1
|
Lothstein KE, Chen F, Mishra P, Smyth DJ, Wu W, Lemenze A, Kumamoto Y, Maizels RM, Gause WC. Helminth protein enhances wound healing by inhibiting fibrosis and promoting tissue regeneration. Life Sci Alliance 2024; 7:e202302249. [PMID: 39179288 PMCID: PMC11342954 DOI: 10.26508/lsa.202302249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/04/2024] [Accepted: 08/05/2024] [Indexed: 08/26/2024] Open
Abstract
Skin wound healing due to full thickness wounds typically results in fibrosis and scarring, where parenchyma tissue is replaced with connective tissue. A major advance in wound healing research would be to instead promote tissue regeneration. Helminth parasites express excretory/secretory (ES) molecules, which can modulate mammalian host responses. One recently discovered ES protein, TGF-β mimic (TGM), binds the TGF-β receptor, though likely has other activities. Here, we demonstrate that topical administration of TGM under a Tegaderm bandage enhanced wound healing and tissue regeneration in an in vivo wound biopsy model. Increased restoration of normal tissue structure in the wound beds of TGM-treated mice was observed during mid- to late-stage wound healing. Both accelerated re-epithelialization and hair follicle regeneration were observed. Further analysis showed differential expansion of myeloid populations at different wound healing stages, suggesting recruitment and reprogramming of specific macrophage subsets. This study indicates a role for TGM as a potential therapeutic option for enhanced wound healing.
Collapse
Affiliation(s)
- Katherine E Lothstein
- Center for Immunity and Inflammation, Department of Medicine, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Fei Chen
- Center for Immunity and Inflammation, Department of Medicine, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Pankaj Mishra
- Center for Immunity and Inflammation, Department of Medicine, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Danielle J Smyth
- Wellcome Centre for Integrative Parasitology, School of Infection and Immunity, University of Glasgow, Glasgow, UK
| | - Wenhui Wu
- Center for Immunity and Inflammation, Department of Medicine, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Alexander Lemenze
- Center for Immunity and Inflammation, Department of Pathology, Immunology, and Laboratory Medicine, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Yosuke Kumamoto
- Center for Immunity and Inflammation, Department of Pathology, Immunology, and Laboratory Medicine, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Rick M Maizels
- Wellcome Centre for Integrative Parasitology, School of Infection and Immunity, University of Glasgow, Glasgow, UK
| | - William C Gause
- Center for Immunity and Inflammation, Department of Medicine, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| |
Collapse
|
2
|
Smith J, Rai V. Novel Factors Regulating Proliferation, Migration, and Differentiation of Fibroblasts, Keratinocytes, and Vascular Smooth Muscle Cells during Wound Healing. Biomedicines 2024; 12:1939. [PMID: 39335453 PMCID: PMC11429312 DOI: 10.3390/biomedicines12091939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/08/2024] [Accepted: 08/20/2024] [Indexed: 09/30/2024] Open
Abstract
Chronic diabetic foot ulcers (DFUs) are a significant complication of diabetes mellitus, often leading to amputation, increased morbidity, and a substantial financial burden. Even with the advancements in the treatment of DFU, the risk of amputation still exists, and this occurs due to the presence of gangrene and osteomyelitis. Nonhealing in a chronic DFU is due to decreased angiogenesis, granulation tissue formation, and extracellular matrix remodeling in the presence of persistent inflammation. During wound healing, the proliferation and migration of fibroblasts, smooth muscle cells, and keratinocytes play a critical role in extracellular matrix (ECM) remodeling, angiogenesis, and epithelialization. The molecular factors regulating the migration, proliferation, and differentiation of these cells are scarcely discussed in the literature. The literature review identifies the key factors influencing the proliferation, migration, and differentiation of fibroblasts, keratinocytes, and vascular smooth muscle cells (VSMCs), which are critical in wound healing. This is followed by a discussion on the various novel factors regulating the migration, proliferation, and differentiation of these cells but not in the context of wound healing; however, they may play a role. Using a network analysis, we examined the interactions between various factors, and the findings suggest that the novel factors identified may play a significant role in promoting angiogenesis, granulation tissue formation, and extracellular matrix remodeling during wound healing or DFU healing. However, these interactions warrant further investigation to establish their role alone or synergistically.
Collapse
Affiliation(s)
- Jacob Smith
- Department of Translational Research, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Vikrant Rai
- Department of Translational Research, Western University of Health Sciences, Pomona, CA 91766, USA
| |
Collapse
|
3
|
Gomes MLNP, Krijnen PAJ, Middelkoop E, Niessen HWM, Boekema BKHL. Fetal Skin Wound Healing: Key Extracellular Matrix Components and Regulators in Scarless Healing. J Invest Dermatol 2024:S0022-202X(24)01863-3. [PMID: 39152955 DOI: 10.1016/j.jid.2024.05.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 08/19/2024]
Abstract
Fetal skin at early gestational stage is able to regenerate and heal rapidly after wounding. The exact mechanisms and molecular pathways involved in this process are however still largely unknown. The numerous differences in the skin of the early fetus versus skin in later developmental stages might provide clues for the mechanisms of scarless healing. This review summarizes the differences between mammalian fetal skin and the skin at later developmental phases in healthy and wounded conditions, focusing on extracellular matrix components, which are crucial factors in the microenvironment that direct cells and tissue functions and hence the wound healing process.
Collapse
Affiliation(s)
- Madalena Lopes Natário Pinto Gomes
- Department of Plastic, Reconstructive and Hand Surgery, Amsterdam UMC (Location VUmc), Amsterdam, The Netherlands; Preclinical Research, Association of Dutch Burn Centres (ADBC), Beverwijk, The Netherlands; Department of Pathology, Amsterdam UMC Location AMC, Amsterdam, The Netherlands; Tissue Function & Regeneration, Amsterdam Movement Sciences, Amsterdam UMC (Location VUmc), Amsterdam, The Netherlands
| | - Paul A J Krijnen
- Department of Pathology, Amsterdam UMC Location AMC, Amsterdam, The Netherlands; Amsterdam Cardiovascular Sciences Institute, Amsterdam UMC, Amsterdam, The Netherlands
| | - Esther Middelkoop
- Department of Plastic, Reconstructive and Hand Surgery, Amsterdam UMC (Location VUmc), Amsterdam, The Netherlands; Preclinical Research, Association of Dutch Burn Centres (ADBC), Beverwijk, The Netherlands; Tissue Function & Regeneration, Amsterdam Movement Sciences, Amsterdam UMC (Location VUmc), Amsterdam, The Netherlands; Burn Centre, Red Cross Hospital, Beverwijk, The Netherlands
| | - Hans W M Niessen
- Department of Pathology, Amsterdam UMC Location AMC, Amsterdam, The Netherlands; Amsterdam Cardiovascular Sciences Institute, Amsterdam UMC, Amsterdam, The Netherlands; Department of Cardio-thoracic Surgery, Amsterdam UMC (Location VUmc), Amsterdam, The Netherlands
| | - Bouke K H L Boekema
- Department of Plastic, Reconstructive and Hand Surgery, Amsterdam UMC (Location VUmc), Amsterdam, The Netherlands; Preclinical Research, Association of Dutch Burn Centres (ADBC), Beverwijk, The Netherlands.
| |
Collapse
|
4
|
Rahmanian E, Tanideh N, Karbalay-Doust S, Mehrabani D, Rezazadeh D, Ketabchi D, EskandariRoozbahani N, Hamidizadeh N, Rahmanian F, Namazi MR. The effect of topical magnesium on healing of pre-clinical burn wounds. Burns 2024; 50:630-640. [PMID: 37980271 DOI: 10.1016/j.burns.2023.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 09/26/2023] [Accepted: 10/26/2023] [Indexed: 11/20/2023]
Abstract
BACKGROUND Magnesium (Mg) is an essential factor in the healing process. This study aimed to evaluate the effect of Mg creams on healing burn wounds in the rat model. METHODS To induce burns under general anaesthesia, a 2 × 2 cm2, 100 °C plate was placed for 12 s between the scapulas in 100 male adult Sprague Dawley rats. Animals were divided into five groups (n = 20); positive control (induced burn without treatment); vehicle control (received daily Eucerin cream base topically); comparative control (induced burn and treated daily with Alpha burn cream topically); Treatment 1 and 2 (received daily Mg cream 2% and 4% topically, respectively). All animals were bled for hematological assessment of malondialdehyde (MDA) and TNF-α and sacrificed on days 0, 1, 7, 14, and 21 after interventions for biomechanical, histological, and stereological studies. RESULTS Stereologically speaking, in treatment groups an increase in dermal collagen volume and fibroblasts was noticed. In treatment groups, the length of vessels, angiogenesis, and skin stretch increased, but the wound area, MDA, and TNF-α level decreased. CONCLUSION Mg cream was effective in healing burns.
Collapse
Affiliation(s)
- Elham Rahmanian
- Molecular Dermatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran, And Department of Anatomy, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nader Tanideh
- Stem cells technology research center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saied Karbalay-Doust
- Histomorphometry and Stereology research Center, Shiraz University of Medical Sciences, Shiraz, iran
| | - Davood Mehrabani
- Stem Cell Technology Research Center, Shiraz, Iran. and Li Ka Shing Center for Health Research and Innovation, University of Alberta, Edmonton, AB, Canada
| | - Davood Rezazadeh
- Molecular Medicine Department, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Deniz Ketabchi
- Haj Daei Clinic, Kermanshah University of Medical Science, Kermanshah, Iran
| | - Narges EskandariRoozbahani
- Clinical research development center, Imam Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Nasrin Hamidizadeh
- Molecular Dermatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farzad Rahmanian
- Paramedic of Jahrom University of Medical Sciences, Jahrom, Iran
| | - Mohammad Reza Namazi
- Molecular Dermatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
5
|
Zhang XR, Ryu U, Najmiddinov B, Trinh TTT, Choi KM, Nam SY, Heo CY. Effect of Silicone Patch Containing Metal-organic Framework on Hypertrophic Scar Suppression. In Vivo 2024; 38:235-245. [PMID: 38148076 PMCID: PMC10756491 DOI: 10.21873/invivo.13430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/01/2023] [Accepted: 11/02/2023] [Indexed: 12/28/2023]
Abstract
BACKGROUND/AIM Hypertrophic scars (HS) are an abnormal cutaneous condition of wound healing characterized by excessive fibrosis and disrupted collagen deposition. This study assessed the potential of a silicone patch embedded with chemically stable zirconium-based metal-organic frameworks (MOF)-808 structures to mitigate HS formation using a rabbit ear model. MATERIALS AND METHODS A silicone patch was strategically engineered by incorporating Zr-MOF-808, a composite structure comprising metal ions and organic ligands. Structural integrity of the Zr-MOF-808 silicone patch was validated using scanning electron microscopy and X-ray diffraction analysis. The animals were divided into three groups: a control, no treatment group (Group 1), a silicone patch treatment group (Group 2), and a group treated with a 0.2% loaded Zr-MOF-808 silicone patch (Group 3). HS suppression effects were quantified using scar elevation index (SEI), dorsal skin thickness measurements, and myofibroblast protein expression. RESULTS Histopathological examination of post-treatment HS samples revealed substantial reductions in SEI (34.6%) and epidermal thickness (49.5%) in Group 3. Scar hyperplasia was significantly diminished by 53.5% (p<0.05), while collagen density declined by 15.7% in Group 3 compared to Group 1. Western blot analysis of protein markers, including TGF-β1, collagen-1, and α-SMA, exhibited diminished levels by 8.8%, 12%, and 21.3%, respectively, in Group 3, and substantially higher levels by 21.9%, 27%, and 39.9%, respectively, in Group 2. On the 35th day post-wound generation, Zr-MOF-808-treated models exhibited smoother, less conspicuous, and flatter scars. CONCLUSION Zr-MOF-808-loaded silicone patch reduced HS formation in rabbit ear models by inducing the proliferation and remodeling of the wound healing process.
Collapse
Affiliation(s)
- Xin Rui Zhang
- Department of Plastic and Reconstructive Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Unjin Ryu
- Department of Chemical and Biological Engineering, Sookmyung Women's University, Seoul, Republic of Korea
| | - Bakhtiyor Najmiddinov
- Department of Plastic and Reconstructive Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Thuy-Tien Thi Trinh
- Korean Institute of Nonclinical Study, H&Bio. Co. Ltd., Seongnam, Republic of Korea
| | - Kyung Min Choi
- Department of Chemical and Biological Engineering, Sookmyung Women's University, Seoul, Republic of Korea;
- R&D Center, LabInCube Co. Ltd., Cheongju, Republic of Korea
| | - Sun-Young Nam
- Department of Plastic and Reconstructive Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea;
| | - Chan Yeong Heo
- Department of Plastic and Reconstructive Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea;
- Korean Institute of Nonclinical Study, H&Bio. Co. Ltd., Seongnam, Republic of Korea
- Department of Medical Device Development, College of Medicine, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
6
|
Urban L, Čoma M, Lacina L, Szabo P, Sabová J, Urban T, Šuca H, Lukačín Š, Zajíček R, Smetana K, Gál P. Heterogeneous response to TGF-β1/3 isoforms in fibroblasts of different origins: implications for wound healing and tumorigenesis. Histochem Cell Biol 2023; 160:541-554. [PMID: 37707642 DOI: 10.1007/s00418-023-02221-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2023] [Indexed: 09/15/2023]
Abstract
Identification of therapeutic targets for treating fibrotic diseases and cancer remains challenging. Our study aimed to investigate the effects of TGF-β1 and TGF-β3 on myofibroblast differentiation and extracellular matrix deposition in different types of fibroblasts, including normal/dermal, cancer-associated, and scar-derived fibroblasts. When comparing the phenotype and signaling pathways activation we observed extreme heterogeneity of studied markers across different fibroblast populations, even within those isolated from the same tissue. Specifically, the presence of myofibroblast and deposition of extracellular matrix were dependent on the origin of the fibroblasts and the type of treatment they received (TGF-β1 vs. TGF-β3). In parallel, we detected activation of canonical signaling (pSMAD2/3) across all studied fibroblasts, albeit to various extents. Treatment with TGF-β1 and TGF-β3 resulted in the activation of canonical and several non-canonical pathways, including AKT, ERK, and ROCK. Among studied cells, cancer-associated fibroblasts displayed the most heterogenic response to TGF-β1/3 treatments. In general, TGF-β1 demonstrated a more potent activation of signaling pathways compared to TGF-β3, whereas TGF-β3 exhibited rather an inhibitory effect in keloid- and hypertrophic scar-derived fibroblasts suggesting its clinical potential for scar treatment. In summary, our study has implications for comprehending the role of TGF-β signaling in fibroblast biology, fibrotic diseases, and cancer. Future research should focus on unraveling the mechanisms beyond differential fibroblast responses to TGF-β isomers considering inherent fibroblast heterogeneity.
Collapse
Affiliation(s)
- Lukáš Urban
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, 040 11, Košice, Slovak Republic
- Department of Biomedical Research, East-Slovak Institute of Cardiovascular Diseases Inc, Ondavská, 040 11, Košice, Slovak Republic
| | - Matúš Čoma
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, 040 11, Košice, Slovak Republic
- Department of Biomedical Research, East-Slovak Institute of Cardiovascular Diseases Inc, Ondavská, 040 11, Košice, Slovak Republic
| | - Lukáš Lacina
- Institute of Anatomy, First Faculty of Medicine, Charles University, U Nemocnice 2, 128 00, Prague, Czech Republic
- BIOCEV, First Faculty of Medicine, Charles University, 252 50, Vestec, Czech Republic
- Department Dermatovenereology, First Faculty of Medicine, Charles University and General University Hospital, 128 08, Prague, Czech Republic
| | - Pavol Szabo
- Institute of Anatomy, First Faculty of Medicine, Charles University, U Nemocnice 2, 128 00, Prague, Czech Republic
- BIOCEV, First Faculty of Medicine, Charles University, 252 50, Vestec, Czech Republic
| | - Jana Sabová
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, 040 11, Košice, Slovak Republic
| | - Tomáš Urban
- Prague Burn Center, Third Faculty of Medicine, Charles University and University Hospital Královské Vinohrady, 100 00, Prague, Czech Republic
| | - Hubert Šuca
- Prague Burn Center, Third Faculty of Medicine, Charles University and University Hospital Královské Vinohrady, 100 00, Prague, Czech Republic
| | - Štefan Lukačín
- Department of Heart Surgery, East-Slovak Institute of Cardiovascular Diseases Inc, 040 11, Košice, Slovak Republic
| | - Robert Zajíček
- Prague Burn Center, Third Faculty of Medicine, Charles University and University Hospital Královské Vinohrady, 100 00, Prague, Czech Republic
| | - Karel Smetana
- Institute of Anatomy, First Faculty of Medicine, Charles University, U Nemocnice 2, 128 00, Prague, Czech Republic.
- BIOCEV, First Faculty of Medicine, Charles University, 252 50, Vestec, Czech Republic.
| | - Peter Gál
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, 040 11, Košice, Slovak Republic.
- Department of Biomedical Research, East-Slovak Institute of Cardiovascular Diseases Inc, Ondavská, 040 11, Košice, Slovak Republic.
- Prague Burn Center, Third Faculty of Medicine, Charles University and University Hospital Královské Vinohrady, 100 00, Prague, Czech Republic.
- Department of Pharmacognosy and Botany, Faculty of Pharmacy, Comenius University, 832 32, Bratislava, Slovak Republic.
- Institute of Neurobiology, Biomedical Research Center of the Slovak Academy of Sciences, 040 01, Košice, Slovak Republic.
| |
Collapse
|
7
|
Samie A, Alavian H, Vafaei-Pour Z, Mohammadpour AH, Jafarian AH, Danesh NM, Abnous K, Taghdisi SM. Accelerated Wound Healing with a Diminutive Scar through Cocrystal Engineered Curcumin. Mol Pharm 2023; 20:5090-5107. [PMID: 37624646 DOI: 10.1021/acs.molpharmaceut.3c00398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2023]
Abstract
Pharmaceutical cocrystals ( Regulatory Classification of Pharmaceutical Co-Crystals Guidance for Industry; Food and Drug Administration, 2018) are crystalline solids produced through supramolecular chemistry to modulate the physicochemical properties of active pharmaceutical ingredients (APIs). Despite their extensive development in interdisciplinary sciences, this is a pioneering study on the efficacy of pharmaceutical cocrystals in wound healing and scar reducing. Curcumin-pyrogallol cocrystal (CUR-PYR) was accordingly cherry-picked since its superior physicochemical properties adequately compensate for limitative drawbacks of curcumin (CUR). CUR-PYR has been synthesized by a liquid-assisted grinding (LAG) method and characterized via FT-IR, DSC, and PXRD analyses. In vitro antibacterial study indicated that CUR-PYR cocrystal, CUR+PYR physical mixture (PM), and PYR are more effective against both Gram-negative (Pseudomonas aeruginosa and Escherichia coli) and Gram-positive (Staphylococcus aureus and Bacillus subtilis) bacteria in comparison with CUR. In vitro results also demonstrated that the viability of HDF and NIH-3T3 cells treated with CUR-PYR were improved more than those received CUR which is attributed to the effect of PYR in the form of cocrystal. The wound healing process has been monitored through a 15 day in vivo experiment on 75 male rats stratified into six groups: five groups treated by CUR-PYR+Vaseline (CUR-PYR.ung), CUR+PYR+Vaseline (CUR+PYR.ung), CUR+Vaseline (CUR.ung), PYR+Vaseline (PYR.ung), and Vaseline (VAS) ointments and a negative control group of 0.9% sodium chloride solution (NS). It was revealed that the wounds under CUR-PYR.ung treatment closed by day 12 postsurgery, while the wounds in other groups failed to reach the complete closure end point until the end of the experiment. Surprisingly, a diminutive scar (3.89 ± 0.97% of initial wound size) was observed in the CUR-PYR.ung treated wounds by day 15 after injury, followed by corresponding values for PYR.ung (12.08 ± 2.75%), CUR+PYR.ung (13.89 ± 5.02%), CUR.ung (16.24 ± 6.39%), VAS (18.97 ± 6.89%), and NS (20.33 ± 5.77%). Besides, investigating histopathological parameters including inflammation, granulation tissue, re-epithelialization, and collagen deposition signified outstandingly higher ability of CUR-PYR cocrystal in wound healing than either of its two constituents separately or their simple PM. It was concluded that desired solubility of the prepared cocrystal was essentially responsible for accelerating wound closure and promoting tissue regeneration which yielded minimal scarring. This prototype research suggests a promising application of pharmaceutical cocrystals for the purpose of wound healing.
Collapse
Affiliation(s)
- Ali Samie
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran
| | - Hoda Alavian
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran
| | - Zeinab Vafaei-Pour
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran
| | - Amir Hooshang Mohammadpour
- Department of Clinical Pharmacy, School of Pharmacy, Mashhad University of Medical Science, Mashhad 9177948954, Iran
| | - Amir Hossein Jafarian
- Cancer and Molecular Research Center, Department of Pathology, School of Medicine, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran
| | - Noor Mohammad Danesh
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran
| | - Khalil Abnous
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran
| |
Collapse
|
8
|
Chen K, You J, Yang S, Meng X, Chen X, Wu L, Yu X, Xiao J, Feng J. Abnormally elevated expression of ACTA2 of circular smooth muscle leads to hyperactive contraction in aganglionic segments of HSCR. Pediatr Surg Int 2023; 39:214. [PMID: 37278766 PMCID: PMC10244273 DOI: 10.1007/s00383-023-05479-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/02/2023] [Indexed: 06/07/2023]
Abstract
BACKGROUND Actin Alpha 2 (ACTA2) is expressed in intestinal smooth muscle cells (iSMCs) and is associated with contractility. Hirschsprung disease (HSCR), one of the most common digested tract malformations, shows peristaltic dysfunction and spasm smooth muscles. The arrangement of the circular and longitudinal smooth muscle (SM) of the aganglionic segments is disorganized. Does ACTA2, as a marker of iSMCs, exhibit abnormal expression in aganglionic segments? Does the ACTA2 expression level affect the contraction function of iSMCs? What are the spatiotemporal expression trends of ACTA2 during different developmental stages of the colon? METHODS Immunohistochemical staining was used to detect the expression of ACTA2 in iSMCs of children with HSCR and Ednrb-/- mice, and the small interfering RNAs (siRNAs) knockdown technique was employed to investigate how Acta2 affected the systolic function of iSMCs. Additionally, Ednrb-/- mice were used to explore the changes in the expression level of iSMCs ACTA2 at different developmental stages. RESULTS The expression of ACTA2 is higher in circular SM in the aganglionic segments of HSCR patients and Ednrb-/- mice than in normal control children and mice. Down regulation of Acta2 weakens the contraction ability of intestinal smooth muscle cells. Abnormally elevated expression of ACTA2 of circular smooth muscle occurs since embryonic day 15.5 (E15.5d) in aganglionic segments of Ednrb-/- mice. CONCLUSIONS Abnormally elevated expression of ACTA2 in the circular SM leads to hyperactive contraction, which may cause the spasm of aganglionic segments in HSCR.
Collapse
Affiliation(s)
- Ke Chen
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430043, China
| | - Jingyi You
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430043, China
| | - Shimin Yang
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430043, China
| | - Xinyao Meng
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430043, China
| | - Xuyong Chen
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430043, China
| | - Luyao Wu
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430043, China
| | - Xiaosi Yu
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430043, China
| | - Jun Xiao
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430043, China.
| | - Jiexiong Feng
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430043, China.
- Hubei Clinical Center of Hirschsprung Disease and Allied Disorders, Wuhan, China.
| |
Collapse
|
9
|
McElhinney K, Irnaten M, O’Brien C. p53 and Myofibroblast Apoptosis in Organ Fibrosis. Int J Mol Sci 2023; 24:ijms24076737. [PMID: 37047710 PMCID: PMC10095465 DOI: 10.3390/ijms24076737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/23/2023] [Accepted: 03/28/2023] [Indexed: 04/07/2023] Open
Abstract
Organ fibrosis represents a dysregulated, maladaptive wound repair response that results in progressive disruption of normal tissue architecture leading to detrimental deterioration in physiological function, and significant morbidity/mortality. Fibrosis is thought to contribute to nearly 50% of all deaths in the Western world with current treatment modalities effective in slowing disease progression but not effective in restoring organ function or reversing fibrotic changes. When physiological wound repair is complete, myofibroblasts are programmed to undergo cell death and self-clearance, however, in fibrosis there is a characteristic absence of myofibroblast apoptosis. It has been shown that in fibrosis, myofibroblasts adopt an apoptotic-resistant, highly proliferative phenotype leading to persistent myofibroblast activation and perpetuation of the fibrotic disease process. Recently, this pathological adaptation has been linked to dysregulated expression of tumour suppressor gene p53. In this review, we discuss p53 dysregulation and apoptotic failure in myofibroblasts and demonstrate its consistent link to fibrotic disease development in all types of organ fibrosis. An enhanced understanding of the role of p53 dysregulation and myofibroblast apoptosis may aid in future novel therapeutic and/or diagnostic strategies in organ fibrosis.
Collapse
Affiliation(s)
- Kealan McElhinney
- UCD Clinical Research Centre, Mater Misericordiae University Hospital, D07 R2WY Dublin, Ireland
| | - Mustapha Irnaten
- UCD Clinical Research Centre, Mater Misericordiae University Hospital, D07 R2WY Dublin, Ireland
| | - Colm O’Brien
- UCD Clinical Research Centre, Mater Misericordiae University Hospital, D07 R2WY Dublin, Ireland
| |
Collapse
|
10
|
Arockiaraj AI, Johnson MA, Munir A, Ekambaram P, Lucas PC, McAllister-Lucas LM, Kemaladewi DU. CRISPRa-induced upregulation of human LAMA1 compensates for LAMA2-deficiency in Merosin-deficient congenital muscular dystrophy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.06.531347. [PMID: 36945402 PMCID: PMC10028808 DOI: 10.1101/2023.03.06.531347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Merosin-deficient congenital muscular dystrophy (MDC1A) is an autosomal recessive disorder caused by mutations in the LAMA2 gene, resulting in a defective form of the extracellular matrix protein laminin-α2 (LAMA2). Individuals diagnosed with MDC1A exhibit progressive muscle wasting and declining neuromuscular functions. No treatments for this disorder are currently available. We previously showed that postnatal Lama1 upregulation, achieved through CRISPR activation (CRISPRa), compensates for Lama2 deficiency and prevents neuromuscular pathophysiology in a mouse model of MDC1A. In this study, we assessed the feasibility of upregulating human LAMA1 as a potential therapeutic strategy for individuals with MDC1A, regardless of their mutations. We hypothesized that CRISPRa-mediated upregulation of human LAMA1 would compensate for the lack of LAMA2 and rescue cellular abnormalities in MDC1A fibroblasts. Global transcriptomic and pathway enrichment analyses of fibroblasts collected from individuals carrying pathogenic LAMA2 mutations, compared with healthy controls, indicated higher expression of transcripts encoding proteins that contribute to wound healing, including Transforming Growth Factor-β (TGF-β) and Fibroblast Growth Factor (FGF). These findings were supported by wound-healing assays indicating that MDC1A fibroblasts migrated significantly more rapidly than the controls. Subsequently, we treated the MDC1A fibroblasts with SadCas9-2XVP64 and sgRNAs targeting the LAMA1 promoter. We observed robust LAMA1 expression, which was accompanied by significant decreases in cell migration and expression of FGFR2, TGF-β2, and ACTA2, which are involved in the wound-healing mechanism in MDC1A fibroblasts. Collectively, our data suggest that CRISPRa-mediated LAMA1 upregulation may be a feasible mutation-independent therapeutic approach for MDC1A. This strategy might be adapted to address other neuromuscular diseases and inherited conditions in which strong compensatory mechanisms have been identified.
Collapse
Affiliation(s)
- Annie I. Arockiaraj
- Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, USA
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, USA
| | - Marie A. Johnson
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, USA
| | - Anushe Munir
- Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, USA
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, USA
| | - Prasanna Ekambaram
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, USA
| | - Peter C. Lucas
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, USA
| | | | - Dwi U. Kemaladewi
- Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, USA
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, USA
| |
Collapse
|
11
|
Zhou X, Zhou Q, Chen Q, Ma Y, Wang Z, Luo L, Ding Q, Li H, Tang S. Carboxymethyl Chitosan/Tannic Acid Hydrogel with Antibacterial, Hemostasis, and Antioxidant Properties Promoting Skin Wound Repair. ACS Biomater Sci Eng 2023; 9:437-448. [PMID: 36508691 DOI: 10.1021/acsbiomaterials.2c00997] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Local causes of slow wound healing include infection and wound hemorrhage. Using sodium bicarbonate as a neutralizer, a variety of carboxymethyl chitosan-tannic acid (CMC-TA) composite hydrogels solidify through hydrogen bonding in this study. The best-performing hydrogel was synthesized by altering the concentration of TA and exhibited remarkable mechanical properties and biocompatibility. Following in vitro characterization tests, the CMC-TA hydrogel exhibited remarkable antibacterial and antioxidant properties, as well as quick hemostasis capabilities. In the in vivo wound healing study, the results showed that the CMC-TA hydrogel could relieve inflammation and promote the recovery of skin incision, re-epithelialization, and collagen deposition. Overall, this multifunctional hydrogel could be an ideal wound dressing for the clinical therapy of full-thickness wounds.
Collapse
Affiliation(s)
- Xujie Zhou
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, College of Life Science and Technology, Jinan University, Guangzhou510632, China
| | - Qing Zhou
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, College of Life Science and Technology, Jinan University, Guangzhou510632, China
| | - Qiang Chen
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou325001, China
| | - Yahao Ma
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, College of Life Science and Technology, Jinan University, Guangzhou510632, China
| | - Zhenfang Wang
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, College of Life Science and Technology, Jinan University, Guangzhou510632, China
| | - Lei Luo
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, College of Life Science and Technology, Jinan University, Guangzhou510632, China
| | - Qiang Ding
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, College of Life Science and Technology, Jinan University, Guangzhou510632, China
| | - Hang Li
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, College of Life Science and Technology, Jinan University, Guangzhou510632, China
| | - Shunqing Tang
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, College of Life Science and Technology, Jinan University, Guangzhou510632, China
| |
Collapse
|
12
|
Wang G, Yang F, Zhou W, Xiao N, Luo M, Tang Z. The initiation of oxidative stress and therapeutic strategies in wound healing. Biomed Pharmacother 2023; 157:114004. [PMID: 36375308 DOI: 10.1016/j.biopha.2022.114004] [Citation(s) in RCA: 84] [Impact Index Per Article: 84.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/09/2022] [Accepted: 11/09/2022] [Indexed: 11/13/2022] Open
Abstract
When the production of reactive oxygen species (ROS) is overloaded surpassing the capacity of the reductive rheostat, mammalian cells undergo a series of oxidative damage termed oxidative stress (OS). This phenomenon is ubiquitously detected in many human pathological conditions. Wound healing program implicates continuous neovascularization, cell proliferation, and wound remodeling. Increasing evidence indicates that reactive oxygen species (ROS) have profound impacts on the wound healing process through regulating a series of the physiological and pathological program including inflammatory response, cell proliferation, angiogenesis, granulation as well as extracellular matrix formation. In most pathological wound healing processes, excessive ROS exerts a negative role on the wound healing process. Interestingly, the moderate increase of ROS levels is beneficial in killing bacteria at the wound site, which creates a sterile niche for revascularization. In this review, we discussed the physiological rhythms of wound healing and the role of ROS in this progress, aim to explore the potential manipulation of OS as a promising therapeutic avenue.
Collapse
Affiliation(s)
- Gang Wang
- Laboratory for Cardiovascular Pharmacology of Department of Pharmacology, The School of Pharmacy, Southwest Medical University, Luzhou, China; Drug Discovery Research Center, Southwest Medical University, Luzhou, China; Department of Pharmacology, college of Pharmacy, Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Drug Metabolism, Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing, China, Chongqing, China
| | - Feifei Yang
- Department of Pharmacology, college of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Weiying Zhou
- Department of Pharmacology, college of Pharmacy, Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Drug Metabolism, Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing, China, Chongqing, China
| | - Nanyang Xiao
- Department of Microbiology, University of Chicago, Chicago, IL, USA
| | - Mao Luo
- Laboratory for Cardiovascular Pharmacology of Department of Pharmacology, The School of Pharmacy, Southwest Medical University, Luzhou, China; Drug Discovery Research Center, Southwest Medical University, Luzhou, China.
| | - Zonghao Tang
- Laboratory for Cardiovascular Pharmacology of Department of Pharmacology, The School of Pharmacy, Southwest Medical University, Luzhou, China; Drug Discovery Research Center, Southwest Medical University, Luzhou, China; Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
13
|
Chen H, Zheng T, Wu C, Wang J, Ye F, Cui M, Sun S, Zhang Y, Li Y, Dong Z. A Shape-Adaptive Gallic Acid Driven Multifunctional Adhesive Hydrogel Loaded with Scolopin2 for Wound Repair. Pharmaceuticals (Basel) 2022; 15:1422. [PMID: 36422552 PMCID: PMC9695609 DOI: 10.3390/ph15111422] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/05/2022] [Accepted: 11/08/2022] [Indexed: 07/22/2023] Open
Abstract
Wound healing is one of the major challenges in the biomedical fields. The conventional single drug treatment has unsatisfactory efficacy, and the drug delivery effectiveness is restricted by the short retention on the wound. Herein, we develop a multifunctional adhesive hydrogel that can realize robust adhesion, transdermal delivery, and combination therapy for wound healing. Multifunctional hydrogels (CS-GA-S) are mixed with chitosan-gallic acid (CS-GA), sodium periodate, and centipede peptide-scolopin2, which slowly releases scolopin2 in the layer of the dermis. The released scolopin2 induces the pro-angiogenesis of skin wounds and enables excellent antibacterial effects. Separately, GA as a natural reactive-oxygen-species-scavenger promotes antioxidation, and further enables excellent antibacterial effects and wet tissue adhesion due to a Schiff base and Michael addition reaction for accelerating wound healing. Once adhered to the wound, the precursor solution becomes both a physically and covalently cross-linked network hydrogel, which has potential advantages for wound healing with ease of use, external environment-isolating, and minimal tissue damage. The therapeutic effects of CS-GA-S on wound healing are demonstrated with the full thickness cutaneous wounds of a mouse model. The significant improvement of wound healing is achieved for mice treated with CS-GA-S. This preparation reduces wound system exposure, prolongs local drug residence time, and improves efficacy. Accordingly, with the incorporation of scolopin2 into the shape-adaptive CS-GA hydrogel, the composite hydrogel possesses multi-functions of mechanical adhesion, drug therapy, and skin wound healing. Overall, such an injectable or sprayable hydrogel plays an effective role in emergency wound treatment with the advantage of convenience and portability.
Collapse
Affiliation(s)
- Huan Chen
- Drug Delivery Research Center, Institute of Medicinal Plant Development, Chines Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Hebei Medical University, Shijiazhuang 050017, China
| | - Tingting Zheng
- Drug Delivery Research Center, Institute of Medicinal Plant Development, Chines Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Chenyang Wu
- Drug Delivery Research Center, Institute of Medicinal Plant Development, Chines Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Jinrui Wang
- Drug Delivery Research Center, Institute of Medicinal Plant Development, Chines Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Heilongjiang University of Chinese Medicine, Harbin 150036, China
| | - Fan Ye
- Drug Delivery Research Center, Institute of Medicinal Plant Development, Chines Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Hebei Medical University, Shijiazhuang 050017, China
| | - Mengyao Cui
- Drug Delivery Research Center, Institute of Medicinal Plant Development, Chines Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Shuhui Sun
- Drug Delivery Research Center, Institute of Medicinal Plant Development, Chines Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Heilongjiang University of Chinese Medicine, Harbin 150036, China
| | - Yun Zhang
- Drug Delivery Research Center, Institute of Medicinal Plant Development, Chines Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100094, China
- Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Beijing 100700, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing 100700, China
| | - Ying Li
- Drug Delivery Research Center, Institute of Medicinal Plant Development, Chines Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100094, China
- Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Beijing 100700, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing 100700, China
| | - Zhengqi Dong
- Drug Delivery Research Center, Institute of Medicinal Plant Development, Chines Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100094, China
- Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Beijing 100700, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing 100700, China
| |
Collapse
|
14
|
Martínez-Cuazitl A, Gómez-García MDC, Hidalgo-Alegria O, Flores OM, Núñez-Gastélum JA, Martínez ESM, Ríos-Cortés AM, Garcia-Solis M, Pérez-Ishiwara DG. Characterization of Polyphenolic Compounds from Bacopa procumbens and Their Effects on Wound-Healing Process. Molecules 2022; 27:molecules27196521. [PMID: 36235058 PMCID: PMC9571823 DOI: 10.3390/molecules27196521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/16/2022] Open
Abstract
Wounds represent a medical problem that contributes importantly to patient morbidity and to healthcare costs in several pathologies. In Hidalgo, Mexico, the Bacopa procumbens plant has been traditionally used for wound-healing care for several generations; in vitro and in vivo experiments were designed to evaluate the effects of bioactive compounds obtained from a B. procumbens aqueous fraction and to determine the key pathways involved in wound regeneration. Bioactive compounds were characterized by HPLC/QTOF-MS, and proliferation, migration, adhesion, and differentiation studies were conducted on NIH/3T3 fibroblasts. Polyphenolic compounds from Bacopa procumbens (PB) regulated proliferation and cell adhesion; enhanced migration, reducing the artificial scratch area; and modulated cell differentiation. PB compounds were included in a hydrogel for topical administration in a rat excision wound model. Histological, histochemical, and mechanical analyses showed that PB treatment accelerates wound closure in at least 48 h and reduces inflammation, increasing cell proliferation and deposition and organization of collagen at earlier times. These changes resulted in the formation of a scar with better tensile properties. Immunohistochemistry and RT-PCR molecular analyses demonstrated that treatment induces (i) overexpression of transforming growth factor beta (TGF-β) and (ii) the phosphorylation of Smad2/3 and ERK1/2, suggesting the central role of some PB compounds to enhance wound healing, modulating TGF-β activation.
Collapse
Affiliation(s)
- Adriana Martínez-Cuazitl
- Laboratorio de Biomedicina Molecular, ENMyH, Instituto Politécnico Nacional, Mexico City 07320, Mexico
- Escuela Militar de Medicina, Centro Militar de Ciencias de la Salud, UDEFA-SEDENA, Mexico City 11200, Mexico
| | | | - Oriana Hidalgo-Alegria
- Laboratorio de Biomedicina Molecular, ENMyH, Instituto Politécnico Nacional, Mexico City 07320, Mexico
| | - Olivia Medel Flores
- Laboratorio de Biomedicina Molecular, ENMyH, Instituto Politécnico Nacional, Mexico City 07320, Mexico
| | - José Alberto Núñez-Gastélum
- Departamento de Ciencias Químico Biológicas, Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez 32310, Mexico
| | - Eduardo San Martín Martínez
- Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada-Unidad Legaria, Instituto Politécnico Nacional, Mexico City 11500, Mexico
| | - Ada María Ríos-Cortés
- Centro de Investigación en Biotecnología Aplicada, Instituto Politécnico Nacional, Tlaxcala de Xicohténcatl 90700, Mexico
| | - Mario Garcia-Solis
- Departamento de Patología, Hospital General de Tláhuac, Mexico City 13250, Mexico
| | - David Guillermo Pérez-Ishiwara
- Laboratorio de Biomedicina Molecular, ENMyH, Instituto Politécnico Nacional, Mexico City 07320, Mexico
- Correspondence: ; Tel.: +01-55-5538993877 (ext. 07320)
| |
Collapse
|
15
|
Royzman D, Peckert-Maier K, Stich L, König C, Wild AB, Tauchi M, Ostalecki C, Kiesewetter F, Seyferth S, Lee G, Eming SA, Fuchs M, Kunz M, Stürmer EK, Peters EMJ, Berking C, Zinser E, Steinkasserer A. Soluble CD83 improves and accelerates wound healing by the induction of pro-resolving macrophages. Front Immunol 2022; 13:1012647. [PMID: 36248909 PMCID: PMC9564224 DOI: 10.3389/fimmu.2022.1012647] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 09/13/2022] [Indexed: 11/22/2022] Open
Abstract
To facilitate the recovery process of chronic and hard-to-heal wounds novel pro-resolving treatment options are urgently needed. We investigated the pro-regenerative properties of soluble CD83 (sCD83) on cutaneous wound healing, where sCD83 accelerated wound healing not only after systemic but also after topical application, which is of high therapeutic interest. Cytokine profile analyses revealed an initial upregulation of inflammatory mediators such as TNFα and IL-1β, followed by a switch towards pro-resolving factors, including YM-1 and IL-10, both expressed by tissue repair macrophages. These cells are known to mediate resolution of inflammation and stimulate wound healing processes by secretion of growth factors such as epidermal growth factor (EGF) and vascular endothelial growth factor (VEGF), which promote vascularization as well as fibroblast and keratinocyte differentiation. In conclusion, we have found strong wound healing capacities of sCD83 beyond the previously described role in transplantation and autoimmunity. This makes sCD83 a promising candidate for the treatment of chronic- and hard-to-heal wounds.
Collapse
Affiliation(s)
- Dmytro Royzman
- Department of Immune Modulation, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- *Correspondence: Dmytro Royzman, ; Alexander Steinkasserer,
| | - Katrin Peckert-Maier
- Department of Immune Modulation, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Lena Stich
- Department of Immune Modulation, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Christina König
- Department of Immune Modulation, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Andreas B. Wild
- Department of Immune Modulation, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Miyuki Tauchi
- Department of Internal Medicine 2, University Hospital Erlangen, FAU, Erlangen, Germany
| | - Christian Ostalecki
- Department of Dermatology, University Hospital Erlangen, FAU, Erlangen, Germany
| | | | - Stefan Seyferth
- Division of Pharmaceutics, Department of Chemistry and Pharmacy, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Geoffrey Lee
- Division of Pharmaceutics, Department of Chemistry and Pharmacy, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Sabine A. Eming
- Department of Dermatology, University Hospital Cologne, Center for Molecular Medicine Cologne (CMMC), Cologne Excellence Cluster Cluster of Excellence for Aging Research (CECAD), University of Cologne, Cologne, Germany
| | - Maximilian Fuchs
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hannover, Germany
| | - Meik Kunz
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hannover, Germany
- Department of Medical Informatics, Friedrich-Alexander University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
| | - Ewa K. Stürmer
- Department for Vascular Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Eva M. J. Peters
- Psychoneuroimmunology Laboratory, Klinik für Psychosomatik und Psychotherapie, Justus-Liebig Universität Gießen, Gießen, Germany
| | - Carola Berking
- Department of Dermatology, University Hospital Erlangen, FAU, Erlangen, Germany
| | - Elisabeth Zinser
- Department of Immune Modulation, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Alexander Steinkasserer
- Department of Immune Modulation, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- *Correspondence: Dmytro Royzman, ; Alexander Steinkasserer,
| |
Collapse
|
16
|
Rippon MG, Rogers AA, Ousey K, Atkin L, Williams K. The importance of periwound skin in wound healing: an overview of the evidence. J Wound Care 2022; 31:648-659. [PMID: 36001708 DOI: 10.12968/jowc.2022.31.8.648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
DECLARATION OF INTEREST The authors have no conflicts of interest.
Collapse
Affiliation(s)
| | | | - Karen Ousey
- Institute of Skin Integrity and Infection Prevention, Department of Nursing and Midwifery, University of Huddersfield.,Adjunct Professor, School of Nursing, Faculty of Health at the Queensland University of Technology, Australia.,Visiting Professor, RCSI, Dublin, Ireland
| | | | - Kate Williams
- Department of Nursing and Midwifery, School of Human and Health Sciences, University of Huddersfield, Huddersfield, UK
| |
Collapse
|
17
|
BMP3 inhibits TGFβ2-mediated myofibroblast differentiation during wound healing of the embryonic cornea. NPJ Regen Med 2022; 7:36. [PMID: 35879352 PMCID: PMC9314337 DOI: 10.1038/s41536-022-00232-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 07/06/2022] [Indexed: 11/29/2022] Open
Abstract
Often acute damage to the cornea initiates drastic tissue remodeling, resulting in fibrotic scarring that disrupts light transmission and precedes vision impairment. Very little is known about the factors that can mitigate fibrosis and promote scar-free cornea wound healing. We previously described transient myofibroblast differentiation during non-fibrotic repair in an embryonic cornea injury model. Here, we sought to elucidate the mechanistic regulation of myofibroblast differentiation during embryonic cornea wound healing. We found that alpha-smooth muscle actin (αSMA)-positive myofibroblasts are superficial and their presence inversely correlates with wound closure. Expression of TGFβ2 and nuclear localization of pSMAD2 were elevated during myofibroblast induction. BMP3 and BMP7 were localized in the corneal epithelium and corresponded with pSMAD1/5/8 activation and absence of myofibroblasts in the healing stroma. In vitro analyses with corneal fibroblasts revealed that BMP3 inhibits the persistence of TGFβ2-induced myofibroblasts by promoting disassembly of focal adhesions and αSMA fibers. This was confirmed by the expression of vinculin and pFAK. Together, these data highlight a mechanism to inhibit myofibroblast persistence during cornea wound repair.
Collapse
|
18
|
McAndrews KM, Miyake T, Ehsanipour EA, Kelly PJ, Becker LM, McGrail DJ, Sugimoto H, LeBleu VS, Ge Y, Kalluri R. Dermal αSMA + myofibroblasts orchestrate skin wound repair via β1 integrin and independent of type I collagen production. EMBO J 2022; 41:e109470. [PMID: 35212000 PMCID: PMC8982612 DOI: 10.15252/embj.2021109470] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 12/22/2022] Open
Abstract
Skin wound repair is essential for organismal survival and failure of which leads to non-healing wounds, a leading health issue worldwide. However, mechanistic understanding of chronic wounds remains a major challenge due to lack of appropriate genetic mouse models. αSMA+ myofibroblasts, a unique class of dermal fibroblasts, are associated with cutaneous wound healing but their precise function remains unknown. We demonstrate that genetic depletion of αSMA+ myofibroblasts leads to pleiotropic wound healing defects, including lack of reepithelialization and granulation, dampened angiogenesis, and heightened hypoxia, hallmarks of chronic non-healing wounds. Other wound-associated FAP+ and FSP1+ fibroblasts do not exhibit such dominant functions. While type I collagen (COL1) expressing cells play a role in the repair process, COL1 produced by αSMA+ myofibroblasts is surprisingly dispensable for wound repair. In contrast, we show that β1 integrin from αSMA+ myofibroblasts, but not TGFβRII, is essential for wound healing, facilitating contractility, reepithelization, and vascularization. Collectively, our study provides evidence for the functions of myofibroblasts in β1 integrin-mediated wound repair with potential implications for treating chronic non-healing wounds.
Collapse
Affiliation(s)
- Kathleen M McAndrews
- Department of Cancer BiologyMetastasis Research CenterUniversity of Texas MD Anderson Cancer CenterHoustonTXUSA
| | - Toru Miyake
- Department of Cancer BiologyMetastasis Research CenterUniversity of Texas MD Anderson Cancer CenterHoustonTXUSA
| | - Ehsan A Ehsanipour
- Department of Cancer BiologyMetastasis Research CenterUniversity of Texas MD Anderson Cancer CenterHoustonTXUSA
| | - Patience J Kelly
- Department of Cancer BiologyMetastasis Research CenterUniversity of Texas MD Anderson Cancer CenterHoustonTXUSA
| | - Lisa M Becker
- Department of Cancer BiologyMetastasis Research CenterUniversity of Texas MD Anderson Cancer CenterHoustonTXUSA
| | - Daniel J McGrail
- Department of Systems BiologyUniversity of Texas MD Anderson Cancer CenterHoustonTXUSA
| | - Hikaru Sugimoto
- Department of Cancer BiologyMetastasis Research CenterUniversity of Texas MD Anderson Cancer CenterHoustonTXUSA
| | - Valerie S LeBleu
- Department of Cancer BiologyMetastasis Research CenterUniversity of Texas MD Anderson Cancer CenterHoustonTXUSA,Feinberg School of MedicineNorthwestern UniversityChicagoILUSA,Kellogg School of ManagementNorthwestern UniversityEvanstonILUSA
| | - Yejing Ge
- Department of Cancer BiologyMetastasis Research CenterUniversity of Texas MD Anderson Cancer CenterHoustonTXUSA
| | - Raghu Kalluri
- Department of Cancer BiologyMetastasis Research CenterUniversity of Texas MD Anderson Cancer CenterHoustonTXUSA,Department of BioengineeringRice UniversityHoustonTXUSA,Department of Molecular and Cellular BiologyBaylor College of MedicineHoustonTXUSA
| |
Collapse
|
19
|
Plaut S. Scoping review and interpretation of myofascial pain/fibromyalgia syndrome: An attempt to assemble a medical puzzle. PLoS One 2022; 17:e0263087. [PMID: 35171940 PMCID: PMC8849503 DOI: 10.1371/journal.pone.0263087] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 01/11/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Myofascial Pain Syndrome (MPS) is a common, overlooked, and underdiagnosed condition and has significant burden. MPS is often dismissed by clinicians while patients remain in pain for years. MPS can evolve into fibromyalgia, however, effective treatments for both are lacking due to absence of a clear mechanism. Many studies focus on central sensitization. Therefore, the purpose of this scoping review is to systematically search cross-disciplinary empirical studies of MPS, focusing on mechanical aspects, and suggest an organic mechanism explaining how it might evolve into fibromyalgia. Hopefully, it will advance our understanding of this disease. METHODS Systematically searched multiple phrases in MEDLINE, EMBASE, COCHRANE, PEDro, and medRxiv, majority with no time limit. Inclusion/exclusion based on title and abstract, then full text inspection. Additional literature added on relevant side topics. Review follows PRISMA-ScR guidelines. PROSPERO yet to adapt registration for scoping reviews. FINDINGS 799 records included. Fascia can adapt to various states by reversibly changing biomechanical and physical properties. Trigger points, tension, and pain are a hallmark of MPS. Myofibroblasts play a role in sustained myofascial tension. Tension can propagate in fascia, possibly supporting a tensegrity framework. Movement and mechanical interventions treat and prevent MPS, while living sedentarily predisposes to MPS and recurrence. CONCLUSIONS MPS can be seen as a pathological state of imbalance in a natural process; manifesting from the inherent properties of the fascia, triggered by a disrupted biomechanical interplay. MPS might evolve into fibromyalgia through deranged myofibroblasts in connective tissue ("fascial armoring"). Movement is an underemployed requisite in modern lifestyle. Lifestyle is linked to pain and suffering. The mechanism of needling is suggested to be more mechanical than currently thought. A "global percutaneous needle fasciotomy" that respects tensegrity principles may treat MPS/fibromyalgia more effectively. "Functional-somatic syndromes" can be seen as one entity (myofibroblast-generated-tensegrity-tension), sharing a common rheuma-psycho-neurological mechanism.
Collapse
Affiliation(s)
- Shiloh Plaut
- School of Medicine, St. George’s University of London, London, United Kingdom
| |
Collapse
|
20
|
The Inhibitory Effects of Naringin in a Rat Model of Postoperative Intraperitoneal Adhesion Formation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:5331537. [PMID: 35069760 PMCID: PMC8767403 DOI: 10.1155/2022/5331537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 12/16/2021] [Accepted: 12/24/2021] [Indexed: 11/21/2022]
Abstract
Background Many attempts have been made to inhibit the formation of postoperative intraperitoneal adhesions, but the results have been discouraging. Therefore, the identification of effective preventative measures or treatments is of great importance. In this study, the substantial potential of naringin (NG) to reduce peritoneal adhesions was validated in a rat model. Materials and Methods A rat peritoneal adhesion model was established by abrasion of the cecum and its opposite intraperitoneal region under aseptic surgical conditions. After the operation, three groups of NG-treated rats were given 2 mL of NG by gavage at different concentrations (40, 60, or 80 mg/kg/d). The sham, control, and hyaluronan (HA) groups were given equal volumes of normal saline daily. On the 8th day, all rats were sacrificed 30 min after the administration of an activated carbon solution (10 mL/kg) by oral gavage. Intraperitoneal adhesion formation was adequately evaluated by necropsy, hematoxylin and eosin (HE) staining, Sirius red staining, immunofluorescence staining, enzyme-linked immunosorbent assays, and reactive oxygen species (ROS) probes. The gastrointestinal dynamics of the rats were assessed on the basis of a small intestinal charcoal powder propulsion test and the detection of motilin and gastrin levels in serum. Results Intraperitoneal adhesions were markedly reduced in the group of rats receiving high-dose NG. Compared with the control group, the high-dose NG group showed clear reductions in inflammatory reactions, oxidative stress, collagen deposition, and fibroblast formation in the adhesion tissue and enhanced gastrointestinal dynamics (P < 0.05). Conclusion NG alleviated the severity of intraperitoneal adhesions in a rat model by reducing inflammation, oxidative stress, collagen deposition, and fibroblast formation, highlighting the potential of NG as a drug candidate to prevent postoperative peritoneal adhesion formation.
Collapse
|
21
|
Tsai WH, Chou CH, Huang TY, Wang HL, Chien PJ, Chang WW, Lee HT. Heat-Killed Lactobacilli Preparations Promote Healing in the Experimental Cutaneous Wounds. Cells 2021; 10:3264. [PMID: 34831486 PMCID: PMC8625647 DOI: 10.3390/cells10113264] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/16/2021] [Accepted: 11/19/2021] [Indexed: 12/19/2022] Open
Abstract
Probiotics are defined as microorganisms with beneficial health effects when consumed by humans, being applied mainly to improve allergic or intestinal diseases. Due to the increasing resistance of pathogens to antibiotics, the abuse of antibiotics becomes inefficient in the skin and in systemic infections, and probiotics may also provide the protective effect for repairing the healing of infected cutaneous wounds. Here we selected two Lactobacillus strains, L. plantarum GMNL-6 and L. paracasei GMNL-653, in heat-killed format to examine the beneficial effect in skin wound repair through the selection by promoting collagen synthesis in Hs68 fibroblast cells. The coverage of gels containing heat-killed GMNL-6 or GMNL-653 on the mouse tail with experimental wounds displayed healing promoting effects with promoting of metalloproteinase-1 expression at the early phase and reduced excessive fibrosis accumulation and deposition in the later tail-skin recovery stage. More importantly, lipoteichoic acid, the major component of Lactobacillus cell wall, from GMNL-6/GMNL-653 could achieve the anti-fibrogenic benefit similar to the heat-killed bacteria cells in the TGF-β stimulated Hs68 fibroblast cell model. Our study offers a new therapeutic potential of the heat-killed format of Lactobacillus as an alternative approach to treating skin healing disorders.
Collapse
Affiliation(s)
- Wan-Hua Tsai
- Research and Development Department, GenMont Biotech Incorporation, Tainan 741014, Taiwan; (W.-H.T.); (C.-H.C.); (T.-Y.H.)
| | - Chia-Hsuan Chou
- Research and Development Department, GenMont Biotech Incorporation, Tainan 741014, Taiwan; (W.-H.T.); (C.-H.C.); (T.-Y.H.)
| | - Tsuei-Yin Huang
- Research and Development Department, GenMont Biotech Incorporation, Tainan 741014, Taiwan; (W.-H.T.); (C.-H.C.); (T.-Y.H.)
| | - Hui-Ling Wang
- School of Biomedical Sciences, Chung Shan Medical University, Taichung 402306, Taiwan; (H.-L.W.); (P.-J.C.)
| | - Peng-Ju Chien
- School of Biomedical Sciences, Chung Shan Medical University, Taichung 402306, Taiwan; (H.-L.W.); (P.-J.C.)
| | - Wen-Wei Chang
- School of Biomedical Sciences, Chung Shan Medical University, Taichung 402306, Taiwan; (H.-L.W.); (P.-J.C.)
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 402306, Taiwan
| | - Hsueh-Te Lee
- Institute of Anatomy & Cell Biology, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Taiwan International Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei 115024, Taiwan
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| |
Collapse
|
22
|
Laiva AL, O’Brien FJ, Keogh MB. Anti-Aging β-Klotho Gene-Activated Scaffold Promotes Rejuvenative Wound Healing Response in Human Adipose-Derived Stem Cells. Pharmaceuticals (Basel) 2021; 14:ph14111168. [PMID: 34832950 PMCID: PMC8619173 DOI: 10.3390/ph14111168] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/09/2021] [Accepted: 11/09/2021] [Indexed: 12/13/2022] Open
Abstract
Wound healing requires a tight orchestration of complex cellular events. Disruption in the cell-signaling events can severely impair healing. The application of biomaterial scaffolds has shown healing potential; however, the potential is insufficient for optimal wound maturation. This study explored the functional impact of a collagen-chondroitin sulfate scaffold functionalized with nanoparticles carrying an anti-aging gene β-Klotho on human adipose-derived stem cells (ADSCs) for rejuvenative healing applications. We studied the response in the ADSCs in three phases: (1) transcriptional activities of pluripotency factors (Oct-4, Nanog and Sox-2), proliferation marker (Ki-67), wound healing regulators (TGF-β3 and TGF-β1); (2) paracrine bioactivity of the secretome generated by the ADSCs; and (3) regeneration of basement membrane (fibronectin, laminin, and collagen IV proteins) and expression of scar-associated proteins (α-SMA and elastin proteins) towards maturation. Overall, we found that the β-Klotho gene-activated scaffold offers controlled activation of ADSCs' regenerative abilities. On day 3, the ADSCs on the gene-activated scaffold showed enhanced (2.5-fold) activation of transcription factor Oct-4 that was regulated transiently. This response was accompanied by a 3.6-fold increase in the expression of the anti-fibrotic gene TGF-β3. Through paracrine signaling, the ADSCs-laden gene-activated scaffold also controlled human endothelial angiogenesis and pro-fibrotic response in dermal fibroblasts. Towards maturation, the ADSCs-laden gene-activated scaffold further showed an enhanced regeneration of the basement membrane through increases in laminin (2.1-fold) and collagen IV (8.8-fold) deposition. The ADSCs also expressed 2-fold lower amounts of the scar-associated α-SMA protein with improved qualitative elastin matrix deposition. Collectively, we determined that the β-Klotho gene-activated scaffold possesses tremendous potential for wound healing and could advance stem cell-based therapy for rejuvenative healing applications.
Collapse
Affiliation(s)
- Ashang L. Laiva
- Tissue Engineering Research Group-Bahrain, Royal College of Surgeons in Ireland, Adliya, Manama P.O. Box 15503, Bahrain;
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, 123 St. Stephen’s Green, D02 YN77 Dublin, Ireland;
| | - Fergal J. O’Brien
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, 123 St. Stephen’s Green, D02 YN77 Dublin, Ireland;
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 PN40 Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre, Royal College of Surgeons in Ireland and Trinity College Dublin, D02 YN77 Dublin, Ireland
| | - Michael B. Keogh
- Tissue Engineering Research Group-Bahrain, Royal College of Surgeons in Ireland, Adliya, Manama P.O. Box 15503, Bahrain;
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, 123 St. Stephen’s Green, D02 YN77 Dublin, Ireland;
- Correspondence:
| |
Collapse
|
23
|
Intralesional platelet-rich plasma injection promotes tongue regeneration following partial glossectomy in a murine model. Oral Oncol 2021; 120:105422. [PMID: 34218061 DOI: 10.1016/j.oraloncology.2021.105422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/02/2021] [Accepted: 06/22/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND We examined the regenerative efficacy of the activated platelet-rich plasma (PRP) concentrate administered by local injection in an animal model mimicking partial glossectomy for tongue cancer. METHODS Four-week-old mice were randomized to four groups; (1) a treatment-naïve control group, (2) a PRP group, (3) a hemiglossectomy group, and (4) a hemiglossectomy + PRP group. The activated PRP concentrate was injected into the deep layer of resected surfaces of mouse tongues immediately after excision, and tongue widths and lengths were measured on postoperative days (POD) 5 and 12. Gross tongue morphologies and microscopic findings were investigated. Inflammation and fibrous tissue areas were also measured, and immunohistochemical analysis was performed for c-kit, neurofilament, and S-100. RESULTS The activated PRP concentrate reduced wound scar contracture, promoted wound healing, and reduced inflammation and wound fibrosis. On POD 12, histologic findings in the hemiglossectomy + PRP group were similar to those in the normal control group, and the intensity of stem cell factor receptor c-kit expression was also significantly greater in the PRP group than in the hemiglossectomy group on POD 12. Immunohistochemical staining revealed S100 and neurofilament expressions in the hemiglossectomy + PRP group were significantly more intense than in the hemiglossectomy group. CONCLUSION Intralesional activated PRP concentrate injection has potential use for tongue regeneration, wound healing, and neural regeneration with minimal scarring after partial glossectomy.
Collapse
|
24
|
Abstract
OBJECTIVE The burden of the management of problematic skin wounds characterised by a compromised skin barrier is growing rapidly. Almost six million patients are affected in the US alone, with an estimated market of $25 billion annually. There is an urgent requirement for efficient mechanism-based treatments and more efficacious drug delivery systems. Novel strategies are needed for faster healing by reducing infection, moisturising the wound, stimulating the healing mechanisms, speeding up wound closure and reducing scar formation. METHODS A systematic review of qualitative studies was conducted on the recent perspectives of nanotechnology in burn wounds management. Pubmed, Scopus, EMBASE, CINAHL and PsychINFO databases were all systematically searched. Authors independently rated the reporting of the qualitative studies included. A comprehensive literature search was conducted covering various resources up to 2018-2019. Traditional techniques aim to simply cover the wound without playing any active role in wound healing. However, nanotechnology-based solutions are being used to create multipurpose biomaterials, not only for regeneration and repair, but also for on-demand delivery of specific molecules. The chronic nature and associated complications of nonhealing wounds have led to the emergence of nanotechnology-based therapies that aim at facilitating the healing process and ultimately repairing the injured tissue. CONCLUSION Nanotechnology-based therapy is in the forefront of next-generation therapy that is able to advance wound healing of hard-to-heal wounds. In this review, we will highlight the developed nanotechnology-based therapeutic agents and assess the viability and efficacy of each treatment. Herein we will explore the unmet needs and future directions of current technologies, while discussing promising strategies that can advance the wound-healing field.
Collapse
Affiliation(s)
- Ruan Na
- Orthopedics Department, Affiliated Tongji Hospital of Huazhong University of Science and Technology, Wuhan City, Hubei Province, 430030, China
| | - Tian Wei
- Department of Biomedical Engineering
| |
Collapse
|
25
|
Monika P, Waiker PV, Chandraprabha MN, Rangarajan A, Murthy KNC. Myofibroblast progeny in wound biology and wound healing studies. Wound Repair Regen 2021; 29:531-547. [PMID: 34009713 DOI: 10.1111/wrr.12937] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/15/2021] [Accepted: 05/07/2021] [Indexed: 12/19/2022]
Abstract
Fibroblasts and myofibroblasts play a myriad of important roles in human tissue function, especially in wound repair and healing. Among all cells, fibroblasts are group of cells that decide the status of wound as they maintain tissue homeostasis. Currently, the increase in the deleterious effects of chronic wound and their morbidity rate has necessitated the need to understand the influence of fibroblasts and myofibroblasts, which chiefly originate locally from tissue-resident fibroblasts to address the same. Wound pathophysiology is complex, herein, we have discussed fibroblast and myofibroblast heterogeneity in skin and different organs by understanding the phenotypical and functional properties of each of its sub-populations in the process of wound healing. Recent advancements in fibroblast activation, differentiation to myofibroblasts, proliferation and migration are discussed in detail. Fibroblasts and myofibroblasts are key players in wound healing and wound remodelling, respectively, and their significance in wound repair is discussed. An increased understanding of their biology during wound healing also gives an opportunity to explore more of fibroblast and myofibroblast focused therapies to treat chronic wounds which are clinical challenges. In this regard, in the current review, we have described the different methods for isolation of primary fibroblasts and myofibroblasts from both animal models and humans, and their characterization. Additionally, we have also provided details on possible molecular targets for better understanding of prognosis, diagnosis and treatment of chronic wounds. Information will help both researchers and clinicians in providing molecular insight that enable them for effective chronic wound management. The knowledge of intimate dialogue between the fibroblast, sub-populations like, myofibroblast and their microenvironment, will serve useful in determining novel, efficient and specific therapeutic targets to treat pathological wound conditions.
Collapse
Affiliation(s)
- Prakash Monika
- Department of Biotechnology, M. S. Ramaiah Institute of Technology, Bangalore, India
| | | | | | - Annapoorni Rangarajan
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India
| | | |
Collapse
|
26
|
The C0-C1f Region of Cardiac Myosin Binding Protein-C Induces Pro-Inflammatory Responses in Fibroblasts via TLR4 Signaling. Cells 2021; 10:cells10061326. [PMID: 34073556 PMCID: PMC8230336 DOI: 10.3390/cells10061326] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/19/2021] [Accepted: 05/21/2021] [Indexed: 12/11/2022] Open
Abstract
Myocardial injury is associated with inflammation and fibrosis. Cardiac myosin-binding protein-C (cMyBP-C) is cleaved by µ-calpain upon myocardial injury, releasing C0-C1f, an N-terminal peptide of cMyBP-C. Previously, we reported that the presence of C0-C1f is pathogenic within cardiac tissue and is able to activate macrophages. Fibroblasts also play a crucial role in cardiac remodeling arising from ischemic events, as they contribute to both inflammation and scar formation. To understand whether C0-C1f directly modulates fibroblast phenotype, we analyzed the impact of C0-C1f on a human fibroblast cell line in vitro by performing mRNA microarray screening, immunofluorescence staining, and quantitative real-time PCR. The underlying signaling pathways were investigated by KEGG analysis and determined more precisely by targeted inhibition of the potential signaling cascades in vitro. C0-C1f induced pro-inflammatory responses that might delay TGFβ-mediated myofibroblast conversion. TGFβ also counteracted C0-C1f-mediated fibroblast activation. Inhibition of TLR4 or NFκB as well as the delivery of miR-146 significantly reduced C0-C1f-mediated effects. In conclusion, C0-C1f induces inflammatory responses in human fibroblasts that are mediated via TRL4 signaling, which is decreased in the presence of TGFβ. Specific targeting of TLR4 signaling could be an innovative strategy to modulate C0-C1f-mediated inflammation.
Collapse
|
27
|
Arif S, Attiogbe E, Moulin VJ. Granulation tissue myofibroblasts during normal and pathological skin healing: The interaction between their secretome and the microenvironment. Wound Repair Regen 2021; 29:563-572. [PMID: 33887793 DOI: 10.1111/wrr.12919] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/25/2021] [Accepted: 03/30/2021] [Indexed: 01/02/2023]
Abstract
The first role that was proposed for the myofibroblasts located in skin granulation tissue was to contract the edges of the wound in order to reduce the surface to be repaired. This role, linked to the presence of alpha smooth muscle actin, was very quickly confirmed and is part of the definition of granulation tissue myofibroblasts. However, myofibroblasts are cells that also play a much more central role in wound healing. Indeed, it has been shown that these cells produce large quantities of matrix components, and that they stimulate angiogenesis and can recruit immune cells. These actions take place via the secretion of molecules into their environment or indirectly via the production of microvesicles containing pro-fibrotic and pro-angiogenic molecules. Pathologically, granulation tissue can develop into a hypertrophic scar that histologically looks like granulation tissue, but which can remain for months or even years. It has been hypothesized that the myofibroblasts in these tissues remained present instead of disappearing by apoptosis, causing the maintenance of granulation tissue rather than allowing its change into a mature scar. Understanding the roles of both pathological and healthy myofibroblasts in wound tissue is crucial in order to better intervene in the healing mechanism.
Collapse
Affiliation(s)
- Syrine Arif
- Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Centre de recherche du CHU de Québec-Université Laval, Quebec City, Quebec, Canada
| | - Emilie Attiogbe
- Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Centre de recherche du CHU de Québec-Université Laval, Quebec City, Quebec, Canada
| | - Véronique J Moulin
- Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Centre de recherche du CHU de Québec-Université Laval, Quebec City, Quebec, Canada.,Department of Surgery, Faculty of Medicine, Université Laval, Quebec City, Quebec, Canada
| |
Collapse
|
28
|
Vabeiryureilai M, Lalrinzuali K, Jagetia GC. NF-κB and COX-2 repression with topical application of hesperidin and naringin hydrogels augments repair and regeneration of deep dermal wounds. Burns 2021; 48:132-145. [PMID: 33972147 DOI: 10.1016/j.burns.2021.04.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 03/13/2021] [Accepted: 04/12/2021] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Wound injury is common and causes serious complications if not treated properly. The moist dressing heals wounds faster than other dressings. Therefore, we sought to study the effect of hesperidin/naringin hydrogel wound dressing or their combinations on the deep dermal wounds in mice. METHODS A rectangular full thickness skin flap of 2.5 × 1.5 cm was excised from depilated mice dorsum and the wound was fully covered with 5% hesperidin/5% naringin hydrogel or both in the ratio of 1:1, 2:1, or 1:2, respectively once daily until complete healing of the wound. Data were collected on wound contraction, mean wound healing time, collagen, DNA, and nitric oxide syntheses, glutathione concentration, superoxide dismutase activity, and lipid peroxidation throughout healing. Expression of NF-κB and COX-2 were also estimated in the regenerating granulation tissue using Western blot. FINDINGS Dressing of wounds with 5% hesperidin hydrogel led to a higher and early wound contraction and significantly reduced mean wound healing time by 5.7 days than 5% naringin or combination of hesperidin and naringin hydrogels in the ratio of 1:1, 2:1, or 1:2. Hesperidin hydrogel wound dressing caused higher collagen and DNA syntheses than other groups at all times after injury. Glutathione concentration and superoxide dismutase activity increased followed by a decline in lipid peroxidation in regenerating wounds after hesperidin/naringin hydrogel application and a maximum effect was observed for hesperidin alone. The hesperidin/naringin hydrogel suppressed NF-κB and COX-2 expression on days 6 and 12. CONCLUSIONS Application of 5% hesperidin hydrogel was more effective than 5% naringin or combination of hesperidin and naringin gels (1:1, 2:1 or 1:2) indicated by a greater wound contraction, reduced mean wound healing time, elevated collagen and DNA syntheses, rise in glutathione concentration, and superoxide dismutase activity followed by reduced lipid peroxidation, and NF-κB, and COX-2 expression.
Collapse
|
29
|
Raj R, Shenoy SJ, Mony MP, Pratheesh KV, Nair RS, Geetha CS, Sobhan PK, Purnima C, Anilkumar TV. Surface Modification of Polypropylene Mesh with a Porcine Cholecystic Extracellular Matrix Hydrogel for Mitigating Host Tissue Reaction. ACS APPLIED BIO MATERIALS 2021; 4:3304-3319. [DOI: 10.1021/acsabm.0c01627] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Reshmi Raj
- Division of Experimental Pathology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Biomedical Technology Wing, Thiruvananthapuram 695012, India
| | - Sachin J. Shenoy
- Division of In Vivo Models and Testing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Biomedical Technology Wing, Thiruvananthapuram 695012, India
| | - Manjula P. Mony
- Division of Experimental Pathology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Biomedical Technology Wing, Thiruvananthapuram 695012, India
| | - Kanakarajan V. Pratheesh
- Division of Experimental Pathology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Biomedical Technology Wing, Thiruvananthapuram 695012, India
| | - Reshma S. Nair
- Division of Experimental Pathology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Biomedical Technology Wing, Thiruvananthapuram 695012, India
| | - Chandrika S. Geetha
- Division of Experimental Pathology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Biomedical Technology Wing, Thiruvananthapuram 695012, India
| | - Praveen K. Sobhan
- Division of Tissue Culture, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Biomedical Technology Wing, Thiruvananthapuram 695012, India
| | - Chandramohanan Purnima
- Division of Experimental Pathology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Biomedical Technology Wing, Thiruvananthapuram 695012, India
| | - Thapasimuthu V. Anilkumar
- Division of Experimental Pathology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Biomedical Technology Wing, Thiruvananthapuram 695012, India
- School of Biology, Indian Institute of Science Education and Research—Thiruvananthapuram, Maruthamala, Vithura 695551, India
| |
Collapse
|
30
|
Ca-Alginate-PEGMA Hydrogels for In Situ Delivery of TGF-β Neutralizing Antibodies in a Mouse Model of Wound Healing. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11031164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Hydrogels provide effective alternatives for drug delivery when therapeutics cannot be applied directly to a wound, or if adverse effects are associated with systemic administration. However, drug delivery vehicles need to be biocompatible and biodegradable and exhibit sufficient mechanical strength to withstand handling and different physiological conditions, such as those encountered during topical administration of a therapeutic. Wound healing can be divided into three phases stimulated by transforming growth factor-beta (TGF-β) and, subsequently, targeted therapeutics have been developed to inhibit this cytokine for the treatment of chronic wounds and to prevent scarring. In this study, the capacity of calcium alginate hydrogels plasticized with poly(ethylene glycol) methyl ether methacrylate (PEGMA) to deliver anti-TGF-β antibodies (1D11.16.8) to a wound was investigated in situ. Three levels of antibodies, 10, 50, and 100 μg, were loaded into calcium-alginate-PEGMA hydrogels and evaluated in an excisional wound model in mice. Hydrogels containing 50 and 100 μg 1D11.16.8 produced less inflammation, accompanied by a marked reduction in collagen deposition and cell infiltration. These findings demonstrate the capacity of calcium-alginate-PEGMA hydrogels to deliver larger proteins, such as antibodies, to the site of a wound.
Collapse
|
31
|
Shalaby K, Mostafa EM, Musa A, Moustafa AEGA, Ibrahim MF, Alruwaili NK, Zafar A, Elmowafy M. Enhanced full-thickness wound healing via Sophora gibbosa extract delivery based on a chitosan/gelatin dressing incorporating microemulsion. Drug Dev Ind Pharm 2021; 47:215-224. [PMID: 33317339 DOI: 10.1080/03639045.2020.1863420] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
There are many synthetic drugs in literature have been utilized in healing of the wounds although the natural product specially antioxidants can offer similar if not better biological activity in that regard. Genus Sophora is well known to contain flavonoids and phenolic compounds which have antioxidant and inflammatory effects. So, the aim of the current study was to develop and evaluate chitosan/gelatin based Sophora gibbosa extract-loaded microemulsion as wound dressing. Sophora gibbosa extract (SGE) contained 16 major compounds which have reasonable antioxidant activity. The developed microemulsion showed that Tween 80 produced significant (p < 0.05) lower particle size than Pluronic F127 at the same SGE concentration whereas high concentration of extract results in large particle size. Thermodynamic stability studies showed that using higher concentration of the extract produced less stable formulations. The selected formulation was impregnated in the dressing base (chitosan/gelatin; 2:1 w/w ratio) which exhibited more water absorption. In vivo evaluation revealed that the dressing displayed superior wound repair compared to the control in terms histological examination and determination of alpha smooth muscle actin (α-SMA) and proliferating cell nuclear antigen (PCNA). Thus, SGE-loaded microemulsion-impregnated gelatin/chitosan could be a potential candidate for the wound healing.
Collapse
Affiliation(s)
- Khaled Shalaby
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia.,Department of Pharmaceutics and Ind. Pharmacy, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, Egypt
| | - Ehab M Mostafa
- Department of Pharmacognosy, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia.,Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Arafa Musa
- Department of Pharmacognosy, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia.,Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | | | - Mohamed F Ibrahim
- Department of Pharmaceutics and Ind. Pharmacy, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, Egypt
| | - Nabil K Alruwaili
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Ameeduzzafar Zafar
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Mohammed Elmowafy
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia.,Department of Pharmaceutics and Ind. Pharmacy, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, Egypt
| |
Collapse
|
32
|
Multipotent adult progenitor cells grown under xenobiotic-free conditions support vascularization during wound healing. Stem Cell Res Ther 2020; 11:389. [PMID: 32894199 PMCID: PMC7487685 DOI: 10.1186/s13287-020-01912-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/19/2020] [Accepted: 08/27/2020] [Indexed: 12/12/2022] Open
Abstract
Background Cell therapy has been evaluated pre-clinically and clinically as a means to improve wound vascularization and healing. While translation of this approach to clinical practice ideally requires the availability of clinical grade xenobiotic-free cell preparations, studies proving the pre-clinical efficacy of the latter are mostly lacking. Here, the potential of xenobiotic-free human multipotent adult progenitor cell (XF-hMAPC®) preparations to promote vascularization was evaluated. Methods The potential of XF-hMAPC cells to support blood vessel formation was first scored in an in vivo Matrigel assay in mice. Next, a dose-response study was performed with XF-hMAPC cells in which they were tested for their ability to support vascularization and (epi) dermal healing in a physiologically relevant splinted wound mouse model. Results XF-hMAPC cells supported blood vessel formation in Matrigel by promoting the formation of mature (smooth muscle cell-coated) vessels. Furthermore, XF-hMAPC cells dose-dependently improved wound vascularization associated with increasing wound closure and re-epithelialization, granulation tissue formation, and dermal collagen organization. Conclusions Here, we demonstrated that the administration of clinical-grade XF-hMAPC cells in mice represents an effective approach for improving wound vascularization and healing that is readily applicable for translation in humans.
Collapse
|
33
|
Loh EYX, Fauzi MB, Ng MH, Ng PY, Ng SF, Mohd Amin MCI. Insight into delivery of dermal fibroblast by non-biodegradable bacterial nanocellulose composite hydrogel on wound healing. Int J Biol Macromol 2020; 159:497-509. [DOI: 10.1016/j.ijbiomac.2020.05.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/19/2020] [Accepted: 05/02/2020] [Indexed: 11/26/2022]
|
34
|
Xiao Y. MiR-486-5p inhibits the hyperproliferation and production of collagen in hypertrophic scar fibroblasts via IGF1/PI3K/AKT pathway. J DERMATOL TREAT 2020; 32:973-982. [PMID: 32079424 DOI: 10.1080/09546634.2020.1728210] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background: This study explored the function and mechanism of miR-486-5p in HSFBs.Methods: Qualitative real-time-polymerase chain reaction (qRT-PCR) was performed to detect the expression of miR-486-5p in HS and hypertrophic scar fibroblasts (HSFBs). Viability, migration, invasion ability, apoptosis, and expressions of Collagen I, Collagen III, α-SMA and Cleaved caspase-3 in HSFBs after transfection with miR-486-5p mimic or inhibitor were measured by CCK-8, wound-healing, transwell, and Western blot, respectively. Interaction between miR-486-5p and IGF1 was predicted by Targetscan version 7.2 and further confirmed by dual-luciferase assay, and functional rescue experiments were conducted to verify the predicted molecular mechanism. The activation of PI3K/AKT pathway was also analyzed by Western blot.Results: MiR-486-5p was low-expressed in HS and HSFBs, and that overexpression of miR-486-5p suppressed the viability, migration, invasion, and expressions of Collagen I, Collagen III, and α-SMA of HSFBs, meanwhile, it also promoted apoptosis and Cleaved caspase-3 expression in HSFBs. Moreover, IGF1 was targeted by miR-486-5p, and increased viability, migration, invasion, and collagens expressions, the activation of PI3K/Akt pathway, and decreased apoptosis and Cleaved caspase-3 induced by miR-486-5p inhibitor could be partly alleviated by siIGF1.Conclusions: Overexpressed miR-486-5p inhibited the hyperproliferation and excessive production of collagen in HSFBs via IGF1/PI3K/AKT pathway.
Collapse
Affiliation(s)
- Yifeng Xiao
- Department of Plastic Surgery, Lanzhou University Second Hospital, Lanzhou, PR China
| |
Collapse
|
35
|
Oostendorp C, Geutjes PJ, Smit F, Tiemessen DM, Polman S, Abbawi A, Brouwer KM, Eggink AJ, Feitz WFJ, Daamen WF, van Kuppevelt TH. Sustained Postnatal Skin Regeneration Upon Prenatal Application of Functionalized Collagen Scaffolds. Tissue Eng Part A 2020; 27:10-25. [PMID: 31971880 DOI: 10.1089/ten.tea.2019.0234] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Primary closure of fetal skin in spina bifida protects the spinal cord and improves clinical outcome, but is also associated with postnatal growth malformations and spinal cord tethering. In this study, we evaluated the postnatal effects of prenatally closed full-thickness skin defects in sheep applying collagen scaffolds with and without heparin/vascular endothelial growth factor/fibroblast growth factor 2, focusing on skin regeneration and growth. At 6 months, collagen scaffold functionalized with heparin, VEGF, and FGF2 (COL-HEP/GF) resulted in a 6.9-fold increase of the surface area of the regenerated skin opposed to 1.7 × for collagen only. Epidermal thickness increased 5.7-fold at 1 month, in line with high gene expression of S100 proteins, and decreased to 2.1 at 6 months. Increased adipose tissue and reduced scaffold degradation and number of myofibroblasts were observed for COL-HEP/GF. Gene ontology terms related to extracellular matrix (ECM) organization were enriched for both scaffold treatments. In COL-HEP/GF, ECM gene expression resembled native skin. Expression of hair follicle-related genes in COL-HEP/GF was comparable to native skin, and de novo hair follicle generation was indicated. In conclusion, in utero closure of skin defects using functionalized collagen scaffolds resulted in long-term skin regeneration and growth. Functionalized collagen scaffolds that grow with the child may be useful for prenatal treatment of closure defects like spina bifida. Impact statement Prenatal closure of fetal skin in case of spina bifida prevents damage to the spinal cord. Closure of the defect is challenging and may result in postnatal growth malformations. In this study, the postnatal effects of a prenatally applied collagen scaffold functionalized with heparin and vascular endothelial growth factor (VEGF)/fibroblast growth factor (FGF) were investigated. An increase of the surface area of regenerated skin ("growing with the child") and generation of hair follicles was observed. Gene expression levels resembled those of native skin with respect to the extracellular matrix and hair follicles. Overall, in utero closure of skin defects using heparin/VEGF/FGF functionalized collagen scaffolds results in long-term skin regeneration.
Collapse
Affiliation(s)
- Corien Oostendorp
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Paul J Geutjes
- Department of Urology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Dorien M Tiemessen
- Department of Urology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Sjoerd Polman
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Aya Abbawi
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Katrien M Brouwer
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Alex J Eggink
- Department of Obstetrics and Gynecology, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Wout F J Feitz
- Department of Urology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.,Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Willeke F Daamen
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Toin H van Kuppevelt
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
36
|
Fan C, Lim LKP, Loh SQ, Ying Lim KY, Upton Z, Leavesley D. Application of “macromolecular crowding” in vitro to investigate the naphthoquinones shikonin, naphthazarin and related analogues for the treatment of dermal scars. Chem Biol Interact 2019; 310:108747. [DOI: 10.1016/j.cbi.2019.108747] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/14/2019] [Accepted: 07/10/2019] [Indexed: 01/05/2023]
|
37
|
Trindade LCT, Matias JEF, Sampaio CPP, Farias RE, Biondo-Simões MDLP. Differentiation of myofibroblasts in wounds after topical use of metronidazole: an experimental study. ACTA ACUST UNITED AC 2019; 46:e2015. [PMID: 30843944 DOI: 10.1590/0100-6991e-20192015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 01/22/2019] [Indexed: 12/19/2022]
Abstract
OBJECTIVE to assess the effects of topical administration of metronidazole on fibroblast differentiation and on wound contraction during experimental secondary intention wound healing in rats. METHODS we submitted 108 rats to a circular wound on the back, 2cm in diameter, and divided them into six groups: control group, with application of saline solution on the wound and five experimental groups, divided according to the concentration of metronidazole solution used (4%, 6%, 8%, 10% and 12%). We changed the dressings daily throughout the trial period, which comprised three stages of analysis: three, seven and 14 days. We evaluated wound contraction by digital planimetry, and identified myofibroblasts and protomyofibroblasts using CD34 and α-SMA immunohistochemistry techniques. RESULTS wound contraction was not different between the experimental and the control groups. Protomyofibroblasts were significantly more numerous at seven days (p=0.022) in the 4%, 6% and 8% metronidazole groups. After 14 days, in the same groups, myofibroblasts predominated significantly (p=0.01). CONCLUSION the topical administration of metronidazole solution in skin wounds healing by secondary intention was able to improve the differentiation of fibroblasts. The contraction phase of wound healing remained unchanged, without significant reduction of the contraction evaluated by digital planimetry. These results can be used in favor of the wound healing process.
Collapse
Affiliation(s)
| | | | | | - Rogério Estevam Farias
- Universidade Federal de Juiz de Fora, Instituto de Ciências Biológicas, Departamento de Patologia Geral, Juiz de Fora, MG, Brasil
| | | |
Collapse
|
38
|
A Human Skin Model Recapitulates Systemic Sclerosis Dermal Fibrosis and Identifies COL22A1 as a TGFβ Early Response Gene that Mediates Fibroblast to Myofibroblast Transition. Genes (Basel) 2019; 10:genes10020075. [PMID: 30678304 PMCID: PMC6409682 DOI: 10.3390/genes10020075] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 01/14/2019] [Indexed: 01/01/2023] Open
Abstract
: Systemic sclerosis (SSc) is a complex multi-system autoimmune disease characterized by immune dysregulation, vasculopathy, and organ fibrosis. Skin fibrosis causes high morbidity and impaired quality of life in affected individuals. Animal models do not fully recapitulate the human disease. Thus, there is a critical need to identify ex vivo models for the dermal fibrosis characteristic of SSc. We identified genes regulated by the pro-fibrotic factor TGFβ in human skin maintained in organ culture. The molecular signature of human skin overlapped with that which was identified in SSc patient biopsies, suggesting that this model recapitulates the dermal fibrosis characteristic of the human disease. We further characterized the regulation and functional impact of a previously unreported gene in the setting of dermal fibrosis, COL22A1, and show that silencing COL22A1 significantly reduced TGFβ-induced ACTA2 expression. COL22A1 expression was significantly increased in dermal fibroblasts from patients with SSc. In summary, we identified the molecular fingerprint of TGFβ in human skin and demonstrated that COL22A1 is associated with the pathogenesis of fibrosis in SSc as an early response gene that may have important implications for fibroblast activation. Further, this model will provide a critical tool with direct relevance to human disease to facilitate the assessment of potential therapies for fibrosis.
Collapse
|
39
|
Govindaraju P, Todd L, Shetye S, Monslow J, Puré E. CD44-dependent inflammation, fibrogenesis, and collagenolysis regulates extracellular matrix remodeling and tensile strength during cutaneous wound healing. Matrix Biol 2019; 75-76:314-330. [PMID: 29894820 PMCID: PMC6286871 DOI: 10.1016/j.matbio.2018.06.004] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 05/21/2018] [Accepted: 06/08/2018] [Indexed: 12/19/2022]
Abstract
Cutaneous wound healing consists of three main phases: inflammation, re-epithelialization, and tissue remodeling. During normal wound healing, these processes are tightly regulated to allow restoration of skin function and biomechanics. In many instances, healing leads to an excess accumulation of fibrillar collagen (the principal protein found in the extracellular matrix - ECM), and the formation of scar tissue, which has compromised biomechanics, tested using ramp to failure tests, compared to normal skin (Corr and Hart, 2013 [1]). Alterations in collagen accumulation and architecture have been attributed to the reduced tensile strength found in scar tissue (Brenda et al., 1999; Eleswarapu et al., 2011). Defining mechanisms that govern cellular functionality and ECM remodeling are vital to understanding normal versus pathological healing and developing approaches to prevent scarring. CD44 is a cell surface adhesion receptor expressed on nearly all cell types present in dermis. Although CD44 has been implicated in an array of inflammatory and fibrotic processes such as leukocyte recruitment, T-cell extravasation, and hyaluronic acid (the principal glycosaminoglycan found in the ECM) metabolism, the role of CD44 in cutaneous wound healing and scarring remains unknown. We demonstrate that in an excisional biopsy punch wound healing model, CD44-null mice have increased inflammatory and reduced fibrogenic responses during early phases of wound healing. At wound closure, CD44-null mice exhibit reduced collagen degradation leading to increased accumulation of fibrillar collagen, which persists after wound closure leading to reduced tensile strength resulting in a more severe scarring phenotype compared to WT mice. These data indicate that CD44 plays a previously unknown role in fibrillar collagen accumulation and wound healing during the injury response.
Collapse
Affiliation(s)
- Priya Govindaraju
- Department of Biomedical Sciences of the University of Pennsylvania, Philadelphia, PA, United States of America; Pharmacology Graduate Group of the University of Pennsylvania, Philadelphia, PA, United States of America
| | - Leslie Todd
- Department of Biomedical Sciences of the University of Pennsylvania, Philadelphia, PA, United States of America
| | - Snehal Shetye
- McKay Orthopaedic Research Laboratory of the University of Pennsylvania, Philadelphia, PA, United States of America
| | - James Monslow
- Department of Biomedical Sciences of the University of Pennsylvania, Philadelphia, PA, United States of America
| | - Ellen Puré
- Department of Biomedical Sciences of the University of Pennsylvania, Philadelphia, PA, United States of America; Pharmacology Graduate Group of the University of Pennsylvania, Philadelphia, PA, United States of America.
| |
Collapse
|
40
|
Lalrinzuali K, Vabeiryureilai M, Jagetia GC. Topical application of stem bark ethanol extract of Sonapatha, Oroxylum indicum (L.) Kurz accelerates healing of deep dermal excision wound in Swiss albino mice. JOURNAL OF ETHNOPHARMACOLOGY 2018; 227:290-299. [PMID: 30121235 DOI: 10.1016/j.jep.2018.08.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 07/25/2018] [Accepted: 08/13/2018] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Oroxylum indicum is used traditionally to treat fever, colic, stomach ulcers, constipation, indigestion, intestinal worms, strangury, asthma, cough, hiccough, diarrhea, dysentery and wounds by the herbal healers of Mizoram and it is also part of Ayurvedic formulations. AIMS OF THE STUDY The wound healing activity of Oroxylum indicum has not been investigated. Therefore, the present study was undertaken to evaluate the ability of different concentrations of ethanol extract of stem bark of Oroxylum indicum in the deep dermal excision wounds of mice. MATERIALS AND METHODS The deep dermal excision wound was created on the shaved dorsum of Swiss albino mice. Each excision wound was topically applied with 5%, 10%, 20% or 30% gel of stem bark ethanol extract of Oroxylum indicum (OIE) and wound contraction, mean wound healing time (MHT), collagen and DNA syntheses were studied. The expression of NF-κB and COX-II were evaluated in the regenerating wound granulation tissues of mice. RESULTS Topical application of different concentrations of OIE resulted in a concentration dependent rise in wound contraction and MHT and the highest wound contraction was recorded for 10% OIE. Similarly, topical application of different concentrations of OIE increased the DNA and neocollagen syntheses in a dose dependent manner at all post wounding days and the greatest acceleration in DNA and neocollagen formation was observed for 10% OIE. The evaluation of lipid peroxidation (LOO) showed a dose dependent decline in LOO, which was lowest for 10% OIE. The study of molecular mechanisms revealed the suppression of NF-κB and COX-II in a dose dependent manner in the regenerating wound of mice with a maximum inhibition at 10% OIE. CONCLUSIONS The present study demonstrates that OIE accelerated the wound contraction and reduced mean wound healing time in mice, which may be due to increased collagen and DNA syntheses, reduced lipid peroxidation coupled by NF-κB and COX-II suppression by OIE in the regenerating wounds of mice.
Collapse
Affiliation(s)
- K Lalrinzuali
- Department of Zoology, Mizoram University, Tanhril, Aizawl 796004, Mizoram, India
| | - M Vabeiryureilai
- Department of Zoology, Mizoram University, Tanhril, Aizawl 796004, Mizoram, India
| | | |
Collapse
|
41
|
Lee J, Shin D, Roh JL. Treatment of intractable oral ulceration with an oral mucosa equivalent. J Biomed Mater Res B Appl Biomater 2018; 107:1779-1785. [PMID: 30419151 DOI: 10.1002/jbm.b.34270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 10/01/2018] [Accepted: 10/07/2018] [Indexed: 11/07/2022]
Abstract
The current use of steroids or pharmacological immunomodulators for the treatment of intractable oral ulceration is ineffective, necessitating newer cell-based therapeutic approaches. We examined the potential efficacy of an oral mucosa equivalent developed in this study in an in vivo model of repeat major oral ulceration mimicking the intractable oral ulceration observed clinically. Oral mucosal samples and plasma fibrin were obtained from Sprague-Dawley rats. The oral mucosa equivalents were prepared with cultured mucosal keratinocytes and plasma fibrin mixed with cultured fibroblasts. Ulcers were chemically induced on the rat buccal mucosa thrice in 3 weeks and covered with or without mucosa equivalents. Gross and microscopic findings and mRNA expression levels were compared between the ulcer control and mucosa equivalent groups. Oral mucosal keratinocytes and fibroblasts were cultured in vitro to achieve high viability and colony-forming efficiency. The equivalents showed epithelial and subepithelial structures similar to those of oral mucosa and exhibited high p63 positivity. In the in vivo study, ulceration was resolved earlier without significant granulation or scarring in the equivalent group than in control group (p < 0.05). Microscopic examinations revealed rapid re-epithelialization and less fibrosis in the equivalent group than in the control group (p < 0.05). Mucosa equivalent-covered ulcers showed histological characteristics similar to those of the normal buccal mucosa and exhibited lower expression of TGFB1, ACTA2, and FN1 mRNAs than the control group. The in vitro-engineered oral mucosa equivalent promotes ulcer healing without scarring and functional deficits. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B: 1779-1785, 2019.
Collapse
Affiliation(s)
- Jaewang Lee
- Department of Otolaryngology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of South Korea
| | - Daiha Shin
- Department of Otolaryngology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of South Korea
| | - Jong-Lyel Roh
- Department of Otolaryngology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of South Korea
| |
Collapse
|
42
|
Li H, Han X, Zuo K, Li L, Liu J, Yuan X, Shen Y, Shao M, Pang D, Chu Y, Zhao B. miR-23b promotes cutaneous wound healing through inhibition of the inflammatory responses by targeting ASK1. Acta Biochim Biophys Sin (Shanghai) 2018; 50:1104-1113. [PMID: 30188966 DOI: 10.1093/abbs/gmy109] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Indexed: 12/13/2022] Open
Abstract
Wound healing is a complicated event that develops in three overlapping phases: inflammatory, proliferative, and remodeling. MicroRNAs (miRNAs) have been proved to play an important role in the healing process of skin trauma, and alteration of specific miRNA expression during different phases may be associated with abnormal wound healing. In this study, we determined the variation of miR-23b expression after trauma in normal mice and in cultured cells exposed to lipopolysaccharide. We further demonstrated that excessive miR-23b could significantly accelerate wound healing in vivo. Up-regulation of miR-23b decreases infiltration of inflammatory cells, as evidenced by pathologic staining. Meanwhile, miR-23b could significantly inhibit the expression of pro-inflammatory cytokines, including TNF-α, IL-1β, IL-6, and Ccl2, and significantly increase anti-inflammatory factor IL-10. Furthermore, miR-23b could also promote α-SMA expression in a fiber pattern and increase the expression of Col1a1 and Col3a1. Importantly, we also showed that miR-23b could inhibit inflammation to promote wound healing by targeting apoptotic signal-regulating kinase 1 (ASK1). Notably, knockdown of ASK1 could reduce inflammation factor expression in vitro. Together, our data reveal that miR-23b is a potent therapeutic agent for cutaneous wound healing that shortens the period of inflammatory responses and promotes keratinocyte migration for the re-epithelialization of wound sites.
Collapse
Affiliation(s)
- Hongzhi Li
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, Department of Animal Biotechnology, College of Animal Science, Jilin University, Changchun, China
- School of Medicine, Beihua University, Jilin, China
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China
| | - Xiao Han
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, China
| | - Kuiyang Zuo
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China
| | - Li Li
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China
| | - Jieting Liu
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China
| | - Xiaohuan Yuan
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China
| | - Yongchao Shen
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China
| | - Minglong Shao
- Department of Psychiatry, Henan Mental Hospital, the Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Daxin Pang
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, Department of Animal Biotechnology, College of Animal Science, Jilin University, Changchun, China
| | - Yanhui Chu
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China
| | - Binghai Zhao
- School of Medicine, Beihua University, Jilin, China
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China
| |
Collapse
|
43
|
Foster DS, Jones RE, Ransom RC, Longaker MT, Norton JA. The evolving relationship of wound healing and tumor stroma. JCI Insight 2018; 3:99911. [PMID: 30232274 DOI: 10.1172/jci.insight.99911] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The stroma in solid tumors contains a variety of cellular phenotypes and signaling pathways associated with wound healing, leading to the concept that a tumor behaves as a wound that does not heal. Similarities between tumors and healing wounds include fibroblast recruitment and activation, extracellular matrix (ECM) component deposition, infiltration of immune cells, neovascularization, and cellular lineage plasticity. However, unlike a wound that heals, the edges of a tumor are constantly expanding. Cell migration occurs both inward and outward as the tumor proliferates and invades adjacent tissues, often disregarding organ boundaries. The focus of our review is cancer associated fibroblast (CAF) cellular heterogeneity and plasticity and the acellular matrix components that accompany these cells. We explore how similarities and differences between healing wounds and tumor stroma continue to evolve as research progresses, shedding light on possible therapeutic targets that can result in innovative stromal-based treatments for cancer.
Collapse
Affiliation(s)
- Deshka S Foster
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic and Reconstructive Surgery, and.,Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - R Ellen Jones
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic and Reconstructive Surgery, and
| | - Ryan C Ransom
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic and Reconstructive Surgery, and
| | - Michael T Longaker
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic and Reconstructive Surgery, and.,Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Jeffrey A Norton
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic and Reconstructive Surgery, and.,Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
44
|
Abstract
Woundhealing disorders characterized by impaired or delayed re-epithelialization are a serious medical problem that is painful and difficult to treat. Gelsolin (GSN), a known actin modulator, supports epithelial cell regeneration and apoptosis. The aim of this study was to estimate the potential of recombinant gelsolin (rhu-pGSN) for ocular surface regeneration to establish a novel therapy for delayed or complicated wound healing. We analyzed the influence of gelsolin on cell proliferation and wound healing in vitro, in vivo/ex vivo and by gene knockdown. Gelsolin is expressed in all tested tissues of the ocular system as shown by molecular analysis. The concentration of GSN is significantly increased in tear fluid samples of patients with dry eye disease. rhu-pGSN induces cell proliferation and faster wound healing in vitro as well as in vivo/ex vivo. TGF-β dependent transcription of SMA is significantly decreased after GSN gene knockdown. Gelsolin is an inherent protein of the ocular system and is secreted into the tear fluid. Our results show a positive effect on corneal cell proliferation and wound healing. Furthermore, GSN regulates the synthesis of SMA in myofibroblasts, which establishes GSN as a key protein of TGF-β dependent cell differentiation.
Collapse
|
45
|
Zhai Q, Zhou F, Ibrahim MM, Zhao J, Liu X, Wu J, Chen L, Qi S. An immune-competent rat split thickness skin graft model: useful tools to develop new therapies to improve skin graft survival. Am J Transl Res 2018; 10:1600-1610. [PMID: 30018703 PMCID: PMC6038090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 05/03/2018] [Indexed: 06/08/2023]
Abstract
Skin grafting is the routine standard of care to manage third degree burns and problematic skin defects. Several commercially available dermal substitutes and biologic skin equivalents are placed in the wound bed to facilitate the healing process of the skin grafts, as well as to provide mechanical support for the cells to grow and to delay the contracture. To study pathology and develop new therapies, an immune-competent rat model is required. We have created two different skin graft animal models to mimic the clinical skin grafting operation, the dorsum skin grafting (DG) and inguinal skin grafting (IG). To create a recipient site, a full-thickness, round excision wound was created on the dorsum between rats' scapular angles, covered with DG or IG. Graft contraction was quantified and tissue was harvested on predetermined time points for analysis. Histologic staining was performed to differentiate between DG and IG. Collagen deposition was assessed with Masson's trichrome staining. Mast cells were detected with Toluidine blue. Macrophages were stained with CD68 immune. Vascularity was assessed with functional vessels numbers. Cell proliferation was assessed with Ki67 immune. This model has all the advantages of murine models, such as an abundance of genetic variants and applicable tools, low cost, and practical housing techniques, all of which will promote the development of new therapies and testing new biologic skin equivalents and dermal substitutes.
Collapse
Affiliation(s)
- Qiyi Zhai
- Department of Burns Surgery, First Affiliated Hospital of Sun Yat-sen UniversityGuangzhou, Guangdong, China
| | - Fei Zhou
- Department of Burns Surgery, First Affiliated Hospital of Sun Yat-sen UniversityGuangzhou, Guangdong, China
| | - Mohamed M Ibrahim
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Duke University Medical CenterDurham, NC, USA
| | - Jingling Zhao
- Department of Burns Surgery, First Affiliated Hospital of Sun Yat-sen UniversityGuangzhou, Guangdong, China
| | - Xusheng Liu
- Department of Burns Surgery, First Affiliated Hospital of Sun Yat-sen UniversityGuangzhou, Guangdong, China
| | - Jun Wu
- Department of Burns Surgery, First Affiliated Hospital of Sun Yat-sen UniversityGuangzhou, Guangdong, China
| | - Lei Chen
- Department of Burns Surgery, First Affiliated Hospital of Sun Yat-sen UniversityGuangzhou, Guangdong, China
| | - Shaohai Qi
- Department of Burns Surgery, First Affiliated Hospital of Sun Yat-sen UniversityGuangzhou, Guangdong, China
| |
Collapse
|
46
|
Chopin-Doroteo M, Salgado-Curiel RM, Pérez-González J, Marín-Santibáñez BM, Krötzsch E. Fibroblast populated collagen lattices exhibit opposite biophysical conditions by fibrin or hyaluronic acid supplementation. J Mech Behav Biomed Mater 2018; 82:310-319. [DOI: 10.1016/j.jmbbm.2018.03.042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 02/22/2018] [Accepted: 03/30/2018] [Indexed: 12/20/2022]
|
47
|
Ferrario C, Ben Khadra Y, Czarkwiani A, Zakrzewski A, Martinez P, Colombo G, Bonasoro F, Candia Carnevali MD, Oliveri P, Sugni M. Fundamental aspects of arm repair phase in two echinoderm models. Dev Biol 2017; 433:297-309. [PMID: 29291979 DOI: 10.1016/j.ydbio.2017.09.035] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 06/05/2017] [Accepted: 09/28/2017] [Indexed: 12/15/2022]
Abstract
Regeneration is a post-embryonic developmental process that ensures complete morphological and functional restoration of lost body parts. The repair phase is a key step for the effectiveness of the subsequent regenerative process: in vertebrates, efficient re-epithelialisation, rapid inflammatory/immune response and post-injury tissue remodelling are fundamental aspects for the success of this phase, their impairment leading to an inhibition or total prevention of regeneration. Among deuterostomes, echinoderms display a unique combination of striking regenerative abilities and diversity of useful experimental models, although still largely unexplored. Therefore, the brittle star Amphiura filiformis and the starfish Echinaster sepositus were here used to comparatively investigate the main repair phase events after injury as well as the presence and expression of immune system and extracellular matrix (i.e. collagen) molecules using both microscopy and molecular tools. Our results showed that emergency reaction and re-epithelialisation are similar in both echinoderm models, being faster and more effective than in mammals. Moreover, in comparison to the latter, both echinoderms showed delayed and less abundant collagen deposition at the wound site (absence of fibrosis). The gene expression patterns of molecules related to the immune response, such as Ese-fib-like (starfishes) and Afi-ficolin (brittle stars), were described for the first time during echinoderm regeneration providing promising starting points to investigate the immune system role in these regeneration models. Overall, the similarities in repair events and timing within the echinoderms and the differences with what has been reported in mammals suggest that effective repair processes in echinoderms play an important role for their subsequent ability to regenerate. Targeted molecular and functional analyses will shed light on the evolution of these abilities in the deuterostomian lineage.
Collapse
Affiliation(s)
- Cinzia Ferrario
- Dipartimento di Bioscienze, Università degli Studi di Milano, via Celoria, 26, 20133 Milano, Italy; Center for Complexity&Biosystems, Dipartimento di Fisica, Università degli Studi di Milano, via Celoria, 16, 20133 Milano, Italy; Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, via Celoria, 2, 20133 Milano, Italy.
| | - Yousra Ben Khadra
- Laboratoire de Recherche, Génétique, Biodiversité et Valorisation des Bioressources, Institut Supérieur de Biotechnologie de Monastir, Université de Monastir, Monastir, Tunisia.
| | - Anna Czarkwiani
- Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, WC1E 6BT London, United Kingdom.
| | - Anne Zakrzewski
- Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, WC1E 6BT London, United Kingdom.
| | - Pedro Martinez
- Departament de Genètica, Microbiologia I Estadística, Universitat de Barcelona, Av. Diagonal, 645, E-08028 Barcelona, Spain; ICREA (Institut Català de Recerca i Estudis Avancats), Barcelona, Spain.
| | - Graziano Colombo
- Dipartimento di Bioscienze, Università degli Studi di Milano, via Celoria, 26, 20133 Milano, Italy.
| | - Francesco Bonasoro
- Dipartimento di Bioscienze, Università degli Studi di Milano, via Celoria, 26, 20133 Milano, Italy; Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, via Celoria, 2, 20133 Milano, Italy.
| | - Maria Daniela Candia Carnevali
- Dipartimento di Bioscienze, Università degli Studi di Milano, via Celoria, 26, 20133 Milano, Italy; Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, via Celoria, 2, 20133 Milano, Italy.
| | - Paola Oliveri
- Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, WC1E 6BT London, United Kingdom.
| | - Michela Sugni
- Dipartimento di Bioscienze, Università degli Studi di Milano, via Celoria, 26, 20133 Milano, Italy; Center for Complexity&Biosystems, Dipartimento di Fisica, Università degli Studi di Milano, via Celoria, 16, 20133 Milano, Italy; Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, via Celoria, 2, 20133 Milano, Italy.
| |
Collapse
|
48
|
Pereira LX, Silva HKC, Longatti TR, Silva PP, Di Lorenzo Oliveira C, de Freitas Carneiro Proietti AB, Thomé RG, Vieira MDC, Carollo CA, Demarque DP, de Siqueira JM, dos Santos HB, Parreira GG, de Azambuja Ribeiro RIM. Achyrocline alata potentiates repair of skin full thickness excision in mice. J Tissue Viability 2017; 26:289-299. [DOI: 10.1016/j.jtv.2017.09.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 08/04/2017] [Accepted: 09/11/2017] [Indexed: 12/11/2022]
|
49
|
Accelerated oral wound healing using a pre-vascularized mucosal cell sheet. Sci Rep 2017; 7:10667. [PMID: 28878261 PMCID: PMC5587673 DOI: 10.1038/s41598-017-10991-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 08/17/2017] [Indexed: 12/22/2022] Open
Abstract
Cell sheets with pre-vascularization have recently been developed but remain relatively untested in oral wound healing. Therefore, we examined the potential utility of our newly developed pre-vascularized mucosal cell sheets in oral wound healing. Mucosal keratinocytes, fibroblasts, and endothelial progenitor cells were primarily cultured for in vitro cell expansion from mucosa and blood of Sprague-Dawley rats. Mucosal cell sheets were generated using cultured keratinocytes and plasma fibrin (K sheet) or keratinocytes and a mixture of fibrin, fibroblasts, and endothelial cells (PV sheet). Autologous sheets were transplanted on deep wounds in the buccal region of rats. The gross and histological characteristics of wound healing were compared among control wound, K sheet, and PV sheet groups. We successfully cultured and expanded keratinocytes, fibroblasts, and endothelial progenitor cells in vitro for generating mucosal cell sheets with or without pre-vascularization. In the in vivo oral wound model, compared with the control wound, the PV sheet group exhibited rapid wound closure more prominently than the K sheet group. The histological healing in the PV sheet group was similar to that in rat normal buccal mucosa without fibrosis. The pre-vascularized mucosal cell sheet exhibited in vivo efficacy in oral wound healing by promoting accelerated healing.
Collapse
|
50
|
Warsinske HC, DiFazio RM, Linderman JJ, Flynn JL, Kirschner DE. Identifying mechanisms driving formation of granuloma-associated fibrosis during Mycobacterium tuberculosis infection. J Theor Biol 2017. [PMID: 28642013 DOI: 10.1016/j.jtbi.2017.06.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), is a pulmonary pathogen of major global concern. A key feature of Mtb infection in primates is the formation of granulomas, dense cellular structures surrounding infected lung tissue. These structures serve as the main site of host-pathogen interaction in TB, and thus to effectively treat TB we must clarify mechanisms of granuloma formation and their function in disease. Fibrotic granulomas are associated with both good and bad disease outcomes. Fibrosis can serve to isolate infected tissue from healthy tissue, but it can also cause difficulty breathing as it leaves scars. Little is known about fibrosis in TB, and data from non-human primates is just beginning to clarify the picture. This work focuses on constructing a hybrid multi-scale model of fibrotic granuloma formation, in order to identify mechanisms driving development of fibrosis in Mtb infected lungs. We combine dynamics of molecular, cellular, and tissue scale models from previously published studies to characterize the formation of two common sub-types of fibrotic granulomas: peripherally fibrotic, with a cuff of collagen surrounding granulomas, and centrally fibrotic, with collagen throughout granulomas. Uncertainty and sensitivity analysis, along with large simulation sets, enable us to identify mechanisms differentiating centrally versus peripherally fibrotic granulomas. These findings suggest that heterogeneous cytokine environments exist within granulomas and may be responsible for driving tissue scale morphologies. Using this model we are primed to better understand the complex structure of granulomas, a necessity for developing successful treatments for TB.
Collapse
Affiliation(s)
- Hayley C Warsinske
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, United States of America
| | - Robert M DiFazio
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, United States of America
| | - Jennifer J Linderman
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, United States of America
| | - JoAnne L Flynn
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, United States of America
| | - Denise E Kirschner
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, United States of America.
| |
Collapse
|