1
|
Nguyen HP, Liu E, Le AQ, Lamsal M, Misra J, Srivastava S, Hemavathy H, Kapur R, Zaid MA, Abonour R, Zhang J, Wek RC, Walker BA, Tran NT. The oligosaccharyltransferase complex is an essential component of multiple myeloma plasma cells. MOLECULAR THERAPY. ONCOLOGY 2025; 33:200964. [PMID: 40200920 PMCID: PMC11978334 DOI: 10.1016/j.omton.2025.200964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 02/03/2025] [Accepted: 03/05/2025] [Indexed: 04/10/2025]
Abstract
Multiple myeloma (MM) is an incurable malignancy characterized by mutated plasma cell clonal expansion in the bone marrow, leading to severe clinical symptoms. Thus, identifying new therapeutic targets for MM is crucial. We identified the oligosaccharyltransferase (OST) complex as a novel vulnerability in MM cells. Elevated expression of this complex is associated with relapsed, high-risk MM, and poor prognosis. Disrupting the OST complex suppressed MM cell growth, induced cell-cycle arrest, and apoptosis. Combined inhibition with bortezomib synergistically eliminated MM cells in vitro and in vivo, via suppressing genes related to bortezomib-resistant phenotypes. Mechanistically, OST complex disruption downregulated MM pathological pathways (mTORC1 pathway, glycolysis, MYC targets, and cell cycle) and induced TRAIL-mediated apoptosis. Notably, MYC translation was robustly suppressed upon inhibiting the OST complex. Collectively, the OST complex presents a novel target for MM treatment, and combining its inhibition with bortezomib offers a promising approach for relapsed MM patients.
Collapse
Affiliation(s)
- Hong Phuong Nguyen
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Enze Liu
- Melvin and Bren Simon Comprehensive Cancer Center, Division of Hematology and Oncology, School of Medicine, Indiana University, Indianapolis, IN, USA
| | - Anh Quynh Le
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Mahesh Lamsal
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jagannath Misra
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Sankalp Srivastava
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Harikrishnan Hemavathy
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Reuben Kapur
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Mohammad Abu Zaid
- Melvin and Bren Simon Comprehensive Cancer Center, Division of Hematology and Oncology, School of Medicine, Indiana University, Indianapolis, IN, USA
| | - Rafat Abonour
- Melvin and Bren Simon Comprehensive Cancer Center, Division of Hematology and Oncology, School of Medicine, Indiana University, Indianapolis, IN, USA
| | - Ji Zhang
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Ronald C. Wek
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Brian A. Walker
- Melvin and Bren Simon Comprehensive Cancer Center, Division of Hematology and Oncology, School of Medicine, Indiana University, Indianapolis, IN, USA
- Center for Computational Biology and Bioinformatics, School of Medicine, Indiana University, Indianapolis, IN, USA
| | - Ngoc Tung Tran
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
2
|
Ljubimov VA, Sun T, Wang J, Li L, Wang PZ, Ljubimov AV, Holler E, Black KL, Kopeček J, Ljubimova JY, Yang J. Blood-brain barrier crossing biopolymer targeting c-Myc and anti-PD-1 activate primary brain lymphoma immunity: Artificial intelligence analysis. J Control Release 2025; 381:113611. [PMID: 40088978 DOI: 10.1016/j.jconrel.2025.113611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 02/27/2025] [Accepted: 03/05/2025] [Indexed: 03/17/2025]
Abstract
Primary Central Nervous System Lymphoma is an aggressive central nervous system neoplasm with poor response to pharmacological treatment, partially due to insufficient drug delivery across blood-brain barrier. In this study, we developed a novel therapy for this lymphoma by combining a targeted nanopolymer treatment with an immune checkpoint inhibitor antibody (anti-PD-1). A N-(2-hydroxypropyl)methacrylamide copolymer-based nanoconjugate was designed to block tumor cell c-Myc oncogene expression by antisense oligonucleotide. Angiopep-2 peptide was conjugated to the copolymer to facilitate nanodrug crossing of the blood-brain barrier. Systemically administered polymeric nanodrug, alone or in combination with immune checkpoint inhibitor antibody anti-PD-1, was tested in syngeneic mouse model of A20 intracranial brain lymphoma. There was no significant survival difference between saline- and free anti-PD-1-treated groups. However, significant survival advantage vs. saline was observed upon treatment with nanodrug bearing Angiopep-2, H6 (6 histidines for endosome escape), and c-Myc antisense alone and especially when it was combined with anti-PD-1 antibody. Animal survival after combined treatment was also significantly increased vs. free anti-PD-1. Artificial Intelligence-assisted analysis of gene expression database after RNA-seq of tumors was used to find novel immune pathways, molecular targets and the most effective multifunctional drugs together with future drug prediction for brain lymphoma in vivo model. Spectral flow cytometry and RNA-seq analysis revealed a robust activation of tumor infiltrating T lymphocytes with enhanced interferon γ signaling and polarization to M1-type macrophages in treated tumors, which was confirmed by immunofluorescence staining. In summary, a new effective blood-brain barrier crossing nano immuno therapeutic system was developed that effectively blocked tumor c-Myc acting in combination with immune checkpoint inhibitor anti-PD-1 to treat primary brain lymphoma. The treatment improved survival of tumor-bearing animals through activation of both the adaptive and innate immune responses.
Collapse
Affiliation(s)
- Vladimir A Ljubimov
- Department of Neurosurgery, Cedars-Sinai Medical Center, 8700 Beverly Blvd., AHSP, Los Angeles, CA 90048, United States
| | - Tao Sun
- Department of Neurosurgery, Cedars-Sinai Medical Center, 8700 Beverly Blvd., AHSP, Los Angeles, CA 90048, United States
| | - Jiawei Wang
- Department of Molecular Pharmaceutics/CCCD, University of Utah, 20 S 2030 E, Salt Lake City, UT 84112, United States
| | - Lian Li
- Department of Molecular Pharmaceutics/CCCD, University of Utah, 20 S 2030 E, Salt Lake City, UT 84112, United States
| | - Paul Z Wang
- Department of Computational Biomedicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States
| | - Alexander V Ljubimov
- Department of Neurosurgery, Cedars-Sinai Medical Center, 8700 Beverly Blvd., AHSP, Los Angeles, CA 90048, United States; Department of Biomedical Sciences, Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States; Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States
| | - Eggehard Holler
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, United States; Institut für Biophysik und Physikalische Biochemie Universität Regensburg, D-93040 Regensburg, Germany
| | - Keith L Black
- Department of Neurosurgery, Cedars-Sinai Medical Center, 8700 Beverly Blvd., AHSP, Los Angeles, CA 90048, United States; Department of Biomedical Sciences, Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States
| | - Jindřich Kopeček
- Department of Molecular Pharmaceutics/CCCD, University of Utah, 20 S 2030 E, Salt Lake City, UT 84112, United States; Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, United States
| | - Julia Y Ljubimova
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, United States.
| | - Jiyuan Yang
- Department of Molecular Pharmaceutics/CCCD, University of Utah, 20 S 2030 E, Salt Lake City, UT 84112, United States.
| |
Collapse
|
3
|
Mohamed P, Stuart S, Vergara-Lluri R, Colletti PM. FDG PET/CT in Cutaneous Involvement of Plasmablastic Plasma Cell Myeloma. Clin Nucl Med 2025; 50:e127-e129. [PMID: 39601055 DOI: 10.1097/rlu.0000000000005584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
ABSTRACT Extraosseous manifestations are found in less than 5% of patients with multiple myeloma. They can arise in any tissue, and their presence has been associated with more aggressive disease. We present FDG PET/CT findings of immunoglobulin A κ multiple myeloma with innumerable hypermetabolic right lower extremity lesions of cutaneous and subcutaneous involvement of plasmablastic plasma cell myeloma in a 44-year-old man.
Collapse
Affiliation(s)
- Passant Mohamed
- From the Keck School of Medicine of the University of Southern California, Los Angeles, CA
| | | | | | | |
Collapse
|
4
|
Xu Y, Cao X, Zhou H, Xu H, Chen B, Bai H. Identifying potential prognosis markers in relapsed multiple myeloma via integrated bioinformatics analysis and biological experiments. Curr Res Transl Med 2025; 73:103495. [PMID: 39818172 DOI: 10.1016/j.retram.2025.103495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 01/09/2025] [Accepted: 01/12/2025] [Indexed: 01/18/2025]
Abstract
BACKGROUND Almost all multiple myeloma (MM) patients will eventually develop disease that has relapsed with or become refractory to current therapeutic regimes. However, the pervious clinical parameters have been proved inaccurate for defining MM relapse, and molecular targets have become the focuses of interests. Prognostic predictions based on molecular targets have been more effective to this day. Our research was performed to demonstrate hub genes involving relapsed MM by bioinformatics and biological experiments. METHODS AND RESULTS The integrated bioinformatics analysis in baseline and relapsed MM patients were executed. Gene Ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were utilized to analyze biologic functions of up-regulated differentially expressed genes (DEGs). Four hub genes (CENPE, ASPM, TOP2A and FANCI) were adopted for construction of relapsed gene score model (RGS), and RGS model was evaluated in two testing sets. The CENPE inhibitor GSK923295 had anti-myeloma effect, including promoting cell death, cell cycle arrest and DNA damage of MM cell lines. CONCLUSION Through bioinformatics analysis, we found that the four hub genes (CENPE, ASPM, TOP2A and FANCI) were associated to cell cycle, nuclear division, mitosis and spindle. Our research provided proof-of-concept that RGS model could be utilized to estimate recurrence risk and prognosis for patients, and targeting CENPE contributed to developing novel therapeutic pattern for MM.
Collapse
Affiliation(s)
- Yong Xu
- Department of Hematology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Xinya Cao
- Department of Hematology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - He Zhou
- Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Han Xu
- School of Medicine, Southeast University, Nanjing, China
| | - Bing Chen
- Department of Hematology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Hua Bai
- Department of Hematology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
5
|
Elbahoty MH, Papineni B, Samant RS. Multiple myeloma: clinical characteristics, current therapies and emerging innovative treatments targeting ribosome biogenesis dynamics. Clin Exp Metastasis 2024; 41:829-842. [PMID: 39162964 PMCID: PMC11607061 DOI: 10.1007/s10585-024-10305-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/01/2024] [Indexed: 08/21/2024]
Abstract
Multiple myeloma (MM) is a clinical disorder characterized by aberrant plasma cell growth in the bone marrow microenvironment. Globally, the prevalence of MM has been steadily increasing at an alarming rate. In the United States, more than 30,000 cases will be diagnosed in 2024 and it accounts for about 2% of cancer diagnoses and more than 2% of cancer deaths, more than double the worldwide figure. Both symptomatic and active MM are distinguished by uncontrolled plasma cell growth, which results in severe renal impairment, anemia, hypercalcemia, and bone loss. Multiple drugs have been approved by the FDA and are now widely used in clinical practice for MM. Although triplet and quadruplet induction regimens, autologous stem cell transplantation (ASCT), and maintenance treatment are used, MM continues to be an incurable illness characterized by relapses that may occur at various phases of its progression. MM patients with frailty, extramedullary disease, plasma cell leukemia, central nervous system recurrence, functional high risk, and the elderly are among those with the greatest current unmet needs. The high cost of care is an additional challenge. MM cells are highly protein secretary cells and thus are dependent on the activation of certain translation pathways. MM also has a high chance of altering ribosomal protein-encoding genes like MYC mutation. In this article we discuss the importance of ribosome biogenesis in promoting MM and RNA polymerase I inhibition as an upcoming treatment with potential promise for MM patients.
Collapse
Affiliation(s)
- Mohamed H Elbahoty
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
- Hematology Unit, Department of Internal Medicine, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Bhavyasree Papineni
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Rajeev S Samant
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA.
- Birmingham VA Medical Center, Birmingham, AL, USA.
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA.
- , WTI 320E, 1824 6th Ave South, Birmingham, AL, 35294, USA.
| |
Collapse
|
6
|
Giacomini A, Taranto S, Gazzaroli G, Faletti J, Capoferri D, Marcheselli R, Sciumè M, Presta M, Sacco A, Roccaro AM. The FGF/FGFR/c-Myc axis as a promising therapeutic target in multiple myeloma. J Exp Clin Cancer Res 2024; 43:294. [PMID: 39482742 PMCID: PMC11529022 DOI: 10.1186/s13046-024-03217-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/26/2024] [Indexed: 11/03/2024] Open
Abstract
Among blood cancers, multiple myeloma (MM) represents the second most common neoplasm and is characterized by the accumulation and proliferation of monoclonal plasma cells within the bone marrow. Despite the last few decades being characterized by the development of different therapeutic strategies against MM, at present such disease is still considered incurable. Although MM is highly heterogeneous in terms of genetic and molecular subtypes, about 67% of MM cases are associated with abnormal activity of the transcription factor c-Myc, which has so far revealed a protein extremely difficult to target. We have recently demonstrated that activation of fibroblast growth factor (FGF) signaling protects MM cells from oxidative stress-induced apoptosis by stabilizing the oncoprotein c-Myc. Accordingly, secretion of FGF ligands and autocrine activation of FGF receptors (FGFR) is observed in MM cells and FGFR3 genomic alterations represent some 15-20% MM cases and are associated with poor outcome. Thus, FGF/FGFR blockade may represent a promising strategy to indirectly target c-Myc in MM. On this basis, the present review aims at providing an overview of recently explored connections between the FGF/FGFR system and c-Myc oncoprotein, sustaining the therapeutic potential of targeting the FGF/FGFR/c-Myc axis in MM by using inhibitors targeting FGF ligands or FGF receptors. Importantly, the provided findings may represent the rationale for using FDA approved FGFR TK inhibitors (i.e. Pemigatinib, Futibatinib, Erdafitinib) for the treatment of MM patients presenting with an aberrant activation of this axis.
Collapse
Affiliation(s)
- Arianna Giacomini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.
| | - Sara Taranto
- Clinical Trial Center, Translational Research and Phase I Unit, ASST Spedali Civili Di Brescia, Brescia, Italy
| | - Giorgia Gazzaroli
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Jessica Faletti
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Davide Capoferri
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Raffaella Marcheselli
- Clinical Trial Center, Translational Research and Phase I Unit, ASST Spedali Civili Di Brescia, Brescia, Italy
| | - Margherita Sciumè
- Clinical Trial Center, Translational Research and Phase I Unit, ASST Spedali Civili Di Brescia, Brescia, Italy
| | - Marco Presta
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Antonio Sacco
- Clinical Trial Center, Translational Research and Phase I Unit, ASST Spedali Civili Di Brescia, Brescia, Italy
| | - Aldo M Roccaro
- Clinical Trial Center, Translational Research and Phase I Unit, ASST Spedali Civili Di Brescia, Brescia, Italy.
| |
Collapse
|
7
|
Schmidt T, Gahvari Z, Callander NS. SOHO State of the Art Updates and Next Questions: Diagnosis and Management of Monoclonal Gammopathy of Undetermined Significance and Smoldering Multiple Myeloma. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2024; 24:653-664. [PMID: 38641486 DOI: 10.1016/j.clml.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 03/14/2024] [Indexed: 04/21/2024]
Abstract
Monoclonal proteins are common, with a prevalence in the United States around 5% and the incidence increases with age. Although most patients are asymptomatic, the vast majority of cases are caused by a clonal plasma cell disorder. Monoclonal gammopathy of undetermined significance (MGUS) and smoldering multiple myeloma (SMM) are asymptomatic precursor conditions with variable risk of progression to multiple myeloma (MM). In recent years, significant progress has been made to better understand the factors that lead to the development of symptoms and progression to myeloma. In this review, we summarize the current diagnosis treatment guidelines for MGUS and SMM and highlight recent advances that underscore a shifting paradigm in the evaluation and management of plasma cell precursor conditions.
Collapse
Affiliation(s)
- Timothy Schmidt
- Division of Hematology, Medical Oncology, and Palliative Care, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison WI
| | - Zhubin Gahvari
- Division of Hematology, Medical Oncology, and Palliative Care, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison WI
| | - Natalie S Callander
- Division of Hematology, Medical Oncology, and Palliative Care, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison WI.
| |
Collapse
|
8
|
Lind J, Aksoy O, Prchal-Murphy M, Fan F, Fulciniti M, Stoiber D, Bakiri L, Wagner EF, Zwickl-Traxler E, Sattler M, Kollmann K, Vallet S, Podar K. Dual therapeutic targeting of MYC and JUNB transcriptional programs for enhanced anti-myeloma activity. Blood Cancer J 2024; 14:138. [PMID: 39160158 PMCID: PMC11333473 DOI: 10.1038/s41408-024-01117-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 07/25/2024] [Accepted: 07/29/2024] [Indexed: 08/21/2024] Open
Abstract
Deregulation of transcription factors (TFs) leading to uncontrolled proliferation of tumor cells within the microenvironment represents a hallmark of cancer. However, the biological and clinical impact of transcriptional interference, particularly in multiple myeloma (MM) cells, remains poorly understood. The present study shows for the first time that MYC and JUNB, two crucial TFs implicated in MM pathogenesis, orchestrate distinct transcriptional programs. Specifically, our data revealed that expression levels of MYC, JUNB, and their respective downstream targets do not correlate and that their global chromatin-binding patterns are not significantly overlapping. Mechanistically, MYC expression was not affected by JUNB knockdown, and conversely, JUNB expression and transcriptional activity were not affected by MYC knockdown. Moreover, suppression of MYC levels in MM cells via targeting the master regulator BRD4 by either siRNA-mediated knockdown or treatment with the novel proteolysis targeting chimera (PROTAC) MZ-1 overcame bone marrow (BM) stroma cell/IL-6-induced MYC- but not MEK-dependent JUNB-upregulation and transcriptional activity. Consequently, targeting of the two non-overlapping MYC- and JUNB-transcriptoms by MZ-1 in combination with genetic or pharmacological JUNB-targeting approaches synergistically enhanced MM cell death, both in 2D and our novel dynamic 3D models of the BM milieu as well as in murine xenografts. In summary, our data emphasize the opportunity to employ MYC and JUNB dual-targeting treatment strategies in MM as another exciting approach to further improve patient outcomes.
Collapse
Affiliation(s)
- Judith Lind
- Division of Molecular Oncology and Hematology, Department of Basic and Translational Oncology, Karl Landsteiner University of Health Sciences, Krems an der Donau, Austria
| | - Osman Aksoy
- Division of Molecular Oncology and Hematology, Department of Basic and Translational Oncology, Karl Landsteiner University of Health Sciences, Krems an der Donau, Austria
| | - Michaela Prchal-Murphy
- Pharmacology and Toxicology, Department of Biological Sciences and Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Fengjuan Fan
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mariateresa Fulciniti
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Dagmar Stoiber
- Division of Pharmacology, Department of Pharmacology, Physiology and Microbiology, Karl Landsteiner University of Health Sciences, Krems an der Donau, Austria
| | - Latifa Bakiri
- Genes & Disease Group, Department of Laboratory Medicine, Medical University of Vienna (MUW), Vienna, Austria
| | - Erwin F Wagner
- Genes & Disease Group, Department of Laboratory Medicine, Medical University of Vienna (MUW), Vienna, Austria
- Genes & Disease Group, Department of Dermatology, Medical University of Vienna (MUW), Vienna, Austria
| | | | - Martin Sattler
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Karoline Kollmann
- Pharmacology and Toxicology, Department of Biological Sciences and Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Sonia Vallet
- Division of Molecular Oncology and Hematology, Department of Basic and Translational Oncology, Karl Landsteiner University of Health Sciences, Krems an der Donau, Austria
- Division of Internal Medicine 2, University Hospital Krems, Krems/ Donau, Austria
| | - Klaus Podar
- Division of Molecular Oncology and Hematology, Department of Basic and Translational Oncology, Karl Landsteiner University of Health Sciences, Krems an der Donau, Austria.
- Division of Internal Medicine 2, University Hospital Krems, Krems/ Donau, Austria.
| |
Collapse
|
9
|
Testa U, Pelosi E, Castelli G, Leone G. Recent Advances in The Definition of the Molecular Alterations Occurring in Multiple Myeloma. Mediterr J Hematol Infect Dis 2024; 16:e2024062. [PMID: 38984097 PMCID: PMC11232684 DOI: 10.4084/mjhid.2024.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 06/19/2024] [Indexed: 07/11/2024] Open
Abstract
Multiple myeloma (MM) is a disorder of the monoclonal plasma cells and is the second most common hematologic malignancy. MM initiation and progression are dependent upon complex genomic abnormalities. The current pathogenic model of MM includes two types of primary events, represented by chromosome translocations or chromosome number alterations resulting in hyperdiploidy. These primary molecular events are observed both in MM and in monoclonal gammopathy, its premalignant precursor. Subsequent genetic events allow the progression of monoclonal gammopathy to MM and, together with primary events, contribute to the genetic complexity and heterogeneity of MM. Newer therapies have considerably improved patient outcomes; however, MM remains an incurable disease and most patients experience multiple relapses. The dramatic progresses achieved in the analysis of the heterogeneous molecular features of different MM patients allowed a comprehensive molecular classification of MM and the definition of an individualized prognostic model to predict an individual MM patient's response to different therapeutic options. Despite these progresses, prognostic models fail to identify a significant proportion of patients destined to early relapse. Treatment strategies are increasingly. Based on disease biology, trials are enriched for high-risk MMs, whose careful definition and categorization requires DNA sequencing studies.
Collapse
Affiliation(s)
- Ugo Testa
- Istituto Superiore di Sanità, Roma, Italy
| | | | | | - Giuseppe Leone
- Department of Radiological and Hematological Sciences, Catholic University, Rome, Italy
| |
Collapse
|
10
|
Zeng Y, Zhang Y, Cui Z, Mao J, Xu J, Yao R. The Selective SIRT3 Inhibitor 3-TYP Represses Primary Myeloma Growth by Reducing c-Myc Stability. Chem Res Toxicol 2024; 37:1062-1069. [PMID: 38815162 DOI: 10.1021/acs.chemrestox.4c00142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Multiple myeloma is a hematological cancer that can be treated but remains incurable. With the advancement of science and technology, more drugs have been developed for myeloma chemotherapy that greatly improve the quality of life of patients. However, relapse remains a serious problem puzzling patients and doctors. Thus, developing more highly active and specific inhibitors is urgent for myeloma-targeted therapy. In this study, we identified the SIRT3 inhibitor 3-TYP (3-(1H-1,2,3-triazol-4-yl) pyridine) after screening a histone modification compound library, which showed high cytotoxicity and induced DNA damage in myeloma cells. Furthermore, the inhibitory effect of 3-TYP in our xenograft tumor studies also confirmed that compound 3-TYP could inhibit primary myeloma growth by reducing c-Myc protein stability by decreasing c-Myc Ser62 phosphorylation levels. Taken together, the results of our study identified 3-TYP as a novel c-Myc inhibitor, which could be a potential chemotherapeutic agent to target multiple myeloma.
Collapse
Affiliation(s)
- Yindi Zeng
- Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, Jiangsu, China
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Yaxin Zhang
- Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, Jiangsu, China
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Zeyu Cui
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Jiwei Mao
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Jinge Xu
- The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, Jiangsu, China
| | - Ruosi Yao
- Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, Jiangsu, China
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| |
Collapse
|
11
|
Wang Y, Vandewalle N, De Veirman K, Vanderkerken K, Menu E, De Bruyne E. Targeting mTOR signaling pathways in multiple myeloma: biology and implication for therapy. Cell Commun Signal 2024; 22:320. [PMID: 38862983 PMCID: PMC11165851 DOI: 10.1186/s12964-024-01699-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 06/03/2024] [Indexed: 06/13/2024] Open
Abstract
Multiple Myeloma (MM), a cancer of terminally differentiated plasma cells, is the second most prevalent hematological malignancy and is incurable due to the inevitable development of drug resistance. Intense protein synthesis is a distinctive trait of MM cells, supporting the massive production of clonal immunoglobulins or free light chains. The mammalian target of rapamycin (mTOR) kinase is appreciated as a master regulator of vital cellular processes, including regulation of metabolism and protein synthesis, and can be found in two multiprotein complexes, mTORC1 and mTORC2. Dysregulation of these complexes is implicated in several types of cancer, including MM. Since mTOR has been shown to be aberrantly activated in a large portion of MM patients and to play a role in stimulating MM cell survival and resistance to several existing therapies, understanding the regulation and functions of the mTOR complexes is vital for the development of more effective therapeutic strategies. This review provides a general overview of the mTOR pathway, discussing key discoveries and recent insights related to the structure and regulation of mTOR complexes. Additionally, we highlight findings on the mechanisms by which mTOR is involved in protein synthesis and delve into mTOR-mediated processes occurring in MM. Finally, we summarize the progress and current challenges of drugs targeting mTOR complexes in MM.
Collapse
Affiliation(s)
- Yanmeng Wang
- Translational Oncology Research Center (TORC) - Team Hematology and Immunology (HEIM), Vrije Universiteit Brussel (VUB), Jette, Belgium
| | - Niels Vandewalle
- Translational Oncology Research Center (TORC) - Team Hematology and Immunology (HEIM), Vrije Universiteit Brussel (VUB), Jette, Belgium
| | - Kim De Veirman
- Translational Oncology Research Center (TORC) - Team Hematology and Immunology (HEIM), Vrije Universiteit Brussel (VUB), Jette, Belgium
- Translational Oncology Research Center (TORC) - Team Hematology and Immunology (HEIM), Universitair Ziekenhuis Brussel (UZ Brussel), Jette, Belgium
| | - Karin Vanderkerken
- Translational Oncology Research Center (TORC) - Team Hematology and Immunology (HEIM), Vrije Universiteit Brussel (VUB), Jette, Belgium
| | - Eline Menu
- Translational Oncology Research Center (TORC) - Team Hematology and Immunology (HEIM), Vrije Universiteit Brussel (VUB), Jette, Belgium.
| | - Elke De Bruyne
- Translational Oncology Research Center (TORC) - Team Hematology and Immunology (HEIM), Vrije Universiteit Brussel (VUB), Jette, Belgium.
| |
Collapse
|
12
|
Ravn Berg S, Dikic A, Sharma A, Hagen L, Vågbø CB, Zatula A, Misund K, Waage A, Slupphaug G. Progression of monoclonal gammopathy of undetermined significance to multiple myeloma is associated with enhanced translational quality control and overall loss of surface antigens. J Transl Med 2024; 22:548. [PMID: 38849800 PMCID: PMC11162064 DOI: 10.1186/s12967-024-05345-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/23/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND Despite significant advancements in treatment strategies, multiple myeloma remains incurable. Additionally, there is a distinct lack of reliable biomarkers that can guide initial treatment decisions and help determine suitable replacement or adjuvant therapies when relapse ensues due to acquired drug resistance. METHODS To define specific proteins and pathways involved in the progression of monoclonal gammopathy of undetermined significance (MGUS) to multiple myeloma (MM), we have applied super-SILAC quantitative proteomic analysis to CD138 + plasma cells from 9 individuals with MGUS and 37 with MM. RESULTS Unsupervised hierarchical clustering defined three groups: MGUS, MM, and MM with an MGUS-like proteome profile (ML) that may represent a group that has recently transformed to MM. Statistical analysis identified 866 differentially expressed proteins between MM and MGUS, and 189 between MM and ML, 177 of which were common between MGUS and ML. Progression from MGUS to MM is accompanied by upregulated EIF2 signaling, DNA repair, and proteins involved in translational quality control, whereas integrin- and actin cytoskeletal signaling and cell surface markers are downregulated. CONCLUSION Compared to the premalignant plasma cells in MGUS, malignant MM cells apparently have mobilized several pathways that collectively contribute to ensure translational fidelity and to avoid proteotoxic stress, especially in the ER. The overall reduced expression of immunoglobulins and surface antigens contribute to this and may additionally mediate evasion from recognition by the immune apparatus. Our analyses identified a range of novel biomarkers with potential prognostic and therapeutic value, which will undergo further evaluation to determine their clinical significance.
Collapse
Affiliation(s)
- Sigrid Ravn Berg
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, NTNU, N-7491, Trondheim, Norway
- Clinic of Laboratory Medicine, St. Olavs hospital, N-7491, Trondheim, Norway
| | - Aida Dikic
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, NTNU, N-7491, Trondheim, Norway
- Clinic of Laboratory Medicine, St. Olavs hospital, N-7491, Trondheim, Norway
| | - Animesh Sharma
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, NTNU, N-7491, Trondheim, Norway
- Clinic of Laboratory Medicine, St. Olavs hospital, N-7491, Trondheim, Norway
- PROMEC Core Facility for Proteomics and Modomics, Norwegian University of Science and Technology, NTNU, and the Central Norway Regional Health Authority Norway, N-7491, Trondheim, Norway
| | - Lars Hagen
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, NTNU, N-7491, Trondheim, Norway
- Clinic of Laboratory Medicine, St. Olavs hospital, N-7491, Trondheim, Norway
- PROMEC Core Facility for Proteomics and Modomics, Norwegian University of Science and Technology, NTNU, and the Central Norway Regional Health Authority Norway, N-7491, Trondheim, Norway
| | - Cathrine Broberg Vågbø
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, NTNU, N-7491, Trondheim, Norway
- Clinic of Laboratory Medicine, St. Olavs hospital, N-7491, Trondheim, Norway
- PROMEC Core Facility for Proteomics and Modomics, Norwegian University of Science and Technology, NTNU, and the Central Norway Regional Health Authority Norway, N-7491, Trondheim, Norway
| | - Alexey Zatula
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, NTNU, N-7491, Trondheim, Norway
- Clinic of Laboratory Medicine, St. Olavs hospital, N-7491, Trondheim, Norway
| | - Kristine Misund
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, NTNU, N-7491, Trondheim, Norway
- Department of Medical Genetics, St Olavs hospital, N-7491, Trondheim, Norway
| | - Anders Waage
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, NTNU, N-7491, Trondheim, Norway
- Department of Hematology, and Biobank1, St Olavs hospital, N-7491, Trondheim, Norway
| | - Geir Slupphaug
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, NTNU, N-7491, Trondheim, Norway.
- Clinic of Laboratory Medicine, St. Olavs hospital, N-7491, Trondheim, Norway.
- PROMEC Core Facility for Proteomics and Modomics, Norwegian University of Science and Technology, NTNU, and the Central Norway Regional Health Authority Norway, N-7491, Trondheim, Norway.
| |
Collapse
|
13
|
Cheung CHY, Cheng CK, Leung KT, Zhang C, Ho CY, Luo X, Kam AYF, Xia T, Wan TSK, Pitts HA, Chan NPH, Cheung JS, Wong RSM, Zhang XB, Ng MHL. C-terminal binding protein 2 is a novel tumor suppressor targeting the MYC-IRF4 axis in multiple myeloma. Blood Adv 2024; 8:2217-2234. [PMID: 38457926 PMCID: PMC11061227 DOI: 10.1182/bloodadvances.2023010218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 02/09/2024] [Accepted: 03/06/2024] [Indexed: 03/10/2024] Open
Abstract
ABSTRACT Multiple myeloma (MM) cells are addicted to MYC and its direct transactivation targets IRF4 for proliferation and survival. MYC and IRF4 are still considered "undruggable," as most small-molecule inhibitors suffer from low potency, suboptimal pharmacokinetic properties, and undesirable off-target effects. Indirect inhibition of MYC/IRF4 emerges as a therapeutic vulnerability in MM. Here, we uncovered an unappreciated tumor-suppressive role of C-terminal binding protein 2 (CTBP2) in MM via strong inhibition of the MYC-IRF4 axis. In contrast to epithelial cancers, CTBP2 is frequently downregulated in MM, in association with shortened survival, hyperproliferative features, and adverse clinical outcomes. Restoration of CTBP2 exhibited potent antitumor effects against MM in vitro and in vivo, with marked repression of the MYC-IRF4 network genes. Mechanistically, CTBP2 impeded the transcription of MYC and IRF4 by histone H3 lysine 27 deacetylation (H3K27ac) and indirectly via activation of the MYC repressor IFIT3. In addition, activation of the interferon gene signature by CTBP2 suggested its concomitant immunomodulatory role in MM. Epigenetic studies have revealed the contribution of polycomb-mediated silencing and DNA methylation to CTBP2 inactivation in MM. Notably, inhibitors of Enhance of zeste homolog 2, histone deacetylase, and DNA methyltransferase, currently under evaluation in clinical trials, were effective in restoring CTBP2 expression in MM. Our findings indicated that the loss of CTBP2 plays an essential role in myelomagenesis and deciphers an additional mechanistic link to MYC-IRF4 dysregulation in MM. We envision that the identification of novel critical regulators will facilitate the development of selective and effective approaches for treating this MYC/IRF4-addicted malignancy.
Collapse
Affiliation(s)
- Coty Hing Yau Cheung
- Blood Cancer Cytogenetics and Genomics Laboratory, Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Chi Keung Cheng
- Blood Cancer Cytogenetics and Genomics Laboratory, Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Kam Tong Leung
- Department of Paediatrics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Chi Zhang
- Department of Paediatrics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Chi Yan Ho
- Blood Cancer Cytogenetics and Genomics Laboratory, Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Xi Luo
- Blood Cancer Cytogenetics and Genomics Laboratory, Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Angel Yuet Fong Kam
- Blood Cancer Cytogenetics and Genomics Laboratory, Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Tian Xia
- Blood Cancer Cytogenetics and Genomics Laboratory, Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Thomas Shek Kong Wan
- Blood Cancer Cytogenetics and Genomics Laboratory, Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Herbert Augustus Pitts
- Blood Cancer Cytogenetics and Genomics Laboratory, Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Natalie Pui Ha Chan
- Blood Cancer Cytogenetics and Genomics Laboratory, Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Joyce Sin Cheung
- Blood Cancer Cytogenetics and Genomics Laboratory, Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Raymond Siu Ming Wong
- Department of Medicine and Therapeutics, Prince of Wales Hospital, Hong Kong SAR, China
| | - Xiao-Bing Zhang
- Department of Medicine, Loma Linda University, Loma Linda, California
| | - Margaret Heung Ling Ng
- Blood Cancer Cytogenetics and Genomics Laboratory, Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
- State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
14
|
Hasan Bou Issa L, Fléchon L, Laine W, Ouelkdite A, Gaggero S, Cozzani A, Tilmont R, Chauvet P, Gower N, Sklavenitis-Pistofidis R, Brinster C, Thuru X, Touil Y, Quesnel B, Mitra S, Ghobrial IM, Kluza J, Manier S. MYC dependency in GLS1 and NAMPT is a therapeutic vulnerability in multiple myeloma. iScience 2024; 27:109417. [PMID: 38510131 PMCID: PMC10952034 DOI: 10.1016/j.isci.2024.109417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/26/2023] [Accepted: 03/01/2024] [Indexed: 03/22/2024] Open
Abstract
Multiple myeloma (MM) is an incurable hematological malignancy in which MYC alterations contribute to the malignant phenotype. Nevertheless, MYC lacks therapeutic druggability. Here, we leveraged large-scale loss-of-function screens and conducted a small molecule screen to identify genes and pathways with enhanced essentiality correlated with MYC expression. We reported a specific gene dependency in glutaminase (GLS1), essential for the viability and proliferation of MYC overexpressing cells. Conversely, the analysis of isogenic models, as well as cell lines dataset (CCLE) and patient datasets, revealed GLS1 as a non-oncogenic dependency in MYC-driven cells. We functionally delineated the differential modulation of glutamine to maintain mitochondrial function and cellular biosynthesis in MYC overexpressing cells. Furthermore, we observed that pharmaceutical inhibition of NAMPT selectively affects MYC upregulated cells. We demonstrate the effectiveness of combining GLS1 and NAMPT inhibitors, suggesting that targeting glutaminolysis and NAD synthesis may be a promising strategy to target MYC-driven MM.
Collapse
Affiliation(s)
- Lama Hasan Bou Issa
- Canther, INSERM UMR-S1277 and CNRS UMR9020, Lille University, 59000 Lille, France
| | - Léa Fléchon
- Canther, INSERM UMR-S1277 and CNRS UMR9020, Lille University, 59000 Lille, France
| | - William Laine
- Canther, INSERM UMR-S1277 and CNRS UMR9020, Lille University, 59000 Lille, France
| | - Aicha Ouelkdite
- Canther, INSERM UMR-S1277 and CNRS UMR9020, Lille University, 59000 Lille, France
| | - Silvia Gaggero
- Canther, INSERM UMR-S1277 and CNRS UMR9020, Lille University, 59000 Lille, France
| | - Adeline Cozzani
- Canther, INSERM UMR-S1277 and CNRS UMR9020, Lille University, 59000 Lille, France
| | - Remi Tilmont
- Department of Hematology, CHU Lille, 59000 Lille, France
| | - Paul Chauvet
- Department of Hematology, CHU Lille, 59000 Lille, France
| | - Nicolas Gower
- Department of Hematology, CHU Lille, 59000 Lille, France
| | | | - Carine Brinster
- Canther, INSERM UMR-S1277 and CNRS UMR9020, Lille University, 59000 Lille, France
| | - Xavier Thuru
- Canther, INSERM UMR-S1277 and CNRS UMR9020, Lille University, 59000 Lille, France
| | - Yasmine Touil
- Canther, INSERM UMR-S1277 and CNRS UMR9020, Lille University, 59000 Lille, France
| | - Bruno Quesnel
- Canther, INSERM UMR-S1277 and CNRS UMR9020, Lille University, 59000 Lille, France
- Department of Hematology, CHU Lille, 59000 Lille, France
| | - Suman Mitra
- Canther, INSERM UMR-S1277 and CNRS UMR9020, Lille University, 59000 Lille, France
| | - Irene M. Ghobrial
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Jérôme Kluza
- Canther, INSERM UMR-S1277 and CNRS UMR9020, Lille University, 59000 Lille, France
| | - Salomon Manier
- Canther, INSERM UMR-S1277 and CNRS UMR9020, Lille University, 59000 Lille, France
- Department of Hematology, CHU Lille, 59000 Lille, France
| |
Collapse
|
15
|
Tonon G. Myeloma and DNA damage. Blood 2024; 143:488-495. [PMID: 37992215 DOI: 10.1182/blood.2023021384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/27/2023] [Accepted: 10/28/2023] [Indexed: 11/24/2023] Open
Abstract
ABSTRACT DNA-damaging agents have represented the first effective treatment for the blood cancer multiple myeloma, and after 65 years since their introduction to the clinic, they remain one of the mainstay therapies for this disease. Myeloma is a cancer of plasma cells. Despite exceedingly slow proliferation, myeloma cells present extended genomic rearrangements and intense genomic instability, starting at the premalignant stage of the disease. Where does such DNA damage stem from? A reliable model argues that the powerful oncogenes activated in myeloma as well the phenotypic peculiarities of cancer plasma cells, including the dependency on the proteasome for survival and the constant presence of oxidative stress, all converge on modulating DNA damage and repair. Beleaguered by these contraposing forces, myeloma cells survive in a precarious balance, in which the robust engagement of DNA repair mechanisms to guarantee cell survival is continuously challenged by rampant genomic instability, essential for cancer cells to withstand hostile selective pressures. Shattering this delicate equilibrium has been the goal of the extensive use of DNA-damaging agents since their introduction in the clinic, now enriched by novel approaches that leverage upon synthetic lethality paradigms. Exploiting the impairment of homologous recombination caused by myeloma genetic lesions or treatments, it is now possible to design therapeutic combinations that could target myeloma cells more effectively. Furthermore, DNA-damaging agents, as demonstrated in solid tumors, may sensitize cells to immune therapies. In all, targeting DNA damage and repair remains as central as ever in myeloma, even for the foreseeable future.
Collapse
Affiliation(s)
- Giovanni Tonon
- Università Vita-Salute San Raffaele, Milan, Italy
- Division of Experimental Oncology and Center for Omics Sciences, Functional Genomics of Cancer Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
16
|
Li M, Bennett MK, Toubia J, Pope VS, Tea MN, Tamang S, Samuel MS, Anderson PH, Gliddon BL, Powell JA, Pitson SM. An orthotopic syngeneic mouse model of bortezomib-resistant multiple myeloma. Br J Haematol 2024; 204:566-570. [PMID: 38053270 DOI: 10.1111/bjh.19240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/11/2023] [Accepted: 11/21/2023] [Indexed: 12/07/2023]
Abstract
While bortezomib has significant benefits in multiple myeloma (MM) therapy, the disease remains incurable due to the invariable development of bortezomib resistance. This emphasises the need for advanced models for preclinical evaluation of new therapeutic approaches for bortezomib-resistant MM. Here, we describe the development of an orthotopic syngeneic bortezomib-resistant MM mouse model based on the most well-characterised syngeneic MM mouse model derived from spontaneous MM-forming C57BL/KaLwRij mice. Using bortezomib-resistant 5TGM1 cells, we report and characterise a robust syngeneic mouse model of bortezomib-resistant MM that is well suited to the evaluation of new therapeutic approaches for proteasome inhibitor-resistant MM.
Collapse
Affiliation(s)
- Manjun Li
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, Australia
| | - Melissa K Bennett
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, Australia
| | - John Toubia
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, Australia
| | - Victoria S Pope
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, Australia
| | - Melinda N Tea
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, Australia
| | - Sarah Tamang
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, Australia
| | - Michael S Samuel
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - Paul H Anderson
- Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Briony L Gliddon
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, Australia
| | - Jason A Powell
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - Stuart M Pitson
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, Australia
- School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
17
|
Neri P, Barwick BG, Jung D, Patton JC, Maity R, Tagoug I, Stein CK, Tilmont R, Leblay N, Ahn S, Lee H, Welsh SJ, Riggs DL, Stong N, Flynt E, Thakurta A, Keats JJ, Lonial S, Bergsagel PL, Boise LH, Bahlis NJ. ETV4-Dependent Transcriptional Plasticity Maintains MYC Expression and Results in IMiD Resistance in Multiple Myeloma. Blood Cancer Discov 2024; 5:56-73. [PMID: 37934799 PMCID: PMC10772538 DOI: 10.1158/2643-3230.bcd-23-0061] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 10/01/2023] [Accepted: 11/03/2023] [Indexed: 11/09/2023] Open
Abstract
Immunomodulatory drugs (IMiD) are a backbone therapy for multiple myeloma (MM). Despite their efficacy, most patients develop resistance, and the mechanisms are not fully defined. Here, we show that IMiD responses are directed by IMiD-dependent degradation of IKZF1 and IKZF3 that bind to enhancers necessary to sustain the expression of MYC and other myeloma oncogenes. IMiD treatment universally depleted chromatin-bound IKZF1, but eviction of P300 and BRD4 coactivators only occurred in IMiD-sensitive cells. IKZF1-bound enhancers overlapped other transcription factor binding motifs, including ETV4. Chromatin immunoprecipitation sequencing showed that ETV4 bound to the same enhancers as IKZF1, and ETV4 CRISPR/Cas9-mediated ablation resulted in sensitization of IMiD-resistant MM. ETV4 expression is associated with IMiD resistance in cell lines, poor prognosis in patients, and is upregulated at relapse. These data indicate that ETV4 alleviates IKZF1 and IKZF3 dependency in MM by maintaining oncogenic enhancer activity and identify transcriptional plasticity as a previously unrecognized mechanism of IMiD resistance. SIGNIFICANCE We show that IKZF1-bound enhancers are critical for IMiD efficacy and that the factor ETV4 can bind the same enhancers and substitute for IKZF1 and mediate IMiD resistance by maintaining MYC and other oncogenes. These data implicate transcription factor redundancy as a previously unrecognized mode of IMiD resistance in MM. See related article by Welsh, Barwick, et al., p. 34. See related commentary by Yun and Cleveland, p. 5. This article is featured in Selected Articles from This Issue, p. 4.
Collapse
Affiliation(s)
- Paola Neri
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Canada
| | - Benjamin G. Barwick
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia
| | - David Jung
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Canada
| | - Jonathan C. Patton
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia
| | - Ranjan Maity
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Canada
| | - Ines Tagoug
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Canada
| | - Caleb K. Stein
- Division of Hematology and Oncology, Mayo Clinic, Scottsdale, Arizona
| | - Remi Tilmont
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Canada
| | - Noemie Leblay
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Canada
| | - Sungwoo Ahn
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Canada
| | - Holly Lee
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Canada
| | - Seth J. Welsh
- Division of Hematology and Oncology, Mayo Clinic, Scottsdale, Arizona
| | - Daniel L. Riggs
- Division of Hematology and Oncology, Mayo Clinic, Scottsdale, Arizona
| | - Nicholas Stong
- Translational Medicine, Bristol Myers Squibb, Summit, New Jersey
| | - Erin Flynt
- Predictive Sciences, Bristol Myers Squibb, Summit, New Jersey
| | - Anjan Thakurta
- Oxford Centre for Translational Myeloma Research, University of Oxford, Oxford, United Kingdom
| | | | - Sagar Lonial
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia
| | - P. Leif Bergsagel
- Division of Hematology and Oncology, Mayo Clinic, Scottsdale, Arizona
| | - Lawrence H. Boise
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia
| | - Nizar J. Bahlis
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Canada
| |
Collapse
|
18
|
Pisano MD, Sun F, Cheng Y, Parashar D, Zhou V, Jing X, Sompallae R, Abrudan J, Zimmermann MT, Mathison A, Janz S, Pufall MA. IL6Myc mouse is an immunocompetent model for the development of aggressive multiple myeloma. Haematologica 2023; 108:3372-3383. [PMID: 37439384 PMCID: PMC10690922 DOI: 10.3324/haematol.2022.282538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 07/04/2023] [Indexed: 07/14/2023] Open
Abstract
Multiple Myeloma (MM) is a plasma cell neoplasm originating in the bone marrow and is the second most common blood cancer in the United States. One challenge in understanding the pathogenesis of MM and improving treatment is a lack of immunocompetent mouse models. We previously developed the IL6Myc mouse that generates plasmacytomas at 100% penetrance that phenotypically resemble aggressive MM. Using comprehensive genomic analysis, we found that the IL6Myc tumors resemble aggressive MM by RNA and protein expression. We also found that IL6Myc tumors accumulated fusions and missense mutations in genes that overlap significantly with human myeloma, indicating that the mouse is good model for studying disease etiology. Lastly, we derived cell lines from IL6Myc tumors that express cell surface markers typical of MM and readily engraft into mice, home to the bone marrow, and induce osteolytic disease. The cell lines may be useful in developing immunotherapies directed against BAFF-R and TACI, though not BCMA, and may also be a good model for studying dexamethasone resistance. These data indicate that the IL6Myc model is useful for studying development of aggressive MM and for developing new treatments against such forms of the disease.
Collapse
Affiliation(s)
- Michael D Pisano
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, United States; Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI
| | - Fumou Sun
- Myeloma Center, Department of Internal Medicine and Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Yan Cheng
- Myeloma Center, Department of Internal Medicine and Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Deepak Parashar
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI
| | - Vivian Zhou
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI
| | - Xuefang Jing
- Department of Pathology, The University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa
| | - Ramakrishna Sompallae
- Iowa Institute for Genetics, The University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa
| | - Jenica Abrudan
- Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI
| | - Michael T Zimmermann
- Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI
| | - Angela Mathison
- Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI
| | - Siegfried Janz
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI
| | - Miles A Pufall
- Department of Biochemistry and Molecular Biology, The University of Iowa Roy J. and Lucille A. Carver College of Medicine, Holden Comprehensive Cancer Center, Iowa City, Iowa.
| |
Collapse
|
19
|
Kent D, Marchetti L, Mikulasova A, Russell LJ, Rico D. Broad H3K4me3 domains: Maintaining cellular identity and their implication in super-enhancer hijacking. Bioessays 2023; 45:e2200239. [PMID: 37350339 DOI: 10.1002/bies.202200239] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 05/25/2023] [Accepted: 05/30/2023] [Indexed: 06/24/2023]
Abstract
The human and mouse genomes are complex from a genomic standpoint. Each cell has the same genomic sequence, yet a wide array of cell types exists due to the presence of a plethora of regulatory elements in the non-coding genome. Recent advances in epigenomic profiling have uncovered non-coding gene proximal promoters and distal enhancers of transcription genome-wide. Extension of promoter-associated H3K4me3 histone mark across the gene body, known as a broad H3K4me3 domain (H3K4me3-BD), is a signature of constitutive expression of cell-type-specific regulation and of tumour suppressor genes in healthy cells. Recently, it has been discovered that the presence of H3K4me3-BDs over oncogenes is a cancer-specific feature associated with their dysregulated gene expression and tumourigenesis. Moreover, it has been shown that the hijacking of clusters of enhancers, known as super-enhancers (SE), by proto-oncogenes results in the presence of H3K4me3-BDs over the gene body. Therefore, H3K4me3-BDs and SE crosstalk in healthy and cancer cells therefore represents an important mechanism to identify future treatments for patients with SE driven cancers.
Collapse
Affiliation(s)
- Daniel Kent
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Letizia Marchetti
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Aneta Mikulasova
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Lisa J Russell
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Daniel Rico
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
20
|
Gallo Cantafio ME, Torcasio R, Scionti F, Mesuraca M, Ronchetti D, Pistoni M, Bellizzi D, Passarino G, Morelli E, Neri A, Viglietto G, Amodio N. GPER1 Activation Exerts Anti-Tumor Activity in Multiple Myeloma. Cells 2023; 12:2226. [PMID: 37759449 PMCID: PMC10526814 DOI: 10.3390/cells12182226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 08/29/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
G protein-coupled estrogen receptor 1 (GPER1) activation is emerging as a promising therapeutic strategy against several cancer types. While GPER targeting has been widely studied in the context of solid tumors, its effect on hematological malignancies remains to be fully understood. Here, we show that GPER1 mRNA is down-regulated in plasma cells from overt multiple myeloma (MM) and plasma cell leukemia patients as compared to normal donors or pre-malignant conditions (monoclonal gammopathy of undetermined significance and smoldering MM); moreover, lower GPER1 expression associates with worse overall survival of MM patients. Using the clinically applicable GPER1-selective agonist G-1, we demonstrate that the pharmacological activation of GPER1 triggered in vitro anti-MM activity through apoptosis induction, also overcoming the protective effects exerted by bone marrow stromal cells. Noteworthy, G-1 treatment reduced in vivo MM growth in two distinct xenograft models, even bearing bortezomib-resistant MM cells. Mechanistically, G-1 upregulated the miR-29b oncosuppressive network, blunting an established miR-29b-Sp1 feedback loop operative in MM cells. Overall, this study highlights the druggability of GPER1 in MM, providing the first preclinical framework for further development of GPER1 agonists to treat this malignancy.
Collapse
Affiliation(s)
- Maria Eugenia Gallo Cantafio
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (M.E.G.C.); (R.T.); (M.M.); (G.V.)
| | - Roberta Torcasio
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (M.E.G.C.); (R.T.); (M.M.); (G.V.)
- Laboratory of Cellular and Molecular Cardiovascular Pathophysiology, Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, Arcavacata di Rende, 87036 Cosenza, Italy
| | - Francesca Scionti
- Department of Medical and Surgical Science, University Magna Graecia, 88100 Catanzaro, Italy;
| | - Maria Mesuraca
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (M.E.G.C.); (R.T.); (M.M.); (G.V.)
| | - Domenica Ronchetti
- Department of Oncology and Hemato-Oncology, University of Milan, 20141 Milan, Italy;
| | - Mariaelena Pistoni
- Laboratory of Translational Research, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy;
| | - Dina Bellizzi
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy; (D.B.); (G.P.)
| | - Giuseppe Passarino
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy; (D.B.); (G.P.)
| | - Eugenio Morelli
- Jerome Lipper Multiple Myeloma Center, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA;
| | - Antonino Neri
- Scientific Directorate, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy;
| | - Giuseppe Viglietto
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (M.E.G.C.); (R.T.); (M.M.); (G.V.)
| | - Nicola Amodio
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (M.E.G.C.); (R.T.); (M.M.); (G.V.)
| |
Collapse
|
21
|
Boulos JC, Chatterjee M, Shan L, Efferth T. In Silico, In Vitro, and In Vivo Investigations on Adapalene as Repurposed Third Generation Retinoid against Multiple Myeloma and Leukemia. Cancers (Basel) 2023; 15:4136. [PMID: 37627164 PMCID: PMC10452460 DOI: 10.3390/cancers15164136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/09/2023] [Accepted: 08/13/2023] [Indexed: 08/27/2023] Open
Abstract
The majority of hematopoietic cancers in adults are incurable and exhibit unpredictable remitting-relapsing patterns in response to various therapies. The proto-oncogene c-MYC has been associated with tumorigenesis, especially in hematological neoplasms. Therefore, targeting c-MYC is crucial to find effective, novel treatments for blood malignancies. To date, there are no clinically approved c-MYC inhibitors. In this study, we virtually screened 1578 Food and Drug Administration (FDA)-approved drugs from the ZINC15 database against c-MYC. The top 117 compounds from PyRx-based screening with the best binding affinities to c-MYC were subjected to molecular docking studies with AutoDock 4.2.6. Retinoids consist of synthetic and natural vitamin A derivatives. All-trans-retinoic acid (ATRA) were highly effective in hematological malignancies. In this study, adapalene, a third-generation retinoid usually used to treat acne vulgaris, was selected as a potent c-MYC inhibitor as it robustly bound to c-MYC with a lowest binding energy (LBE) of -7.27 kcal/mol, a predicted inhibition constant (pKi) of 4.69 µM, and a dissociation constant (Kd value) of 3.05 µM. Thus, we examined its impact on multiple myeloma (MM) cells in vitro and evaluated its efficiency in vivo using a xenograft tumor zebrafish model. We demonstrated that adapalene exerted substantial cytotoxicity against a panel of nine MM and two leukemic cell lines, with AMO1 cells being the most susceptible one (IC50 = 1.76 ± 0.39 µM) and, hence, the focus of this work. Adapalene (0.5 × IC50, 1 × IC50, 2 × IC50) decreased c-MYC expression and transcriptional activity in AMO1 cells in a dose-dependent manner. An examination of the cell cycle revealed that adapalene halted the cells in the G2/M phase and increased the portion of cells in the sub-G0/G1 phase after 48 and 72 h, indicating that cells failed to initiate mitosis, and consequently, cell death was triggered. Adapalene also increased the number of p-H3(Ser10) positive AMO1 cells, which is a further proof of its ability to prevent mitotic exit. Confocal imaging demonstrated that adapalene destroyed the tubulin network of U2OS cells stably transfected with a cDNA coding for α-tubulin-GFP, refraining the migration of malignant cells. Furthermore, adapalene induced DNA damage in AMO1 cells. It also induced apoptosis and autophagy, as demonstrated by flow cytometry and western blotting. Finally, adapalene impeded tumor growth in a xenograft tumor zebrafish model. In summary, the discovery of the vitamin A derivative adapalene as a c-MYC inhibitor reveals its potential as an avant-garde treatment for MM.
Collapse
Affiliation(s)
- Joelle C. Boulos
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany;
| | - Manik Chatterjee
- Translational Oncology, Comprehensive Cancer Center Mainfranken, University Hospital Würzburg, 97080 Würzburg, Germany;
| | - Letian Shan
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou 310053, China;
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany;
| |
Collapse
|
22
|
Cui Y, Wang F, Fang B. Mitochondrial dysfunction and drug targets in multiple myeloma. J Cancer Res Clin Oncol 2023; 149:8007-8016. [PMID: 36928159 DOI: 10.1007/s00432-023-04672-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 02/28/2023] [Indexed: 03/18/2023]
Abstract
Multiple myeloma (MM) is the second most common hematological cancer that has no cure. Although currently there are several novel drugs, most MM patients experience drug resistance and disease relapse. The results of previous studies suggest that aberrant mitochondrial function may contribute to tumor progression and drug resistance. Mitochondrial DNA mutations and metabolic reprogramming have been reported in MM patients. Several preclinical and clinical studies have shown encouraging results of mitochondria-targeting therapy in MM patients. In this review, we have summarized our current understanding of mitochondrial biology in MM. More importantly, we have reviewed mitochondrial targeting strategies in MM treatment.
Collapse
Affiliation(s)
- Yushan Cui
- Department of Hematology, Henan Institute of Hematology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, No.127 of Dongming Road, Zhengzhou, 450000, China
| | - Fujue Wang
- Department of Hematology, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, 421000, China
| | - Baijun Fang
- Department of Hematology, Henan Institute of Hematology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, No.127 of Dongming Road, Zhengzhou, 450000, China.
| |
Collapse
|
23
|
Peat TJ, Gaikwad SM, Dubois W, Gyabaah-Kessie N, Zhang S, Gorjifard S, Phyo Z, Andres M, Hughitt VK, Simpson RM, Miller MA, Girvin AT, Taylor A, Williams D, D'Antonio N, Zhang Y, Rajagopalan A, Flietner E, Wilson K, Zhang X, Shinn P, Klumpp-Thomas C, McKnight C, Itkin Z, Chen L, Kazandijian D, Zhang J, Michalowski AM, Simmons JK, Keats J, Thomas CJ, Mock BA. Drug combinations identified by high-throughput screening promote cell cycle transition and upregulate Smad pathways in myeloma. Cancer Lett 2023; 568:216284. [PMID: 37356470 PMCID: PMC10408729 DOI: 10.1016/j.canlet.2023.216284] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 06/12/2023] [Accepted: 06/16/2023] [Indexed: 06/27/2023]
Abstract
Drug resistance and disease progression are common in multiple myeloma (MM) patients, underscoring the need for new therapeutic combinations. A high-throughput drug screen in 47 MM cell lines and in silico Huber robust regression analysis of drug responses revealed 43 potentially synergistic combinations. We hypothesized that effective combinations would reduce MYC expression and enhance p16 activity. Six combinations cooperatively reduced MYC protein, frequently over-expressed in MM and also cooperatively increased p16 expression, frequently downregulated in MM. Synergistic reductions in viability were observed with top combinations in proteasome inhibitor-resistant and sensitive MM cell lines, while sparing fibroblasts. Three combinations significantly prolonged survival in a transplantable Ras-driven allograft model of advanced MM closely recapitulating high-risk/refractory myeloma in humans and reduced viability of ex vivo treated patient cells. Common genetic pathways similarly downregulated by these combinations promoted cell cycle transition, whereas pathways most upregulated were involved in TGFβ/SMAD signaling. These preclinical data identify potentially useful drug combinations for evaluation in drug-resistant MM and reveal potential mechanisms of combined drug sensitivity.
Collapse
Affiliation(s)
- Tyler J Peat
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA; Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, USA.
| | - Snehal M Gaikwad
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Wendy Dubois
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Nana Gyabaah-Kessie
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Shuling Zhang
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Sayeh Gorjifard
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA; University of Washington, Seattle, WA, USA
| | - Zaw Phyo
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA; Johns Hopkins University, Baltimore, MD, USA
| | - Megan Andres
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA; Johns Hopkins University, Baltimore, MD, USA
| | - V Keith Hughitt
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - R Mark Simpson
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Margaret A Miller
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, USA
| | | | | | | | | | - Yong Zhang
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA; Office of Oncologic Diseases, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | | | - Evan Flietner
- McArdle Research Labs, University of Wisconsin, Madison, WI, USA
| | - Kelli Wilson
- Chemical Genomics Center, Division of Preclinical Innovation, National Center for Advancing Translational Sciences, Bethesda, MD, USA
| | - Xiaohu Zhang
- Chemical Genomics Center, Division of Preclinical Innovation, National Center for Advancing Translational Sciences, Bethesda, MD, USA
| | - Paul Shinn
- Chemical Genomics Center, Division of Preclinical Innovation, National Center for Advancing Translational Sciences, Bethesda, MD, USA
| | - Carleen Klumpp-Thomas
- Chemical Genomics Center, Division of Preclinical Innovation, National Center for Advancing Translational Sciences, Bethesda, MD, USA
| | - Crystal McKnight
- Chemical Genomics Center, Division of Preclinical Innovation, National Center for Advancing Translational Sciences, Bethesda, MD, USA
| | - Zina Itkin
- Chemical Genomics Center, Division of Preclinical Innovation, National Center for Advancing Translational Sciences, Bethesda, MD, USA
| | - Lu Chen
- Chemical Genomics Center, Division of Preclinical Innovation, National Center for Advancing Translational Sciences, Bethesda, MD, USA
| | - Dickran Kazandijian
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA; Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| | - Jing Zhang
- McArdle Research Labs, University of Wisconsin, Madison, WI, USA
| | - Aleksandra M Michalowski
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | | | - Jonathan Keats
- Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Craig J Thomas
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA; Chemical Genomics Center, Division of Preclinical Innovation, National Center for Advancing Translational Sciences, Bethesda, MD, USA
| | - Beverly A Mock
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA.
| |
Collapse
|
24
|
Rana PS, Goparaju K, Driscoll JJ. Shutting off the fuel supply to target metabolic vulnerabilities in multiple myeloma. Front Oncol 2023; 13:1141851. [PMID: 37361580 PMCID: PMC10285382 DOI: 10.3389/fonc.2023.1141851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 05/18/2023] [Indexed: 06/28/2023] Open
Abstract
Pathways that govern cellular bioenergetics are deregulated in tumor cells and represent a hallmark of cancer. Tumor cells have the capacity to reprogram pathways that control nutrient acquisition, anabolism and catabolism to enhance their growth and survival. Tumorigenesis requires the autonomous reprogramming of key metabolic pathways that obtain, generate and produce metabolites from a nutrient-deprived tumor microenvironment to meet the increased bioenergetic demands of cancer cells. Intra- and extracellular factors also have a profound effect on gene expression to drive metabolic pathway reprogramming in not only cancer cells but also surrounding cell types that contribute to anti-tumor immunity. Despite a vast amount of genetic and histologic heterogeneity within and between cancer types, a finite set of pathways are commonly deregulated to support anabolism, catabolism and redox balance. Multiple myeloma (MM) is the second most common hematologic malignancy in adults and remains incurable in the vast majority of patients. Genetic events and the hypoxic bone marrow milieu deregulate glycolysis, glutaminolysis and fatty acid synthesis in MM cells to promote their proliferation, survival, metastasis, drug resistance and evasion of immunosurveillance. Here, we discuss mechanisms that disrupt metabolic pathways in MM cells to support the development of therapeutic resistance and thwart the effects of anti-myeloma immunity. A better understanding of the events that reprogram metabolism in myeloma and immune cells may reveal unforeseen vulnerabilities and advance the rational design of drug cocktails that improve patient survival.
Collapse
Affiliation(s)
- Priyanka S. Rana
- Division of Hematology and Oncology, Department of Medicine, Case Western Reserve University, Cleveland, OH, United States
- Immune Oncology Program, Case Comprehensive Cancer Center, Cleveland, OH, United States
| | - Krishna Goparaju
- Division of Hematology and Oncology, Department of Medicine, Case Western Reserve University, Cleveland, OH, United States
- Adult Hematologic Malignancies & Stem Cell Transplant Section, Seidman Cancer Center, University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| | - James J. Driscoll
- Division of Hematology and Oncology, Department of Medicine, Case Western Reserve University, Cleveland, OH, United States
- Immune Oncology Program, Case Comprehensive Cancer Center, Cleveland, OH, United States
- Adult Hematologic Malignancies & Stem Cell Transplant Section, Seidman Cancer Center, University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| |
Collapse
|
25
|
Farrell M, Fairfield H, Karam M, D'Amico A, Murphy CS, Falank C, Pistofidi RS, Cao A, Marinac CR, Dragon JA, McGuinness L, Gartner CG, Iorio RD, Jachimowicz E, DeMambro V, Vary C, Reagan MR. Targeting the fatty acid binding proteins disrupts multiple myeloma cell cycle progression and MYC signaling. eLife 2023; 12:e81184. [PMID: 36880649 PMCID: PMC9995119 DOI: 10.7554/elife.81184] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 02/13/2023] [Indexed: 03/08/2023] Open
Abstract
Multiple myeloma is an incurable plasma cell malignancy with only a 53% 5-year survival rate. There is a critical need to find new multiple myeloma vulnerabilities and therapeutic avenues. Herein, we identified and explored a novel multiple myeloma target: the fatty acid binding protein (FABP) family. In our work, myeloma cells were treated with FABP inhibitors (BMS3094013 and SBFI-26) and examined in vivo and in vitro for cell cycle state, proliferation, apoptosis, mitochondrial membrane potential, cellular metabolism (oxygen consumption rates and fatty acid oxidation), and DNA methylation properties. Myeloma cell responses to BMS309403, SBFI-26, or both, were also assessed with RNA sequencing (RNA-Seq) and proteomic analysis, and confirmed with western blotting and qRT-PCR. Myeloma cell dependency on FABPs was assessed using the Cancer Dependency Map (DepMap). Finally, MM patient datasets (CoMMpass and GEO) were mined for FABP expression correlations with clinical outcomes. We found that myeloma cells treated with FABPi or with FABP5 knockout (generated via CRISPR/Cas9 editing) exhibited diminished proliferation, increased apoptosis, and metabolic changes in vitro. FABPi had mixed results in vivo, in two pre-clinical MM mouse models, suggesting optimization of in vivo delivery, dosing, or type of FABP inhibitors will be needed before clinical applicability. FABPi negatively impacted mitochondrial respiration and reduced expression of MYC and other key signaling pathways in MM cells in vitro. Clinical data demonstrated worse overall and progression-free survival in patients with high FABP5 expression in tumor cells. Overall, this study establishes the FABP family as a potentially new target in multiple myeloma. In MM cells, FABPs have a multitude of actions and cellular roles that result in the support of myeloma progression. Further research into the FABP family in MM is warrented, especially into the effective translation of targeting these in vivo.
Collapse
Affiliation(s)
- Mariah Farrell
- Center for Molecular Medicine, Maine Health Institute for ResearchScarboroughUnited States
- Graduate School of Biomedical Science and Engineering, University of MaineOronoUnited States
- Tufts University School of MedicineBostonUnited States
| | - Heather Fairfield
- Center for Molecular Medicine, Maine Health Institute for ResearchScarboroughUnited States
- Graduate School of Biomedical Science and Engineering, University of MaineOronoUnited States
- Tufts University School of MedicineBostonUnited States
| | - Michelle Karam
- Center for Molecular Medicine, Maine Health Institute for ResearchScarboroughUnited States
| | - Anastasia D'Amico
- Center for Molecular Medicine, Maine Health Institute for ResearchScarboroughUnited States
| | - Connor S Murphy
- Center for Molecular Medicine, Maine Health Institute for ResearchScarboroughUnited States
- Graduate School of Biomedical Science and Engineering, University of MaineOronoUnited States
| | - Carolyne Falank
- Center for Molecular Medicine, Maine Health Institute for ResearchScarboroughUnited States
| | | | - Amanda Cao
- Dana-Farber Cancer InstituteBostonUnited States
- Harvard Medical SchoolBostonUnited States
| | - Catherine R Marinac
- Dana-Farber Cancer InstituteBostonUnited States
- Harvard Medical SchoolBostonUnited States
| | | | - Lauren McGuinness
- Center for Molecular Medicine, Maine Health Institute for ResearchScarboroughUnited States
- University of New EnglandBiddefordUnited States
| | - Carlos G Gartner
- Center for Molecular Medicine, Maine Health Institute for ResearchScarboroughUnited States
- Graduate School of Biomedical Science and Engineering, University of MaineOronoUnited States
- Tufts University School of MedicineBostonUnited States
| | - Reagan Di Iorio
- Center for Molecular Medicine, Maine Health Institute for ResearchScarboroughUnited States
- University of New EnglandBiddefordUnited States
| | - Edward Jachimowicz
- Center for Molecular Medicine, Maine Health Institute for ResearchScarboroughUnited States
| | - Victoria DeMambro
- Center for Molecular Medicine, Maine Health Institute for ResearchScarboroughUnited States
- Graduate School of Biomedical Science and Engineering, University of MaineOronoUnited States
| | - Calvin Vary
- Center for Molecular Medicine, Maine Health Institute for ResearchScarboroughUnited States
- Graduate School of Biomedical Science and Engineering, University of MaineOronoUnited States
- Tufts University School of MedicineBostonUnited States
| | - Michaela R Reagan
- Center for Molecular Medicine, Maine Health Institute for ResearchScarboroughUnited States
- Graduate School of Biomedical Science and Engineering, University of MaineOronoUnited States
- Tufts University School of MedicineBostonUnited States
| |
Collapse
|
26
|
Abramson HN. Recent Advances in the Applications of Small Molecules in the Treatment of Multiple Myeloma. Int J Mol Sci 2023; 24:2645. [PMID: 36768967 PMCID: PMC9917049 DOI: 10.3390/ijms24032645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/15/2023] [Accepted: 01/24/2023] [Indexed: 02/01/2023] Open
Abstract
Therapy for multiple myeloma (MM), a hematologic neoplasm of plasma cells, has undergone remarkable changes over the past 25 years. Small molecules (molecular weight of less than one kDa), together with newer immunotherapies that include monoclonal antibodies, antibody-drug conjugates, and most recently, chimeric antigen receptor (CAR) T-cells, have combined to double the disease's five-year survival rate to over 50% during the past few decades. Despite these advances, the disease is still considered incurable, and its treatment continues to pose substantial challenges, since therapeutic refractoriness and patient relapse are exceedingly common. This review focuses on the current pipeline, along with the contemporary roles and future prospects for small molecules in MM therapy. While small molecules offer prospective benefits in terms of oral bioavailability, cellular penetration, simplicity of preparation, and improved cost-benefit considerations, they also pose problems of toxicity due to off-target effects. Highlighted in the discussion are recent developments in the applications of alkylating agents, immunomodulators, proteasome inhibitors, apoptosis inducers, kinesin spindle protein inhibitors, blockers of nuclear transport, and drugs that affect various kinases involved in intracellular signaling pathways. Molecular and cellular targets are described for each class of agents in relation to their roles as drivers of MM.
Collapse
Affiliation(s)
- Hanley N Abramson
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48202, USA
| |
Collapse
|
27
|
Fend F, Dogan A, Cook JR. Plasma cell neoplasms and related entities-evolution in diagnosis and classification. Virchows Arch 2023; 482:163-177. [PMID: 36414803 PMCID: PMC9852202 DOI: 10.1007/s00428-022-03431-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/11/2022] [Accepted: 10/15/2022] [Indexed: 11/23/2022]
Abstract
Plasma cell neoplasms including multiple myeloma (MM) and related terminally differentiated B-cell neoplasms are characterized by secretion of monoclonal immunoglobulin and stepwise development from a preneoplastic clonal B and/or plasma cell proliferation called monoclonal gammopathy of undetermined significance (MGUS). Diagnosis of these disorders requires integration of clinical, laboratory, and morphological features. While their classification mostly remains unchanged compared to the revised 2016 WHO classification and the 2014 International Myeloma Working Group consensus, some changes in criteria and terminology were proposed in the 2022 International Consensus Classification (ICC) of mature lymphoid neoplasms. MGUS of IgM type is now divided into IgM MGUS of plasma cell type, precursor to the rare IgM MM and characterized by MM-type cytogenetics, lack of clonal B-cells and absence of MYD88 mutation, and IgM MGUS, NOS including the remaining cases. Primary cold agglutinin disease is recognized as a new entity. MM is now formally subdivided into cytogenetic groups, recognizing the importance of genetics for clinical features and prognosis. MM with recurrent genetic abnormalities includes MM with CCND family translocations, MM with MAF family translocations, MM with NSD2 translocation, and MM with hyperdiploidy, with the remaining cases classified as MM, NOS. For diagnosis of localized plasma cell tumors, solitary plasmacytoma of bone, and primary extraosseous plasmacytoma, the importance of excluding minimal bone marrow infiltration by flow cytometry is emphasized. Primary systemic amyloidosis is renamed immunoglobulin light chain amyloidosis (AL), and a localized AL amyloidosis is recognized as a distinct entity. This review summarizes the updates on plasma cell neoplasms and related entities proposed in the 2022 ICC. KEY POINTS: • Lymphoplasmacytic lymphoma can be diagnosed with lymphoplasmacytic aggregates in trephine biopsies < 10% of cellularity and evidence of clonal B-cells and plasma cells. • IgM MGUS is subdivided into a plasma cell type and a not otherwise specified (NOS) type. • Primary cold agglutinin disease is recognized as a new entity. • The term "multiple myeloma" replaces the term "plasma cell myeloma" used in the 2016 WHO classification. • Multiple myeloma is subdivided into 4 mutually exclusive cytogenetic groups and MM NOS. • Minimal bone marrow infiltration detected by flow cytometry is of major prognostic importance for solitary plasmacytoma of bone and to a lesser extent for primary extraosseous plasmacytoma. • Localized IG light chain amyloidosis is recognized as a separate entity, distinct from systemic immunoglobulin light chain (AL) amyloidosis.
Collapse
Affiliation(s)
- Falko Fend
- Institute of Pathology and Neuropathology and Comprehensive Cancer Center, Tübingen University Hospital, Tübingen, Germany
| | - Ahmet Dogan
- Memorial Sloan Kettering Cancer Center, New York, NY 10065 USA
| | - James R. Cook
- Department of Clinical Pathology, Cleveland Clinic, Cleveland, OH 44195 USA
| |
Collapse
|
28
|
Murakami Y, Kimura-Masuda K, Oda T, Matsumura I, Masuda Y, Ishihara R, Watanabe S, Kuroda Y, Kasamatsu T, Gotoh N, Takei H, Kobayashi N, Saitoh T, Murakami H, Handa H. MYC Causes Multiple Myeloma Progression via Attenuating TP53-Induced MicroRNA-34 Expression. Genes (Basel) 2022; 14:100. [PMID: 36672841 PMCID: PMC9859619 DOI: 10.3390/genes14010100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 12/23/2022] [Accepted: 12/24/2022] [Indexed: 12/31/2022] Open
Abstract
MicroRNAs (miRNAs and miRs) are small (19-25 base pairs) non-coding RNAs with the ability to modulate gene expression. Previously, we showed that the miR-34 family is downregulated in multiple myeloma (MM) as the cancer progressed. In this study, we aimed to clarify the mechanism of miRNA dysregulation in MM. We focused particularly on the interaction between MYC and the TP53-miR34 axis because there is a discrepancy between increased TP53 and decreased miR-34 expressions in MM. Using the nutlin-3 or Tet-on systems, we caused wild-type (WT) p53 protein accumulation in human MM cell lines (HMCLs) and observed upregulated miR-34 expression. Next, we found that treatment with an Myc inhibitor alone did not affect miR-34 expression levels, but when it was coupled with p53 accumulation, miR-34 expression increased. In contrast, forced MYC activation by the MYC-ER system reduced nutlin-3-induced miR-34 expression. We also observed that TP53 and MYC were negatively correlated with mature miR-34 expressions in the plasma cells of patients with MM. Our results suggest that MYC participates in the suppression of p53-dependent miRNA expressions. Because miRNA expression suppresses tumors, its inhibition leads to MM development and malignant transformation.
Collapse
Affiliation(s)
- Yuki Murakami
- Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, Maebashi 371-8510, Japan
| | - Kei Kimura-Masuda
- Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, Maebashi 371-8510, Japan
| | - Tsukasa Oda
- Laboratory of Mucosal Ecosystem Design, The Institute for Molecular and Cellular Regulation, Gunma University, Maebashi 371-8510, Japan
| | - Ikuko Matsumura
- Department of Hematology, Gunma University Graduate School of Medicine, Maebashi 371-8510, Japan
| | - Yuta Masuda
- Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, Maebashi 371-8510, Japan
- Faculty of Medical Technology and Clinical Engineering, Gunma University of Health and Welfare, Maebashi 371-0823, Japan
| | - Rei Ishihara
- Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, Maebashi 371-8510, Japan
| | - Saki Watanabe
- Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, Maebashi 371-8510, Japan
| | - Yuko Kuroda
- Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, Maebashi 371-8510, Japan
| | - Tetsuhiro Kasamatsu
- Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, Maebashi 371-8510, Japan
| | - Nanami Gotoh
- Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, Maebashi 371-8510, Japan
| | - Hisashi Takei
- Department of Hematology, Gunma University Graduate School of Medicine, Maebashi 371-8510, Japan
| | - Nobuhiko Kobayashi
- Department of Hematology, Gunma University Graduate School of Medicine, Maebashi 371-8510, Japan
| | - Takayuki Saitoh
- Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, Maebashi 371-8510, Japan
| | - Hirokazu Murakami
- Faculty of Medical Technology and Clinical Engineering, Gunma University of Health and Welfare, Maebashi 371-0823, Japan
| | - Hiroshi Handa
- Department of Hematology, Gunma University Graduate School of Medicine, Maebashi 371-8510, Japan
| |
Collapse
|
29
|
Boiarsky R, Haradhvala NJ, Alberge JB, Sklavenitis-Pistofidis R, Mouhieddine TH, Zavidij O, Shih MC, Firer D, Miller M, El-Khoury H, Anand SK, Aguet F, Sontag D, Ghobrial IM, Getz G. Single cell characterization of myeloma and its precursor conditions reveals transcriptional signatures of early tumorigenesis. Nat Commun 2022; 13:7040. [PMID: 36396631 PMCID: PMC9672303 DOI: 10.1038/s41467-022-33944-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 10/03/2022] [Indexed: 11/18/2022] Open
Abstract
Multiple myeloma is a plasma cell malignancy almost always preceded by precursor conditions, but low tumor burden of these early stages has hindered the study of their molecular programs through bulk sequencing technologies. Here, we generate and analyze single cell RNA-sequencing of plasma cells from 26 patients at varying disease stages and 9 healthy donors. In silico dissection and comparison of normal and transformed plasma cells from the same bone marrow biopsy enables discovery of patient-specific transcriptional changes. Using Non-Negative Matrix Factorization, we discover 15 gene expression signatures which represent transcriptional modules relevant to myeloma biology, and identify a signature that is uniformly lost in abnormal cells across disease stages. Finally, we demonstrate that tumors contain heterogeneous subpopulations expressing distinct transcriptional patterns. Our findings characterize transcriptomic alterations present at the earliest stages of myeloma, providing insight into the molecular underpinnings of disease initiation.
Collapse
Affiliation(s)
- Rebecca Boiarsky
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- CSAIL and IMES, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Nicholas J Haradhvala
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard Graduate Program in Biophysics, Cambridge, MA, USA
| | - Jean-Baptiste Alberge
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Romanos Sklavenitis-Pistofidis
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Tarek H Mouhieddine
- Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Oksana Zavidij
- Constellation Pharmaceuticals a MorphoSys Company, Cambridge, MA, USA
| | - Ming-Chieh Shih
- CSAIL and IMES, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Mendy Miller
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Habib El-Khoury
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | | | - David Sontag
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- CSAIL and IMES, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Irene M Ghobrial
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| | - Gad Getz
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Cancer Center and Department of Pathology, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
30
|
Paulmann C, Spallek R, Karpiuk O, Heider M, Schäffer I, Zecha J, Klaeger S, Walzik M, Öllinger R, Engleitner T, Wirth M, Keller U, Krönke J, Rudelius M, Kossatz S, Rad R, Kuster B, Bassermann F. The OTUD6B-LIN28B-MYC axis determines the proliferative state in multiple myeloma. EMBO J 2022; 41:e110871. [PMID: 36059274 PMCID: PMC9574752 DOI: 10.15252/embj.2022110871] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 07/27/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Deubiquitylases (DUBs) are therapeutically amenable components of the ubiquitin machinery that stabilize substrate proteins. Their inhibition can destabilize oncoproteins that may otherwise be undruggable. Here, we screened for DUB vulnerabilities in multiple myeloma, an incurable malignancy with dependency on the ubiquitin proteasome system and identified OTUD6B as an oncogene that drives the G1/S‐transition. LIN28B, a suppressor of microRNA biogenesis, is specified as a bona fide cell cycle‐specific substrate of OTUD6B. Stabilization of LIN28B drives MYC expression at G1/S, which in turn allows for rapid S‐phase entry. Silencing OTUD6B or LIN28B inhibits multiple myeloma outgrowth in vivo and high OTUD6B expression evolves in patients that progress to symptomatic multiple myeloma and results in an adverse outcome of the disease. Thus, we link proteolytic ubiquitylation with post‐transcriptional regulation and nominate OTUD6B as a potential mediator of the MGUS‐multiple myeloma transition, a central regulator of MYC, and an actionable vulnerability in multiple myeloma and other tumors with an activated OTUD6B‐LIN28B axis.
Collapse
Affiliation(s)
- Carmen Paulmann
- Department of Medicine III, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany.,TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, Munich, Germany
| | - Ria Spallek
- Department of Medicine III, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany.,TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, Munich, Germany
| | - Oleksandra Karpiuk
- Department of Medicine III, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany.,TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, Munich, Germany
| | - Michael Heider
- Department of Medicine III, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany.,TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, Munich, Germany
| | - Isabell Schäffer
- Department of Medicine III, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany.,TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, Munich, Germany
| | - Jana Zecha
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
| | - Susan Klaeger
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
| | - Michaela Walzik
- Department of Medicine III, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany.,TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, Munich, Germany
| | - Rupert Öllinger
- TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, Munich, Germany.,Department of Medicine II, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany.,Institute of Molecular Oncology and Functional Genomics, Technical University of Munich, Munich, Germany
| | - Thomas Engleitner
- TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, Munich, Germany.,Department of Medicine II, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany.,Institute of Molecular Oncology and Functional Genomics, Technical University of Munich, Munich, Germany
| | - Matthias Wirth
- Department of Hematology, Oncology and Cancer Immunology, Campus Benjamin Franklin Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Ulrich Keller
- Department of Hematology, Oncology and Cancer Immunology, Campus Benjamin Franklin Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,Deutsches Konsortium für Translationale Krebsforschung (DKTK), Heidelberg, Germany.,Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Jan Krönke
- Department of Hematology, Oncology and Cancer Immunology, Campus Benjamin Franklin Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,Deutsches Konsortium für Translationale Krebsforschung (DKTK), Heidelberg, Germany
| | - Martina Rudelius
- Institute of Pathology, Ludwigs Maximilians University, Munich, Germany
| | - Susanne Kossatz
- TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, Munich, Germany.,Department of Nuclear Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Roland Rad
- TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, Munich, Germany.,Department of Medicine II, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany.,Institute of Molecular Oncology and Functional Genomics, Technical University of Munich, Munich, Germany.,Deutsches Konsortium für Translationale Krebsforschung (DKTK), Heidelberg, Germany
| | - Bernhard Kuster
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany.,Deutsches Konsortium für Translationale Krebsforschung (DKTK), Heidelberg, Germany
| | - Florian Bassermann
- Department of Medicine III, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany.,TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, Munich, Germany.,Deutsches Konsortium für Translationale Krebsforschung (DKTK), Heidelberg, Germany
| |
Collapse
|
31
|
Marcus C, Schuster DM, Tajmir SH. 18F-Fluciclovine PET/CT: A Potential Imaging Biomarker for the Evaluation of Multiple Myeloma. Clin Nucl Med 2022; 47:e613-e615. [PMID: 35930716 DOI: 10.1097/rlu.0000000000004271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
ABSTRACT Incidental concomitant second primary malignancy may be detected on PET/CT imaging. We present an 18F-fluciclovine PET/CT of a patient undergoing evaluation of biochemically recurrent prostate cancer with incidental radiotracer uptake within lytic osseous lesions confirmed to be multiple myeloma. We present the 18F-fluciclovine PET/CT images of an 83-year-old man with prostate cancer treated in 2005 who presented with back pain and a CT scan revealing multiple lytic osseous lesions concerning for metastases versus a plasma cell neoplasm. Prostate-specific antigen at the time of evaluation was 0.1 ng/mL.
Collapse
Affiliation(s)
- Charles Marcus
- From the Division of Nuclear Medicine and Molecular Imaging. Department of Radiology and Imaging Sciences. Emory University School of Medicine. Atlanta, GA
| | | | | |
Collapse
|
32
|
Yue Y, Cao Y, Mao X, Wang F, Fan P, Qian L, Guo S, Li F, Guo Y, Chen T, Lin Y, Dong W, Liu Y, Huang Y, Gu W. Novel myeloma patient-derived xenograft models unveil the potency of anlotinib to overcome bortezomib resistance. Front Oncol 2022; 12:894279. [PMID: 35992875 PMCID: PMC9389337 DOI: 10.3389/fonc.2022.894279] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 07/08/2022] [Indexed: 11/27/2022] Open
Abstract
Multiple myeloma (MM) remains a common hematologic malignancy with a 10-year survival rate below 50%, which is largely due to disease relapse and resistance. The lack of a simple and practical approach to establish myeloma patient-derived xenograft (PDX) hampers translational myeloma research. Here, we successfully developed myeloma PDXs by subcutaneous inoculation of primary mononuclear cells from MM patients following series tumor tissue transplantations. Newly established myeloma PDXs retained essential cellular features of MM and recapitulated their original drug sensitivities as seen in the clinic. Notably, anlotinib therapy significantly suppressed the growth of myeloma PDXs even in bortezomib-resistant model. Anlotinib treatments polarized tumor-associated macrophages from an M2- to an M1-like phenotype, decreased tumor vascular function, and accelerated cell apoptosis in myeloma PDXs. Our preclinical work not only unveiled the potency of anlotinib to overcome bortezomib resistance, but also provided a more practical way to establish MM PDX to facilitate myeloma research.
Collapse
Affiliation(s)
- Yanhua Yue
- Department of Hematology, The First People’s Hospital of Changzhou, Third Affiliated Hospital of Soochow University, Changzhou, China
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China
| | - Yang Cao
- Department of Hematology, The First People’s Hospital of Changzhou, Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Xunyuan Mao
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China
| | - Fei Wang
- Department of Hematology, The First People’s Hospital of Changzhou, Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Peng Fan
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China
| | - Long Qian
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China
| | - Shuxin Guo
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China
| | - Feng Li
- Department of Hematology, The First People’s Hospital of Changzhou, Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Yanting Guo
- Department of Hematology, The First People’s Hospital of Changzhou, Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Tongbing Chen
- Department of Pathology, The First People’s Hospital of Changzhou, Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Yan Lin
- Department of Hematology, The First People’s Hospital of Changzhou, Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Weimin Dong
- Department of Hematology, The First People’s Hospital of Changzhou, Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Yue Liu
- Department of Hematology, The First People’s Hospital of Changzhou, Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Yuhui Huang
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China
- *Correspondence: Weiying Gu, ; Yuhui Huang,
| | - Weiying Gu
- Department of Hematology, The First People’s Hospital of Changzhou, Third Affiliated Hospital of Soochow University, Changzhou, China
- *Correspondence: Weiying Gu, ; Yuhui Huang,
| |
Collapse
|
33
|
Agnarelli A, Mitchell S, Caalim G, Wood CD, Milton‐Harris L, Chevassut T, West MJ, Mancini EJ. Dissecting the impact of bromodomain inhibitors on the Interferon Regulatory Factor 4-MYC oncogenic axis in multiple myeloma. Hematol Oncol 2022; 40:417-429. [PMID: 35544413 PMCID: PMC9543246 DOI: 10.1002/hon.3016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 04/19/2022] [Accepted: 05/06/2022] [Indexed: 11/21/2022]
Abstract
B-cell progenitor fate determinant interferon regulatory factor 4 (IRF4) exerts key roles in the pathogenesis and progression of multiple myeloma (MM), a currently incurable plasma cell malignancy. Aberrant expression of IRF4 and the establishment of a positive auto-regulatory loop with oncogene MYC, drives a MM specific gene-expression program leading to the abnormal expansion of malignant immature plasma cells. Targeting the IRF4-MYC oncogenic loop has the potential to provide a selective and effective therapy for MM. Here we evaluate the use of bromodomain inhibitors to target the IRF4-MYC axis through combined inhibition of their known epigenetic regulators, BRD4 and CBP/EP300. Although all inhibitors induced cell death, we found no synergistic effect of targeting both of these regulators on the viability of MM cell-lines. Importantly, for all inhibitors over a time period up to 72 h, we detected reduced IRF4 mRNA, but a limited decrease in IRF4 protein expression or mRNA levels of downstream target genes. This indicates that inhibitor-induced loss of cell viability is not mediated through reduced IRF4 protein expression, as previously proposed. Further analysis revealed a long half-life of IRF4 protein in MM cells. In support of our experimental observations, gene network modeling of MM suggests that bromodomain inhibition is exerted primarily through MYC and not IRF4. These findings suggest that despite the autofeedback positive regulatory loop between IRF4 and MYC, bromodomain inhibitors are not effective at targeting IRF4 in MM and that novel therapeutic strategies should focus on the direct inhibition or degradation of IRF4.
Collapse
Affiliation(s)
- Alessandro Agnarelli
- Biochemistry and BiomedicineSchool of Life SciencesUniversity of SussexBrightonUK
| | - Simon Mitchell
- Brighton and Sussex Medical SchoolUniversity of SussexBrightonUK
| | - Gillian Caalim
- Biochemistry and BiomedicineSchool of Life SciencesUniversity of SussexBrightonUK
| | - C. David Wood
- Biochemistry and BiomedicineSchool of Life SciencesUniversity of SussexBrightonUK
| | - Leanne Milton‐Harris
- Biochemistry and BiomedicineSchool of Life SciencesUniversity of SussexBrightonUK
| | | | - Michelle J. West
- Biochemistry and BiomedicineSchool of Life SciencesUniversity of SussexBrightonUK
| | - Erika J. Mancini
- Biochemistry and BiomedicineSchool of Life SciencesUniversity of SussexBrightonUK
| |
Collapse
|
34
|
Bradey AL, Fitter S, Duggan J, Wilczek V, Williams CMD, Cheney EA, Noll JE, Tangseefa P, Panagopoulos V, Zannettino ACW. Calorie restriction has no effect on bone marrow tumour burden in a Vk*MYC transplant model of multiple myeloma. Sci Rep 2022; 12:13128. [PMID: 35908046 PMCID: PMC9338941 DOI: 10.1038/s41598-022-17403-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 07/25/2022] [Indexed: 12/05/2022] Open
Abstract
Multiple myeloma (MM) is an incurable haematological malignancy, caused by the uncontrolled proliferation of plasma cells within the bone marrow (BM). Obesity is a known risk factor for MM, however, few studies have investigated the potential of dietary intervention to prevent MM progression. Calorie restriction (CR) is associated with many health benefits including reduced cancer incidence and progression. To investigate if CR could reduce MM progression, dietary regimes [30% CR, normal chow diet (NCD), or high fat diet (HFD)] were initiated in C57BL/6J mice. Diet-induced changes were assessed, followed by inoculation of mice with Vk*MYC MM cells (Vk14451-GFP) at 16 weeks of age. Tumour progression was monitored by serum paraprotein, and at endpoint, BM and splenic tumour burden was analysed by flow cytometry. 30% CR promoted weight loss, improved glucose tolerance, increased BM adiposity and elevated serum adiponectin compared to NCD-fed mice. Despite these metabolic changes, CR had no significant effect on serum paraprotein levels. Furthermore, endpoint analysis found that dietary changes were insufficient to affect BM tumour burden, however, HFD resulted in an average two-fold increase in splenic tumour burden. Overall, these findings suggest diet-induced BM changes may not be key drivers of MM progression in the Vk14451-GFP transplant model of myeloma.
Collapse
Affiliation(s)
- Alanah L Bradey
- Myeloma Research Laboratory, Faculty of Health and Medical Sciences, School of Biomedicine, University of Adelaide, Adelaide, Australia.,Precision Cancer Medicine Theme, Solid Tumour Program, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Stephen Fitter
- Myeloma Research Laboratory, Faculty of Health and Medical Sciences, School of Biomedicine, University of Adelaide, Adelaide, Australia.,Precision Cancer Medicine Theme, Solid Tumour Program, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Jvaughn Duggan
- Myeloma Research Laboratory, Faculty of Health and Medical Sciences, School of Biomedicine, University of Adelaide, Adelaide, Australia.,Precision Cancer Medicine Theme, Solid Tumour Program, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Vicki Wilczek
- Myeloma Research Laboratory, Faculty of Health and Medical Sciences, School of Biomedicine, University of Adelaide, Adelaide, Australia.,Precision Cancer Medicine Theme, Solid Tumour Program, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Connor M D Williams
- Myeloma Research Laboratory, Faculty of Health and Medical Sciences, School of Biomedicine, University of Adelaide, Adelaide, Australia.,Precision Cancer Medicine Theme, Solid Tumour Program, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Emma Aj Cheney
- Myeloma Research Laboratory, Faculty of Health and Medical Sciences, School of Biomedicine, University of Adelaide, Adelaide, Australia.,Precision Cancer Medicine Theme, Solid Tumour Program, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Jacqueline E Noll
- Myeloma Research Laboratory, Faculty of Health and Medical Sciences, School of Biomedicine, University of Adelaide, Adelaide, Australia.,Precision Cancer Medicine Theme, Solid Tumour Program, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Pawanrat Tangseefa
- Myeloma Research Laboratory, Faculty of Health and Medical Sciences, School of Biomedicine, University of Adelaide, Adelaide, Australia.,Precision Cancer Medicine Theme, Solid Tumour Program, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Vasilios Panagopoulos
- Myeloma Research Laboratory, Faculty of Health and Medical Sciences, School of Biomedicine, University of Adelaide, Adelaide, Australia. .,Precision Cancer Medicine Theme, Solid Tumour Program, South Australian Health and Medical Research Institute, Adelaide, Australia.
| | - Andrew C W Zannettino
- Myeloma Research Laboratory, Faculty of Health and Medical Sciences, School of Biomedicine, University of Adelaide, Adelaide, Australia.,Precision Cancer Medicine Theme, Solid Tumour Program, South Australian Health and Medical Research Institute, Adelaide, Australia.,Department of Haematology, Royal Adelaide Hospital, Adelaide, Australia.,Central Adelaide Local Health Network, Adelaide, Australia
| |
Collapse
|
35
|
Schwestermann J, Besse A, Driessen C, Besse L. Contribution of the Tumor Microenvironment to Metabolic Changes Triggering Resistance of Multiple Myeloma to Proteasome Inhibitors. Front Oncol 2022; 12:899272. [PMID: 35692781 PMCID: PMC9178120 DOI: 10.3389/fonc.2022.899272] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
Virtually all patients with multiple myeloma become unresponsive to treatment with proteasome inhibitors over time. Relapsed/refractory multiple myeloma is accompanied by the clonal evolution of myeloma cells with heterogeneous genomic aberrations, diverse proteomic and metabolic alterations, and profound changes of the bone marrow microenvironment. However, the molecular mechanisms that drive resistance to proteasome inhibitors within the context of the bone marrow microenvironment remain elusive. In this review article, we summarize the latest knowledge about the complex interaction of malignant plasma cells with its surrounding microenvironment. We discuss the pivotal role of metabolic reprograming of malignant plasma cells within the tumor microenvironment with a subsequent focus on metabolic rewiring in plasma cells upon treatment with proteasome inhibitors, driving multiple ways of adaptation to the treatment. At the same time, mutual interaction of plasma cells with the surrounding tumor microenvironment drives multiple metabolic alterations in the bone marrow. This provides a tumor-promoting environment, but at the same time may offer novel therapeutic options for the treatment of relapsed/refractory myeloma patients.
Collapse
Affiliation(s)
| | | | | | - Lenka Besse
- Laboratory of Experimental Oncology, Clinics for Medical Hematology and Oncology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| |
Collapse
|
36
|
Novel dual-targeting c-Myc inhibitor D347-2761 represses myeloma growth via blocking c-Myc/Max heterodimerization and disturbing its stability. Cell Commun Signal 2022; 20:73. [PMID: 35619182 PMCID: PMC9137135 DOI: 10.1186/s12964-022-00868-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 03/29/2022] [Indexed: 12/28/2022] Open
Abstract
Background Transcription factor c-Myc plays a critical role in various physiological and pathological events. c-Myc gene rearrangement is closely associated with multiple myeloma (MM) progression and drug resistance. Thereby, targeting c-Myc is expected to be a useful therapeutic strategy for hematological disease, especially in MM.
Methods Molecular docking-based virtual screening and dual-luciferase reporter gene assay were used to identify novel c-Myc inhibitors. Cell viability and flow cytometry were performed for evaluating myeloma cytotoxicity. Western blot, immunofluorescence, immunoprecipitation, GST pull down and Electrophoretic Mobility Shift Assay were performed for protein expression and interaction between c-Myc and Max. c-Myc downstream targets were measured by Q-PCR and Chromatin immunoprecipitation methods. Animal experiments were used to detect myeloma xenograft and infiltration in vivo. Results We successfully identified a novel c-Myc inhibitor D347-2761, which hindered the formation of c-Myc/Max heterodimer and disturbed c-Myc protein stability simultaneously. Compound D347-2761 dose-and time-dependently inhibited myeloma cell proliferation and induced apoptosis. Dual knockout Bak/Bax partially restored D347-2761-mediated cell death. Additionally, compound D347-2761 could, in combination with bortezomib (BTZ), enhance MM cell DNA damage and overcome BTZ drug resistance. Our in vivo studies also showed that compound D347-2761 repressed myeloma growth and distal infiltration by downregulating c-Myc expression. Mechanistically, novel dual-targeting c-Myc inhibitor D347-2761 promoted c-Myc protein degradation via stimulating c-Myc Thr58 phosphorylation levels, which ultimately led to transcriptional repression of CDK4 promoter activity. Conclusions We identified a novel dual-targeting c-Myc small molecular inhibitor D347-2761. And this study may provide a solid foundation for developing a novel therapeutic agent targeting c-Myc. Video Abstract
Supplementary Information The online version contains supplementary material available at 10.1186/s12964-022-00868-6.
Collapse
|
37
|
Shi Y, Sun F, Cheng Y, Holmes B, Dhakal B, Gera JF, Janz S, Lichtenstein A. Critical Role for Cap-Independent c-MYC Translation in Progression of Multiple Myeloma. Mol Cancer Ther 2022; 21:502-510. [PMID: 35086951 PMCID: PMC8983490 DOI: 10.1158/1535-7163.mct-21-0016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 07/30/2021] [Accepted: 01/11/2022] [Indexed: 11/16/2022]
Abstract
Dysregulated c-myc is a determinant of multiple myeloma progression. Translation of c-myc can be achieved by an mTOR-mediated, cap-dependent mechanism or a cap-independent mechanism where a sequence in the 5'UTR of mRNA, termed the internal ribosome entry site (IRES), recruits the 40S ribosomal subunit. This mechanism requires the RNA-binding factor hnRNP A1 (A1) and becomes critical when cap-dependent translation is inhibited during endoplasmic reticulum (ER) stress. Thus, we studied the role of A1 and the myc IRES in myeloma biology. A1 expression correlated with enhanced c-myc expression in patient samples. Expression of A1 in multiple myeloma lines was mediated by c-myc itself, suggesting a positive feedback circuit where myc induces A1 and A1 enhances myc translation. We then deleted the A1 gene in a myc-driven murine myeloma model. A1-deleted multiple myeloma cells demonstrated downregulated myc expression and were inhibited in their growth in vivo. Decreased myc expression was due to reduced translational efficiency and depressed IRES activity. We also studied the J007 inhibitor, which prevents A1's interaction with the myc IRES. J007 inhibited myc translation and IRES activity and diminished myc expression in murine and human multiple myeloma lines as well as primary samples. J007 also inhibited tumor outgrowth in mice after subcutaneous or intravenous challenge and prevented osteolytic bone disease. When c-myc was ectopically reexpressed in A1-deleted multiple myeloma cells, tumor growth was reestablished. These results support the critical role of A1-dependent myc IRES translation in myeloma.
Collapse
Affiliation(s)
- Yijiang Shi
- Hematology-Oncology, VA West LA Medical Center
- Jonsson Cancer Center, UCLA
| | - Fumou Sun
- Hematology-Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Yan Cheng
- Hematology-Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Brent Holmes
- Hematology-Oncology, VA West LA Medical Center
- Jonsson Cancer Center, UCLA
| | - Binod Dhakal
- Hematology-Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Joseph F. Gera
- Hematology-Oncology, VA West LA Medical Center
- Jonsson Cancer Center, UCLA
| | - Siegfried Janz
- Hematology-Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Alan Lichtenstein
- Hematology-Oncology, VA West LA Medical Center
- Jonsson Cancer Center, UCLA
| |
Collapse
|
38
|
Targeting an MDM2/MYC Axis to Overcome Drug Resistance in Multiple Myeloma. Cancers (Basel) 2022; 14:cancers14061592. [PMID: 35326742 PMCID: PMC8945937 DOI: 10.3390/cancers14061592] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/08/2022] [Accepted: 03/14/2022] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND MDM2 is elevated in multiple myeloma (MM). Although traditionally, MDM2 negatively regulates p53, a growing body of research suggests that MDM2 plays several p53-independent roles in cancer pathogenesis as a regulator of oncogene mRNA stability and translation. Yet, the molecular mechanisms underlying MDM2 overexpression and its role in drug resistance in MM remain undefined. METHODS Both myeloma cell lines and primary MM samples were employed. Cell viability, cell cycle and apoptosis assays, siRNA transfection, quantitative real-time PCR, immunoblotting, co-immunoprecipitation (Co-IP), chromatin immunoprecipitation (ChIP), soft agar colony formation and migration assay, pulse-chase assay, UV cross-linking, gel-shift assay, RNA-protein binding assays, MEME-analysis for discovering c-Myc DNA binding motifs studies, reporter gene constructs procedure, gene transfection and reporter assay, MM xenograft mouse model studies, and statistical analysis were applied in this study. RESULTS We show that MDM2 is associated with poor prognosis. Importantly, its upregulation in primary MM samples and human myeloma cell lines (HMCLs) drives drug resistance. Inhibition of MDM2 by RNAi, or by the MDM2/XIAP dual inhibitor MX69, significantly enhanced the sensitivity of resistant HMCLs and primary MM samples to bortezomib and other anti-myeloma drugs, demonstrating that MDM2 can modulate drug response. MDM2 inhibition resulted in a remarkable suppression of relapsed MM cell growth, colony formation, migration and induction of apoptosis through p53-dependent and -independent pathways. Mechanistically, MDM2 was found to reciprocally regulate c-Myc in MM; MDM2 binds to AREs on c-Myc 3'UTR to increase c-Myc mRNA stability and translation, while MDM2 is a direct transcriptional target of c-Myc. MDM2 inhibition rendered c-Myc mRNA unstable, and reduced c-Myc protein expression in MM cells. Importantly, in vivo delivery of MX69 in combination with bortezomib led to significant regression of tumors and prolonged survival in an MM xenograft model. CONCLUSION Our findings provide a rationale for the therapeutic targeting of MDM2/c-Myc axis to improve clinical outcome of patients with refractory/relapsed MM.
Collapse
|
39
|
Teoh PJ, An O, Chung TH, Vaiyapuri T, Raju A, Hoppe MM, Toh SHM, Wang W, Chan MC, Fullwood MJ, Jeyasekharan AD, Tergaonkar V, Chen L, Yang H, Chng WJ. p53-NEIL1 co-abnormalities induce genomic instability and promote synthetic lethality with Chk1 inhibition in multiple myeloma having concomitant 17p13(del) and 1q21(gain). Oncogene 2022; 41:2106-2121. [DOI: 10.1038/s41388-022-02227-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 01/21/2022] [Accepted: 02/01/2022] [Indexed: 11/09/2022]
|
40
|
Petrusca DN, Mulcrone PL, Macar DA, Bishop RT, Berdyshev E, Suvannasankha A, Anderson JL, Sun Q, Auron PE, Galson DL, Roodman GD. GFI1-Dependent Repression of SGPP1 Increases Multiple Myeloma Cell Survival. Cancers (Basel) 2022; 14:cancers14030772. [PMID: 35159039 PMCID: PMC8833953 DOI: 10.3390/cancers14030772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/27/2022] [Accepted: 01/31/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary New therapies have greatly improved the progression-free and overall survival for patients with “standard risk” multiple myeloma (MM). However, patients with “high risk” MM, in particular patients whose MM cells harbor non-functional p53, have very short survival times because of the early relapse and rapid development of highly therapy-resistant MM. In this report, we identify a novel mechanism responsible for Growth Factor Independence-1 (GFI1) regulation of the growth and survival of MM cells through its modulation of sphingolipid metabolism, regardless of their p53 status. We identify the Sphingosine-1-Phosphate Phosphatase (SGPP1) gene as a novel direct target of GFI1 transcriptional repression in MM cells, thus increasing intracellular sphingosine-1-phosphate levels, which stabilizes c-Myc. Our results support GFI1 as an attractive therapeutic target for all types of MM, including the “high risk” patient population with non-functional p53, as well as a possible therapeutic approach for other types of cancers expressing high levels of c-Myc. Abstract Multiple myeloma (MM) remains incurable for most patients due to the emergence of drug resistant clones. Here we report a p53-independent mechanism responsible for Growth Factor Independence-1 (GFI1) support of MM cell survival by its modulation of sphingolipid metabolism to increase the sphingosine-1-phosphate (S1P) level regardless of the p53 status. We found that expression of enzymes that control S1P biosynthesis, SphK1, dephosphorylation, and SGPP1 were differentially correlated with GFI1 levels in MM cells. We detected GFI1 occupancy on the SGGP1 gene in MM cells in a predicted enhancer region at the 5’ end of intron 1, which correlated with decreased SGGP1 expression and increased S1P levels in GFI1 overexpressing cells, regardless of their p53 status. The high S1P:Ceramide intracellular ratio in MM cells protected c-Myc protein stability in a PP2A-dependent manner. The decreased MM viability by SphK1 inhibition was dependent on the induction of autophagy in both p53WT and p53mut MM. An autophagic blockade prevented GFI1 support for viability only in p53mut MM, demonstrating that GFI1 increases MM cell survival via both p53WT inhibition and upregulation of S1P independently. Therefore, GFI1 may be a key therapeutic target for all types of MM that may significantly benefit patients that are highly resistant to current therapies.
Collapse
Affiliation(s)
- Daniela N. Petrusca
- Department of Medicine, Hematology/Oncology Division, Indiana University School of Medicine, 980 Walnut St., Indianapolis, IN 46202, USA; (P.L.M.); (A.S.); (J.L.A.); (G.D.R.)
- Correspondence: ; Tel.: +1-(317)-278-5548
| | - Patrick L. Mulcrone
- Department of Medicine, Hematology/Oncology Division, Indiana University School of Medicine, 980 Walnut St., Indianapolis, IN 46202, USA; (P.L.M.); (A.S.); (J.L.A.); (G.D.R.)
| | - David A. Macar
- Department of Biological Sciences, Duquesne University, 600 Forbes Ave., Pittsburgh, PA 15219, USA; (D.A.M.); (P.E.A.)
| | - Ryan T. Bishop
- Department of Tumor Biology, H. Lee Moffitt Cancer Research Center and Institute, 12902 USF Magnolia Drive, Tampa, FL 33612, USA;
| | - Evgeny Berdyshev
- Department of Medicine, National Jewish Health, 1400 Jackson Street, Denver, CO 80206, USA;
| | - Attaya Suvannasankha
- Department of Medicine, Hematology/Oncology Division, Indiana University School of Medicine, 980 Walnut St., Indianapolis, IN 46202, USA; (P.L.M.); (A.S.); (J.L.A.); (G.D.R.)
- Richard L. Rodebush Veterans Affairs Medical Center, 1481 W 10th St., Indianapolis, IN 46202, USA
| | - Judith L. Anderson
- Department of Medicine, Hematology/Oncology Division, Indiana University School of Medicine, 980 Walnut St., Indianapolis, IN 46202, USA; (P.L.M.); (A.S.); (J.L.A.); (G.D.R.)
| | - Quanhong Sun
- Department of Medicine, Division of Hematology/Oncology, McGowan Institute for Regenerative Medicine, University of Pittsburgh, UPMC Hillman Cancer Center Research Pavilion, 5117 Centre Ave, Pittsburgh, PA 15213, USA; (Q.S.); (D.L.G.)
| | - Philip E. Auron
- Department of Biological Sciences, Duquesne University, 600 Forbes Ave., Pittsburgh, PA 15219, USA; (D.A.M.); (P.E.A.)
| | - Deborah L. Galson
- Department of Medicine, Division of Hematology/Oncology, McGowan Institute for Regenerative Medicine, University of Pittsburgh, UPMC Hillman Cancer Center Research Pavilion, 5117 Centre Ave, Pittsburgh, PA 15213, USA; (Q.S.); (D.L.G.)
| | - G. David Roodman
- Department of Medicine, Hematology/Oncology Division, Indiana University School of Medicine, 980 Walnut St., Indianapolis, IN 46202, USA; (P.L.M.); (A.S.); (J.L.A.); (G.D.R.)
- Richard L. Rodebush Veterans Affairs Medical Center, 1481 W 10th St., Indianapolis, IN 46202, USA
| |
Collapse
|
41
|
Botrugno OA, Tonon G. Genomic Instability and Replicative Stress in Multiple Myeloma: The Final Curtain? Cancers (Basel) 2021; 14:cancers14010025. [PMID: 35008191 PMCID: PMC8750813 DOI: 10.3390/cancers14010025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/18/2021] [Accepted: 12/20/2021] [Indexed: 12/02/2022] Open
Abstract
Simple Summary Genomic instability is recognized as a driving force in most cancers as well as in the haematological cancer multiple myeloma and remains among the leading cause of drug resistance. Several evidences suggest that replicative stress exerts a fundamental role in fuelling genomic instability. Notably, cancer cells rely on a single protein, ATR, to cope with the ensuing DNA damage. In this perspective, we provide an overview depicting how replicative stress represents an Achilles heel for multiple myeloma, which could be therapeutically exploited either alone or in combinatorial regimens to preferentially ablate tumor cells. Abstract Multiple Myeloma (MM) is a genetically complex and heterogeneous hematological cancer that remains incurable despite the introduction of novel therapies in the clinic. Sadly, despite efforts spanning several decades, genomic analysis has failed to identify shared genetic aberrations that could be targeted in this disease. Seeking alternative strategies, various efforts have attempted to target and exploit non-oncogene addictions of MM cells, including, for example, proteasome inhibitors. The surprising finding that MM cells present rampant genomic instability has ignited concerted efforts to understand its origin and exploit it for therapeutic purposes. A credible hypothesis, supported by several lines of evidence, suggests that at the root of this phenotype there is intense replicative stress. Here, we review the current understanding of the role of replicative stress in eliciting genomic instability in MM and how MM cells rely on a single protein, Ataxia Telangiectasia-mutated and Rad3-related protein, ATR, to control and survive the ensuing, potentially fatal DNA damage. From this perspective, replicative stress per se represents not only an opportunity for MM cells to increase their evolutionary pool by increasing their genomic heterogeneity, but also a vulnerability that could be leveraged for therapeutic purposes to selectively target MM tumor cells.
Collapse
Affiliation(s)
- Oronza A. Botrugno
- Functional Genomics of Cancer Unit, Experimental Oncology Division, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Correspondence: (O.A.B.); (G.T.); Tel.: +39-02-2643-6661 (O.A.B.); +39-02-2643-5624 (G.T.); Fax: +39-02-2643-6352 (O.A.B. & G.T.)
| | - Giovanni Tonon
- Functional Genomics of Cancer Unit, Experimental Oncology Division, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Center for Omics Sciences, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Correspondence: (O.A.B.); (G.T.); Tel.: +39-02-2643-6661 (O.A.B.); +39-02-2643-5624 (G.T.); Fax: +39-02-2643-6352 (O.A.B. & G.T.)
| |
Collapse
|
42
|
Low NCOR2 levels in multiple myeloma patients drive multidrug resistance via MYC upregulation. Blood Cancer J 2021; 11:194. [PMID: 34864816 PMCID: PMC8643354 DOI: 10.1038/s41408-021-00589-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 10/25/2021] [Accepted: 11/23/2021] [Indexed: 12/17/2022] Open
Abstract
MYC upregulation is associated with multidrug refractory disease in patients with multiple myeloma (MM). We, isolated patient-derived MM cells with high MYC expression and discovered that NCOR2 was down-regulated in these cells. NCOR2 is a transcriptional coregulatory protein and its role in MM remains unknown. To define the role of NCOR2 in MM, we created NCOR2 knockout human myeloma cell lines and demonstrated that NCOR2 knockout led to high MYC expression. Furthermore, NCOR2 knockout conferred resistance to pomalidomide, BET and HDAC inhibitors, independent of Cereblon (CRBN), indicating high MYC expression as a cause of multidrug resistance. Moreover, NCOR2 interacted with the nucleosome remodeling and deacetylase (NuRD) complex and repressed the expression of CD180 by directly binding to its promoter and inducing MYC expression. Next, we generated lenalidomide-resistant and pomalidomide-resistant human myeloma cell lines. Whole-exome sequencing revealed that these cell lines acquired the same exonic mutations of NCOR2. These cell lines showed NCOR2 downregulation and MYC upregulation independent of CRBN and demonstrated resistance to BET and HDAC inhibitors. Our findings reveal a novel CRBN independent molecular mechanism associated with drug resistance. Low NCOR2 expression can serve as a potential biomarker for drug resistance and needs further validation in larger prospective studies.
Collapse
|
43
|
Sharma N, Smadbeck JB, Abdallah N, Zepeda-Mendoza C, Binder M, Pearce KE, Asmann YW, Peterson JF, Ketterling RP, Greipp PT, Leif Bergsagel P, Vincent Rajkumar S, Kumar SK, Baughn LB. The Prognostic Role of MYC Structural Variants Identified by NGS and FISH in Multiple Myeloma. Clin Cancer Res 2021; 27:5430-5439. [PMID: 34233962 PMCID: PMC8738776 DOI: 10.1158/1078-0432.ccr-21-0005] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 03/16/2021] [Accepted: 07/01/2021] [Indexed: 12/14/2022]
Abstract
PURPOSE Structural variants (SV) of the MYC gene region are common in multiple myeloma and influence disease progression. However, the prognostic significance of different MYC SVs in multiple myeloma has not been clearly established. EXPERIMENTAL DESIGN We conducted a retrospective study of multiple myeloma comparing MYC SV subtypes identified by next-generation sequencing (NGS) and FISH to MYC expression and disease survival using 140 cases from Mayo Clinic and 658 cases from the MMRF CoMMpass study. RESULTS MYC SVs were found in 41% of cases and were classified into nine subtypes. A correlation between the presence of a MYC SV and increased MYC expression was identified. Among the nine MYC subtypes, the non-immunoglobulin (non-Ig) insertion subtype was independently associated with improved outcomes, while the Ig insertion subtype, specifically involving the IgL gene partner, was independently associated with poorer outcomes compared with other MYC SV subtypes. Although the FISH methodology failed to detect approximately 70% of all MYC SVs, those detected by FISH were associated with elevated MYC gene expression and poor outcomes suggesting a different pathogenic role for FISH-detected MYC subtypes compared with other MYC subtypes. CONCLUSIONS Understanding the impact of different MYC SVs on disease outcome is necessary for the reliable interpretation of MYC SVs in multiple myeloma. NGS approaches should be considered as a replacement technique for a more comprehensive evaluation of the multiple myeloma clone.
Collapse
Affiliation(s)
- Neeraj Sharma
- Division of Laboratory Genetics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - James B. Smadbeck
- Division of Computational Biology, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN
| | - Nadine Abdallah
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN
| | | | - Moritz Binder
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN
| | - Kathryn E. Pearce
- Division of Laboratory Genetics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Yan W. Asmann
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Jacksonville, FL
| | - Jess F. Peterson
- Division of Laboratory Genetics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN,Division of Hematopathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Rhett P. Ketterling
- Division of Laboratory Genetics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN,Division of Hematopathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Patricia T. Greipp
- Division of Laboratory Genetics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN,Division of Hematopathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - P. Leif Bergsagel
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Scottsdale, AZ
| | - S. Vincent Rajkumar
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN
| | - Shaji K. Kumar
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN
| | - Linda B. Baughn
- Division of Laboratory Genetics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN,Division of Hematopathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| |
Collapse
|
44
|
Kalff A, Khong T, Ramachandran M, Walker P, Schwarer A, Roberts AW, Campbell P, Filshie R, Norton S, Reynolds J, Young M, Pierceall W, Thakurta A, Guo M, Oppermann U, Wang M, Ren Y, Kennedy N, Parekh S, Spencer A. Cereblon pathway biomarkers and immune profiles in patients with myeloma receiving post-ASCT lenalidomide maintenance (LEOPARD). Leuk Lymphoma 2021; 62:2981-2991. [PMID: 34263697 DOI: 10.1080/10428194.2021.1948030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
LEOPARD was a single arm, phase II study of lenalidomide (LEN) and alternate day prednisolone maintenance in patients with newly diagnosed multiple myeloma (MM) following autologous stem cell transplantation (ASCT). Sixty patients were enrolled. Estimated median potential follow-up was 44 m, median PFS was 38.3 m, median OS was not reached (landmark 36 m OS: 71.4%). Correlative immunohistochemistry performed on pre-ASCT trephines demonstrated high MM tumor cereblon (total/cytoplasmic) was associated with superior OS (p = .045, p = .031, respectively), whereas high c-Myc was associated with inferior PFS (p = .04). Patients with high cereblon (total/nuclear) were more likely to improve depth of response, whereas patients with high c-Myc were less likely, suggesting alternative/more effective post-ASCT strategies for patients with high c-Myc need identification. Peripheral blood immune profiling (mass cytometry) informed a more sustained response to LEN maintenance, demonstrating enrichment of activated/cytotoxic NK cells and cytotoxic T cells in patients with durable responses, contrasting with enrichment of B-regs in early relapsers.
Collapse
Affiliation(s)
- Anna Kalff
- Malignant Haematology and Stem Cell Transplantation, Alfred Hospital, Melbourne, Australia.,Myeloma Research Group, Australian Centre for Blood Diseases, Alfred Hospital-Monash University, Melbourne, Australia.,Department of Clinical Haematology, Monash University, Clayton, Australia
| | - Tiffany Khong
- Malignant Haematology and Stem Cell Transplantation, Alfred Hospital, Melbourne, Australia.,Myeloma Research Group, Australian Centre for Blood Diseases, Alfred Hospital-Monash University, Melbourne, Australia
| | - Malarmathy Ramachandran
- Malignant Haematology and Stem Cell Transplantation, Alfred Hospital, Melbourne, Australia.,Myeloma Research Group, Australian Centre for Blood Diseases, Alfred Hospital-Monash University, Melbourne, Australia
| | - Patricia Walker
- Malignant Haematology and Stem Cell Transplantation, Alfred Hospital, Melbourne, Australia
| | | | - Andrew W Roberts
- Clinical Haematology Department, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, Australia
| | | | | | | | - John Reynolds
- Epidemiology and Preventive Medicine Department, Alfred Health - Monash University, Melbourne, Australia
| | - Mary Young
- Bristol-Myers Squibb Corporation, Summit, NJ, USA
| | | | | | - Manman Guo
- Botnar Research Centre, University of Oxford, Oxford, UK
| | - Udo Oppermann
- Botnar Research Centre, University of Oxford, Oxford, UK
| | - Maria Wang
- Bristol-Myers Squibb Corporation, Summit, NJ, USA
| | - Yan Ren
- Bristol-Myers Squibb Corporation, Summit, NJ, USA
| | - Nola Kennedy
- Malignant Haematology and Stem Cell Transplantation, Alfred Hospital, Melbourne, Australia
| | - Samir Parekh
- Icahn School of Medicine, Mt Sinai Hospital, New York City, NY, USA
| | - Andrew Spencer
- Malignant Haematology and Stem Cell Transplantation, Alfred Hospital, Melbourne, Australia.,Myeloma Research Group, Australian Centre for Blood Diseases, Alfred Hospital-Monash University, Melbourne, Australia.,Department of Clinical Haematology, Monash University, Clayton, Australia
| |
Collapse
|
45
|
Ohguchi H, Park PMC, Wang T, Gryder BE, Ogiya D, Kurata K, Zhang X, Li D, Pei C, Masuda T, Johansson C, Wimalasena VK, Kim Y, Hino S, Usuki S, Kawano Y, Samur MK, Tai YT, Munshi NC, Matsuoka M, Ohtsuki S, Nakao M, Minami T, Lauberth S, Khan J, Oppermann U, Durbin AD, Anderson KC, Hideshima T, Qi J. Lysine Demethylase 5A is Required for MYC Driven Transcription in Multiple Myeloma. Blood Cancer Discov 2021; 2:370-387. [PMID: 34258103 PMCID: PMC8265280 DOI: 10.1158/2643-3230.bcd-20-0108] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 02/22/2021] [Accepted: 03/28/2021] [Indexed: 12/23/2022] Open
Abstract
Lysine demethylase 5A (KDM5A) is a negative regulator of histone H3K4 trimethylation, a histone mark associated with activate gene transcription. We identify that KDM5A interacts with the P-TEFb complex and cooperates with MYC to control MYC targeted genes in multiple myeloma (MM) cells. We develop a cell-permeable and selective KDM5 inhibitor, JQKD82, that increases histone H3K4me3 but paradoxically inhibits downstream MYC-driven transcriptional output in vitro and in vivo. Using genetic ablation together with our inhibitor, we establish that KDM5A supports MYC target gene transcription independent of MYC itself, by supporting TFIIH (CDK7)- and P-TEFb (CDK9)-mediated phosphorylation of RNAPII. These data identify KDM5A as a unique vulnerability in MM functioning through regulation of MYC-target gene transcription, and establish JQKD82 as a tool compound to block KDM5A function as a potential therapeutic strategy for MM.
Collapse
Affiliation(s)
- Hiroto Ohguchi
- Division of Disease Epigenetics, Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, Japan.
| | - Paul M C Park
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Tingjian Wang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Berkley E Gryder
- Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Case Comprehensive Cancer Center, Cleveland, Ohio
| | - Daisuke Ogiya
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Keiji Kurata
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Xiaofeng Zhang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Deyao Li
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Chengkui Pei
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Takeshi Masuda
- Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Catrine Johansson
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | | | - Yong Kim
- Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Shinjiro Hino
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Shingo Usuki
- Liaison Laboratory Research Promotion Center, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Yawara Kawano
- Department of Hematology, Rheumatology and Infectious Diseases, Kumamoto University School of Medicine, Kumamoto, Japan
| | - Mehmet K Samur
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Yu-Tzu Tai
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Nikhil C Munshi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Masao Matsuoka
- Department of Hematology, Rheumatology and Infectious Diseases, Kumamoto University School of Medicine, Kumamoto, Japan
| | - Sumio Ohtsuki
- Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Mitsuyoshi Nakao
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Takashi Minami
- Division of Molecular and Vascular Biology, Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, Japan
| | - Shannon Lauberth
- Division of Biological Sciences, University of Califonia, San Diego, La Jolla, California
| | - Javed Khan
- Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Udo Oppermann
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
- Structural Genomics Consortium, University of Oxford, Headington, United Kingdom; Oxford Centre for Translational Myeloma Research, Botnar Research Centre, University of Oxford, Oxford, United Kingdom
| | - Adam D Durbin
- Division of Molecular Oncology, Department of Oncology, and Comprehensive Cancer Center, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Kenneth C Anderson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Teru Hideshima
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.
| | - Jun Qi
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts.
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
46
|
Jung J. Characterizing therapeutic signatures of transcription factors in cancer by incorporating profiles in compound treated cells. Bioinformatics 2021; 37:1008-1014. [PMID: 32886093 DOI: 10.1093/bioinformatics/btaa765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 08/18/2020] [Accepted: 08/26/2020] [Indexed: 11/14/2022] Open
Abstract
MOTIVATION Cancers are promoted by abnormal alterations in biological processes, such as cell cycle and apoptosis. An immediate reason for those aberrant processes is the deregulation of their involved transcription factors (TFs). Thus, the deregulated TFs in cancer have been experimented as successful therapeutic targets, such as RARA and RUNX1. This therapeutic strategy can be accelerated by characterizing new potential TF targets. RESULTS Two kinds of therapeutic signatures of TFs in A375 (skin) and HT29 (colon) cancer cells were characterized by analyzing TF activities under effective and ineffective compounds to cancer. First, the therapeutic TFs (TTs) were identified as the TFs that are significantly activated or repressed under effective compared to ineffective compounds. Second, the therapeutically correlated TF pairs (TCPs) were determined as the TF pairs whose activity correlations show substantial discrepancy between the effective and ineffective compounds. It was facilitated by incorporating (i)compound-induced gene expressions (LINCS), (ii) compound-induced cell viabilities (GDSC) and (iii) TF-target interactions (TRUST2). As a result, among 627 TFs, the 35 TTs (such as MYCN and TP53) and the 214 TCPs (such as FOXO3 and POU2F2 pair) were identified. The TTs and the proteins on the paths between TCPs were compared with the known therapeutic targets, tumor suppressors, oncogenes and CRISPR-Cas9 knockout screening, which yielded significant consequences. We expect that the results provide good candidates for therapeutic TF targets in cancer. AVAILABILITY AND IMPLEMENTATION The data and Python implementations are available at https://github.com/jmjung83/TT_and_TCP. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Jinmyung Jung
- Division of Data Science, College of Information and Communication Technology, The University of Suwon, Hwaseong 18323, Republic of Korea
| |
Collapse
|
47
|
Directly targeting c-Myc contributes to the anti-multiple myeloma effect of anlotinib. Cell Death Dis 2021; 12:396. [PMID: 33854043 PMCID: PMC8046985 DOI: 10.1038/s41419-021-03685-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 03/20/2021] [Accepted: 03/25/2021] [Indexed: 12/21/2022]
Abstract
Despite the significant advances in the treatment of multiple myeloma (MM), this disease is still considered incurable because of relapse and chemotherapy resistance, underscoring the need to seek novel therapies with different mechanisms. Anlotinib, a novel multi-targeted tyrosine kinase inhibitor (TKI), has exhibited encouraging antitumor activity in several preclinical and clinical trials, but its effect on MM has not been studied yet. In this study, we found that anlotinib exhibits encouraging cytotoxicity in MM cells, overcomes the protective effect of the bone marrow microenvironment and suppresses tumor growth in the MM mouse xenograft model. We further examined the underlying molecular mechanism and found that anlotinib provokes cell cycle arrest, induces apoptosis and inhibits multiple signaling pathways. Importantly, we identify c-Myc as a novel direct target of anlotinib. The enhanced ubiquitin proteasomal degradation of c-Myc contributes to the cell apoptosis induced by anlotinib. In addition, anlotinib also displays strong cytotoxicity against bortezomib-resistant MM cells. Our study demonstrates the extraordinary anti-MM effect of anlotinib both in vitro and in vivo, which provides solid evidence and a promising rationale for future clinical application of anlotinib in the treatment of human MM.
Collapse
|
48
|
John L, Krauth MT, Podar K, Raab MS. Pathway-Directed Therapy in Multiple Myeloma. Cancers (Basel) 2021; 13:1668. [PMID: 33916289 PMCID: PMC8036678 DOI: 10.3390/cancers13071668] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/21/2021] [Accepted: 03/29/2021] [Indexed: 12/12/2022] Open
Abstract
Multiple Myeloma (MM) is a malignant plasma cell disorder with an unmet medical need, in particular for relapsed and refractory patients. Molecules within deregulated signaling pathways, including the RAS/RAF/MEK/ERK, but also the PI3K/AKT-pathway belong to the most promising evolving therapeutic targets. Rationally derived compounds hold great therapeutic promise to target tumor-specific abnormalities rather than general MM-associated vulnerabilities. This paradigm is probably best depicted by targeting mutated BRAF: while well-tolerated, remarkable responses have been achieved in selected patients by inhibition of BRAFV600E alone or in combination with MEK. Targeting of AKT has also shown promising results in a subset of patients as monotherapy or to resensitize MM-cells to conventional treatment. Approaches to target transcription factors, convergence points of signaling cascades such as p53 or c-MYC, are emerging as yet another exciting strategy for pathway-directed therapy. Informed by our increasing knowledge on the impact of signaling pathways in MM pathophysiology, rationally derived Precision-Medicine trials are ongoing. Their results are likely to once more fundamentally change treatment strategies in MM.
Collapse
Affiliation(s)
- Lukas John
- Department of Internal Medicine V, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany;
- CCU Molecular Hematology/Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Maria Theresa Krauth
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria;
| | - Klaus Podar
- Department of Internal Medicine, Karl Landsteiner University of Health Sciences, Mitterweg 10, 3500 Krems an der Donau, Austria;
| | - Marc-Steffen Raab
- Department of Internal Medicine V, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany;
- CCU Molecular Hematology/Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| |
Collapse
|
49
|
Li S, Fu J, Yang J, Ma H, Bhutani D, Mapara MY, Marcireau C, Lentzsch S. Targeting the GCK pathway: a novel and selective therapeutic strategy against RAS-mutated multiple myeloma. Blood 2021; 137:1754-1764. [PMID: 33036022 PMCID: PMC8020269 DOI: 10.1182/blood.2020006334] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 09/25/2020] [Indexed: 12/28/2022] Open
Abstract
In multiple myeloma (MM), frequent mutations of NRAS, KRAS, or BRAF are found in up to 50% of newly diagnosed patients. The majority of the NRAS, KRAS, and BRAF mutations occur in hotspots causing constitutive activation of the corresponding proteins. Thus, targeting RAS mutation in MM will increase therapeutic efficiency and potentially overcome drug resistance. We identified germinal center kinase (GCK) as a novel therapeutic target in MM with RAS mutation. GCK knockdown (KD) in MM cells demonstrated in vitro and in vivo that silencing of GCK induces MM cell growth inhibition, associated with blocked MKK4/7-JNK phosphorylation and impaired degradation of IKZF1/3, BCL-6, and c-MYC. These effects were rescued by overexpression of a short hairpin RNA (shRNA)-resistant GCK, thereby excluding the potential off-target effects of GCK KD. In contrast, overexpression of shRNA-resistant GCK kinase-dead mutant (K45A) inhibited MM cell proliferation and failed to rescue the effects of GCK KD on MM growth inhibition, indicating that GCK kinase activity is critical for regulating MM cell proliferation and survival. Importantly, the higher sensitivity to GCK KD in RASMut cells suggests that targeting GCK is effective in MM, which harbors RAS mutations. In accordance with the effects of GCK KD, the GCK inhibitor TL4-12 dose-dependently downregulated IKZF1 and BCL-6 and led to MM cell proliferation inhibition accompanied by induction of apoptosis. Here, our data identify GCK as a novel target in RASMut MM cells, providing a rationale to treat RAS mutations in MM. Furthermore, GCK inhibitors might represent an alternative therapy to overcome immunomodulatory drug resistance in MM.
Collapse
Affiliation(s)
| | | | | | - Huihui Ma
- Columbia Center for Translational Immunology, College of Physicians and Surgeons, Columbia University, New York, NY; and
| | | | - Markus Y Mapara
- Columbia Center for Translational Immunology, College of Physicians and Surgeons, Columbia University, New York, NY; and
| | | | | |
Collapse
|
50
|
Prelowska MK, Mehlich D, Ugurlu MT, Kedzierska H, Cwiek A, Kosnik A, Kaminska K, Marusiak AA, Nowis D. Inhibition of the ʟ-glutamine transporter ASCT2 sensitizes plasma cell myeloma cells to proteasome inhibitors. Cancer Lett 2021; 507:13-25. [PMID: 33713737 DOI: 10.1016/j.canlet.2021.02.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 02/21/2021] [Accepted: 02/22/2021] [Indexed: 12/13/2022]
Abstract
Proteasome inhibitors (PIs), used in the treatment of plasma cell myeloma (PCM), interfere with the degradation of misfolded proteins leading to activation of unfolded protein response (UPR) and cell death. However, despite initial strong antimyeloma effects, PCM cells eventually develop acquired resistance to PIs. The pleiotropic role of ʟ-glutamine (Gln) in cellular functions makes inhibition of Gln metabolism a potentially good candidate for combination therapy. Here, we show that PCM cells, both sensitive and resistant to PIs, express membrane Gln transporter (ASCT2), require extracellular Gln for survival, and are sensitive to ASCT2 inhibitors (ASCT2i). ASCT2i synergistically potentiate the cytotoxic activity of PIs by inducing apoptosis and modulating autophagy. Combination of ASCT2 inhibitor V9302 and proteasome inhibitor carfilzomib upregulates the intracellular levels of ROS and oxidative stress markers and triggers catastrophic UPR as shown by upregulated spliced Xbp1 mRNA, ATF3 and CHOP levels. Moreover, analysis of RNA sequencing revealed that the PI in combination with ASCT2i reduced the levels of Gln metabolism regulators such as MYC and NRAS. Analysis of PCM patients' data revealed that upregulated ASCT2 and other Gln metabolism regulators are associated with advanced disease stage and with PIs resistance. Altogether, we identified a potent therapeutic approach that may prevent acquired resistance to PIs and may contribute to the improvement of treatment of patients suffering from PCM.
Collapse
Affiliation(s)
- Monika K Prelowska
- Laboratory of Experimental Medicine, Centre of New Technologies, University of Warsaw, Poland; Postgraduate School of Molecular Medicine, Medical University of Warsaw, Poland.
| | - Dawid Mehlich
- Laboratory of Experimental Medicine, Centre of New Technologies, University of Warsaw, Poland; Doctoral School of Medical University of Warsaw, Warsaw, Poland; Laboratory of Centre for Preclinical Research, Department of Methodology, Medical University of Warsaw, Warsaw, Poland; Laboratory of Experimental Medicine, Medical University of Warsaw, Poland
| | - M Talha Ugurlu
- Laboratory of Experimental Medicine, Centre of New Technologies, University of Warsaw, Poland
| | - Hanna Kedzierska
- Laboratory of Experimental Medicine, Centre of New Technologies, University of Warsaw, Poland
| | - Aleksandra Cwiek
- Laboratory of Experimental Medicine, Centre of New Technologies, University of Warsaw, Poland
| | - Artur Kosnik
- Laboratory of Experimental Medicine, Centre of New Technologies, University of Warsaw, Poland
| | - Klaudia Kaminska
- Laboratory of Experimental Medicine, Centre of New Technologies, University of Warsaw, Poland
| | - Anna A Marusiak
- Laboratory of Experimental Medicine, Centre of New Technologies, University of Warsaw, Poland
| | - Dominika Nowis
- Laboratory of Experimental Medicine, Centre of New Technologies, University of Warsaw, Poland; Laboratory of Experimental Medicine, Medical University of Warsaw, Poland.
| |
Collapse
|