1
|
Xu H, Li Y, Gao Y. The role of immune cells settled in the bone marrow on adult hematopoietic stem cells. Cell Mol Life Sci 2024; 81:420. [PMID: 39367881 PMCID: PMC11456083 DOI: 10.1007/s00018-024-05445-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 09/09/2024] [Accepted: 09/09/2024] [Indexed: 10/07/2024]
Abstract
Certain immune cells, including neutrophils, macrophages, dendritic cells, B cells, Breg cells, CD4+ T cells, CD8+ T cells, and Treg cells, establish enduring residency within the bone marrow. Their distinctive interactions with hematopoiesis and the bone marrow microenvironment are becoming increasingly recognized alongside their multifaceted immune functions. These cells play a dual role in shaping hematopoiesis. They directly influence the quiescence, self-renewal, and multi-lineage differentiation of hematopoietic stem and progenitor cells through either direct cell-to-cell interactions or the secretion of various factors known for their immunological functions. Additionally, they actively engage with the cellular constituents of the bone marrow niche, particularly mesenchymal stem cells, endothelial cells, osteoblasts, and osteoclasts, to promote their survival and contribute to tissue repair, thereby fostering a supportive environment for hematopoietic stem and progenitor cells. Importantly, these bone marrow immune cells function synergistically, both locally and functionally, rather than in isolation. In summary, immune cells residing in the bone marrow are pivotal components of a sophisticated network of regulating hematopoiesis.
Collapse
Affiliation(s)
- Hui Xu
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, PUMC Department of Stem Cell and Regenerative Medicine, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, National Clinical Research Center for Blood Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Yinghui Li
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, PUMC Department of Stem Cell and Regenerative Medicine, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, National Clinical Research Center for Blood Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
- Tianjin Institutes of Health Science, Tianjin, 301600, China.
| | - Yingdai Gao
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, PUMC Department of Stem Cell and Regenerative Medicine, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, National Clinical Research Center for Blood Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
- Tianjin Institutes of Health Science, Tianjin, 301600, China.
| |
Collapse
|
2
|
Penna S, Zecchillo A, Di Verniere M, Fontana E, Iannello V, Palagano E, Mantero S, Cappelleri A, Rizzoli E, Santi L, Crisafulli L, Filibian M, Forlino A, Basso-Ricci L, Scala S, Scanziani E, Schinke T, Ficara F, Sobacchi C, Villa A, Capo V. Correction of osteopetrosis in the neonate oc/oc murine model after lentiviral vector gene therapy and non-genotoxic conditioning. Front Endocrinol (Lausanne) 2024; 15:1450349. [PMID: 39314524 PMCID: PMC11416974 DOI: 10.3389/fendo.2024.1450349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/05/2024] [Indexed: 09/25/2024] Open
Abstract
Introduction Autosomal recessive osteopetrosis (ARO) is a rare genetic disease, characterized by increased bone density due to defective osteoclast function. Most of the cases are due to TCIRG1 gene mutation, leading to severe bone phenotype and death in the first years of life. The standard therapy is the hematopoietic stem cell transplantation (HSCT), but its success is limited by several constraints. Conversely, gene therapy (GT) could minimize the immune-mediated complications of allogeneic HSCT and offer a prompt treatment to these patients. Methods The Tcirg1-defective oc/oc mouse model displays a short lifespan and high bone density, closely mirroring the human condition. In this work, we exploited the oc/oc neonate mice to optimize the critical steps for a successful therapy. Results First, we showed that lentiviral vector GT can revert the osteopetrotic bone phenotype, allowing long-term survival and reducing extramedullary haematopoiesis. Then, we demonstrated that plerixafor-induced mobilization can further increase the high number of HSPCs circulating in peripheral blood, facilitating the collection of adequate numbers of cells for therapeutic purposes. Finally, pre-transplant non-genotoxic conditioning allowed the stable engraftment of HSPCs, albeit at lower level than conventional total body irradiation, and led to long-term survival and correction of bone phenotype, in the absence of acute toxicity. Conclusion These results will pave the way to the implementation of an effective GT protocol, reducing the transplant-related complication risks in the very young and severely affected ARO patients.
Collapse
Affiliation(s)
- Sara Penna
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alessandra Zecchillo
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Translational and Molecular Medicine (DIMET), University of Milano Bicocca, Milan, Italy
| | - Martina Di Verniere
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Elena Fontana
- Milan Unit, Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Milan, Italy
- Humanitas Research Hospital IRCCS, Rozzano, MI, Italy
| | - Valeria Iannello
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Eleonora Palagano
- Humanitas Research Hospital IRCCS, Rozzano, MI, Italy
- Florence Unit, Istituto di Bioscienze e Biorisorse, Consiglio Nazionale delle Ricerche, Sesto Fiorentino, Italy
| | - Stefano Mantero
- Milan Unit, Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Milan, Italy
- Humanitas Research Hospital IRCCS, Rozzano, MI, Italy
| | - Andrea Cappelleri
- Mouse and Animal Pathology Laboratory, UniMi Foundation, Milan, Italy
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Lodi, Italy
| | - Elena Rizzoli
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Ludovica Santi
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Laura Crisafulli
- Milan Unit, Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Milan, Italy
- Humanitas Research Hospital IRCCS, Rozzano, MI, Italy
| | - Marta Filibian
- Biomedical Imaging Laboratory, Centro Grandi Strumenti, University of Pavia, Pavia, Italy
| | - Antonella Forlino
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, Italy
| | - Luca Basso-Ricci
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Serena Scala
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Eugenio Scanziani
- Mouse and Animal Pathology Laboratory, UniMi Foundation, Milan, Italy
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Lodi, Italy
| | - Thorsten Schinke
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Francesca Ficara
- Milan Unit, Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Milan, Italy
- Humanitas Research Hospital IRCCS, Rozzano, MI, Italy
| | - Cristina Sobacchi
- Milan Unit, Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Milan, Italy
- Humanitas Research Hospital IRCCS, Rozzano, MI, Italy
| | - Anna Villa
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Milan Unit, Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Milan, Italy
| | - Valentina Capo
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Milan Unit, Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Milan, Italy
| |
Collapse
|
3
|
Ettel P, Weichhart T. Not just sugar: metabolic control of neutrophil development and effector functions. J Leukoc Biol 2024; 116:487-510. [PMID: 38450755 DOI: 10.1093/jleuko/qiae057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/08/2024] Open
Abstract
The mammalian immune system is constantly surveying our tissues to clear pathogens and maintain tissue homeostasis. In order to fulfill these tasks, immune cells take up nutrients to supply energy for survival and for directly regulating effector functions via their cellular metabolism, a process now known as immunometabolism. Neutrophilic granulocytes, the most abundant leukocytes in the human body, have a short half-life and are permanently needed in the defense against pathogens. According to a long-standing view, neutrophils were thought to primarily fuel their metabolic demands via glycolysis. Yet, this view has been challenged, as other metabolic pathways recently emerged to contribute to neutrophil homeostasis and effector functions. In particular during neutrophilic development, the pentose phosphate pathway, glycogen synthesis, oxidative phosphorylation, and fatty acid oxidation crucially promote neutrophil maturation. At steady state, both glucose and lipid metabolism sustain neutrophil survival and maintain the intracellular redox balance. This review aims to comprehensively discuss how neutrophilic metabolism adapts during development, which metabolic pathways fuel their functionality, and how these processes are reconfigured in case of various diseases. We provide several examples of hereditary diseases, in which mutations in metabolic enzymes validate their critical role for neutrophil function.
Collapse
Affiliation(s)
- Paul Ettel
- Institute for Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Währinger Straße 10, 1090 Vienna, Austria
| | - Thomas Weichhart
- Institute for Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Währinger Straße 10, 1090 Vienna, Austria
| |
Collapse
|
4
|
Wang HC, Chen R, Yang W, Li Y, Muthukumar R, Patel RM, Casey EB, Denby E, Magee JA. Kmt2c restricts G-CSF-driven HSC mobilization and granulocyte production in a methyltransferase-independent manner. Cell Rep 2024; 43:114542. [PMID: 39046877 PMCID: PMC11423277 DOI: 10.1016/j.celrep.2024.114542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 06/10/2024] [Accepted: 07/09/2024] [Indexed: 07/27/2024] Open
Abstract
Granulocyte colony-stimulating factor (G-CSF) is widely used to enhance myeloid recovery after chemotherapy and to mobilize hematopoietic stem cells (HSCs) for transplantation. Unfortunately, through the course of chemotherapy, cancer patients can acquire leukemogenic mutations that cause therapy-related myelodysplastic syndrome (MDS) or acute myeloid leukemia (AML). This raises the question of whether therapeutic G-CSF might potentiate therapy-related MDS/AML by disproportionately stimulating mutant HSCs and other myeloid progenitors. A common mutation in therapy-related MDS/AML involves chromosome 7 deletions that inactivate many tumor suppressor genes, including KMT2C. Here, we show that Kmt2c deletions hypersensitize murine HSCs and myeloid progenitors to G-CSF, as evidenced by increased HSC mobilization and enhanced granulocyte production from granulocyte-monocyte progenitors (GMPs). Furthermore, Kmt2c attenuates the G-CSF response independently from its SET methyltransferase function. Altogether, the data raise concerns that monosomy 7 can hypersensitize progenitors to G-CSF, such that clinical use of G-CSF may amplify the risk of therapy-related MDS/AML.
Collapse
Affiliation(s)
- Helen C Wang
- Department of Pediatrics, Division of Hematology and Oncology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Ran Chen
- Department of Pediatrics, Division of Hematology and Oncology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Wei Yang
- Department of Genetics, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Yanan Li
- Department of Pediatrics, Division of Hematology and Oncology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Rohini Muthukumar
- Department of Pediatrics, Division of Hematology and Oncology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Riddhi M Patel
- Department of Pediatrics, Division of Hematology and Oncology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Emily B Casey
- Department of Pediatrics, Division of Hematology and Oncology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Elisabeth Denby
- Department of Pediatrics, Division of Hematology and Oncology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Jeffrey A Magee
- Department of Pediatrics, Division of Hematology and Oncology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA; Department of Genetics, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA.
| |
Collapse
|
5
|
Ruminski PG, Rettig MP, DiPersio JF. Development of VLA4 and CXCR4 Antagonists for the Mobilization of Hematopoietic Stem and Progenitor Cells. Biomolecules 2024; 14:1003. [PMID: 39199390 PMCID: PMC11353233 DOI: 10.3390/biom14081003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/29/2024] [Accepted: 08/02/2024] [Indexed: 09/01/2024] Open
Abstract
The treatment of patients diagnosed with hematologic malignancies typically includes hematopoietic stem cell transplantation (HSCT) as part of a therapeutic standard of care. The primary graft source of hematopoietic stem and progenitor cells (HSPCs) for HSCT is mobilized from the bone marrow into the peripheral blood of allogeneic donors or patients. More recently, these mobilized HSPCs have also been the source for gene editing strategies to treat diseases such as sickle-cell anemia. For a HSCT to be successful, it requires the infusion of a sufficient number of HSPCs that are capable of adequate homing to the bone marrow niche and the subsequent regeneration of stable trilineage hematopoiesis in a timely manner. Granulocyte-colony-stimulating factor (G-CSF) is currently the most frequently used agent for HSPC mobilization. However, it requires five or more daily infusions to produce an adequate number of HSPCs and the use of G-CSF alone often results in suboptimal stem cell yields in a significant number of patients. Furthermore, there are several undesirable side effects associated with G-CSF, and it is contraindicated for use in sickle-cell anemia patients, where it has been linked to serious vaso-occlusive and thrombotic events. The chemokine receptor CXCR4 and the cell surface integrin α4β1 (very late antigen 4 (VLA4)) are both involved in the homing and retention of HSPCs within the bone marrow microenvironment. Preclinical and/or clinical studies have shown that targeted disruption of the interaction of the CXCR4 or VLA4 receptors with their endogenous ligands within the bone marrow niche results in the rapid and reversible mobilization of HSPCs into the peripheral circulation and is synergistic when combined with G-CSF. In this review, we discuss the roles CXCR4 and VLA4 play in bone marrow homing and retention and will summarize more recent development of small-molecule CXCR4 and VLA4 inhibitors that, when combined, can synergistically improve the magnitude, quality and convenience of HSPC mobilization for stem cell transplantation and ex vivo gene therapy after the administration of just a single dose. This optimized regimen has the potential to afford a superior alternative to G-CSF for HSPC mobilization.
Collapse
Affiliation(s)
| | | | - John F. DiPersio
- Division of Oncology, Department of Medicine, Washington University School of Medicine, 660 S. Euclid Ave., St Louis, MO 63105, USA
| |
Collapse
|
6
|
Cai L, Jin D, Lai J, Li L, Luo Y, Shi J, Lai X, Liu L, Zhao Y, Yu J, Qiu Y, Song K, Yu F, Guo Q, Jin A, Huang H, Ding S, Ye Y. Psychological and physical side effects during G-CSF mobilization in related donors of allo-HCT. Ann Hematol 2024; 103:3199-3206. [PMID: 38637333 DOI: 10.1007/s00277-024-05753-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 04/08/2024] [Indexed: 04/20/2024]
Abstract
The psychological side effects of granulocyte colony-stimulating factor mobilization in related donors of allogeneic hematopoietic cell transplantation (allo-HCT) and impacts of psychological/physical side effects on harvest outcomes remain largely unknown. We prospectively analyzed 349 consecutive related peripheral blood stem cell (PBSC) donors for allo-HCT at the First Affiliated Hospital, Zhejiang University, School of Medicine from March 2021 to August 2023. Higher baseline peripheral blood white blood cell counts (p = 0.046), monocyte counts (p < 0.001), platelet counts (p = 0.001), and hemoglobin (p < 0.001) had a positive correlation to CD34+ cell counts in the first leukapheresis, while female donors (male vs. female, p < 0.001) and older age (> 40 vs. < = 40, p = 0.003) were negatively related to CD34+ cell counts. Bone pain was the most observed physical side effect and was more frequent in female donors (p = 0.032). The incidence of fatigue was higher in female donors and older donors (female vs. male, p = 0.016; > 40 vs. < = 40, p = 0.015). Donor depression (pre vs. during mobilization, p < 0.001), anxiety (pre vs. during mobilization, p = 0.043) and insomnia (pre vs. during mobilization, p = 0.011) scores increased during the mobilization period. Donors with higher depression, anxiety and stress scores at admission were more likely to experience nausea. At 1 month after the last leukapheresis, the counts of white blood cell, neutrophil, monocyte and hemoglobin were significant lower than baseline counts, while the platelet counts recovered to baseline. The mobilization and harvest process can increase the depression, anxiety and insomnia scores. Poor psychological status of the donor can aggravate the occurrence of physical side effects.
Collapse
Affiliation(s)
- Lingxia Cai
- Department of Nursing, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Diange Jin
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianbo Lai
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lin Li
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
| | - Yi Luo
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
| | - Jimin Shi
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoyu Lai
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
| | - Lizhen Liu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
| | - Yanmin Zhao
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
| | - Jian Yu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
| | - Yunfei Qiu
- Department of Nursing, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kaixia Song
- Department of Nursing, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Fangquan Yu
- Department of Hematology, Jinhua People's Hospital, Jinhua, China
| | - Qinna Guo
- Department of Hematology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Aiyun Jin
- Department of Nursing, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - He Huang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China.
| | - Shuyi Ding
- Department of Nursing, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Yishan Ye
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
7
|
Branco A, Rayabaram J, Miranda CC, Fernandes-Platzgummer A, Fernandes TG, Sajja S, da Silva CL, Vemuri MC. Advances in ex vivo expansion of hematopoietic stem and progenitor cells for clinical applications. Front Bioeng Biotechnol 2024; 12:1380950. [PMID: 38846805 PMCID: PMC11153805 DOI: 10.3389/fbioe.2024.1380950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/25/2024] [Indexed: 06/09/2024] Open
Abstract
As caretakers of the hematopoietic system, hematopoietic stem cells assure a lifelong supply of differentiated populations that are responsible for critical bodily functions, including oxygen transport, immunological protection and coagulation. Due to the far-reaching influence of the hematopoietic system, hematological disorders typically have a significant impact on the lives of individuals, even becoming fatal. Hematopoietic cell transplantation was the first effective therapeutic avenue to treat such hematological diseases. Since then, key use and manipulation of hematopoietic stem cells for treatments has been aspired to fully take advantage of such an important cell population. Limited knowledge on hematopoietic stem cell behavior has motivated in-depth research into their biology. Efforts were able to uncover their native environment and characteristics during development and adult stages. Several signaling pathways at a cellular level have been mapped, providing insight into their machinery. Important dynamics of hematopoietic stem cell maintenance were begun to be understood with improved comprehension of their metabolism and progressive aging. These advances have provided a solid platform for the development of innovative strategies for the manipulation of hematopoietic stem cells. Specifically, expansion of the hematopoietic stem cell pool has triggered immense interest, gaining momentum. A wide range of approaches have sprouted, leading to a variety of expansion systems, from simpler small molecule-based strategies to complex biomimetic scaffolds. The recent approval of Omisirge, the first expanded hematopoietic stem and progenitor cell product, whose expansion platform is one of the earliest, is predictive of further successes that might arise soon. In order to guarantee the quality of these ex vivo manipulated cells, robust assays that measure cell function or potency need to be developed. Whether targeting hematopoietic engraftment, immunological differentiation potential or malignancy clearance, hematopoietic stem cells and their derivatives need efficient scaling of their therapeutic potency. In this review, we comprehensively view hematopoietic stem cells as therapeutic assets, going from fundamental to translational.
Collapse
Affiliation(s)
- André Branco
- Department of Bioengineering and Institute for Bioengineering and Biosciences (iBB), Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Janakiram Rayabaram
- Protein and Cell Analysis, Biosciences Division, Invitrogen Bioservices, Thermo Fisher Scientific, Bangalore, India
| | - Cláudia C. Miranda
- Department of Bioengineering and Institute for Bioengineering and Biosciences (iBB), Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- AccelBio, Collaborative Laboratory to Foster Translation and Drug Discovery, Cantanhede, Portugal
| | - Ana Fernandes-Platzgummer
- Department of Bioengineering and Institute for Bioengineering and Biosciences (iBB), Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Tiago G. Fernandes
- Department of Bioengineering and Institute for Bioengineering and Biosciences (iBB), Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Suchitra Sajja
- Protein and Cell Analysis, Biosciences Division, Invitrogen Bioservices, Thermo Fisher Scientific, Bangalore, India
| | - Cláudia L. da Silva
- Department of Bioengineering and Institute for Bioengineering and Biosciences (iBB), Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | | |
Collapse
|
8
|
Ortega-Ribera M, Zhuang Y, Brezani V, Thevkar Nagesh P, Joshi RS, Babuta M, Wang Y, Szabo G. G-CSF increases calprotectin expression, liver damage and neuroinflammation in a murine model of alcohol-induced ACLF. Front Cell Dev Biol 2024; 12:1347395. [PMID: 38419842 PMCID: PMC10899467 DOI: 10.3389/fcell.2024.1347395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/23/2024] [Indexed: 03/02/2024] Open
Abstract
Background and aims: Granulocyte colony-stimulating factor (G-CSF) has been proposed as a therapeutic option for patients with ACLF, however clinical outcomes are controversial. We aimed at dissecting the role of G-CSF in an alcohol-induced murine model of ACLF. Methods: ACLF was triggered by a single alcohol binge (5 g/kg) in a bile duct ligation (BDL) liver fibrosis model. A subgroup of mice received two G-CSF (200 μg/kg) or vehicle injections prior to acute decompensation with alcohol. Liver, blood and brain tissues were assessed. Results: Alcohol binge administered to BDL-fibrotic mice resulted in features of ACLF indicated by a significant increase in liver damage and systemic inflammation compared to BDL alone. G-CSF treatment in ACLF mice induced an increase in liver regeneration and neutrophil infiltration in the liver compared to vehicle-treated ACLF mice. Moreover, liver-infiltrating neutrophils in G-CSF-treated mice exhibited an activated phenotype indicated by increased expression of CXC motif chemokine receptor 2, leukotriene B4 receptor 1, and calprotectin. In the liver, G-CSF triggered increased oxidative stress, type I interferon response, extracellular matrix remodeling and inflammasome activation. Circulating IL-1β was also increased after G-CSF treatment. In the cerebellum, G-CSF increased neutrophil infiltration and S100a8/9 expression, induced microglia proliferation and reactive astrocytes, which was accompanied by oxidative stress, and inflammasome activation compared to vehicle-treated ACLF mice. Conclusion: In our novel ACLF model triggered by alcohol binge that mimics ACLF pathophysiology, neutrophil infiltration and S100a8/9 expression in the liver and brain indicate increased tissue damage, accompanied by oxidative stress and inflammasome activation after G-CSF treatment.
Collapse
Affiliation(s)
- Martí Ortega-Ribera
- Department of Medicine, Division of Gastroenterology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| | - Yuan Zhuang
- Department of Medicine, Division of Gastroenterology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| | - Veronika Brezani
- Department of Medicine, Division of Gastroenterology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| | - Prashanth Thevkar Nagesh
- Department of Medicine, Division of Gastroenterology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| | - Radhika S. Joshi
- Department of Medicine, Division of Gastroenterology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| | - Mrigya Babuta
- Department of Medicine, Division of Gastroenterology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| | - Yanbo Wang
- Department of Medicine, Division of Gastroenterology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| | - Gyongyi Szabo
- Department of Medicine, Division of Gastroenterology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
- Broad Institute, Cambridge, MA, United States
| |
Collapse
|
9
|
Balint MT, Lemajić N, Jurišić V, Pantelić S, Stanisavljević D, Kurtović NK, Balint B. An evidence-based and risk-adapted GSF versus GSF plus plerixafor mobilization strategy to obtain a sufficient CD34 + cell yield in the harvest for autologous stem cell transplants. Transl Oncol 2024; 39:101811. [PMID: 38235620 PMCID: PMC10728698 DOI: 10.1016/j.tranon.2023.101811] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 10/16/2023] [Indexed: 01/19/2024] Open
Abstract
BACKGROUND Plerixafor is a bicyclam molecule with the ability to reversibly bind to receptor CXCR-4 thus leading to an increased release of stem cells (SC) into the circulation. This study aims to evaluate the efficacy of G-CSF plus plerixafor versus G-CSF alone mobilizing regimens on the basis of CD34+ cell yield and engraftment kinetics following hematopoietic SC transplants. METHODS The study incorporated 173 patients with plasma cell neoplasms (PCN), Hodgkin's lymphoma (HL) and non-Hodgkin's lymphoma (NHL), undergoing mobilization and following autologous SC-transplant. For patients with mobilization failure and those predicted to be at risk of harvesting inadequate CD34+ yields (poor-responders), plerixafor was administered. Data was collected and compared in relation to the harvesting protocols used, cell quantification, cell-engraftment potential and overall clinical outcome. RESULTS A total of 101 patients received plerixafor (58.4 %) and the median CD34+increase was 312 %. Chemotherapy-mobilized PCN-patients required less plerixafor administration (p = 0.01), no difference was observed in lymphoma groups (p = 0.46). The median CD34+cell yield was 7.8 × 106/kg bm. Patients requiring plerixafor achieved lower, but still comparable cell yields. Total cell dose infused was in correlation with engraftment kinetics. Patients requiring plerixafor had delayed platelet engraftment (p = 0.029). CONCLUSIONS Adequately selected plerixafor administration reduces "mobilization-related-failure" rate and assure a high-level cell dose for SC transplants, with superior "therapeutic-potential" and safety profile. The mobilization strategy that incorporates "just-in-time" plerixafor administration, also leads to a reduction of hospitalization days and healthcare resource utilization. For definitive conclusions, further controlled/larger clinical trials concerning correlation of CD34+ cell count/yield, with hematopoietic reconstitution are required.
Collapse
Affiliation(s)
- Milena Todorović Balint
- Clinic for Hematology, University Clinical Center of Serbia, Belgrade, Serbia; Medical Faculty, University of Belgrade, Serbia.
| | | | | | - Sofija Pantelić
- Institute for Oncology and Radiology of Serbia, Belgrade, Serbia
| | - Dejana Stanisavljević
- Medical Faculty, University of Belgrade, Serbia; Institute for Medical Statistics and Informatics, Belgrade, Serbia
| | | | - Bela Balint
- Department of Medical Sciences, Serbian Academy of Sciences and Arts, Serbia; Faculty of Medicine of the Military Medical Academy, University of Defense, Belgrade, Serbia
| |
Collapse
|
10
|
Salhotra A, Yuan S, Ali H. Fifty years of BMT: risk stratification, donor matching, and stem cell collection for transplantation. Front Oncol 2023; 13:1196564. [PMID: 37700828 PMCID: PMC10493308 DOI: 10.3389/fonc.2023.1196564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 07/07/2023] [Indexed: 09/14/2023] Open
Abstract
In this review, we discuss recipient risk assessment for allo-HCT regarding comorbidities present at baseline to predict non relapse mortality. We further reviewed the incorporation of remission status and cytogenetic risk prior to allograft transplantation to predict relapse rates for hematologic malignancies. HCT-CI and DRI are tools available to physicians to assess the risk-benefit of allo-HCT in patients referred for transplantation. Next, we discuss our algorithm for donor selection and criteria for donor selection in case matched donors are not available. Finally, we discuss our approach for stem cell mobilization, especially in donors failing G-CSF, and our approach for the use of plerixafor and data supporting its use.
Collapse
Affiliation(s)
- Amandeep Salhotra
- Department of Hematology and Hematopoietic Cell Transplantation (HCT), City of Hope National Medical Center, Duarte, CA, United States
| | - Shan Yuan
- Division of Transfusion Medicine, Department of Pathology and Laboratory Medicine, City of Hope National Medical Center, Duarte, CA, United States
| | - Haris Ali
- Department of Hematology and Hematopoietic Cell Transplantation (HCT), City of Hope National Medical Center, Duarte, CA, United States
| |
Collapse
|
11
|
Benzoni NS, Carey KA, Bewley AF, Klaus J, Fuller BM, Edelson DP, Churpek MM, Bhavani SV, Lyons PG. Temperature Trajectory Subphenotypes in Oncology Patients with Neutropenia and Suspected Infection. Am J Respir Crit Care Med 2023; 207:1300-1309. [PMID: 36449534 PMCID: PMC10595453 DOI: 10.1164/rccm.202205-0920oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 11/29/2022] [Indexed: 12/02/2022] Open
Abstract
Rationale: Despite etiologic and severity heterogeneity in neutropenic sepsis, management is often uniform. Understanding host response clinical subphenotypes might inform treatment strategies for neutropenic sepsis. Objectives: In this retrospective two-hospital study, we analyzed whether temperature trajectory modeling could identify distinct, clinically relevant subphenotypes among oncology patients with neutropenia and suspected infection. Methods: Among adult oncologic admissions with neutropenia and blood cultures within 24 hours, a previously validated model classified patients' initial 72-hour temperature trajectories into one of four subphenotypes. We analyzed subphenotypes' independent relationships with hospital mortality and bloodstream infection using multivariable models. Measurements and Main Results: Patients (primary cohort n = 1,145, validation cohort n = 6,564) fit into one of four temperature subphenotypes. "Hyperthermic slow resolvers" (pooled n = 1,140 [14.8%], mortality n = 104 [9.1%]) and "hypothermic" encounters (n = 1,612 [20.9%], mortality n = 138 [8.6%]) had higher mortality than "hyperthermic fast resolvers" (n = 1,314 [17.0%], mortality n = 47 [3.6%]) and "normothermic" (n = 3,643 [47.3%], mortality n = 196 [5.4%]) encounters (P < 0.001). Bloodstream infections were more common among hyperthermic slow resolvers (n = 248 [21.8%]) and hyperthermic fast resolvers (n = 240 [18.3%]) than among hypothermic (n = 188 [11.7%]) or normothermic (n = 418 [11.5%]) encounters (P < 0.001). Adjusted for confounders, hyperthermic slow resolvers had increased adjusted odds for mortality (primary cohort odds ratio, 1.91 [P = 0.03]; validation cohort odds ratio, 2.19 [P < 0.001]) and bloodstream infection (primary odds ratio, 1.54 [P = 0.04]; validation cohort odds ratio, 2.15 [P < 0.001]). Conclusions: Temperature trajectory subphenotypes were independently associated with important outcomes among hospitalized patients with neutropenia in two independent cohorts.
Collapse
Affiliation(s)
| | - Kyle A. Carey
- Department of Medicine, University of Chicago Medicine, Chicago, Illinois
| | | | - Jeff Klaus
- Department of Pharmacy, Barnes-Jewish Hospital, St. Louis, Missouri
| | - Brian M. Fuller
- Department of Anesthesiology
- Department of Emergency Medicine, and
| | - Dana P. Edelson
- Department of Medicine, University of Chicago Medicine, Chicago, Illinois
| | | | | | - Patrick G. Lyons
- Department of Medicine
- Siteman Cancer Center, Washington University School of Medicine in St. Louis, St. Louis, Missouri
- Healthcare Innovation Lab, BJC HealthCare, St. Louis, Missouri
| |
Collapse
|
12
|
Sánchez‐Lanzas R, Kalampalika F, Ganuza M. Diversity in the bone marrow niche: Classic and novel strategies to uncover niche composition. Br J Haematol 2022; 199:647-664. [PMID: 35837798 PMCID: PMC9796334 DOI: 10.1111/bjh.18355] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/20/2022] [Accepted: 06/30/2022] [Indexed: 01/01/2023]
Abstract
Our view on the role and composition of the bone marrow (BM) has dramatically changed over time from a simple nutrient for the bone to a highly complex multicellular tissue that sustains haematopoiesis. Among these cells, multipotent haematopoietic stem cells (HSCs), which are predominantly quiescent, possess unique self-renewal capacity and multilineage differentiation potential and replenish all blood lineages to maintain lifelong haematopoiesis. Adult HSCs reside in specialised BM niches, which support their functions. Much effort has been put into deciphering HSC niches due to their potential clinical relevance. Multiple cell types have been implicated as HSC-niche components including sinusoidal endothelium, perivascular stromal cells, macrophages, megakaryocytes, osteoblasts and sympathetic nerves. In this review we provide a historical perspective on how technical advances, from genetic mouse models to imaging and high-throughput sequencing techniques, are unveiling the plethora of molecular cues and cellular components that shape the niche and regulate HSC functions.
Collapse
Affiliation(s)
- Raúl Sánchez‐Lanzas
- Centre for Haemato‐Oncology, Barts Cancer InstituteQueen Mary University of LondonLondonUK
| | - Foteini Kalampalika
- Centre for Haemato‐Oncology, Barts Cancer InstituteQueen Mary University of LondonLondonUK
| | - Miguel Ganuza
- Centre for Haemato‐Oncology, Barts Cancer InstituteQueen Mary University of LondonLondonUK
| |
Collapse
|
13
|
Cho Y, Joshi R, Lowe P, Copeland C, Ribeiro M, Morel C, Catalano D, Szabo G. Granulocyte colony-stimulating factor attenuates liver damage by M2 macrophage polarization and hepatocyte proliferation in alcoholic hepatitis in mice. Hepatol Commun 2022; 6:2322-2339. [PMID: 35997009 PMCID: PMC9426408 DOI: 10.1002/hep4.1925] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 12/21/2021] [Accepted: 01/22/2022] [Indexed: 11/10/2022] Open
Abstract
Massive inflammation and liver failure are main contributors to the high mortality in alcohol-associated hepatitis (AH). In recent clinical trials, granulocyte colony-stimulating factor (G-CSF) therapy improved liver function and survival in patients with AH. However, the mechanisms of G-CSF-mediated beneficial effects in AH remain elusive. In this study, we evaluated effects of in vivo G-CSF administration, using a mouse model of AH. G-CSF treatment significantly reduced liver damage in alcohol-fed mice even though it increased the numbers of liver-infiltrating immune cells, including neutrophils and inflammatory monocytes. Moreover, G-CSF promoted macrophage polarization toward an M2-like phenotype and increased hepatocyte proliferation, which was indicated by an increased Ki67-positive signal colocalized with hepatocyte nuclear factor 4 alpha (HNF-4α) and cyclin D1 expression in hepatocytes. We found that G-CSF increased G-CSF receptor expression and resulted in reduced levels of phosphorylated β-catenin in hepatocytes. In the presence of an additional pathogen-associated molecule, lipopolysaccharide (LPS), which is significantly increased in the circulation and liver of patients with AH, the G-CSF-induced hepatoprotective effects were abolished in alcohol-fed mice. We still observed increased Ki67-positive signals in alcohol-fed mice following G-CSF treatment; however, Ki67 and HNF-4α did not colocalize in LPS-challenged mice. Conclusion: G-CSF treatment increases immune cell populations, particularly neutrophil counts, and promotes M2-like macrophage differentiation in the liver. More importantly, G-CSF treatment reduces alcohol-induced liver injury and promotes hepatocyte proliferation in alcohol-fed mice. These data provide new insights into the understanding of mechanisms mediated by G-CSF and its therapeutic effects in AH.
Collapse
Affiliation(s)
- Yeonhee Cho
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA.,Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Radhika Joshi
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Patrick Lowe
- Emergency Medicine, Massachusetts General Hospital, Brigham & Women's Hospital, Boston, Massachusetts, USA
| | - Christopher Copeland
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Marcelle Ribeiro
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Caroline Morel
- Advanced Pathology Service, Invicro, Boston, Massachusetts, USA
| | - Donna Catalano
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Gyongyi Szabo
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
14
|
Wang B, Zhang Y, Lou Y, Hu X, Li F. Initial research on the effect and mechanism of Tivozanib on pulsed dye laser induced angiogenesis. Lasers Surg Med 2022; 54:1157-1166. [PMID: 35916102 DOI: 10.1002/lsm.23586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 11/08/2022]
Abstract
INTRODUCTION Pulsed dye laser (PDL) is the main treatment for port wine stain (PWS), but a considerable number of patients show low clearances. The reason for the poor efficacy is related to PDL-induced angiogenesis. Vascular endothelial growth factor (VEGF) plays an important role in PDL-induced angiogenesis and can activate the tyrosine kinase activity of VEGF receptor (VEGFR) in endothelial cells. It triggers a full range of responses, and then participates in the regulation of angiogenesis. Tivozanib is an inhibitor of VEGFR tyrosine kinase activity, which can block the pro-angiogenic effect of VEGF and reduce vascular permeability. METHOD Different energy densities of PDL were used to irradiate the abdominal skin of rats. According to the general and pathological changes of the irradiated area, the energy density of 8 J/cm2 with smaller scab and stronger vascular effect was selected for follow-up experiments. Divided the rat abdomen skin into four areas, irradiated three of them uniformly with an energy density of 8 J/cm2 , and applied different concentrations of Tivozanib coating agent to the laser irradiation area, and grouped them as follows: (1) vacant group, (2) control group, (3) 0.5% Tivozanib group, (4) 1% Tivozanib group. Camera and dermoscopy were used to observe skin changes. Hematoxylin-eosin staining, immunohistochemical staining, and blood vessels were counted to detect dermal vascular regeneration. Transcriptome sequencing and real-time polymerase chain reaction (PCR) were conducted to elucidate the mechanism and validate the reliability. RESULTS The number of blood vessels in the 0.5% Tivozanib group and 1% Tivozanib group was significantly reduced on the 7, 10, and 14 days compared with the control group. The number of blood vessels in the 1% Tivozanib group was significantly reduced compared with the 0.5% Tivozanib group, indicating that Tivozanib successfully inhibited PDL-induced angiogenesis, and the inhibitory effect of 1% Tivozanib was more significant than that of 0.5% Tivozanib. Transcriptome sequencing results showed a total of 588 significantly differentially expressed genes, including 90 upregulated genes and 498 downregulated genes. Gene ontology (GO) and kyoto encyclopedia of genes and genomes (KEGG) enrichment analysis showed that the significantly differentially expressed genes were mainly enriched in the metabolic pathways which were closely related to angiogenesis. Finally, real-time PCR was used to verify the genes with higher expression differences, the top ranking and closely related to angiogenesis, namely, Cxcl1, Cxcl2, Cxcl3, Cxcl6, Ccl3, Csf3, IL1β, iNOS, Mmp9, Mmp13, Plau, Ets1, Spp1, Nr4a1. The results were consistent with the trend of transcriptome sequencing results, which proved the reliability of this study. CONCLUSION This study explored the inhibitory effect of Tivozanib on PDL-induced angiogenesis, and provided a new idea for the treatment of clinical PWS. Transcriptome sequencing explored the mechanism and provided reliable clues for later in-depth research.
Collapse
Affiliation(s)
- Bing Wang
- Department of Dermatology, The Second Hospital of Jilin University, Changchun, P.R. China
| | - Yaqin Zhang
- Department of Dermatology, The Second Hospital of Jilin University, Changchun, P.R. China
| | - Yan Lou
- Department of Nephrology, The Second Hospital of Jilin University, Changchun, P.R. China
| | - Xin Hu
- Department of Microbiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Fuqiu Li
- Department of Dermatology, The Second Hospital of Jilin University, Changchun, P.R. China
| |
Collapse
|
15
|
Decoding lymphomyeloid divergence and immune hyporesponsiveness in G-CSF-primed human bone marrow by single-cell RNA-seq. Cell Discov 2022; 8:59. [PMID: 35732626 PMCID: PMC9217915 DOI: 10.1038/s41421-022-00417-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 04/28/2022] [Indexed: 12/17/2022] Open
Abstract
Granulocyte colony-stimulating factor (G-CSF) has been widely used to mobilize bone marrow hematopoietic stem/progenitor cells for transplantation in the treatment of hematological malignancies for decades. Additionally, G-CSF is also accepted as an essential mediator in immune regulation, leading to reduced graft-versus-host disease following transplantation. Despite the important clinical roles of G-CSF, a comprehensive, unbiased, and high-resolution survey into the cellular and molecular ecosystem of the human G-CSF-primed bone marrow (G-BM) is lacking so far. Here, we employed single-cell RNA sequencing to profile hematopoietic cells in human bone marrow from two healthy donors before and after 5-day G-CSF administration. Through unbiased bioinformatics analysis, our data systematically showed the alterations in the transcriptional landscape of hematopoietic cells in G-BM, and revealed that G-CSF-induced myeloid-biased differentiation initiated from the stage of lymphoid-primed multipotent progenitors. We also illustrated the cellular and molecular basis of hyporesponsiveness of T cells and natural killer (NK) cells caused by G-CSF stimulation, including the potential direct mechanisms and indirect regulations mediated by ligand–receptor interactions. Taken together, our data extend the understanding of lymphomyeloid divergence and potential mechanisms involved in hyporesponsiveness of T and NK cells in human G-BM, which might provide basis for optimization of stem cell transplantation in hematological malignancy treatment.
Collapse
|
16
|
Omer-Javed A, Pedrazzani G, Albano L, Ghaus S, Latroche C, Manzi M, Ferrari S, Fiumara M, Jacob A, Vavassori V, Nonis A, Canarutto D, Naldini L. Mobilization-based chemotherapy-free engraftment of gene-edited human hematopoietic stem cells. Cell 2022; 185:2248-2264.e21. [PMID: 35617958 PMCID: PMC9240327 DOI: 10.1016/j.cell.2022.04.039] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/21/2022] [Accepted: 04/28/2022] [Indexed: 12/17/2022]
Abstract
Hematopoietic stem/progenitor cell gene therapy (HSPC-GT) is proving successful to treat several genetic diseases. HSPCs are mobilized, harvested, genetically corrected ex vivo, and infused, after the administration of toxic myeloablative conditioning to deplete the bone marrow (BM) for the modified cells. We show that mobilizers create an opportunity for seamless engraftment of exogenous cells, which effectively outcompete those mobilized, to repopulate the depleted BM. The competitive advantage results from the rescue during ex vivo culture of a detrimental impact of mobilization on HSPCs and can be further enhanced by the transient overexpression of engraftment effectors exploiting optimized mRNA-based delivery. We show the therapeutic efficacy in a mouse model of hyper IgM syndrome and further developed it in human hematochimeric mice, showing its applicability and versatility when coupled with gene transfer and editing strategies. Overall, our findings provide a potentially valuable strategy paving the way to broader and safer use of HSPC-GT. HSPC mobilizers create an opportunity to engraft exogenous cells in depleted niches Ex vivo culture endows HSPCs with migration advantage by rescuing CXCR4 expression Cultured HSPCs outcompete mobilized HSPCs for engraftment in depleted BM niches Transient engraftment enhancers coupled with gene editing confer a competitive advantage
Collapse
Affiliation(s)
- Attya Omer-Javed
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Gabriele Pedrazzani
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy; Vita-Salute San Raffaele University, Milan 20132, Italy
| | - Luisa Albano
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Sherash Ghaus
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Claire Latroche
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Maura Manzi
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Samuele Ferrari
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Martina Fiumara
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy; Vita-Salute San Raffaele University, Milan 20132, Italy
| | - Aurelien Jacob
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Valentina Vavassori
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Alessandro Nonis
- CUSSB-University Center for Statistics in the Biomedical Sciences, Vita-Salute San Raffaele University, Milan, Italy
| | - Daniele Canarutto
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy; Vita-Salute San Raffaele University, Milan 20132, Italy; Pediatric Immunohematology Unit and BMT Program, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Luigi Naldini
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy; Vita-Salute San Raffaele University, Milan 20132, Italy.
| |
Collapse
|
17
|
Krenn PW, Montanez E, Costell M, Fässler R. Integrins, anchors and signal transducers of hematopoietic stem cells during development and in adulthood. Curr Top Dev Biol 2022; 149:203-261. [PMID: 35606057 DOI: 10.1016/bs.ctdb.2022.02.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Hematopoietic stem cells (HSCs), the apex of the hierarchically organized blood cell production system, are generated in the yolk sac, aorta-gonad-mesonephros region and placenta of the developing embryo. To maintain life-long hematopoiesis, HSCs emigrate from their site of origin and seed in distinct microenvironments, called niches, of fetal liver and bone marrow where they receive supportive signals for self-renewal, expansion and production of hematopoietic progenitor cells (HPCs), which in turn orchestrate the production of the hematopoietic effector cells. The interactions of hematopoietic stem and progenitor cells (HSPCs) with niche components are to a large part mediated by the integrin superfamily of adhesion molecules. Here, we summarize the current knowledge regarding the functional properties of integrins and their activators, Talin-1 and Kindlin-3, for HSPC generation, function and fate decisions during development and in adulthood. In addition, we discuss integrin-mediated mechanosensing for HSC-niche interactions, ex vivo protocols aimed at expanding HSCs for therapeutic use, and recent approaches targeting the integrin-mediated adhesion in leukemia-inducing HSCs in their protecting, malignant niches.
Collapse
Affiliation(s)
- Peter W Krenn
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, Martinsried, Germany; Department of Biosciences and Medical Biology, Cancer Cluster Salzburg, Paris-Lodron University of Salzburg, Salzburg, Austria.
| | - Eloi Montanez
- Department of Physiological Sciences, Faculty of Medicine and Health Sciences, University of Barcelona and Bellvitge Biomedical Research Institute, L'Hospitalet del Llobregat, Barcelona, Spain
| | - Mercedes Costell
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universitat de València, Burjassot, Spain; Institut Universitari de Biotecnologia i Biomedicina, Universitat de València, Burjassot, Spain
| | - Reinhard Fässler
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, Martinsried, Germany
| |
Collapse
|
18
|
Munley JA, Kelly LS, Mohr AM. Adrenergic Modulation of Erythropoiesis After Trauma. Front Physiol 2022; 13:859103. [PMID: 35514362 PMCID: PMC9063634 DOI: 10.3389/fphys.2022.859103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/02/2022] [Indexed: 11/17/2022] Open
Abstract
Severe traumatic injury results in a cascade of systemic changes which negatively affect normal erythropoiesis. Immediately after injury, acute blood loss leads to anemia, however, patients can remain anemic for as long as 6 months after injury. Research on the underlying mechanisms of such alterations of erythropoiesis after trauma has focused on the prolonged hypercatecholaminemia seen after trauma. Supraphysiologic elevation of catecholamines leads to an inhibitive effect on erythropoiesis. There is evidence to show that alleviation of the neuroendocrine stress response following trauma reduces these inhibitory effects. Both beta blockade and alpha-2 adrenergic receptor stimulation have demonstrated increased growth of hematopoietic progenitor cells as well as increased pro-erythropoietic cytokines after trauma. This review will describe prior research on the neuroendocrine stress response after trauma and its consequences on erythropoiesis, which offer insight into underlying mechanisms of prolonged anemia postinjury. We will then discuss the beneficial effects of adrenergic modulation to improve erythropoiesis following injury and propose future directions for the field.
Collapse
Affiliation(s)
- Jennifer A Munley
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida, Gainesville, FL, United States
| | - Lauren S Kelly
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida, Gainesville, FL, United States
| | - Alicia M Mohr
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida, Gainesville, FL, United States
| |
Collapse
|
19
|
Lee S, Wong H, Castiglione M, Murphy M, Kaushansky K, Zhan H. JAK2V617F Mutant Megakaryocytes Contribute to Hematopoietic Aging in a Murine Model of Myeloproliferative Neoplasm. Stem Cells 2022; 40:359-370. [PMID: 35260895 PMCID: PMC9199841 DOI: 10.1093/stmcls/sxac005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 01/03/2022] [Indexed: 11/13/2022]
Abstract
Megakaryocytes (MKs) is an important component of the hematopoietic niche. Abnormal MK hyperplasia is a hallmark feature of myeloproliferative neoplasms (MPNs). The JAK2V617F mutation is present in hematopoietic cells in a majority of patients with MPNs. Using a murine model of MPN in which the human JAK2V617F gene is expressed in the MK lineage, we show that the JAK2V617F-bearing MKs promote hematopoietic stem cell (HSC) aging, manifesting as myeloid-skewed hematopoiesis with an expansion of CD41+ HSCs, a reduced engraftment and self-renewal capacity, and a reduced differentiation capacity. HSCs from 2-year-old mice with JAK2V617F-bearing MKs were more proliferative and less quiescent than HSCs from age-matched control mice. Examination of the marrow hematopoietic niche reveals that the JAK2V617F-bearing MKs not only have decreased direct interactions with hematopoietic stem/progenitor cells during aging but also suppress the vascular niche function during aging. Unbiased RNA expression profiling reveals that HSC aging has a profound effect on MK transcriptomic profiles, while targeted cytokine array shows that the JAK2V617F-bearing MKs can alter the hematopoietic niche through increased levels of pro-inflammatory and anti-angiogenic factors. Therefore, as a hematopoietic niche cell, MKs represent an important connection between the extrinsic and intrinsic mechanisms for HSC aging.
Collapse
Affiliation(s)
- Sandy Lee
- Graduate Program in Molecular & Cellular Pharmacology, Stony Brook University, Stony Brook, NY, USA
| | - Helen Wong
- New York Institute of Technology College of Osteopathic Medicine, Glen Head, NY, USA
| | | | | | - Kenneth Kaushansky
- Department of Medicine, Stony Brook School of Medicine, Stony Brook, NY, USA
| | - Huichun Zhan
- Department of Medicine, Stony Brook School of Medicine, Stony Brook, NY, USA
- Medical Service, Northport VA Medical Center, Northport, NY, USA
| |
Collapse
|
20
|
Luo C, Wu G, Huang X, Zhang Y, Ma Y, Huang Y, Huang Z, Li H, Hou Y, Chen J, Li X, Xu S. Efficacy of hematopoietic stem cell mobilization regimens in patients with hematological malignancies: a systematic review and network meta-analysis of randomized controlled trials. Stem Cell Res Ther 2022; 13:123. [PMID: 35317856 PMCID: PMC8939102 DOI: 10.1186/s13287-022-02802-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 03/07/2022] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Efficient mobilization of hematopoietic stem cells (HSCs) from bone marrow niche into circulation is the key to successful collection and transplantation in patients with hematological malignancies. The efficacy of various HSCs mobilization regimens has been widely investigated, but the results are inconsistent. METHODS We performed comprehensive databases searching for eligible randomized controlled trials (RCTs) that comparing the efficacy of HSCs mobilization regimens in patients with hematological malignancies. Bayesian network meta-analyses were performed with WinBUGS. Standard dose of granulocyte colony-stimulating factor (G-CSF SD) was chosen as the common comparator. Estimates of relative treatment effects for other regimens were reported as mean differences (MD) or odds ratio (OR) with associated 95% credibility interval (95% CrI). The surface under the cumulative ranking curve (SUCRA) were obtained to present rank probabilities of all included regimens. RESULTS Databases searching and study selection identified 44 eligible RCTs, of which the mobilization results are summarized. Then we compared the efficacy of mobilization regimens separately for patients with multiple myeloma (MM) and non-Hodgkin lymphoma (NHL) by including 13 eligible trials for network meta-analysis, involving 638 patients with MM and 592 patients with NHL. For patients with MM, data are pooled from 8 trials for 6 regimens, including G-CSF in standard dose (SD) or reduced dose (RD) combined with cyclophosphamide (CY), intermediate-dose cytarabine (ID-AraC) or plerixafor. The results show that compared with G-CSF SD alone, 3 regimens including ID-AraC + G-CSF SD (MD 14.29, 95% CrI 9.99-18.53; SUCRA 1.00), G-CSF SD + Plerixafor SD (MD 4.15, 95% CrI 2.92-5.39; SUCRA 0.80), and CY + G-CSF RD (MD 1.18, 95% CrI 0.29-2.07; SUCRA 0.60) are associated with significantly increased total number of collected CD34+ cells (× 106/kg), among which ID-AraC + G-CSF SD ranked first with a probability of being best regimen of 100%. Moreover, ID-AraC + G-CSF SD and G-CSF SD + Plerixafor SD are associated with significantly higher successful rate of achieving optimal target (collecting ≥ 4-6 × 106 CD34+ cells/kg). For patients with NHL, data are pooled from 5 trials for 4 regimens, the results show that compared with G-CSF SD alone, G-CSF SD + Plerixafor SD (MD 3.62, 95% CrI 2.86-4.38; SUCRA 0.81) and G-CSF SD plus the new CXC chemokine receptor-4 (CXCR-4) antagonist YF-H-2015005 (MD 3.43, 95% CrI 2.51-4.35; SUCRA 0.69) are associated with significantly higher number of total CD34+ cells collected. These 2 regimens are also associated with significantly higher successful rate of achieving optimal target. There are no significant differences in rate of achieving optimal target between G-CSF SD + Plerixafor SD and G-CSF + YF-H-2015005. CONCLUSIONS In conclusion, ID-AraC plus G-CSF is associated with the highest probability of being best mobilization regimen in patients with MM. For patients with NHL, G-CSF in combination with plerixafor or YF-H-2015005 showed similar improvements in HSCs mobilization efficacy. The relative effects of other chemotherapy-based mobilization regimens still require to be determined with further investigations.
Collapse
Affiliation(s)
- Chengxin Luo
- Center for Hematology, Southwest Hospital, Third Military Medical University, #30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
- Key Laboratory of Cancer Immunotherapy of Chongqing, Chongqing, China
| | - Guixian Wu
- Center for Hematology, Southwest Hospital, Third Military Medical University, #30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
- Key Laboratory of Cancer Immunotherapy of Chongqing, Chongqing, China
| | - Xiangtao Huang
- Center for Hematology, Southwest Hospital, Third Military Medical University, #30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
- Key Laboratory of Cancer Immunotherapy of Chongqing, Chongqing, China
| | - Yali Zhang
- Center for Hematology, Southwest Hospital, Third Military Medical University, #30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
- Key Laboratory of Cancer Immunotherapy of Chongqing, Chongqing, China
| | - Yanni Ma
- Center for Hematology, Southwest Hospital, Third Military Medical University, #30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
- Key Laboratory of Cancer Immunotherapy of Chongqing, Chongqing, China
| | - Yarui Huang
- Center for Hematology, Southwest Hospital, Third Military Medical University, #30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
- Key Laboratory of Cancer Immunotherapy of Chongqing, Chongqing, China
| | - Zhen Huang
- Center for Hematology, Southwest Hospital, Third Military Medical University, #30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
- Key Laboratory of Cancer Immunotherapy of Chongqing, Chongqing, China
| | - Hui Li
- Center for Hematology, Southwest Hospital, Third Military Medical University, #30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
- Key Laboratory of Cancer Immunotherapy of Chongqing, Chongqing, China
| | - Yu Hou
- Center for Hematology, Southwest Hospital, Third Military Medical University, #30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
- Key Laboratory of Cancer Immunotherapy of Chongqing, Chongqing, China
| | - Jieping Chen
- Center for Hematology, Southwest Hospital, Third Military Medical University, #30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
- Key Laboratory of Cancer Immunotherapy of Chongqing, Chongqing, China
| | - Xi Li
- Institute of Infectious Disease, Southwest Hospital, Third Military Medical University, #30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China.
| | - Shuangnian Xu
- Center for Hematology, Southwest Hospital, Third Military Medical University, #30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China.
- Key Laboratory of Cancer Immunotherapy of Chongqing, Chongqing, China.
| |
Collapse
|
21
|
The impact of different forms of exercise on endothelial progenitor cells in healthy populations. Eur J Appl Physiol 2022; 122:1589-1625. [PMID: 35305142 PMCID: PMC9197818 DOI: 10.1007/s00421-022-04921-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 02/18/2022] [Indexed: 11/03/2022]
Abstract
Circulating endothelial progenitor cells (EPCs) contribute to vascular healing and neovascularisation, while exercise is an effective means to mobilise EPCs into the circulation. OBJECTIVES to systematically examine the acute and chronic effects of different forms of exercise on circulating EPCs in healthy populations. METHODS Preferred Reporting Items for Systematic Reviews and Meta-analyses guidelines were followed. RESULTS thirty-one articles met the inclusion criteria including 747 participants aged 19 to 76 years. All included trials used flow cytometry for identification of circulating EPCs. Eight and five different EPC phenotypes were identified in the acute and chronic trials, respectively. In the acute trials, moderate intensity continuous (MICON), maximal, prolonged endurance, resistance and high intensity interval training (HIIT) exercise protocols were utilised. Prolonged endurance and resistance exercise had the most profound effect on circulating EPCs followed by maximal exercise. In the chronic trials, MICON exercise, HIIT, HIIT compared to MICON and MICON compared to exergame (exercise modality based on an interactive video game) were identified. MICON exercise had a positive effect on circulating EPCs in older sedentary individuals which was accompanied by improvements in endothelial function and arterial stiffness. Long-stage HIIT (4 min bouts) appears to be an effective means and superior than MICON exercise in mobilising circulating EPCs. In conclusion, both in acute and chronic trials the degree of exercise-induced EPC mobilisation depends upon the exercise regime applied. In future, more research is warranted to examine the dose-response relationship of different exercise forms on circulating EPCs using standardised methodology and EPC phenotype.
Collapse
|
22
|
Eton D, Zhou G, He TC, Bartholomew A, Patil R. Filgrastim, fibrinolysis, and neovascularization. J Tissue Eng Regen Med 2022; 16:496-510. [PMID: 35175691 PMCID: PMC9302657 DOI: 10.1002/term.3284] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 12/17/2021] [Accepted: 01/11/2022] [Indexed: 12/11/2022]
Abstract
Segmental recanalization of chronically occluded arteries was observed in patients with chronic limb-threatening ischemia (CLTI) treated with Filgrastim, a granulocyte colony stimulating factor, every 72 h for up to a month, and an infra-geniculate programmed compression pump (PCP) for 3 h daily. Molecular evidence for fibrinolysis and neovascularization was sought. CLTI patients were treated with PCP alone (N = 19), or with Filgrastim and PCP (N = 8 and N = 6, at two institutions). Enzyme-Linked Immunosorbent Assay was used to measure the plasma concentration of plasmin and of fibrin degradation products (FDP), and the serum concentration of proteins associated with neovascularization. In the PCP-alone group, blood was sampled on Day 1 (baseline) and after 30 days of daily PCP. In the Filgrastim and PCP group, blood was drawn on Day 1, and 1 day after the 5th and the 10th Filgrastim doses. Each blood draw occurred before and after 2 h of supervised PCP. Significant (p < 0.01) PCP independent increases in the plasma concentration of plasmin (>10-fold) and FDP (>5-fold) were observed 1 day after both the 5th and the 10th Filgrastim doses, compared to Day 1. Significant (p < 0.05) increases in the concentration of pro-angiogenic proteins (e.g., HGF, MMP-9, VEGF A) were also observed. Filgrastim at this novel dosimetry induced fibrinolysis without causing acute hemorrhage, in addition to inducing a pro-angiogenic milieu conducive to NV. Further clinical testing is warranted at this novel dosimetry in CLTI, as well as in other chronically ischemic tissue beds. Trial registration. https://clinicaltrials.gov/ct2/show/NCT02802852.
Collapse
Affiliation(s)
- Darwin Eton
- Department of Surgery, University of Illinois Chicago, Chicago, Illinois, USA
| | - Guolin Zhou
- GCIS, University of Chicago, Chicago, Illinois, USA
| | - Tong-Chuan He
- Department of Orthopedic Surgery and Rehabilitation Medicine, University of Chicago, Chicago, Illinois, USA
| | - Amelia Bartholomew
- Department of Surgery, College of Medicine Research, University of Illinois Chicago, Chicago, Illinois, USA
| | - Rachana Patil
- Department of Pediatrics, Division of Stem Cell Transplant and Regenerative Medicine, Stanford University, Palo Alto, California, USA
| |
Collapse
|
23
|
Ramos IPR, Dias ML, Nunes De Moraes AC, Meireles Ferreira FG, Souza SAL, Gutfilen B, Barboza T, Ferreira Pimentel C, Paz Batista CM, Kasai-Brunswick TH, Fortes FDSDA, De Andrade CBV, Goldenberg RCDS. Granulocyte Colony-Stimulating Factor Treatment Before Radiotherapy Protects Against Radiation-Induced Liver Disease in Mice. Front Pharmacol 2021; 12:725084. [PMID: 34867327 PMCID: PMC8634713 DOI: 10.3389/fphar.2021.725084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 10/20/2021] [Indexed: 12/20/2022] Open
Abstract
Radiation-induced liver disease (RILD) remains a major problem resulting from radiotherapy. In this scenario, immunotherapy with granulocyte colony-stimulating factor (G-CSF) arises as an attractive approach that might improve the injured liver. Here, we investigated G-CSF administration’s impact before and after liver irradiation exposure using an association of alcohol consumption and local irradiation to induce liver disease model in C57BL/6 mice. Male and female mice were submitted to a previous alcohol-induced liver injury protocol with water containing 5% alcohol for 90 days. Then, the animals were treated with G-CSF (100 μg/kg/d) for 3 days before or after liver irradiation (18 Gy). At days 7, 30, and 60 post-radiation, non-invasive liver images were acquired by ultrasonography, magnetic resonance, and computed tomography. Biochemical and histological evaluations were performed to verify whether G-CSF could prevent liver tissue damage or reverse the acute liver injury. Our data showed that the treatment with G-CSF before irradiation effectively improved morphofunctional parameters caused by RILD, restoring histological arrangement, promoting liver regeneration, preserving normal organelles distribution, and glycogen granules. The amount of OV-6 and F4/80-positive cells increased, and α-SMA positive cells’ presence was normalized. Additionally, prior G-CSF administration preserved serum biochemical parameters and increased the survival rates (100%). On the other hand, after irradiation, the treatment showed a slight improvement in survival rates (79%) and did not ameliorate RILD. Overall, our data suggest that G-CSF administration before radiation might be an immunotherapeutic alternative to radiotherapy planning to avoid RILD.
Collapse
Affiliation(s)
- Isalira Peroba Rezende Ramos
- Centro Nacional de Biologia Estrutural e Bioimagem-CENABIO, Universidade Federal do Rio de Janeiro, UFRJ, Rio de Janeiro, Brazil
| | - Marlon Lemos Dias
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, UFRJ, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa, INCT-REGENERA, Universidade Federal do Rio de Janeiro, UFRJ, Rio de Janeiro, Brazil
| | | | | | - Sergio Augusto Lopes Souza
- Departamento de Radiologia, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bianca Gutfilen
- Departamento de Radiologia, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Thiago Barboza
- Departamento de Radiologia, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cibele Ferreira Pimentel
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, UFRJ, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa, INCT-REGENERA, Universidade Federal do Rio de Janeiro, UFRJ, Rio de Janeiro, Brazil.,Laboratório de Terapia e Fisiologia Celular e Molecular-LTFCM, Centro Universitário Estadual da Zona Oeste-UEZO, Rio de Janeiro, Brazil.,Programa de Pós-Graduação em Biomedicina Translacional-BIOTRANS (UEZO-UNIGRANRIO-InMETRO), Duque de Caxias, Brazil
| | - Cintia Marina Paz Batista
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, UFRJ, Rio de Janeiro, Brazil
| | - Tais Hanae Kasai-Brunswick
- Centro Nacional de Biologia Estrutural e Bioimagem-CENABIO, Universidade Federal do Rio de Janeiro, UFRJ, Rio de Janeiro, Brazil.,Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, UFRJ, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa, INCT-REGENERA, Universidade Federal do Rio de Janeiro, UFRJ, Rio de Janeiro, Brazil
| | - Fabio Da Silva De Azevedo Fortes
- Laboratório de Terapia e Fisiologia Celular e Molecular-LTFCM, Centro Universitário Estadual da Zona Oeste-UEZO, Rio de Janeiro, Brazil.,Programa de Pós-Graduação em Biomedicina Translacional-BIOTRANS (UEZO-UNIGRANRIO-InMETRO), Duque de Caxias, Brazil
| | - Cherley Borba Vieira De Andrade
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, UFRJ, Rio de Janeiro, Brazil.,Departmento de Histologia e Embriologia, Universidade do Estado do Rio de Janeiro, UERJ, Rio de Janeiro, Brazil
| | - Regina Coeli Dos Santos Goldenberg
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, UFRJ, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa, INCT-REGENERA, Universidade Federal do Rio de Janeiro, UFRJ, Rio de Janeiro, Brazil
| |
Collapse
|
24
|
Mesenchymal stem cell treatment improves outcome of COVID-19 patients via multiple immunomodulatory mechanisms. Cell Res 2021; 31:1244-1262. [PMID: 34702946 PMCID: PMC8546390 DOI: 10.1038/s41422-021-00573-y] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 09/09/2021] [Indexed: 12/24/2022] Open
Abstract
The infusion of coronavirus disease 2019 (COVID-19) patients with mesenchymal stem cells (MSCs) potentially improves clinical symptoms, but the underlying mechanism remains unclear. We conducted a randomized, single-blind, placebo-controlled (29 patients/group) phase II clinical trial to validate previous findings and explore the potential mechanisms. Patients treated with umbilical cord-derived MSCs exhibited a shorter hospital stay (P = 0.0198) and less time required for symptoms remission (P = 0.0194) than those who received placebo. Based on chest images, both severe and critical patients treated with MSCs showed improvement by day 7 (P = 0.0099) and day 21 (P = 0.0084). MSC-treated patients had fewer adverse events. MSC infusion reduced the levels of C-reactive protein, proinflammatory cytokines, and neutrophil extracellular traps (NETs) and promoted the maintenance of SARS-CoV-2-specific antibodies. To explore how MSCs modulate the immune system, we employed single-cell RNA sequencing analysis on peripheral blood. Our analysis identified a novel subpopulation of VNN2+ hematopoietic stem/progenitor-like (HSPC-like) cells expressing CSF3R and PTPRE that were mobilized following MSC infusion. Genes encoding chemotaxis factors - CX3CR1 and L-selectin - were upregulated in various immune cells. MSC treatment also regulated B cell subsets and increased the expression of costimulatory CD28 in T cells in vivo and in vitro. In addition, an in vivo mouse study confirmed that MSCs suppressed NET release and reduced venous thrombosis by upregulating kindlin-3 signaling. Together, our results underscore the role of MSCs in improving COVID-19 patient outcomes via maintenance of immune homeostasis.
Collapse
|
25
|
Eldridge DE, Hsu CC. Antibody Production Remains Intact Despite Loss of Bone Marrow B cells in Murine Norovirus Infected Stat1-/- Mice. Comp Med 2021; 71:502-511. [PMID: 34794531 DOI: 10.30802/aalas-cm-21-000054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Murine norovirus (MNV), which can be used as a model system to study human noroviruses, can infect macrophages/monocytes, neutrophils, dendritic, intestinal epithelial, T and B cells, and is highly prevalent in laboratory mice. We previouslyshowed that MNV infection significantly reduces bone marrow B cell populations in a Stat1-dependent manner. We show here that while MNV-infected Stat1-/- mice have significant losses of bone marrow B cells, splenic B cells capable of mounting an antibody response to novel antigens retain the ability to expand. We also investigated whether increased granulopoiesis after MNV infection was causing B cell loss. We found that administration of anti-G-CSF antibody inhibits the pronounced bone marrow granulopoiesis induced by MNV infection of Stat1-/- mice, but this inhibition did not rescue bone marrow B cell losses. Therefore, MNV-infected Stat1-/- mice can still mount a robust humoral immune response despite decreased bone marrow B cells. This suggests that further investigation will be needed to identify other indirect factors or mechanisms that are responsible for the bone marrow B cell losses seen after MNV infection. In addition, this work contributes to our understanding of the potential physiologic effects of Stat1-related disruptions in research mouse colonies that may be endemically infected with MNV.
Collapse
|
26
|
Noorazar L, Bonakchi H, Sankanian G, Parkhideh S, Salimi M, Hajifathali A, Mirfakhraie R, Roshandel E. The effect of granulocyte colony-stimulating factor dose and administration interval after allogeneic hematopoietic cell transplantation on early engraftment of neutrophil and platelet. J Clin Lab Anal 2021; 35:e24060. [PMID: 34674310 PMCID: PMC8649331 DOI: 10.1002/jcla.24060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Hematopoietic stem cell transplantation (HSCT) is one of the treatments for hematologic malignancies. Numerous factors affect the HSCT outcome. The purpose of this study was to investigate the effect of post-HSCT administration of granulocyte colony-stimulating factor (post-G-CSF) on early neutrophil and platelet engraftment in allogeneic HSCT (allo-HSCT). MATERIAL & METHODS The study was performed on 76 patients diagnosed with AML and ALL. All patients underwent allo-HSCT at Taleghani stem cell transplantation center, Tehran, Iran, from February 2016 to December 2018. Chemotherapy regimens based on patients' conditions were selected between myeloablative and reduced-intensity regimens. RESULTS Statistical analysis revealed that the number of administered G-CSF units after HSCT was a time-dependent variable. Statistical analysis before day +11 reported that patients who received G-CSF <14 units had three times better early neutrophil engraftment than those with G-CSF ≥14 (CI 95%, AHR = 3.03, p:0.002). CD3+ cells count <318.5 × 106 /kg was associated with fast platelet engraftment (CI 95%, AHR 2.28, p:0.01). CONCLUSION In this study, post-G-CSF stimulation was associated with early engraftment in a time- and dose-dependent manner. Administration of G-CSF beyond 14 units resulted in adverse effects on neutrophil early engraftment. It also appeared that with a reduction in CD3+ cell counts, the likelihood of GVHD decreases, and platelet engraftment occurs earlier. Further investigations in the future are required to determine the factors affecting the process of early engraftment.
Collapse
Affiliation(s)
- Leila Noorazar
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Bonakchi
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ghazaleh Sankanian
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sayeh Parkhideh
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Salimi
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Hajifathali
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Mirfakhraie
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elham Roshandel
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
27
|
Hematopoietic Stem Cell Mobilization: Current Collection Approaches, Stem Cell Heterogeneity, and a Proposed New Method for Stem Cell Transplant Conditioning. Stem Cell Rev Rep 2021; 17:1939-1953. [PMID: 34661830 DOI: 10.1007/s12015-021-10272-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2021] [Indexed: 10/20/2022]
Abstract
Hematopoietic stem cells naturally traffic out of their bone marrow niches into the peripheral blood. This natural trafficking process can be enhanced with numerous pharmacologic agents - a process termed "mobilization" - and the mobilized stem cells can be collected for transplantation. We review the current state of mobilization with an update on recent clinical trials and new biologic mechanisms regulating stem cell trafficking. We propose that hematopoietic mobilization can be used to answer questions regarding hematopoietic stem cell heterogeneity, can be used for non-toxic conditioning of patients receiving stem cell transplants, and can enhance gene editing and gene therapy strategies to cure genetic diseases.
Collapse
|
28
|
Chen X, Sun W, Zhong P, Wu D. Colony-Stimulating Factors on Mobilizing CD34 + Cells and Improving Neurological Functions in Patients With Stroke: A Meta-Analysis and a Systematic Review. Front Pharmacol 2021; 12:704509. [PMID: 34366857 PMCID: PMC8339259 DOI: 10.3389/fphar.2021.704509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 06/07/2021] [Indexed: 11/13/2022] Open
Abstract
Background and Purpose: CSF therapy is considered a promising therapeutic approach for stroke. We performed a meta-analysis to explore the safety and efficacy of CSF in published clinical stroke studies. Methods: We searched articles online and manually. Two reviewers selected studies independently, selecting data based on study quality, characteristics of intervention (administration time, observation time, type, dose, and injection approach of CSF), and the baseline characteristics of patients (age, sex, hypertension, diabetes, smoker, and lipids) were extracted. Main prognosis outcomes were measured as all-cause death in severe adverse events (SAE) and recurrent stroke in SAE. Secondary outcomes were measured as CD34+ cell counts in periphery blood at day 5, National Institutes of Health Stroke Scale (NIHSS), and Barthel index (BI), Side effects of CSF were taken as the indicator of safety. STATA13 software was used to perform the meta-analysis.Keywords: Stroke, Colony-stimulating factor, Meta-analysis, therapy, Neurological Diseases Results: This meta-analysis involved 485 patients from eight studies. Among them, 475 patients from seven studies were gauged SAE (all-cause death), 393 patients from six studies were checked SAE (recurrent stroke); 137 patients from three studies underwent CD34+ measurement, 389 patients from six studies were tested NIHSS and 307 patients from five studies accessed BI. Compared with the control group, both all-causes death (RR= 1.73, 95%CI= (0.61, 4.92), P=0.735, I2=0.0%) and recurrent stroke (RR= 0.43, 95%CI= (0.14, 1.32), P=0.214, I2=33.1%) present no statistical differences, indicating that the application of CSF does not statistically alter the prognosis of patients with stroke. The application of CSF effectively enhanced CD34+ cell counts in periphery blood at day 5 (SMD= 1.23, 95%CI= (0.54, 1.92), P=0.04, I2=69.0%) but did not statistically impact NIHSS (SMD= -0.40, 95%CI= (-0.93, 0.13), P ≤ 0.001, I2=79.7%) or BI (SMD= 0.04, 95%CI= (-0.38, 0.46), P=0.068, I2=54.3%). Conclusion: Our study consolidates the security of CSF administration for its exerting no effect on detrimental outcomes. It has proven to be effective in elevating CD34+ cell counts in periphery blood at day 5, indicating CSF may participate in stroke recovery, but its efficacy in stroke recovery remains detected.
Collapse
Affiliation(s)
- Xiuqi Chen
- Department of Neurology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Wenbo Sun
- Department of Neurology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Ping Zhong
- Department of Neurology, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, China
| | - Danhong Wu
- Department of Neurology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| |
Collapse
|
29
|
Ratajczak MZ, Kucia M. The Nlrp3 inflammasome - the evolving story of its positive and negative effects on hematopoiesis. Curr Opin Hematol 2021; 28:251-261. [PMID: 33901136 PMCID: PMC8169640 DOI: 10.1097/moh.0000000000000658] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW Hematopoiesis is co-regulated by innate immunity, which is an ancient evolutionary defense mechanism also involved in the development and regeneration of damaged tissues. This review seeks to shed more light on the workings of the Nlrp3 inflammasome, which is an intracellular innate immunity pattern recognition receptor and sensor of changes in the hematopoietic microenvironment, and focus on its role in hematopoieisis. RECENT FINDINGS Hematopoietic stem progenitor cells (HSPCs) are exposed to several external mediators of innate immunity. Moreover, since hemato/lymphopoietic cells develop from a common stem cell, their behavior and fate are coregulated by intracellular innate immunity pathways. Therefore, the Nlrp3 inflammasome is functional both in immune cells and in HSPCs and affects hematopoiesis in either a positive or negative way, depending on its activity level. Specifically, while a physiological level of activation regulates the trafficking of HSPCs and most likely maintains their pool in the bone marrow, hyperactivation may lead to irreversible cell damage by pyroptosis and HSPC senescence and contribute to the origination of myelodysplasia and hematopoietic malignancies. SUMMARY Modulation of the level of Nrp3 inflammasome activation will enable improvements in HSPC mobilization, homing, and engraftment strategies. It may also control pathological activation of this protein complex during HSPC senescence, graft-versus-host disease, the induction of cytokine storms, and the development of hematopoietic malignancies.
Collapse
Affiliation(s)
- Mariusz Z. Ratajczak
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, KY, USA
- Department of Regenerative Medicine, Center for Preclinical Research and Technology, Medical University of Warsaw, Poland
| | - Magdalena Kucia
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, KY, USA
- Department of Regenerative Medicine, Center for Preclinical Research and Technology, Medical University of Warsaw, Poland
| |
Collapse
|
30
|
Abstract
In contrast to solid cancers, which often require genetic modifications and complex cellular reprogramming for effective metastatic dissemination, leukaemic cells uniquely possess the innate ability for migration and invasion. Dedifferentiated, malignant leukocytes retain the benign leukocytes' capacity for cell motility and survival in the circulation, while acquiring the potential for rapid and uncontrolled cell division. For these reasons, leukaemias, although not traditionally considered as metastatic diseases, are in fact models of highly efficient metastatic spread. Accordingly, they are often aggressive and challenging diseases to treat. In this Perspective, we discuss the key molecular processes that facilitate metastasis in a variety of leukaemic subtypes, the clinical significance of leukaemic invasion into specific tissues and the current pipeline of treatments targeting leukaemia metastasis.
Collapse
Affiliation(s)
- Andrew E Whiteley
- Department of Medicine, Duke University, Durham, NC, USA
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Trevor T Price
- Department of Medicine, Duke University, Durham, NC, USA
| | - Gaia Cantelli
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, UK
| | - Dorothy A Sipkins
- Department of Medicine, Duke University, Durham, NC, USA.
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA.
| |
Collapse
|
31
|
Uzoka C, Liu LC, Park Y, Lin Y, Patel P, Campbell-Lee S, Sweiss K, Wang X, Tepak E, Peace D, Saraf S, Rondelli D, Mahmud N. Race/ethnicity and underlying disease influences hematopoietic stem/progenitor cell mobilization response: A single center experience. J Clin Apher 2021; 36:634-644. [PMID: 34046928 DOI: 10.1002/jca.21914] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 05/07/2021] [Accepted: 05/13/2021] [Indexed: 12/18/2022]
Abstract
BACKGROUND Whether race/ethnicity plays a role in hematopoietic stem/progenitor cells (HSPC) mobilization in autologous donors has not been studied. We hypothesize that donor characteristic including race/ethnicity, age, sex, body mass index, and diagnostic groups influences HSPC mobilization. Diagnostic groups include healthy allogeneic donors, autologous multiple myeloma (MM) and non-MM donors. STUDY DESIGN AND METHODS Here, we conducted a single-center retrospective study in 64 autologous patients and 48 allogeneic donors. Autologous donors were patients diagnosed with MM or non-MM. All donors were grouped as African American (AA), White (W), or "Other"(O). RESULTS Multivariate analysis demonstrated diagnostic group differences for CD34+ cell yields between race/ethnicity. Specifically, non-MM patients had the lowest CD34+ cell yields in AA and O, but not in W. For pre-apheresis peripheral blood (PB) CD34+ cell numbers, race/ethnicity had a significant effect both in bivariate and multivariate analyses. Non-MM patients had the lowest, and AA patients had the highest PB CD34+ cells. The results support the view that past therapies used in MM are likely more conducive of recovery of HSPC. CONCLUSIONS Our study shows that race/ethnicity and diagnostic group differences influenced CD34+ cell mobilization response across donor types. Interestingly, autologous MM donors with the aid of plerixafor displayed comparable CD34 yields to allogeneic donors. Even though both MM and non-MM donors received plerixafor, non-MM donors had significantly lower CD34 yields among AA and O donors but not in W donors. Larger studies would be required to validate the role of diagnostic groups and race/ethnicity interactions.
Collapse
Affiliation(s)
- Chukwuemeka Uzoka
- Division of Hematology/Oncology, Department of Medicine, University of Illinois College of Medicine, Chicago, Illinois, USA
| | - Li C Liu
- Department of Epidemiology and Biostatistics, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Youngmin Park
- Clinical Stem Cell Laboratory, UI Blood & Marrow Transplant Program, University of Illinois Hospital and Health Sciences System, Chicago, Illinois, USA
| | - Yuankai Lin
- Division of Hematology/Oncology, Department of Medicine, University of Illinois College of Medicine, Chicago, Illinois, USA
| | - Pritesh Patel
- Division of Hematology/Oncology, Department of Medicine, University of Illinois College of Medicine, Chicago, Illinois, USA
| | - Sally Campbell-Lee
- Department of Pathology, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Karen Sweiss
- Department of Pharmacy Practice, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Xinhe Wang
- Department of Epidemiology and Biostatistics, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Elena Tepak
- Clinical Stem Cell Laboratory, UI Blood & Marrow Transplant Program, University of Illinois Hospital and Health Sciences System, Chicago, Illinois, USA
| | - David Peace
- Division of Hematology/Oncology, Department of Medicine, University of Illinois College of Medicine, Chicago, Illinois, USA
| | - Santosh Saraf
- Division of Hematology/Oncology, Department of Medicine, University of Illinois College of Medicine, Chicago, Illinois, USA
| | - Damiano Rondelli
- Division of Hematology/Oncology, Department of Medicine, University of Illinois College of Medicine, Chicago, Illinois, USA
| | - Nadim Mahmud
- Division of Hematology/Oncology, Department of Medicine, University of Illinois College of Medicine, Chicago, Illinois, USA.,Clinical Stem Cell Laboratory, UI Blood & Marrow Transplant Program, University of Illinois Hospital and Health Sciences System, Chicago, Illinois, USA
| |
Collapse
|
32
|
Li S, Yao JC, Li JT, Schmidt AP, Link DC. TLR7/8 agonist treatment induces an increase in bone marrow resident dendritic cells and hematopoietic progenitor expansion and mobilization. Exp Hematol 2021; 96:35-43.e7. [PMID: 33556431 PMCID: PMC9900459 DOI: 10.1016/j.exphem.2021.02.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 01/28/2021] [Accepted: 02/01/2021] [Indexed: 02/08/2023]
Abstract
There is accumulating evidence suggesting that toll-like receptor (TLR) signals play an important role in the regulation of hematopoietic stem/progenitor cells (HSPCs). TLR7/8 stimulation induces the myeloid differentiation of normal HSPCs and acute myeloid leukemia cells. However, the in vivo effect of TLR7/8 agonists on hematopoiesis is largely unknown. Here, we show that, similar to TLR4 and TLR2, treatment with the TLR7/8 agonist R848 induces an expansion of phenotypic hematopoietic stem cells (HSCs) with reduced repopulating potential and HSPC mobilization. In contrast to chronic TLR4 stimulation, treatment with R848 for 5 days did not induce a significant increase in myeloid-biased HSCs. Treatment with R848 results in a significant increase in classic dendritic cells (DCs) in the bone marrow, but a decrease in common dendritic cell progenitors and pre-DCs. Phenotypic analysis of DCs revealed that R848 treatment is associated with altered expression of certain chemokines, activation markers, and migratory receptors. Together, these data indicate that systemic administration of a TLR7/8 agonist has unique effects on hematopoiesis, including the expansion of DCs in the bone marrow, that might have clinical relevance to augment responses to certain immunotherapies, such as cancer vaccines and immune checkpoint blockade.
Collapse
Affiliation(s)
- Sidan Li
- Division of Oncology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA.,Hematology Oncology Center, Beijing Children’s Hospital, National Center for Children’s Health, Capital Medial University, Beijing, China
| | - Juo-Chin Yao
- Division of Oncology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Justin T. Li
- Division of Oncology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Amy P. Schmidt
- Division of Oncology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Daniel C. Link
- Division of Oncology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| |
Collapse
|
33
|
Mukherjee S, Reddy O, Panch S, Stroncek D. Establishment of a cell processing laboratory to support hematopoietic stem cell transplantation and chimeric antigen receptor (CAR)-T cell therapy. Transfus Apher Sci 2021; 60:103066. [PMID: 33472742 DOI: 10.1016/j.transci.2021.103066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Cell processing laboratories are an important part of cancer treatment centers. Cell processing laboratories began by supporting hematopoietic stem cell (HSC) transplantation programs. These laboratories adapted closed bag systems, centrifuges, sterile connecting devices and other equipment used in transfusion services/blood banks to remove red blood cells and plasma from marrow and peripheral blood stem cells products. The success of cellular cancer immunotherapies such as Chimeric Antigen Receptor (CAR) T-cells has increased the importance of cell processing laboratories. Since many of the diseases successfully treated by CAR T-cell therapy are also treated by HSC transplantation and since HSC transplantation teams are well suited to manage patients treated with CAR T-cells, many cell processing laboratories have begun to produce CAR T-cells. The methods that have been used to process HSCs have been modified for T-cell enrichment, culture, stimulation, transduction and expansion for CAR T-cell production. While processing laboratories are well suited to manufacture CAR T-cells and other cellular therapies, producing these therapies is challenging. The manufacture of cellular therapies requires specialized facilities which are costly to build and maintain. The supplies and reagents, especially vectors, can also be expensive. Finally, highly skilled staff are required. The use of automated equipment for cell production may reduce labor requirements and the cost of facilities. The steps used to produce CAR T-cells are reviewed, as well as various strategies for establishing a laboratory to manufacture these cells.
Collapse
Affiliation(s)
- Somnath Mukherjee
- Center for Cellular Engineering, Department of Transfusion Medicine, NIH Clinical Center, Bethesda, MD, USA; Department of Transfusion Medicine, All India Institute of Medical Sciences, Bhubaneswar, 751019, Odisha, India
| | - Opal Reddy
- Center for Cellular Engineering, Department of Transfusion Medicine, NIH Clinical Center, Bethesda, MD, USA
| | - Sandhya Panch
- Center for Cellular Engineering, Department of Transfusion Medicine, NIH Clinical Center, Bethesda, MD, USA
| | - David Stroncek
- Center for Cellular Engineering, Department of Transfusion Medicine, NIH Clinical Center, Bethesda, MD, USA.
| |
Collapse
|
34
|
Otsuka H, Endo Y, Ohtsu H, Inoue S, Noguchi S, Nakamura M, Soeta S. Histidine decarboxylase deficiency inhibits NBP-induced extramedullary hematopoiesis by modifying bone marrow and spleen microenvironments. Int J Hematol 2021; 113:348-361. [PMID: 33398631 DOI: 10.1007/s12185-020-03051-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/18/2020] [Accepted: 11/20/2020] [Indexed: 01/03/2023]
Abstract
Histidine decarboxylase (HDC), a histamine synthase, is expressed in various hematopoietic cells and is induced by hematopoietic cytokines such as granulocyte colony-stimulating factor (G-CSF). We previously showed that nitrogen-containing bisphosphonate (NBP)-treatment induces extramedullary hematopoiesis via G-CSF stimulation. However, the function of HDC in NBP-induced medullary and extramedullary hematopoiesis remains unclear. Here, we investigated changes in hematopoiesis in wild-type and HDC-deficient (HDC-KO) mice. NBP treatment did not induce anemia in wild-type or HDC-KO mice, but did produce a gradual increase in serum G-CSF levels in wild-type mice. NBP treatment also enhanced Hdc mRNA expression and erythropoiesis in the spleen and reduced erythropoiesis in bone marrow and the number of vascular adhesion molecule 1 (VCAM-1)-positive macrophages in wild-type mice, as well as increased the levels of hematopoietic progenitor cells and proliferating cells in the spleen and enhanced expression of bone morphogenetic protein 4 (Bmp4), CXC chemokine ligand 12 (Cxcl12), and hypoxia inducible factor 1 (Hif1) in the spleen. However, such changes were not observed in HDC-KO mice. These results suggest that histamine may affect hematopoietic microenvironments of the bone marrow and spleen by changing hematopoiesis-related factors in NBP-induced extramedullary hematopoiesis.
Collapse
Affiliation(s)
- Hirotada Otsuka
- Laboratory of Veterinary Anatomy, Nippon Veterinary and Life Science University, 1-7-1 Kyonancho,Musashino-shi, Tokyo, 180-8602, Japan
| | - Yasuo Endo
- Division of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Tohoku University, 4-1 Seiryomachi, Aoba-ku, Sendai-shi, Miyagi, 980-8575, Japan
| | - Hiroshi Ohtsu
- Tekiju Rehabilitation Hospital, 2-11-32 Hanayamacho, Nagata-ku, Kobe-shi, Hyogo, 653-0876, Japan.,Tohoku University, 4-1 Seiryomachi, Aoba-ku, Sendai-shi, Miyagi, 980-8575, Japan
| | - Satoshi Inoue
- Department of Oral Anatomy and Developmental Biology, School of Dentistry, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan
| | - Syunya Noguchi
- Department of Molecular Medicine and Anatomy, Graduate School of Medicine, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602, Japan
| | - Masanori Nakamura
- Department of Oral Anatomy and Developmental Biology, School of Dentistry, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan
| | - Satoshi Soeta
- Laboratory of Veterinary Anatomy, Nippon Veterinary and Life Science University, 1-7-1 Kyonancho,Musashino-shi, Tokyo, 180-8602, Japan.
| |
Collapse
|
35
|
Zorina T, Black L. Mesenchymal–Hematopoietic Stem Cell Axis: Applications for Induction of Hematopoietic Chimerism and Therapies for Malignancies. Stem Cells 2021. [DOI: 10.1007/978-3-030-77052-5_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
36
|
Mediators of Prolonged Hematopoietic Progenitor Cell Mobilization After Severe Trauma. J Surg Res 2020; 260:315-324. [PMID: 33373851 DOI: 10.1016/j.jss.2020.11.084] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 11/11/2020] [Accepted: 11/15/2020] [Indexed: 11/20/2022]
Abstract
BACKGROUND This study investigated the molecular mediators of prolonged hematopoietic progenitor cell mobilization a trauma and chronic stress and the role of propranolol in modifying this response. METHODS Sprague-Dawley rats were randomized to lung contusion (LC), LC plus hemorrhagic shock (LCHS), or LCHS with daily restraint stress (LCHS/CS). Propranolol was administered daily. Bone marrow (BM) and lung expression of high mobility group box 1 (HMGB1), granulocyte colony-stimulating factor (G-CSF), neutrophil elastase, stromal cell-derived factor 1 (SDF-1)/CXR4, and vascular cell adhesion protein 1 (VCAM-1)/very late antigen-4 were measured by real-time polymerase chain reaction. RESULTS Bone marrow HMGB1, G-CSF, and neutrophil elastase expression were significantly elevated two- to four-fold after LCHS/CS, and all were decreased with the use of propranolol. SDF-1 and VCAM-1 were both significantly decreased after LCHS/CS. CONCLUSIONS The increased expression of HMGB1 and G-CSF and decreased expression of BM anchoring molecules, SDF-1 and VCAM-1, after LCHS/CS, likely mediates prolonged hematopoietic progenitor cell mobilization. Propranolol's ability to reduce HMGB1, G-CSF, and neutrophil elastase expression suggests that the mobilization of hematopoietic progenitor cells was driven by persistent hypercatecholaminemia.
Collapse
|
37
|
Pinheiro D, Mawhin MA, Prendecki M, Woollard KJ. In-silico analysis of myeloid cells across the animal kingdom reveals neutrophil evolution by colony-stimulating factors. eLife 2020; 9:60214. [PMID: 33236983 PMCID: PMC7717901 DOI: 10.7554/elife.60214] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 11/24/2020] [Indexed: 12/12/2022] Open
Abstract
Neutrophils constitute the largest population of phagocytic granulocytes in the blood of mammals. The development and function of neutrophils and monocytes is primarily governed by the granulocyte colony-stimulating factor receptor family (CSF3R/CSF3) and macrophage colony-stimulating factor receptor family (CSF1R/IL34/CSF1) respectively. Using various techniques this study considered how the emergence of receptor:ligand pairings shaped the distribution of blood myeloid cell populations. Comparative gene analysis supported the ancestral pairings of CSF1R/IL34 and CSF3R/CSF3, and the emergence of CSF1 later in lineages after the advent of Jawed/Jawless fish. Further analysis suggested that the emergence of CSF3 lead to reorganisation of granulocyte distribution between amphibian and early reptiles. However, the advent of endothermy likely contributed to the dominance of the neutrophil/heterophil in modern-day mammals and birds. In summary, we show that the emergence of CSF3R/CSF3 was a key factor in the subsequent evolution of the modern-day mammalian neutrophil.
Collapse
Affiliation(s)
- Damilola Pinheiro
- Centre for Inflammatory Disease, Department of Immunology and Inflammation, Imperial College London, London, United Kingdom
| | - Marie-Anne Mawhin
- Centre for Inflammatory Disease, Department of Immunology and Inflammation, Imperial College London, London, United Kingdom
| | - Maria Prendecki
- Centre for Inflammatory Disease, Department of Immunology and Inflammation, Imperial College London, London, United Kingdom
| | - Kevin J Woollard
- Centre for Inflammatory Disease, Department of Immunology and Inflammation, Imperial College London, London, United Kingdom
| |
Collapse
|
38
|
Maeda H, Okada KI, Fujii T, Oba MS, Kawai M, Hirono S, Kodera Y, Sho M, Akahori T, Shimizu Y, Ambo Y, Kondo N, Murakami Y, Ohuchida J, Eguchi H, Nagano H, Sakamoto J, Yamaue H. No Significant Effect of Daikenchuto (TJ-100) on Peritoneal IL-9 and IFN-γ Levels After Pancreaticoduodenectomy. Clin Exp Gastroenterol 2020; 13:461-466. [PMID: 33116743 PMCID: PMC7585168 DOI: 10.2147/ceg.s262082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 09/12/2020] [Indexed: 11/23/2022] Open
Abstract
Aim and Background TJ-100 is a traditional Japanese medicine that affects inflammation and gastrointestinal motility, and is used as a preventive and treatment for paralytic ileus. This study aims at determining the effect of TJ-100 on the peritoneal levels of IFN-γ/IL-9, cytokines related to ileus, after pancreaticoduodenectomy (PD) in a clinical setting. Methods This was a subsidiary study of the clinical trial investigating the effect of TJ-100 on postoperative bowel function. Ascites was collected from 180 patients using an abdominal drainage tube on postoperative day 1 and 3 after PD (POD 1 or POD 3) and used to measure 27 cytokines. We performed univariate and multivariate analyses using several perioperative variables and administration of TJ-100/placebo to determine the effect of TJ-100 on the levels of IFN-γ and IL-9. Results Peritoneal levels of IL-9 and IFN-γ decreased between POD 1 and 3 (Wilcoxon signed-rank test p<0.001). Multivariate analysis was performed after univariate analysis to select the variables and patients with a body mass index of ≥22 kg/m2, older age, use of epidural anesthesia, and longer surgery correlated with the levels of IL-9 and IFN-γ. However, we could not detect a correlation between the use of TJ-100 and cytokine levels in ascites either on POD 1 or 3. Conclusion TJ-100 did not affect peritoneal IL-9 and IFN-γ levels after PD. This was in accordance with published clinical findings showing no improvement in bowel function after PD and TJ-100 treatment.
Collapse
Affiliation(s)
- Hiromichi Maeda
- Department of Surgery, Kochi Medical School, Nankoku, Kochi 780-8505, Japan
| | - Ken-Ichi Okada
- Second Department of Surgery, Wakayama Medical University, Wakayama 641-8510, Japan
| | - Tsutomu Fujii
- Department of Surgery and Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Mari S Oba
- Department of Medical Statistics Faculty of Medicine, Toho University, Ota-ku, Tokyo 143-8540, Japan
| | - Manabu Kawai
- Second Department of Surgery, Wakayama Medical University, Wakayama 641-8510, Japan
| | - Seiko Hirono
- Second Department of Surgery, Wakayama Medical University, Wakayama 641-8510, Japan
| | - Yasuhiro Kodera
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Showa-ku, Nagoya 466-8560, Japan
| | - Masayuki Sho
- Department of Surgery, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Takahiro Akahori
- Department of Surgery, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Yasuhiro Shimizu
- Department of Gastroenterological Surgery, Aichi Cancer Center Hospital, Nagoya 464-8681, Japan
| | - Yoshiyasu Ambo
- Department of Surgery, Teine-Keijinkai Hospital, Sapporo, Hokkaido 006-8555, Japan
| | - Naru Kondo
- Department of Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan
| | - Yoshiaki Murakami
- Department of Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan
| | - Jiro Ohuchida
- Department of Surgery, Miyazaki Prefectural Miyazaki Hospital, Miyazaki 889-1692, Japan
| | - Hidetoshi Eguchi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Hiroaki Nagano
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi 755-8505, Japan
| | | | - Hiroki Yamaue
- Second Department of Surgery, Wakayama Medical University, Wakayama 641-8510, Japan
| |
Collapse
|
39
|
Hess NJ, Lindner PN, Vazquez J, Grindel S, Hudson AW, Stanic AK, Ikeda A, Hematti P, Gumperz JE. Different Human Immune Lineage Compositions Are Generated in Non-Conditioned NBSGW Mice Depending on HSPC Source. Front Immunol 2020; 11:573406. [PMID: 33193358 PMCID: PMC7604455 DOI: 10.3389/fimmu.2020.573406] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 09/28/2020] [Indexed: 01/10/2023] Open
Abstract
NBSGW mice are highly immunodeficient and carry a hypomorphic mutation in the c-kit gene, providing a host environment that supports robust human hematopoietic expansion without pre-conditioning. These mice thus provide a model to investigate human hematopoietic engraftment in the absence of conditioning-associated damage. We compared transplantation of human CD34+ HSPCs purified from three different sources: umbilical cord blood, adult bone marrow, and adult G-CSF mobilized peripheral blood. HSPCs from mobilized peripheral blood were significantly more efficient (as a function of starting HSPC dose) than either cord blood or bone marrow HSPCs at generating high levels of human chimerism in the murine blood and bone marrow by 12 weeks post-transplantation. While T cells do not develop in this model due to thymic atrophy, all three HSPC sources generated a human compartment that included B lymphocytic, myeloid, and granulocytic lineages. However, the proportions of these lineages varied significantly according to HSPC source. Mobilized blood HSPCs produced a strikingly higher proportion of granulocyte lineage cells (~35% as compared to ~5%), whereas bone marrow HSPC output was dominated by B lymphocytic cells, and cord blood HSPC output was enriched for myeloid lineages. Following transplantation, all three HSPC sources showed a shift in the CD34+ subset towards CD45RA+ progenitors along with a complete loss of the CD45RA-CD49f+ long-term HSC subpopulation, suggesting this model promotes mainly short-term HSC activity. Mice transplanted with cord blood HSPCs maintained a diversified human immune compartment for at least 36 weeks after the primary transplant, although mice given adult bone marrow HSPCs had lost diversity and contained only myeloid cells by this time point. Finally, to assess the impact of non-HSPCs on transplantation outcome, we also tested mice transplanted with total or T cell-depleted adult bone marrow mononuclear cells. Total bone marrow mononuclear cell transplants produced significantly lower human chimerism compared to purified HSPCs, and T-depletion rescued B cell levels but not other lineages. Together these results reveal marked differences in engraftment efficiency and lineage commitment according to HSPC source and suggest that T cells and other non-HSPC populations affect lineage output even in the absence of conditioning-associated inflammation.
Collapse
Affiliation(s)
- Nicholas J Hess
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, United States
| | - Payton N Lindner
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, United States
| | - Jessica Vazquez
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, United States
| | - Samuel Grindel
- Department of Medical Genetics, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, United States
| | - Amy W Hudson
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Aleksandar K Stanic
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, United States
| | - Akihiro Ikeda
- Department of Medical Genetics, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, United States
| | - Peiman Hematti
- Division of Hematology/Oncology, Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, United States
| | - Jenny E Gumperz
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, United States
| |
Collapse
|
40
|
Hormaechea-Agulla D, Le DT, King KY. Common Sources of Inflammation and Their Impact on Hematopoietic Stem Cell Biology. CURRENT STEM CELL REPORTS 2020; 6:96-107. [PMID: 32837857 PMCID: PMC7429415 DOI: 10.1007/s40778-020-00177-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Purpose of Review Inflammatory signals have emerged as critical regulators of hematopoietic stem cell (HSC) function. Specifically, HSCs are highly responsive to acute changes in systemic inflammation and this influences not only their division rate but also their lineage fate. Identifying how inflammation regulates HSCs and shapes the blood system is crucial to understanding the mechanisms underpinning these processes, as well as potential links between them. Recent Findings A widening array of physiologic and pathologic processes involving heightened inflammation are now recognized to critically affect HSC biology and blood lineage production. Conditions documented to affect HSC function include not only acute and chronic infections but also autoinflammatory conditions, irradiation injury, and physiologic states such as aging and obesity. Summary Recognizing the contexts during which inflammation affects primitive hematopoiesis is essential to improving our understanding of HSC biology and informing new therapeutic interventions against maladaptive hematopoiesis that occurs during inflammatory diseases, infections, and cancer-related disorders.
Collapse
Affiliation(s)
- Daniel Hormaechea-Agulla
- Section of Infectious Diseases, Department of Pediatrics, Baylor College of Medicine, Houston, TX USA
| | - Duy T. Le
- Section of Infectious Diseases, Department of Pediatrics, Baylor College of Medicine, Houston, TX USA
- Program in Immunology, Graduate School of Biomedical Sciences, Baylor College of Medicine, Houston, TX USA
| | - Katherine Y. King
- Section of Infectious Diseases, Department of Pediatrics, Baylor College of Medicine, Houston, TX USA
- Program in Immunology, Graduate School of Biomedical Sciences, Baylor College of Medicine, Houston, TX USA
| |
Collapse
|
41
|
Han X, Ma Y, Zhang K, Zhang P, Shao N, Qin L. Microfluidic Cell Trap Arrays for Single Hematopoietic Stem/Progenitor Cell Behavior Analysis. Proteomics 2020; 20:e1900223. [PMID: 31709756 PMCID: PMC7211552 DOI: 10.1002/pmic.201900223] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/29/2019] [Indexed: 11/09/2022]
Abstract
Hematopoietic stem/progenitor cell (HSPC) mobilization from the bone marrow to the bloodstream is a required step for blood cell renewal, and HSPC motility is a clinically relevant standard for peripheral blood stem cell transplantation. Individual HSPCs exhibit considerable heterogeneity in motility behaviors, which are subject to complex intrinsic and extrinsic regulatory mechanisms. Motility-based cell sorting is then demanded to fulfill the study of such mechanism complexity. However, due to the HSPC heterogeneity and difficulty in monitoring cell motility, such a platform is still not available. With the recent development of microfluidics technology, motility-based monitoring, sorting, collecting, and analysis of HSPC behaviors are highly possible and achievable if fluid channels and structures are correctly engineered. Here, a new design of microfluidic arrays for single-cell trapping is presented, enabling high-throughput analysis of individual HSPC motility and behavior. Using these arrays, it is observed that HSPC motility is positively correlated with CD34 asymmetric inheritance and cell differentiation. Transcriptomic analysis of HSPCs sorted according to motility reveals changes in expression of genes associated with the regulation of stem-cell maintenance. Ultimately, this novel, physical cell-sorting system can facilitate the screening of HSPC mobilization compounds and the analysis of signals driving HSPC fate decisions.
Collapse
Affiliation(s)
- Xin Han
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, 77030, USA
- Department of Cell Biology and Medical Genetics, Nanjing University of Chinese Medicine, Nanjing, 210023, P. R. China
| | - Yuan Ma
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Kai Zhang
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Pengchao Zhang
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Ning Shao
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Lidong Qin
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, 77030, USA
| |
Collapse
|
42
|
Kara S, Amon L, Lühr JJ, Nimmerjahn F, Dudziak D, Lux A. Impact of Plasma Membrane Domains on IgG Fc Receptor Function. Front Immunol 2020; 11:1320. [PMID: 32714325 PMCID: PMC7344230 DOI: 10.3389/fimmu.2020.01320] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 05/26/2020] [Indexed: 12/13/2022] Open
Abstract
Lipid cell membranes not only represent the physical boundaries of cells. They also actively participate in many cellular processes. This contribution is facilitated by highly complex mixtures of different lipids and incorporation of various membrane proteins. One group of membrane-associated receptors are Fc receptors (FcRs). These cell-surface receptors are crucial for the activity of most immune cells as they bind immunoglobulins such as immunoglobulin G (IgG). Based on distinct mechanisms of IgG binding, two classes of Fc receptors are now recognized: the canonical type I FcγRs and select C-type lectin receptors newly referred to as type II FcRs. Upon IgG immune complex induced cross-linking, these receptors are known to induce a multitude of cellular effector responses in a cell-type dependent manner, including internalization, antigen processing, and presentation as well as production of cytokines. The response is also determined by specific intracellular signaling domains, allowing FcRs to either positively or negatively modulate immune cell activity. Expression of cell-type specific combinations and numbers of receptors therefore ultimately sets a threshold for induction of effector responses. Mechanistically, receptor cross-linking and localization to lipid rafts, i.e., organized membrane microdomains enriched in intracellular signaling proteins, were proposed as major determinants of initial FcR activation. Given that immune cell membranes might also vary in their lipid compositions, it is reasonable to speculate, that the cell membrane and especially lipid rafts serve as an additional regulator of FcR activity. In this article, we aim to summarize the current knowledge on the interplay of lipid rafts and IgG binding FcRs with a focus on the plasma membrane composition and receptor localization in immune cells, the proposed mechanisms underlying this localization and consequences for FcR function with respect to their immunoregulatory capacity.
Collapse
Affiliation(s)
- Sibel Kara
- Department of Biology, Institute of Genetics, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Lukas Amon
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Jennifer J Lühr
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany.,Division of Nano-Optics, Max-Planck Institute for the Science of Light, Erlangen, Germany
| | - Falk Nimmerjahn
- Department of Biology, Institute of Genetics, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany.,Medical Immunology Campus Erlangen (MICE), Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany.,Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Diana Dudziak
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany.,Medical Immunology Campus Erlangen (MICE), Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany.,Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany.,Comprehensive Cancer Center Erlangen-European Metropolitan Area of Nürnberg (CCC ER-EMN), Erlangen, Germany
| | - Anja Lux
- Department of Biology, Institute of Genetics, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany.,Medical Immunology Campus Erlangen (MICE), Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
43
|
Yvan-Charvet L, Ng LG. Granulopoiesis and Neutrophil Homeostasis: A Metabolic, Daily Balancing Act. Trends Immunol 2020; 40:598-612. [PMID: 31256783 DOI: 10.1016/j.it.2019.05.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/06/2019] [Accepted: 05/06/2019] [Indexed: 02/07/2023]
Abstract
Granulopoiesis is part of the hematopoietic hierarchic architecture, where hematopoietic stem cells give rise to highly proliferative multipotent and lineage-committed granulocytic progenitor cells that differentiate into unipotent neutrophil progenitors. Given their short lifespan, neutrophils are rapidly cleared from circulation through specialized efferocytic macrophages. Together with an intrinsic clock, these processes contribute to circadian fluctuations, preserving self-tolerance and protection against invading pathogens. However, metabolic perturbation of granulopoiesis and neutrophil homeostasis can result in low-grade chronic inflammation, as observed with aging. During acute pathogenic infections, hematopoiesis can also be switched into emergency mode, which has been recently associated with significant neutrophil functional heterogeneity. This review focuses on a new reassessment of regulatory mechanisms governing neutrophil production, life-cycle, and diversity in health and disease.
Collapse
Affiliation(s)
- Laurent Yvan-Charvet
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1065, Université Côte d'Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), Atip-Avenir, Fédération Hospitalo-Universitaire (FHU) Oncoage, 06204 Nice, France.
| | - Lai Guan Ng
- Singapore Immunology Network (SIgN), A*STAR, Biopolis, Singapore 138648, Singapore; State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences, 288 Nanjing Road, Tianjin 300020, China; School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore; Department of Microbiology & Immunology, Immunology Programme, Life Science Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore.
| |
Collapse
|
44
|
He J, Russell T, Qiu X, Hao F, Kyle M, Chin L, Zhao LR. The contribution of stem cell factor and granulocyte colony-stimulating factor in reducing neurodegeneration and promoting neurostructure network reorganization after traumatic brain injury. Brain Res 2020; 1746:147000. [PMID: 32579949 DOI: 10.1016/j.brainres.2020.147000] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/16/2020] [Accepted: 06/17/2020] [Indexed: 01/03/2023]
Abstract
Traumatic brain injury (TBI) is a major cause of death and disability in young adults worldwide. TBI-induced long-term cognitive deficits represent a growing clinical problem. Stem cell factor (SCF) and granulocyte colony-stimulating factor (G-CSF) are involved in neuroprotection and neuronal plasticity. However, the knowledge concerning reparative efficacy of SCF + G-CSF treatment in post-acute TBI recovery remains incomplete. This study aims to determine the efficacy of SCF + G-CSF on post-acute TBI recovery in young adult mice. The controlled cortical impact model of TBI was used for inducing a severe damage in the motor cortex of the right hemisphere in 8-week-old male C57BL mice. SCF + G-CSF treatment was initiated 3 weeks after induction of TBI. Severe TBI led to persistent motor functional deficits (Rota-Rod test) and impaired spatial learning function (water maze test). SCF + G-CSF treatment significantly improved the severe TBI-impaired spatial learning function 6 weeks after treatment. TBI also caused significant increases of Fluoro-Jade C positive degenerating neurons in bilateral frontal cortex, striatum and hippocampus, and significant reductions in MAP2+ apical dendrites and overgrowth of SMI312+ axons in peri-TBI cavity frontal cortex and in the ipsilateral hippocampal CA1 at 24 weeks post-TBI. SCF + G-CSF treatment significantly reduced TBI-induced neurodegeneration in the contralateral frontal cortex and hippocampal CA1, increased MAP2+ apical dendrites in the peri-TBI cavity frontal cortex, and prevented TBI-induced axonal overgrowth in both the peri-TBI cavity frontal cortex and ipsilateral hippocampal CA1.These findings reveal a novel pathology of axonal overgrowth after severe TBI and demonstrate a therapeutic potential of SCF + G-CSF in ameliorating severe TBI-induced long-term neuronal pathology, neurostructural network malformation, and impairments in spatial learning.
Collapse
Affiliation(s)
- Junchi He
- Department of Neurosurgery, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | - Thomas Russell
- Department of Neurosurgery, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | - Xuecheng Qiu
- Department of Neurosurgery, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | - Fei Hao
- Department of Neurosurgery, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | - Michele Kyle
- Department of Neurosurgery, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | - Lawrence Chin
- Department of Neurosurgery, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | - Li-Ru Zhao
- Department of Neurosurgery, State University of New York Upstate Medical University, Syracuse, NY 13210, USA.
| |
Collapse
|
45
|
Schauer T, Hojman P, Gehl J, Christensen JF. Exercise training as prophylactic strategy in the management of neutropenia during chemotherapy. Br J Pharmacol 2020; 179:2925-2937. [DOI: 10.1111/bph.15141] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/28/2020] [Accepted: 05/11/2020] [Indexed: 12/23/2022] Open
Affiliation(s)
- Tim Schauer
- Centre for Physical Activity Research, RigshospitaletUniversity of Copenhagen Copenhagen Denmark
| | - Pernille Hojman
- Centre for Physical Activity Research, RigshospitaletUniversity of Copenhagen Copenhagen Denmark
| | - Julie Gehl
- Center for Experimental Drug and Gene Electrotransfer (C*EDGE), Department of Clinical Oncology and Palliative CareZealand University Hospital Køge Denmark
- Faculty of Health and Medical Sciences, Department of Clinical MedicineUniversity of Copenhagen Copenhagen Denmark
| | - Jesper Frank Christensen
- Centre for Physical Activity Research, RigshospitaletUniversity of Copenhagen Copenhagen Denmark
| |
Collapse
|
46
|
Vinci MC, Gambini E, Bassetti B, Genovese S, Pompilio G. When Good Guys Turn Bad: Bone Marrow's and Hematopoietic Stem Cells' Role in the Pathobiology of Diabetic Complications. Int J Mol Sci 2020; 21:ijms21113864. [PMID: 32485847 PMCID: PMC7312629 DOI: 10.3390/ijms21113864] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 05/26/2020] [Accepted: 05/27/2020] [Indexed: 12/15/2022] Open
Abstract
Diabetes strongly contributes to the development of cardiovascular disease, the leading cause of mortality and morbidity in these patients. It is widely accepted that hyperglycemia impairs hematopoietic stem/progenitor cell (HSPC) mobilization from the bone marrow (BM) by inducing stem cell niche dysfunction. Moreover, a recent study demonstrated that type 2 diabetic patients are characterized by significant depletion of circulating provascular progenitor cells and increased frequency of inflammatory cells. This unbalance, potentially responsible for the reduction of intrinsic vascular homeostatic capacity and for the establishment of a low-grade inflammatory status, suggests that bone BM-derived HSPCs are not only victims but also active perpetrators in diabetic complications. In this review, we will discuss the most recent literature on the molecular mechanisms underpinning hyperglycemia-mediated BM dysfunction and differentiation abnormality of HSPCs. Moreover, a section will be dedicated to the new glucose-lowering therapies that by specifically targeting the culprits may prevent or treat diabetic complications.
Collapse
Affiliation(s)
- Maria Cristina Vinci
- Unit of Vascular Biology and Regenerative Medicine, IRCCS Centro Cardiologico Monzino, I-20138- Milan, Italy; (E.G.); (B.B.); (G.P.)
- Correspondence: ; Tel.: +39-02-5800-2028
| | - Elisa Gambini
- Unit of Vascular Biology and Regenerative Medicine, IRCCS Centro Cardiologico Monzino, I-20138- Milan, Italy; (E.G.); (B.B.); (G.P.)
| | - Beatrice Bassetti
- Unit of Vascular Biology and Regenerative Medicine, IRCCS Centro Cardiologico Monzino, I-20138- Milan, Italy; (E.G.); (B.B.); (G.P.)
| | - Stefano Genovese
- Unit of Diabetes, Endocrine and Metabolic Diseases, IRCCS Centro Cardiologico Monzino, I-20138- Milan, Italy;
| | - Giulio Pompilio
- Unit of Vascular Biology and Regenerative Medicine, IRCCS Centro Cardiologico Monzino, I-20138- Milan, Italy; (E.G.); (B.B.); (G.P.)
| |
Collapse
|
47
|
Stoikou M, van Breda SV, Schäfer G, Vokalova L, Giaglis S, Plattner A, Infanti L, Holbro A, Hahn S, Rossi SW, Buser A. G-CSF Infusion for Stem Cell Mobilization Transiently Increases Serum Cell-Free DNA and Protease Concentrations. Front Med (Lausanne) 2020; 7:155. [PMID: 32411715 PMCID: PMC7198785 DOI: 10.3389/fmed.2020.00155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 04/08/2020] [Indexed: 01/13/2023] Open
Abstract
G-CSF for stem cell mobilization increases circulating levels of myeloid cells at different stages of maturation. Polymorphonuclear cells (PMNs) are also mobilized in high numbers. It was previously reported that G-CSF primes PMNs toward the release of neutrophils extracellular traps (NETs). Since NETs are often involved in thrombotic events, we hypothesized that high G-CSF blood concentrations could enhance PMN priming toward NET formation in healthy hematopoietic stem cell donors, predisposing them to thrombotic events. However, we found that G-CSF does not prime PMNs toward NETs formation, but increases the serum concentration of cell-free DNA, proteases like neutrophils elastase and myeloperoxidase, and reactive oxygen species. This could possibly create an environment disposed to induce thrombotic events in the presence of additional predisposing factors.
Collapse
Affiliation(s)
- Maria Stoikou
- Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Shane V van Breda
- Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Günther Schäfer
- Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Lenka Vokalova
- Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Stavros Giaglis
- Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | | | - Laura Infanti
- Blood Transfusion Service, Swiss Red Cross Basel, Basel, Switzerland
| | - Andreas Holbro
- Blood Transfusion Service, Swiss Red Cross Basel, Basel, Switzerland
| | - Sinuhe Hahn
- Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Simona W Rossi
- Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Andreas Buser
- Blood Transfusion Service, Swiss Red Cross Basel, Basel, Switzerland
| |
Collapse
|
48
|
Innate immunity orchestrates the mobilization and homing of hematopoietic stem/progenitor cells by engaging purinergic signaling-an update. Purinergic Signal 2020; 16:153-166. [PMID: 32415576 DOI: 10.1007/s11302-020-09698-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 03/30/2020] [Indexed: 02/07/2023] Open
Abstract
Bone marrow (BM) as an active hematopoietic organ is highly sensitive to changes in body microenvironments and responds to external physical stimuli from the surrounding environment. In particular, BM tissue responds to several cues related to infections, strenuous exercise, tissue/organ damage, circadian rhythms, and physical challenges such as irradiation. These multiple stimuli affect BM cells to a large degree through a coordinated response of the innate immunity network as an important guardian for maintaining homeostasis of the body. In this review, we will foc++us on the role of purinergic signaling and innate immunity in the trafficking of hematopoietic stem/progenitor cells (HSPCs) during their egression from the BM into peripheral blood (PB), as seen along pharmacological mobilization, and in the process of homing and subsequent engraftment into BM after hematopoietic transplantation. Innate immunity mediates these processes by engaging, in addition to certain peptide-based factors, other important non-peptide mediators, including bioactive phosphosphingolipids and extracellular nucleotides, as the main topic of this review. Elucidation of these mechanisms will allow development of more efficient stem cell mobilization protocols to harvest the required number of HSPCs for transplantation and to accelerate hematopoietic reconstitution in transplanted patients.
Collapse
|
49
|
Zhang X, Karatepe K, Chiewchengchol D, Zhu H, Guo R, Liu P, Yu H, Ren Q, Luo X, Cheng T, Ma F, Xu Y, Han M, Luo HR. Bacteria-Induced Acute Inflammation Does Not Reduce the Long-Term Reconstitution Capacity of Bone Marrow Hematopoietic Stem Cells. Front Immunol 2020; 11:626. [PMID: 32373117 PMCID: PMC7179742 DOI: 10.3389/fimmu.2020.00626] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 03/19/2020] [Indexed: 12/04/2022] Open
Abstract
Pathogen-initiated chronic inflammation or autoimmune diseases accelerate proliferation and promote differentiation of hematopoietic stem cells (HSCs) but simultaneously reduce reconstitution capacity. Nevertheless, the effect of acute infection and inflammation on functional HSCs is still largely unknown. Here we found that acute infection elicited by heat-inactivated Escherichia coli (HIEC) expanded bone marrow lineage-negative (Lin)− stem-cell antigen 1 (Sca-1)+cKit+ (LSK) cell population, leading to reduced frequency of functional HSCs in LSK population. However, the total number of BM phenotypic HSCs (Flk2−CD48−CD150+ LSK cells) was not altered in HIEC-challenged mice. Additionally, the reconstitution capacity of the total BM between infected and uninfected mice was similar by both the competitive repopulation assay and measurement of functional HSCs by limiting dilution. Thus, occasionally occurring acute inflammation, which is critical for host defenses, is unlikely to affect HSC self-renewal and maintenance of long-term reconstitution capacity. During acute bacterial infection and inflammation, the hematopoietic system can replenish hematopoietic cells consumed in the innate inflammatory response by accelerating hematopoietic stem and progenitor cell proliferation, but preserving functional HSCs in the BM.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Department of Pathology, Harvard Stem Cell Institute (HSCI), Harvard Medical School, Boston, MA, United States.,Department of Lab Medicine, The Stem Cell Program, Children's Hospital Boston, Boston, MA, United States.,Dana-Farber/Harvard Cancer Center, Boston, MA, United States.,The State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Kutay Karatepe
- Department of Pathology, Harvard Stem Cell Institute (HSCI), Harvard Medical School, Boston, MA, United States.,Department of Lab Medicine, The Stem Cell Program, Children's Hospital Boston, Boston, MA, United States.,Dana-Farber/Harvard Cancer Center, Boston, MA, United States
| | - Direkrit Chiewchengchol
- Department of Pathology, Harvard Stem Cell Institute (HSCI), Harvard Medical School, Boston, MA, United States.,Department of Lab Medicine, The Stem Cell Program, Children's Hospital Boston, Boston, MA, United States.,Dana-Farber/Harvard Cancer Center, Boston, MA, United States
| | - Haiyan Zhu
- The State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Rongxia Guo
- The State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Peng Liu
- The State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Hongbo Yu
- Department of Pathology and Laboratory Medicine, VA Boston Healthcare System, West Roxbury, MA, United States
| | - Qian Ren
- The State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Xiao Luo
- Department of Pathology, Harvard Stem Cell Institute (HSCI), Harvard Medical School, Boston, MA, United States.,Department of Lab Medicine, The Stem Cell Program, Children's Hospital Boston, Boston, MA, United States.,Dana-Farber/Harvard Cancer Center, Boston, MA, United States
| | - Tao Cheng
- The State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Fengxia Ma
- The State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Yuanfu Xu
- The State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Mingzhe Han
- Department of Hematopoietic Stem Cell Transplantation, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Hongbo R Luo
- Department of Pathology, Harvard Stem Cell Institute (HSCI), Harvard Medical School, Boston, MA, United States.,Department of Lab Medicine, The Stem Cell Program, Children's Hospital Boston, Boston, MA, United States.,Dana-Farber/Harvard Cancer Center, Boston, MA, United States
| |
Collapse
|
50
|
Bujko K, Kucia M, Ratajczak J, Ratajczak MZ. Hematopoietic Stem and Progenitor Cells (HSPCs). ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1201:49-77. [PMID: 31898781 DOI: 10.1007/978-3-030-31206-0_3] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Hematopoietic stem/progenitor cells (HSPCs) isolated from bone marrow have been successfully employed for 50 years in hematological transplantations. Currently, these cells are more frequently isolated from mobilized peripheral blood or umbilical cord blood. In this chapter, we overview several topics related to these cells including their phenotype, methods for isolation, and in vitro and in vivo assays to evaluate their proliferative potential. The successful clinical application of HSPCs is widely understood to have helped establish the rationale for the development of stem cell therapies and regenerative medicine.
Collapse
Affiliation(s)
- Kamila Bujko
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Magda Kucia
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Janina Ratajczak
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Mariusz Z Ratajczak
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA. .,Department of Regenerative Medicine, Center for Preclinical Research and Technology, Warsaw Medical University, Warsaw, Poland.
| |
Collapse
|