSW, Australia; School of Medicine and Public Health, University of Newcastle, Callaghan, NSW, Australia; Department of Respiratory and Sleep Medicine, John Hunter Hospital, Newcastle, NSW, Australia; Australian Respiratory Epithelium Consortium, Perth, WA, Australia
| | - Stephen M Stick
- Telethon Kids Institute, Subiaco, WA, Australia; Australian Respiratory Epithelium Consortium, Perth, WA, Australia
| | - Anthony Kicic
- Telethon Kids Institute, Subiaco, WA, Australia; Australian Respiratory Epithelium Consortium, Perth, WA, Australia
| | - Michael Schuliga
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia; Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Callaghan, NSW, Australia; Australian Respiratory Epithelium Consortium, Perth, WA, Australia
| |
Collapse
|
34
|
Weigle S, Martin E, Voegtle A, Wahl B, Schuler M. Primary cell-based phenotypic assays to pharmacologically and genetically study fibrotic diseases in vitro. J Biol Methods 2019; 6:e115. [PMID: 31453262 PMCID: PMC6706098 DOI: 10.14440/jbm.2019.285] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 03/20/2019] [Accepted: 03/20/2019] [Indexed: 12/27/2022] Open
Abstract
Ongoing tissue repair and formation and deposition of collagen-rich extracellular matrix in tissues and organs finally lead to fibrotic lesions and destruction of normal tissue/organ architecture and function. In the lung, scarring is observed in asthma, chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis to various degrees. At the cellular level immune cells, fibroblasts and epithelial cells are all involved in fibrotic processes. Mechanistically, fibroblast to myofibroblast transformation and epithelial to mesenchymal transition are major drivers of fibrosis. Amongst others, both processes are controlled by transforming growth factor beta-1 (TGFβ-1), a growth factor upregulated in idiopathic pulmonary fibrosis lungs. Phenotypic assays with primary human cells and complex disease-relevant readouts become increasingly important in modern drug discovery processes. We describe high-content screening based phenotypic assays with primary normal human lung fibroblasts and primary human airway epithelial cells. For both cell types, TGFβ-1 stimulation is used to induce fibrotic phenotypes in vitro, with alpha smooth muscle actin and collagen-I as readouts for FMT and E-cadherin as a readout for EMT. For each assay, a detailed image analysis protocols is described. Treatment of both cell types with TGFβ-1 and a transforming growth factor beta receptor inhibitor verifies the suitability of the assays for pharmacological interventions. In addition, the assays are compatible for siRNA and Cas9-ribonucleoprotein transfections, and thus are useful for genetic target identification/validation by modulating gene expression.
Collapse
Affiliation(s)
| | | | | | | | - Michael Schuler
- Boehringer Ingelheim Pharma GmbH & Co. KG, Department of Drug Discovery Sciences, 88397 Biberach an der Riss, Germany
| |
Collapse
|
35
|
Rout-Pitt N, Farrow N, Parsons D, Donnelley M. Epithelial mesenchymal transition (EMT): a universal process in lung diseases with implications for cystic fibrosis pathophysiology. Respir Res 2018; 19:136. [PMID: 30021582 PMCID: PMC6052671 DOI: 10.1186/s12931-018-0834-8] [Citation(s) in RCA: 197] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 06/25/2018] [Indexed: 12/21/2022] Open
Abstract
Cystic Fibrosis (CF) is a genetic disorder that arises due to mutations in the Cystic Fibrosis Transmembrane Conductance Regulator gene, which encodes for a protein responsible for ion transport out of epithelial cells. This leads to a disruption in transepithelial Cl-, Na + and HCO3− ion transport and the subsequent dehydration of the airway epithelium, resulting in infection, inflammation and development of fibrotic tissue. Unlike in CF, fibrosis in other lung diseases including asthma, chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis has been well characterised. One of the driving forces behind fibrosis is Epithelial Mesenchymal Transition (EMT), a process where epithelial cells lose epithelial proteins including E-Cadherin, which is responsible for tight junctions. The cell moves to a more mesenchymal phenotype as it gains mesenchymal markers such as N-Cadherin (providing the cells with migration potential), Vimentin and Fibronectin (proteins excreted to help form the extracellular matrix), and the fibroblast proliferation transcription factors Snail, Slug and Twist. This review paper explores the EMT process in a range of lung diseases, details the common links that these have to cystic fibrosis, and explores how understanding EMT in cystic fibrosis may open up novel methods of treating patients with cystic fibrosis.
Collapse
Affiliation(s)
- Nathan Rout-Pitt
- Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia. .,Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia. .,Department of Respiratory and Sleep Medicine, Women's and Children's Hospital, 72 King William Rd, North Adelaide, South Australia, 5006, Australia.
| | - Nigel Farrow
- Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia.,Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia.,Department of Respiratory and Sleep Medicine, Women's and Children's Hospital, 72 King William Rd, North Adelaide, South Australia, 5006, Australia.,Australian Respiratory Epithelium Consortium (AusRec), Perth, Western Australia, 6105, Australia
| | - David Parsons
- Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia.,Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia.,Department of Respiratory and Sleep Medicine, Women's and Children's Hospital, 72 King William Rd, North Adelaide, South Australia, 5006, Australia.,Australian Respiratory Epithelium Consortium (AusRec), Perth, Western Australia, 6105, Australia
| | - Martin Donnelley
- Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia.,Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia.,Department of Respiratory and Sleep Medicine, Women's and Children's Hospital, 72 King William Rd, North Adelaide, South Australia, 5006, Australia
| |
Collapse
|
36
|
van der Velden JL, Wagner DE, Lahue KG, Abdalla ST, Lam YW, Weiss DJ, Janssen-Heininger YMW. TGF-β1-induced deposition of provisional extracellular matrix by tracheal basal cells promotes epithelial-to-mesenchymal transition in a c-Jun NH 2-terminal kinase-1-dependent manner. Am J Physiol Lung Cell Mol Physiol 2018; 314:L984-L997. [PMID: 29469614 PMCID: PMC6032072 DOI: 10.1152/ajplung.00053.2017] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 02/14/2018] [Accepted: 02/15/2018] [Indexed: 12/16/2022] Open
Abstract
Epithelial cells have been suggested as potential drivers of lung fibrosis, although the epithelial-dependent pathways that promote fibrogenesis remain unknown. Extracellular matrix is increasingly recognized as an environment that can drive cellular responses in various pulmonary diseases. In this study, we demonstrate that transforming growth factor-β1 (TGF-β1)-stimulated mouse tracheal basal (MTB) cells produce provisional matrix proteins in vitro, which initiate mesenchymal changes in subsequently freshly plated MTB cells via Rho kinase- and c-Jun NH2-terminal kinase (JNK1)-dependent processes. Repopulation of decellularized lung scaffolds, derived from mice with bleomycin-induced fibrosis or from patients with idiopathic pulmonary fibrosis, with wild-type MTB cells resulted in a loss of epithelial gene expression and augmentation of mesenchymal gene expression compared with cells seeded into decellularized normal lungs. In contrast, Jnk1-/- basal cells seeded into fibrotic lung scaffolds retained a robust epithelial expression profile, failed to induce mesenchymal genes, and differentiated into club cell secretory protein-expressing cells. This new paradigm wherein TGF-β1-induced extracellular matrix derived from MTB cells activates a JNK1-dependent mesenchymal program, which impedes subsequent normal epithelial cell homeostasis, provides a plausible scenario of chronic aberrant epithelial repair, thought to be critical in lung fibrogenesis. This study identifies JNK1 as a possible target for inhibition in settings wherein reepithelialization is desired.
Collapse
Affiliation(s)
- Jos L van der Velden
- Department of Pathology and Laboratory Medicine, University of Vermont , Burlington, Vermont
| | - Darcy E Wagner
- Department of Medicine, University of Vermont , Burlington, Vermont
- Department of Experimental Medical Sciences, Lung Bioengineering, and Regeneration, Lund University , Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University , Lund, Sweden
| | - Karolyn G Lahue
- Department of Pathology and Laboratory Medicine, University of Vermont , Burlington, Vermont
| | - Sarah T Abdalla
- Department of Pathology and Laboratory Medicine, University of Vermont , Burlington, Vermont
| | - Ying-Wai Lam
- Department of Biology, University of Vermont , Burlington, Vermont
- Vermont Genetics Networks Proteomics Facility, University of Vermont , Burlington, Vermont
| | - Daniel J Weiss
- Department of Medicine, University of Vermont , Burlington, Vermont
| | | |
Collapse
|
37
|
Caruso JA, Stemmer PM. Petroleum coke exposure leads to altered secretome profiles in human lung models. Hum Exp Toxicol 2018; 37:1215-1232. [PMID: 29577758 DOI: 10.1177/0960327118765326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Petroleum coke (PC) is a coal-like product that is produced during the refinement of crude oil and bituminous sand. Fugitive dust from open storage of PC in urban areas is a potential human health concern. Animal inhalation studies suggest that PC leads to an adverse pulmonary histopathology, including areas of fibrosis and chronic inflammation; however, little is known about its impact on human health. In order to identify biomarkers and cellular pathways that are associated with exposure, we performed two-dimensional liquid chromatography-mass spectrometric analyses on secreted proteins from two human lung culture models. A total of 2795 proteins were identified and relatively quantified from an immortalized cell line and 2406 proteins from primary cultures that were either mock treated or exposed to particulate matter with a diameter of 2.5-10 μm PC or filtered urban air particulates for 16 h. Pathway analysis on secretomes from primary lung cultures indicated that PC exposure suppressed the secretion of proteins involved in the organization of the extracellular matrix and epithelial differentiation. Because these cellular processes could facilitate fibrosis, we performed chronic 12-day exposure studies on three-dimensional human lung cultures consisting of epithelia and stromal fibroblasts. Relative to mock-treated cells, matrix metallopeptidase 9 levels in the conditioned media were lower by 4 days postexposure and remained suppressed for the duration of the experiment. Immunocytochemical staining of collagen III, a marker associated with fibrosis, showed increased accumulation in the epithelial layer and at the air-liquid interface.
Collapse
Affiliation(s)
- J A Caruso
- 1 Proteomics Core Facility, Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, USA
| | - P M Stemmer
- 2 Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, USA
| |
Collapse
|
38
|
Giacomelli C, Daniele S, Romei C, Tavanti L, Neri T, Piano I, Celi A, Martini C, Trincavelli ML. The A 2B Adenosine Receptor Modulates the Epithelial- Mesenchymal Transition through the Balance of cAMP/PKA and MAPK/ERK Pathway Activation in Human Epithelial Lung Cells. Front Pharmacol 2018; 9:54. [PMID: 29445342 PMCID: PMC5797802 DOI: 10.3389/fphar.2018.00054] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 01/15/2018] [Indexed: 12/12/2022] Open
Abstract
The epithelial-mesenchymal transition (EMT) is a complex process in which cell phenotype switches from the epithelial to mesenchymal one. The deregulations of this process have been related with the occurrence of different diseases such as lung cancer and fibrosis. In the last decade, several efforts have been devoted in understanding the mechanisms that trigger and sustain this transition process. Adenosine is a purinergic signaling molecule that has been involved in the onset and progression of chronic lung diseases and cancer through the A2B adenosine receptor subtype activation, too. However, the relationship between A2BAR and EMT has not been investigated, yet. Herein, the A2BAR characterization was carried out in human epithelial lung cells. Moreover, the effects of receptor activation on EMT were investigated in the absence and presence of transforming growth factor-beta (TGF-β1), which has been known to promote the transition. The A2BAR activation alone decreased and increased the expression of epithelial markers (E-cadherin) and the mesenchymal one (Vimentin, N-cadherin), respectively, nevertheless a complete EMT was not observed. Surprisingly, the receptor activation counteracted the EMT induced by TGF-β1. Several intracellular pathways regulate the EMT: high levels of cAMP and ERK1/2 phosphorylation has been demonstrated to counteract and promote the transition, respectively. The A2BAR stimulation was able to modulated these two pathways, cAMP/PKA and MAPK/ERK, shifting the fine balance toward activation or inhibition of EMT. In fact, using a selective PKA inhibitor, which blocks the cAMP pathway, the A2BAR-mediated EMT promotion were exacerbated, and conversely the selective inhibition of MAPK/ERK counteracted the receptor-induced transition. These results highlighted the A2BAR as one of the receptors involved in the modulation of EMT process. Nevertheless, its activation is not enough to trigger a complete transition, its ability to affect different intracellular pathways could represent a mechanism at the basis of EMT maintenance/inhibition based on the extracellular microenvironment. Despite further investigations are needed, herein for the first time the A2BAR has been related to the EMT process, and therefore to the different EMT-related pathologies.
Collapse
Affiliation(s)
| | | | - Chiara Romei
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy.,Radiology Unit, University Hospital of Pisa, Pisa, Italy
| | - Laura Tavanti
- Pneumology Unit, Cardio-Thoracic Department, University Hospital of Pisa, Pisa, Italy
| | - Tommaso Neri
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | - Ilaria Piano
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | - Alessandro Celi
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | | | | |
Collapse
|
39
|
Khoshgoo N, Visser R, Falk L, Day CA, Ameis D, Iwasiow BM, Zhu F, Öztürk A, Basu S, Pind M, Fresnosa A, Jackson M, Siragam VK, Stelmack G, Hicks GG, Halayko AJ, Keijzer R. MicroRNA-200b regulates distal airway development by maintaining epithelial integrity. Sci Rep 2017; 7:6382. [PMID: 28743913 PMCID: PMC5526907 DOI: 10.1038/s41598-017-05412-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 05/30/2017] [Indexed: 12/21/2022] Open
Abstract
miR-200b plays a role in epithelial-to-mesenchymal transition (EMT) in cancer. We recently reported abnormal expression of miR-200b in the context of human pulmonary hypoplasia in congenital diaphragmatic hernia (CDH). Smaller lung size, a lower number of airway generations, and a thicker mesenchyme characterize pulmonary hypoplasia in CDH. The aim of this study was to define the role of miR-200b during lung development. Here we show that miR-200b-/- mice have abnormal lung function due to dysfunctional surfactant, increased fibroblast-like cells and thicker mesenchyme in between the alveolar walls. We profiled the lung transcriptome in miR-200b-/- mice, and, using Gene Ontology analysis, we determined that the most affected biological processes include cell cycle, apoptosis and protein transport. Our results demonstrate that miR-200b regulates distal airway development through maintaining an epithelial cell phenotype. The lung abnormalities observed in miR-200b-/- mice recapitulate lung hypoplasia in CDH.
Collapse
Affiliation(s)
- Naghmeh Khoshgoo
- Biology of Breathing Group, The Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
- Departments of Surgery, Division of Pediatric Surgery and Pediatrics & Child Health, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Robin Visser
- Biology of Breathing Group, The Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
- Departments of Surgery, Division of Pediatric Surgery and Pediatrics & Child Health, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Landon Falk
- Biology of Breathing Group, The Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
- Departments of Surgery, Division of Pediatric Surgery and Pediatrics & Child Health, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Chelsea A Day
- Biology of Breathing Group, The Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
- Departments of Surgery, Division of Pediatric Surgery and Pediatrics & Child Health, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Dustin Ameis
- Biology of Breathing Group, The Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
- Departments of Surgery, Division of Pediatric Surgery and Pediatrics & Child Health, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Barbara M Iwasiow
- Biology of Breathing Group, The Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
- Departments of Surgery, Division of Pediatric Surgery and Pediatrics & Child Health, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Fuqin Zhu
- Biology of Breathing Group, The Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
- Departments of Surgery, Division of Pediatric Surgery and Pediatrics & Child Health, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Arzu Öztürk
- Research Institute of Oncology and Hematology, CancerCare Manitoba, Winnipeg, Manitoba, Canada
- Department of Biochemistry & Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Sujata Basu
- Biology of Breathing Group, The Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Molly Pind
- Research Institute of Oncology and Hematology, CancerCare Manitoba, Winnipeg, Manitoba, Canada
- Department of Biochemistry & Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Agnes Fresnosa
- Research Institute of Oncology and Hematology, CancerCare Manitoba, Winnipeg, Manitoba, Canada
- Department of Biochemistry & Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Mike Jackson
- Small Animal and Materials Imaging Core Facility, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Vinaya Kumar Siragam
- Biology of Breathing Group, The Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
- Departments of Surgery, Division of Pediatric Surgery and Pediatrics & Child Health, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Gerald Stelmack
- Biology of Breathing Group, The Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Geoffrey G Hicks
- Research Institute of Oncology and Hematology, CancerCare Manitoba, Winnipeg, Manitoba, Canada
- Department of Biochemistry & Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Andrew J Halayko
- Biology of Breathing Group, The Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Richard Keijzer
- Biology of Breathing Group, The Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada.
- Departments of Surgery, Division of Pediatric Surgery and Pediatrics & Child Health, University of Manitoba, Winnipeg, Manitoba, Canada.
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada.
| |
Collapse
|
40
|
Jolly MK, Ward C, Eapen MS, Myers S, Hallgren O, Levine H, Sohal SS. Epithelial-mesenchymal transition, a spectrum of states: Role in lung development, homeostasis, and disease. Dev Dyn 2017. [DOI: 10.1002/dvdy.24541] [Citation(s) in RCA: 137] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Mohit Kumar Jolly
- Center for Theoretical Biological Physics; Rice University; Houston Texas
| | - Chris Ward
- Institute of Cellular Medicine; Newcastle University; Newcastle upon Tyne United Kingdom
| | - Mathew Suji Eapen
- School of Health Sciences; Faculty of Health, University of Tasmania, Launceston, University of Tasmania; Hobart Tasmania Australia
- NHMRC Centre of Research Excellence for Chronic Respiratory Disease; University of Tasmania; Hobart Tasmania Australia
| | - Stephen Myers
- School of Health Sciences; Faculty of Health, University of Tasmania, Launceston, University of Tasmania; Hobart Tasmania Australia
| | - Oskar Hallgren
- Department of Experimental Medical Sciences; Department of Respiratory Medicine and Allergology, Lund University; Sweden
| | - Herbert Levine
- Center for Theoretical Biological Physics; Rice University; Houston Texas
| | - Sukhwinder Singh Sohal
- School of Health Sciences; Faculty of Health, University of Tasmania, Launceston, University of Tasmania; Hobart Tasmania Australia
- NHMRC Centre of Research Excellence for Chronic Respiratory Disease; University of Tasmania; Hobart Tasmania Australia
| |
Collapse
|
41
|
Evans CM, Fingerlin TE, Schwarz MI, Lynch D, Kurche J, Warg L, Yang IV, Schwartz DA. Idiopathic Pulmonary Fibrosis: A Genetic Disease That Involves Mucociliary Dysfunction of the Peripheral Airways. Physiol Rev 2017; 96:1567-91. [PMID: 27630174 PMCID: PMC5243224 DOI: 10.1152/physrev.00004.2016] [Citation(s) in RCA: 159] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is an incurable complex genetic disorder that is associated with sequence changes in 7 genes (MUC5B, TERT, TERC, RTEL1, PARN, SFTPC, and SFTPA2) and with variants in at least 11 novel loci. We have previously found that 1) a common gain-of-function promoter variant in MUC5B rs35705950 is the strongest risk factor (genetic and otherwise), accounting for 30-35% of the risk of developing IPF, a disease that was previously considered idiopathic; 2) the MUC5B promoter variant can potentially be used to identify individuals with preclinical pulmonary fibrosis and is predictive of radiologic progression of preclinical pulmonary fibrosis; and 3) MUC5B may be involved in the pathogenesis of pulmonary fibrosis with MUC5B message and protein expressed in bronchiolo-alveolar epithelia of IPF and the characteristic IPF honeycomb cysts. Based on these considerations, we hypothesize that excessive production of MUC5B either enhances injury due to reduced mucociliary clearance or impedes repair consequent to disruption of normal regenerative mechanisms in the distal lung. In aggregate, these novel considerations should have broad impact, resulting in specific etiologic targets, early detection of disease, and novel biologic pathways for use in the design of future intervention, prevention, and mechanistic studies of IPF.
Collapse
Affiliation(s)
- Christopher M Evans
- Department of Medicine, University of Colorado Denver, School of Medicine, Aurora, Colorado; National Jewish Health, Denver, Colorado; and Department of Immunology, University of Colorado Denver, School of Medicine, Aurora, Colorado
| | - Tasha E Fingerlin
- Department of Medicine, University of Colorado Denver, School of Medicine, Aurora, Colorado; National Jewish Health, Denver, Colorado; and Department of Immunology, University of Colorado Denver, School of Medicine, Aurora, Colorado
| | - Marvin I Schwarz
- Department of Medicine, University of Colorado Denver, School of Medicine, Aurora, Colorado; National Jewish Health, Denver, Colorado; and Department of Immunology, University of Colorado Denver, School of Medicine, Aurora, Colorado
| | - David Lynch
- Department of Medicine, University of Colorado Denver, School of Medicine, Aurora, Colorado; National Jewish Health, Denver, Colorado; and Department of Immunology, University of Colorado Denver, School of Medicine, Aurora, Colorado
| | - Jonathan Kurche
- Department of Medicine, University of Colorado Denver, School of Medicine, Aurora, Colorado; National Jewish Health, Denver, Colorado; and Department of Immunology, University of Colorado Denver, School of Medicine, Aurora, Colorado
| | - Laura Warg
- Department of Medicine, University of Colorado Denver, School of Medicine, Aurora, Colorado; National Jewish Health, Denver, Colorado; and Department of Immunology, University of Colorado Denver, School of Medicine, Aurora, Colorado
| | - Ivana V Yang
- Department of Medicine, University of Colorado Denver, School of Medicine, Aurora, Colorado; National Jewish Health, Denver, Colorado; and Department of Immunology, University of Colorado Denver, School of Medicine, Aurora, Colorado
| | - David A Schwartz
- Department of Medicine, University of Colorado Denver, School of Medicine, Aurora, Colorado; National Jewish Health, Denver, Colorado; and Department of Immunology, University of Colorado Denver, School of Medicine, Aurora, Colorado
| |
Collapse
|
42
|
Pathological changes in basement membranes and dermal connective tissue of skin from patients with hereditary cystatin C amyloid angiopathy. J Transl Med 2017; 97:383-394. [PMID: 28067897 DOI: 10.1038/labinvest.2016.133] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 11/03/2016] [Accepted: 11/06/2016] [Indexed: 01/08/2023] Open
Abstract
Hereditary cystatin C amyloid angiopathy (HCCAA) is a genetic disease caused by a mutation in the cystatin C gene. Cystatin C is abundant in cerebrospinal fluid and the most prominent pathology in HCCAA is cerebral amyloid angiopathy due to mutant cystatin C amyloid deposition with associated cerebral hemorrhages, typically in young adult carriers. Analyses of post-mortem brain samples shows that pathological changes are limited to arteries and regions adjacent to arteries. The severity of pathological changes at post-mortem has precluded the elucidation of the evolution of histological changes. Mutant cystatin C deposition in carriers is systemic and has, for example, been described in the skin, suggesting similar pathological mechanisms both in the brain and outside of the central nervous system. The aim of this study was to use skin biopsies from asymptomatic and symptomatic carriers to study intermediate events in HCCAA pathogenesis. We found that cystatin C deposition in minimally affected samples was limited to the basement membrane (BM) between the dermis and epidermis. When the deposits were more advanced, they extended to other BM regions in the skin. Our results showed that the immunoreactivity of the BM protein COLIV was increased to a similar extent in all carrier biopsies and cystatin C deposits were in close association with COLIV. The density of fibroblasts in the upper dermis of carrier skin was increased, whereas the distribution of other cell types examined did not differ compared with control biopsies. COLIV and cystatin C immunoreactivity in carrier biopsies was closely associated with the fibroblasts. The results of this study, in conjunction with our previous results regarding pathological BM changes in leptomeningeal arteries of patients, suggest that BM changes are early and important events in HCCAA pathogenesis that could facilitate cystatin C deposition and aggregation.
Collapse
|
43
|
Fibroblastic foci, covered with alveolar epithelia exhibiting epithelial-mesenchymal transition, destroy alveolar septa by disrupting blood flow in idiopathic pulmonary fibrosis. J Transl Med 2017; 97:232-242. [PMID: 27941755 DOI: 10.1038/labinvest.2016.135] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 10/28/2016] [Accepted: 11/10/2016] [Indexed: 12/21/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive interstitial lung disease of unknown cause. IPF has a distinct histopathological pattern of usual interstitial pneumonia in which fibroblastic foci (FF) represent the leading edge of fibrotic destruction of the lung. Currently there are three major hypotheses for how FF are generated: (1) from resident fibroblasts, (2) from bone marrow-derived progenitors of fibroblasts, and (3) from alveolar epithelial cells that have undergone epithelial-mesenchymal transition (EMT). We found that FF dissociated capillary vessels from the alveolar epithelia, the basement membranes of which are fused in normal physiological conditions, and pushed the capillaries and elastic fibers down ~100 μm below the alveolar epithelia. Furthermore, the alveolar epithelial cells covering the FF exhibited a partial EMT phenotype. In addition, normal human alveolar epithelial cells in vitro underwent dynamic EMT in response to transforming growth factor-β signaling within 72 h. Because it seems that resident fibroblasts or bone marrow-derived cells cannot easily infiltrate and form FF between the alveolar epithelia and capillaries in tight contact with each other, FF are more likely to be derived from the epithelial-to-mesenchymal transitioned alveolar epithelia located over them. Moreover, histology and immunohistochemistry suggested that the FF formed in the lung parenchyma disrupt blood flow to the alveolar septa, thus destroying them. Consequently, collapse of the alveolar septa is likely to be the first step toward honeycombing in the lung during late stage IPF. On the basis of these findings, inhibition of transforming growth factor-β signaling, which can suppress EMT of the alveolar epithelial cells in vitro, is a potential strategy for treating IPF.
Collapse
|
44
|
Chilosi M, Caliò A, Rossi A, Gilioli E, Pedica F, Montagna L, Pedron S, Confalonieri M, Doglioni C, Ziesche R, Grubinger M, Mikulits W, Poletti V. Epithelial to mesenchymal transition-related proteins ZEB1, β-catenin, and β-tubulin-III in idiopathic pulmonary fibrosis. Mod Pathol 2017; 30:26-38. [PMID: 27586205 DOI: 10.1038/modpathol.2016.147] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 07/07/2016] [Accepted: 07/08/2016] [Indexed: 12/12/2022]
Abstract
Epithelial to mesenchymal transition has been suggested as a relevant contributor to pulmonary fibrosis, but how and where this complex process is triggered in idiopathic pulmonary fibrosis is not fully understood. Beta-tubulin-III (Tubβ3), ZEB1, and β-catenin are partially under the negative control of miR-200, a family of micro-RNAs playing a major role in epithelial to mesenchymal transition, that are reduced in experimental lung fibrosis and idiopathic pulmonary fibrosis. We wonder whether in situ expression of these proteins is increased in idiopathic pulmonary fibrosis, to better understand the significance of miR-200 feedback loop and epithelial to mesenchymal transition. We investigated the immunohistochemical and immunofluorescent expression and precise location of ZEB1, Tubβ3, and β-catenin in tissue samples from 34 idiopathic pulmonary fibrosis cases and 21 controls (5 normal lungs and 16 other interstitial lung diseases). In 100% idiopathic pulmonary fibrosis samples, the three proteins were concurrently expressed in fibroblastic foci, as well in damaged epithelial cells overlying these lesions and in pericytes within neo-angiogenesis areas. These results were also confirmed by immunofluorescence assay. In controls the abnormal expression of the three proteins was absent or limited. This is the first study that relates concurrent expression of Tubβ3, ZEB1, and β-catenin to abnormal epithelial and myofibroblast differentiation in idiopathic pulmonary fibrosis, providing indirect but robust evidence of miR-200 deregulation and epithelial to mesenchymal transition activation in idiopathic pulmonary fibrosis. The abnormal expression and localization of these proteins in bronchiolar fibro-proliferative lesions are unique for idiopathic pulmonary fibrosis, and might represent a disease-specific marker in challenging lung biopsies.
Collapse
Affiliation(s)
- Marco Chilosi
- Anatomic Pathology, University and Hospital Trust, Verona, Italy
| | - Anna Caliò
- Anatomic Pathology, University and Hospital Trust, Verona, Italy
| | - Andrea Rossi
- Pulmonary Division, University and Hospital Trust, Verona, Italy
| | - Eliana Gilioli
- Anatomic Pathology, University and Hospital Trust, Verona, Italy
| | - Federica Pedica
- Anatomic Pathology, University and Hospital Trust, Verona, Italy.,Department of Pathology, IRCSS San Raffaele Scientific Institute, Milan, Italy
| | - Licia Montagna
- Anatomic Pathology, University and Hospital Trust, Verona, Italy
| | - Serena Pedron
- Anatomic Pathology, University and Hospital Trust, Verona, Italy
| | - Marco Confalonieri
- Department of Pulmonology, University Hospital of Cattinara, Trieste, Italy
| | - Claudio Doglioni
- Department of Pathology, IRCSS San Raffaele Scientific Institute, Milan, Italy
| | - Rolf Ziesche
- Department of Pulmonary Medicine, Department of Medicine-II University of Wien, Vienna, Austria
| | - Markus Grubinger
- Department of Medicine I, Institute of Cancer Research, Medical University of Wien, Austria
| | - Wolfgang Mikulits
- Department of Medicine I, Institute of Cancer Research, Medical University of Wien, Austria
| | - Venerino Poletti
- Pulmonology Unit, Department of Thoracic Diseases, GB Morgagni-L Pierantoni Hospital, Forlì, Italy.,Department of Respiratory Diseases and Allergology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
45
|
Liu Q, Li H, Wang Q, Zhang Y, Wang W, Dou S, Xiao W. Increased expression of TROP2 in airway basal cells potentially contributes to airway remodeling in chronic obstructive pulmonary disease. Respir Res 2016; 17:159. [PMID: 27887617 PMCID: PMC5124273 DOI: 10.1186/s12931-016-0463-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 11/01/2016] [Indexed: 01/10/2023] Open
Abstract
Background The airway epithelium of chronic obstructive pulmonary disease (COPD) patients undergoes aberrant repair and remodeling after repetitive injury following exposure to environmental factors. Abnormal airway regeneration observed in COPD is thought to originate in the stem/progenitor cells of the airway epithelium, the basal cells (BCs). However, the molecular mechanisms underlying these changes remain unknown. Here, trophoblast cell surface antigen 2 (TROP2), a protein implicated in the regulation of stem cell activity, was examined in lung tissue samples from COPD patients. Methods The expression of TROP2 and hyperplasia index Ki67 was assessed in lung epithelium specimens from non-smokers (n = 24), smokers (n = 24) and smokers with COPD (n = 24). Primary airway BCs were isolated by bronchoscopy from healthy individuals and COPD patients and subsequently transfected with pcDNA3.1-TROP2 or siRNA sequence in vitro. The functional consequences of TROP2 overexpression in BCs were explored. Results Immunohistochemistry and immunofluorescence revealed increased TROP2 expression in airway BCs in smokers with COPD compared to nonsmokers and smokers without COPD, and staining was highly localized to hyperplastic regions containing Ki67 positive cells. TROP2 expression was also inversely correlated with airflow limitation in patients with COPD (r = −0.53, P < 0.01). pcDNA3.1-TROP2-BCs in vitro exhibited improved proliferation with activation of ERK1/2 phosphorylation signaling pathway. In parallel, changes in vimentin and E-cadherin in pcDNA3.1-TROP2-BCs were consistent with an epithelial-mesenchymal transition (EMT)-like change, and secretion of inflammatory factors IL-1β, IL-8 and IL-6 was increased. Moreover, down-regulation of TROP2 by siRNA significantly attenuated the proliferation of BCs derived from COPD patients. EMT-like features and cytokine levels of COPD basal cells were also weakened following the down-regulation of TROP2. Conclusion The results indicate that TROP2 may play a crucial role in COPD by affecting BC function and thus airway remodeling through increased BC hyperplasia, EMT-like change, and introduction of inflammatory molecules into the microenvironment.
Collapse
Affiliation(s)
- Qixiao Liu
- Department of Respiratory Medicine, Qilu Hospital, Shandong University, 107 Wenhua West Road, Jinan, China
| | - Haijun Li
- Department of Cadre Health Care, Qilu Hospital, Shandong University, 107 Wenhua West Road, Jinan, China
| | - Qin Wang
- Department of Anesthesiology, Qilu Hospital, Shandong University, 107 Wenhua West Road, Jinan, China
| | - Yuke Zhang
- Department of Cadre Health Care, Qianfoshan Hospital, 16766 Jingshi Road, Jinan, China
| | - Wei Wang
- Department of Respiratory Medicine, Qilu Hospital, Shandong University, 107 Wenhua West Road, Jinan, China
| | - Shuang Dou
- Department of Respiratory Medicine, Qilu Hospital, Shandong University, 107 Wenhua West Road, Jinan, China
| | - Wei Xiao
- Department of Respiratory Medicine, Qilu Hospital, Shandong University, 107 Wenhua West Road, Jinan, China.
| |
Collapse
|
46
|
Kolahian S, Fernandez IE, Eickelberg O, Hartl D. Immune Mechanisms in Pulmonary Fibrosis. Am J Respir Cell Mol Biol 2016; 55:309-22. [DOI: 10.1165/rcmb.2016-0121tr] [Citation(s) in RCA: 176] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|