1
|
Okamoto H, Mizutani S, Tsukamoto T, Katsuragawa-Taminishi Y, Kawaji-Kanayama Y, Mizuhara K, Muramatsu A, Isa R, Fujino T, Shimura Y, Ichikawa K, Kuroda J. Robust anti-myeloma effect of TAS0612, an RSK/AKT/S6K inhibitor, with venetoclax regardless of cytogenetic abnormalities. Leukemia 2025; 39:211-221. [PMID: 39438587 DOI: 10.1038/s41375-024-02439-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024]
Abstract
Multiple myeloma (MM) remains a difficult-to-treat disease even with the latest therapeutic advances due to the complex, overlapping, and heterogeneous cytogenetic, genetic, and molecular abnormalities. To address this challenging problem, we previously identified the universal and critical roles of RSK2 and AKT, the effector signaling molecules downstream of PDPK1, regardless of cytogenetic and genetic profiles. Based on this, in this study, we investigated the anti-myeloma potency of TAS0612, a triple inhibitor against RSK, including RSK2, AKT, and S6K. Treatment with TAS0612 exerted the anti-proliferative effect via cell cycle blockade and the induction of apoptosis in human myeloma-derived cell lines (HMCLs) with diverse cytogenetic and genetic profiles. Ex vivo treatment with TAS0612 also significantly reduced the viability of patient-derived primary myeloma cells with diverse cytogenetic profiles. TAS0612 simultaneously caused the upregulation of several tumor suppressor genes, modulated prognostic genes according to the MMRF CoMMpass data, and downregulated a series of Myc- and mTOR-related genes. Moreover, the combination of TAS0612 with venetoclax (VEN) showed the synergy in inducing apoptosis in HMCLs irrespective of the t(11;14) translocation status. TAS0612 alone and combined with VEN are new potent candidate therapeutic strategies for MM, regardless of cytogenetic/genetic profiles, facilitating its future clinical development.
Collapse
Affiliation(s)
- Haruya Okamoto
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine Graduate School of Medical Science, Kyoto, Japan
| | - Shinsuke Mizutani
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine Graduate School of Medical Science, Kyoto, Japan
| | - Taku Tsukamoto
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine Graduate School of Medical Science, Kyoto, Japan
| | - Yoko Katsuragawa-Taminishi
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine Graduate School of Medical Science, Kyoto, Japan
| | - Yuka Kawaji-Kanayama
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine Graduate School of Medical Science, Kyoto, Japan
| | - Kentaro Mizuhara
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine Graduate School of Medical Science, Kyoto, Japan
| | - Ayako Muramatsu
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine Graduate School of Medical Science, Kyoto, Japan
| | - Reiko Isa
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine Graduate School of Medical Science, Kyoto, Japan
| | - Takahiro Fujino
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine Graduate School of Medical Science, Kyoto, Japan
| | - Yuji Shimura
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine Graduate School of Medical Science, Kyoto, Japan
- Department of Blood Transfusion, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Koji Ichikawa
- Taiho Pharmaceutical Co. Ltd., Tsukuba, Ibaraki, Japan
| | - Junya Kuroda
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine Graduate School of Medical Science, Kyoto, Japan.
| |
Collapse
|
2
|
Ram M, Fraser MR, Vieira dos Santos J, Tasakis R, Islam A, Abo-Donia JU, Parekh S, Lagana A. The Genetic and Molecular Drivers of Multiple Myeloma: Current Insights, Clinical Implications, and the Path Forward. Pharmgenomics Pers Med 2024; 17:573-609. [PMID: 39723112 PMCID: PMC11669356 DOI: 10.2147/pgpm.s350238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 12/13/2024] [Indexed: 12/28/2024] Open
Abstract
Background Multiple myeloma (MM) is a hematological malignancy characterized by the clonal proliferation of malignant plasma cells within the bone marrow. The disease's complexity is underpinned by a variety of genetic and molecular abnormalities that drive its progression. Methods This review was conducted through a state-of-The-art literature search, primarily utilizing PubMed to gather peer-reviewed articles. We focused on the most comprehensive and cited studies to ensure a thorough understanding of the genetic and molecular landscapes of MM. Results We detail primary and secondary alterations such as translocations, hyperdiploidy, single nucleotide variants (SNVs), copy number alterations (CNAs), gene fusions, epigenetic modifications, non-coding RNAs, germline predisposing variants, and the influence of the tumor microenvironment (TME). Our analysis highlights the heterogeneity of MM and the challenges it poses in treatment and prognosis, emphasizing the distinction between driver mutations, which actively contribute to oncogenesis, and passenger mutations, which arise due to genomic instability and do not contribute to disease progression. Conclusion & Future Perspectives We report key controversies and challenges in defining the genetic drivers of MM, and examine their implications for future therapeutic strategies. We discuss the importance of systems biology approaches in understanding the dependencies and interactions among these alterations, particularly highlighting the impact of double and triple-hit scenarios on disease outcomes. By advancing our understanding of the molecular drivers and their interactions, this review sets the stage for novel therapeutic targets and strategies, ultimately aiming to improve clinical outcomes in MM patients.
Collapse
Affiliation(s)
- Meghana Ram
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Junia Vieira dos Santos
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rafail Tasakis
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ariana Islam
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jannah Usama Abo-Donia
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Samir Parekh
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alessandro Lagana
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
3
|
Malamos P, Papanikolaou C, Gavriatopoulou M, Dimopoulos MA, Terpos E, Souliotis VL. The Interplay between the DNA Damage Response (DDR) Network and the Mitogen-Activated Protein Kinase (MAPK) Signaling Pathway in Multiple Myeloma. Int J Mol Sci 2024; 25:6991. [PMID: 39000097 PMCID: PMC11241508 DOI: 10.3390/ijms25136991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/18/2024] [Accepted: 06/24/2024] [Indexed: 07/16/2024] Open
Abstract
The DNA damage response (DDR) network and the mitogen-activated protein kinase (MAPK) signaling pathway are crucial mechanisms for the survival of all living beings. An accumulating body of evidence suggests that there is crosstalk between these two systems, thus favoring the appropriate functioning of multi-cellular organisms. On the other hand, aberrations within these mechanisms are thought to play a vital role in the onset and progression of several diseases, including cancer, as well as in the emergence of drug resistance. Here, we provide an overview of the current knowledge regarding alterations in the DDR machinery and the MAPK signaling pathway as well as abnormalities in the DDR/MAPK functional crosstalk in multiple myeloma, the second most common hematologic malignancy. We also present the latest advances in the development of anti-myeloma drugs targeting crucial DDR- and MAPK-associated molecular components. These data could potentially be exploited to discover new therapeutic targets and effective biomarkers as well as for the design of novel clinical trials. Interestingly, they might provide a new approach to increase the efficacy of anti-myeloma therapy by combining drugs targeting the DDR network and the MAPK signaling pathway.
Collapse
Affiliation(s)
- Panagiotis Malamos
- Institute of Chemical Biology, National Hellenic Research Foundation, 116 35 Athens, Greece; (P.M.); (C.P.)
| | - Christina Papanikolaou
- Institute of Chemical Biology, National Hellenic Research Foundation, 116 35 Athens, Greece; (P.M.); (C.P.)
| | - Maria Gavriatopoulou
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, 115 28 Athens, Greece; (M.G.); (M.A.D.); (E.T.)
| | - Meletios A. Dimopoulos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, 115 28 Athens, Greece; (M.G.); (M.A.D.); (E.T.)
| | - Evangelos Terpos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, 115 28 Athens, Greece; (M.G.); (M.A.D.); (E.T.)
| | - Vassilis L. Souliotis
- Institute of Chemical Biology, National Hellenic Research Foundation, 116 35 Athens, Greece; (P.M.); (C.P.)
| |
Collapse
|
4
|
Heredia-Guerrero SC, Evers M, Keppler S, Schwarzfischer M, Fuhr V, Rauert-Wunderlich H, Krügl A, Nedeva T, Grieb T, Pickert J, Koch H, Steinbrunn T, Bayrhof OJ, Bargou RC, Rosenwald A, Stühmer T, Leich E. Functional Investigation of IGF1R Mutations in Multiple Myeloma. Cancers (Basel) 2024; 16:2139. [PMID: 38893258 PMCID: PMC11171363 DOI: 10.3390/cancers16112139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/22/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
High expression of the receptor tyrosine kinase (RTK) insulin-like growth factor-1 receptor (IGF1R) and RTK mutations are associated with high-risk/worse prognosis in multiple myeloma (MM). Combining the pIGF1R/pINSR inhibitor linsitinib with the proteasome inhibitor (PI) bortezomib seemed promising in a clinical trial, but IGF1R expression was not associated with therapy response. Because the oncogenic impact of IGF1R mutations is so far unknown, we investigated the functional impact of IGF1R mutations on survival signaling, viability/proliferation and survival response to therapy. We transfected four human myeloma cell lines (HMCLs) with IGF1RWT, IGF1RD1146N and IGF1RN1129S (Sleeping Beauty), generated CRISPR-Cas9 IGF1R knockouts in the HMCLs U-266 (IGF1RWT) and L-363 (IGF1RD1146N) and tested the anti-MM activity of linsitinib alone and in combination with the second-generation PI carfilzomib in seven HMCLs. IGF1R knockout entailed reduced proliferation. Upon IGF1R overexpression, survival signaling was moderately increased in all HCMLs and slightly affected by IGF1RN1129S in one HMCL, whereby the viability remained unaffected. Expression of IGF1RD1146N reduced pIGF1R-Y1135, especially under serum reduction, but did not impact downstream signaling. Linsitinib and carfilzomib showed enhanced anti-myeloma activity in six out of seven HMCL irrespective of the IGF1R mutation status. In conclusion, IGF1R mutations can impact IGF1R activation and/or downstream signaling, and a combination of linsitinib with carfilzomib might be a suitable therapeutic approach for MM patients potentially responsive to IGF1R blockade.
Collapse
Affiliation(s)
| | - Marietheres Evers
- Institute of Pathology, University of Würzburg, 97080 Würzburg, Germany (M.E.); (H.R.-W.); (A.K.); (T.N.); (T.G.); (A.R.)
| | - Sarah Keppler
- Institute of Pathology, University of Würzburg, 97080 Würzburg, Germany (M.E.); (H.R.-W.); (A.K.); (T.N.); (T.G.); (A.R.)
| | - Marlene Schwarzfischer
- Institute of Pathology, University of Würzburg, 97080 Würzburg, Germany (M.E.); (H.R.-W.); (A.K.); (T.N.); (T.G.); (A.R.)
| | - Viktoria Fuhr
- Institute of Pathology, University of Würzburg, 97080 Würzburg, Germany (M.E.); (H.R.-W.); (A.K.); (T.N.); (T.G.); (A.R.)
| | - Hilka Rauert-Wunderlich
- Institute of Pathology, University of Würzburg, 97080 Würzburg, Germany (M.E.); (H.R.-W.); (A.K.); (T.N.); (T.G.); (A.R.)
| | - Anne Krügl
- Institute of Pathology, University of Würzburg, 97080 Würzburg, Germany (M.E.); (H.R.-W.); (A.K.); (T.N.); (T.G.); (A.R.)
| | - Theodora Nedeva
- Institute of Pathology, University of Würzburg, 97080 Würzburg, Germany (M.E.); (H.R.-W.); (A.K.); (T.N.); (T.G.); (A.R.)
| | - Tina Grieb
- Institute of Pathology, University of Würzburg, 97080 Würzburg, Germany (M.E.); (H.R.-W.); (A.K.); (T.N.); (T.G.); (A.R.)
| | - Julia Pickert
- Institute of Pathology, University of Würzburg, 97080 Würzburg, Germany (M.E.); (H.R.-W.); (A.K.); (T.N.); (T.G.); (A.R.)
| | - Hanna Koch
- Institute of Pathology, University of Würzburg, 97080 Würzburg, Germany (M.E.); (H.R.-W.); (A.K.); (T.N.); (T.G.); (A.R.)
| | - Torsten Steinbrunn
- Department of Internal Medicine II, University Hospital Würzburg, 97080 Würzburg, Germany;
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Otto-Jonas Bayrhof
- Comprehensive Cancer Center Mainfranken, University Hospital Würzburg, 97080 Würzburg, Germany (R.C.B.); (T.S.)
| | - Ralf Christian Bargou
- Comprehensive Cancer Center Mainfranken, University Hospital Würzburg, 97080 Würzburg, Germany (R.C.B.); (T.S.)
| | - Andreas Rosenwald
- Institute of Pathology, University of Würzburg, 97080 Würzburg, Germany (M.E.); (H.R.-W.); (A.K.); (T.N.); (T.G.); (A.R.)
| | - Thorsten Stühmer
- Comprehensive Cancer Center Mainfranken, University Hospital Würzburg, 97080 Würzburg, Germany (R.C.B.); (T.S.)
| | - Ellen Leich
- Institute of Pathology, University of Würzburg, 97080 Würzburg, Germany (M.E.); (H.R.-W.); (A.K.); (T.N.); (T.G.); (A.R.)
| |
Collapse
|
5
|
Schinke C, Rasche L, Raab MS, Weinhold N. Impact of Clonal Heterogeneity in Multiple Myeloma. Hematol Oncol Clin North Am 2024; 38:461-476. [PMID: 38195308 DOI: 10.1016/j.hoc.2023.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Multiple myeloma is characterized by a highly heterogeneous disease distribution within the bone marrow-containing skeletal system. In this review, we introduce the molecular mechanisms underlying clonal heterogeneity and the spatio-temporal evolution of myeloma. We discuss the clinical impact of clonal heterogeneity, which is thought to be one of the biggest obstacles to overcome therapy resistance and to achieve cure.
Collapse
Affiliation(s)
- Carolina Schinke
- Myeloma Center, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Leo Rasche
- Department of Internal Medicine 2, University Hospital of Würzburg, Würzburg, Germany; Mildred Scheel Early Career Center (MSNZ), University Hospital of Würzburg, Würzburg, Germany
| | - Marc S Raab
- Department of Internal Medicine V, Heidelberg University Clinic Hospital, Heidelberg, Germany
| | - Niels Weinhold
- Department of Internal Medicine V, Heidelberg University Clinic Hospital, Heidelberg, Germany.
| |
Collapse
|
6
|
Chen X, Varma G, Davies F, Morgan G. Approach to High-Risk Multiple Myeloma. Hematol Oncol Clin North Am 2024; 38:497-510. [PMID: 38195306 DOI: 10.1016/j.hoc.2023.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Improving the outcome of high-risk myeloma (HRMM) is a key therapeutic aim for the next decade. To achieve this aim, it is necessary to understand in detail the genetic drivers underlying this clinical behavior and to target its biology therapeutically. Advances have already been made, with a focus on consensus guidance and the application of novel immunotherapeutic approaches. Cases of HRMM are likely to have impaired prognosis even with novel strategies. However, if disease eradication and minimal disease states are achieved, then cure may be possible.
Collapse
Affiliation(s)
- Xiaoyi Chen
- Center Blood Cancer, Perlmutter Cancer Center, New York University, NYCLangone, Room# 496, Medical Science Building 4th Floor, 540 1st Avenue, New York, NY 10016, USA
| | - Gaurav Varma
- Center Blood Cancer, Perlmutter Cancer Center, New York University, NYCLangone, Room# 496, Medical Science Building 4th Floor, 540 1st Avenue, New York, NY 10016, USA
| | - Faith Davies
- Center Blood Cancer, Perlmutter Cancer Center, New York University, NYCLangone, Room# 496, Medical Science Building 4th Floor, 540 1st Avenue, New York, NY 10016, USA
| | - Gareth Morgan
- Center Blood Cancer, Perlmutter Cancer Center, New York University, NYCLangone, Room# 496, Medical Science Building 4th Floor, 540 1st Avenue, New York, NY 10016, USA.
| |
Collapse
|
7
|
Cobimetinib Alone and Plus Venetoclax With/Without Atezolizumab in Patients With Relapsed/Refractory Multiple Myeloma. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2023; 23:e59-e70. [PMID: 36450626 DOI: 10.1016/j.clml.2022.10.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/11/2022] [Accepted: 10/17/2022] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Mitogen-activated protein kinase pathway mutations are present in >50% of patients with relapsed/refractory (R/R) multiple myeloma (MM). MEK inhibitors show limited single-agent activity in R/R MM; combination with B-cell lymphoma-2 (BCL-2) and programmed death-ligand 1 inhibition may improve efficacy. This phase Ib/II trial (NCT03312530) evaluated safety and efficacy of cobimetinib (cobi) alone and in combination with venetoclax (ven) with/without atezolizumab (atezo) in patients with R/R MM. PATIENTS AND METHODS Forty-nine patients were randomized 1:2:2 to cobi 60 mg/day on days 1-21 (n = 6), cobi 40 mg/day on days 1-21 + ven 800 mg/day on days 1-28 with/without atezo 840 mg on days 1 and 15 of 28-day cycles (cobi-ven, n = 22; cobi-ven-atezo, n = 21). Safety run-in cohorts evaluated cobi-ven and cobi-ven-atezo dose levels. RESULTS Any-grade common adverse events (AEs) with cobi, cobi-ven, and cobi-ven-atezo, respectively, included diarrhea (33.3%, 81.8%, 90.5%) and nausea (16.7%, 50.0%, 66.7%); common grade ≥3 AEs included anemia (0%, 22.7%, 23.8%), neutropenia (0%, 13.6%, 38.1%), and thrombocytopenia (0%, 18.2%, 23.8%). The overall response rate for all-comers was 0% (cobi), 27.3% (cobi-ven), and 28.6% (cobi-ven-atezo), and 0%, 50.0%, and 100%, respectively, in patients with t(11;14)+. Biomarker analysis demonstrated non-t(11;14) patient selection with NRAS/KRAS/BRAF mutation or high BCL-2/BCL-2-L1 ratio (>52% of the study population) could enrich for responders to the cobi-ven combination. CONCLUSIONS Cobi-ven and cobi-ven-atezo demonstrated manageable safety with moderate activity in all-comers, and higher activity in patients with t(11;14)+ MM, supporting a biomarker-driven approach for ven in MM.
Collapse
|
8
|
Uckun FM, Qazi S. ERBB1/EGFR and JAK3 Tyrosine Kinases as Potential Therapeutic Targets in High-Risk Multiple Myeloma. ONCO 2022; 2:282-304. [PMID: 36311273 PMCID: PMC9610889 DOI: 10.3390/onco2040016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Our main objective was to identify abundantly expressed tyrosine kinases in multiple myeloma (MM) as potential therapeutic targets. We first compared the transcriptomes of malignant plasma cells from newly diagnosed MM patients who were risk-categorized based on the patient-specific EMC-92/SKY-92 gene expression signature values vs. normal plasma cells from healthy volunteers using archived datasets from the HOVON65/GMMG-HD4 randomized Phase 3 study evaluating the clinical efficacy of bortezomib induction/maintenance versus classic cytotoxic drugs and thalidomide maintenance. In particular, ERBB1/EGFR was significantly overexpressed in MM cells in comparison to normal control plasma cells, and it was differentially overexpressed in MM cells from high-risk patients. Amplified expression of EGFR/ERBB1 mRNA in MM cells was positively correlated with increased expression levels of mRNAs for several DNA binding proteins and transcription factors with known upregulating activity on EGFR/ERBB1 gene expression. MM patients with the highest ERBB1/EGFR expression level had significantly shorter PFS and OS times than patients with the lowest ERBB1/EGFR expression level. High expression levels of EGFR/ERBB1 were associated with significantly increased hazard ratios for unfavorable PFS and OS outcomes in both univariate and multivariate Cox proportional hazards models. The impact of high EGFR/ERBB1 expression on the PFS and OS outcomes remained significant even after accounting for the prognostic effects of other covariates. These results regarding the prognostic effect of EGFR/ERBB1 expression were validated using the MMRF-CoMMpass RNAseq dataset generated in patients treated with more recently applied drug combinations included in contemporary induction regimens. Our findings provide new insights regarding the molecular mechanism and potential clinical significance of upregulated EGFR/ERBB1 expression in MM.
Collapse
Affiliation(s)
- Fatih M. Uckun
- Immuno-Oncology Program, Ares Pharmaceuticals, St. Paul, MN 55110, USA
- Division of Hematology-Oncology, Department of Pediatrics and Developmental Therapeutics Program, Norris Comprehensive Cancer Center, University of Southern California Keck School of Medicine (USC KSOM), Los Angeles, CA 90027, USA
| | - Sanjive Qazi
- Immuno-Oncology Program, Ares Pharmaceuticals, St. Paul, MN 55110, USA
- Division of Hematology-Oncology, Department of Pediatrics and Developmental Therapeutics Program, Norris Comprehensive Cancer Center, University of Southern California Keck School of Medicine (USC KSOM), Los Angeles, CA 90027, USA
| |
Collapse
|
9
|
Giliberto M, Santana LM, Holien T, Misund K, Nakken S, Vodak D, Hovig E, Meza-Zepeda LA, Coward E, Waage A, Taskén K, Skånland SS. Mutational analysis and protein profiling predict drug sensitivity in multiple myeloma cell lines. Front Oncol 2022; 12:1040730. [PMID: 36523963 PMCID: PMC9745900 DOI: 10.3389/fonc.2022.1040730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/31/2022] [Indexed: 12/03/2023] Open
Abstract
INTRODUCTION Multiple myeloma (MM) is a heterogeneous disease where cancer-driver mutations and aberrant signaling may lead to disease progression and drug resistance. Drug responses vary greatly, and there is an unmet need for biomarkers that can guide precision cancer medicine in this disease. METHODS To identify potential predictors of drug sensitivity, we applied integrated data from drug sensitivity screening, mutational analysis and functional signaling pathway profiling in 9 cell line models of MM. We studied the sensitivity to 33 targeted drugs and their association with the mutational status of cancer-driver genes and activity level of signaling proteins. RESULTS We found that sensitivity to mitogen-activated protein kinase kinase 1 (MEK1) and phosphatidylinositol-3 kinase (PI3K) inhibitors correlated with mutations in NRAS/KRAS, and PI3K family genes, respectively. Phosphorylation status of MEK1 and protein kinase B (AKT) correlated with sensitivity to MEK and PI3K inhibition, respectively. In addition, we found that enhanced phosphorylation of proteins, including Tank-binding kinase 1 (TBK1), as well as high expression of B cell lymphoma 2 (Bcl-2), correlated with low sensitivity to MEK inhibitors. DISCUSSION Taken together, this study shows that mutational status and signaling protein profiling might be used in further studies to predict drug sensitivities and identify resistance markers in MM.
Collapse
Affiliation(s)
- Mariaserena Giliberto
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- K.G. Jebsen Centre for B Cell Malignancies, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Leonardo Miranda Santana
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- K.G. Jebsen Centre for B Cell Malignancies, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Oslo Centre for Biostatistics and Epidemiology, University of Oslo, Oslo, Norway
| | - Toril Holien
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Hematology, St. Olav’s University Hospital, Trondheim, Norway
- Department of Immunology and Transfusion Medicine, St. Olav’s University Hospital, Trondheim, Norway
| | - Kristine Misund
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Sigve Nakken
- Norwegian Cancer Genomics Consortium, Oslo University Hospital, Oslo, Norway
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Daniel Vodak
- Norwegian Cancer Genomics Consortium, Oslo University Hospital, Oslo, Norway
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Genomics Core Facility, Department of Core Facilities, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Eivind Hovig
- Norwegian Cancer Genomics Consortium, Oslo University Hospital, Oslo, Norway
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Center for Bioinformatics, Department of Informatics, University of Oslo, Oslo, Norway
| | - Leonardo A. Meza-Zepeda
- Norwegian Cancer Genomics Consortium, Oslo University Hospital, Oslo, Norway
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Genomics Core Facility, Department of Core Facilities, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Eivind Coward
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Bioinformatics Core Facility, Norwegian University of Science and Technology, Trondheim, Norway
| | - Anders Waage
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Hematology, St. Olav’s University Hospital, Trondheim, Norway
- Department of Immunology and Transfusion Medicine, St. Olav’s University Hospital, Trondheim, Norway
| | - Kjetil Taskén
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- K.G. Jebsen Centre for B Cell Malignancies, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Sigrid S. Skånland
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- K.G. Jebsen Centre for B Cell Malignancies, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
10
|
Oncogenic RAS commandeers amino acid sensing machinery to aberrantly activate mTORC1 in multiple myeloma. Nat Commun 2022; 13:5469. [PMID: 36115844 PMCID: PMC9482638 DOI: 10.1038/s41467-022-33142-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 09/01/2022] [Indexed: 11/23/2022] Open
Abstract
Oncogenic RAS mutations are common in multiple myeloma (MM), an incurable malignancy of plasma cells. However, the mechanisms of pathogenic RAS signaling in this disease remain enigmatic and difficult to inhibit therapeutically. We employ an unbiased proteogenomic approach to dissect RAS signaling in MM. We discover that mutant isoforms of RAS organize a signaling complex with the amino acid transporter, SLC3A2, and MTOR on endolysosomes, which directly activates mTORC1 by co-opting amino acid sensing pathways. MM tumors with high expression of mTORC1-dependent genes are more aggressive and enriched in RAS mutations, and we detect interactions between RAS and MTOR in MM patient tumors harboring mutant RAS isoforms. Inhibition of RAS-dependent mTORC1 activity synergizes with MEK and ERK inhibitors to quench pathogenic RAS signaling in MM cells. This study redefines the RAS pathway in MM and provides a mechanistic and rational basis to target this mode of RAS signaling. RAS mutations are commonly found in multiple myeloma (MM). Here, the authors show that oncogenic RAS mutations activate mTORC1 signalling in MM and combining mTORC1 and MEK/ERK inhibitors synergize to improve survival in preclinical models.
Collapse
|
11
|
Raimondi V, Iannozzi NT, Burroughs-Garcìa J, Toscani D, Storti P, Giuliani N. A personalized molecular approach in multiple myeloma: the possible use of RAF/RAS/MEK/ERK and BCL-2 inhibitors. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2022; 3:463-479. [PMID: 36071980 PMCID: PMC9446161 DOI: 10.37349/etat.2022.00095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 07/08/2022] [Indexed: 11/19/2022] Open
Abstract
Multiple myeloma (MM) is a blood cancer that derives from plasma cells (PCs), which will accumulate in the bone marrow (BM). Over time, several drugs have been developed to treat this disease that is still uncurable. The therapies used to treat the disease target immune activity, inhibit proteasome activity, and involve the use of monoclonal antibodies. However, MM is a highly heterogeneous disease, in fact, there are several mutations in signaling pathways that are particularly important for MM cell biology and that are possible therapeutic targets. Indeed, some studies suggest that MM is driven by mutations within the rat sarcoma virus (RAS) signaling cascade, which regulates cell survival and proliferation. The RAS/proto-oncogene, serine/threonine kinase (RAF)/mitogen-activated extracellular signal-regulated kinase (ERK) kinase (MEK)/ERK signaling pathway is deregulated in several cancers, for which drugs have been developed to inhibit these pathways. In addition to the signaling pathways, the disease implements mechanisms to ensure the survival and consequently a high replicative capacity. This strategy consists in the deregulation of apoptosis. In particular, some cases of MM show overexpression of anti-apoptotic proteins belonging to the B cell lymphoma 2 (BCL-2) family that represent a possible druggable target. Venetoclax is an anti-BCL-2 molecule used in hematological malignancies that may be used in selected MM patients based on their molecular profile. We focused on the possible effects in MM of off-label drugs that are currently used for other cancers with the same molecular characteristics. Their use, combined with the current treatments, could be a good strategy against MM.
Collapse
Affiliation(s)
- Vincenzo Raimondi
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | | | | | - Denise Toscani
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Paola Storti
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Nicola Giuliani
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy;Hematology, “Azienda Ospedaliero-Universitaria di Parma”, 43126 Parma, Italy
| |
Collapse
|
12
|
Abstract
Multiple myeloma is a common hematological malignancy of plasma cells, the terminally differentiated B cells that secrete antibodies as part of the adaptive immune response. Significant progress has been made in treating multiple myeloma, but this disease remains largely incurable, and most patients will eventually suffer a relapse of disease that becomes refractory to further therapies. Moreover, a portion of patients with multiple myeloma present with disease that is refractory to all treatments from the initial diagnosis, and no current therapeutic approaches can help. Therefore, the task remains to advance new therapeutic strategies to help these vulnerable patients. One strategy to meet this challenge is to unravel the complex web of pathogenic signaling pathways in malignant plasma cells and use this information to design novel precision medicine strategies to assist these patients most at risk.
Collapse
Affiliation(s)
- Arnold Bolomsky
- Wilhelminen Cancer Research Institute, Dept. of Medicine I, Wilhelminenspital, Vienna Austria
| | - Ryan M. Young
- National Institutes of Health, National Cancer Institute, Center for Cancer Research, Lymphoid Malignancies Branch, Bethesda MD 20892,Lymphoid Malignancies Branch, Center for Cancer Research, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD. 20892, , 240-858-3513
| |
Collapse
|
13
|
Vendramini E, Bomben R, Pozzo F, Bittolo T, Tissino E, Gattei V, Zucchetto A. KRAS and RAS-MAPK Pathway Deregulation in Mature B Cell Lymphoproliferative Disorders. Cancers (Basel) 2022; 14:666. [PMID: 35158933 PMCID: PMC8833570 DOI: 10.3390/cancers14030666] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 02/04/2023] Open
Abstract
KRAS mutations account for the most frequent mutations in human cancers, and are generally correlated with disease aggressiveness, poor prognosis, and poor response to therapies. KRAS is required for adult hematopoiesis and plays a key role in B cell development and mature B cell proliferation and survival, proved to be critical for B cell receptor-induced ERK pathway activation. In mature B cell neoplasms, commonly seen in adults, KRAS and RAS-MAPK pathway aberrations occur in a relevant fraction of patients, reaching high recurrence in some specific subtypes like multiple myeloma and hairy cell leukemia. As inhibitors targeting the RAS-MAPK pathway are being developed and improved, it is of outmost importance to precisely identify all subgroups of patients that could potentially benefit from their use. Herein, we review the role of KRAS and RAS-MAPK signaling in malignant hematopoiesis, focusing on mature B cell lymphoproliferative disorders. We discuss KRAS and RAS-MAPK pathway aberrations describing type, incidence, mutual exclusion with other genetic abnormalities, and association with prognosis. We review the current therapeutic strategies applied in mature B cell neoplasms to counteract RAS-MAPK signaling in pre-clinical and clinical studies, including most promising combination therapies. We finally present an overview of genetically engineered mouse models bearing KRAS and RAS-MAPK pathway aberrations in the hematopoietic compartment, which are valuable tools in the understanding of cancer biology and etiology.
Collapse
Affiliation(s)
- Elena Vendramini
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (R.B.); (F.P.); (T.B.); (E.T.); (V.G.); (A.Z.)
| | | | | | | | | | | | | |
Collapse
|
14
|
YTHDF2 promotes multiple myeloma cell proliferation via STAT5A/MAP2K2/p-ERK axis. Oncogene 2022; 41:1482-1491. [PMID: 35075244 DOI: 10.1038/s41388-022-02191-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 12/21/2021] [Accepted: 01/12/2022] [Indexed: 12/27/2022]
Abstract
Multiple myeloma (MM) is still incurable partially due to lacking effective therapeutic targets. Aberrant N6-methyladenosine (m6A) RNA modification plays a vital role in many cancers, however few researches are executed in MM. We first screened the m6A-related genes in MM patient cohorts and correlated these genes with patient outcomes. We found that YTHDF2, a well-recognized m6A reader, was increased in MM patients and associated with poor outcomes. Decreased YTHDF2 expression hampered MM cell proliferation in vitro and in vivo, while enforced YTHDF2 expression reversed those effects. The analyses of m6A-RIP-seq and RIP-PCR indicated that STAT5A was the downstream target of YTHDF2, which was binding to the m6A modification site of STAT5A to promote its mRNA degradation. ChIP-seq and PCR assays revealed that STAT5A suppressed MM cell proliferation by occupying the transcription site of MAP2K2 to decrease ERK phosphorylation. In addition, we confirmed that YTHDF2 mediated the unphosphorylated form of STAT5A to inhibit the expression of MAP2K2/p-ERK. In conclusion, our study highlights that YTHDF2/STAT5A/MAP2K2/p-ERK axis plays a key role in MM proliferation and targeting YTHDF2 may be a promising therapeutic strategy.
Collapse
|
15
|
Pan D, Richter J. Where We Stand With Precision Therapeutics in Myeloma: Prosperity, Promises, and Pipedreams. Front Oncol 2022; 11:819127. [PMID: 35127532 PMCID: PMC8811139 DOI: 10.3389/fonc.2021.819127] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 12/27/2021] [Indexed: 11/13/2022] Open
Abstract
Multiple myeloma remains an incurable disease despite numerous novel agents being approved in the last decade. Furthermore, disease behavior and susceptibility to current treatments often vary drastically from patient to patient. To date there are no approved therapies in myeloma that are targeted to specific patient populations based on genomic or immunologic findings. Precision medicine, using biomarkers descriptive of a specific tumor's biology and predictive of response to appropriate agents, may continue to push the field forward by expanding our treatment arsenal while refining our ability to expose patients to only those treatments likely to be efficacious. Extensive research efforts have been carried out in this endeavor including the use of agents targeting Bcl2 and the RAS/MAPK and PI3K/AKT/mTOR pathways. Thus far, clinical trials have yielded occasional successes intermixed with disappointments, reflecting significant hurdles which still remain including the complex crosstalk between oncogenic pathways and the nonlinear genetic development of myeloma, prone to cultivating sub-clones with distinctive mutations. In this review, we explore the landscape of precision therapeutics in multiple myeloma and underscore the degree to which research efforts have produced tangible clinical results.
Collapse
Affiliation(s)
- Darren Pan
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | | |
Collapse
|
16
|
Du J, Zhuang J. Major advances in the treatment of multiple myeloma in American Society of Hematology annual meeting 2020. Chronic Dis Transl Med 2021; 7:220-226. [PMID: 34786541 PMCID: PMC8579022 DOI: 10.1016/j.cdtm.2021.08.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Indexed: 01/01/2023] Open
Abstract
Treatment of multiple myeloma (MM) has advanced dramatically in the past two decades. However, under the conditions of the COVID-19 pandemic, treatment strategies have been modified accordingly. Numerous novel agents, updated trials, and major advances in myeloma have been reported in the American Society of Hematology 2020 annual meeting, either for transplant-eligible or ineligible patients. Hot topics such as the significance of autologous stem cell transplantation (ASCT), development of novel agents, and chimeric antigen receptor-T (CAR-T) cells have been widely discussed. The triplet regimen bortezomib, lenalidomide, and dexamethasone (VRd) is recommended as the standard first-line treatment, and the addition of a fourth drug improves efficacy and survival. The value of ASCT remains undoubtful, even in the era of quadruplet induction. Dual-drug maintenance, including proteasome inhibitors and immunomodulatory drugs, overcomes unfavorable outcomes in high-risk patients. For relapsed/refractory myeloma (RRMM) patients, novel agents such as selinexor and venetoclax are superior. CAR-T cells and other cell-surface-targeted therapies also appear promising.
Collapse
Affiliation(s)
- Jianhua Du
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Junling Zhuang
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
17
|
Zhou S, Wang R. Targeted therapy of multiple myeloma. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2021; 2:465-480. [PMID: 36045700 PMCID: PMC9400694 DOI: 10.37349/etat.2021.00057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 09/28/2021] [Indexed: 11/19/2022] Open
Abstract
Multiple myeloma (MM) is a malignant proliferative disease of monoclonal plasma cells (PCs) and is characterized by uncontrolled proliferation of PCs and excessive production of specific types of immunoglobulins. Since PCs are terminally differentiated B cells, the World Health Organization (WHO) classifies MM as lymphoproliferative B-cell disease. The incidence of MM is 6-7 cases per 100,000 people in the world every year and the second most common cancer in the blood system. Due to the effects of drug resistance and malignant regeneration of MM cells in the microenvironment, all current treatment methods can prolong both overall and symptom-free survival rates of patients with MM but cannot cure MM. Both basic and clinical studies have proven that targeted therapy leads to a clear and significant prolongation of the survival of patients with MM, but when the disease recurs again, resistance to the previous treatment will occur. Therefore, the discovery of new targets and treatment methods plays a vital role in the treatment of MM. This article introduces and summarizes targeted MM therapy, potential new targets, and future precision medicine in MM.
Collapse
Affiliation(s)
- Shan Zhou
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Renxi Wang
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China
| |
Collapse
|
18
|
From Bench to Bedside: The Evolution of Genomics and Its Implications for the Current and Future Management of Multiple Myeloma. ACTA ACUST UNITED AC 2021; 27:213-221. [PMID: 34549910 DOI: 10.1097/ppo.0000000000000523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
ABSTRACT The summation of 20 years of biological studies and the comprehensive analysis of more than 1000 multiple myeloma genomes with data linked to clinical outcome has enabled an increased understanding of the pathogenesis of multiple myeloma in the context of normal plasma cell biology. This novel data have facilitated the identification of prognostic markers and targets suitable for therapeutic manipulation. The challenge moving forward is to translate this genetic and biological information into the clinic to improve patient care. This review discusses the key data required to achieve this and provides a framework within which to explore the use of response-adapted, biologically targeted, molecularly targeted, and risk-stratified therapeutic approaches to improve the management of patients with multiple myeloma.
Collapse
|
19
|
Wallington-Beddoe CT, Mynott RL. Prognostic and predictive biomarker developments in multiple myeloma. J Hematol Oncol 2021; 14:151. [PMID: 34556161 PMCID: PMC8461914 DOI: 10.1186/s13045-021-01162-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 09/07/2021] [Indexed: 12/24/2022] Open
Abstract
New approaches to stratify multiple myeloma patients based on prognosis and therapeutic decision-making, or prediction, are needed since patients are currently managed in a similar manner regardless of individual risk factors or disease characteristics. However, despite new and improved biomarkers for determining the prognosis of patients, there is currently insufficient information to utilise biomarkers to intensify, reduce or altogether change treatment, nor to target patient-specific biology in a so-called predictive manner. The ever-increasing number and complexity of drug classes to treat multiple myeloma have improved response rates and so clinically useful biomarkers will need to be relevant in the era of such novel therapies. Therefore, the field of multiple myeloma biomarker development is rapidly progressing, spurred on by new technologies and therapeutic approaches, and underpinned by a deeper understanding of tumour biology with individualised patient management the goal. In this review, we describe the main biomarker categories in multiple myeloma and relate these to diagnostic, prognostic and predictive applications. ![]()
Collapse
Affiliation(s)
- Craig T Wallington-Beddoe
- College of Medicine and Public Health, Level 4, Flinders Centre for Innovation in Cancer, Flinders University, Bedford Park, SA, 5042, Australia. .,Flinders Medical Centre, Bedford Park, SA, 5042, Australia. .,Centre for Cancer Biology, SA Pathology and The University of South Australia, Adelaide, SA, 5000, Australia. .,Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, 5000, Australia.
| | - Rachel L Mynott
- College of Medicine and Public Health, Level 4, Flinders Centre for Innovation in Cancer, Flinders University, Bedford Park, SA, 5042, Australia
| |
Collapse
|
20
|
Searching for treatments for non-G12C-KRAS mutant cancers. Br J Cancer 2021; 125:625-626. [PMID: 33859342 PMCID: PMC8405631 DOI: 10.1038/s41416-021-01357-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/23/2021] [Accepted: 03/11/2021] [Indexed: 02/03/2023] Open
Abstract
KRAS mutations drive a wide variety of cancers. Drugs targeting the protein product of KRASG12C mutations are currently being evaluated show preliminary efficacy in clinical trials. A clinical trial of VS-6766, a dual RAF-MEK inhibitor, has reported early single agent activity in non-G12C mutated KRAS driven cancers.
Collapse
|
21
|
Stoeckle JH, Davies FE, Williams L, Boyle EM, Morgan GJ. The evolving role and utility of off-label drug use in multiple myeloma. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2021; 2:355-373. [PMID: 36046752 PMCID: PMC9400732 DOI: 10.37349/etat.2021.00050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/16/2021] [Indexed: 12/03/2022] Open
Abstract
The treatment landscape for multiple myeloma (MM) has dramatically changed over the last three decades, moving from no US Food and Drug Administration approvals and two active drug classes to over 19 drug approvals and at least eight different active classes. The advances seen in MM therapy have relied on both a structured approach to obtaining new labels and cautious off-label drug use. Although there are country and regional differences in drug approval processes, many of the basic principles behind off-label drug use in MM can be summarized into four main categories: 1) use of a therapy prior to the current approval regulations; 2) widespread use of a therapy following the release of promising clinical trial results but prior to drug approval; 3) use of a cheap therapy supported by clinical safety and efficacy data but without commercial backing; and 4) niche therapies for small well-defined patient populations where large clinical trials with sufficient power may be difficult to perform. This review takes a historical approach to discuss how off-label drug use has helped to shape the current treatment approach for MM.
Collapse
Affiliation(s)
- James H Stoeckle
- Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA
| | - Faith E Davies
- Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA
| | - Louis Williams
- Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA
| | - Eileen M Boyle
- Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA
| | - Gareth J Morgan
- Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA
| |
Collapse
|
22
|
Zhou F, Wang D, Zhou N, Chen H, Shi H, Peng R, Wei W, Wu L. Circular RNA Protein Tyrosine Kinase 2 Promotes Cell Proliferation, Migration and Suppresses Apoptosis via Activating MicroRNA-638 Mediated MEK/ERK, WNT/β-Catenin Signaling Pathways in Multiple Myeloma. Front Oncol 2021; 11:648189. [PMID: 34395238 PMCID: PMC8355695 DOI: 10.3389/fonc.2021.648189] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 05/28/2021] [Indexed: 11/13/2022] Open
Abstract
Our previous study observed that circular RNA protein tyrosine kinase 2 (circ-PTK2) was upregulated and correlated with worse clinical features and unfavorable prognosis in multiple myeloma (MM) patients. Thus, this study aimed to further characterize the regulatory function of circ-PTK2 on cell malignant activities and its target microRNA-638 (miR-638) as well as downstream MEK/ERK, WNT/β-catenin signaling pathways in MM. The effect of circ-PTK2 on MM cell proliferation, apoptosis, migration, invasion and its potential target miRNAs was assessed by transfecting circ-PTK2 overexpression plasmids into U226 cells and circ-PTK2 knock-down plasmids into LP-1 cells. Furthermore, the interaction between circ-PTK2 and miR-638 mediated MEK/ERK and WNT/β-catenin signaling pathways was validated by rescue experiments. Circ-PTK2 was overexpressed in most MM cell lines compared to normal plasma cells. Overexpressing circ-PTK2 promoted proliferation and migration, inhibited apoptosis in U266 cells, but did not affect cell invasion; knocking down circ-PTK2 achieved opposite effect in LP-1 cells. Besides, circ-PTK2 reversely regulated miR-638 expression but not miR-4690, miR-6724, miR-6749 or miR-6775. The following luciferase reporter assay illustrated the direct bind of circ-PTK2 towards miR-638. In rescue experiments, overexpressing miR-638 suppressed proliferation, migration, while promoted apoptosis in both wild U266 cells and circ-PTK2-overexpressed U266 cells; meanwhile, overexpressing miR-638 also suppressed MEK/ERK and WNT/β-catenin pathways in both wild U266 cells and circ-PTK2-overexpressed U266 cells. Knocking down miR-638 achieved opposite effect in both wild LP-1 cells and circ-PTK2-knocked-down LP-1 cells. In conclusion, circ-PTK2 promotes cell proliferation, migration, suppresses cell apoptosis via miR-638 mediated MEK&ERK and WNT&β-catenin signaling pathways in MM.
Collapse
Affiliation(s)
- Fan Zhou
- Department of Hematology and Oncology, Shanghai Jing'an District Zhabei Central Hospital, Shanghai, China
| | - Dongjiao Wang
- Department of Hematology and Oncology, Shanghai Jing'an District Zhabei Central Hospital, Shanghai, China
| | - Nian Zhou
- Department of Hematology and Oncology, Shanghai Jing'an District Zhabei Central Hospital, Shanghai, China
| | - Haimin Chen
- Department of Hematology and Oncology, Shanghai Jing'an District Zhabei Central Hospital, Shanghai, China
| | - Haotian Shi
- Department of Hematology and Oncology, Shanghai Jing'an District Zhabei Central Hospital, Shanghai, China
| | - Rong Peng
- Department of Hematology and Oncology, Shanghai Jing'an District Zhabei Central Hospital, Shanghai, China
| | - Wei Wei
- Department of Hematology and Oncology, Shanghai Jing'an District Zhabei Central Hospital, Shanghai, China
| | - Lixia Wu
- Department of Hematology and Oncology, Shanghai Jing'an District Zhabei Central Hospital, Shanghai, China
| |
Collapse
|
23
|
Su CT, Ye JC. Emerging therapies for relapsed/refractory multiple myeloma: CAR-T and beyond. J Hematol Oncol 2021; 14:115. [PMID: 34301270 PMCID: PMC8299593 DOI: 10.1186/s13045-021-01109-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 06/09/2021] [Indexed: 02/08/2023] Open
Abstract
The pace of innovation of multiple myeloma therapy in recent years is remarkable with the advent of monoclonal antibodies and the approval of novel agents with new mechanisms of action. Emerging therapies are on the horizon for clinical approval with significant implications in extending patient survival and advancing closer to the goal of a cure, especially in areas of immunotherapy such as chimeric antigen receptor T cells, bispecific T cell engager antibodies, antibody drug conjugates, newer generations of monoclonal antibodies, and small molecule inhibitor and modulators. This review provides an update of current myeloma therapeutics in active preclinical and early clinical development and discusses the mechanism of action of several classes of novel therapeutics.
Collapse
Affiliation(s)
- Christopher T Su
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, 48109, USA
| | - J Christine Ye
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA.
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
24
|
Fukuda K, Otani S, Takeuchi S, Arai S, Nanjo S, Tanimoto A, Nishiyama A, Naoki K, Yano S. Trametinib overcomes KRAS-G12V-induced osimertinib resistance in a leptomeningeal carcinomatosis model of EGFR-mutant lung cancer. Cancer Sci 2021; 112:3784-3795. [PMID: 34145930 PMCID: PMC8409422 DOI: 10.1111/cas.15035] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 06/08/2021] [Accepted: 06/17/2021] [Indexed: 01/01/2023] Open
Abstract
Leptomeningeal carcinomatosis (LMC) occurs frequently in non-small cell lung cancer (NSCLC) harboring epidermal growth factor receptor (EGFR) mutations and is associated with acquired resistance to EGFR tyrosine kinase inhibitors (EGFR-TKIs). However, the mechanism by which LMC acquires resistance to osimertinib, a third-generation EGFR-TKI, is unclear. In this study, we elucidated the resistance mechanism and searched for a novel therapeutic strategy. We induced osimertinib resistance in a mouse model of LMC using an EGFR-mutant NSCLC cell line (PC9) via continuous oral osimertinib treatment and administration of established resistant cells and examined the resistance mechanism using next-generation sequencing. We detected the Kirsten rat sarcoma (KRAS)-G12V mutation in resistant cells, which retained the EGFR exon 19 deletion. Experiments involving KRAS knockdown in resistant cells and KRAS-G12V overexpression in parental cells revealed the involvement of KRAS-G12V in osimertinib resistance. Cotreatment with trametinib (a MEK inhibitor) and osimertinib resensitized the cells to osimertinib. Furthermore, in the mouse model of LMC with resistant cells, combined osimertinib and trametinib treatment successfully controlled LMC progression. These findings suggest a potential novel therapy against KRAS-G12V-harboring osimertinib-resistant LMC in EGFR-mutant NSCLC.
Collapse
Affiliation(s)
- Koji Fukuda
- Division of Medical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan.,Nano Life Science Institute, Kanazawa University, Kanazawa, Japan
| | - Sakiko Otani
- Division of Medical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan.,Department of Respiratory Medicine, Kitasato University School of Medicine, Kanagawa, Japan
| | - Shinji Takeuchi
- Division of Medical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan.,Nano Life Science Institute, Kanazawa University, Kanazawa, Japan
| | - Sachiko Arai
- Division of Medical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Shigeki Nanjo
- Division of Medical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan.,Department of Medicine, Division of Hematology-Oncology, University of California San Francisco, San Francisco, CA, USA
| | - Azusa Tanimoto
- Division of Medical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Akihiro Nishiyama
- Division of Medical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Katsuhiko Naoki
- Department of Respiratory Medicine, Kitasato University School of Medicine, Kanagawa, Japan
| | - Seiji Yano
- Division of Medical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan.,Nano Life Science Institute, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
25
|
John L, Krauth MT, Podar K, Raab MS. Pathway-Directed Therapy in Multiple Myeloma. Cancers (Basel) 2021; 13:1668. [PMID: 33916289 PMCID: PMC8036678 DOI: 10.3390/cancers13071668] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/21/2021] [Accepted: 03/29/2021] [Indexed: 12/12/2022] Open
Abstract
Multiple Myeloma (MM) is a malignant plasma cell disorder with an unmet medical need, in particular for relapsed and refractory patients. Molecules within deregulated signaling pathways, including the RAS/RAF/MEK/ERK, but also the PI3K/AKT-pathway belong to the most promising evolving therapeutic targets. Rationally derived compounds hold great therapeutic promise to target tumor-specific abnormalities rather than general MM-associated vulnerabilities. This paradigm is probably best depicted by targeting mutated BRAF: while well-tolerated, remarkable responses have been achieved in selected patients by inhibition of BRAFV600E alone or in combination with MEK. Targeting of AKT has also shown promising results in a subset of patients as monotherapy or to resensitize MM-cells to conventional treatment. Approaches to target transcription factors, convergence points of signaling cascades such as p53 or c-MYC, are emerging as yet another exciting strategy for pathway-directed therapy. Informed by our increasing knowledge on the impact of signaling pathways in MM pathophysiology, rationally derived Precision-Medicine trials are ongoing. Their results are likely to once more fundamentally change treatment strategies in MM.
Collapse
Affiliation(s)
- Lukas John
- Department of Internal Medicine V, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany;
- CCU Molecular Hematology/Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Maria Theresa Krauth
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria;
| | - Klaus Podar
- Department of Internal Medicine, Karl Landsteiner University of Health Sciences, Mitterweg 10, 3500 Krems an der Donau, Austria;
| | - Marc-Steffen Raab
- Department of Internal Medicine V, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany;
- CCU Molecular Hematology/Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| |
Collapse
|
26
|
Offidani M, Corvatta L, Morè S, Olivieri A. Novel Experimental Drugs for Treatment of Multiple Myeloma. J Exp Pharmacol 2021; 13:245-264. [PMID: 33727866 PMCID: PMC7955760 DOI: 10.2147/jep.s265288] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/23/2021] [Indexed: 12/21/2022] Open
Abstract
Multiple myeloma (MM) is the second most frequent hematological malignancy characterized by bone marrow aberrant plasma cells proliferation leading to a genetic complex and heterogeneous disease, with a median survival ranging from two to more than 10 years. By using new drugs such as proteasome inhibitors (PIs), immunomodulatory drugs (IMiDs), monoclonal antibodies (mAbs) in different combinations and high-dose therapy followed by auto-transplantation, there has been an amazing improvement in the outcome of this disease in recent years. Despite this, MM is still considered an incurable disease, characterized by remission periods alternated with relapse/progression episodes finally leading to resistant disease. In particular, patients who become refractory to PIs, IMiDs and mAbs have a very poor outcome. Moreover, to overcome resistant residual disease, a large combination of drugs will be increasingly used in early lines of therapy; this further reduces the therapeutic options at each relapse. This natural history means that MM always needs new drugs/strategies to overcome the incoming resistance. New combinations of naked mAbs are becoming the therapy of choice for patients refractory to lenalidomide and/or PI; conjugated mAbs will be useful in triple- and more-refractory patients; CAR-T cells and bispecific mAbs have shown relevant results in very advanced stages of disease. In this review, we reported the results of these new therapies and explored their potential applications. Personalized and precision medicine seem to be the new frontier of cancer treatment. Although no single or few factors have been identified as disease drivers in MM, recurrent gene mutations were recognized and specific compounds targeting these alterations were developed and studied. Therefore, we reviewed these targeted drugs to try to understand what the best therapeutic strategy in MM is.
Collapse
Affiliation(s)
- Massimo Offidani
- Clinica di Ematologia Azienda Ospedaliero-Universitaria Ospedali Riuniti di Ancona, Ancona, Italy
| | | | - Sonia Morè
- Clinica di Ematologia Azienda Ospedaliero-Universitaria Ospedali Riuniti di Ancona, Ancona, Italy
| | - Attilio Olivieri
- Clinica di Ematologia Azienda Ospedaliero-Universitaria Ospedali Riuniti di Ancona, Ancona, Italy
| |
Collapse
|
27
|
Theodorakakou F, Dimopoulos MA, Kastritis E. Mutation-dependent treatment approaches for patients with complex multiple myeloma. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2021. [DOI: 10.1080/23808993.2021.1893605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Foteini Theodorakakou
- Plasma Cell Dyscrasia Unit, Department of Clinical Therapeutics, National and Kapodistrian University of Athens, Athens, Greece
| | - Meletios A. Dimopoulos
- Plasma Cell Dyscrasia Unit, Department of Clinical Therapeutics, National and Kapodistrian University of Athens, Athens, Greece
| | - Efstathios Kastritis
- Plasma Cell Dyscrasia Unit, Department of Clinical Therapeutics, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
28
|
Wen Z, Rajagopalan A, Flietner ED, Yun G, Chesi M, Furumo Q, Burns RT, Papadas A, Ranheim EA, Pagenkopf AC, Morrow ZT, Finn R, Zhou Y, Li S, You X, Jensen J, Yu M, Cicala A, Menting J, Mitsiades CS, Callander NS, Bergsagel PL, Wang D, Asimakopoulos F, Zhang J. Expression of NrasQ61R and MYC transgene in germinal center B cells induces a highly malignant multiple myeloma in mice. Blood 2021; 137:61-74. [PMID: 32640012 PMCID: PMC7808014 DOI: 10.1182/blood.2020007156] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 06/26/2020] [Indexed: 02/08/2023] Open
Abstract
NRAS Q61 mutations are prevalent in advanced/relapsed multiple myeloma (MM) and correlate with poor patient outcomes. Thus, we generated a novel MM model by conditionally activating expression of endogenous NrasQ61R and an MYC transgene in germinal center (GC) B cells (VQ mice). VQ mice developed a highly malignant MM characterized by a high proliferation index, hyperactivation of extracellular signal-regulated kinase and AKT signaling, impaired hematopoiesis, widespread extramedullary disease, bone lesions, kidney abnormalities, preserved programmed cell death protein 1 and T-cell immunoreceptor with immunoglobulin and immunoreceptor tyrosine-based inhibition motif domain immune-checkpoint pathways, and expression of human high-risk MM gene signatures. VQ MM mice recapitulate most of the biological and clinical features of human advanced/high-risk MM. These MM phenotypes are serially transplantable in syngeneic recipients. Two MM cell lines were also derived to facilitate future genetic manipulations. Combination therapies based on MEK inhibition significantly prolonged the survival of VQ mice with advanced-stage MM. Our study provides a strong rationale to develop MEK inhibition-based therapies for treating advanced/relapsed MM.
Collapse
Affiliation(s)
- Zhi Wen
- McArdle Laboratory for Cancer Research and
| | | | - Evan D Flietner
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI
| | - Grant Yun
- McArdle Laboratory for Cancer Research and
| | - Marta Chesi
- Department of Medicine, Mayo Clinic Arizona, Scottsdale, AZ
| | | | | | - Athanasios Papadas
- Division of Hematology/Oncology, Department of Medicine, UW Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, WI
| | - Erik A Ranheim
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI
| | - Adam C Pagenkopf
- Division of Hematology/Oncology, Department of Medicine, UW Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, WI
| | - Zachary T Morrow
- Division of Hematology/Oncology, Department of Medicine, UW Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, WI
| | | | - Yun Zhou
- McArdle Laboratory for Cancer Research and
| | - Shuyi Li
- McArdle Laboratory for Cancer Research and
| | - Xiaona You
- McArdle Laboratory for Cancer Research and
| | - Jeffrey Jensen
- Division of Hematology/Oncology, Department of Medicine, UW Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, WI
| | - Mei Yu
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI; and
| | - Alexander Cicala
- Division of Hematology/Oncology, Department of Medicine, UW Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, WI
| | - James Menting
- Division of Hematology/Oncology, Department of Medicine, UW Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, WI
| | - Constantine S Mitsiades
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Natalie S Callander
- Division of Hematology/Oncology, Department of Medicine, UW Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, WI
| | | | - Demin Wang
- Blood Research Institute, Versiti, Milwaukee, WI
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI; and
| | - Fotis Asimakopoulos
- Division of Hematology/Oncology, Department of Medicine, UW Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, WI
| | - Jing Zhang
- McArdle Laboratory for Cancer Research and
| |
Collapse
|
29
|
Da Vià MC, Ziccheddu B, Maeda A, Bagnoli F, Perrone G, Bolli N. A Journey Through Myeloma Evolution: From the Normal Plasma Cell to Disease Complexity. Hemasphere 2020; 4:e502. [PMID: 33283171 PMCID: PMC7710229 DOI: 10.1097/hs9.0000000000000502] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 10/19/2020] [Indexed: 02/06/2023] Open
Abstract
The knowledge of cancer origin and the subsequent tracking of disease evolution represent unmet needs that will soon be within clinical reach. This will provide the opportunity to improve patient's stratification and to personalize treatments based on cancer biology along its life history. In this review, we focus on the molecular pathogenesis of multiple myeloma (MM), a hematologic malignancy with a well-known multi-stage disease course, where such approach can sooner translate into a clinical benefit. We describe novel insights into modes and timing of disease initiation. We dissect the biology of the preclinical and pre-malignant phases, elucidating how knowledge of the genomics of the disease and the composition of the microenvironment allow stratification of patients based on risk of disease progression. Then, we explore cell-intrinsic and cell-extrinsic drivers of MM evolution to symptomatic disease. Finally, we discuss how this may relate to the development of refractory disease after treatment. By integrating an evolutionary view of myeloma biology with the recent acquisitions on its clonal heterogeneity, we envision a way to drive the clinical management of the disease based on its detailed biological features more than surrogates of disease burden.
Collapse
Affiliation(s)
- Matteo C. Da Vià
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Bachisio Ziccheddu
- Department of Molecular Biotechnologies and Health Sciences, University of Turin, Turin, Italy
| | - Akihiro Maeda
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Filippo Bagnoli
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Department of Clinical Oncology and Hematology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Giulia Perrone
- Department of Clinical Oncology and Hematology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Niccolò Bolli
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Department of Clinical Oncology and Hematology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| |
Collapse
|
30
|
Risk and Response-Adapted Treatment in Multiple Myeloma. Cancers (Basel) 2020; 12:cancers12123497. [PMID: 33255368 PMCID: PMC7760158 DOI: 10.3390/cancers12123497] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/19/2020] [Accepted: 11/22/2020] [Indexed: 12/28/2022] Open
Abstract
Simple Summary Therapeutic strategies in multiple myeloma have been adapted only to age and comorbidities for a long time. Given the currently available therapeutic and technologic arsenal, the time may have come to refine this adaptation. First, high-risk patients should benefit from the most intensive and efficient combinations from diagnosis. Here, we review these different strategies and how to define and identify high-risk myeloma patients in current clinical practice. In addition, the advent of technologies detecting minimal residual disease gives us this opportunity to define the quality of response to treatment with an unpreceded sensitivity and adapt treatment accordingly. Finally, even if molecular targeting is still nascent in myeloma, some molecular features are interesting to detect at relapse to determine optimal salvage treatments. Abstract Myeloma therapeutic strategies have been adapted to patients’ age and comorbidities for a long time. However, although cytogenetics and clinical presentations (plasmablastic cytology; extramedullary disease) are major prognostic factors, until recently, all patients received the same treatment whatever their initial risk. No strong evidence allows us to use a personalized treatment according to one cytogenetic abnormality in newly diagnosed myeloma. Retrospective studies showed a benefit of a double autologous transplant in high-risk cytogenetics according to the International Myeloma Working Group definition (t(4;14), t(14;16) or del(17p)). Moreover, this definition has to be updated since other independent abnormalities, namely gain 1q, del(1p32), and trisomies 5 or 21, as well as TP53 mutations, are also prognostic. Another very strong predictive tool is the response to treatment assessed by the evaluation of minimal residual disease (MRD). We are convinced that the time has come to use it to adapt the strategy to a dynamic risk. Many trials are ongoing to answer many questions: when and how should we adapt the therapy, its intensity and duration. Nevertheless, we also have to take into account the clinical outcome for one patient, especially adverse events affecting his or her quality of life and his or her preferences for continuous/fixed duration treatment.
Collapse
|
31
|
Guo C, Chénard-Poirier M, Roda D, de Miguel M, Harris SJ, Candilejo IM, Sriskandarajah P, Xu W, Scaranti M, Constantinidou A, King J, Parmar M, Turner AJ, Carreira S, Riisnaes R, Finneran L, Hall E, Ishikawa Y, Nakai K, Tunariu N, Basu B, Kaiser M, Lopez JS, Minchom A, de Bono JS, Banerji U. Intermittent schedules of the oral RAF-MEK inhibitor CH5126766/VS-6766 in patients with RAS/RAF-mutant solid tumours and multiple myeloma: a single-centre, open-label, phase 1 dose-escalation and basket dose-expansion study. Lancet Oncol 2020; 21:1478-1488. [PMID: 33128873 DOI: 10.1016/s1470-2045(20)30464-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 07/15/2020] [Accepted: 07/15/2020] [Indexed: 01/12/2023]
Abstract
BACKGROUND CH5126766 (also known as VS-6766, and previously named RO5126766), a novel MEK-pan-RAF inhibitor, has shown antitumour activity across various solid tumours; however, its initial development was limited by toxicity. We aimed to investigate the safety and toxicity profile of intermittent dosing schedules of CH5126766, and the antitumour activity of this drug in patients with solid tumours and multiple myeloma harbouring RAS-RAF-MEK pathway mutations. METHODS We did a single-centre, open-label, phase 1 dose-escalation and basket dose-expansion study at the Royal Marsden National Health Service Foundation Trust (London, UK). Patients were eligible for the study if they were aged 18 years or older, had cancers that were refractory to conventional treatment or for which no conventional therapy existed, and if they had a WHO performance status score of 0 or 1. For the dose-escalation phase, eligible patients had histologically or cytologically confirmed advanced or metastatic solid tumours. For the basket dose-expansion phase, eligible patients had advanced or metastatic solid tumours or multiple myeloma harbouring RAS-RAF-MEK pathway mutations. During the dose-escalation phase, we evaluated three intermittent oral schedules (28-day cycles) in patients with solid tumours: (1) 4·0 mg or 3·2 mg CH5126766 three times per week; (2) 4·0 mg CH5126766 twice per week; and (3) toxicity-guided dose interruption schedule, in which treatment at the recommended phase 2 dose (4·0 mg CH5126766 twice per week) was de-escalated to 3 weeks on followed by 1 week off if patients had prespecified toxic effects (grade 2 or worse diarrhoea, rash, or creatinine phosphokinase elevation). In the basket dose-expansion phase, we evaluated antitumour activity at the recommended phase 2 dose, determined from the dose-escalation phase, in biomarker-selected patients. The primary endpoints were the recommended phase 2 dose at which no more than one out of six patients had a treatment-related dose-limiting toxicity, and the safety and toxicity profile of each dosing schedule. The key secondary endpoint was investigator-assessed response rate in the dose-expansion phase. Patients who received at least one dose of the study drug were evaluable for safety and patients who received one cycle of the study drug and underwent baseline disease assessment were evaluable for response. This trial is registered with ClinicalTrials.gov, NCT02407509. FINDINGS Between June 5, 2013, and Jan 10, 2019, 58 eligible patients were enrolled to the study: 29 patients with solid tumours were included in the dose-escalation cohort and 29 patients with solid tumours or multiple myeloma were included in the basket dose-expansion cohort (12 non-small-cell lung cancer, five gynaecological malignancy, four colorectal cancer, one melanoma, and seven multiple myeloma). Median follow-up at the time of data cutoff was 2·3 months (IQR 1·6-3·5). Dose-limiting toxicities included grade 3 bilateral retinal pigment epithelial detachment in one patient who received 4·0 mg CH5126766 three times per week, and grade 3 rash (in two patients) and grade 3 creatinine phosphokinase elevation (in one patient) in those who received 3·2 mg CH5126766 three times per week. 4·0 mg CH5126766 twice per week (on Monday and Thursday or Tuesday and Friday) was established as the recommended phase 2 dose. The most common grade 3-4 treatment-related adverse events were rash (11 [19%] patients), creatinine phosphokinase elevation (six [11%]), hypoalbuminaemia (six [11%]), and fatigue (four [7%]). Five (9%) patients had serious treatment-related adverse events. There were no treatment-related deaths. Eight (14%) of 57 patients died during the trial due to disease progression. Seven (27% [95% CI 11·6-47·8]) of 26 response-evaluable patients in the basket expansion achieved objective responses. INTERPRETATION To our knowledge, this is the first study to show that highly intermittent schedules of a RAF-MEK inhibitor has antitumour activity across various cancers with RAF-RAS-MEK pathway mutations, and that this inhibitor is tolerable. CH5126766 used as a monotherapy and in combination regimens warrants further evaluation. FUNDING Chugai Pharmaceutical.
Collapse
Affiliation(s)
- Christina Guo
- Drug Development Unit, The Institute of Cancer Research and the Royal Marsden NHS Foundation Trust, London, UK
| | - Maxime Chénard-Poirier
- Drug Development Unit, The Institute of Cancer Research and the Royal Marsden NHS Foundation Trust, London, UK
| | - Desamparados Roda
- Drug Development Unit, The Institute of Cancer Research and the Royal Marsden NHS Foundation Trust, London, UK
| | - Maria de Miguel
- Drug Development Unit, The Institute of Cancer Research and the Royal Marsden NHS Foundation Trust, London, UK
| | - Samuel J Harris
- Drug Development Unit, The Institute of Cancer Research and the Royal Marsden NHS Foundation Trust, London, UK
| | - Irene Moreno Candilejo
- Drug Development Unit, The Institute of Cancer Research and the Royal Marsden NHS Foundation Trust, London, UK
| | - Priya Sriskandarajah
- Division of Cancer Therapeutics, The Institute of Cancer Research and the Royal Marsden NHS Foundation Trust, London, UK
| | - Wen Xu
- Drug Development Unit, The Institute of Cancer Research and the Royal Marsden NHS Foundation Trust, London, UK
| | - Mariana Scaranti
- Drug Development Unit, The Institute of Cancer Research and the Royal Marsden NHS Foundation Trust, London, UK
| | - Anastasia Constantinidou
- Drug Development Unit, The Institute of Cancer Research and the Royal Marsden NHS Foundation Trust, London, UK
| | - Jenny King
- Drug Development Unit, The Institute of Cancer Research and the Royal Marsden NHS Foundation Trust, London, UK
| | - Mona Parmar
- Drug Development Unit, The Institute of Cancer Research and the Royal Marsden NHS Foundation Trust, London, UK
| | - Alison J Turner
- Drug Development Unit, The Institute of Cancer Research and the Royal Marsden NHS Foundation Trust, London, UK
| | | | - Ruth Riisnaes
- Cancer Biomarkers, The Institute of Cancer Research, London, UK
| | - Laura Finneran
- Clinical Trials and Statistics Unit, The Institute of Cancer Research, London, UK
| | - Emma Hall
- Clinical Trials and Statistics Unit, The Institute of Cancer Research, London, UK
| | - Yuji Ishikawa
- Translational Research Division, Chugai Pharmaceutical, Tokyo, Japan
| | - Kiyohiko Nakai
- Translational Research Division, Chugai Pharmaceutical, Tokyo, Japan
| | - Nina Tunariu
- Drug Development Unit, The Institute of Cancer Research and the Royal Marsden NHS Foundation Trust, London, UK
| | - Bristi Basu
- Department of Oncology, University of Cambridge and Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Martin Kaiser
- Division of Molecular Pathology and Myeloma Molecular Therapy Group, The Institute of Cancer Research and the Royal Marsden NHS Foundation Trust, London, UK
| | - Juanita Suzanne Lopez
- Drug Development Unit, The Institute of Cancer Research and the Royal Marsden NHS Foundation Trust, London, UK
| | - Anna Minchom
- Drug Development Unit, The Institute of Cancer Research and the Royal Marsden NHS Foundation Trust, London, UK
| | - Johann S de Bono
- Drug Development Unit, The Institute of Cancer Research and the Royal Marsden NHS Foundation Trust, London, UK
| | - Udai Banerji
- Drug Development Unit, The Institute of Cancer Research and the Royal Marsden NHS Foundation Trust, London, UK.
| |
Collapse
|
32
|
Combination of Dabrafenib and Trametinib for the Treatment of Relapsed and Refractory Multiple Myeloma Harboring BRAF V600E Mutation. Case Rep Hematol 2020; 2020:8894031. [PMID: 33123389 PMCID: PMC7584966 DOI: 10.1155/2020/8894031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 09/13/2020] [Accepted: 09/24/2020] [Indexed: 12/19/2022] Open
Abstract
Multiple myeloma (MM) is an incurable plasma cell neoplasia characterized by relapsed and/or refractory (R/R) disease course, which poses a major therapeutic challenge. New therapies, including BRAF V600E mutation targeting, may become a new treatment option for R/R MM. In combination with mitogen-activated protein kinase inhibitors (MEKi), BRAF inhibitors (BRAFi) could provide better tailored clinical management, although experience in this field is lacking. To this date, there is only one case describing R/R MM treatment with BRAFi vemurafenib and MEKi cobimetinib. This is the first case presenting a R/R MM patient treated with BRAFi dabrafenib and MEKi trametinib.
Collapse
|
33
|
Zhong W, Zhang X, Zhao M, Wu J, Lin D. Advancements in nanotechnology for the diagnosis and treatment of multiple myeloma. Biomater Sci 2020; 8:4692-4711. [PMID: 32779645 DOI: 10.1039/d0bm00772b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Multiple myeloma (MM), known as a tumor of plasma cells, is not only refractory but also has a high relapse rate, and is the second-most common hematologic tumor after lymphoma. It is often accompanied by multiple osteolytic damage, hypercalcemia, anemia, and renal insufficiency. In terms of diagnosis, conventional detection methods have many limitations, such as it is invasive and time-consuming and has low accuracy. Measures to change these limitations are urgently needed. At the therapeutic level, although the survival of MM continues to prolong with the advent of new drugs, MM remains incurable and has a high recurrence rate. With the development of nanotechnology, nanomedicine has become a powerful way to improve the current diagnosis and treatment of MM. In this review, the research progress and breakthroughs of nanomedicine in MM will be presented. Meanwhile, both superiorities and challenges of nanomedicine were discussed. As a new idea for the diagnosis and treatments of MM, nanomedicine will play a very important role in the research field of MM.
Collapse
Affiliation(s)
- Wenhao Zhong
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, P.R. China.
| | | | | | | | | |
Collapse
|
34
|
Activating KRAS, NRAS, and BRAF mutants enhance proteasome capacity and reduce endoplasmic reticulum stress in multiple myeloma. Proc Natl Acad Sci U S A 2020; 117:20004-20014. [PMID: 32747568 DOI: 10.1073/pnas.2005052117] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
KRAS, NRAS, and BRAF mutations which activate p44/42 mitogen-activated protein kinase (MAPK) signaling are found in half of myeloma patients and contribute to proteasome inhibitor (PI) resistance, but the underlying mechanisms are not fully understood. We established myeloma cell lines expressing wild-type (WT), constitutively active (CA) (G12V/G13D/Q61H), or dominant-negative (DN) (S17N)-KRAS and -NRAS, or BRAF-V600E. Cells expressing CA mutants showed increased proteasome maturation protein (POMP) and nuclear factor (erythroid-derived 2)-like 2 (NRF2) expression. This correlated with an increase in catalytically active proteasome subunit β (PSMB)-8, PSMB9, and PSMB10, which occurred in an ETS transcription factor-dependent manner. Proteasome chymotrypsin-like, trypsin-like, and caspase-like activities were increased, and this enhanced capacity reduced PI sensitivity, while DN-KRAS and DN-NRAS did the opposite. Pharmacologic RAF or MAPK kinase (MEK) inhibitors decreased proteasome activity, and sensitized myeloma cells to PIs. CA-KRAS, CA-NRAS, and CA-BRAF down-regulated expression of endoplasmic reticulum (ER) stress proteins, and reduced unfolded protein response activation, while DN mutations increased both. Finally, a bortezomib (BTZ)/MEK inhibitor combination showed enhanced activity in vivo specifically in CA-NRAS models. Taken together, the data support the hypothesis that activating MAPK pathway mutations enhance PI resistance by increasing proteasome capacity, and provide a rationale for targeting such patients with PI/RAF or PI/MEK inhibitor combinations. Moreover, they argue these mutations promote myeloma survival by reducing cellular stress, thereby distancing plasma cells from the apoptotic threshold, potentially explaining their high frequency in myeloma.
Collapse
|
35
|
Yang L, Wu B, Wu Z, Xu Y, Wang P, Li M, Xu R, Liang Y. CAMKIIγ is a targetable driver of multiple myeloma through CaMKIIγ/ Stat3 axis. Aging (Albany NY) 2020; 12:13668-13683. [PMID: 32658867 PMCID: PMC7377902 DOI: 10.18632/aging.103490] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 04/28/2020] [Indexed: 11/25/2022]
Abstract
Aberrant activation of CAMKIIγ has been linked to leukemia and T-cell lymphoma, but not multiple myeloma (MM). The purpose of this study was to explore the role of CaMKIIγ in the pathogenesis and therapy of MM. In this study, we found that CaMKIIγ was aberrantly activated in human MM and its expression level was positively correlated with malignant progression and poor prognosis. Ectopic expression of CaMKIIγ promoted cell growth, colony formation, cell cycle progress and inhibited apoptosis of MM cell lines, whereas, knockdown of CAMKIIγ expression suppressed MM cell growth in vitro and in vivo. Mechanically, we observed that CaMKIIγ overexpression upregulated p-ERK and p-Stat3 levels and suppression of CaMKIIγ had opposite effects. CaMKIIγ is frequently dysregulated in MM and plays a critical role in maintaining MM cell growth through upregulating STAT3 signaling pathway. Furthermore, our preclinical studies suggest that CaMKIIγ is a potential therapeutic target in MM, and could be intervened pharmacologically by small-molecule berbamine analogues.
Collapse
Affiliation(s)
- Linlin Yang
- Department of Hematology, Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310000, Zhejiang, China.,Cancer Institute of Zhejiang University, Hangzhou 310000, Zhejiang, China
| | - Bowen Wu
- Department of Hematology, Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310000, Zhejiang, China.,Cancer Institute of Zhejiang University, Hangzhou 310000, Zhejiang, China
| | - Zhaoxing Wu
- Department of Hematology, Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310000, Zhejiang, China.,Cancer Institute of Zhejiang University, Hangzhou 310000, Zhejiang, China
| | - Ying Xu
- Department of Hematology, Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310000, Zhejiang, China.,Cancer Institute of Zhejiang University, Hangzhou 310000, Zhejiang, China
| | - Ping Wang
- Department of Hematology, Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310000, Zhejiang, China.,Cancer Institute of Zhejiang University, Hangzhou 310000, Zhejiang, China
| | - Mengyuan Li
- Department of Hematology, Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310000, Zhejiang, China.,Cancer Institute of Zhejiang University, Hangzhou 310000, Zhejiang, China
| | - Rongzhen Xu
- Department of Hematology, Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310000, Zhejiang, China.,Cancer Institute of Zhejiang University, Hangzhou 310000, Zhejiang, China
| | - Yun Liang
- Department of Hematology, Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310000, Zhejiang, China
| |
Collapse
|
36
|
Flach J, Shumilov E, Joncourt R, Porret N, Novak U, Pabst T, Bacher U. Current concepts and future directions for hemato-oncologic diagnostics. Crit Rev Oncol Hematol 2020; 151:102977. [DOI: 10.1016/j.critrevonc.2020.102977] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 03/22/2020] [Accepted: 04/28/2020] [Indexed: 02/07/2023] Open
|
37
|
"Direct to Drug" screening as a precision medicine tool in multiple myeloma. Blood Cancer J 2020; 10:54. [PMID: 32393731 PMCID: PMC7214452 DOI: 10.1038/s41408-020-0320-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 04/03/2020] [Accepted: 04/20/2020] [Indexed: 12/15/2022] Open
Abstract
Seventy-six FDA-approved oncology drugs and emerging therapeutics were evaluated in 25 multiple myeloma (MM) and 15 non-Hodgkin’s lymphoma cell lines and in 113 primary MM samples. Ex vivo drug sensitivities were mined for associations with clinical phenotype, cytogenetic, genetic mutation, and transcriptional profiles. In primary MM samples, proteasome inhibitors, dinaciclib, selinexor, venetoclax, auranofin, and histone deacetylating agents had the broadest cytotoxicity. Of interest, newly diagnosed patient samples were globally less sensitive especially to bromodomain inhibitors, inhibitors of receptor tyrosine kinases or non-receptor kinases, and DNA synthesis inhibitors. Clustering demonstrated six broad groupings of drug sensitivity linked with genomic biomarkers and clinical outcomes. For example, our findings mimic clinical observations of increased venetoclax responsiveness in t(11;14) patients but also identify an increased sensitivity profile in untreated patients, standard genetic risk, low plasma cell S-Phase, and in the absence of Gain(1q) and t(4;14). In contrast, increased ex vivo responsiveness to selinexor was associated with biomarkers of poor prognosis and later relapse patients. This “direct to drug” screening resource, paired with functional genomics, has the potential to successfully direct appropriate individualized therapeutic approaches in MM and to enrich clinical trials for likely responders.
Collapse
|
38
|
Sriskandarajah P, De Haven Brandon A, MacLeod K, Carragher NO, Kirkin V, Kaiser M, Whittaker SR. Combined targeting of MEK and the glucocorticoid receptor for the treatment of RAS-mutant multiple myeloma. BMC Cancer 2020; 20:269. [PMID: 32228485 PMCID: PMC7106683 DOI: 10.1186/s12885-020-06735-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 03/11/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Multiple myeloma (MM) remains incurable despite recent therapeutic advances. RAS mutations are frequently associated with relapsed/refractory disease. Efforts to target the mitogen-activated protein kinase (MAPK) pathway with the MEK inhibitor, trametinib (Tra) have been limited by toxicities and the development of resistance. Dexamethasone (Dex) is a corticosteroid commonly used in clinical practice, to enhance efficacy of anti-myeloma therapy. Therefore, we hypothesised that the combination of Tra and Dex would yield synergistic activity in RAS-mutant MM. METHODS The response of human MM cell lines to drug treatment was analysed using cell proliferation assays, Western blotting, Annexin V and propidium iodide staining by flow cytometry and reverse phase protein arrays. The efficacy of trametinib and dexamethasone treatment in the MM.1S xenograft model was assessed by measuring tumor volume over time. RESULTS The Tra/Dex combination demonstrated synergistic cytotoxicity in KRASG12A mutant lines MM.1S and RPMI-8226. The induction of apoptosis was associated with decreased MCL-1 expression and increased BIM expression. Reverse phase proteomic arrays revealed suppression of FAK, PYK2, FLT3, NDRG1 and 4EBP1 phosphorylation with the Tra/Dex combination. Notably, NDRG1 expression was associated with the synergistic response to Tra/Dex. MM cells were sensitive to PDK1 inhibition and IGF1-induced signalling partially protected from Tra/Dex treatment, highlighting the importance of this pathway. In the MM.1S tumor xenograft model, only the combination of Tra/Dex resulted in a significant inhibition of tumor growth. CONCLUSIONS Overall Tra/Dex demonstrates antiproliferative activity in RAS-mutant MM cell lines associated with suppression of pro-survival PDK1 signalling and engagement of apoptotic pathways. Our data support further investigation of this combination in RAS-mutant MM.
Collapse
Affiliation(s)
- Priya Sriskandarajah
- Division of Cancer Therapeutics, The Institute of Cancer Research, London, SW7 3RP, UK.,The Royal Marsden NHS Foundation Trust, London, UK
| | | | - Kenneth MacLeod
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh, UK
| | - Neil O Carragher
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh, UK
| | - Vladimir Kirkin
- Division of Cancer Therapeutics, The Institute of Cancer Research, London, SW7 3RP, UK
| | - Martin Kaiser
- The Royal Marsden NHS Foundation Trust, London, UK.,Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| | - Steven R Whittaker
- Division of Cancer Therapeutics, The Institute of Cancer Research, London, SW7 3RP, UK.
| |
Collapse
|
39
|
Li Q, Huang HJ, Ma J, Wang Y, Cao Z, Karlin-Neumann G, Janku F, Liu Z. RAS/RAF mutations in tumor samples and cell-free DNA from plasma and bone marrow aspirates in multiple myeloma patients. J Cancer 2020; 11:3543-3550. [PMID: 32284750 PMCID: PMC7150446 DOI: 10.7150/jca.43729] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 02/05/2020] [Indexed: 11/05/2022] Open
Abstract
Purpose: To evaluate the detection of gene mutations in bone marrow biopsy and circulating free DNA (cfDNA) from plasma in multiple myeloma (MM). Experimental design: We used cell-free DNA from plasma and bone marrow to test BRAF V600, KRAS G12/G13, NRAS G12/G13 and NRAS Q61 mutations using multiplex assays for droplet digital PCR (ddPCR), and evaluated results with clinical outcomes. Results: We found of 83 patients, the detectable mutation frequencies for the above four genes were 4 (5%), 13 (16%), 3 (4%) and 14 (17%) in bone marrow, respectively. The median variant allelic frequency (VAF) in most mutations were 1.595%. In 17 paired cfDNA samples, the detectable mutation frequencies for the above four genes were 5 (30%), 1 (6%), 0 (0%) and 3 (18%) respectively, and the median VAF rate was 2.9%. Agreement between bone marrow DNA and plasma cfDNA were 76%, 100%, 100% and 100% compared to the tissue detections, respectively. In 17 patients with paired bone marrow and plasma samples, the above four mutations were 3 (18%), 1 (6%), 0 (0%) and 2 (12%) respectively, with the agreement rates of 88%, 88%, 100% and 100% compared to tissue detections. Of 57 patients with available outcome data, high mutation VAF had a shorter median survival than patients with low mutation VAF (P=0.0322). Conclusions: Oncogenic mutations in BRAF, KRAS and NRAS genes can be detected in the bone marrow and plasma cfDNA with ddPCR in patients with MM patients and high VAF is associated with short survival.
Collapse
Affiliation(s)
- Qian Li
- Tianjin Medical University Cancer Institute and Hospital; National Clinical Research Center for Cancer; Tianjin Key Laboratory of Cancer Prevention and Therapy; Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Helen J Huang
- Department of Investigational Cancer Therapeutics (Phase I Clinical Trials Program), the University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jing Ma
- Tianjin Medical University Cancer Institute and Hospital; National Clinical Research Center for Cancer; Tianjin Key Laboratory of Cancer Prevention and Therapy; Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Yafei Wang
- Tianjin Medical University Cancer Institute and Hospital; National Clinical Research Center for Cancer; Tianjin Key Laboratory of Cancer Prevention and Therapy; Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Zeng Cao
- Tianjin Medical University Cancer Institute and Hospital; National Clinical Research Center for Cancer; Tianjin Key Laboratory of Cancer Prevention and Therapy; Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | | | - Filip Janku
- Department of Investigational Cancer Therapeutics (Phase I Clinical Trials Program), the University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Zhiqiang Liu
- Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases, School of Basic Medical Science, Tianjin Medical University; Department of Physiology and Pathophysiology, School of Basic Medical Science, Tianjin Medical University, Heping, Tianjin, 300070, China
| |
Collapse
|
40
|
Abstract
The therapeutic landscape of multiple myeloma (MM) has dramatically changed in the last 15 years with the advent of immunomodulatory drugs and proteasome inhibitors. However, majority of MM patients relapse, and new therapies are needed. Various agents with diverse mechanisms of action and distinct targets, including cellular therapies, monoclonal antibodies, and small molecules, are currently under investigation. In this review, we report novel drugs recently approved or under advanced investigation that will likely be incorporated in the future as new standard for MM treatment, focusing on their mechanisms of action, cellular targets, and stage of development.
Collapse
Affiliation(s)
- Raphaël Szalat
- Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
- Section of Hematology and Oncology, Boston Medical Center, Boston, USA
| | - Nikhil C. Munshi
- Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
- VA Boston Healthcare System, Boston, MA
| |
Collapse
|
41
|
Abstract
Although therapeutic strategies have been adapted to age and comorbidities of myeloma patients for a long time, all patients currently experiment the same treatment whatever their genomic risk. However, high-risk patients should benefit right now from the most efficient drugs combinations. Herein, we review and discuss how to optimally define risk to adapt treatment and why a modern multiparametric definition of genomic risk is urgently needed. Minimal residual disease status will probably also take a growing place in patient's management, including in treatment adaptation. We also discuss how next-generation sequencing will definitively represent an essential tool to manage risk-based therapeutic strategies. Finally, despite an explosive knowledge of myeloma molecular landscape, targeted therapy perspectives remain poor, with only few exceptions.
Collapse
|
42
|
Abstract
There has been a paradigm shift in the treatment of myeloma triggered by intense exploration of the disease biology to understand the basis of disease development and progression and the evolution of newly diagnosed myeloma to a multidrug refractory state that is associated with poor survival. These studies have in turn informed us of potential therapeutic strategies in our ongoing effort to cure this disease, or at a minimum convert it into a chronic disease. Given the clonal evolution that leads to development of drug resistance and treatment failure, identification of specific genetic abnormalities and approaches to target these abnormalities have been on the top of the list for some time. The more recent studies examining the genome of the myeloma cell have led to development of umbrella trials that assigns patients to specific targeted agents based on the genomic abnormality. In addition, other approaches to targeting myeloma such as monoclonal antibodies are already in the clinic and are being used in all stages of disease, typically in combination with other therapies. As the therapeutic strategy evolves and we have a larger arsenal of targeted agents, we will be able to use judicious combination of drugs based on specific tumor characteristics assessed through genomic interrogation or other biologic targets. Such targeted approaches are likely to evolve to become the mainstay of myeloma therapies in the future.
Collapse
|
43
|
Bolli N, Genuardi E, Ziccheddu B, Martello M, Oliva S, Terragna C. Next-Generation Sequencing for Clinical Management of Multiple Myeloma: Ready for Prime Time? Front Oncol 2020; 10:189. [PMID: 32181154 PMCID: PMC7057289 DOI: 10.3389/fonc.2020.00189] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 02/04/2020] [Indexed: 12/22/2022] Open
Abstract
Personalized treatment is an attractive strategy that promises increased efficacy with reduced side effects in cancer. The feasibility of such an approach has been greatly boosted by next-generation sequencing (NGS) techniques, which can return detailed information on the genome and on the transcriptome of each patient's tumor, thus highlighting biomarkers of response or druggable targets that may differ from case to case. However, while the number of cancers sequenced is growing exponentially, much fewer cases are amenable to a molecularly-guided treatment outside of clinical trials to date. In multiple myeloma, genomic analysis shows a variety of gene mutations, aneuploidies, segmental copy-number changes, translocations that are extremely heterogeneous, and more numerous than other hematological malignancies. Currently, in routine clinical practice we employ reduced FISH panels that only capture three high-risk features as part of the R-ISS. On the contrary, recent advances have suggested that extending genomic analysis to the full spectrum of recurrent mutations and structural abnormalities in multiple myeloma may have biological and clinical implications. Furthermore, increased efficacy of novel treatments can now produce deeper responses, and standard methods do not have enough sensitivity to stratify patients in complete biochemical remission. Consequently, NGS techniques have been developed to monitor the size of the clone to a sensitivity of up to a cell in a million after treatment. However, even these techniques are not within reach of standard laboratories. In this review we will recapitulate recent advances in multiple myeloma genomics, with special focus on the ones that may have immediate translational impact. We will analyze the benefits and pitfalls of NGS-based diagnostics, highlighting crucial aspects that will need to be taken into account before this can be implemented in most laboratories. We will make the point that a new era in myeloma diagnostics and minimal residual disease monitoring is close and conventional genetic testing will not be able to return the required information. This will mandate that even in routine practice NGS should soon be adopted owing to a higher informative potential with increasing clinical benefits.
Collapse
Affiliation(s)
- Niccolo Bolli
- Department of Clinical Oncology and Hematology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.,Department of Oncology and Onco-Hematology, University of Milan, Milan, Italy
| | - Elisa Genuardi
- Department of Molecular Biotechnologies and Health Sciences, University of Turin, Turin, Italy
| | - Bachisio Ziccheddu
- Department of Clinical Oncology and Hematology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.,Department of Molecular Biotechnologies and Health Sciences, University of Turin, Turin, Italy
| | - Marina Martello
- Seràgnoli Institute of Hematology, Bologna University School of Medicine, Bologna, Italy
| | - Stefania Oliva
- Department of Molecular Biotechnologies and Health Sciences, University of Turin, Turin, Italy
| | - Carolina Terragna
- Seràgnoli Institute of Hematology, Azienda Ospedaliero-Universitaria Sant'Orsola-Malpighi, Bologna, Italy
| |
Collapse
|
44
|
Schürch CM, Rasche L, Frauenfeld L, Weinhold N, Fend F. A review on tumor heterogeneity and evolution in multiple myeloma: pathological, radiological, molecular genetics, and clinical integration. Virchows Arch 2019; 476:337-351. [PMID: 31848687 DOI: 10.1007/s00428-019-02725-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/12/2019] [Accepted: 11/25/2019] [Indexed: 01/03/2023]
Abstract
Recent research has dramatically advanced our understanding of the genetic basis of multiple myeloma (MM). MM displays enormous inter- and intratumoral heterogeneity, and underlies a clonal evolutionary process driven and shaped by diverse factors such as clonal competition, tumor microenvironment, host immunity, and therapy. Two main cytogenetic groups are distinguished: MM with recurrent translocations involving the immunoglobulin heavy chain locus and MM with hyperdiploidy involving the odd chromosomes. The disease virtually always starts with a preneoplastic prodromal phase-monoclonal gammopathy of undetermined significance-that variably progresses to symptomatic MM within a few months or many years. Tumor heterogeneity and its evolution in space and time have important consequences for the clinical management and outcome of MM patients. At diagnosis, spatial intratumoral heterogeneity poses a challenge for classification and risk stratification. During maintenance therapy, clonal evolution may complicate disease monitoring and promote drug resistance. Upon progression or transformation, identifying the dominant disease-driving neoplastic clones and elucidating their properties are key to tailor personalized therapy. In this review, we discuss tumor heterogeneity and clonal evolution in MM, integrating pathological, radiological, molecular genetics, and clinical data. Current and prospective classification schemes and prognostic parameters, incorporating new genetic and proteomic discoveries and advances in imaging, are highlighted. In addition, the roles of the tumor microenvironment, host immunity, and resistance mutations, and their effects on therapy, are discussed. An improved understanding of high-risk disease, tumor heterogeneity, and clonal evolution will guide future therapies and may ultimately lead towards a cure for MM.
Collapse
Affiliation(s)
- Christian M Schürch
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Leo Rasche
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Leonie Frauenfeld
- Institute of Pathology and Neuropathology and Comprehensive Cancer Center, University Hospital Tübingen, Tübingen, Germany
| | - Niels Weinhold
- Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
| | - Falko Fend
- Institute of Pathology and Neuropathology and Comprehensive Cancer Center, University Hospital Tübingen, Tübingen, Germany.
| |
Collapse
|
45
|
Jin Z, Zhou S, Ye H, Jiang S, Yu K, Ma Y. The mechanism of SP1/p300 complex promotes proliferation of multiple myeloma cells through regulating IQGAP1 transcription. Biomed Pharmacother 2019; 119:109434. [PMID: 31536933 DOI: 10.1016/j.biopha.2019.109434] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 09/05/2019] [Accepted: 09/05/2019] [Indexed: 01/12/2023] Open
Abstract
Our previous research had firstly shown that MM cells overexpressed IQGAP1 gene and activated Ras/Raf/MEK/ERK pathway. But the mechanism of IQGAP1 overexpression and IQGAP1 gene transcription regulation remains uncertain. The mechanism of IQGAP1 overexpression and transcriptional regulation of IQGAP1 gene in myeloma cells was explored in the study. Through bioinformatics analysis and prediction we predicted and screened transcription factor Sp1 as a possible upstream regulator of IQGAP1.The proliferation, cell cycle and downstream ERK1/2 and p-ERK1/2 proteins were detected after siRNA-IQGAP1 was transfected to myeloma cells. The expression of Sp1, p300, IQGAP1, p-ERK1/2 and ERK1/2 were detected after Sp1 and p300 were inhibited or overexpressed respectively. The dual-luciferase reporter system was used to detect the activity of IQGAP1 gene promoter. CHIP was used to detect the binding of the Sp1 and IQGAP1 promoter regions.CO-IP was used to explore the interaction between Sp1 and p300.The mRNA expression levels of Sp1,p300 and IQGAP1 of the myeloma patients were detected, and the correlation analysis of their mRNA expression levels were carried out. The results showed IQGAP1-siRNA inhibits cell proliferation, cell cycle, IQGAP1 expression and phosphorylation of ERK1/2 protein. Inhibition of Sp1 or p300 down-regulated ERK1/2 and IQGAP1 expression; overexpression of Sp1 or p300 up-regulated ERK1/2 and IQGAP1 expression; Sp1 and p300 had a positive regulation effect on IQGAP1.Over expression of Sp1 or p300 significantly increased activity of IQGAP1 gene promoter. The transcription factor Sp1 plays a regulatory role in the IQGAP1 promoter region. There is an interaction between Sp1 and p300 in myeloma cells. The mRNA expression levels of Sp1, IQGAP1 and p300 in MM samples showed a positive correlation. In summary IQGAP1 is required for cell proliferation in MM cells, and the transcription of Sp1/p300 complex regulates expression of IQGAP1 gene.
Collapse
Affiliation(s)
- Zhouxiang Jin
- Department of General Surgery, Gastric Cancer Research Center, The Second Affiliated Hospital of Wenzhou Medical University, 109 Xue Yuan Western Road, Wenzhou, 325027, China
| | - Shujuan Zhou
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, NanBai Xiang, Wenzhou, 325000, China
| | - Haige Ye
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, NanBai Xiang, Wenzhou, 325000, China
| | - Songfu Jiang
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, NanBai Xiang, Wenzhou, 325000, China.
| | - Kang Yu
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, NanBai Xiang, Wenzhou, 325000, China.
| | - Yongyong Ma
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, NanBai Xiang, Wenzhou, 325000, China.
| |
Collapse
|
46
|
Shen X, Shen P, Yang Q, Yin Q, Wang F, Cong H, Wang X, Ju S. Knockdown of long non-coding RNA PCAT-1 inhibits myeloma cell growth and drug resistance via p38 and JNK MAPK pathways. J Cancer 2019; 10:6502-6510. [PMID: 31777580 PMCID: PMC6856901 DOI: 10.7150/jca.35098] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 08/31/2019] [Indexed: 12/22/2022] Open
Abstract
Objective: Both previous and recent literature showed long non-coding RNAs (lncRNAs) were crucial participants in multiple myeloma (MM) evolution. However, the dynamic regulation and mechanism of lncRNAs in MM progression was not fully understood. This study will explore the expression and effects of prostate cancer-associated ncRNA transcript 1 (PCAT-1) in MM. Materials and Methods: The expression level of PCAT-1 was examined using quantitative real-time PCR in patients with newly diagnosed MM and cell lines. The potential biological effects and molecular mechanisms of PCAT-1 in MM were evaluated using a series of soft agar colony formation assay, CCK-8 assay, cell cycle and apoptosis assay by flow cytometry, protein chip arrays, western blot analysis, immunohistochemistry and nude subcutaneous tumorigenesis model. Results: High expression of PCAT-1 was observed in patients with newly diagnosed MM and cell lines. Over-expressed PCAT-1 enhanced cell division and inhibited apoptosis both in cultured cells and in animal model. Meanwhile, silenced PCAT-1 exerted the opposite function. Additionally, PCAT-1 knockdown sensitized MM cells to bortezomib (Bort). Inhibitor of PCAT-1 combination with Bort exhibited a more effective inhibitory effect on MM cells compared with negative control or Bort alone. Further mechanism exploration via protein chips, Go and KEGG pathway analysis along with immunoblot analysis revealed that PCAT-1 facilitated cell growth and drug resistance via the p38 and JNK MAPK pathways. Conclusion: This study identified a novel lncRNA-associated mechanism underlying MM carcinogenesis, and provided clinicians with a promising therapeutic target in MM.
Collapse
Affiliation(s)
- Xianjuan Shen
- Laboratory Medicine Center, Affiliated Hospital of Nantong University, #20 Xisi Road, Nantong 226001, JS, P. R. China.,Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, #20 Xisi Road, Nantong 226001, JS, P. R. China
| | - Pei Shen
- Laboratory Medicine Center, Affiliated Hospital of Nantong University, #20 Xisi Road, Nantong 226001, JS, P. R. China
| | - Qian Yang
- Laboratory Medicine Center, Affiliated Hospital of Nantong University, #20 Xisi Road, Nantong 226001, JS, P. R. China
| | - Qingqing Yin
- Laboratory Medicine Center, Affiliated Hospital of Nantong University, #20 Xisi Road, Nantong 226001, JS, P. R. China.,Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, #20 Xisi Road, Nantong 226001, JS, P. R. China
| | - Feng Wang
- Laboratory Medicine Center, Affiliated Hospital of Nantong University, #20 Xisi Road, Nantong 226001, JS, P. R. China
| | - Hui Cong
- Laboratory Medicine Center, Affiliated Hospital of Nantong University, #20 Xisi Road, Nantong 226001, JS, P. R. China
| | - Xudong Wang
- Laboratory Medicine Center, Affiliated Hospital of Nantong University, #20 Xisi Road, Nantong 226001, JS, P. R. China
| | - Shaoqing Ju
- Laboratory Medicine Center, Affiliated Hospital of Nantong University, #20 Xisi Road, Nantong 226001, JS, P. R. China
| |
Collapse
|
47
|
Da Vià MC, Solimando AG, Garitano-Trojaola A, Barrio S, Munawar U, Strifler S, Haertle L, Rhodes N, Teufel E, Vogt C, Lapa C, Beilhack A, Rasche L, Einsele H, Kortüm KM. CIC Mutation as a Molecular Mechanism of Acquired Resistance to Combined BRAF-MEK Inhibition in Extramedullary Multiple Myeloma with Central Nervous System Involvement. Oncologist 2019; 25:112-118. [PMID: 32043788 DOI: 10.1634/theoncologist.2019-0356] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 08/20/2019] [Indexed: 12/21/2022] Open
Abstract
Combined MEK-BRAF inhibition is a well-established treatment strategy in BRAF-mutated cancer, most prominently in malignant melanoma with durable responses being achieved through this targeted therapy. However, a subset of patients face primary unresponsiveness despite presence of the activating mutation at position V600E, and others acquire resistance under treatment. Underlying resistance mechanisms are largely unknown, and diagnostic tests to predict tumor response to BRAF-MEK inhibitor treatment are unavailable. Multiple myeloma represents the second most common hematologic malignancy, and point mutations in BRAF are detectable in about 10% of patients. Targeted inhibition has been successfully applied, with mixed responses observed in a substantial subset of patients mirroring the widespread spatial heterogeneity in this genomically complex disease. Central nervous system (CNS) involvement is an extremely rare, extramedullary form of multiple myeloma that can be diagnosed in less than 1% of patients. It is considered an ultimate high-risk feature, associated with unfavorable cytogenetics, and, even with intense treatment applied, survival is short, reaching less than 12 months in most cases. Here we not only describe the first patient with an extramedullary CNS relapse responding to targeted dabrafenib and trametinib treatment, we furthermore provide evidence that a point mutation within the capicua transcriptional repressor (CIC) gene mediated the acquired resistance in this patient. KEY POINTS: BRAF mutations constitute an attractive druggable target in multiple myeloma. This is the first genomic dissection of the central nervous system involvement in a multiple myeloma patient harboring a druggable BRAFV600E mutation. Deep genomic characterization of the extramedullary lesion prompted a personalized therapeutic approach. Acquisition of CIC mutation confers a mechanism of BRAF-MEK inhibitor drug resistance in multiple myeloma. The in silico interrogation of the CoMMpass clinical study revealed 10 patients with somatic mutations of CIC and its downregulation at gene expression level in multiple myeloma. CIC gene silencing decreases the sensitivity of multiple myeloma cells to BRAF-MEK inhibition in vitro. The correlation between CIC downregulation and ETV4/5 nuclear factor expression in multiple myeloma BRAF-mutant cells is shown for the first time. CIC mutation, its downregulation, and the related downstream effect on MMP24 support disseminative potential providing new clues in the extramedullary biology definition.
Collapse
Affiliation(s)
| | - Antonio Giovanni Solimando
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
- Department of Internal Medicine and Clinical Oncology, University of Bari Medical School, Bari, Italy
| | | | - Santiago Barrio
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Umair Munawar
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Susanne Strifler
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Larissa Haertle
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Nadine Rhodes
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Eva Teufel
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Cornelia Vogt
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Constantin Lapa
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Andreas Beilhack
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Leo Rasche
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Hermann Einsele
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - K Martin Kortüm
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
48
|
Bird SA, Boyd K. Multiple myeloma: an overview of management. Palliat Care Soc Pract 2019; 13:1178224219868235. [PMID: 32215370 PMCID: PMC7065505 DOI: 10.1177/1178224219868235] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 07/12/2019] [Indexed: 12/14/2022] Open
Abstract
Multiple myeloma represents 2% of all new cancer diagnoses in the United Kingdom and accounts for 2% of all cancer deaths. In the past few decades, there have been huge improvements in life expectancy which have been driven by novel therapeutic agents, autologous stem cell transplants and intensified supportive care. This review will discuss the pathogenesis of multiple myeloma, current management approaches and the direction of future treatments. In addition, this review will highlight the high burden of symptoms that patients experience and therefore the great benefits that can be gained from specialist palliative care input.
Collapse
|
49
|
Avivi I, Cohen YC, Suska A, Shragai T, Mikala G, Garderet L, Seny GM, Glickman S, Jayabalan DS, Niesvizky R, Gozzetti A, Wiśniewska‐Piąty K, Waszczuk‐Gajda A, Usnarska‐Zubkiewicz L, Hus I, Guzicka R, Radocha J, Milunovic V, Davila J, Gentile M, Castillo JJ, Jurczyszyn A. Hematogenous extramedullary relapse in multiple myeloma - a multicenter retrospective study in 127 patients. Am J Hematol 2019; 94:1132-1140. [PMID: 31334859 DOI: 10.1002/ajh.25579] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 07/10/2019] [Accepted: 07/13/2019] [Indexed: 12/19/2022]
Abstract
The current study assesses the characteristics and outcomes of multiple myeloma (MM) patients, treated with novel agents for hematogenous extramedullary (HEMM) relapse. Consecutive patients diagnosed with HEMM between 2010-2018 were included. Patients' characteristics at diagnosis and at HEMM presentation, response to treatment, survival and factors predicting survival were recorded and analyzed. A group of 127 patients, all diagnosed with HEMM by imaging (87.3%) and/or biopsy (79%), were included. Of those, 44% were initially diagnosed with ISS3, 57% presented with plasmacytomas, and 30% had high-risk cytogenetics. Median time to HEMM was 32 months. In multivariate analysis, ISS3 and bone plasmacytoma predicted shorter time to HEMM (P = .005 and P = .008, respectively). Upfront autograft was associated with longer time to HEMM (P = .002). At HEMM, 32% of patients had no BM plasmacytosis, 20% had non-secretory disease and 43% had light-chain disease. Multiple HEMM sites were reported in 52% of patients, mostly involving soft tissue, skin (29%), and pleura/lung (25%). First treatment for HEMM included proteasome inhibitors (50%), immunomodulatory drugs (IMiDs) (39%), monoclonal antibodies (10%), and chemotherapy (53%). Overall response rate (ORR) was 57%. IMiDs were associated with higher ORR (HR 2.2, 95% CI 1.02-4.7, P = .04). Median survival from HEMM was 6 months (CI 95% 4.8-7.2). Failure to achieve ≥VGPR was the only significant factor for worse OS in multivariate analyses (HR = 9.87, CI 95% 2.35 - 39, P = .001). In conclusion, HEMM occurs within 3 years of initial myeloma diagnosis and is associated with dismal outcome. The IMiDs might provide a higher response rate, and achievement of ≥VGPR predicts longer survival.
Collapse
Affiliation(s)
- Irit Avivi
- Tel Aviv Medical Center and Sackler Faculty of Medicine Tel Aviv Israel
| | - Yael C. Cohen
- Tel Aviv Medical Center and Sackler Faculty of Medicine Tel Aviv Israel
| | - Anna Suska
- Department of HematologyJagiellonian University Medical College Cracow Poland
| | - Tamir Shragai
- Department of Hematology and Stem Cell TransplantationSouth‐Pest Central Hospital, Natl. Inst. Hematol. Infectol Budapest Hungary
| | - Gabor Mikala
- Department of Hematology and Stem Cell TransplantationSouth‐Pest Central Hospital, Natl. Inst. Hematol. Infectol Budapest Hungary
| | - Laurent Garderet
- Service d'Hématologie et thérapie cellulaireHôpital Saint Antoine Paris France
- Service d'HématologieHôpital Pitié Salpêtrière Paris France
| | - Gueye M. Seny
- Service d'Hématologie et thérapie cellulaireHôpital Saint Antoine Paris France
| | | | | | | | | | | | - Anna Waszczuk‐Gajda
- Department of Hematology, Oncology and Internal DiseasesWarsaw Medical University Warsaw Poland
| | - Lidia Usnarska‐Zubkiewicz
- Department of Hematology, Blood Neoplasms and Bone Marrow TransplantationWroclaw Medical University Poland
| | - Iwona Hus
- Department of Haematology and Bone Marrow TransplantationMedical University of Lublin Lublin Poland
| | - Renata Guzicka
- Department of HaematologyPomeranian Medical University Szczecin Poland
| | - Jakub Radocha
- 4th Department of Medicine – HaematologyCharles University Hospital Hradec Kralove Hradec Kralove Czech Republic
| | - Vibor Milunovic
- Division of HematologyClinical Hospital Merkur Zagreb Croatia
| | | | - Massimo Gentile
- Hematology Unit, Department of Onco‐HematologyAzienda Ospendaliera of Cosenza Cosenza Italy
| | - Jorge J. Castillo
- Dana‐Farber Cancer InstituteHarvard Medical School Boston Massachusetts
| | - Artur Jurczyszyn
- Department of HematologyJagiellonian University Medical College Cracow Poland
| |
Collapse
|
50
|
High-Risk Multiple Myeloma: Integrated Clinical and Omics Approach Dissects the Neoplastic Clone and the Tumor Microenvironment. J Clin Med 2019; 8:jcm8070997. [PMID: 31323969 PMCID: PMC6678140 DOI: 10.3390/jcm8070997] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 06/27/2019] [Accepted: 06/29/2019] [Indexed: 12/11/2022] Open
Abstract
Multiple myeloma (MM) is a genetically heterogeneous disease that includes a subgroup of 10–15% of patients facing dismal survival despite the most intensive treatment. Despite improvements in biological knowledge, MM is still an incurable neoplasia, and therapeutic options able to overcome the relapsing/refractory behavior represent an unmet clinical need. The aim of this review is to provide an integrated clinical and biological overview of high-risk MM, discussing novel therapeutic perspectives, targeting the neoplastic clone and its microenvironment. The dissection of the molecular determinants of the aggressive phenotypes and drug-resistance can foster a better tailored clinical management of the high-risk profile and therapy-refractoriness. Among the current clinical difficulties in MM, patients’ management by manipulating the tumor niche represents a major challenge. The angiogenesis and the stromal infiltrate constitute pivotal mechanisms of a mutual collaboration between MM and the non-tumoral counterpart. Immuno-modulatory and anti-angiogenic therapy hold great efficacy, but variable and unpredictable responses in high-risk MM. The comprehensive understanding of the genetic heterogeneity and MM high-risk ecosystem enforce a systematic bench-to-bedside approach. Here, we provide a broad outlook of novel druggable targets. We also summarize the existing multi-omics-based risk profiling tools, in order to better select candidates for dual immune/vasculogenesis targeting.
Collapse
|