1
|
Takamori H, Huang YJ, Fukushima H, Yokoyama K, Huang TY, Kuo MC, Ogawa S, Nannya Y, Shih LY. Whole-genome sequencing of myeloproliferative neoplasms revealed dynamic clonal changes in the fibrotic or leukemic transformation and novel FOXP1 mutations in the fibrotic transformation. Leukemia 2025; 39:1218-1227. [PMID: 40164719 DOI: 10.1038/s41375-025-02576-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 02/18/2025] [Accepted: 03/19/2025] [Indexed: 04/02/2025]
Abstract
Myeloproliferative neoplasms (MPNs) are characterized by clonal proliferation of hematopoietic stem cells, which can lead to secondary myelofibrosis or acute myeloid leukemia. We explored the changes in genomic alterations during MPN transformation using whole-genome sequencing of samples from both the chronic and fibrotic or leukemic phases of 20 patients. We identified FOXP1 mutations in 3 of 14 (21.4%) patients with secondary myelofibrosis. This novel mutation was identified in another 5 of the 35 patients (14.3%) in an independent cohort. All these 8 patients with FOXP1 mutations did not experience leukemic transformation after a median follow-up of 5.1 years. The acquisition of non-canonical MPLY591 mutations was detected in the fibrotic or leukemic phase. Clonal expansion, involving both known and unknown driver genes (in 18 and 2 patients, respectively), was observed in all patients. We determined the patterns of clonal evolution based on myeloid driver mutations in 18 patients: linear clonal evolution in 11 patients and branched clonal evolution in 7 patients. Our results suggested that MPN patients carrying FOXP1 mutations are unlikely to have leukemia transformation and emphasized that the acquisition of specific genetic mutations and dynamic changes in clonal architecture underlie the pathogenesis in patients undergoing MPN transformation.
Collapse
Affiliation(s)
- Hiroyuki Takamori
- Division of Hematopoietic Disease Control, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Ying-Jung Huang
- Division of Hematology-Oncology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Hidehito Fukushima
- Division of Hematopoietic Disease Control, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Kazuaki Yokoyama
- Division of Hematopoietic Disease Control, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Ting-Yu Huang
- Division of Hematology-Oncology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Ming-Chung Kuo
- Division of Hematology-Oncology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- School of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yasuhito Nannya
- Division of Hematopoietic Disease Control, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
| | - Lee-Yung Shih
- Division of Hematology-Oncology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.
- School of Medicine, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
2
|
Wong KK, Ab. Hamid SS. Multiomics in silico analysis identifies TM4SF4 as a cell surface target in hepatocellular carcinoma. PLoS One 2025; 20:e0307048. [PMID: 39999090 PMCID: PMC11856526 DOI: 10.1371/journal.pone.0307048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 01/21/2025] [Indexed: 02/27/2025] Open
Abstract
The clinical application of cellular immunotherapy in hepatocellular carcinoma (HCC) is impeded by the lack of a cell surface target frequently expressed in HCC cells and with minimal presence in normal tissues to reduce on-target, off-tumor toxicity. To address this, an in silico multomics analysis was conducted to identify an optimal therapeutic target in HCC. A longlist of genes (n = 12,948) expressed in HCCs according to The Human Protein Atlas database were examined. Eight genes were shortlisted to identify one with the highest expression in HCCs, without being shed into circulation, and with restrictive expression profile in other normal human tissues. A total of eight genes were shortlisted and subsequently ranked according to the combination of their transcript and protein expression levels in HCC cases (n = 791) derived from four independent datasets. TM4SF4 was the top-ranked target with the highest expression in HCCs. TM4SF4 showed more favorable expression profile with significantly lower expression in normal human tissues but more highly expressed in HCC compared with seven other common HCC therapeutic targets. Furthermore, scRNA-seq and immunohistochemistry datasets showed that TM4SF4 was absent in immune cell populations but highly expressed in the bile duct canaliculi of hepatocytes, regions inaccessible to immune cells. In scRNA-seq dataset of HCCs, TM4SF4 expression was positively associated with mitochondrial components and oxidative phosphorylation Gene Ontologies in HCC cells (n = 15,787 cells), suggesting its potential roles in mitochondrial-mediated oncogenic effects in HCC. Taken together, TM4SF4 is proposed as a promising cell surface target in HCC due to its high expression in HCC cells with restricted expression profile in non-cancerous tissues, and association with HCC oncogenic pathways.
Collapse
Affiliation(s)
- Kah Keng Wong
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Suzina Sheikh Ab. Hamid
- Tissue Bank Unit, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
- Department of Otorhinolaryngology-Head & Neck Surgery, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| |
Collapse
|
3
|
Kong J, Zhao X, Singhal A, Park S, Bachelder R, Shen J, Zhang H, Moon J, Ahn C, Ock CY, Carter H, Ideker T. Prediction of immunotherapy response using mutations to cancer protein assemblies. SCIENCE ADVANCES 2024; 10:eado9746. [PMID: 39303028 PMCID: PMC11414719 DOI: 10.1126/sciadv.ado9746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 08/13/2024] [Indexed: 09/22/2024]
Abstract
While immune checkpoint inhibitors have revolutionized cancer therapy, many patients exhibit poor outcomes. Here, we show immunotherapy responses in bladder and non-small cell lung cancers are effectively predicted by factoring tumor mutation burden (TMB) into burdens on specific protein assemblies. This approach identifies 13 protein assemblies for which the assembly-level mutation burden (AMB) predicts treatment outcomes, which can be combined to powerfully separate responders from nonresponders in multiple cohorts (e.g., 76% versus 37% bladder cancer 1-year survival). These results are corroborated by (i) engineered disruptions in the predictive assemblies, which modulate immunotherapy response in mice, and (ii) histochemistry showing that predicted responders have elevated inflammation. The 13 assemblies have diverse roles in DNA damage checkpoints, oxidative stress, or Janus kinase/signal transducers and activators of transcription signaling and include unexpected genes (e.g., PIK3CG and FOXP1) for which mutation affects treatment response. This study provides a roadmap for using tumor cell biology to factor mutational effects on immune response.
Collapse
Affiliation(s)
- JungHo Kong
- Department of Medicine and Moores Cancer Center, School of Medicine, University of California San Diego, San Diego, CA, USA
| | - Xiaoyu Zhao
- Department of Medicine and Moores Cancer Center, School of Medicine, University of California San Diego, San Diego, CA, USA
| | - Akshat Singhal
- Department of Computer Science and Engineering, University of California San Diego, San Diego, CA, USA
| | - Sungjoon Park
- Department of Medicine and Moores Cancer Center, School of Medicine, University of California San Diego, San Diego, CA, USA
| | - Robin Bachelder
- Department of Medicine and Moores Cancer Center, School of Medicine, University of California San Diego, San Diego, CA, USA
| | - Jeanne Shen
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Haiyu Zhang
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | | | | | | | - Hannah Carter
- Department of Medicine and Moores Cancer Center, School of Medicine, University of California San Diego, San Diego, CA, USA
| | - Trey Ideker
- Department of Medicine and Moores Cancer Center, School of Medicine, University of California San Diego, San Diego, CA, USA
- Department of Computer Science and Engineering, University of California San Diego, San Diego, CA, USA
- Department of Bioengineering, University of California San Diego, San Diego, CA, USA
| |
Collapse
|
4
|
Simanjuntak MV, Jauhar MM, Syaifie PH, Arda AG, Mardliyati E, Shalannanda W, Hermanto BR, Anshori I. Revealing Propolis Potential Activity on Inhibiting Estrogen Receptor and Heat Shock Protein 90 Overexpressed in Breast Cancer by Bioinformatics Approaches. Bioinform Biol Insights 2024; 18:11779322231224187. [PMID: 38274992 PMCID: PMC10809879 DOI: 10.1177/11779322231224187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 12/15/2023] [Indexed: 01/27/2024] Open
Abstract
Breast cancer is the most commonly diagnosed cancer globally, with the highest incidence of breast cancer occurring in Asian countries including Indonesia. Among the types of breast cancer, the estrogen receptor (ER)-positive subtype which is prominent with estrogen receptor alpha (ERα) and heat shock protein 90 (HSP90) overexpression genes becomes the most prevalent than the others, approximately 75% of all breast cancer cases. ERα and HSP90 play a role in breast cancer activities including breast tumor growth, invasion, and metastasis mechanism. Propolis, a natural bee product, has been explored for its anticancer activity. However, there is lack of studies that evaluated the potential inhibitor from propolis compounds to the ERα and HSP90 proteins. Therefore, this article focuses on examining the correlation between ERα and HSP90's role in breast cancer and investigating the potential of 93 unique propolis compositions in inhibiting these genes in breast cancer using in silico approaches. This study revealed the positive correlation between ERα and HSP90 genes in breast cancer disease development. Furthermore, we also found novel potential bioactive compounds of propolis against breast cancer through binding with ERα and HSP90; they were 3',4',7-trihydroxyisoflavone and baicalein-7-O-β-D glucopyranoside, respectively. Further research on these compounds is needed to elucidate deeper mechanisms and activity in the real biological system to develop new breast cancer drug treatments.
Collapse
Affiliation(s)
- Masriana Vivi Simanjuntak
- Biomedical Engineering Department, School of Electrical Engineering and Informatics, Bandung Institute of Technology, Bandung, Indonesia
| | - Muhammad Miftah Jauhar
- Center of Excellences Life Sciences, Nano Center Indonesia, South Tangerang, Indonesia
- Biomedical Engineering, The Graduate School of Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Putri Hawa Syaifie
- Center of Excellences Life Sciences, Nano Center Indonesia, South Tangerang, Indonesia
| | - Adzani Gaisani Arda
- Center of Excellences Life Sciences, Nano Center Indonesia, South Tangerang, Indonesia
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Etik Mardliyati
- Research Center for Vaccine and Drug, National Research and Innovation Agency (BRIN), Cibinong, Indonesia
| | - Wervyan Shalannanda
- Biomedical Engineering Department, School of Electrical Engineering and Informatics, Bandung Institute of Technology, Bandung, Indonesia
| | - Beni Rio Hermanto
- Biomedical Engineering Department, School of Electrical Engineering and Informatics, Bandung Institute of Technology, Bandung, Indonesia
| | - Isa Anshori
- Biomedical Engineering Department, School of Electrical Engineering and Informatics, Bandung Institute of Technology, Bandung, Indonesia
| |
Collapse
|
5
|
Wang X, Duan M, Li J, Ma A, Xin G, Xu D, Li Z, Liu B, Ma Q. MarsGT: Multi-omics analysis for rare population inference using single-cell graph transformer. Nat Commun 2024; 15:338. [PMID: 38184630 PMCID: PMC10771517 DOI: 10.1038/s41467-023-44570-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 12/14/2023] [Indexed: 01/08/2024] Open
Abstract
Rare cell populations are key in neoplastic progression and therapeutic response, offering potential intervention targets. However, their computational identification and analysis often lag behind major cell types. To fill this gap, we introduce MarsGT: Multi-omics Analysis for Rare population inference using a Single-cell Graph Transformer. It identifies rare cell populations using a probability-based heterogeneous graph transformer on single-cell multi-omics data. MarsGT outperforms existing tools in identifying rare cells across 550 simulated and four real human datasets. In mouse retina data, it reveals unique subpopulations of rare bipolar cells and a Müller glia cell subpopulation. In human lymph node data, MarsGT detects an intermediate B cell population potentially acting as lymphoma precursors. In human melanoma data, it identifies a rare MAIT-like population impacted by a high IFN-I response and reveals the mechanism of immunotherapy. Hence, MarsGT offers biological insights and suggests potential strategies for early detection and therapeutic intervention of disease.
Collapse
Affiliation(s)
- Xiaoying Wang
- School of Mathematics, Shandong University, Jinan, Shandong, 250100, China
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
- Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA
| | - Maoteng Duan
- School of Mathematics, Shandong University, Jinan, Shandong, 250100, China
| | - Jingxian Li
- School of Mathematics, Shandong University, Jinan, Shandong, 250100, China
| | - Anjun Ma
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
- Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA
| | - Gang Xin
- Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA
| | - Dong Xu
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO, 65211, USA
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - Zihai Li
- Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA
| | - Bingqiang Liu
- School of Mathematics, Shandong University, Jinan, Shandong, 250100, China.
| | - Qin Ma
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA.
- Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
6
|
Wang X, Duan M, Li J, Ma A, Xu D, Li Z, Liu B, Ma Q. MarsGT: Multi-omics analysis for rare population inference using single-cell graph transformer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.15.553454. [PMID: 37645917 PMCID: PMC10462017 DOI: 10.1101/2023.08.15.553454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Rare cell populations are key in neoplastic progression and therapeutic response, offering potential intervention targets. However, their computational identification and analysis often lag behind major cell types. To fill this gap, we introduced MarsGT: Multi-omics Analysis for Rare population inference using Single-cell Graph Transformer. It identifies rare cell populations using a probability-based heterogeneous graph transformer on single-cell multi-omics data. MarsGT outperformed existing tools in identifying rare cells across 400 simulated and four real human datasets. In mouse retina data, it revealed unique subpopulations of rare bipolar cells and a Müller glia cell subpopulation. In human lymph node data, MarsGT detected an intermediate B cell population potentially acting as lymphoma precursors. In human melanoma data, it identified a rare MAIT-like population impacted by a high IFN-I response and revealed the mechanism of immunotherapy. Hence, MarsGT offers biological insights and suggests potential strategies for early detection and therapeutic intervention of disease.
Collapse
Affiliation(s)
- Xiaoying Wang
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
- Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Maoteng Duan
- School of Mathematics, Shandong University, Jinan, Shandong, 250100, China
| | - Jingxian Li
- School of Mathematics, Shandong University, Jinan, Shandong, 250100, China
| | - Anjun Ma
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
- Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Dong Xu
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO 65211, USA
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Zihai Li
- Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Bingqiang Liu
- School of Mathematics, Shandong University, Jinan, Shandong, 250100, China
| | - Qin Ma
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
- Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
7
|
Wong KK. Integrated transcriptomics and proteomics data analysis identifies CDH17 as a key cell surface target in colorectal cancer. Comput Biol Chem 2023; 105:107897. [PMID: 37247573 DOI: 10.1016/j.compbiolchem.2023.107897] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 03/28/2023] [Accepted: 05/20/2023] [Indexed: 05/31/2023]
Abstract
Immunotherapy development against colorectal cancer (CRC) is hindered by the lack of cell surface target highly expressed in cancer cells but with restricted presence in normal tissues to minimize off-tumor toxicities. In this in silico analysis, a longlist of genes (n = 13,488) expressed in CRCs according to the Human Protein Atlas (HPA) database were evaluated to shortlist for potential surface targets based on the following prerequisites: (i) Absent from the brain and lung tissues to minimize the likelihood of neurologic and pulmonary toxicities; (ii) Restricted expression profile in other normal human tissues; (iii) Genes that potentially encode cell surface proteins and; (iv) At least moderately expressed in CRC cases. Fifteen potential targets were shortlisted and subsequently ranked according to the combination of their transcript and protein expression levels in CRCs derived from multiple datasets (i.e. DepMap, TCGA, CPTAC-2, and HPA CRCs). The top-ranked target with the highest and homogenous expression in CRCs was cadherin 17 (CDH17). Downstream analysis of CRC transcriptomics and proteomics datasets showed that CDH17 was significantly correlated with carcinoembryonic antigen expression. Moreover, CDH17 expression was significantly lower in CRC cases with high microsatellite instability, as well as negatively associated with immune response gene sets and the expression of MHC class I and II molecules. CDH17 represents an optimal target for therapeutic development against CRCs, and this study provides a novel framework to identify key cell surface targets for therapeutic development against other malignancies.
Collapse
Affiliation(s)
- Kah Keng Wong
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kelantan, Malaysia.
| |
Collapse
|
8
|
Hussein SI, Al-Yasiri AY, Hassan HF, Kashman BM, Azeez RA. Immunohistochemistry technique for effect of gold nanoparticles, laser, and photodynamic therapy on FoxP1 level in infected mice with mammary adenocarcinoma. Lasers Med Sci 2023; 38:106. [PMID: 37074483 DOI: 10.1007/s10103-023-03765-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 04/04/2023] [Indexed: 04/20/2023]
Abstract
The current study was performed to investigate the treatment of tumors with gold nanoparticles, laser, and photodynamic therapy (PDT) by using an immunohistochemistry method and to investigate the expression of FOXP1 in infected mice with mammary adenocarcinoma whether it can be used as an indicator to estimate the recovery of tissues from cancer disease. Twenty-five albino female mice were used in this research; they were divided into five groups, four groups were infected with mammary adenocarcinoma, and then three of them were treated with gold nanoparticles, laser, and PDT, respectively, while the fourth group was left without any treatment and represents the positive control, and the fifth group (normal mice) represents the negative control. Tissue sections were taken from different groups of mice in order to estimate FOXP1 expression in infected mice by using an immunohistochemistry assay. FOXP1 expression was higher in the tumor and kidney tissues of the mice treated with PDT than that in mice treated with either gold nanoparticles or laser alone. Also, in the group of mice treated with laser, FOXP1 expression was higher than the expression in mice which were treated with gold nanoparticles but lower than that in mice which were treated with PDT. FOXP1 can be used as a biomarker for the prognosis outcome of breast and other solid tumors, as well as it considers a key tumor suppressor. PDT is the best choice to treat cancer in comparison to using either gold nanoparticles or the laser separately.
Collapse
Affiliation(s)
- Sumaiah I Hussein
- Department of Basic Sciences, College of Dentistry, University of Baghdad, Baghdad, Iraq
| | - Amal Y Al-Yasiri
- Department of Basic Sciences, College of Dentistry, University of Baghdad, Baghdad, Iraq.
| | - Heba F Hassan
- Department of Basic Sciences, College of Dentistry, University of Baghdad, Baghdad, Iraq
| | - Basim M Kashman
- National Cancer Research Center, University of Baghdad, Baghdad, Iraq
| | - Rasha A Azeez
- Department of Basic Sciences, College of Dentistry, University of Baghdad, Baghdad, Iraq
| |
Collapse
|
9
|
Spriano F, Tarantelli C, Arribas AJ, Gaudio E, Cascione L, Aresu L, Rinaldi A, Zucca E, Rossi D, Stathis A, Murone M, Radtke F, Lehal R, Bertoni F. In vitro anti-lymphoma activity of the first-in-class pan-NOTCH transcription inhibitor CB-103. Br J Haematol 2023; 200:669-672. [PMID: 36484636 DOI: 10.1111/bjh.18576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/15/2022] [Accepted: 11/15/2022] [Indexed: 12/13/2022]
Affiliation(s)
- Filippo Spriano
- Faculty of Biomedical Sciences, Institute of Oncology Research, USI, Bellinzona, Switzerland
| | - Chiara Tarantelli
- Faculty of Biomedical Sciences, Institute of Oncology Research, USI, Bellinzona, Switzerland
| | - Alberto J Arribas
- Faculty of Biomedical Sciences, Institute of Oncology Research, USI, Bellinzona, Switzerland.,SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Eugenio Gaudio
- Faculty of Biomedical Sciences, Institute of Oncology Research, USI, Bellinzona, Switzerland
| | - Luciano Cascione
- Faculty of Biomedical Sciences, Institute of Oncology Research, USI, Bellinzona, Switzerland.,SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Luca Aresu
- Department of Veterinary Science, University of Turin, Grugliasco, Turin, Italy
| | - Andrea Rinaldi
- Faculty of Biomedical Sciences, Institute of Oncology Research, USI, Bellinzona, Switzerland
| | - Emanuele Zucca
- Faculty of Biomedical Sciences, Institute of Oncology Research, USI, Bellinzona, Switzerland.,Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
| | - Davide Rossi
- Faculty of Biomedical Sciences, Institute of Oncology Research, USI, Bellinzona, Switzerland.,Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
| | - Anastasios Stathis
- Oncology Institute of Southern Switzerland, Bellinzona, Switzerland.,Faculty of Biomedical Sciences, USI, Lugano, Switzerland
| | | | - Freddy Radtke
- Swiss Institute for Experimental Cancer Research, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | | | - Francesco Bertoni
- Faculty of Biomedical Sciences, Institute of Oncology Research, USI, Bellinzona, Switzerland.,Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
| |
Collapse
|
10
|
Wang L, Luo P, Yang Z, Zhong X, Ji C. FOXP1 inhibits pancreatic cancer growth by transcriptionally regulating IRF1 expression. PLoS One 2023; 18:e0280794. [PMID: 36952469 PMCID: PMC10035899 DOI: 10.1371/journal.pone.0280794] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 01/09/2023] [Indexed: 03/25/2023] Open
Abstract
FOXP1, known as a Forkhead-box (FOX) family protein, plays an important role in human tumorigenesis. However, the function and molecular mechanism of FOXP1 in pancreatic cancer (PC) remain unclear. Here, we report that PC patients with FOXP1 overexpression had a higher survival rate compared to patients with low- FOXP1 expression. Additionally, high expression of FOXP1 can markedly inhibit the growth of pancreatic cancer in vivo and in vitro, whereas low expression of FOXP1 effectively promoted the tumorigenesis. Mechanistically, FOXP1 could directly bind the IRF1 promoter, which triggered the transcriptional activity of IRF1. Taken together, FOXP1 suppressed PC growth via IRF1-dependent manner, serving as a potential prognostic biomarker for patients with PC.
Collapse
Affiliation(s)
- Le Wang
- Graduate School, Medical College, Nanchang University, Nanchang, Jiangxi Province, China
- Scientific Research Section, Jiangxi Cancer Hospital, Jiangxi Clinical Research Center for Cancer, Nanchang, Jiangxi Province, China
| | - Ping Luo
- Department of Breast Surgery, Nanchang Third Hospital, Nanchang, China
| | - Zhiwen Yang
- Department of Pharmacy, Songjiang District Central Hospital, Shanghai, China
| | - Xiaoming Zhong
- Graduate School, Medical College, Nanchang University, Nanchang, Jiangxi Province, China
- Department of Oncology Radiotherapy, Jiangxi Cancer Hospital, Jiangxi Clinical Research Center for Cancer, Nanchang, Jiangxi Province, China
| | - Changxue Ji
- Department of Vascular Interventional Radiology, Songjiang District Central Hospital, Shanghai, China
| |
Collapse
|
11
|
Kaminskiy Y, Kuznetsova V, Kudriaeva A, Zmievskaya E, Bulatov E. Neglected, yet significant role of FOXP1 in T-cell quiescence, differentiation and exhaustion. Front Immunol 2022; 13:971045. [PMID: 36268015 PMCID: PMC9576946 DOI: 10.3389/fimmu.2022.971045] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 09/20/2022] [Indexed: 12/04/2022] Open
Abstract
FOXP1 is ubiquitously expressed in the human body and is implicated in both physiological and pathological processes including cancer. However, despite its importance the role of FOXP1 in T-cells has not been extensively studied. Although relatively few phenotypic and mechanistic details are available, FOXP1 role in T-cell quiescence and differentiation of CD4+ subsets has recently been established. FOXP1 prevents spontaneous T-cell activation, preserves memory potential, and regulates the development of follicular helper and regulatory T-cells. Moreover, there is growing evidence that FOXP1 also regulates T-cell exhaustion. Altogether this makes FOXP1 a crucial and highly undervalued regulator of T-cell homeostasis. In this review, we discuss the biology of FOXP1 with a focus on discoveries made in T-cells in recent years.
Collapse
Affiliation(s)
- Yaroslav Kaminskiy
- Department of Oncology and Pathology, Karolinska Institutet, SciLifeLab, Solna, Sweden
- Laboratory of Transplantation Immunology, National Research Centre for Hematology, Moscow, Russia
| | - Varvara Kuznetsova
- Laboratory of Transplantation Immunology, National Research Centre for Hematology, Moscow, Russia
| | - Anna Kudriaeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Ekaterina Zmievskaya
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Emil Bulatov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
- *Correspondence: Emil Bulatov,
| |
Collapse
|
12
|
Hu DM, Zhang WD, Shi ZE, Zhang MY, Li R, Wang QX, Ji XL, Qu YQ. FOXP family DNA methylation correlates with immune infiltration and prognostic value in NSCLC. Front Genet 2022; 13:937069. [PMID: 36160018 PMCID: PMC9500381 DOI: 10.3389/fgene.2022.937069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/15/2022] [Indexed: 01/17/2023] Open
Abstract
Background: Forkhead box P (FOXP) family was introduced as a double-edged sword in tumorigenesis and influenced immunotherapy response by modulating host immunity. This study aimed to summarize the involvement of the FOXP family in non-small cell lung cancer (NSCLC).Methods: The UALCAN, Gene Expression Profiling Interactive Analysis (GEPIA), and Reverse transcription-quantitative polymerase chain reaction (RT‒qPCR) were used to analyse the expression levels of the FOXP family in NSCLC. The prognostic impact was evaluated using Kaplan-Meier Plotter. MethSurv, UALCAN, and cBioPortal were applied to analyse the DNA methylation and mutation status of the FOXP family respectively. COEXPEDIA, STRING, and GeneMANIA were used to explore the interaction mechanism. Finally, TISIDB was used to investigate all of the immune-related characteristics regulated by the FOXP family.Results: The expression levels of FOXP1/3/4 were dysregulated in NSCLC tissues than that in normal tissues. Groups with low expression levels of FOXP1/4 and high expression levels of FOXP2/3 were associated with poor prognosis in NSCLC. The transcriptional levels of FOXP2/3/4 were correlated with DNA methylation in NSCLC. FOXP1/3/4 DNA methylation were correlated with prognosis. Pathway enrichment analysis indicated the FOXP family was mainly related to immune-related pathways. After DNA methylation, the correlations between FOXP family and immune factors were opposite to that before alteration in NSCLC.Conclusion: This study elucidated FOXP family could serve as vital diagnostic and prognostic biomarkers in NSCLC. Our study highlighted novel potential functions of FOXP family DNA methylation in regulation of immune-related signatures in NSCLC.
Collapse
Affiliation(s)
- Dong-Mei Hu
- Shandong Key Laboratory of Infectious Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China
- Laboratory of Basic Medical Sciences, Qilu Hospital of Shandong University, Jinan, China
| | - Wen-Di Zhang
- Shandong Key Laboratory of Infectious Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China
- Laboratory of Basic Medical Sciences, Qilu Hospital of Shandong University, Jinan, China
| | - Zhuang-E Shi
- Shandong Key Laboratory of Infectious Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China
- Laboratory of Basic Medical Sciences, Qilu Hospital of Shandong University, Jinan, China
| | - Meng-Yu Zhang
- Shandong Key Laboratory of Infectious Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China
- Laboratory of Basic Medical Sciences, Qilu Hospital of Shandong University, Jinan, China
| | - Rui Li
- Shandong Key Laboratory of Infectious Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China
- Laboratory of Basic Medical Sciences, Qilu Hospital of Shandong University, Jinan, China
| | - Qing-Xiang Wang
- Shandong Key Laboratory of Infectious Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China
- Laboratory of Basic Medical Sciences, Qilu Hospital of Shandong University, Jinan, China
| | - Xiu-Li Ji
- Department of Pulmonary Disease, Jinan Traditional Chinese Medicine Hospital, Jinan, China
- *Correspondence: Yi-Qing Qu, ; Xiu-Li Ji,
| | - Yi-Qing Qu
- Shandong Key Laboratory of Infectious Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China
- *Correspondence: Yi-Qing Qu, ; Xiu-Li Ji,
| |
Collapse
|
13
|
Kim Y, Yin J, Huang H, Jorgenson E, Choquet H, Asgari MM. Genome-wide association study of actinic keratosis identifies new susceptibility loci implicated in pigmentation and immune regulation pathways. Commun Biol 2022; 5:386. [PMID: 35449187 PMCID: PMC9023580 DOI: 10.1038/s42003-022-03301-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 03/18/2022] [Indexed: 01/07/2023] Open
Abstract
Actinic keratosis (AK) is a common precancerous cutaneous neoplasm that arises on chronically sun-exposed skin. AK susceptibility has a moderate genetic component, and although a few susceptibility loci have been identified, including IRF4, TYR, and MC1R, additional loci have yet to be discovered. We conducted a genome-wide association study of AK in non-Hispanic white participants of the Genetic Epidemiology Research on Adult Health and Aging (GERA) cohort (n = 63,110, discovery cohort), with validation in the Mass-General Brigham (MGB) Biobank cohort (n = 29,130). We identified eleven loci (P < 5 × 10-8), including seven novel loci, of which four novel loci were validated. In a meta-analysis (GERA + MGB), one additional novel locus, TRPS1, was identified. Genes within the identified loci are implicated in pigmentation (SLC45A2, IRF4, BNC2, TYR, DEF8, RALY, HERC2, and TRPS1), immune regulation (FOXP1 and HLA-DQA1), and cell signaling and tissue remodeling (MMP24) pathways. Our findings provide novel insight into the genetics and pathogenesis of AK susceptibility.
Collapse
Affiliation(s)
- Yuhree Kim
- Department of Dermatology, Massachusetts General Hospital, Boston, MA, USA
- Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | - Jie Yin
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Hailiang Huang
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | | | - Hélène Choquet
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA.
| | - Maryam M Asgari
- Department of Dermatology, Massachusetts General Hospital, Boston, MA, USA.
- Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA.
| |
Collapse
|
14
|
Nur Husna SM, Md Shukri N, Tuan Sharif SE, Tan HTT, Mohd Ashari NS, Wong KK. IL-4/IL-13 Axis in Allergic Rhinitis: Elevated Serum Cytokines Levels and Inverse Association With Tight Junction Molecules Expression. Front Mol Biosci 2022; 9:819772. [PMID: 35372516 PMCID: PMC8969661 DOI: 10.3389/fmolb.2022.819772] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/08/2022] [Indexed: 12/11/2022] Open
Abstract
The IL-4/IL-13 axis is involved in the pathogenesis of allergic rhinitis (AR). In this study, we investigated the serum cytokines levels of IL-4, IL-5, IL-6, and IL-13 in AR patients, and the transcript expression levels of their receptors (i.e. IL4R, IL5RA, IL6R, and IL13RA1) in nasal epithelial cells of AR patients versus non-allergic controls. Nasal epithelial cells and blood samples of non-allergic controls (n = 30) and AR patients (n = 30) were collected to examine mRNA expression and serum cytokines levels, respectively. Bioinformatics analyses of IL-4/IL-13 receptor heterodimer association with tight junction (TJ) and JAK/STAT signaling genes were conducted in a gene expression profiling (GEP) dataset (GSE44037) of AR patients (n = 12) and healthy controls (n = 6). Serum IL-4, IL-5, IL-6 or IL-13 levels, and IL13RA1 transcript expression were significantly higher in AR patients compared with non-allergic controls. IL-4 and IL-13 serum levels were positively correlated with IL13RA1 expression in AR patients but not in non-allergic controls. In the GEP dataset (GSE44037), six TJ (CLDN4, CLDN7, CLDN12, CLDN15, TJP1, and TJP2) genes’ expressions were negatively correlated, respectively, with IL-4Rα/IL-13Rα1 heterodimeric receptor expression in AR patients and not in control samples. These six TJ genes contributed to the significant enrichment of tight junction Gene Ontology (GO ID: 0070160). Lastly, STATs DNA binding motif analysis showed that each of these TJ genes contains STATs binding consensus sequence within intronic and intergenic regions. Our results suggest that increased IL-4/IL-13 serum cytokines levels may contribute to decreased TJs expression via IL-4Rα/IL-13Rα1 heterodimeric receptor in nasal epithelium of AR patients.
Collapse
Affiliation(s)
- Siti Muhamad Nur Husna
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Norasnieda Md Shukri
- Department of Otorhinolaryngology, Head and Neck Surgery, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
- Hospital Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | | | - Hern Tze Tina Tan
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Noor Suryani Mohd Ashari
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Kah Keng Wong
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
- *Correspondence: Kah Keng Wong,
| |
Collapse
|
15
|
Wang X, Huang Z, Zeng L, Jin X, Yan A, Zhang Y, Tan W. The Role of Survivin and Transcription Factor FOXP1 in Scarring After Glaucoma Surgery. Transl Vis Sci Technol 2022; 11:19. [PMID: 35142784 PMCID: PMC8842717 DOI: 10.1167/tvst.11.2.19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Purpose This study aims to elucidate the role and mechanism of survivin and FOXP1 in scarring after glaucoma surgery and to evaluate the prevention and treatment of excessive wound healing and scar formation in an in vitro model of glaucoma filtration surgery. Methods Human Tenon's capsule fibroblasts (HTFs) were used with TGF-β to establish an in vitro cell model after glaucoma, observe survivin expression in the cell model, and observe HTFs proliferation after treatment with survivin inhibitor YM155 and the expression of α-SMA and collagen type I. In addition, the effects of survivin and cell proliferation in HTFs after knockdown of FOXP1 were observed by Western blot analysis. Results Survivin was upregulated in HTFs after glaucoma surgery, and it could promote the cell proliferation of HTFs. After treatment with its inhibitor YM155, the cell proliferation of HTFs was inhibited, and the expression of α-SMA and collagen type I were decreased. The results showed that in knockdown of FOXP1, the expression of survivin was downregulated, and the cell proliferation of HTFs was significantly reduced. Conclusions This study demonstrates that targeting survivin with an inhibitory YM155 reduced fibrosis and the extracellular matrix (ECM), and it was regulated by the FOXP1 transcription factor. These results suggest that survivin could be a potential target for treating scar formation after glaucoma surgery. Translational Relevance Together with the results from previous survivin and FOXP1 preclinical studies, these data support the evaluation of this gene therapy candidate in clinical trials as a potential durable treatment for antiscarring of glaucoma surgery.
Collapse
Affiliation(s)
- Xiaocong Wang
- Soochow University, Suzhou, Jiangsu, China.,Medical College of Soochow University, Suzhou, Jiangsu, China.,Graduate School of Zunyi Medical University, Zunyi, Guizhou,China.,Department of Ophthalmology, The Third Affiliated Hospital of Zunyi, Medical University (The First People's Hospital of Zunyi), Zunyi, Guizhou, China
| | - Zhihua Huang
- Graduate School of Zunyi Medical University, Zunyi, Guizhou,China.,The Ninth People's Hospital of Chongqing, Chongqing, China
| | - Lan Zeng
- Graduate School of Zunyi Medical University, Zunyi, Guizhou,China.,Department of Ophthalmology, The Third Affiliated Hospital of Zunyi, Medical University (The First People's Hospital of Zunyi), Zunyi, Guizhou, China
| | - Xin Jin
- Department of Ophthalmology, The Third Affiliated Hospital of Zunyi, Medical University (The First People's Hospital of Zunyi), Zunyi, Guizhou, China
| | - Ai Yan
- Department of Ophthalmology, The Third Affiliated Hospital of Zunyi, Medical University (The First People's Hospital of Zunyi), Zunyi, Guizhou, China
| | - Ying Zhang
- Department of Ophthalmology, The Third Affiliated Hospital of Zunyi, Medical University (The First People's Hospital of Zunyi), Zunyi, Guizhou, China
| | - Wei Tan
- Soochow University, Suzhou, Jiangsu, China.,Medical College of Soochow University, Suzhou, Jiangsu, China.,Graduate School of Zunyi Medical University, Zunyi, Guizhou,China.,Department of Ophthalmology, The Third Affiliated Hospital of Zunyi, Medical University (The First People's Hospital of Zunyi), Zunyi, Guizhou, China
| |
Collapse
|
16
|
Serganova I, Chakraborty S, Yamshon S, Isshiki Y, Bucktrout R, Melnick A, Béguelin W, Zappasodi R. Epigenetic, Metabolic, and Immune Crosstalk in Germinal-Center-Derived B-Cell Lymphomas: Unveiling New Vulnerabilities for Rational Combination Therapies. Front Cell Dev Biol 2022; 9:805195. [PMID: 35071240 PMCID: PMC8777078 DOI: 10.3389/fcell.2021.805195] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 11/30/2021] [Indexed: 12/24/2022] Open
Abstract
B-cell non-Hodgkin lymphomas (B-NHLs) are highly heterogenous by genetic, phenotypic, and clinical appearance. Next-generation sequencing technologies and multi-dimensional data analyses have further refined the way these diseases can be more precisely classified by specific genomic, epigenomic, and transcriptomic characteristics. The molecular and genetic heterogeneity of B-NHLs may contribute to the poor outcome of some of these diseases, suggesting that more personalized precision-medicine approaches are needed for improved therapeutic efficacy. The germinal center (GC) B-cell like diffuse large B-cell lymphomas (GCB-DLBCLs) and follicular lymphomas (FLs) share specific epigenetic programs. These diseases often remain difficult to treat and surprisingly do not respond advanced immunotherapies, despite arising in secondary lymphoid organs at sites of antigen recognition. Epigenetic dysregulation is a hallmark of GCB-DLBCLs and FLs, with gain-of-function (GOF) mutations in the histone methyltransferase EZH2, loss-of-function (LOF) mutations in histone acetyl transferases CREBBP and EP300, and the histone methyltransferase KMT2D representing the most prevalent genetic lesions driving these diseases. These mutations have the common effect to disrupt the interactions between lymphoma cells and the immune microenvironment, via decreased antigen presentation and responsiveness to IFN-γ and CD40 signaling pathways. This indicates that immune evasion is a key step in GC B-cell lymphomagenesis. EZH2 inhibitors are now approved for the treatment of FL and selective HDAC3 inhibitors counteracting the effects of CREBBP LOF mutations are under development. These treatments can help restore the immune control of GCB lymphomas, and may represent optimal candidate agents for more effective combination with immunotherapies. Here, we review recent progress in understanding the impact of mutant chromatin modifiers on immune evasion in GCB lymphomas. We provide new insights on how the epigenetic program of these diseases may be regulated at the level of metabolism, discussing the role of metabolic intermediates as cofactors of epigenetic enzymes. In addition, lymphoma metabolic adaptation can negatively influence the immune microenvironment, further contributing to the development of immune cold tumors, poorly infiltrated by effector immune cells. Based on these findings, we discuss relevant candidate epigenetic/metabolic/immune targets for rational combination therapies to investigate as more effective precision-medicine approaches for GCB lymphomas.
Collapse
Affiliation(s)
- Inna Serganova
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medical College, New York, NY, United States.,Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Sanjukta Chakraborty
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medical College, New York, NY, United States
| | - Samuel Yamshon
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medical College, New York, NY, United States
| | - Yusuke Isshiki
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medical College, New York, NY, United States
| | - Ryan Bucktrout
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medical College, New York, NY, United States
| | - Ari Melnick
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medical College, New York, NY, United States
| | - Wendy Béguelin
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medical College, New York, NY, United States
| | - Roberta Zappasodi
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medical College, New York, NY, United States.,Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States.,Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, United States.,Parker Institute for Cancer Immunotherapy, San Francisco, CA, United States
| |
Collapse
|
17
|
Huang GH, Zhang YH, Chen L, Li Y, Huang T, Cai YD. Identifying Lung Cancer Cell Markers with Machine Learning Methods and Single-Cell RNA-Seq Data. Life (Basel) 2021; 11:life11090940. [PMID: 34575089 PMCID: PMC8467493 DOI: 10.3390/life11090940] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 11/21/2022] Open
Abstract
Non-small cell lung cancer is a major lethal subtype of epithelial lung cancer, with high morbidity and mortality. The single-cell sequencing technique plays a key role in exploring the pathogenesis of non-small cell lung cancer. We proposed a computational method for distinguishing cell subtypes from the different pathological regions of non-small cell lung cancer on the basis of transcriptomic profiles, including a group of qualitative classification criteria (biomarkers) and various rules. The random forest classifier reached a Matthew’s correlation coefficient (MCC) of 0.922 by using 720 features, and the decision tree reached an MCC of 0.786 by using 1880 features. The obtained biomarkers and rules were analyzed in the end of this study.
Collapse
Affiliation(s)
- Guo-Hua Huang
- School of Life Sciences, Shanghai University, Shanghai 200444, China;
- Department of Mechanical and Energy Engineering, Shaoyang University, Shaoyang 422000, China;
| | - Yu-Hang Zhang
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA;
| | - Lei Chen
- Department of College of Information Engineering, Shanghai Maritime University, Shanghai 201306, China;
| | - You Li
- Department of Mechanical and Energy Engineering, Shaoyang University, Shaoyang 422000, China;
| | - Tao Huang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai 200031, China
- Correspondence: (T.H.); (Y.-D.C.); Tel.: +86-21-54923269 (T.H.); +86-21-66136132 (Y.-D.C.)
| | - Yu-Dong Cai
- School of Life Sciences, Shanghai University, Shanghai 200444, China;
- Correspondence: (T.H.); (Y.-D.C.); Tel.: +86-21-54923269 (T.H.); +86-21-66136132 (Y.-D.C.)
| |
Collapse
|
18
|
Mohd Shukri ND, Farah Izati A, Wan Ghazali WS, Che Hussin CM, Wong KK. CD3 +CD4 +gp130 + T Cells Are Associated With Worse Disease Activity in Systemic Lupus Erythematosus Patients. Front Immunol 2021; 12:675250. [PMID: 34149710 PMCID: PMC8213373 DOI: 10.3389/fimmu.2021.675250] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/10/2021] [Indexed: 01/02/2023] Open
Abstract
The receptors for IL-35, IL-12Rβ2 and gp130, have been implicated in the inflammatory pathophysiology of autoimmune diseases. In this study, we set out to investigate the serum IL-35 levels and the surface levels of IL-12Rβ2 and gp130 in CD3+CD4+, CD3+CD4─ and CD3─CD4─ lymphocyte subpopulations in systemic lupus erythematosus (SLE) patients (n=50) versus healthy controls (n=50). The potential T cell subsets associated with gp130 transcript (i.e. IL6ST) expression in CD4+ T cells of SLE patients was also examined in publicly-available gene expression profiling (GEP) datasets. Here, we report that serum IL-35 levels were significantly higher in SLE patients than healthy controls (p=0.038) but it was not associated with SLEDAI-2K scores. The proportions of IL-12Rβ2+ and gp130+ cells in SLE patients did not differ significantly with those of healthy controls in all lymphocyte subpopulations investigated. Essentially, higher SLEDAI-2K scores were positively correlated with increased proportion of gp130+ cells, but not IL-12Rβ2+ cells, on CD3+CD4+ T cells (r=0.425, p=0.002, q=0.016). Gene Set Enrichment Analysis (GSEA) of a GEP dataset of CD4+ T cells isolated from SLE patients (n=8; GSE4588) showed that IL6ST expression was positively associated with genes upregulated in CD4+ T cells vs myeloid or B cells (q<0.001). In an independent GEP dataset of CD4+ T cells isolated from SLE patients (n=9; GSE1057), IL6ST expression was induced upon anti-CD3 stimulation, and that Treg, TCM and CCR7+ T cells gene sets were significantly enriched (q<0.05) by genes highly correlated with IL6ST expression (n=92 genes; r>0.75 with IL6ST expression) upon anti-CD3 stimulation in these SLE patients. In conclusion, gp130 signaling in CD3+CD4+ T cell subsets may contribute to increased disease activity in SLE patients, and it represents a promising therapeutic target for inhibition in the disease.
Collapse
Affiliation(s)
- Nur Diyana Mohd Shukri
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia.,Hospital Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Aziz Farah Izati
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia.,Hospital Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Wan Syamimee Wan Ghazali
- Hospital Universiti Sains Malaysia, Kubang Kerian, Malaysia.,Department of Internal Medicine, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Che Maraina Che Hussin
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia.,Hospital Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Kah Keng Wong
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia.,Hospital Universiti Sains Malaysia, Kubang Kerian, Malaysia
| |
Collapse
|
19
|
Lemasson Q, Akil H, Feuillard J, Vincent-Fabert C. Genetically Engineered Mouse Models Support a Major Role of Immune Checkpoint-Dependent Immunosurveillance Escape in B-Cell Lymphomas. Front Immunol 2021; 12:669964. [PMID: 34113345 PMCID: PMC8186831 DOI: 10.3389/fimmu.2021.669964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 05/11/2021] [Indexed: 11/25/2022] Open
Abstract
These last 20 years, research on immune tumor microenvironment led to identify some critical recurrent mechanisms used in cancer to escape immune response. Through immune checkpoints, which are cell surface molecules involved in the immune system control, it is now established that tumor cells are able to shutdown the immune response. Due to the complexity and heterogeneity of Non Hodgkin B-cell Lymphomas (NHBLs), it is difficult to understand the precise mechanisms of immune escape and to explain the mitigated effect of immune checkpoints blockade for their treatment. Because genetically engineered mouse models are very reliable tools to improve our understanding of molecular mechanisms involved in B-cell transformation and, at the same time, can be useful preclinical models to predict immune response, we reviewed hereafter some of these models that highlight the immune escape mechanisms of NHBLs and open perspectives on future therapies.
Collapse
Affiliation(s)
- Quentin Lemasson
- UMR CNRS 7276/INSERM U1262 CRIBL, University of Limoges, Limoges, France.,Hematology Laboratory of Dupuytren Hospital University Center (CHU) of Limoges, Limoges, France
| | - Hussein Akil
- UMR CNRS 7276/INSERM U1262 CRIBL, University of Limoges, Limoges, France.,Hematology Laboratory of Dupuytren Hospital University Center (CHU) of Limoges, Limoges, France
| | - Jean Feuillard
- UMR CNRS 7276/INSERM U1262 CRIBL, University of Limoges, Limoges, France.,Hematology Laboratory of Dupuytren Hospital University Center (CHU) of Limoges, Limoges, France
| | - Christelle Vincent-Fabert
- UMR CNRS 7276/INSERM U1262 CRIBL, University of Limoges, Limoges, France.,Hematology Laboratory of Dupuytren Hospital University Center (CHU) of Limoges, Limoges, France
| |
Collapse
|
20
|
FOXP1 drives osteosarcoma development by repressing P21 and RB transcription downstream of P53. Oncogene 2021; 40:2785-2802. [PMID: 33716296 DOI: 10.1038/s41388-021-01742-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 02/19/2021] [Accepted: 02/26/2021] [Indexed: 01/31/2023]
Abstract
Osteosarcoma has a poor prognosis, and the poor understanding of the genetic drivers of osteosarcoma hinders further improvement in therapeutic approaches. Transcription factor forkhead box P1 (FOXP1) is a crucial modulator in skeletal development and aging. Here, we determined the role and regulatory mechanisms of FOXP1 in osteosarcoma. Higher FOXP1 expression correlated with malignancy in both osteosarcoma cell lines and clinical biopsies. FOXP1 overexpression and knockdown in osteosarcoma cell lines revealed that FOXP1 promoted proliferation, tumor sphere formation, migration and invasion, and inhibited anoikis. Mechanistically, FOXP1 acted as a repressor of P21 and RB (retinoblastoma protein) transcription, and directly interacted with the tumor suppressor p53 to inhibit its activity. Extracellular signal-regulated kinase/c-Jun N-terminal kinase (ERK/JNK) signaling and c-JUN/c-FOS transcription factors were found to be upstream activators of FOXP1. Moreover, FOXP1 silencing via lentivirus or adeno-associated virus (AAV)-mediated delivery of shRNA suppressed osteosarcoma development and progression in cell-derived and patient-derived xenograft animal models. Taken together, we demonstrate that FOXP1, which is transactivated by ERK/JNK-c-JUN/c-FOS, drives osteosarcoma development by regulating the p53-P21/RB signaling cascade, suggesting that FOXP1 is a potential target for osteosarcoma therapy.
Collapse
|
21
|
León Machado JA, Steimle V. The MHC Class II Transactivator CIITA: Not (Quite) the Odd-One-Out Anymore among NLR Proteins. Int J Mol Sci 2021; 22:1074. [PMID: 33499042 PMCID: PMC7866136 DOI: 10.3390/ijms22031074] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/15/2021] [Accepted: 01/19/2021] [Indexed: 12/14/2022] Open
Abstract
In this review, we discuss the major histocompatibility complex (MHC) class II transactivator (CIITA), which is the master regulator of MHC class II gene expression. CIITA is the founding member of the mammalian nucleotide-binding and leucine-rich-repeat (NLR) protein family but stood apart for a long time as the only transcriptional regulator. More recently, it was found that its closest homolog, NLRC5 (NLR protein caspase activation and recruitment domain (CARD)-containing 5), is a regulator of MHC-I gene expression. Both act as non-DNA-binding activators through multiple protein-protein interactions with an MHC enhanceosome complex that binds cooperatively to a highly conserved combinatorial cis-acting module. Thus, the regulation of MHC-II expression is regulated largely through the differential expression of CIITA. In addition to the well-defined role of CIITA in MHC-II GENE regulation, we will discuss several other aspects of CIITA functions, such as its role in cancer, its role as a viral restriction element contributing to intrinsic immunity, and lastly, its very recently discovered role as an inhibitor of Ebola and SARS-Cov-2 virus replication. We will briefly touch upon the recently discovered role of NLRP3 as a transcriptional regulator, which suggests that transcriptional regulation is, after all, not such an unusual feature for NLR proteins.
Collapse
Affiliation(s)
| | - Viktor Steimle
- Département de Biologie, Université de Sherbrooke, 2500 Boul., Sherbrooke, QC J1K 2R1, Canada;
| |
Collapse
|
22
|
Gao J, Geng R, Deng H, Zuo H, Weng S, He J, Xu X. A Novel Forkhead Box Protein P (FoxP) From Litopenaeus vannamei Plays a Positive Role in Immune Response. Front Immunol 2021; 11:593987. [PMID: 33381114 PMCID: PMC7768020 DOI: 10.3389/fimmu.2020.593987] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 11/04/2020] [Indexed: 11/22/2022] Open
Abstract
The forkhead box protein P (FoxP) family members have been known to be important for regulation of immune responses in vertebrates, but their roles in invertebrate immunity remain unclear. In this study, a novel FoxP gene (LvFoxP) was identified from Pacific white shrimp Litopenaeus vannamei and functionally studied in the context of immune response. Possessing a conserved FoxP coiled-coil domain and a forkhead domain, LvFoxP shared homology to vertebrate FoxP family members, in particular FoxP1. Expression of LvFoxP was detectable in all the examined tissues and could be up-regulated by immune challenge in gill and hemocytes. The LvFoxP protein was present in both the cytoplasm and nucleus of hemocytes and could be nuclear-translocated upon immune stimulation. Silencing of LvFoxP increased the susceptibility of shrimp to infections by Vibrio parahaemolyticus and white spot syndrome virus (WSSV) and down-regulated the expression of multiple components of NF-κB and JAK-STAT pathways and almost all the examined immune effector genes. Moreover, the phagocytic activity of hemocytes from LvFoxP-silenced shrimp against V. parahaemolyticus was decreased. These suggested that LvFoxP could play a positive role in immune response. The current study may provide novel insights into the immunity of invertebrates and the functional evolution of the FoxP family.
Collapse
Affiliation(s)
- Jiefeng Gao
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Ran Geng
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Hengwei Deng
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China.,Institute of Aquatic Economic Animals and Guangdong Provice Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, China
| | - Hongliang Zuo
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China.,Institute of Aquatic Economic Animals and Guangdong Provice Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, China
| | - Shaoping Weng
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China.,Institute of Aquatic Economic Animals and Guangdong Provice Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, China
| | - Jianguo He
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China.,Institute of Aquatic Economic Animals and Guangdong Provice Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, China
| | - Xiaopeng Xu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China.,Institute of Aquatic Economic Animals and Guangdong Provice Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
23
|
Luo Y, Liu F, Ma J, Fu Y, Gui R. A novel epigenetic regulation of circFoxp1 on Foxp1 in colon cancer cells. Cell Death Dis 2020; 11:782. [PMID: 32951006 PMCID: PMC7502072 DOI: 10.1038/s41419-020-03007-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 09/07/2020] [Accepted: 09/09/2020] [Indexed: 01/17/2023]
Abstract
Foxp1 is a tumor suppressor in colon cancer. However, circFoxp1 derived from Foxp1 is an oncogene. In this study, we aim to investigate the role of circFoxp1 in colon cancer and the regulatory mechanism between circFoxp1 and Foxp1. 78 human colon tumor tissues and the matched paracancerous tissues were collected. Quantitative polymerase chain reaction, immunohistochemistry, quantitative methylation-specific PCR, chromatin immunoprecipitation assay, CCK-8 assay, and Tumor xenograft in nude mice were performed. The expression of circFoxp1 was increased and Foxp1 was reduced in colon cancer tissues, which were associated with a poor overall survival rate of the patients with colon cancer. CircFoxp1 recruited DNMT1 to the promoter of Foxp1, leading to promotor hypermethylation, thereby inhibiting Foxp1 transcription. Interfering circFoxp1 by siRNA in SW620 cells significantly inhibited cell viability, while knockdown Foxp1 expression partially restored SW620 cell viability. In addition, knockdown of circFoxp1 significantly sensitized colon cancer cells to Capecitabine in vitro and vivo through regulating Foxp1. We discovered a novel epigenetic pathway that circFoxp1 regulated Foxp1 in colon cancer cells. CircFoxp1 may regulate DNA methylation and demethylation to coordinate colon cancer cell proliferation and participate in chemotherapy drug responses. Therefore, circFoxp1 may be a potential therapeutic target for colon cancer.
Collapse
Affiliation(s)
- Yanwei Luo
- Department of Blood Transfusion, the Third Xiangya Hospital of Central South University, 410013, Changsha, Hunan, China
| | - Fengxia Liu
- Department of Blood Transfusion, the Third Xiangya Hospital of Central South University, 410013, Changsha, Hunan, China
| | - Jinqi Ma
- Department of Blood Transfusion, the Third Xiangya Hospital of Central South University, 410013, Changsha, Hunan, China
| | - Yunfeng Fu
- Department of Blood Transfusion, the Third Xiangya Hospital of Central South University, 410013, Changsha, Hunan, China.
| | - Rong Gui
- Department of Blood Transfusion, the Third Xiangya Hospital of Central South University, 410013, Changsha, Hunan, China.
| |
Collapse
|
24
|
Wong KK, Hussain FA. TRPM4 is overexpressed in breast cancer associated with estrogen response and epithelial-mesenchymal transition gene sets. PLoS One 2020; 15:e0233884. [PMID: 32484822 PMCID: PMC7266295 DOI: 10.1371/journal.pone.0233884] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 05/14/2020] [Indexed: 12/24/2022] Open
Abstract
Ion channels form an important class of drug targets in malignancies. Transient receptor potential cation channel subfamily M member 4 (TRPM4) plays oncological roles in various solid tumors. Herein, we examined TRPM4 protein expression profile by immunohistochemistry (IHC) in breast cancer cases compared with normal breast ducts, its association with clinico-demographical parameters, and its potential function in breast cancers by Gene Set Enrichment Analysis (GSEA). Data-mining demonstrated that TRPM4 transcript levels were significantly higher in The Cancer Genome Atlas series of breast cancer cases (n = 1,085) compared with normal breast tissues (n = 112) (p = 1.03 x 10−11). Our IHC findings in tissue microarrays showed that TRPM4 protein was overexpressed in breast cancers (n = 83/99 TRPM4+; 83.8%) compared with normal breast ducts (n = 5/10 TRPM4+; 50%) (p = 0.022). Higher TRPM4 expression (median frequency cut-off) was significantly associated with higher lymph node status (N1-N2 vs N0; p = 0.024) and higher stage (IIb-IIIb vs I-IIa; p = 0.005). GSEA evaluation in three independent gene expression profiling (GEP) datasets of breast cancer cases (GSE54002, n = 417; GSE20685, n = 327; GSE23720, n = 197) demonstrated significant association of TRPM4 transcript expression with estrogen response and epithelial-mesenchymal transition (EMT) gene sets (p<0.01 and false discovery rate<0.05). These gene sets were not enriched in GEP datasets of normal breast epithelium cases (GSE10797, n = 5; GSE9574, n = 15; GSE20437, n = 18). In conclusion, TRPM4 protein expression is upregulated in breast cancers associated with worse clinico-demographical parameters, and TRPM4 potentially regulates estrogen receptor signaling and EMT progression in breast cancer.
Collapse
Affiliation(s)
- Kah Keng Wong
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
- * E-mail:
| | - Faezahtul Arbaeyah Hussain
- Department of Pathology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| |
Collapse
|
25
|
Platform independent protein-based cell-of-origin subtyping of diffuse large B-cell lymphoma in formalin-fixed paraffin-embedded tissue. Sci Rep 2020; 10:7876. [PMID: 32398793 PMCID: PMC7217957 DOI: 10.1038/s41598-020-64212-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 04/09/2020] [Indexed: 01/03/2023] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is commonly classified by gene expression profiling according to its cell of origin (COO) into activated B-cell (ABC)-like and germinal center B-cell (GCB)-like subgroups. Here we report the application of label-free nano-liquid chromatography - Sequential Window Acquisition of all THeoretical fragment-ion spectra - mass spectrometry (nanoLC-SWATH-MS) to the COO classification of DLBCL in formalin-fixed paraffin-embedded (FFPE) tissue. To generate a protein signature capable of predicting Affymetrix-based GCB scores, the summed log2-transformed fragment ion intensities of 780 proteins quantified in a training set of 42 DLBCL cases were used as independent variables in a penalized zero-sum elastic net regression model with variable selection. The eight-protein signature obtained showed an excellent correlation (r = 0.873) between predicted and true GCB scores and yielded only 9 (21.4%) minor discrepancies between the three classifications: ABC, GCB, and unclassified. The robustness of the model was validated successfully in two independent cohorts of 42 and 31 DLBCL cases, the latter cohort comprising only patients aged >75 years, with Pearson correlation coefficients of 0.846 and 0.815, respectively, between predicted and NanoString nCounter based GCB scores. We further show that the 8-protein signature is directly transferable to both a triple quadrupole and a Q Exactive quadrupole-Orbitrap mass spectrometer, thus obviating the need for proprietary instrumentation and reagents. This method may therefore be used for robust and competitive classification of DLBCLs on the protein level.
Collapse
|
26
|
Felce SL, Anderson AP, Maguire S, Gascoyne DM, Armstrong RN, Wong KK, Li D, Banham AH. CRISPR/Cas9-Mediated Foxp1 Silencing Restores Immune Surveillance in an Immunocompetent A20 Lymphoma Model. Front Oncol 2020; 10:448. [PMID: 32309216 PMCID: PMC7145990 DOI: 10.3389/fonc.2020.00448] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 03/13/2020] [Indexed: 11/13/2022] Open
Abstract
The interaction of lymphoma cells with their microenvironment has an important role in disease pathogenesis and is being actively pursued therapeutically using immunomodulatory drugs, including immune checkpoint inhibitors. Diffuse large B-cell lymphoma (DLBCL) is an aggressive high-grade disease that remains incurable in ~40% of patients treated with R-CHOP immunochemotherapy. The FOXP1 transcription factor is abundantly expressed in such high-risk DLBCL and we recently identified its regulation of immune response signatures, in particular, its suppression of the cell surface expression of major histocompatibility class II (MHC-II), which has a critical role in antigen presentation to T cells. Using CRISPR/Cas9 genome editing we have depleted Foxp1 expression in the aggressive murine A20 lymphoma cell line. When grown in BALB/c mice, this cell line provides a high-fidelity immunocompetent disseminated lymphoma model that displays many characteristics of human DLBCL. Transient Foxp1-depletion using siRNA, and stable depletion using CRISPR (generated by independently targeting Foxp1 exon six or seven) upregulated cell surface I-Ab (MHC-II) expression without impairing cell viability in vitro. RNA sequencing of Foxp1-depleted A20 clones identified commonly deregulated genes, such as the B-cell marker Cd19, and hallmark DLBCL signatures such as MYC-targets and oxidative phosphorylation. Immunocompetent animals bearing Foxp1-depleted A20 lymphomas showed significantly-improved survival, and 20% did not develop tumors; consistent with modulating immune surveillance, this was not observed in immunodeficient NOD SCIDγ mice. The A20 Foxp1 CRISPR model will help to further characterize the contribution of Foxp1 to lymphoma immune evasion and the potential for Foxp1 targeting to synergize with other immunotherapies.
Collapse
Affiliation(s)
- Suet Ling Felce
- NDCLS, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Amanda P. Anderson
- NDCLS, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Shaun Maguire
- NDCLS, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Duncan M. Gascoyne
- NDCLS, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Richard N. Armstrong
- NDCLS, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
- Genetics and Genome Biology Program, Haematology Section, Division of Haematology/Oncology, Department of Paediatrics, The Hospital for Sick Children, Toronto, ON, Canada
- The Marrow Failure and Myelodysplasia Program, Haematology Section, Division of Haematology/Oncology, Department of Paediatrics, The Hospital for Sick Children, Toronto, ON, Canada
| | - Kah Keng Wong
- Department of Immunology, School of Medical Sciences, Health, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Demin Li
- NDCLS, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Alison H. Banham
- NDCLS, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
27
|
Guan X, Guan Z, Song C. Expression profile analysis identifies key genes as prognostic markers for metastasis of osteosarcoma. Cancer Cell Int 2020; 20:104. [PMID: 32256213 PMCID: PMC7106759 DOI: 10.1186/s12935-020-01179-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 03/17/2020] [Indexed: 12/16/2022] Open
Abstract
Background OS is the most common malignant tumor of bone which was featured with osteoid or immature bone produced by the malignant cells, and biomarkers are urgently needed to identify patients with this aggressive disease. Methods We downloaded gene expression profiles from GEO and TARGET datasets for OS, respectively, and performed WGCNA to identify the key module. Whereafter, functional annotation and GSEA demonstrated the relationships between target genes and OS. Results In this study, we discovered four key genes-ALOX5AP, HLA-DMB, HLA-DRA and SPINT2 as new prognostic markers and confirmed their relationship with OS metastasis in the validation set. Conclusions In conclusion, ALOX5AP, HLA-DMB, HLA-DRA and SPINT2 were identified by bioinformatics analysis as possible prognostic markers for OS metastasis.
Collapse
Affiliation(s)
- Xiaoqing Guan
- 1Center for Cancer Bioinformatics, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| | - Zhiyuan Guan
- 2Department of Orthopaedics, Peking University Third Hospital, Beijing, China.,Beijing Key Laboratory of Spinal Diseases, 49 North Garden Rd Haidian District, Beijing, China
| | - Chunli Song
- 2Department of Orthopaedics, Peking University Third Hospital, Beijing, China.,Beijing Key Laboratory of Spinal Diseases, 49 North Garden Rd Haidian District, Beijing, China
| |
Collapse
|
28
|
Insulin resistance in obese adolescents affects the expression of genes associated with immune response. Endocr Regul 2020; 53:71-82. [PMID: 31517622 DOI: 10.2478/enr-2019-0009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVE The development of obesity and its metabolic complications is associated with dysregulation of various intrinsic mechanisms, which control basic metabolic processes through changes in the expression of numerous regulatory genes. METHODS The expression level of HLA-DRA, HLA-DRB1, HLA-G, HLA-F, and NFX1 genes as well as miR-190b was measured in the blood of obese adolescents without signs of resistance to insulin and with insulin resistance in comparison with the group of relative healthy control individuals without signs of obesity. RESULTS It was shown that obesity without signs of insulin resistance is associated with upregulation of the expression level of HLA-DRA and HLA-DRB1 genes, but with down-regulation of HLA-G gene expression in the blood as compared to control group of relative healthy adolescents. At the same time, no significant changes were observed in the expression level of HLA-F and NFX1 genes in the blood of this group of obese adolescents. Development of insulin resistance in obese individuals leads to significant down-regulation of HLA-DRA, HLA-DRB1, HLA-G, and HLA-F gene expressions as well as to up-regulation of NFX1 gene as well as microRNA miR-190b in the blood as compared to obese patients without signs of insulin resistance. CONCLUSIONS Results of this study provide evidence that obesity affects the expression of the subset of genes related to immune response in the blood and that development of insulin resistance in obese adolescents is associated with strong down-regulation of the expressions of HLA-DRA, HLA-DRB1, HLA-F, and HLA-G genes, which may be contribute to the development of obesity complications. It is possible that transcription factor NFX1 and miR-190b participate in downregulation of HLA-DRA gene expression in the blood of obese adolescents with insulin resistance.
Collapse
|
29
|
Sun F, Fang X, Wang X. Signal Pathways and Therapeutic Prospects of Diffuse Large B Cell Lymphoma. Anticancer Agents Med Chem 2020; 19:2047-2059. [PMID: 32009599 DOI: 10.2174/1871520619666190925143216] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 05/18/2019] [Accepted: 07/18/2019] [Indexed: 01/29/2023]
Abstract
BACKGROUND Diffuse Large B Cell Lymphoma (DLBCL) is the most common type of non-Hodgkin lymphoma which is heterogeneous both clinically and morphologically. Over the past decades, significant advances have been made in the understanding of the molecular genesis, leading to the identification of multiple pathways and molecules that can be targeted for clinical benefit. OBJECTIVE The current review aims to present a brief overview of signal pathways of DLBCL, which mainly focus on B-cell antigen Receptor (BCR), Nuclear Factor-κB (NF-κB), Phosphatidylinositol-3-Kinase (PI3K) - protein kinase B (Akt) - mammalian Target of Rapamycin (mTOR), Janus Kinase (JAK) - Signal Transducer and Activator (STAT), Wnt/β-catenin, and P53 pathways. METHODS Activation of signal pathways may contribute to the generation, development, chemotherapy sensitivity of DLBCL, and expression of pathway molecules is associated with the prognosis of DLBCL. Some agents targeting these pathways have been proved effective and relevant clinical trials are in progress. These agents used single or combined with chemotherapy/each other might raise the possibility of improving clinical outcomes in DLBCL. CONCLUSION This review presents several signal pathways of DLBCL and targeted agents had a tendency to improve the curative effect, especially in high-risk or relapsed/refractory DLBCL.
Collapse
Affiliation(s)
- Feifei Sun
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, No.324, Jingwu Road, Jinan, Shandong 250021, China
| | - Xiaosheng Fang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, No.324, Jingwu Road, Jinan, Shandong 250021, China
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, No.324, Jingwu Road, Jinan, Shandong 250021, China.,Shandong University School of Medicine, Jinan, Shandong 250012, China
| |
Collapse
|
30
|
Kim JH, Hwang J, Jung JH, Lee HJ, Lee DY, Kim SH. Molecular networks of FOXP family: dual biologic functions, interplay with other molecules and clinical implications in cancer progression. Mol Cancer 2019; 18:180. [PMID: 31815635 PMCID: PMC6900861 DOI: 10.1186/s12943-019-1110-3] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 11/25/2019] [Indexed: 02/06/2023] Open
Abstract
Though Forkhead box P (FOXP) transcription factors comprising of FOXP1, FOXP2, FOXP3 and FOXP4 are involved in the embryonic development, immune disorders and cancer progression, the underlying function of FOXP3 targeting CD4 + CD25+ regulatory T (Treg) cells and the dual roles of FOXP proteins as an oncogene or a tumor suppressor are unclear and controversial in cancers to date. Thus, the present review highlighted research history, dual roles of FOXP proteins as a tumor suppressor or an oncogene, their molecular networks with other proteins and noncoding RNAs, cellular immunotherapy targeting FOXP3, and clinical implications in cancer progression.
Collapse
Affiliation(s)
- Ju-Ha Kim
- Cancer Molecular Target Herbal Research Lab, College of Korean Medicine, Kyung Hee university, 1 Hoegi-dong, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Jisung Hwang
- Cancer Molecular Target Herbal Research Lab, College of Korean Medicine, Kyung Hee university, 1 Hoegi-dong, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Ji Hoon Jung
- Cancer Molecular Target Herbal Research Lab, College of Korean Medicine, Kyung Hee university, 1 Hoegi-dong, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Hyo-Jung Lee
- Cancer Molecular Target Herbal Research Lab, College of Korean Medicine, Kyung Hee university, 1 Hoegi-dong, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Dae Young Lee
- Department of Herbal Crop Research, Rural Development Administration, National Institute of Horticultural and Herbal Science, Eumseong, 27709, Republic of Korea
| | - Sung-Hoon Kim
- Cancer Molecular Target Herbal Research Lab, College of Korean Medicine, Kyung Hee university, 1 Hoegi-dong, Dongdaemun-gu, Seoul, 02447, Republic of Korea.
| |
Collapse
|
31
|
Expression and prognostic value of FOXP1 in esophageal squamous cell carcinoma. Pathol Res Pract 2019; 215:152645. [DOI: 10.1016/j.prp.2019.152645] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 09/02/2019] [Accepted: 09/15/2019] [Indexed: 11/22/2022]
|
32
|
Mulder TA, Wahlin BE, Österborg A, Palma M. Targeting the Immune Microenvironment in Lymphomas of B-Cell Origin: From Biology to Clinical Application. Cancers (Basel) 2019; 11:cancers11070915. [PMID: 31261914 PMCID: PMC6678966 DOI: 10.3390/cancers11070915] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 06/21/2019] [Accepted: 06/25/2019] [Indexed: 02/08/2023] Open
Abstract
In lymphomas of B-cell origin, cancer cells orchestrate an inflammatory microenvironment of immune and stromal cells that sustain the tumor cell survival and growth, known as a tumor microenvironment (TME). The features of the TME differ between the different lymphoma types, ranging from extremely inflammatory, such as in Hodgkin lymphoma, to anergic, leading to immune deficiency and susceptibility to infections, such as in chronic lymphocytic leukemia. Understanding the characteristic features of the TME as well as the interactions between cancer and TME cells has given insight into the pathogenesis of most lymphomas and contributed to identify novel therapeutic targets. Here, we summarize the preclinical data that contributed to clarifying the role of the immune cells in the TME of different types of lymphomas of B-cell origin, and explain how the understanding of the biological background has led to new clinical applications. Moreover, we provide an overview of the clinical results of trials that assessed the safety and efficacy of drugs directly targeting TME immune cells in lymphoma patients.
Collapse
Affiliation(s)
- Tom A Mulder
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Björn E Wahlin
- Department of Hematology, Karolinska University Hospital, Stockholm, Sweden
| | - Anders Österborg
- Department of Hematology, Karolinska University Hospital, Stockholm, Sweden
| | - Marzia Palma
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.
- Department of Hematology, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
33
|
Wei X, Li S, He J, Du H, Liu Y, Yu W, Hu H, Han L, Wang C, Li H, Shi X, Zhan M, Lu L, Yuan S, Sun L. Tumor-secreted PAI-1 promotes breast cancer metastasis via the induction of adipocyte-derived collagen remodeling. Cell Commun Signal 2019; 17:58. [PMID: 31170987 PMCID: PMC6554964 DOI: 10.1186/s12964-019-0373-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 05/17/2019] [Indexed: 12/27/2022] Open
Abstract
Background Breast cancer cells recruit surrounding stromal cells, such as cancer-associated fibroblasts (CAFs), to remodel collagen and promote tumor metastasis. Adipocytes are the most abundant stromal partners in breast tissue, local invasion of breast cancer leads to the proximity of cancer cells and adipocytes, which respond to generate cancer-associated adipocytes (CAAs). These cells exhibit enhanced secretion of extracellular matrix related proteins, including collagens. However, the role of adipocyte-derived collagen on breast cancer progression still remains unclear. Methods Adipocytes were cocultured with breast cancer cells for 3D collagen invasion and collagen organization exploration. Breast cancer cells and adipose tissue co- implanted mouse model, clinical breast cancer samples analysis were used to study the crosstalk between adipose and breast cancer cells in vivo. A combination of proteomics, enzyme-linked immunosorbent assay, loss of function assay, qPCR, western blot, database analysis and chromatin immunoprecipitation assays were performed to study the mechanism mediated the activation of PLOD2 in adipocytes. Results It was found that CAAs remodeled collagen alignment during crosstalk with breast cancer cells in vitro and in vivo, which further promoted breast cancer metastasis. Tumor-derived PAI-1 was required to activate the expression of the intracellular enzyme procollagen-lysine, 2-oxoglutarate 5-dioxygenase 2 (PLOD2) in CAAs. Pharmacologic blockade of PAI-1 or PLOD2 disrupted the collagen reorganization in CAAs. Mechanistically, it was observed that PI3K/AKT pathway was activated in adipocytes upon co-culturing with breast cancer cells or treatment with recombinant PAI-1, which could promote the translocation of transcription factor FOXP1 into the nucleus and further enhanced the promoter activity of PLOD2 in CAAs. In addition, collagen reorganization at the tumor-adipose periphery, as well as the positive relevance between PAI-1 and PLOD2 in invasive breast carcinoma were confirmed in clinical specimens of breast cancer. Conclusion In summary, our findings revealed a new stromal collagen network that favors tumor invasion and metastasis establish between breast cancer cells and surrounding adipocytes at the tumor invasive front, and identified PLOD2 as a therapeutic target for metastatic breast cancer treatment. Electronic supplementary material The online version of this article (10.1186/s12964-019-0373-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiaohui Wei
- Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, No. 24, Tongjiaxiang, Nanjing, China
| | - Sijing Li
- Jiangsu Key laboratory of Drug Screening, China Pharmaceutical University, No.24, Tongjiaxiang, Nanjing, China
| | - Jinyong He
- Jiangsu Key laboratory of Drug Screening, China Pharmaceutical University, No.24, Tongjiaxiang, Nanjing, China
| | - Hongzhi Du
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Yang Liu
- Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, No. 24, Tongjiaxiang, Nanjing, China
| | - Wei Yu
- Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, No. 24, Tongjiaxiang, Nanjing, China
| | - Haolin Hu
- Breast Disease Center, Zhong-Da Hospital, Southeast University, Nanjing, China
| | - Lifei Han
- Breast Disease Center, Zhong-Da Hospital, Southeast University, Nanjing, China
| | - Chenfei Wang
- Breast Disease Center, Zhong-Da Hospital, Southeast University, Nanjing, China
| | - Hongyang Li
- Institute of Dermatology, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Xin Shi
- Department of General Surgery, Zhong-Da Hospital, Southeast University, Nanjing, China
| | - Meixiao Zhan
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital of Jinan University, Zhuhai, Guangdong, China
| | - Ligong Lu
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital of Jinan University, Zhuhai, Guangdong, China
| | - Shengtao Yuan
- Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, No. 24, Tongjiaxiang, Nanjing, China.
| | - Li Sun
- Jiangsu Key laboratory of Drug Screening, China Pharmaceutical University, No.24, Tongjiaxiang, Nanjing, China.
| |
Collapse
|
34
|
PD-1/PD-L1 immune checkpoint and p53 loss facilitate tumor progression in activated B-cell diffuse large B-cell lymphomas. Blood 2019; 133:2401-2412. [PMID: 30975638 DOI: 10.1182/blood.2018889931] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 04/04/2019] [Indexed: 12/19/2022] Open
Abstract
Refractory or relapsed diffuse large B-cell lymphoma (DLBCL) often associates with the activated B-cell-like (ABC) subtype and genetic alterations that drive constitutive NF-κB activation and impair B-cell terminal differentiation. Here, we show that DNA damage response by p53 is a central mechanism suppressing the pathogenic cooperation of IKK2ca-enforced canonical NF-κB and impaired differentiation resulting from Blimp1 loss in ABC-DLBCL lymphomagenesis. We provide evidences that the interplay between these genetic alterations and the tumor microenvironment select for additional molecular addictions that promote lymphoma progression, including aberrant coexpression of FOXP1 and the B-cell mutagenic enzyme activation-induced deaminase, and immune evasion through major histocompatibility complex class II downregulation, PD-L1 upregulation, and T-cell exhaustion. Consistently, PD-1 blockade cooperated with anti-CD20-mediated B-cell cytotoxicity, promoting extended T-cell reactivation and antitumor specificity that improved long-term overall survival in mice. Our data support a pathogenic cooperation among NF-κB-driven prosurvival, genetic instability, and immune evasion mechanisms in DLBCL and provide preclinical proof of concept for including PD-1/PD-L1 blockade in combinatorial immunotherapy for ABC-DLBCL.
Collapse
|
35
|
Sha C, Barrans S, Cucco F, Bentley MA, Care MA, Cummin T, Kennedy H, Thompson JS, Uddin R, Worrillow L, Chalkley R, van Hoppe M, Ahmed S, Maishman T, Caddy J, Schuh A, Mamot C, Burton C, Tooze R, Davies A, Du MQ, Johnson PW, Westhead DR. Molecular High-Grade B-Cell Lymphoma: Defining a Poor-Risk Group That Requires Different Approaches to Therapy. J Clin Oncol 2019; 37:202-212. [PMID: 30523719 PMCID: PMC6338391 DOI: 10.1200/jco.18.01314] [Citation(s) in RCA: 200] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2018] [Indexed: 12/12/2022] Open
Abstract
PURPOSE Biologic heterogeneity is a feature of diffuse large B-cell lymphoma (DLBCL), and the existence of a subgroup with poor prognosis and phenotypic proximity to Burkitt lymphoma is well known. Conventional cytogenetics identifies some patients with rearrangements of MYC and BCL2 and/or BCL6 (double-hit lymphomas) who are increasingly treated with more intensive chemotherapy, but a more biologically coherent and clinically useful definition of this group is required. PATIENTS AND METHODS We defined a molecular high-grade (MHG) group by applying a gene expression-based classifier to 928 patients with DLBCL from a clinical trial that investigated the addition of bortezomib to standard rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP) therapy. The prognostic significance of MHG was compared with existing biomarkers. We performed targeted sequencing of 70 genes in 400 patients and explored molecular pathology using gene expression signature databases. Findings were validated in an independent data set. RESULTS The MHG group comprised 83 patients (9%), with 75 in the cell-of-origin germinal center B-cell-like group. MYC rearranged and double-hit groups were strongly over-represented in MHG but comprised only one half of the total. Gene expression analysis revealed a proliferative phenotype with a relationship to centroblasts. Progression-free survival rate at 36 months after R-CHOP in the MHG group was 37% (95% CI, 24% to 55%) compared with 72% (95% CI, 68% to 77%) for others, and an analysis of treatment effects suggested a possible positive effect of bortezomib. Double-hit lymphomas lacking the MHG signature showed no evidence of worse outcome than other germinal center B-cell-like cases. CONCLUSION MHG defines a biologically coherent high-grade B-cell lymphoma group with distinct molecular features and clinical outcomes that effectively doubles the size of the poor-prognosis, double-hit group. Patients with MHG may benefit from intensified chemotherapy or novel targeted therapies.
Collapse
MESH Headings
- Antibodies, Monoclonal, Murine-Derived/administration & dosage
- Antineoplastic Combined Chemotherapy Protocols/administration & dosage
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Bortezomib/administration & dosage
- Cyclophosphamide/administration & dosage
- Databases, Genetic
- Doxorubicin/administration & dosage
- Female
- Humans
- Lymphoma, Large B-Cell, Diffuse/drug therapy
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/metabolism
- Lymphoma, Large B-Cell, Diffuse/pathology
- Male
- Middle Aged
- Neoplasm Grading
- Prednisone/administration & dosage
- Proportional Hazards Models
- Randomized Controlled Trials as Topic
- Retrospective Studies
- Rituximab/administration & dosage
- Transcriptome
- Vincristine/administration & dosage
Collapse
Affiliation(s)
- Chulin Sha
- University of Leeds, Leeds, United Kingdom
| | | | | | | | | | - Thomas Cummin
- Cancer Research UK Centre and Southampton Clinical Trials Unit, University of Southampton, Southampton, United Kingdom
| | | | | | | | | | | | | | | | - Tom Maishman
- Cancer Research UK Centre and Southampton Clinical Trials Unit, University of Southampton, Southampton, United Kingdom
| | - Josh Caddy
- Cancer Research UK Centre and Southampton Clinical Trials Unit, University of Southampton, Southampton, United Kingdom
| | - Anna Schuh
- University of Oxford, Oxford, United Kingdom
| | - Christoph Mamot
- Cantonal Hospital Aarau, Aarau/Swiss Group for Clinical Cancer Research, Switzerland
| | | | | | - Andrew Davies
- Cancer Research UK Centre and Southampton Clinical Trials Unit, University of Southampton, Southampton, United Kingdom
| | - Ming-Qing Du
- University of Cambridge, Cambridge, United Kingdom
| | - Peter W.M. Johnson
- Cancer Research UK Centre and Southampton Clinical Trials Unit, University of Southampton, Southampton, United Kingdom
| | | |
Collapse
|
36
|
De Silva P, Garaud S, Solinas C, de Wind A, Van den Eyden G, Jose V, Gu-Trantien C, Migliori E, Boisson A, Naveaux C, Duvillier H, Craciun L, Larsimont D, Piccart-Gebhart M, Willard-Gallo K. FOXP1 negatively regulates tumor infiltrating lymphocyte migration in human breast cancer. EBioMedicine 2018; 39:226-238. [PMID: 30579865 PMCID: PMC6354712 DOI: 10.1016/j.ebiom.2018.11.066] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 11/30/2018] [Accepted: 11/30/2018] [Indexed: 11/16/2022] Open
Abstract
Background FOXP1, a transcriptional regulator of lymphocyte development, is abnormally expressed in some human tumors. This study investigated FOXP1-mediated regulation of tumor infiltrating lymphocytes (TIL) in untreated primary breast cancer (BC). Methods FOXP1 expression was analyzed in tissues from primary untreated breast tumors, BC cell lines and the METABRIC gene expression BC dataset. Cytokine and chemokine expression and lymphocyte migration in response to primary tumor supernatants (SN) was compared between FOXP1hi and FOXP1lo primary BC. Finding FOXP1 expression was higher in estrogen receptor positive compared to negative BC. FOXP1hi tumors were significantly associated with lower TIL and fewer tertiary lymphoid structures (TLS) compared to FOXP1lo BC. Silencing FOXP1 in BC cell lines positively impacted cytokine and chemokine expression with the inverse effect associated with overexpression. CXCL9, CXCL10, CXCL11, CXCL13, CX3CL, CCL20, IL2, IL21, GZMB and IFNG expression decreased while IL10 and TGFβ increased in FOXP1hi compared to FOXP1lo primary BC. Lymphocyte migration using primary BC supernatants detected decreased mobility toward FOXP1hi supernatants. FOXP1lo BC expresses higher levels of chemokines driving TIL migration. The METABRIC gene expression dataset analysis show FOXP1 expression is associated with unfavorable BC outcomes. Interpretation These data identify FOXP1 as an important negative regulator of immune responses in BC via its regulation of cytokine and chemokine expression. Fund Belgian Fund for Scientific Research (FNRS 3.4513.12F) and Opération Télévie (7.4636.13F and 7.4609.15F), Fonds J.C. Heuson and Fonds Lambeau-Marteaux.
Collapse
Affiliation(s)
- Pushpamali De Silva
- Molecular Immunology Unit, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Soizic Garaud
- Molecular Immunology Unit, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Cinzia Solinas
- Molecular Immunology Unit, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Alexandre de Wind
- Department of Pathology, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Gert Van den Eyden
- Translational Cancer Research Unit Antwerp, Oncology Centre, General Hospital Sint Augustinus, Wilrijk, Belgium
| | - Vinu Jose
- Breast Cancer Translational Research Laboratory, J-C Heuson, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Chunyan Gu-Trantien
- Molecular Immunology Unit, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Edoardo Migliori
- Molecular Immunology Unit, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Anaïs Boisson
- Molecular Immunology Unit, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Céline Naveaux
- Molecular Immunology Unit, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Hugues Duvillier
- Flow Cytometry Core Facility, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Ligia Craciun
- Department of Pathology, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Denis Larsimont
- Department of Pathology, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Martine Piccart-Gebhart
- Department of Medicine, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Karen Willard-Gallo
- Molecular Immunology Unit, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium.
| |
Collapse
|
37
|
Minchenko OH, Tsymbal DO, Minchenko DO, Prylutska SV, Hnatiuk OS, Prylutskyy YI, Tsierkezos NG, Ritter U. Single-walled carbon nanotubes affect the expression of genes associated with immune response in normal human astrocytes. Toxicol In Vitro 2018; 52:122-130. [PMID: 29906516 DOI: 10.1016/j.tiv.2018.06.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 06/02/2018] [Accepted: 06/08/2018] [Indexed: 12/11/2022]
Abstract
The effect of single-walled carbon nanotubes (SWCNTs) on the expression of a subset of immune response, apoptosis and cell proliferation -associated genes was studied in normal human astrocytes (line NHA/TS). In the cells treated with SWCNTs (2, 10 and 50 ng/ml of medium for 24 h) we observed a strong dose-dependent down-regulation of the expression of a cell surface glycoproteins HLA-DRA (major histocompatibility complex, class II, DR alpha) and HLA-DRB1. At the same time, the expression of HLA-F (major histocompatibility complex, class I, F), LMNB1 (lamin B1), and HTRA1 (high temperature requirement A1) genes as well as the level of miR-190b and miR-7 was up-regulated in NHA/TS subjected to different concentrations of SWCNTs. After 24 h of treatment with SWCNTs we detected a dose-dependent suppression of PHLDA2 (pleckstrin homology-like domain, family A, member 2) gene expression in these cells. Obtained data show that SWCNTs may affect an immune response, in particular through suppression of HLA-DRA and HLA-DRB1 gene expressions and that miR-190b and miR-7 possibly participated in this suppression. Deregulation of lamin B1 expression indicates the possibility of alterations in genome stability following treatment of astrocytes with SWCNTs. Thus, more caution is needed in biomedical application of SWCNTs.
Collapse
Affiliation(s)
- Oleksandr H Minchenko
- Department of Molecular Biology, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, 9 Leontovycha Str, Kyiv 01601, Ukraine.
| | - Dariia O Tsymbal
- Department of Molecular Biology, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, 9 Leontovycha Str, Kyiv 01601, Ukraine
| | - Dmytro O Minchenko
- Department of Molecular Biology, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, 9 Leontovycha Str, Kyiv 01601, Ukraine; Department of Pediatrics, Bohomolets National Medical University, 13 Taras Shevchenko Blvd., Kyiv 01601, Ukraine
| | - Svitlana V Prylutska
- Taras Shevchenko National University of Kyiv, 64 Volodymyrska Str, 01601 Kyiv, Ukraine
| | - Oksana S Hnatiuk
- Department of Molecular Biology, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, 9 Leontovycha Str, Kyiv 01601, Ukraine
| | - Yuriy I Prylutskyy
- Taras Shevchenko National University of Kyiv, 64 Volodymyrska Str, 01601 Kyiv, Ukraine
| | - Nikos G Tsierkezos
- Technische Universität Ilmenau, Institut für Chemie und Biotechnik, 25 Weimarer Str., 98693 Ilmenau, Germany.
| | - Uwe Ritter
- Technische Universität Ilmenau, Institut für Chemie und Biotechnik, 25 Weimarer Str., 98693 Ilmenau, Germany
| |
Collapse
|
38
|
miR-150 downregulation contributes to the high-grade transformation of follicular lymphoma by upregulating FOXP1 levels. Blood 2018; 132:2389-2400. [PMID: 30213873 DOI: 10.1182/blood-2018-06-855502] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Accepted: 09/05/2018] [Indexed: 12/12/2022] Open
Abstract
Follicular lymphoma (FL) is a common indolent B-cell malignancy with a variable clinical course. An unfavorable event in its course is histological transformation to a high-grade lymphoma, typically diffuse large B-cell lymphoma. Recent studies show that genetic aberrations of MYC or its overexpression are associated with FL transformation (tFL). However, the precise molecular mechanisms underlying tFL are unclear. Here we performed the first profiling of expression of microRNAs (miRNAs) in paired samples of FL and tFL and identified 5 miRNAs as being differentially expressed. We focused on one of these miRNAs, namely miR-150, which was uniformly downmodulated in all examined tFLs (∼3.5-fold), and observed that high levels of MYC are responsible for repressing miR-150 in tFL by binding in its upstream region. This MYC-mediated repression of miR-150 in B cells is not dependent on LIN28A/B proteins, which influence the maturation of miR-150 precursor (pri-miR-150) in myeloid cells. We also demonstrated that low miR-150 levels in tFL lead to upregulation of its target, namely FOXP1 protein, which is a known positive regulator of cell survival, as well as B-cell receptor and NF-κB signaling in malignant B cells. We revealed that low levels of miR-150 and high levels of its target, FOXP1, are associated with shorter overall survival in FL and suggest that miR-150 could serve as a good biomarker measurable in formalin-fixed paraffin-embedded tissue. Overall, our study demonstrates the role of the MYC/miR-150/FOXP1 axis in malignant B cells as a determinant of FL aggressiveness and its high-grade transformation.
Collapse
|
39
|
de Charette M, Houot R. Hide or defend, the two strategies of lymphoma immune evasion: potential implications for immunotherapy. Haematologica 2018; 103:1256-1268. [PMID: 30006449 PMCID: PMC6068015 DOI: 10.3324/haematol.2017.184192] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 04/24/2018] [Indexed: 12/14/2022] Open
Abstract
Evading immune eradication is a prerequisite for neoplastic progression and one of the hallmarks of cancer. Here, we review the different immune escape strategies of lymphoma and classify them into two main mechanisms. First, lymphoma cells may “hide” to become invisible to the immune system. This can be achieved by losing or downregulating MHC and/or molecules involved in antigen presentation (including antigen processing machinery and adhesion molecules), thereby preventing their recognition by the immune system. Second, lymphoma cells may “defend” themselves to become resistant to immune eradication. This can be achieved in several ways: by becoming resistant to apoptosis, by expressing inhibitory ligands that deactivate immune cells and/or by inducing an immunosuppressive (humoral and cellular) microenvironment. These immune escape mechanisms may have therapeutic implications. Their identification may be used to guide “personalized immunotherapy” for lymphoma.
Collapse
Affiliation(s)
| | - Roch Houot
- CHU Rennes, Service Hématologie Clinique, F-35033, France .,INSERM, U1236, F-35043, France
| |
Collapse
|
40
|
Twa DD, Mottok A, Savage KJ, Steidl C. The pathobiology of primary testicular diffuse large B-cell lymphoma: Implications for novel therapies. Blood Rev 2018; 32:249-255. [DOI: 10.1016/j.blre.2017.12.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 11/19/2017] [Accepted: 12/19/2017] [Indexed: 02/07/2023]
|
41
|
Foxp1 controls mature B cell survival and the development of follicular and B-1 B cells. Proc Natl Acad Sci U S A 2018; 115:3120-3125. [PMID: 29507226 PMCID: PMC5866538 DOI: 10.1073/pnas.1711335115] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Many patients with B cell lymphoma carry alterations in the gene coding for the transcription factor Foxp1. High Foxp1 expression has been linked to poor prognosis in those malignancies; however, the physiological functions of Foxp1 in mature B cells remain unknown. By employing genetic mouse models, we show that Foxp1 deletion results in reduced B cell numbers and impaired antibody production upon T cell-independent immunization. Foxp1-deficient mature B cells are impaired in survival and exhibit an increased proliferation capacity, and transcriptional analysis identified defective expression of the prosurvival Bcl-xl gene. Our results provide insight into the regulation of mature B cell survival by Foxp1 and have implications for understanding the role of Foxp1 in the development of B cell malignancies. The transcription factor Foxp1 is critical for early B cell development. Despite frequent deregulation of Foxp1 in B cell lymphoma, the physiological functions of Foxp1 in mature B cells remain unknown. Here, we used conditional gene targeting in the B cell lineage and report that Foxp1 disruption in developing and mature B cells results in reduced numbers and frequencies of follicular and B-1 B cells and in impaired antibody production upon T cell-independent immunization in vivo. Moreover, Foxp1-deficient B cells are impaired in survival even though they exhibit an increased capacity to proliferate. Transcriptional analysis identified defective expression of the prosurvival Bcl-2 family gene Bcl2l1 encoding Bcl-xl in Foxp1-deficient B cells, and we identified Foxp1 binding in the regulatory region of Bcl2l1. Transgenic overexpression of Bcl2 rescued the survival defect in Foxp1-deficient mature B cells in vivo and restored peripheral B cell numbers. Thus, our results identify Foxp1 as a physiological regulator of mature B cell survival mediated in part via the control of Bcl-xl expression and imply that this pathway might contribute to the pathogenic function of aberrant Foxp1 expression in lymphoma.
Collapse
|
42
|
van der Meeren LE, Visser L, Diepstra A, Nijland M, van den Berg A, Kluin PM. Combined loss of HLA I and HLA II expression is more common in the non-GCB type of diffuse large B cell lymphoma. Histopathology 2018; 72:886-888. [DOI: 10.1111/his.13445] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Lotte E van der Meeren
- Department of Pathology and Medical Biology; University of Groningen; University Medical Centre Groningen; Groningen the Netherlands
- Department of Pathology; Erasmus MC; University Medical Center; Rotterdam the Netherlands
| | - Lydia Visser
- Department of Pathology and Medical Biology; University of Groningen; University Medical Centre Groningen; Groningen the Netherlands
| | - Arjan Diepstra
- Department of Pathology and Medical Biology; University of Groningen; University Medical Centre Groningen; Groningen the Netherlands
| | - Marcel Nijland
- Department of Hematology; University of Groningen; University Medical Centre Groningen; Groningen the Netherlands
| | - Anke van den Berg
- Department of Pathology and Medical Biology; University of Groningen; University Medical Centre Groningen; Groningen the Netherlands
| | - Philip M Kluin
- Department of Pathology and Medical Biology; University of Groningen; University Medical Centre Groningen; Groningen the Netherlands
| |
Collapse
|
43
|
Wong KK, Gascoyne DM, Soilleux EJ, Lyne L, Spearman H, Roncador G, Pedersen LM, Møller MB, Green TM, Banham AH. FOXP2-positive diffuse large B-cell lymphomas exhibit a poor response to R-CHOP therapy and distinct biological signatures. Oncotarget 2018; 7:52940-52956. [PMID: 27224915 PMCID: PMC5288160 DOI: 10.18632/oncotarget.9507] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 05/04/2016] [Indexed: 01/24/2023] Open
Abstract
FOXP2 shares partially overlapping normal tissue expression and functionality with FOXP1; an established diffuse large B-cell lymphoma (DLBCL) oncogene and marker of poor prognosis. FOXP2 is expressed in the plasma cell malignancy multiple myeloma but has not been studied in DLBCL, where a poor prognosis activated B-cell (ABC)-like subtype display partially blocked plasma cell differentiation. FOXP2 protein expression was detected in ABC-DLBCL cell lines, and in primary DLBCL samples tumoral FOXP2 protein expression was detected in both germinal center B-cell-like (GCB) and non-GCB DLBCL. In biopsies from DLBCL patients treated with immunochemotherapy (R-CHOP), ≥ 20% nuclear tumoral FOXP2-positivity (n = 24/158) correlated with significantly inferior overall survival (OS: P = 0.0017) and progression-free survival (PFS: P = 0.0096). This remained significant in multivariate analysis against either the international prognostic index score or the non-GCB DLBCL phenotype (P < 0.05 for both OS and PFS). Expression of BLIMP1, a marker of plasmacytic differentiation that is commonly inactivated in ABC-DLBCL, did not correlate with patient outcome or FOXP2 expression in this series. Increased frequency of FOXP2 expression significantly correlated with FOXP1-positivity (P = 0.0187), and FOXP1 co-immunoprecipitated FOXP2 from ABC-DLBCL cells indicating that these proteins can co-localize in a multi-protein complex. FOXP2-positive DLBCL had reduced expression of HIP1R (P = 0.0348), which is directly repressed by FOXP1, and exhibited distinct patterns of gene expression. Specifically in ABC-DLBCL these were associated with lower expression of immune response and T-cell receptor signaling pathways. Further studies are warranted to investigate the potential functional cooperativity between FOXP1 and FOXP2 in repressing immune responses during the pathogenesis of high-risk DLBCL.
Collapse
Affiliation(s)
- Kah Keng Wong
- Department of Immunology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Duncan M Gascoyne
- NDCLS, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Elizabeth J Soilleux
- NDCLS, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Linden Lyne
- NDCLS, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Hayley Spearman
- NDCLS, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Giovanna Roncador
- Monoclonal Antibody Unit, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - Lars M Pedersen
- Department of Haematology, Roskilde Hospital, Roskilde, Denmark
| | - Michael B Møller
- Department of Pathology, Odense University Hospital, Odense, Denmark
| | - Tina M Green
- Department of Pathology, Odense University Hospital, Odense, Denmark
| | - Alison H Banham
- NDCLS, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| |
Collapse
|
44
|
FOXP1 expression is a prognostic biomarker in follicular lymphoma treated with rituximab and chemotherapy. Blood 2017; 131:226-235. [PMID: 29122756 DOI: 10.1182/blood-2017-08-799080] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 10/27/2017] [Indexed: 01/28/2023] Open
Abstract
Follicular lymphoma (FL) is a clinically and molecularly highly heterogeneous disease, yet prognostication relies predominantly on clinical tools. We recently demonstrated that integration of mutation status of 7 genes, including EZH2 and MEF2B, improves risk stratification. We mined gene expression data to uncover genes that are differentially expressed in EZH2- and MEF2B-mutated cases. We focused on FOXP1 and assessed its protein expression by immunohistochemistry (IHC) in 763 tissue biopsies. For outcome correlation, a population-based training cohort of 142 patients with FL treated with rituximab, cyclophosphamide, vincristine, and prednisone, and a clinical trial validation cohort comprising 395 patients treated with cyclophosphamide, doxorubicin, vincristine, and prednisone (CHOP) ± rituximab were used. We found FOXP1 to be significantly downregulated in both EZH2- and MEF2B-mutated cases. By IHC, 76 specimens in the training cohort (54%) had high FOXP1 expression (>10%), which was associated with reduced 5-year failure-free survival (FFS) rates (55% vs 70%). In the validation cohort, high FOXP1 expression status was observed in 248 patients (63%) and correlated with significantly shorter FFS in patients treated with R-CHOP (hazard ratio [HR], 1.95; P = .017) but not in patients treated with CHOP (HR, 1.15; P = .44). The impact of high FOXP1 expression on FFS in immunochemotherapy-treated patients was additional to the Follicular Lymphoma International Prognostic Index. High FOXP1 expression was associated with distinct molecular features such as TP53 mutations, expression of IRF4, and gene expression signatures reminiscent of dark zone germinal center or activated B cells. In summary, FOXP1 is a downstream phenotypic commonality of gene mutations and predicts outcome following rituximab-containing regimens.
Collapse
|
45
|
Loo SK, Ch'ng ES, Lawrie CH, Muruzabal MA, Gaafar A, Pomposo MP, Husin A, Md Salleh MS, Banham AH, Pedersen LM, Møller MB, Green TM, Wong KK. DNMT1 is predictive of survival and associated with Ki-67 expression in R-CHOP-treated diffuse large B-cell lymphomas. Pathology 2017; 49:731-739. [PMID: 29074044 DOI: 10.1016/j.pathol.2017.08.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 08/16/2017] [Accepted: 08/20/2017] [Indexed: 11/26/2022]
Abstract
DNMT1 is a target of approved anti-cancer drugs including decitabine. However, the prognostic value of DNMT1 protein expression in R-CHOP-treated diffuse large B-cell lymphomas (DLBCLs) remains unexplored. Here we showed that DNMT1 was expressed in the majority of DLBCL cases (n = 209/230, 90.9%) with higher expression in germinal centre B-cell-like (GCB)-DLBCL subtype. Low and negative DNMT1 expression (20% cut-off, n = 33/230, 14.3%) was predictive of worse overall survival (OS; p < 0.001) and progression-free survival (PFS; p < 0.001). Nonetheless, of the 209 DNMT1 positive patients, 33% and 42% did not achieve 5-year OS and PFS, respectively, indicating that DNMT1 positive patients showed considerably heterogeneous outcomes. Moreover, DNMT1 was frequently expressed in mitotic cells and significantly correlated with Ki-67 or BCL6 expression (r = 0.60 or 0.44, respectively; p < 0.001). We demonstrate that DNMT1 is predictive of DLBCL patients' survival, and suggest that DNMT1 could be a DLBCL therapeutic target due to its significant association with Ki-67.
Collapse
Affiliation(s)
- Suet Kee Loo
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Ewe Seng Ch'ng
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, Kepala Batas, Pulau Pinang, Malaysia
| | - Charles H Lawrie
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom; Oncology Department, Biodonostia Research Institute, San Sebastian, Spain
| | | | - Ayman Gaafar
- Department of Pathology, Hospital Universitario Cruces, Barakaldo, Spain
| | | | - Azlan Husin
- Department of Medicine, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Md Salzihan Md Salleh
- Department of Pathology, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Alison H Banham
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Lars M Pedersen
- Department of Haematology, Herlev University Hospital, Copenhagen, Denmark
| | - Michael B Møller
- Department of Pathology, Odense University Hospital, Odense, Denmark
| | - Tina M Green
- Department of Pathology, Odense University Hospital, Odense, Denmark
| | - Kah Keng Wong
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia.
| |
Collapse
|
46
|
Garg AD, More S, Rufo N, Mece O, Sassano ML, Agostinis P, Zitvogel L, Kroemer G, Galluzzi L. Trial watch: Immunogenic cell death induction by anticancer chemotherapeutics. Oncoimmunology 2017; 6:e1386829. [PMID: 29209573 DOI: 10.1080/2162402x.2017.1386829] [Citation(s) in RCA: 204] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 09/26/2017] [Indexed: 12/21/2022] Open
Abstract
The expression "immunogenic cell death" (ICD) refers to a functionally unique form of cell death that facilitates (instead of suppressing) a T cell-dependent immune response specific for dead cell-derived antigens. ICD critically relies on the activation of adaptive responses in dying cells, culminating with the exposure or secretion of immunostimulatory molecules commonly referred to as "damage-associated molecular patterns". Only a few agents can elicit bona fide ICD, including some clinically established chemotherapeutics such as doxorubicin, epirubicin, idarubicin, mitoxantrone, bleomycin, bortezomib, cyclophosphamide and oxaliplatin. In this Trial Watch, we discuss recent progress on the development of ICD-inducing chemotherapeutic regimens, focusing on studies that evaluate clinical efficacy in conjunction with immunological biomarkers.
Collapse
Affiliation(s)
- Abhishek D Garg
- Cell Death Research & Therapy (CDRT) Lab, Department of Cellular & Molecular Medicine, KU Leuven University of Leuven, Leuven, Belgium
| | - Sanket More
- Cell Death Research & Therapy (CDRT) Lab, Department of Cellular & Molecular Medicine, KU Leuven University of Leuven, Leuven, Belgium
| | - Nicole Rufo
- Cell Death Research & Therapy (CDRT) Lab, Department of Cellular & Molecular Medicine, KU Leuven University of Leuven, Leuven, Belgium
| | - Odeta Mece
- Cell Death Research & Therapy (CDRT) Lab, Department of Cellular & Molecular Medicine, KU Leuven University of Leuven, Leuven, Belgium
| | - Maria Livia Sassano
- Cell Death Research & Therapy (CDRT) Lab, Department of Cellular & Molecular Medicine, KU Leuven University of Leuven, Leuven, Belgium
| | - Patrizia Agostinis
- Cell Death Research & Therapy (CDRT) Lab, Department of Cellular & Molecular Medicine, KU Leuven University of Leuven, Leuven, Belgium
| | - Laurence Zitvogel
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France.,INSERM, Villejuif, France.,Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 1428, Villejuif, France.,Université Paris Sud/Paris XI, Le Kremlin-Bicêtre, France
| | - Guido Kroemer
- Université Paris Descartes/Paris V, Paris, France.,Université Pierre et Marie Curie/Paris VI, Paris, France.,Equipe 11 labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.,INSERM, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France.,Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden.,Pôle de Biologie, Hopitâl Européen George Pompidou, Paris, France
| | - Lorenzo Galluzzi
- Université Paris Descartes/Paris V, Paris, France.,Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.,Sandra and Edward Meyer Cancer Center, New York, NY, USA
| |
Collapse
|
47
|
Park IA, Hwang SH, Song IH, Heo SH, Kim YA, Bang WS, Park HS, Lee M, Gong G, Lee HJ. Expression of the MHC class II in triple-negative breast cancer is associated with tumor-infiltrating lymphocytes and interferon signaling. PLoS One 2017; 12:e0182786. [PMID: 28817603 PMCID: PMC5560630 DOI: 10.1371/journal.pone.0182786] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 07/24/2017] [Indexed: 12/30/2022] Open
Abstract
Tumor-infiltrating lymphocytes (TILs) have been known for their strong prognostic and predictive significance in triple-negative breast cancer (TNBC). Several mechanisms for TIL influx in TNBC have been elucidated. Major histocompatibility complex class II (MHC-II) is an essential component of the adaptive immune system and is generally restricted to the surface of antigen-presenting cells. However, it has been reported that interferon-gamma signaling may induce MHC-II in almost all cell types, including those derived from cancer. We aimed to examine the relationship between MHC-II expression in tumor cells and the amount of TILs in 681 patients with TNBC. Further, the prognostic significance of MHC-II and the association of MHC-II with a couple of molecules involved in the interferon signaling pathway were investigated using immunohistochemical staining. Higher MHC-II expression in tumor cells was associated with the absence of lymphovascular invasion (p = 0.042); larger amounts of TILs (p < 0.001); frequent formations of tertiary lymphoid structures (p < 0.001); higher expression of myxovirus resistance gene A, one of the main mediators of the interferon signaling pathway (p < 0.001); and higher expression of double-stranded RNA-activated protein kinase, which can be induced by interferons (p = 0.008). Moreover, tumors that showed high MHC class I expression and any positivity for MHC-II had larger amounts of CD4- and CD8-positive T lymphocytes (p < 0.001). Positive MHC-II expression in tumor cells was associated with better disease-free survival in patients who had lymph node metastasis (p = 0.009). In conclusion, MHC-II expression in tumor cells was closely associated with an increase in TIL number and interferon signaling in TNBC. Further studies are warranted to improve our understanding regarding TIL influx, as well as patients’ responses to immunotherapy.
Collapse
Affiliation(s)
- In Ah Park
- Departments of Pathology, Asan Medical Center, Seoul, Korea
| | - Seong-Hye Hwang
- Departments of Pathology, Asan Medical Center, Seoul, Korea
- Asan Center for Cancer Genome Discovery, Asan Institute for Life Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - In Hye Song
- Departments of Pathology, Asan Medical Center, Seoul, Korea
| | - Sun-Hee Heo
- Departments of Pathology, Asan Medical Center, Seoul, Korea
- Asan Center for Cancer Genome Discovery, Asan Institute for Life Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Young-Ae Kim
- Departments of Pathology, Asan Medical Center, Seoul, Korea
- Asan Center for Cancer Genome Discovery, Asan Institute for Life Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Won Seon Bang
- Departments of Pathology, Asan Medical Center, Seoul, Korea
- Asan Center for Cancer Genome Discovery, Asan Institute for Life Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Hye Seon Park
- Departments of Pathology, Asan Medical Center, Seoul, Korea
- Asan Center for Cancer Genome Discovery, Asan Institute for Life Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Miseon Lee
- Departments of Pathology, Asan Medical Center, Seoul, Korea
| | - Gyungyub Gong
- Departments of Pathology, Asan Medical Center, Seoul, Korea
| | - Hee Jin Lee
- Departments of Pathology, Asan Medical Center, Seoul, Korea
- * E-mail:
| |
Collapse
|
48
|
Evolving Insights for MHC Class II Antigen Processing and Presentation in Health and Disease. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/s40495-017-0097-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
49
|
Curran EK, Godfrey J, Kline J. Mechanisms of Immune Tolerance in Leukemia and Lymphoma. Trends Immunol 2017; 38:513-525. [PMID: 28511816 DOI: 10.1016/j.it.2017.04.004] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 04/05/2017] [Accepted: 04/18/2017] [Indexed: 12/18/2022]
Abstract
The mechanisms through which immune responses are generated against solid cancers are well characterized and knowledge of the immune evasion pathways exploited by these malignancies has grown considerably. However, for hematological cancers, which develop and disseminate quite differently than solid tumors, the pathways that regulate immune activation or tolerance are less clear. Growing evidence suggests that, while numerous immune escape pathways are shared between hematological and solid malignancies, several unique pathways are exploited by leukemia and lymphoma. Below we discuss immune evasion mechanisms in leukemia and lymphoma, highlighting key differences from solid tumors. A more complete characterization of the mechanisms of immune tolerance in hematological malignancies is critical to inform the development of future immunotherapeutic approaches.
Collapse
Affiliation(s)
- Emily K Curran
- Department of Medicine, Section of Hematology, University of Chicago, Chicago, IL, USA; Committee on Clinical Pharmacology and Pharmacogenomics, University of Chicago, Chicago, IL, USA; University of Chicago Comprehensive Cancer Center, University of Chicago, Chicago, IL, USA
| | - James Godfrey
- Department of Medicine, Section of Hematology, University of Chicago, Chicago, IL, USA
| | - Justin Kline
- Department of Medicine, Section of Hematology, University of Chicago, Chicago, IL, USA; University of Chicago Comprehensive Cancer Center, University of Chicago, Chicago, IL, USA; Committee on Immunology, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
50
|
Loo SK, Ch'ng ES, Md Salleh MS, Banham AH, Pedersen LM, Møller MB, Green TM, Wong KK. TRPM4 expression is associated with activated B cell subtype and poor survival in diffuse large B cell lymphoma. Histopathology 2017; 71:98-111. [DOI: 10.1111/his.13204] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 02/23/2017] [Indexed: 12/21/2022]
Affiliation(s)
- Suet K Loo
- Department of Immunology; School of Medical Sciences; Universiti Sains Malaysia; Kelantan Malaysia
| | - Ewe S Ch'ng
- Advanced Medical and Dental Institute; Universiti Sains Malaysia; Bertam Malaysia
| | - Md Salzihan Md Salleh
- Department of Pathology; School of Medical Sciences; Universiti Sains Malaysia; Kelantan Malaysia
| | - Alison H Banham
- Nuffield Division of Clinical Laboratory Sciences; Radcliffe Department of Medicine; University of Oxford; John Radcliffe Hospital; Oxford UK
| | - Lars M Pedersen
- Department of Haematology; Herlev University Hospital; Copenhagen Denmark
| | - Michael B Møller
- Department of Pathology; Odense University Hospital; Odense Denmark
| | - Tina M Green
- Department of Pathology; Odense University Hospital; Odense Denmark
| | - Kah K Wong
- Department of Immunology; School of Medical Sciences; Universiti Sains Malaysia; Kelantan Malaysia
| |
Collapse
|