1
|
Wen X, Li P, Ma Y, Wang D, Jia R, Xia Y, Li W, Li Y, Li G, Sun T, Lu F, Ye J, Ji C. RHOF activation of AKT/β-catenin signaling pathway drives acute myeloid leukemia progression and chemotherapy resistance. iScience 2024; 27:110221. [PMID: 39021805 PMCID: PMC11253531 DOI: 10.1016/j.isci.2024.110221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/29/2024] [Accepted: 06/05/2024] [Indexed: 07/20/2024] Open
Abstract
Acute myeloid leukemia (AML) is a clonal malignancy originating from leukemia stem cells, characterized by a poor prognosis, underscoring the necessity for novel therapeutic targets and treatment methodologies. This study focuses on Ras homolog family member F, filopodia associated (RHOF), a Rho guanosine triphosphatase (GTPase) family member. We found that RHOF is overexpressed in AML, correlating with an adverse prognosis. Our gain- and loss-of-function experiments revealed that RHOF overexpression enhances proliferation and impedes apoptosis in AML cells in vitro. Conversely, genetic suppression of RHOF markedly reduced the leukemia burden in a human AML xenograft mouse model. Furthermore, we investigated the synergistic effect of RHOF downregulation and chemotherapy, demonstrating significant therapeutic efficacy in vivo. Mechanistically, RHOF activates the AKT/β-catenin signaling pathway, thereby accelerating the progression of AML. Our findings elucidate the pivotal role of RHOF in AML pathogenesis and propose RHOF inhibition as a promising therapeutic approach for AML management.
Collapse
Affiliation(s)
- Xin Wen
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, People’s Republic of China
| | - Peng Li
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, People’s Republic of China
| | - Yuechan Ma
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, People’s Republic of China
| | - Dongmei Wang
- Shandong Key Laboratory of Immunohematology, Qilu Hospital, Shandong University, Jinan 250012, People’s Republic of China
| | - Ruinan Jia
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, People’s Republic of China
| | - Yuan Xia
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, People’s Republic of China
| | - Wei Li
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, People’s Republic of China
| | - Yongjian Li
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, People’s Republic of China
| | - Guosheng Li
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, People’s Republic of China
- Shandong Key Laboratory of Immunohematology, Qilu Hospital, Shandong University, Jinan 250012, People’s Republic of China
| | - Tao Sun
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, People’s Republic of China
- Shandong Key Laboratory of Immunohematology, Qilu Hospital, Shandong University, Jinan 250012, People’s Republic of China
| | - Fei Lu
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, People’s Republic of China
| | - Jingjing Ye
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, People’s Republic of China
- Shandong Key Laboratory of Immunohematology, Qilu Hospital, Shandong University, Jinan 250012, People’s Republic of China
| | - Chunyan Ji
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, People’s Republic of China
- Shandong Key Laboratory of Immunohematology, Qilu Hospital, Shandong University, Jinan 250012, People’s Republic of China
| |
Collapse
|
2
|
Burley SK, Wu-Wu A, Dutta S, Ganesan S, Zheng SXF. Impact of structural biology and the protein data bank on us fda new drug approvals of low molecular weight antineoplastic agents 2019-2023. Oncogene 2024; 43:2229-2243. [PMID: 38886570 PMCID: PMC11245395 DOI: 10.1038/s41388-024-03077-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/20/2024]
Abstract
Open access to three-dimensional atomic-level biostructure information from the Protein Data Bank (PDB) facilitated discovery/development of 100% of the 34 new low molecular weight, protein-targeted, antineoplastic agents approved by the US FDA 2019-2023. Analyses of PDB holdings, the scientific literature, and related documents for each drug-target combination revealed that the impact of structural biologists and public-domain 3D biostructure data was broad and substantial, ranging from understanding target biology (100% of all drug targets), to identifying a given target as likely druggable (100% of all targets), to structure-guided drug discovery (>80% of all new small-molecule drugs, made up of 50% confirmed and >30% probable cases). In addition to aggregate impact assessments, illustrative case studies are presented for six first-in-class small-molecule anti-cancer drugs, including a selective inhibitor of nuclear export targeting Exportin 1 (selinexor, Xpovio), an ATP-competitive CSF-1R receptor tyrosine kinase inhibitor (pexidartinib,Turalia), a non-ATP-competitive inhibitor of the BCR-Abl fusion protein targeting the myristoyl binding pocket within the kinase catalytic domain of Abl (asciminib, Scemblix), a covalently-acting G12C KRAS inhibitor (sotorasib, Lumakras or Lumykras), an EZH2 methyltransferase inhibitor (tazemostat, Tazverik), and an agent targeting the basic-Helix-Loop-Helix transcription factor HIF-2α (belzutifan, Welireg).
Collapse
Affiliation(s)
- Stephen K Burley
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA.
- Rutgers Cancer Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, NJ, 08903, USA.
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, San Diego Supercomputer Center, University of California, San Diego, La Jolla, CA, 92093, USA.
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA.
| | - Amy Wu-Wu
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Shuchismita Dutta
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
- Rutgers Cancer Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, NJ, 08903, USA
| | - Shridar Ganesan
- Rutgers Cancer Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, NJ, 08903, USA
| | - Steven X F Zheng
- Rutgers Cancer Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, NJ, 08903, USA
| |
Collapse
|
3
|
Lai C, Xu L, Dai S. The nuclear export protein exportin-1 in solid malignant tumours: From biology to clinical trials. Clin Transl Med 2024; 14:e1684. [PMID: 38783482 PMCID: PMC11116501 DOI: 10.1002/ctm2.1684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/15/2024] [Accepted: 04/19/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Exportin-1 (XPO1), a crucial protein regulating nuclear-cytoplasmic transport, is frequently overexpressed in various cancers, driving tumor progression and drug resistance. This makes XPO1 an attractive therapeutic target. Over the past few decades, the number of available nuclear export-selective inhibitors has been increasing. Only KPT-330 (selinexor) has been successfully used for treating haematological malignancies, and KPT-8602 (eltanexor) has been used for treating haematologic tumours in clinical trials. However, the use of nuclear export-selective inhibitors for the inhibition of XPO1 expression has yet to be thoroughly investigated in clinical studies and therapeutic outcomes for solid tumours. METHODS We collected numerous literatures to explain the efficacy of XPO1 Inhibitors in preclinical and clinical studies of a wide range of solid tumours. RESULTS In this review, we focus on the nuclear export function of XPO1 and results from clinical trials of its inhibitors in solid malignant tumours. We summarized the mechanism of action and therapeutic potential of XPO1 inhibitors, as well as adverse effects and response biomarkers. CONCLUSION XPO1 inhibition has emerged as a promising therapeutic strategy in the fight against cancer, offering a novel approach to targeting tumorigenic processes and overcoming drug resistance. SINE compounds have demonstrated efficacy in a wide range of solid tumours, and ongoing research is focused on optimizing their use, identifying response biomarkers, and developing effective combination therapies. KEY POINTS Exportin-1 (XPO1) plays a critical role in mediating nucleocytoplasmic transport and cell cycle. XPO1 dysfunction promotes tumourigenesis and drug resistance within solid tumours. The therapeutic potential and ongoing researches on XPO1 inhibitors in the treatment of solid tumours. Additional researches are essential to address safety concerns and identify biomarkers for predicting patient response to XPO1 inhibitors.
Collapse
Affiliation(s)
- Chuanxi Lai
- Department of Colorectal SurgerySir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhouChina
- Key Laboratory of Biotherapy of Zhejiang ProvinceHangzhouChina
| | - Lingna Xu
- Department of Colorectal SurgerySir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhouChina
- Key Laboratory of Biotherapy of Zhejiang ProvinceHangzhouChina
| | - Sheng Dai
- Department of Colorectal SurgerySir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhouChina
- Key Laboratory of Biotherapy of Zhejiang ProvinceHangzhouChina
| |
Collapse
|
4
|
Wang LH, Wei S, Yuan Y, Zhong MJ, Wang J, Yan ZX, Zhou K, Luo T, Liang L, Bian XW. KPT330 promotes the sensitivity of glioblastoma to olaparib by retaining SQSTM1 in the nucleus and disrupting lysosomal function. Autophagy 2024; 20:295-310. [PMID: 37712615 PMCID: PMC10813631 DOI: 10.1080/15548627.2023.2252301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 08/14/2023] [Accepted: 08/21/2023] [Indexed: 09/16/2023] Open
Abstract
ABBREVIATIONS AO: acridine orange; ATM: ATM serine/threonine kinase; CHEK1: checkpoint kinase 1; CHEK2: checkpoint kinase 2; CI: combination index; DMSO: dimethyl sulfoxide; DSBs: double-strand breaks; GBM: glioblastoma; HR: homologous recombination; H2AX: H2A.X variant histone; IHC: immunohistochemistry; LAPTM4B: lysosomal protein transmembrane 4 beta; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; PARP: poly(ADP-ribose) polymerase; RAD51: RAD51 recombinase; SQSTM1: sequestosome 1; SSBs: single-strand breaks; RNF168: ring finger protein 168; XPO1: exportin 1.
Collapse
Affiliation(s)
- Li-Hong Wang
- Department of Pathology, School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong, China
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing400038, China
| | - Sen Wei
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing400038, China
| | - Ye Yuan
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing400038, China
| | - Ming-Jun Zhong
- Institute of Rare Diseases, West China Hospital of Sichuan University, Chengdu610000, China
| | - Jiao Wang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing400038, China
| | - Ze-Xuan Yan
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing400038, China
| | - Kai Zhou
- Department of General Surgery and Center of Minimal Invasive Gastrointestinal Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Tao Luo
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing400038, China
| | - Li Liang
- Department of Pathology, School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiu-Wu Bian
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing400038, China
| |
Collapse
|
5
|
Sharma T, Mondal T, Khan S, Churqui MP, Nyström K, Thombare K, Baig MH, Dong JJ. Identifying novel inhibitors targeting Exportin-1 for the potential treatment of COVID-19. Arch Microbiol 2024; 206:69. [PMID: 38240823 DOI: 10.1007/s00203-023-03761-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/09/2023] [Accepted: 11/19/2023] [Indexed: 01/23/2024]
Abstract
The nuclear export protein 1 (XPO1) mediates the nucleocytoplasmic transport of proteins and ribonucleic acids (RNAs) and plays a prominent role in maintaining cellular homeostasis. XPO1 has emerged as a promising therapeutic approach to interfere with the lifecycle of many viruses. In our earlier study, we proved the inhibition of XPO1 as a therapeutic strategy for managing SARS-COV-2 and its variants. In this study, we have utilized pharmacophore-assisted computational methods to identify prominent XPO1 inhibitors. After several layers of screening, a few molecules were shortlisted for further experimental validation on the in vitro SARS-CoV-2 cell infection model. It was observed that these compounds reduced spike positivity, suggesting inhibition of SARS-COV-2 infection. The outcome of this study could be considered further for developing novel antiviral therapeutic strategies against SARS-CoV-2.
Collapse
Affiliation(s)
- Tanuj Sharma
- Department of Family Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Gangnam-gu, Seoul, 06273, Republic of Korea
| | - Tanmoy Mondal
- Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Sajid Khan
- Department of Biochemistry, Aligarh Muslim University, Aligarh, India
| | - Marianela Patzi Churqui
- Department of Infectious Diseases, Sahlgrenska Academy, University of Gothenburg, 41345, Gothenburg, Sweden
| | - Kristina Nyström
- Department of Infectious Diseases, Sahlgrenska Academy, University of Gothenburg, 41345, Gothenburg, Sweden
| | - Ketan Thombare
- Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Mohammad Hassan Baig
- Department of Family Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Gangnam-gu, Seoul, 06273, Republic of Korea.
| | - Jae-June Dong
- Department of Family Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Gangnam-gu, Seoul, 06273, Republic of Korea.
| |
Collapse
|
6
|
Huang Q, Zhao R, Xu L, Hao X, Tao S. Treatment of multiple myeloma with selinexor: a review. Ther Adv Hematol 2024; 15:20406207231219442. [PMID: 38186637 PMCID: PMC10771077 DOI: 10.1177/20406207231219442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 11/20/2023] [Indexed: 01/09/2024] Open
Abstract
Over the last 20 years, breakthroughs in accessible therapies for the treatment of multiple myeloma (MM) have been made. Nevertheless, patients with MM resistant to immunomodulatory drugs, proteasome inhibitors, and anti-CD38 monoclonal antibodies have a very poor outcome. Therefore, it is necessary to explore new drugs for the treatment of MM. This review summarizes the mechanism of action of selinexor, relevant primary clinical trials, and recent developments in both patients with relapsed/refractory myeloma and patients with newly diagnosed myeloma. Selinexor may be useful for the treatment of refractory MM.
Collapse
Affiliation(s)
- Qianlei Huang
- Department of Hematology, The First Affiliated Hospital of Hainan Medical University, Hainan Province Clinical Medical Center, Haikou, China
| | - Ranran Zhao
- Department of Hematology, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Lu Xu
- Department of Hematology, The First Affiliated Hospital of Hainan Medical University, Hainan Province Clinical Medical Center, Haikou, China
| | - Xinbao Hao
- Department of Hematology, The First Affiliated Hospital of Hainan Medical University, Hainan Province Clinical Medical Center, Haikou, China
| | - Shi Tao
- Department of Hematology, The First Affiliated Hospital of Hainan Medical University, Hainan Province Clinical Medical Center, 31 Longhua Road, Haikou 570102, China
| |
Collapse
|
7
|
Bhatnagar B, Zhao Q, Mims AS, Vasu S, Behbehani GK, Larkin K, Blachly JS, Badawi MA, Hill KL, Dzwigalski KR, Phelps MA, Blum W, Klisovic RB, Ruppert AS, Ranganathan P, Walker AR, Garzon R. Phase 1 study of selinexor in combination with salvage chemotherapy in Adults with relapsed or refractory Acute myeloid leukemia. Leuk Lymphoma 2023; 64:2091-2100. [PMID: 37665178 DOI: 10.1080/10428194.2023.2253480] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 09/05/2023]
Abstract
Selinexor, an oral inhibitor of the nuclear transport protein Exportin-1, shows promising single-agent activity in clinical trials of relapsed/refractory (R/R) acute myeloid leukemia (AML) and preclinical synergy with topoisomerase (topo) IIα inhibitors. We conducted a phase 1, dose-escalation study of selinexor with mitoxantrone, etoposide, and cytarabine (MEC) in 23 patients aged < 60 years with R/R AML. Due to dose-limiting hyponatremia in 2 patients on dose level 2 (selinexor 40 mg/m2), the maximum tolerated dose was 30 mg/m2. The most common grade ≥ 3 treatment-related non-hematologic toxicities were febrile neutropenia, catheter-related infections, diarrhea, hyponatremia, and sepsis. The overall response rate was 43% with 6 patients (26%) achieving complete remission (CR), 2 (9%) with CR with incomplete count recovery, and 2 (9%) with a morphologic leukemia-free state. Seven of 10 responders proceeded to allogeneic stem cell transplantation. The combination of selinexor with MEC is a feasibile treatment option for patients with R/R AML.
Collapse
Affiliation(s)
- Bhavana Bhatnagar
- Division of Hematology and Medical Oncology, West Virginia University Cancer Institute, Wheeling Hospital, Wheeling, WV, USA
| | - Qiuhong Zhao
- Division of Hematology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
- The Ohio State University Comprehensive Cancer Center, Columbus, USA
| | - Alice S Mims
- Division of Hematology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
- The Ohio State University Comprehensive Cancer Center, Columbus, USA
| | - Sumithira Vasu
- Division of Hematology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
- The Ohio State University Comprehensive Cancer Center, Columbus, USA
| | - Gregory K Behbehani
- Division of Hematology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
- The Ohio State University Comprehensive Cancer Center, Columbus, USA
| | - Karilyn Larkin
- Division of Hematology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
- The Ohio State University Comprehensive Cancer Center, Columbus, USA
| | - James S Blachly
- Division of Hematology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
- The Ohio State University Comprehensive Cancer Center, Columbus, USA
| | - Mohamed A Badawi
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University
| | - Kasey L Hill
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University
| | - Kyle R Dzwigalski
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University
| | - Mitch A Phelps
- The Ohio State University Comprehensive Cancer Center, Columbus, USA
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University
| | - William Blum
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Winship Cancer Institute, Atlanta, GA, USA
| | - Rebecca B Klisovic
- Department of Hematology and Medical Oncology, University Hospitals Seidman Cancer Center, Cleveland, OH, USA
| | - Amy S Ruppert
- Division of Hematology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
- The Ohio State University Comprehensive Cancer Center, Columbus, USA
| | - Parvathi Ranganathan
- Division of Hematology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
- The Ohio State University Comprehensive Cancer Center, Columbus, USA
| | - Alison R Walker
- Moffitt Cancer Center, University of South Florida, Tampa, FL, USA
| | - Ramiro Garzon
- Huntsman Cancer Institute, University of Utah, Salt Lake City UT, USA
| |
Collapse
|
8
|
Lovewell RR, Hong J, Kundu S, Fielder CM, Hu Q, Kim KW, Ramsey HE, Gorska AE, Fuller LS, Tian L, Kothari P, Paucarmayta A, Mason EF, Meza I, Manzanarez Y, Bosiacki J, Maloveste K, Mitchell N, Barbu EA, Morawski A, Maloveste S, Cusumano Z, Patel SJ, Savona MR, Langermann S, Myint H, Flies DB, Kim TK. LAIR-1 agonism as a therapy for acute myeloid leukemia. J Clin Invest 2023; 133:e169519. [PMID: 37966113 PMCID: PMC10650974 DOI: 10.1172/jci169519] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 09/21/2023] [Indexed: 11/16/2023] Open
Abstract
Effective eradication of leukemic stem cells (LSCs) remains the greatest challenge in treating acute myeloid leukemia (AML). The immune receptor LAIR-1 has been shown to regulate LSC survival; however, the therapeutic potential of this pathway remains unexplored. We developed a therapeutic LAIR-1 agonist antibody, NC525, that induced cell death of LSCs, but not healthy hematopoietic stem cells in vitro, and killed LSCs and AML blasts in both cell- and patient-derived xenograft models. We showed that LAIR-1 agonism drives a unique apoptotic signaling program in leukemic cells that was enhanced in the presence of collagen. NC525 also significantly improved the activity of azacitidine and venetoclax to establish LAIR-1 targeting as a therapeutic strategy for AML that may synergize with standard-of-care therapies.
Collapse
Affiliation(s)
| | - Junshik Hong
- Division of Hematology/Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Seoul National University Hospital and
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | | | - Carly M. Fielder
- Division of Hematology/Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Qianni Hu
- Division of Hematology/Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Kwang Woon Kim
- Division of Hematology/Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Haley E. Ramsey
- Division of Hematology/Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Agnieszka E. Gorska
- Division of Hematology/Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Londa S. Fuller
- Division of Hematology/Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | | | | | | - Emily F. Mason
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center
| | | | | | | | | | | | | | | | | | | | | | - Michael R. Savona
- Division of Hematology/Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Center for Immunobiology
- Vanderbilt-Ingram Cancer Center, and
- Program in Cancer Biology, Vanderbilt University, Nashville, Tennessee, USA
| | | | - Han Myint
- NextCure Inc., Beltsville, Maryland, USA
| | | | - Tae Kon Kim
- Division of Hematology/Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center
- Vanderbilt Center for Immunobiology
- Vanderbilt-Ingram Cancer Center, and
- Program in Cancer Biology, Vanderbilt University, Nashville, Tennessee, USA
- Veterans Affairs Tennessee Valley Healthcare, Nashville, Tennessee, USA
| |
Collapse
|
9
|
Zhou J, Lei Z, Chen J, Liao S, Chen Y, Liu C, Huang S, Li L, Zhang Y, Wang P, Huang Y, Li J, Liang H. Nuclear export of BATF2 enhances colorectal cancer proliferation through binding to CRM1. Clin Transl Med 2023; 13:e1260. [PMID: 37151195 PMCID: PMC10165233 DOI: 10.1002/ctm2.1260] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 04/21/2023] [Accepted: 04/26/2023] [Indexed: 05/09/2023] Open
Abstract
BACKGROUND During the tumourigenesis and development of colorectal cancer (CRC), the inactivation of tumour suppressor genes is closely involved, although detailed molecular mechanisms remain elusive. Accumulating studies, including ours, have demonstrated that basic leucine zipper transcription factor ATF (activating transcription factor)-like 2 (BATF2) is a capable tumour suppressor that localises in the nucleus. However, its different subcellular localisation, potential functions and underlying mechanisms are unclear. METHODS The translocation of BATF2 and its clinical relevance were detected using CRC samples, cell lines and xenograft nude mice. Candidate BATF2-binding proteins were screened using co-immunoprecipitation, quantitative label-free liquid chromatography-tandem mass spectrometry proteomic analysis, Western blotting and immunofluorescence. Recombinant plasmids, point mutations and siRNAs were applied to clarify the binding sites between BATF2 and chromosome region maintenance 1 (CRM1). RESULTS The present study found that BATF2 was mainly localised in the cytoplasm, rather than nucleus, of CRC cells in vitro and in vivo, while cytoplasmic BATF2 expression was inversely correlated with the prognosis of CRC patients. Furthermore, we identified the nuclear export and subsequent ubiquitin-mediated degradation of BATF2 in CRC cells. Mechanistically, a functional nuclear export sequence (any amino acid) was characterised in BATF2 protein, through which BATF2 bound to CRM1 and translocated out of nucleus, ultimately enhancing CRC growth via inducing activator protein 1 (AP-1)/cyclin D1/phosphorylated retinoblastoma protein (pRb) signalling pathway. Additionally, nuclear export of BATF2 can be retarded by the mutation of NES in BATF2 or the knockdown of CRM1, whereas CRM1 expression was negatively associated with nuclear BATF2 expression and the prognosis of CRC patients. CONCLUSION These findings revealed the biological effects and underlying mechanisms of cytoplasmic localisation of BATF2. Furthermore, suppressing nuclear export of BATF2 via mutating its NES region or inhibiting CRM1 expression may serve as a promising therapeutic strategy against CRC.
Collapse
Affiliation(s)
- Jie Zhou
- Department of Oncology and Southwest Cancer CenterSouthwest HospitalArmy Medical University (Third Military Medical University)ChongqingChina
| | - Zengjie Lei
- Department of Medical OncologyAffiliated Jinling HospitalMedical School of Nanjing UniversityNanjingChina
| | - Jianfang Chen
- Department of Oncology and Southwest Cancer CenterSouthwest HospitalArmy Medical University (Third Military Medical University)ChongqingChina
| | - Shengbo Liao
- Department of OtolaryngologyPeople's Hospital of Xishui CountyGuizhouChina
| | - Yanrong Chen
- Department of Oncology and Southwest Cancer CenterSouthwest HospitalArmy Medical University (Third Military Medical University)ChongqingChina
| | - Chengxiang Liu
- Department of Oncology and Southwest Cancer CenterSouthwest HospitalArmy Medical University (Third Military Medical University)ChongqingChina
| | - Shuo Huang
- Department of Oncology and Southwest Cancer CenterSouthwest HospitalArmy Medical University (Third Military Medical University)ChongqingChina
| | - Liuli Li
- Department of Oncology and Southwest Cancer CenterSouthwest HospitalArmy Medical University (Third Military Medical University)ChongqingChina
| | - Yan Zhang
- Department of Oncology and Southwest Cancer CenterSouthwest HospitalArmy Medical University (Third Military Medical University)ChongqingChina
| | - Pei Wang
- Department of Oncology and Southwest Cancer CenterSouthwest HospitalArmy Medical University (Third Military Medical University)ChongqingChina
| | - Yinghui Huang
- Department of NephrologyKey Laboratory for the Prevention and Treatment of Chronic Kidney Disease of ChongqingChongqing Clinical Research Center of Kidney and Urology DiseasesXinqiao HospitalArmy Medical UniversityChongqingChina
| | - Jianjun Li
- Department of Oncology and Southwest Cancer CenterSouthwest HospitalArmy Medical University (Third Military Medical University)ChongqingChina
| | - Houjie Liang
- Department of Oncology and Southwest Cancer CenterSouthwest HospitalArmy Medical University (Third Military Medical University)ChongqingChina
| |
Collapse
|
10
|
Long H, Hou Y, Li J, Song C, Ge Z. Azacitidine Is Synergistically Lethal with XPO1 Inhibitor Selinexor in Acute Myeloid Leukemia by Targeting XPO1/eIF4E/c-MYC Signaling. Int J Mol Sci 2023; 24:ijms24076816. [PMID: 37047788 PMCID: PMC10094826 DOI: 10.3390/ijms24076816] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/20/2023] [Accepted: 03/28/2023] [Indexed: 04/09/2023] Open
Abstract
Acute myeloid leukemia (AML) is a high-mortality malignancy with poor outcomes. Azacitidine induces cell death and demonstrates treatment effectiveness against AML. Selinexor (KPT-330) exhibited significant benefits in combination with typical induction treatment for AML patients. Here, we explore the antitumor effect of KPT-330 combined with AZA in AML through CCK-8, flow cytometry, RT-qPCR, western blot, and RNA-seq. Our results showed that KPT-330 combined with AZA synergistically reduced cell proliferation and induced apoptosis in AML primary cells and cell lines. Compared to the control, the KPT-330 plus AZA down-regulates the expression of XPO1, eIF4E, and c-MYC in AML. Moreover, the knockdown of c-MYC could sensitize the synergy of the combination on suppression of cell proliferation and promotion of apoptosis in AML. Moreover, the expression of XPO1 and eIF4E was elevated in AML patient cohorts, respectively. XPO1 and elF4E overexpression was associated with poor prognosis. In summary, KPT-330 with AZA exerted synergistic effects by suppressing XPO1/eIF4E/c-MYC signaling, which provided preclinical evidence for further clinical application of the novel combination in AML.
Collapse
Affiliation(s)
- Huideng Long
- Department of Hematology, Zhongda Hospital, School of Medicine, Southeast University, Institute of Hematology Southeast University, Nanjing 210009, China
| | - Yue Hou
- Department of Hematology, Zhongda Hospital, School of Medicine, Southeast University, Institute of Hematology Southeast University, Nanjing 210009, China
| | - Jun Li
- Department of Hematology, Zhongda Hospital, School of Medicine, Southeast University, Institute of Hematology Southeast University, Nanjing 210009, China
| | - Chunhua Song
- Hershey Medical Center, Pennsylvania State University Medical College, Hershey, PA 17033, USA
- Division of Hematology, The Ohio State University Wexner Medical Center, The James Cancer Hospital, Columbus, OH 43210, USA
| | - Zheng Ge
- Department of Hematology, Zhongda Hospital, School of Medicine, Southeast University, Institute of Hematology Southeast University, Nanjing 210009, China
| |
Collapse
|
11
|
Silva RHN, Machado TQ, da Fonseca ACC, Tejera E, Perez-Castillo Y, Robbs BK, de Sousa DP. Molecular Modeling and In Vitro Evaluation of Piplartine Analogs against Oral Squamous Cell Carcinoma. Molecules 2023; 28:1675. [PMID: 36838660 PMCID: PMC9964404 DOI: 10.3390/molecules28041675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/29/2023] [Accepted: 02/02/2023] [Indexed: 02/12/2023] Open
Abstract
Cancer is a principal cause of death in the world, and providing a better quality of life and reducing mortality through effective pharmacological treatment remains a challenge. Among malignant tumor types, squamous cell carcinoma-esophageal cancer (EC) is usually located in the mouth, with approximately 90% located mainly on the tongue and floor of the mouth. Piplartine is an alkamide found in certain species of the genus Piper and presents many pharmacological properties including antitumor activity. In the present study, the cytotoxic potential of a collection of piplartine analogs against human oral SCC9 carcinoma cells was evaluated. The analogs were prepared via Fischer esterification reactions, alkyl and aryl halide esterification, and a coupling reaction with PyBOP using the natural compound 3,4,5-trimethoxybenzoic acid as a starting material. The products were structurally characterized using 1H and 13C nuclear magnetic resonance, infrared spectroscopy, and high-resolution mass spectrometry for the unpublished compounds. The compound 4-methoxy-benzyl 3,4,5-trimethoxybenzoate (9) presented an IC50 of 46.21 µM, high selectively (SI > 16), and caused apoptosis in SCC9 cancer cells. The molecular modeling study suggested a multi-target mechanism of action for the antitumor activity of compound 9 with CRM1 as the main target receptor.
Collapse
Affiliation(s)
- Rayanne H. N. Silva
- Laboratory of Pharmaceutical Chemistry, Department of Pharmaceutical Sciences, Federal University of Paraíba, Cidade Universitária, João Pessoa 58051-900, Brazil
| | - Thaíssa Q. Machado
- Postgraduate Program in Applied Science for Health Products, Faculty of Pharmacy, Fluminense Federal University, Niteroi 24241-000, Brazil
| | - Anna Carolina C. da Fonseca
- Postgraduate Program in Dentistry, Health Institute of Nova Friburgo, Fluminense Federal University, Nova Friburgo 28625-650, Brazil
| | - Eduardo Tejera
- Bio-Cheminformatics Research Group, Universidad de Las Américas, Quito 170516, Ecuador
| | - Yunierkis Perez-Castillo
- Facultad de Ingeniería y Ciencias Aplicadas, Área de Ciencias Aplicadas, Universidad de Las Américas, Quito 170516, Ecuador
| | - Bruno K. Robbs
- Departamento de Ciência Básica, Instituto de Saúde de Nova Friburgo, Universidade Federal Fluminense, Nova Friburgo 28625-650, Brazil
| | - Damião P. de Sousa
- Laboratory of Pharmaceutical Chemistry, Department of Pharmaceutical Sciences, Federal University of Paraíba, Cidade Universitária, João Pessoa 58051-900, Brazil
| |
Collapse
|
12
|
Audia S, Brescia C, Dattilo V, D’Antona L, Calvano P, Iuliano R, Trapasso F, Perrotti N, Amato R. RANBP1 (RAN Binding Protein 1): The Missing Genetic Piece in Cancer Pathophysiology and Other Complex Diseases. Cancers (Basel) 2023; 15:cancers15020486. [PMID: 36672435 PMCID: PMC9857238 DOI: 10.3390/cancers15020486] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/29/2022] [Accepted: 01/11/2023] [Indexed: 01/15/2023] Open
Abstract
RANBP1 encoded by RANBP1 or HTF9A (Hpall Tiny Fragments Locus 9A), plays regulatory functions of the RAN-network, belonging to the RAS superfamily of small GTPases. Through this function, RANBP1 regulates the RANGAP1 activity and, thus, the fluctuations between GTP-RAN and GDP-RAN. In the light of this, RANBP1 take actions in maintaining the nucleus-cytoplasmic gradient, thus making nuclear import-export functional. RANBP1 has been implicated in the inter-nuclear transport of proteins, nucleic acids and microRNAs, fully contributing to cellular epigenomic signature. Recently, a RANBP1 diriment role in spindle checkpoint formation and nucleation has emerged, thus constituting an essential element in the control of mitotic stability. Over time, RANBP1 has been demonstrated to be variously involved in human cancers both for the role in controlling nuclear transport and RAN activity and for its ability to determine the efficiency of the mitotic process. RANBP1 also appears to be implicated in chemo-hormone and radio-resistance. A key role of this small-GTPases related protein has also been demonstrated in alterations of axonal flow and neuronal plasticity, as well as in viral and bacterial metabolism and in embryological maturation. In conclusion, RANBP1 appears not only to be an interesting factor in several pathological conditions but also a putative target of clinical interest.
Collapse
Affiliation(s)
- Salvatore Audia
- Dipartimento di Scienze della Salute, Campus Salvatore Venuta, Università degli Studi “Magna Graecia” di Catanzaro, Viale Europa, 88100 Catanzaro, Italy
| | - Carolina Brescia
- Dipartimento di Scienze della Salute, Campus Salvatore Venuta, Università degli Studi “Magna Graecia” di Catanzaro, Viale Europa, 88100 Catanzaro, Italy
| | - Vincenzo Dattilo
- Dipartimento di Medicina Sperimentale e Clinica, Campus Salvatore Venuta, Università degli Studi “Magna Graecia” di Catanzaro, Viale Europa, 88100 Catanzaro, Italy
| | - Lucia D’Antona
- Dipartimento di Scienze della Salute, Campus Salvatore Venuta, Università degli Studi “Magna Graecia” di Catanzaro, Viale Europa, 88100 Catanzaro, Italy
| | - Pierluigi Calvano
- Dipartimento di Scienze della Salute, Campus Salvatore Venuta, Università degli Studi “Magna Graecia” di Catanzaro, Viale Europa, 88100 Catanzaro, Italy
| | - Rodolfo Iuliano
- Dipartimento di Scienze della Salute, Campus Salvatore Venuta, Università degli Studi “Magna Graecia” di Catanzaro, Viale Europa, 88100 Catanzaro, Italy
| | - Francesco Trapasso
- Dipartimento di Medicina Sperimentale e Clinica, Campus Salvatore Venuta, Università degli Studi “Magna Graecia” di Catanzaro, Viale Europa, 88100 Catanzaro, Italy
| | - Nicola Perrotti
- Dipartimento di Scienze della Salute, Campus Salvatore Venuta, Università degli Studi “Magna Graecia” di Catanzaro, Viale Europa, 88100 Catanzaro, Italy
| | - Rosario Amato
- Dipartimento di Scienze della Salute, Campus Salvatore Venuta, Università degli Studi “Magna Graecia” di Catanzaro, Viale Europa, 88100 Catanzaro, Italy
- Correspondence: ; Tel.: +39-0961-3694084
| |
Collapse
|
13
|
Syed YY. Selinexor-Bortezomib-Dexamethasone: A Review in Previously Treated Multiple Myeloma. Target Oncol 2023; 18:303-310. [PMID: 36622630 DOI: 10.1007/s11523-022-00945-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2022] [Indexed: 01/10/2023]
Abstract
Selinexor [Nexpovio® (EU); Xpovio® (USA)] is a first-in-class, selective exportin-1 inhibitor. Oral selinexor once weekly in combination with subcutaneous bortezomib once weekly and oral dexamethasone twice weekly (selinexor-bortezomib-dexamethasone) is approved in the EU and USA for the treatment of adult patients with multiple myeloma who have received at least one prior therapy. In the open-label, randomized, phase 3 BOSTON trial, this regimen significantly prolonged progression-free survival (PFS) compared with the standard bortezomib-dexamethasone regimen in patients with previously treated multiple myeloma. Selinexor-bortezomib-dexamethasone had a generally manageable tolerability profile and an acceptable safety profile in BOSTON, with a lower incidence of peripheral neuropathy (a bortezomib-induced toxicity) compared with bortezomib-dexamethasone. The triplet regimen uses less bortezomib and dexamethasone during the first 24 weeks of treatment. The efficacy and safety profiles of selinexor-bortezomib-dexamethasone, combined with its once-weekly administration of selinexor and bortezomib, make it a useful additional triplet therapy option for previously treated multiple myeloma.
Collapse
Affiliation(s)
- Yahiya Y Syed
- Springer Nature, Private Bag 65901, Mairangi Bay, Auckland, 0754, New Zealand.
| |
Collapse
|
14
|
Oka S, Matsukuma H, Horiguchi N, Kobayashi T, Shiraishi K. Heat stress upregulates aromatases expression through nuclear DAX-1 deficiency in R2C Leydig tumor cells. Mol Cell Endocrinol 2022; 558:111766. [PMID: 36075317 DOI: 10.1016/j.mce.2022.111766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/16/2022] [Accepted: 08/30/2022] [Indexed: 12/15/2022]
Abstract
An appropriate balance between testicular testosterone and estradiol is required for spermatogenesis. Excess estradiol is often identified in the semen and serum of infertile men; however, the mechanisms behind this observation remain unclear. This study indicates the relationship between heat stress and aromatase synthesis in Leydig cells. We used R2C rat Leydig tumor cells, which can synthesize both testosterone and estradiol. Aromatase transcription was regulated by the PⅡ promoter with or without heat stress. Heat stress at 40 °C increased aromatase expression and decreased testosterone to estradiol ratio and nuclear DAX-1 (dosage-sensitive sex reversal, adrenal hypoplasia critical region, on chromosome X, gene 1), which is a suppressor of steroidogenic factor 1 (SF-1). Leptomycin B and KPT-185, a nuclear export inhibitor, prevented nuclear DAX-1 deficiency induced by heat stress and inhibited aromatase transcription. These results indicate that heat stress interferes with DAX-1-SF-1 interaction and induces SF-1-dependent aromatase transcription.
Collapse
Affiliation(s)
- Shintaro Oka
- Department of Urology, School of Medicine, Yamaguchi University, Ube, Yamaguchi, 755-8505, Japan.
| | - Haruka Matsukuma
- Department of Urology, School of Medicine, Yamaguchi University, Ube, Yamaguchi, 755-8505, Japan
| | - Naoya Horiguchi
- Department of Urology, School of Medicine, Yamaguchi University, Ube, Yamaguchi, 755-8505, Japan
| | - Tatsuya Kobayashi
- Department of Reproductive Medicine, School of Medicine, Chiba University, Chuoku, Chiba, 260-8677, Japan
| | - Koji Shiraishi
- Department of Urology, School of Medicine, Yamaguchi University, Ube, Yamaguchi, 755-8505, Japan
| |
Collapse
|
15
|
Lin KH, Rutter JC, Xie A, Killarney ST, Vaganay C, Benaksas C, Ling F, Sodaro G, Meslin PA, Bassil CF, Fenouille N, Hoj J, Washart R, Ang HX, Cerda-Smith C, Chaintreuil P, Jacquel A, Auberger P, Forget A, Itzykson R, Lu M, Lin J, Pierobon M, Sheng Z, Li X, Chilkoti A, Owzar K, Rizzieri DA, Pardee TS, Benajiba L, Petricoin E, Puissant A, Wood KC. P2RY2-AKT activation is a therapeutically actionable consequence of XPO1 inhibition in acute myeloid leukemia. NATURE CANCER 2022; 3:837-851. [PMID: 35668193 PMCID: PMC9949365 DOI: 10.1038/s43018-022-00394-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 05/04/2022] [Indexed: 12/12/2022]
Abstract
Selinexor is a first-in-class inhibitor of the nuclear exportin XPO1 that was recently approved by the US Food and Drug Administration for the treatment of multiple myeloma and diffuse large B-cell lymphoma. In relapsed/refractory acute myeloid leukemia (AML), selinexor has shown promising activity, suggesting that selinexor-based combination therapies may have clinical potential. Here, motivated by the hypothesis that selinexor's nuclear sequestration of diverse substrates imposes pleiotropic fitness effects on AML cells, we systematically catalog the pro- and anti-fitness consequences of selinexor treatment. We discover that selinexor activates PI3Kγ-dependent AKT signaling in AML by upregulating the purinergic receptor P2RY2. Inhibiting this axis potentiates the anti-leukemic effects of selinexor in AML cell lines, patient-derived primary cultures and multiple mouse models of AML. In a syngeneic, MLL-AF9-driven mouse model of AML, treatment with selinexor and ipatasertib outperforms both standard-of-care chemotherapy and chemotherapy with selinexor. Together, these findings establish drug-induced P2RY2-AKT signaling as an actionable consequence of XPO1 inhibition in AML.
Collapse
Affiliation(s)
- Kevin H Lin
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Justine C Rutter
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Abigail Xie
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Shane T Killarney
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Camille Vaganay
- Université de Paris, Génomes, Biologie Cellulaire et Thérapeutique U944, INSERM, CNRS, Paris, France
| | - Chaima Benaksas
- Université de Paris, Génomes, Biologie Cellulaire et Thérapeutique U944, INSERM, CNRS, Paris, France
| | - Frank Ling
- Université de Paris, Génomes, Biologie Cellulaire et Thérapeutique U944, INSERM, CNRS, Paris, France
| | - Gaetano Sodaro
- Université de Paris, Génomes, Biologie Cellulaire et Thérapeutique U944, INSERM, CNRS, Paris, France
| | - Paul-Arthur Meslin
- Université de Paris, Génomes, Biologie Cellulaire et Thérapeutique U944, INSERM, CNRS, Paris, France
| | | | - Nina Fenouille
- Université de Paris, Génomes, Biologie Cellulaire et Thérapeutique U944, INSERM, CNRS, Paris, France
| | - Jacob Hoj
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Rachel Washart
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Hazel X Ang
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | | | | | | | | | - Antoine Forget
- Université de Paris, Génomes, Biologie Cellulaire et Thérapeutique U944, INSERM, CNRS, Paris, France
| | - Raphael Itzykson
- Université de Paris, Génomes, Biologie Cellulaire et Thérapeutique U944, INSERM, CNRS, Paris, France
| | - Min Lu
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Jiaxing Lin
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC, USA
| | - Mariaelena Pierobon
- Center for Applied Proteomics and Molecular Medicine, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Zhecheng Sheng
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC, USA
| | - Xinghai Li
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Ashutosh Chilkoti
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Kouros Owzar
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC, USA
| | - David A Rizzieri
- Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Timothy S Pardee
- Department of Internal Medicine, Section on Hematology and Oncology, Wake Forest Baptist Health, Winston-Salem, NC, USA
| | - Lina Benajiba
- Université de Paris, Génomes, Biologie Cellulaire et Thérapeutique U944, INSERM, CNRS, Paris, France
| | - Emanuel Petricoin
- Center for Applied Proteomics and Molecular Medicine, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Alexandre Puissant
- Université de Paris, Génomes, Biologie Cellulaire et Thérapeutique U944, INSERM, CNRS, Paris, France.
| | - Kris C Wood
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA.
| |
Collapse
|
16
|
Göllner S, Müller-Tidow C. AKTing on XPO1 inhibition in AML. NATURE CANCER 2022; 3:787-789. [PMID: 35882999 DOI: 10.1038/s43018-022-00395-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Affiliation(s)
- Stefanie Göllner
- Department of Medicine V - Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany.
| | - Carsten Müller-Tidow
- Department of Medicine V - Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany.
- Molecular Medicine Partnership Unit, European Molecular Biology Laboratory and University of Heidelberg, Heidelberg, Germany.
- National Center for Tumor Diseases, Heidelberg, Germany.
| |
Collapse
|
17
|
Yu H, Wu S, Liu S, Li X, Gai Y, Lin H, Wang Y, Edwards H, Ge Y, Wang G. Venetoclax enhances DNA damage induced by XPO1 inhibitors: A novel mechanism underlying the synergistic antileukaemic effect in acute myeloid leukaemia. J Cell Mol Med 2022; 26:2646-2657. [PMID: 35355406 PMCID: PMC9077288 DOI: 10.1111/jcmm.17274] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 03/08/2022] [Accepted: 03/10/2022] [Indexed: 11/26/2022] Open
Abstract
Acute myeloid leukaemia (AML) is a highly heterogeneous haematologic malignancy with poor prognosis. We previously showed synergistic antileukaemic interaction between exportin 1 (XPO1) inhibitor KPT-330 (Selinexor) and Bcl-2 inhibitor venetoclax (ABT-199) in preclinical models of AML, which was partially meditated by Mcl-1, although the full mechanism of action remains unknown. In this study, using real-time RT-PCR and Western blot analysis, we show that inhibition of XPO1 via KPT-330 or KPT-8602 (Eltanexor) decreases the mRNA and protein levels of c-Myc, CHK1, WEE1, RAD51 and RRM2. KPT-330 and KPT-8602 induce DNA damage, as determined by alkaline comet assay. In addition, we demonstrate that venetoclax enhances KPT-330- and KPT-8602-induced DNA damage, likely through inhibition of DNA damage repair. This study provides new insight into the molecular mechanism underlying the synergistic antileukaemic activity between venetoclax and XPO1 inhibitors against AML. Our data support the clinical evaluation of this promising combination therapy for the treatment of AML.
Collapse
Affiliation(s)
- Hanxi Yu
- National Engineering Laboratory for AIDS VaccineKey Laboratory for Molecular Enzymology and Engineeringthe Ministry of EducationSchool of Life SciencesJilin UniversityChangchunChina
| | - Shuangshuang Wu
- National Engineering Laboratory for AIDS VaccineKey Laboratory for Molecular Enzymology and Engineeringthe Ministry of EducationSchool of Life SciencesJilin UniversityChangchunChina
| | - Shuang Liu
- National Engineering Laboratory for AIDS VaccineKey Laboratory for Molecular Enzymology and Engineeringthe Ministry of EducationSchool of Life SciencesJilin UniversityChangchunChina
| | - Xinyu Li
- National Engineering Laboratory for AIDS VaccineKey Laboratory for Molecular Enzymology and Engineeringthe Ministry of EducationSchool of Life SciencesJilin UniversityChangchunChina
| | - Yuqing Gai
- National Engineering Laboratory for AIDS VaccineKey Laboratory for Molecular Enzymology and Engineeringthe Ministry of EducationSchool of Life SciencesJilin UniversityChangchunChina
| | - Hai Lin
- Department of Hematology and Oncologythe First Hospital of Jilin UniversityChangchunChina
| | - Yue Wang
- Department of Pediatric Hematology and Oncologythe First Hospital of Jilin UniversityChangchunChina
| | - Holly Edwards
- Department of Oncology and Molecular Therapeutics ProgramBarbara Ann Karmanos Cancer InstituteWayne State University School of MedicineDetroitMichiganUSA
| | - Yubin Ge
- Department of Oncology and Molecular Therapeutics ProgramBarbara Ann Karmanos Cancer InstituteWayne State University School of MedicineDetroitMichiganUSA
| | - Guan Wang
- National Engineering Laboratory for AIDS VaccineKey Laboratory for Molecular Enzymology and Engineeringthe Ministry of EducationSchool of Life SciencesJilin UniversityChangchunChina
| |
Collapse
|
18
|
Rangel-Moreno J, Garcia-Hernandez MDLL, Owen T, Barnard J, Becerril-Villanueva E, Kashyap T, Argueta C, Gamboa-Dominguez A, Tamir S, Landesman Y, Goldman BI, Ritchlin CT, Anolik JH. Small molecule inhibitors of nuclear export ameliorate lupus by modulating plasma cell generation and survival. Arthritis Rheumatol 2022; 74:1363-1375. [PMID: 35333447 PMCID: PMC9339462 DOI: 10.1002/art.42128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 01/08/2022] [Accepted: 03/22/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVE To investigate the hypothesis that selective inhibitors of nuclear export (SINE), recently approved for the treatment of refractory plasma cell (PC) malignancy, may have potential in the treatment of lupus. METHODS NZB/NZW female mice were treated with SINE or vehicle control. Tissue was harvested and analyzed by flow cytometry using standard markers. Nephritis was monitored by evaluation for proteinuria and by histologic analysis of kidneys. Serum anti- double-stranded DNA (anti-dsDNA) levels were measured by enzyme-linked immunosorbent assay (ELISA) and total IgG and dsDNA antibody-secreting cells (ASC) by enzyme-linked immunospot assay. RESULTS SINE abrogated murine lupus nephritis at both early and late stages of the disease and rapidly impaired generation of autoreactive PC in germinal centers (GC). SINE inhibited the production of the NF-κB-driven homeostatic chemokines by stromal cells, altering splenic B and T cell strategic positioning and significantly reducing T follicular helper cells (TFH), GC B cells, and autoreactive PC. SINE also decreased cytokines/chemokines involved in PC survival and recruitment in the kidney of lupus-prone mice. Exportin 1, the SINE target, was detected in GC of human tonsils, splenic B cells of lupus patients, and multiple B cell subsets in the kidney of patients with lupus nephritis. CONCLUSION Our collective results support the therapeutic potential of SINE via targeting several molecular and cellular pathways critical in lupus pathogenesis, including autoantibody production by plasma cells.
Collapse
Affiliation(s)
- Javier Rangel-Moreno
- Department of Medicine, Division of Allergy, Immunology and Rheumatology, University of Rochester Medical Center, Rochester, NY, 14642
| | - Maria de la Luz Garcia-Hernandez
- Department of Medicine, Division of Allergy, Immunology and Rheumatology, University of Rochester Medical Center, Rochester, NY, 14642
| | - Teresa Owen
- Department of Medicine, Division of Allergy, Immunology and Rheumatology, University of Rochester Medical Center, Rochester, NY, 14642
| | - Jennifer Barnard
- Department of Medicine, Division of Allergy, Immunology and Rheumatology, University of Rochester Medical Center, Rochester, NY, 14642
| | - Enrique Becerril-Villanueva
- Departamento de Psicoinmunología, Instituto Nacional de Psiquiatría "Ramón de la Fuente", Mexico City, Mexico
| | | | | | - Armando Gamboa-Dominguez
- Departamento de Patologia, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, México
| | - Sharon Tamir
- Karyopharm Therapeutics, Newton, Massachusetts, 02459
| | | | - Bruce I Goldman
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, 14642
| | - Christopher T Ritchlin
- Department of Medicine, Division of Allergy, Immunology and Rheumatology, University of Rochester Medical Center, Rochester, NY, 14642
| | - Jennifer H Anolik
- Department of Medicine, Division of Allergy, Immunology and Rheumatology, University of Rochester Medical Center, Rochester, NY, 14642.,Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, 14642
| |
Collapse
|
19
|
Qu B, Xu Y, Lu Y, Zhuang W, Jin X, Shi Q, Yan S, Guo Y, Shen Z, Che J, Wu Y, Tong L, Dong X, Yang H. Design, synthesis and biological evaluation of sulfonamides inhibitors of XPO1 displaying activity against multiple myeloma cells. Eur J Med Chem 2022; 235:114257. [DOI: 10.1016/j.ejmech.2022.114257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 11/04/2022]
|
20
|
A review on the treatment of multiple myeloma with small molecular agents in the past five years. Eur J Med Chem 2022; 229:114053. [PMID: 34974338 DOI: 10.1016/j.ejmech.2021.114053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/30/2021] [Accepted: 12/12/2021] [Indexed: 12/15/2022]
Abstract
Multiple myeloma is currently incurable, and the incidence rate is increasing year by year worldwide. Although in recent years the combined treatment plan based on proteasome inhibitors and immunomodulatory drugs has greatly improved the treatment effect of multiple myeloma, most patients still relapse and become resistant to current treatments. To solve this problem, scientists are committed to developing drugs with higher specificity, such as iberdomide, which is highly specific to ikaros and aiolos. This review aims to focus on the small molecular agents that are being researched/clinically used for the treatment of multiple myeloma, including the target mechanism, structure-activity relationship and application prospects of small molecular agents.
Collapse
|
21
|
Wing CE, Fung HYJ, Chook YM. Karyopherin-mediated nucleocytoplasmic transport. Nat Rev Mol Cell Biol 2022; 23:307-328. [PMID: 35058649 PMCID: PMC10101760 DOI: 10.1038/s41580-021-00446-7] [Citation(s) in RCA: 121] [Impact Index Per Article: 60.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2021] [Indexed: 12/25/2022]
Abstract
Efficient and regulated nucleocytoplasmic trafficking of macromolecules to the correct subcellular compartment is critical for proper functions of the eukaryotic cell. The majority of the macromolecular traffic across the nuclear pores is mediated by the Karyopherin-β (or Kap) family of nuclear transport receptors. Work over more than two decades has shed considerable light on how the different Kap family members bring their respective cargoes into the nucleus or the cytoplasm in efficient and highly regulated manners. In this Review, we overview the main features and established functions of Kap family members, describe how Kaps recognize their cargoes and discuss the different ways in which these Kap-cargo interactions can be regulated, highlighting new findings and open questions. We also describe current knowledge of the import and export of the components of three large gene expression machines - the core replisome, RNA polymerase II and the ribosome - pointing out the questions that persist about how such large macromolecular complexes are trafficked to serve their function in a designated subcellular location.
Collapse
|
22
|
Fung HYJ, Chook YM. Crystallization of Nuclear Export Signals or Small-Molecule Inhibitors Bound to Nuclear Exporter CRM1. Methods Mol Biol 2022; 2502:285-297. [PMID: 35412246 DOI: 10.1007/978-1-0716-2337-4_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The Karyopherin protein CRM1 or XPO1 is the major nuclear export receptor that regulates nuclear exit of thousands of macromolecules in the cell. CRM1 recognizes protein cargoes by binding to their 8-15 residue-long nuclear export signals (NESs). A ternary CRM1-Ran-RanBP1 complex engineered to be suitable for crystallization has enabled structure determination by X-ray crystallography of CRM1 bound to many NES peptides and small-molecule inhibitors. Here, we present a protocol for the purification of the individual proteins, formation of the ternary CRM1-Ran-RanBP1 complex and crystallization of this complex for X-ray crystallography.
Collapse
Affiliation(s)
- Ho Yee Joyce Fung
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Yuh Min Chook
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
23
|
Kim E, Mordovkina DA, Sorokin A. Targeting XPO1-Dependent Nuclear Export in Cancer. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:S178-S70. [PMID: 35501995 DOI: 10.1134/s0006297922140140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 09/29/2021] [Accepted: 10/08/2021] [Indexed: 06/14/2023]
Abstract
Nucleocytoplasmic transport of macromolecules is tightly regulated in eukaryotic cells. XPO1 is a transport factor responsible for the nuclear export of several hundred protein and RNA substrates. Elevated levels of XPO1 and recurrent mutations have been reported in multiple cancers and linked to advanced disease stage and poor survival. In recent years, several novel small-molecule inhibitors of XPO1 were developed and extensively tested in preclinical cancer models and eventually in clinical trials. In this brief review, we summarize the functions of XPO1, its role in cancer, and the latest results of clinical trials of XPO1 inhibitors.
Collapse
Affiliation(s)
- Ekaterina Kim
- The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Daria A Mordovkina
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Alexey Sorokin
- The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
24
|
Galinski B, Alexander TB, Mitchell DA, Chatwin HV, Awah C, Green AL, Weiser DA. Therapeutic Targeting of Exportin-1 in Childhood Cancer. Cancers (Basel) 2021; 13:6161. [PMID: 34944778 PMCID: PMC8699059 DOI: 10.3390/cancers13246161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/16/2021] [Accepted: 12/01/2021] [Indexed: 01/24/2023] Open
Abstract
Overexpression of Exportin-1 (XPO1), a key regulator of nuclear-to-cytoplasmic transport, is associated with inferior patient outcomes across a range of adult malignancies. Targeting XPO1 with selinexor has demonstrated promising results in clinical trials, leading to FDA approval of its use for multiple relapsed/refractory cancers. However, XPO1 biology and selinexor sensitivity in childhood cancer is only recently being explored. In this review, we will focus on the differential biology of childhood and adult cancers as it relates to XPO1 and key cargo proteins. We will further explore the current state of pre-clinical and clinical development of XPO1 inhibitors in childhood cancers. Finally, we will outline potentially promising future therapeutic strategies for, as well as potential challenges to, integrating XPO1 inhibition to improve outcomes for children with cancer.
Collapse
Affiliation(s)
- Basia Galinski
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (B.G.); (D.A.M.); (C.A.)
| | - Thomas B. Alexander
- Department of Pediatrics, University of North Carolina, Chapel Hill, NC 27599, USA;
| | - Daniel A. Mitchell
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (B.G.); (D.A.M.); (C.A.)
| | - Hannah V. Chatwin
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, University of Colorado School of Medicine, Aurora, CO 80045, USA;
| | - Chidiebere Awah
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (B.G.); (D.A.M.); (C.A.)
| | - Adam L. Green
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, University of Colorado School of Medicine, Aurora, CO 80045, USA;
| | - Daniel A. Weiser
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (B.G.); (D.A.M.); (C.A.)
| |
Collapse
|
25
|
Liu S, Qiao W, Sun Q, Luo Y. Chromosome Region Maintenance 1 (XPO1/CRM1) as an Anticancer Target and Discovery of Its Inhibitor. J Med Chem 2021; 64:15534-15548. [PMID: 34669417 DOI: 10.1021/acs.jmedchem.1c01145] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Chromosome region maintenance 1 (CRM1) is a major nuclear export receptor protein and contributes to cell homeostasis by mediating the transport of cargo from the nucleus to the cytoplasm. CRM1 is a therapeutic target comprised of several tumor types, including osteosarcoma, multiple myeloma, gliomas, and pancreatic cancer. In the past decade, dozens of CRM1 inhibitors have been discovered and developed, including KPT-330, which received FDA approval for multiple myeloma (MM) and diffuse large B-cell lymphoma (DLBCL) in 2019 and 2020, respectively. This review summarizes the biological functions of CRM1, the current understanding of the role CRM1 plays in cancer, the discovery of CRM1 small-molecule inhibitors, preclinical and clinical studies on KPT-330, and other recently developed inhibitors. A new CRM1 inhibition mechanism and structural dynamics are discussed. Through this review, we hope to guide the future design and optimization of CRM1 inhibitors.
Collapse
Affiliation(s)
- Song Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wenliang Qiao
- Lung Cancer Center, Laboratory of Lung Cancer, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Qingxiang Sun
- State Key Laboratory of Biotherapy, Department of Pathology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Youfu Luo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
26
|
Inhibition of XPO-1 Mediated Nuclear Export through the Michael-Acceptor Character of Chalcones. Pharmaceuticals (Basel) 2021; 14:ph14111131. [PMID: 34832913 PMCID: PMC8621101 DOI: 10.3390/ph14111131] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/02/2021] [Accepted: 11/04/2021] [Indexed: 01/10/2023] Open
Abstract
The nuclear export receptor exportin-1 (XPO1, CRM1) mediates the nuclear export of proteins that contain a leucine-rich nuclear export signal (NES) towards the cytoplasm. XPO1 is considered a relevant target in different human diseases, particularly in hematological malignancies, tumor resistance, inflammation, neurodegeneration and viral infections. Thus, its pharmacological inhibition is of significant therapeutic interest. The best inhibitors described so far (leptomycin B and SINE compounds) interact with XPO1 through a covalent interaction with Cys528 located in the NES-binding cleft of XPO1. Based on the well-established feature of chalcone derivatives to react with thiol groups via hetero-Michael addition reactions, we have synthesized two series of chalcones. Their capacity to react with thiol groups was tested by incubation with GSH to afford the hetero-Michael adducts that evolved backwards to the initial chalcone through a retro-Michael reaction, supporting that the covalent interaction with thiols could be reversible. The chalcone derivatives were evaluated in antiproliferative assays against a panel of cancer cell lines and as XPO1 inhibitors, and a good correlation was observed with the results obtained in both assays. Moreover, no inhibition of the cargo export was observed when the two prototype chalcones 9 and 10 were tested against a XPO1-mutated Jurkat cell line (XPO1C528S), highlighting the importance of the Cys at the NES-binding cleft for inhibition. Finally, their interaction at the molecular level at the NES-binding cleft was studied by applying the computational tool CovDock.
Collapse
|
27
|
Pei J, Beri NR, Zou AJ, Hubel P, Dorando HK, Bergant V, Andrews RD, Pan J, Andrews JM, Sheehan KCF, Pichlmair A, Amarasinghe GK, Brody SL, Payton JE, Leung DW. Nuclear-localized human respiratory syncytial virus NS1 protein modulates host gene transcription. Cell Rep 2021; 37:109803. [PMID: 34644581 PMCID: PMC8609347 DOI: 10.1016/j.celrep.2021.109803] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 04/28/2021] [Accepted: 09/16/2021] [Indexed: 12/13/2022] Open
Abstract
Human respiratory syncytial virus (RSV) is a common cause of lower respiratory tract infections in the pediatric, elderly, and immunocompromised individuals. RSV non-structural protein NS1 is a known cytosolic immune antagonist, but how NS1 modulates host responses remains poorly defined. Here, we observe NS1 partitioning into the nucleus of RSV-infected cells, including the human airway epithelium. Nuclear NS1 coimmunoprecipitates with Mediator complex and is chromatin associated. Chromatin-immunoprecipitation demonstrates enrichment of NS1 that overlaps Mediator and transcription factor binding within the promoters and enhancers of differentially expressed genes during RSV infection. Mutation of the NS1 C-terminal helix reduces NS1 impact on host gene expression. These data suggest that nuclear NS1 alters host responses to RSV infection by binding at regulatory elements of immune response genes and modulating host gene transcription. Our study identifies another layer of regulation by virally encoded proteins that shapes host response and impacts immunity to RSV.
Collapse
Affiliation(s)
- Jingjing Pei
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Nina R Beri
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Angela J Zou
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Philipp Hubel
- Innate Immunity Laboratory, Max-Planck Institute of Biochemistry, Martinsried/Munich 82152, Germany
| | - Hannah K Dorando
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Valter Bergant
- Institute for Virology, Technical University of Munich, School of Medicine, 81675 Munich, Germany
| | - Rebecca D Andrews
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jiehong Pan
- Department of Medicine, Division of Pulmonary and Critical Care, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jared M Andrews
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kathleen C F Sheehan
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Andreas Pichlmair
- Innate Immunity Laboratory, Max-Planck Institute of Biochemistry, Martinsried/Munich 82152, Germany; Institute for Virology, Technical University of Munich, School of Medicine, 81675 Munich, Germany
| | - Gaya K Amarasinghe
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Steven L Brody
- Department of Medicine, Division of Pulmonary and Critical Care, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jacqueline E Payton
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Daisy W Leung
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
28
|
Sgherza N, Curci P, Rizzi R, Musto P. Novel Approaches Outside the Setting of Immunotherapy for the Treatment of Multiple Myeloma: The Case of Melflufen, Venetoclax, and Selinexor. Front Oncol 2021; 11:716751. [PMID: 34660279 PMCID: PMC8514936 DOI: 10.3389/fonc.2021.716751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 08/18/2021] [Indexed: 11/13/2022] Open
Abstract
Although the survival rate of patients with multiple myeloma has significantly improved in the last years thanks to the introduction of various classes of new drugs, such as proteasome inhibitors, immunomodulatory agents, and monoclonal antibodies, the vast majority of these subjects relapse with a more aggressive disease due to the acquisition of further genetic alterations that may cause resistance to current salvage therapies. The treatment of these often "triple" (or even more) refractory patients remains challenging, and alternative approaches are required to overcome the onset of that resistance. Immunotherapies with novel monoclonal, drug-conjugated, or bi-specific antibodies, as well as the use of chimeric antigen receptor T cells, have been recently developed and are currently investigated. However, other non-immunologic therapeutic regimens based on melfluflen, venetoclax, or selinexor, three molecules with new mechanisms of action, have also shown promising results in the setting of relapsed/refractory myeloma. Here we report the most recent literature data regarding these three drugs, focusing on their efficacy and safety in multiple myeloma.
Collapse
Affiliation(s)
- Nicola Sgherza
- Unit of Hematology and Stem Cell Transplantation, Azienda Ospedaliero Universitaria Consorziale (AOUC) Policlinico, Bari, Italy
| | - Paola Curci
- Unit of Hematology and Stem Cell Transplantation, Azienda Ospedaliero Universitaria Consorziale (AOUC) Policlinico, Bari, Italy
| | - Rita Rizzi
- Unit of Hematology and Stem Cell Transplantation, Azienda Ospedaliero Universitaria Consorziale (AOUC) Policlinico, Bari, Italy
- Department of Emergency and Organ Transplantation, “Aldo Moro” University School of Medicine, Bari, Italy
| | - Pellegrino Musto
- Unit of Hematology and Stem Cell Transplantation, Azienda Ospedaliero Universitaria Consorziale (AOUC) Policlinico, Bari, Italy
- Department of Emergency and Organ Transplantation, “Aldo Moro” University School of Medicine, Bari, Italy
| |
Collapse
|
29
|
Mathew C, Tamir S, Tripp RA, Ghildyal R. Reversible disruption of XPO1-mediated nuclear export inhibits respiratory syncytial virus (RSV) replication. Sci Rep 2021; 11:19223. [PMID: 34584169 PMCID: PMC8479129 DOI: 10.1038/s41598-021-98767-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 09/13/2021] [Indexed: 12/23/2022] Open
Abstract
Respiratory syncytial virus (RSV) is the primary cause of serious lower respiratory tract disease in infants, young children, the elderly and immunocompromised individuals. Therapy for RSV infections is limited to high risk infants and there are no safe and efficacious vaccines. Matrix (M) protein is a major RSV structural protein with a key role in virus assembly. Interestingly, M is localised to the nucleus early in infection and its export into the cytoplasm by the nuclear exporter, exportin-1 (XPO1) is essential for RSV assembly. We have shown previously that chemical inhibition of XPO1 function results in reduced RSV replication. In this study, we have investigated the anti-RSV efficacy of Selective Inhibitor of Nuclear Export (SINE) compounds, KPT-335 and KPT-185. Our data shows that therapeutic administration of the SINE compounds results in reduced RSV titre in human respiratory epithelial cell culture. Within 24 h of treatment, RSV replication and XPO1 expression was reduced, M protein was partially retained in the nucleus, and cell cycle progression was delayed. Notably, the effect of SINE compounds was reversible within 24 h after their removal. Our data show that reversible inhibition of XPO1 can disrupt RSV replication by affecting downstream pathways regulated by the nuclear exporter.
Collapse
Affiliation(s)
- Cynthia Mathew
- Centre for Research in Therapeutic Solutions, Faculty of Science and Technology, University of Canberra, Canberra, ACT 2617, Australia
| | | | - Ralph A Tripp
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Reena Ghildyal
- Centre for Research in Therapeutic Solutions, Faculty of Science and Technology, University of Canberra, Canberra, ACT 2617, Australia.
| |
Collapse
|
30
|
Zhou L, Zhao H, Shao Y, Chen X, Hong R, Wang L, Ni F, Nagler A, Hu Y, Huang H. Serial surveillance by circulating tumor DNA profiling after chimeric antigen receptor T therapy for the guidance of r/r diffuse large B cell lymphoma precise treatment. J Cancer 2021; 12:5423-5431. [PMID: 34405005 PMCID: PMC8364638 DOI: 10.7150/jca.60390] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 06/28/2021] [Indexed: 12/14/2022] Open
Abstract
Background: Circulating tumor DNA (ctDNA) released from tumor cells carries the tumor-associated genetic and epigenetic characteristics of cancer patients. Next-generation sequencing (NGS) facilitates the application of ctDNA profiling for identification and monitoring of minimal residual disease (MRD) in cancer, and can serve as the guidance for precise treatment. Methods: In this study, we profiled genomic alterations in the baseline, relapsed, and progressive tumor samples of eight diffuse large B cell lymphoma (DLBCL) patients (NCT03118180) after chimeric antigen receptor T (CAR-T) cell therapy. Results: The median follow-up was 41 months. 4 (50%) patients achieved complete remission (CR), 1 (12.5%) patient achieved partial remission (PR), and the other 3 (37.5%) patients showed no response. 3 of 5 patients who achieved remission relapsed within 4 months after CAR-T therapy, while the rest 2 patients remained CR for more than 3 years. Based on the positron emission tomography-computed tomography (PET-CT) scan, the current gold standard for evaluating response to therapy in lymphoma, the sensitivity and specificity of our ctDNA profiling in detecting tumor-related ctDNA mutations were 94.7% and 83.3%, respectively. The median numbers of baseline plasma ctDNA mutations in patients who remained long-term CR and patients who relapsed or became refractory to CAR-T therapy were 3 and 14.3, respectively. GNA13, SOCS1, TNFAIP3 and XPO1 mutations appeared to be associated with poor prognosis after CAR-T cell therapy. Our results also suggested that lenalidomide might relieve relapsed lymphoma with mutations in NFKBIA 202C>T (p.Q68*) and NFKBIE 433A>T (p.K145*) by targeting NF-Kappa B signaling. In addition, the inhibitor selinexor may be another choice for refractory or relapse (r/r) DLBCL patients after CAR-T cell treatment. Conclusion: Serial ctDNA monitoring is an emerging technology for the surveillance of disease status and prognosis prediction. In this work, we demonstrated the use of serial ctDNA monitoring in r/r DLBCL patients after CD19-targeted CAR-T cell therapy. Our longitudinal NGS profiling revealed the changes of ctDNA mutation in accordance with prognosis, and shed some light on exploring more targeted treatment options together with CAR-T cell therapy.
Collapse
Affiliation(s)
- Linghui Zhou
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine.,Institute of Hematology, Zhejiang University.,Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy.,Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou 311121, China
| | - Houli Zhao
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine.,Institute of Hematology, Zhejiang University.,Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy.,Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou 311121, China
| | - Yang Shao
- Nanjing Geneseeq Technology Inc., Nanjing, Jiangsu, China
| | - Xin Chen
- Nanjing Geneseeq Technology Inc., Nanjing, Jiangsu, China
| | - Ruimin Hong
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine.,Institute of Hematology, Zhejiang University.,Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy.,Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou 311121, China
| | - Linqin Wang
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine.,Institute of Hematology, Zhejiang University.,Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy.,Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou 311121, China
| | - Fang Ni
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine.,Institute of Hematology, Zhejiang University.,Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy.,Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou 311121, China
| | - Arnon Nagler
- Chaim Sheba Medical Center, Tel Hashomer, Israel, Tel Hashomer, Israel
| | - Yongxian Hu
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine.,Institute of Hematology, Zhejiang University.,Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy.,Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou 311121, China
| | - He Huang
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine.,Institute of Hematology, Zhejiang University.,Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy.,Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou 311121, China
| |
Collapse
|
31
|
Castellon C, Onkarappa Mangala Y, Perez Rodriguez A, Chaquette R, Meleveedu KS. First case report of tumor lysis syndrome and acute renal failure after selinexor use in multiple myeloma. Leuk Lymphoma 2021; 62:3536-3539. [PMID: 34369242 DOI: 10.1080/10428194.2021.1961230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Chrystina Castellon
- Department of Medicine, Division of Hematology/Oncology, Roger Williams Medical Center, Providence, RI, USA
| | - Yashvin Onkarappa Mangala
- Department of Medicine, Division of Hematology/Oncology, Roger Williams Medical Center, Providence, RI, USA
| | - Audrik Perez Rodriguez
- Department of Medicine, Division of Hematology/Oncology, Roger Williams Medical Center, Providence, RI, USA
| | - Raymond Chaquette
- Department of Medicine, Division of Hematology/Oncology, Roger Williams Medical Center, Providence, RI, USA
| | - Kapil S Meleveedu
- Department of Medicine, Division of Hematology/Oncology, Roger Williams Medical Center, Providence, RI, USA
| |
Collapse
|
32
|
Sweet K, Bhatnagar B, Döhner H, Donnellan W, Frankfurt O, Heuser M, Kota V, Liu H, Raffoux E, Roboz GJ, Röllig C, Showel MM, Strickland SA, Vives S, Tang S, Unger TJ, Joshi A, Shen Y, Alvarez MJ, Califano A, Crochiere M, Landesman Y, Kauffman M, Shah J, Shacham S, Savona MR, Montesinos P. A 2:1 randomized, open-label, phase II study of selinexor vs. physician's choice in older patients with relapsed or refractory acute myeloid leukemia. Leuk Lymphoma 2021; 62:3192-3203. [PMID: 34323164 DOI: 10.1080/10428194.2021.1950706] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Selinexor, a selective inhibitor of nuclear export, has demonstrated promising activity in patients with acute myeloid leukemia (AML). This randomized, phase II study evaluated selinexor 60 mg twice weekly (n = 118) vs. physician's choice (PC) treatment (n = 57) in patients aged ≥60 years with relapsed/refractory (R/R) AML. The primary outcome was overall survival (OS). Median OS did not differ significantly for selinexor vs. PC (3.2 vs. 5.6 months; HR = 1.18 [95% CI: 0.79-1.75]; p = 0.422). Complete remission (CR) plus CR with incomplete hematologic recovery trending in favor of selinexor occurred in a minority of patients. Selinexor treated patients had an increased incidence of adverse events. The most common grade ≥3 adverse events were thrombocytopenia, febrile neutropenia, anemia, hyponatremia. Despite well-balanced baseline characteristics, there were numerically higher rates of TP53 mutations, prior myelodysplastic syndrome, and lower absolute neutrophil counts in the selinexor group; warranting further investigation of selinexor in more carefully stratified R/R AML patients.Registered trial: NCT02088541.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Susana Vives
- ICO Badalona-Hospital Germans Trias i Pujol, Badalona, Spain
| | | | | | | | - Yao Shen
- DarwinHealth Inc, New York, NY, USA
| | - Mariano J Alvarez
- DarwinHealth Inc, New York, NY, USA.,Columbia University, New York, NY, USA
| | | | | | | | | | - Jatin Shah
- Karyopharm Therapeutics, Newton, MA, USA
| | | | | | - Pau Montesinos
- Departamento de Hematologia, Hospital Universitario y Politécnico La Fe, Valencia, Spain.,CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
33
|
Martin JG, Ward JA, Feyertag F, Zhang L, Couvertier S, Guckian K, Huber KVM, Johnson DS. Chemoproteomic Profiling of Covalent XPO1 Inhibitors to Assess Target Engagement and Selectivity. Chembiochem 2021; 22:2116-2123. [PMID: 33887086 DOI: 10.1002/cbic.202100038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 03/19/2021] [Indexed: 11/11/2022]
Abstract
Selinexor, a covalent XPO1 inhibitor, is approved in the USA in combination with dexamethasone for penta-refractory multiple myeloma. Additional XPO1 covalent inhibitors are currently in clinical trials for multiple diseases including hematologic malignancies, solid tumor malignancies, glioblastoma multiforme (GBM), and amyotrophic lateral sclerosis (ALS). It is important to measure the target engagement and selectivity of covalent inhibitors to understand the degree of engagement needed for efficacy, while avoiding both mechanism-based and off-target toxicity. Herein, we report clickable probes based on the XPO1 inhibitors selinexor and eltanexor for the labeling of XPO1 in live cells to assess target engagement and selectivity. We used mass spectrometry-based chemoproteomic workflows to profile the proteome-wide selectivity of selinexor and eltanexor and show that they are highly selective for XPO1. Thermal profiling analysis of selinexor further offers an orthogonal approach to measure XPO1 engagement in live cells. We believe these probes and assays will serve as useful tools to further interrogate the biology of XPO1 and its inhibition in cellular and in vivo systems.
Collapse
Affiliation(s)
- Jeffrey G Martin
- Biogen, Chemical Biology & Proteomics 225 Binney Street, Cambridge, MA 02142, USA
| | - Jennifer A Ward
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, UK
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| | - Felix Feyertag
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, UK
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| | - Lu Zhang
- Biogen, Chemical Biology & Proteomics 225 Binney Street, Cambridge, MA 02142, USA
| | - Shalise Couvertier
- Biogen, Chemical Biology & Proteomics 225 Binney Street, Cambridge, MA 02142, USA
| | - Kevin Guckian
- Biogen, Medicinal Chemistry 225 Binney Street, Cambridge, MA 02142, USA
| | - Kilian V M Huber
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, UK
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| | - Douglas S Johnson
- Biogen, Chemical Biology & Proteomics 225 Binney Street, Cambridge, MA 02142, USA
| |
Collapse
|
34
|
Lei Y, Li Y, Tan Y, Qian Z, Zhou Q, Jia D, Sun Q. Novel Mechanistic Observations and NES-Binding Groove Features Revealed by the CRM1 Inhibitors Plumbagin and Oridonin. JOURNAL OF NATURAL PRODUCTS 2021; 84:1478-1488. [PMID: 33890470 DOI: 10.1021/acs.jnatprod.0c01231] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The protein chromosome region maintenance 1 (CRM1) is an important nuclear export factor and drug target in diseases such as cancer and viral infections. Several plant-derived CRM1 inhibitors including plumbagin and oridonin possess potent antitumor activities. However, their modes of CRM1 inhibition remain unclear. Here, a multimutant CRM1 was engineered to enable crystallization of these two small molecules in its NES groove. Plumbagin and oridonin share the same three conjugation sites in CRM1. In solution, these two inhibitors targeted more CRM1 sites and inhibited its activity through promoting its aggregation, in addition to directly targeting the NES groove. While the plumbagin-bound NES groove resembles the NES-bound groove state, the oridonin complex reveals for the first time a more open NES groove. The observed greater NES groove dynamics may improve cargo loading through a "capture-and-tighten" mechanism. This work thus provides new insights on the mechanism of CRM1 inhibition by two natural products and a structural basis for further development of these or other CRM1 inhibitors.
Collapse
Affiliation(s)
- Yuqin Lei
- Department of Pathology, State Key Laboratory of Biotherapy and Cancer Centre, West China Hospital, Sichuan University, and Collaborative Innovation Centre of Biotherapy, Chengdu 610041, People's Republic of China
| | - Yuling Li
- Department of Pathology, State Key Laboratory of Biotherapy and Cancer Centre, West China Hospital, Sichuan University, and Collaborative Innovation Centre of Biotherapy, Chengdu 610041, People's Republic of China
| | - Yuping Tan
- Department of Pathology, State Key Laboratory of Biotherapy and Cancer Centre, West China Hospital, Sichuan University, and Collaborative Innovation Centre of Biotherapy, Chengdu 610041, People's Republic of China
| | - Zhiyong Qian
- Department of Pathology, State Key Laboratory of Biotherapy and Cancer Centre, West China Hospital, Sichuan University, and Collaborative Innovation Centre of Biotherapy, Chengdu 610041, People's Republic of China
| | - Qiao Zhou
- Department of Pathology, State Key Laboratory of Biotherapy and Cancer Centre, West China Hospital, Sichuan University, and Collaborative Innovation Centre of Biotherapy, Chengdu 610041, People's Republic of China
| | - Da Jia
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Pediatrics, Division of Neurology, West China Second University Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Qingxiang Sun
- Department of Pathology, State Key Laboratory of Biotherapy and Cancer Centre, West China Hospital, Sichuan University, and Collaborative Innovation Centre of Biotherapy, Chengdu 610041, People's Republic of China
| |
Collapse
|
35
|
Lei Y, An Q, Shen XF, Sui M, Li C, Jia D, Luo Y, Sun Q. Structure-Guided Design of the First Noncovalent Small-Molecule Inhibitor of CRM1. J Med Chem 2021; 64:6596-6607. [PMID: 33974430 DOI: 10.1021/acs.jmedchem.0c01675] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Nuclear export factor chromosome region maintenance 1 (CRM1) is an attractive anticancer and antiviral drug target that spurred several research efforts to develop its inhibitor. Noncovalent CRM1 inhibitors are desirable, but none is reported to date. Here, we present the crystal structure of yeast CRM1 in complex with S109, a substructure of CBS9106 (under clinical test). Superimposition with the LFS-829 (another covalent CRM1 inhibitor) complex inspired the design of a noncovalent CRM1 inhibitor. Among nine synthesized compounds, noncovalent CRM1 inhibitor 1 (NCI-1) showed a high affinity to human and yeast CRM1 in the absence or presence of GST-bound Ras-related nuclear protein (RanGTP). Unlike covalent inhibitors, the crystal structure showed that NCI-1 is bound in the "open" nuclear export signal (NES) groove of CRM1, simultaneously occupying two hydrophobic pockets. NCI-1 additionally inhibited the nuclear export and proliferation of cells harboring the human CRM1-C528S mutant. Our work opens up the avenue of noncovalent CRM1 inhibitor development toward a more potent, less toxic, and broad-spectrum anticancer/antiviral therapy.
Collapse
Affiliation(s)
- Yuqin Lei
- Department of Pathology, State Key Laboratory of Biotherapy and Cancer Centre, West China Hospital, Sichuan University and Collaborative Innovation Centre of Biotherapy, Chengdu 610041, China
| | - Qi An
- Department of Pathology, State Key Laboratory of Biotherapy and Cancer Centre, West China Hospital, Sichuan University and Collaborative Innovation Centre of Biotherapy, Chengdu 610041, China
| | - Xiao-Fei Shen
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, Division of Neurology, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Min Sui
- Department of Pathology, State Key Laboratory of Biotherapy and Cancer Centre, West China Hospital, Sichuan University and Collaborative Innovation Centre of Biotherapy, Chengdu 610041, China
| | - Chungen Li
- Department of Pathology, State Key Laboratory of Biotherapy and Cancer Centre, West China Hospital, Sichuan University and Collaborative Innovation Centre of Biotherapy, Chengdu 610041, China
| | - Da Jia
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, Division of Neurology, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Youfu Luo
- Department of Pathology, State Key Laboratory of Biotherapy and Cancer Centre, West China Hospital, Sichuan University and Collaborative Innovation Centre of Biotherapy, Chengdu 610041, China
| | - Qingxiang Sun
- Department of Pathology, State Key Laboratory of Biotherapy and Cancer Centre, West China Hospital, Sichuan University and Collaborative Innovation Centre of Biotherapy, Chengdu 610041, China
| |
Collapse
|
36
|
Ajayi-Smith A, van der Watt P, Mkwanazi N, Carden S, Trent JO, Leaner VD. Novel small molecule inhibitor of Kpnβ1 induces cell cycle arrest and apoptosis in cancer cells. Exp Cell Res 2021; 404:112637. [PMID: 34019908 DOI: 10.1016/j.yexcr.2021.112637] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 04/02/2021] [Accepted: 05/02/2021] [Indexed: 12/11/2022]
Abstract
Karyopherin beta 1 (Kpnβ1) is a major nuclear import receptor that mediates the import of cellular cargoes into the nucleus. Recently it has been shown that Kpnβ1 is highly expressed in several cancers, and its inhibition by siRNA induces apoptotic cancer cell death, while having little effect on non-cancer cells. This study investigated the effect of a novel small molecule, Inhibitor of Nuclear Import-60 (INI-60), on cancer cell biology, as well as nuclear import activities associated with Kpnβ1, and cancer progression in vivo using cervical and oesophageal cancer cell lines. INI-60 treatment resulted in the inhibition of cancer cell proliferation, colony formation, migration and invasion, and induced a G1/S cell cycle arrest, followed by cancer cell death via apoptosis. Non-cancer cells were minimally affected by INI-60 at concentrations that inhibited cancer cells. INI-60 treatment altered the localisation of Kpnβ1 and its cargoes, NFκB/p65, NFAT and AP-1, and the overexpression of Kpnβ1 reduced INI-60 cytotoxicity. INI-60 also inhibited KYSE 30 oesophageal cancer cell line growth in vivo. Taken together, these results show that INI-60 inhibits the nuclear import of Kpnβ1 cargoes and interferes with cancer cell biology. INI-60 presents as a potential therapeutic approach for cancers of different tissue origins and warrants further investigation as a novel anti-cancer agent.
Collapse
Affiliation(s)
- Aderonke Ajayi-Smith
- Division of Medical Biochemistry and Structural Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, #SAMRC Gynaecology Cancer Research Centre, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, South Africa
| | - Pauline van der Watt
- Division of Medical Biochemistry and Structural Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, #SAMRC Gynaecology Cancer Research Centre, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, South Africa
| | - Nonkululeko Mkwanazi
- Division of Medical Biochemistry and Structural Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, #SAMRC Gynaecology Cancer Research Centre, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, South Africa
| | - Sarah Carden
- Division of Medical Biochemistry and Structural Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, #SAMRC Gynaecology Cancer Research Centre, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, South Africa
| | - John O Trent
- Department of Medicine, J.G. Brown Cancer Center, University of Louisville, Kentucky, USA
| | - Virna D Leaner
- Division of Medical Biochemistry and Structural Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, #SAMRC Gynaecology Cancer Research Centre, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, South Africa.
| |
Collapse
|
37
|
Zong Z, Wei Y, Ren J, Zhang L, Zhou F. The intersection of COVID-19 and cancer: signaling pathways and treatment implications. Mol Cancer 2021; 20:76. [PMID: 34001144 PMCID: PMC8126512 DOI: 10.1186/s12943-021-01363-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 04/13/2021] [Indexed: 01/08/2023] Open
Abstract
The outbreak of the novel coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has emerged as a serious public health concern. Patients with cancer have been disproportionately affected by this pandemic. Increasing evidence has documented that patients with malignancies are highly susceptible to severe infections and mortality from COVID-19. Recent studies have also elucidated the molecular relationship between the two diseases, which may not only help optimize cancer care during the pandemic but also expand the treatment for COVID-19. In this review, we highlight the clinical and molecular similarities between cancer and COVID-19 and summarize the four major signaling pathways at the intersection of COVID-19 and cancer, namely, cytokine, type I interferon (IFN-I), androgen receptor (AR), and immune checkpoint signaling. In addition, we discuss the advantages and disadvantages of repurposing anticancer treatment for the treatment of COVID-19.
Collapse
Affiliation(s)
- Zhi Zong
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, 215123, China
- MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, China
| | - Yujun Wei
- Anhui Anlong Gene Technology Co., Ltd, Hefei, 230041, China
| | - Jiang Ren
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, China
| | - Long Zhang
- MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
| | - Fangfang Zhou
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
38
|
Fung HYJ, Niesman A, Chook YM. An update to the CRM1 cargo/NES database NESdb. Mol Biol Cell 2021; 32:467-469. [PMID: 33720780 PMCID: PMC8101443 DOI: 10.1091/mbc.e20-11-0694] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/04/2021] [Accepted: 01/13/2021] [Indexed: 11/30/2022] Open
Affiliation(s)
- Ho Yee Joyce Fung
- Department of Pharmacology, UT Southwestern Medical Center, Dallas TX 75390
| | - Ashley Niesman
- Department of Pharmacology, UT Southwestern Medical Center, Dallas TX 75390
| | - Yuh Min Chook
- Department of Pharmacology, UT Southwestern Medical Center, Dallas TX 75390
| |
Collapse
|
39
|
Azmi AS, Uddin MH, Mohammad RM. The nuclear export protein XPO1 - from biology to targeted therapy. Nat Rev Clin Oncol 2021; 18:152-169. [PMID: 33173198 DOI: 10.1038/s41571-020-00442-4] [Citation(s) in RCA: 124] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2020] [Indexed: 12/23/2022]
Abstract
Exportin 1 (XPO1), also known as chromosome region maintenance protein 1, plays a crucial role in maintaining cellular homeostasis via the regulated export of a range of cargoes, including proteins and several classes of RNAs, from the nucleus to the cytoplasm. Dysregulation of this protein plays a pivotal role in the development of various solid and haematological malignancies. Furthermore, XPO1 is associated with resistance to several standard-of-care therapies, including chemotherapies and targeted therapies, making it an attractive target of novel cancer therapies. Over the years, a number of selective inhibitors of nuclear export have been developed. However, only selinexor has been clinically validated. The novel mechanism of action of XPO1 inhibitors implies a different toxicity profile to that of other agents and has proved challenging in certain settings. Nonetheless, data from clinical trials have led to the approval of the XPO1 inhibitor selinexor (plus dexamethasone) as a fifth-line therapy for patients with multiple myeloma and as a monotherapy for patients with relapsed and/or refractory diffuse large B cell lymphoma. In this Review, we summarize the progress and challenges in the development of nuclear export inhibitors and discuss the potential of emerging combination therapies and biomarkers of response.
Collapse
MESH Headings
- Antineoplastic Agents/therapeutic use
- Cell Line, Tumor
- Dexamethasone/therapeutic use
- Drug Resistance, Neoplasm/genetics
- Hematologic Neoplasms/drug therapy
- Hematologic Neoplasms/genetics
- Hematologic Neoplasms/pathology
- Humans
- Hydrazines/therapeutic use
- Karyopherins/antagonists & inhibitors
- Karyopherins/genetics
- Lymphoma, Large B-Cell, Diffuse/drug therapy
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/pathology
- Molecular Targeted Therapy
- Receptors, Cytoplasmic and Nuclear/antagonists & inhibitors
- Receptors, Cytoplasmic and Nuclear/genetics
- Triazoles/therapeutic use
- Exportin 1 Protein
Collapse
Affiliation(s)
- Asfar S Azmi
- Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Mohammed H Uddin
- Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Ramzi M Mohammad
- Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA.
| |
Collapse
|
40
|
Shaikhqasem A, Schmitt K, Valerius O, Ficner R. Crystal structure of human CRM1, covalently modified by 2-mercaptoethanol on Cys528, in complex with RanGTP. Acta Crystallogr F Struct Biol Commun 2021; 77:70-78. [PMID: 33682791 PMCID: PMC7938638 DOI: 10.1107/s2053230x2100203x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 02/21/2021] [Indexed: 11/23/2022] Open
Abstract
CRM1 is a nuclear export receptor that has been intensively targeted over the last decade for the development of antitumor and antiviral drugs. Structural analysis of several inhibitor compounds bound to CRM1 revealed that their mechanism of action relies on the covalent modification of a critical cysteine residue (Cys528 in the human receptor) located in the nuclear export signal-binding cleft. This study presents the crystal structure of human CRM1, covalently modified by 2-mercaptoethanol on Cys528, in complex with RanGTP at 2.58 Å resolution. The results demonstrate that buffer components can interfere with the characterization of cysteine-dependent inhibitor compounds.
Collapse
Affiliation(s)
- Alaa Shaikhqasem
- Department for Molecular Structural Biology, Georg-August-Universität Göttingen, Justus-von-Liebig Weg 11, 37077 Göttingen, Germany
| | - Kerstin Schmitt
- Department of Molecular Microbiology and Genetics, Georg-August-Universität Göttingen, Grisebachstrasse 8, 37077 Göttingen, Germany
| | - Oliver Valerius
- Department of Molecular Microbiology and Genetics, Georg-August-Universität Göttingen, Grisebachstrasse 8, 37077 Göttingen, Germany
| | - Ralf Ficner
- Department for Molecular Structural Biology, Georg-August-Universität Göttingen, Justus-von-Liebig Weg 11, 37077 Göttingen, Germany
| |
Collapse
|
41
|
Boons E, Nogueira TC, Dierckx T, Menezes SM, Jacquemyn M, Tamir S, Landesman Y, Farré L, Bittencourt A, Kataoka K, Ogawa S, Snoeck R, Andrei G, Van Weyenbergh J, Daelemans D. XPO1 inhibitors represent a novel therapeutic option in Adult T-cell Leukemia, triggering p53-mediated caspase-dependent apoptosis. Blood Cancer J 2021; 11:27. [PMID: 33563902 PMCID: PMC7873181 DOI: 10.1038/s41408-021-00409-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/10/2020] [Accepted: 12/17/2020] [Indexed: 12/21/2022] Open
Affiliation(s)
- Eline Boons
- KU Leuven Department of Microbiology, Immunology and Transplantation, Laboratory of Virology and Chemotherapy, Rega Institute, B-3000, Leuven, Belgium
| | - Tatiane C Nogueira
- KU Leuven Department of Microbiology, Immunology and Transplantation, Laboratory of Virology and Chemotherapy, Rega Institute, B-3000, Leuven, Belgium
| | - Tim Dierckx
- KU Leuven Department of Microbiology, Immunology and Transplantation, Laboratory of Clinical and Epidemiological Virology, Rega Institute, B-3000, Leuven, Belgium
| | - Soraya Maria Menezes
- KU Leuven Department of Microbiology, Immunology and Transplantation, Laboratory of Clinical and Epidemiological Virology, Rega Institute, B-3000, Leuven, Belgium
| | - Maarten Jacquemyn
- KU Leuven Department of Microbiology, Immunology and Transplantation, Laboratory of Virology and Chemotherapy, Rega Institute, B-3000, Leuven, Belgium
| | | | | | - Lourdes Farré
- Instituto de Pesquisa Goncalo Moniz, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Bahia, Brazil
| | | | - Keisuke Kataoka
- Department of Pathology and Tumor Biology, Kyoto University, Kyoto, Japan
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Kyoto University, Kyoto, Japan
| | - Robert Snoeck
- KU Leuven Department of Microbiology, Immunology and Transplantation, Laboratory of Virology and Chemotherapy, Rega Institute, B-3000, Leuven, Belgium
| | - Graciela Andrei
- KU Leuven Department of Microbiology, Immunology and Transplantation, Laboratory of Virology and Chemotherapy, Rega Institute, B-3000, Leuven, Belgium
| | - Johan Van Weyenbergh
- KU Leuven Department of Microbiology, Immunology and Transplantation, Laboratory of Clinical and Epidemiological Virology, Rega Institute, B-3000, Leuven, Belgium
| | - Dirk Daelemans
- KU Leuven Department of Microbiology, Immunology and Transplantation, Laboratory of Virology and Chemotherapy, Rega Institute, B-3000, Leuven, Belgium.
| |
Collapse
|
42
|
Abeykoon JP, Wu X, Nowakowski KE, Dasari S, Paludo J, Weroha SJ, Hu C, Hou X, Sarkaria JN, Mladek AC, Phillips JL, Feldman AL, Ravindran A, King RL, Boysen J, Stenson MJ, Carr RM, Manske MK, Molina JR, Kapoor P, Parikh SA, Kumar S, Robinson SI, Yu J, Boughey JC, Wang L, Goetz MP, Couch FJ, Patnaik MM, Witzig TE. Salicylates enhance CRM1 inhibitor antitumor activity by induction of S-phase arrest and impairment of DNA-damage repair. Blood 2021; 137:513-523. [PMID: 33507295 PMCID: PMC7845010 DOI: 10.1182/blood.2020009013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 09/30/2020] [Indexed: 01/10/2023] Open
Abstract
Chromosome region maintenance protein 1 (CRM1) mediates protein export from the nucleus and is a new target for anticancer therapeutics. Broader application of KPT-330 (selinexor), a first-in-class CRM1 inhibitor recently approved for relapsed multiple myeloma and diffuse large B-cell lymphoma, have been limited by substantial toxicity. We discovered that salicylates markedly enhance the antitumor activity of CRM1 inhibitors by extending the mechanisms of action beyond CRM1 inhibition. Using salicylates in combination enables targeting of a range of blood cancers with a much lower dose of selinexor, thereby potentially mitigating prohibitive clinical adverse effects. Choline salicylate (CS) with low-dose KPT-330 (K+CS) had potent, broad activity across high-risk hematological malignancies and solid-organ cancers ex vivo and in vivo. The K+CS combination was not toxic to nonmalignant cells as compared with malignant cells and was safe without inducing toxicity to normal organs in mice. Mechanistically, compared with KPT-330 alone, K+CS suppresses the expression of CRM1, Rad51, and thymidylate synthase proteins, leading to more efficient inhibition of CRM1-mediated nuclear export, impairment of DNA-damage repair, reduced pyrimidine synthesis, cell-cycle arrest in S-phase, and cell apoptosis. Moreover, the addition of poly (ADP-ribose) polymerase inhibitors further potentiates the K+CS antitumor effect. K+CS represents a new class of therapy for multiple types of blood cancers and will stimulate future investigations to exploit DNA-damage repair and nucleocytoplasmic transport for cancer therapy in general.
Collapse
MESH Headings
- Animals
- Antineoplastic Combined Chemotherapy Protocols/adverse effects
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Cell Cycle Checkpoints/drug effects
- Choline/administration & dosage
- Choline/adverse effects
- Choline/analogs & derivatives
- Choline/pharmacology
- DNA Repair/drug effects
- DNA Replication/drug effects
- DNA, Neoplasm/drug effects
- Drug Combinations
- Drug Synergism
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Hydrazines/administration & dosage
- Hydrazines/adverse effects
- Hydrazines/pharmacology
- Karyopherins/antagonists & inhibitors
- Lymphoma, Mantle-Cell/drug therapy
- Lymphoma, Mantle-Cell/pathology
- Lymphoma, Non-Hodgkin/drug therapy
- Lymphoma, Non-Hodgkin/genetics
- Lymphoma, Non-Hodgkin/pathology
- Male
- Mice
- Mice, Inbred NOD
- Mice, SCID
- Neoplasm Proteins/antagonists & inhibitors
- Neoplasm Proteins/biosynthesis
- Neoplasm Proteins/genetics
- Phthalazines/administration & dosage
- Phthalazines/pharmacology
- Piperazines/administration & dosage
- Piperazines/pharmacology
- Random Allocation
- Receptors, Cytoplasmic and Nuclear/antagonists & inhibitors
- S Phase Cell Cycle Checkpoints/drug effects
- Salicylates/administration & dosage
- Salicylates/adverse effects
- Salicylates/pharmacology
- Triazoles/administration & dosage
- Triazoles/adverse effects
- Triazoles/pharmacology
- Tumor Cells, Cultured
- Xenograft Model Antitumor Assays
- Exportin 1 Protein
Collapse
Affiliation(s)
| | - Xiaosheng Wu
- Division of Hematology, Department of Internal Medicine
| | | | | | - Jonas Paludo
- Division of Hematology, Department of Internal Medicine
| | | | - Chunling Hu
- Department of Laboratory Medicine and Pathology
| | | | | | | | | | | | - Aishwarya Ravindran
- Division of Hematopathology, Department of Laboratory Medicine and Pathology, and
| | - Rebecca L King
- Division of Hematopathology, Department of Laboratory Medicine and Pathology, and
| | - Justin Boysen
- Division of Hematology, Department of Internal Medicine
| | | | | | | | | | | | | | - Shaji Kumar
- Division of Hematology, Department of Internal Medicine
| | | | | | | | | | | | - Fergus J Couch
- Department of Health Sciences Research
- Department of Laboratory Medicine and Pathology
| | | | | |
Collapse
|
43
|
Walker JS, Hing ZA, Harrington B, Baumhardt J, Ozer HG, Lehman A, Giacopelli B, Beaver L, Williams K, Skinner JN, Cempre CB, Sun Q, Shacham S, Stromberg BR, Summers MK, Abruzzo LV, Rassenti L, Kipps TJ, Parikh S, Kay NE, Rogers KA, Woyach JA, Coppola V, Chook YM, Oakes C, Byrd JC, Lapalombella R. Recurrent XPO1 mutations alter pathogenesis of chronic lymphocytic leukemia. J Hematol Oncol 2021; 14:17. [PMID: 33451349 PMCID: PMC7809770 DOI: 10.1186/s13045-021-01032-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 01/01/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Exportin 1 (XPO1/CRM1) is a key mediator of nuclear export with relevance to multiple cancers, including chronic lymphocytic leukemia (CLL). Whole exome sequencing has identified hot-spot somatic XPO1 point mutations which we found to disrupt highly conserved biophysical interactions in the NES-binding groove, conferring novel cargo-binding abilities and forcing cellular mis-localization of critical regulators. However, the pathogenic role played by change-in-function XPO1 mutations in CLL is not fully understood. METHODS We performed a large, multi-center retrospective analysis of CLL cases (N = 1286) to correlate nonsynonymous mutations in XPO1 (predominantly E571K or E571G; n = 72) with genetic and epigenetic features contributing to the overall outcomes in these patients. We then established a mouse model with over-expression of wildtype (wt) or mutant (E571K or E571G) XPO1 restricted to the B cell compartment (Eµ-XPO1). Eµ-XPO1 mice were then crossed with the Eµ-TCL1 CLL mouse model. Lastly, we determined crystal structures of XPO1 (wt or E571K) bound to several selective inhibitors of nuclear export (SINE) molecules (KPT-185, KPT-330/Selinexor, and KPT-8602/Eltanexor). RESULTS We report that nonsynonymous mutations in XPO1 associate with high risk genetic and epigenetic features and accelerated CLL progression. Using the newly-generated Eµ-XPO1 mouse model, we found that constitutive B-cell over-expression of wt or mutant XPO1 could affect development of a CLL-like disease in aged mice. Furthermore, concurrent B-cell expression of XPO1 with E571K or E571G mutations and TCL1 accelerated the rate of leukemogenesis relative to that of Eµ-TCL1 mice. Lastly, crystal structures of E571 or E571K-XPO1 bound to SINEs, including Selinexor, are highly similar, suggesting that the activity of this class of compounds will not be affected by XPO1 mutations at E571 in patients with CLL. CONCLUSIONS These findings indicate that mutations in XPO1 at E571 can drive leukemogenesis by priming the pre-neoplastic lymphocytes for acquisition of additional genetic and epigenetic abnormalities that collectively result in neoplastic transformation.
Collapse
Affiliation(s)
- Janek S Walker
- Division of Hematology, Department of Internal Medicine, The Ohio State University, 460 OSUCCC, 410 West 12th Avenue, Columbus, OH, 43210, USA
| | - Zachary A Hing
- Division of Hematology, Department of Internal Medicine, The Ohio State University, 460 OSUCCC, 410 West 12th Avenue, Columbus, OH, 43210, USA
| | - Bonnie Harrington
- Division of Hematology, Department of Internal Medicine, The Ohio State University, 460 OSUCCC, 410 West 12th Avenue, Columbus, OH, 43210, USA
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA
| | - Jordan Baumhardt
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Hatice Gulcin Ozer
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA
| | - Amy Lehman
- Center for Biostatistics, Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA
| | - Brian Giacopelli
- Division of Hematology, Department of Internal Medicine, The Ohio State University, 460 OSUCCC, 410 West 12th Avenue, Columbus, OH, 43210, USA
| | - Larry Beaver
- Division of Hematology, Department of Internal Medicine, The Ohio State University, 460 OSUCCC, 410 West 12th Avenue, Columbus, OH, 43210, USA
| | - Katie Williams
- Division of Hematology, Department of Internal Medicine, The Ohio State University, 460 OSUCCC, 410 West 12th Avenue, Columbus, OH, 43210, USA
| | - Jordan N Skinner
- Division of Hematology, Department of Internal Medicine, The Ohio State University, 460 OSUCCC, 410 West 12th Avenue, Columbus, OH, 43210, USA
| | - Casey B Cempre
- Division of Hematology, Department of Internal Medicine, The Ohio State University, 460 OSUCCC, 410 West 12th Avenue, Columbus, OH, 43210, USA
| | - Qingxiang Sun
- Department of Pathology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | | | - Benjamin R Stromberg
- Department of Radiation Oncology, Arthur G James Comprehensive Cancer Center and Richard L. Solove Research Institute, The Ohio State University, Columbus, OH, USA
| | - Matthew K Summers
- Department of Radiation Oncology, Arthur G James Comprehensive Cancer Center and Richard L. Solove Research Institute, The Ohio State University, Columbus, OH, USA
| | - Lynne V Abruzzo
- Department of Pathology, The Ohio State University, Columbus, OH, USA
| | - Laura Rassenti
- Department of Medicine, Division of Hematology, University of California-San Diego School of Medicine, San Diego, CA, USA
| | - Thomas J Kipps
- Department of Medicine, Division of Hematology, University of California-San Diego School of Medicine, San Diego, CA, USA
| | - Sameer Parikh
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Neil E Kay
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Kerry A Rogers
- Division of Hematology, Department of Internal Medicine, The Ohio State University, 460 OSUCCC, 410 West 12th Avenue, Columbus, OH, 43210, USA
| | - Jennifer A Woyach
- Division of Hematology, Department of Internal Medicine, The Ohio State University, 460 OSUCCC, 410 West 12th Avenue, Columbus, OH, 43210, USA
| | - Vincenzo Coppola
- Department of Cancer Biology and Genetics, The Ohio State University College of Medicine, Columbus, OH, USA
- Genetically Engineered Mouse Modeling Core, The Ohio State University and Arthur G. James Comprehensive Cancer Center, Columbus, OH, USA
| | - Yuh Min Chook
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Christopher Oakes
- Division of Hematology, Department of Internal Medicine, The Ohio State University, 460 OSUCCC, 410 West 12th Avenue, Columbus, OH, 43210, USA
| | - John C Byrd
- Division of Hematology, Department of Internal Medicine, The Ohio State University, 460 OSUCCC, 410 West 12th Avenue, Columbus, OH, 43210, USA
- Division of Medicinal Chemistry, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Rosa Lapalombella
- Division of Hematology, Department of Internal Medicine, The Ohio State University, 460 OSUCCC, 410 West 12th Avenue, Columbus, OH, 43210, USA.
| |
Collapse
|
44
|
Brkic S, Meyer SC. Challenges and Perspectives for Therapeutic Targeting of Myeloproliferative Neoplasms. Hemasphere 2021; 5:e516. [PMID: 33403355 PMCID: PMC7773330 DOI: 10.1097/hs9.0000000000000516] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 11/09/2020] [Indexed: 12/12/2022] Open
Abstract
Myeloproliferative neoplasms (MPNs) are hematopoietic stem cell disorders with dysregulated myeloid blood cell production and propensity for transformation to acute myeloid leukemia, thrombosis, and bleeding. Acquired mutations in JAK2, MPL, and CALR converge on hyperactivation of Janus kinase 2 (JAK2) signaling as a central feature of MPN. Accordingly, JAK2 inhibitors have held promise for therapeutic targeting. After the JAK1/2 inhibitor ruxolitinib, similar JAK2 inhibitors as fedratinib are entering clinical use. While patients benefit with reduced splenomegaly and symptoms, disease-modifying effects on MPN clone size and clonal evolution are modest. Importantly, response to ruxolitinib may be lost upon treatment suggesting the MPN clone acquires resistance. Resistance mutations, as seen with other tyrosine kinase inhibitors, have not been described in MPN patients suggesting that functional processes reactivate JAK2 signaling. Compensatory signaling, which bypasses JAK2 inhibition, and other processes contribute to intrinsic resistance of MPN cells restricting efficacy of JAK2 inhibition overall. Combinations of JAK2 inhibition with pegylated interferon-α, a well-established therapy of MPN, B-cell lymphoma 2 inhibition, and others are in clinical development with the potential to enhance therapeutic efficacy. Novel single-agent approaches targeting other molecules than JAK2 are being investigated clinically. Special focus should be placed on myelofibrosis patients with anemia and thrombocytopenia, a delicate patient population at high need for options. The extending range of new treatment approaches will increase the therapeutic options for MPN patients. This calls for concomitant improvement of our insight into MPN biology to inform tailored therapeutic strategies for individual MPN patients.
Collapse
Affiliation(s)
- Sime Brkic
- Department of Biomedicine, University Hospital Basel and University of Basel, Switzerland
| | - Sara C. Meyer
- Department of Biomedicine, University Hospital Basel and University of Basel, Switzerland
- Division of Hematology, University Hospital Basel, Switzerland
| |
Collapse
|
45
|
Mendes A, Jühlen R, Martinelli V, Fahrenkrog B. Targeted CRM1-inhibition perturbs leukemogenic NUP214 fusion proteins and exerts anti-cancer effects in leukemia cell lines with NUP214 rearrangements. Oncotarget 2020; 11:3371-3386. [PMID: 32934780 PMCID: PMC7486696 DOI: 10.18632/oncotarget.27711] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 08/01/2020] [Indexed: 11/25/2022] Open
Abstract
Chromosomal translocations fusing the locus of nucleoporin NUP214 each with the proto-oncogenes SET and DEK are recurrent in, largely intractable, acute leukemias. The molecular basis underlying the pathogenesis of SET-NUP214 and DEK-NUP214 are still poorly understood, but both chimeras inhibit protein nuclear export mediated by the β-karyopherin CRM1. In this report, we show that SET-NUP214 and DEK-NUP214 both disturb the localization of proteins essential for nucleocytoplasmic transport, in particular for CRM1-mediated protein export. Endogenous and exogenous SET-NUP214 and DEK-NUP214 form nuclear bodies. These nuclear bodies disperse upon targeted inhibition of CRM1 and the two fusion proteins re-localize throughout the nucleoplasm. Moreover, SET-NUP214 and DEK-NUP214 nuclear bodies reestablish shortly after removal of CRM1 inhibitors. Likewise, cell viability, metabolism, and proliferation of leukemia cell lines harboring SET-NUP214 and DEK-NUP214 are compromised by CRM1 inhibition, which is even sustained after clearance from CRM1 antagonists. Our results indicate CRM1 as a possible therapeutic target in NUP214-related leukemia. This is especially important, since no specific or targeted treatment options for NUP214 driven leukemia are available yet.
Collapse
Affiliation(s)
- Adélia Mendes
- Institute of Molecular Biology and Medicine, Université Libre de Bruxelles, Charleroi 6041, Belgium
| | - Ramona Jühlen
- Institute of Molecular Biology and Medicine, Université Libre de Bruxelles, Charleroi 6041, Belgium.,Institute of Biochemistry and Molecular Cell Biology, RWTH Aachen University, Aachen 52074, Germany
| | - Valérie Martinelli
- Institute of Molecular Biology and Medicine, Université Libre de Bruxelles, Charleroi 6041, Belgium
| | - Birthe Fahrenkrog
- Institute of Molecular Biology and Medicine, Université Libre de Bruxelles, Charleroi 6041, Belgium
| |
Collapse
|
46
|
Guillem F, Dussiot M, Colin E, Suriyun T, Arlet JB, Goudin N, Marcion G, Seigneuric R, Causse S, Gonin P, Gastou M, Deloger M, Rossignol J, Lamarque M, Choucair ZB, Gautier EF, Ducamp S, Vandekerckhove J, Moura IC, Maciel TT, Garrido C, An X, Mayeux P, Mohandas N, Courtois G, Hermine O. XPO1 regulates erythroid differentiation and is a new target for the treatment of β-thalassemia. Haematologica 2020; 105:2240-2249. [PMID: 33054049 PMCID: PMC7556489 DOI: 10.3324/haematol.2018.210054] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 11/19/2019] [Indexed: 11/09/2022] Open
Abstract
β-thalassemia major (β-TM) is an inherited hemoglobinopathy caused by a quantitative defect in the synthesis of β-globin chains of hemoglobin, leading to the accumulation of free a-globin chains that aggregate and cause ineffective erythropoiesis. We have previously demonstrated that terminal erythroid maturation requires a transient activation of caspase-3 and that the chaperone Heat Shock Protein 70 (HSP70) accumulates in the nucleus to protect GATA-1 transcription factor from caspase-3 cleavage. This nuclear accumulation of HSP70 is inhibited in human β-TM erythroblasts due to HSP70 sequestration in the cytoplasm by free a-globin chains, resulting in maturation arrest and apoptosis. Likewise, terminal maturation can be restored by transduction of a nuclear-targeted HSP70 mutant. Here we demonstrate that in normal erythroid progenitors, HSP70 localization is regulated by the exportin-1 (XPO1), and that treatment of β-thalassemic erythroblasts with an XPO1 inhibitor increased the amount of nuclear HSP70, rescued GATA-1 expression and improved terminal differentiation, thus representing a new therapeutic option to ameliorate ineffective erythropoiesis of β-TM.
Collapse
Affiliation(s)
- Flavia Guillem
- INSERM UMR 1163, CNRS ERL 8254, Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutical Implications, Paris, France; Imagine Institute, Université Paris Descartes, Sorbonne Paris-Cité et Assistance Publique-Hôpitaux de Paris, Hôpital Necker, Paris, France; Laboratory of Excellence GRex, Paris, France
| | - Michaël Dussiot
- INSERM UMR 1163, CNRS ERL 8254, Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutical Implications, Paris, France; Imagine Institute, Université Paris Descartes, Sorbonne Paris-Cité et Assistance Publique-Hôpitaux de Paris, Hôpital Necker, Paris, France; Laboratory of Excellence GRex, Paris, France
| | - Elia Colin
- INSERM UMR 1163, CNRS ERL 8254, Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutical Implications, Paris, France; Imagine Institute, Université Paris Descartes, Sorbonne Paris-Cité et Assistance Publique-Hôpitaux de Paris, Hôpital Necker, Paris, France; Laboratory of Excellence GRex, Paris, France
| | - Thunwarat Suriyun
- INSERM UMR 1163, CNRS ERL 8254, Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutical Implications, Paris, France; Imagine Institute, Université Paris Descartes, Sorbonne Paris-Cité et Assistance Publique-Hôpitaux de Paris, Hôpital Necker, Paris, France; Laboratory of Excellence GRex, Paris, France
| | - Jean Benoit Arlet
- INSERM UMR 1163, CNRS ERL 8254, Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutical Implications, Paris, France; Imagine Institute, Université Paris Descartes, Sorbonne Paris-Cité et Assistance Publique-Hôpitaux de Paris, Hôpital Necker, Paris, France; Laboratory of Excellence GRex, Paris, France; Service de Médecine Interne, Faculté de Médecine Paris Descartes, Sorbonne Paris-Cité et Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Paris, France
| | - Nicolas Goudin
- US24, Cell Imaging Platform, Necker Federative Structure of Research (SFR-Necker), Paris, France
| | - Guillaume Marcion
- INSERM, Unité Mixte de Recherche 866, Equipe Labellisée Ligue Contre le Cancer and Association pour la Recherche contre le Cancer, and Laboratoire d'Excellence Lipoprotéines et Santé (LipSTIC), Dijon, France; Faculty of Medicine and Pharmacy, University of Burgundy, Dijon, France
| | - Renaud Seigneuric
- INSERM, Unité Mixte de Recherche 866, Equipe Labellisée Ligue Contre le Cancer and Association pour la Recherche contre le Cancer, and Laboratoire d'Excellence Lipoprotéines et Santé (LipSTIC), Dijon, France; Faculty of Medicine and Pharmacy, University of Burgundy, Dijon, France
| | - Sebastien Causse
- INSERM, Unité Mixte de Recherche 866, Equipe Labellisée Ligue Contre le Cancer and Association pour la Recherche contre le Cancer, and Laboratoire d'Excellence Lipoprotéines et Santé (LipSTIC), Dijon, France; Faculty of Medicine and Pharmacy, University of Burgundy, Dijon, France
| | - Patrick Gonin
- Gustave Roussy, Université Paris-Saclay, Plateforme d'Evaluation Préclinique-UMS 3655/US23, Villejuif, France
| | - Marc Gastou
- Laboratory of Excellence GRex, Paris, France; Gustave Roussy, Université Paris-Saclay, Plateforme d'Evaluation Préclinique-UMS 3655/US23, Villejuif, France; Université Paris 7 Denis Diderot-Sorbonne Paris Cité, Paris, France
| | - Marc Deloger
- Institut Curie, PSL Research University, INSERM, U 900, MINES, ParisTech, Paris, France
| | - Julien Rossignol
- INSERM UMR 1163, CNRS ERL 8254, Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutical Implications, Paris, France; Service d'Hématologie, Faculté de Médecine Paris Descartes, Sorbonne Paris-Cité et Assistance Publique-Hôpitaux de Paris Hôpital Necker, Paris, France; Département d'Hématologie, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Mathilde Lamarque
- INSERM UMR 1163, CNRS ERL 8254, Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutical Implications, Paris, France; Imagine Institute, Université Paris Descartes, Sorbonne Paris-Cité et Assistance Publique-Hôpitaux de Paris, Hôpital Necker, Paris, France; Laboratory of Excellence GRex, Paris, France
| | - Zakia Belaid Choucair
- INSERM UMR 1163, CNRS ERL 8254, Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutical Implications, Paris, France; Imagine Institute, Université Paris Descartes, Sorbonne Paris-Cité et Assistance Publique-Hôpitaux de Paris, Hôpital Necker, Paris, France
| | - Emilie Fleur Gautier
- Laboratory of Excellence GRex, Paris, France; Institut Cochin, INSERM U1016, CNRS UMR8104, Université Paris Descartes, and Plateforme de Proteomique Paris 5 (3P5), Paris, France
| | - Sarah Ducamp
- Laboratory of Excellence GRex, Paris, France; Institut Cochin, INSERM U1016, CNRS UMR8104, Université Paris Descartes, and Plateforme de Proteomique Paris 5 (3P5), Paris, France
| | - Julie Vandekerckhove
- INSERM UMR 1163, CNRS ERL 8254, Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutical Implications, Paris, France
| | - Ivan C Moura
- INSERM UMR 1163, CNRS ERL 8254, Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutical Implications, Paris, France; Imagine Institute, Université Paris Descartes, Sorbonne Paris-Cité et Assistance Publique-Hôpitaux de Paris, Hôpital Necker, Paris, France; Laboratory of Excellence GRex, Paris, France
| | - Thiago Trovati Maciel
- INSERM UMR 1163, CNRS ERL 8254, Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutical Implications, Paris, France; Imagine Institute, Université Paris Descartes, Sorbonne Paris-Cité et Assistance Publique-Hôpitaux de Paris, Hôpital Necker, Paris, France; Laboratory of Excellence GRex, Paris, France
| | - Carmen Garrido
- INSERM, Unité Mixte de Recherche 866, Equipe Labellisée Ligue Contre le Cancer and Association pour la Recherche contre le Cancer, and Laboratoire d'Excellence Lipoprotéines et Santé (LipSTIC), Dijon, France; Faculty of Medicine and Pharmacy, University of Burgundy, Dijon, France; Centre Anticancéreux George François Leclerc, Dijon, France
| | - Xiuli An
- Red Cell Physiology Laboratory, New York Blood Center, New York, NY, USA
| | - Patrick Mayeux
- Laboratory of Excellence GRex, Paris, France; Institut Cochin, INSERM U1016, CNRS UMR8104, Université Paris Descartes, and Plateforme de Proteomique Paris 5 (3P5), Paris, France
| | - Narla Mohandas
- Red Cell Physiology Laboratory, New York Blood Center, New York, NY, USA
| | - Geneviève Courtois
- INSERM UMR 1163, CNRS ERL 8254, Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutical Implications, Paris, France; Imagine Institute, Université Paris Descartes, Sorbonne Paris-Cité et Assistance Publique-Hôpitaux de Paris, Hôpital Necker, Paris, France; Laboratory of Excellence GRex, Paris, France
| | - Olivier Hermine
- INSERM UMR 1163, CNRS ERL 8254, Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutical Implications, Paris, France; Imagine Institute, Université Paris Descartes, Sorbonne Paris-Cité et Assistance Publique-Hôpitaux de Paris, Hôpital Necker, Paris, France; Laboratory of Excellence GRex, Paris, France; Service d'Hématologie, Faculté de Médecine Paris Descartes, Sorbonne Paris-Cité et Assistance Publique-Hôpitaux de Paris Hôpital Necker, Paris, France.
| |
Collapse
|
47
|
Gavriatopoulou M, Chari A, Chen C, Bahlis N, Vogl DT, Jakubowiak A, Dingli D, Cornell RF, Hofmeister CC, Siegel D, Berdeja JG, Reece D, White D, Lentzsch S, Gasparetto C, Huff CA, Jagannath S, Baz R, Nooka AK, Richter J, Abonour R, Parker TL, Yee AJ, Moreau P, Lonial S, Tuchman S, Weisel KC, Mohty M, Choquet S, Unger TJ, Li K, Chai Y, Li L, Shah J, Shacham S, Kauffman MG, Dimopoulos MA. Integrated safety profile of selinexor in multiple myeloma: experience from 437 patients enrolled in clinical trials. Leukemia 2020; 34:2430-2440. [PMID: 32094461 PMCID: PMC7449872 DOI: 10.1038/s41375-020-0756-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 02/07/2020] [Accepted: 02/10/2020] [Indexed: 12/23/2022]
Abstract
Selinexor is an oral, small molecule inhibitor of the nuclear export protein exportin 1 with demonstrated activity in hematologic and solid malignancies. Side effects associated with selinexor include nausea, vomiting, fatigue, diarrhea, decreased appetite, weight loss, thrombocytopenia, neutropenia, and hyponatremia. We reviewed 437 patients with multiple myeloma treated with selinexor and assessed the kinetics of adverse events and impact of supportive care measures. Selinexor reduced both platelets and neutrophils over the first cycle of treatment and reached a nadir between 28 and 42 days. Platelet transfusions and thrombopoietin receptor agonists were effective at treating thrombocytopenia, and granulocyte colony stimulating factors were effective at resolving neutropenia. The onset of gastrointestinal side effects (nausea, vomiting, and diarrhea) was most common during the first 1-2 weeks of treatment. Nausea could be mitigated with 5-HT3 antagonists and either neurokinin 1 receptor antagonists, olanzapine, or cannbainoids. Loperamide and bismuth subsalicylate ameliorated diarrhea. The primary constitutional side effects of fatigue and decreased appetite could be managed with methylphenidate, megestrol, cannabinoids or olanzapine, respectively. Hyponatremia was highly responsive to sodium replacement. Selinexor has well-established adverse effects that mainly occur within the first 8 weeks of treatment, are reversible, and respond to supportive care.
Collapse
Affiliation(s)
- Maria Gavriatopoulou
- Alexandra Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece.
| | - Ajai Chari
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Christine Chen
- Division of Medical Oncology & Hematology, Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Nizar Bahlis
- Charbonneau Cancer Research Institute, Calgary, AB, Canada
| | - Dan T Vogl
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | | - Craig C Hofmeister
- Department of Internal Medicine, Division of Hematology, The Ohio State University, Columbus, OH, USA
| | - David Siegel
- Department of Hematology, John Theurer Cancer Center, Hackensack, NJ, USA
| | | | - Donna Reece
- Division of Medical Oncology & Hematology, Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Darrell White
- QEII Health Sciences Center, Dalhousie University, Halifax, NS, Canada
| | - Suzanne Lentzsch
- Department of Medicine, Division of Hematology/Oncology, Columbia University, New York, NY, USA
| | | | | | - Sundar Jagannath
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rachid Baz
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Ajay K Nooka
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Joshua Richter
- Department of Hematology, John Theurer Cancer Center, Hackensack, NJ, USA
| | - Rafat Abonour
- Indiana University Cancer Center, Indianapolis, IN, USA
| | | | - Andrew J Yee
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | | | - Sagar Lonial
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Sascha Tuchman
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Katja C Weisel
- University Medical Center of Hamburg-Eppendorf, Hamburg, Germany
| | | | | | - T J Unger
- Karyopharm Therapeutics, Newton, MA, USA
| | - Kai Li
- Karyopharm Therapeutics, Newton, MA, USA
| | - Yi Chai
- Karyopharm Therapeutics, Newton, MA, USA
| | | | - Jatin Shah
- Karyopharm Therapeutics, Newton, MA, USA
| | | | | | | |
Collapse
|
48
|
Shaikhqasem A, Dickmanns A, Neumann P, Ficner R. Characterization of Inhibition Reveals Distinctive Properties for Human and Saccharomyces cerevisiae CRM1. J Med Chem 2020; 63:7545-7558. [PMID: 32585100 DOI: 10.1021/acs.jmedchem.0c00143] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The receptor CRM1 is responsible for the nuclear export of many tumor-suppressor proteins and viral ribonucleoproteins. This renders CRM1 an interesting target for therapeutic intervention in diverse cancer types and viral diseases. Structural studies of Saccharomyces cerevisiae CRM1 (ScCRM1) complexes with inhibitors defined the molecular basis for CRM1 inhibition. Nevertheless, no structural information is available for inhibitors bound to human CRM1 (HsCRM1). Here, we present the structure of the natural inhibitor Leptomycin B bound to the HsCRM1-RanGTP complex. Despite high sequence conservation and structural similarity in the NES-binding cleft region, ScCRM1 exhibits 16-fold lower binding affinity than HsCRM1 toward PKI-NES and significant differences in affinities toward potential CRM1 inhibitors. In contrast to HsCRM1, competition assays revealed that a human adapted mutant ScCRM1-T539C does not bind all inhibitors tested. Taken together, our data indicate the importance of using HsCRM1 for molecular analysis and development of novel antitumor and antiviral drugs.
Collapse
Affiliation(s)
- Alaa Shaikhqasem
- Department of Molecular Structural Biology, Institute of Microbiology and Genetics, GZMB, Georg-August-University Göttingen, 37077 Göttingen, Germany
| | - Achim Dickmanns
- Department of Molecular Structural Biology, Institute of Microbiology and Genetics, GZMB, Georg-August-University Göttingen, 37077 Göttingen, Germany
| | - Piotr Neumann
- Department of Molecular Structural Biology, Institute of Microbiology and Genetics, GZMB, Georg-August-University Göttingen, 37077 Göttingen, Germany
| | - Ralf Ficner
- Department of Molecular Structural Biology, Institute of Microbiology and Genetics, GZMB, Georg-August-University Göttingen, 37077 Göttingen, Germany
| |
Collapse
|
49
|
Malandrakis P, Ntanasis-Stathopoulos I, Gavriatopoulou M, Terpos E. Clinical Utility of Selinexor/Dexamethasone in Patients with Relapsed or Refractory Multiple Myeloma: A Review of Current Evidence and Patient Selection. Onco Targets Ther 2020; 13:6405-6416. [PMID: 32669858 PMCID: PMC7335864 DOI: 10.2147/ott.s227166] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 06/21/2020] [Indexed: 12/11/2022] Open
Abstract
Multiple myeloma (MM) is one the most common hematological malignancies, and despite the survival prolongation offered by proteasome inhibitors (PIs), immunomodulatory drugs (IMiDs) and anti-CD38 monoclonal antibodies, the need for novel agents is prominent. Selinexor is a first-in-class, oral, selective inhibitor of exportin-1 (XPO1), a vital protein for the exportation of more than 200 tumor suppressor proteins from the nucleus. Both in solid tumors and hematologic malignancies, selinexor-mediated inhibition of nucleus export seems to effectively lead to cancer cell death. Selinexor in combination with dexamethasone (Sd) received an accelerated FDA approval on July 2019 for heavily pretreated patients with relapsed/refractory MM (RRMM) based on the promising results of the Phase II STORM trial. The preliminary results of the randomized Phase III BOSTON trial have shown a 47% increase in progression-free survival among PI-sensitive, RRMM patients who received selinexor with bortezomib-dexamethasone compared with bortezomib-dexamethasone alone. Several different selinexor-containing triplet regimens are currently being tested in the RRMM setting in an umbrella trial, and the preliminary results seem promising. Furthermore, the addition of selinexor in other anti-myeloma agents seems to overcome drug-acquired resistance in preclinical studies. The main toxicities of selinexor are gastrointestinal disorders and hematologic toxicities (mainly thrombocytopenia); however, they are manageable with proper supportive measures. In conclusion, selinexor is a new anti-myeloma drug that seems to be effective in patients who have no other therapeutic options, including patients who have received novel cellular therapies such as CAR-T cells. Its potential role earlier in the therapeutic algorithm of MM is currently under clinical investigation.
Collapse
Affiliation(s)
- Panagiotis Malandrakis
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Ioannis Ntanasis-Stathopoulos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Gavriatopoulou
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Evangelos Terpos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
50
|
Walker JS, Garzon R, Lapalombella R. Selinexor for advanced hematologic malignancies. Leuk Lymphoma 2020; 61:2335-2350. [DOI: 10.1080/10428194.2020.1775210] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Janek S. Walker
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Ramiro Garzon
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Rosa Lapalombella
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| |
Collapse
|