1
|
Aihara F, Wang Y, Belkina AC, Fearns R, Mizgerd JP, Feng F, Kepler TB. Diversity of B Cell Populations and Ig Repertoire in Human Lungs. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:486-496. [PMID: 37314411 PMCID: PMC10352589 DOI: 10.4049/jimmunol.2200340] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 05/25/2023] [Indexed: 06/15/2023]
Abstract
The human lung carries a unique microbiome adapted to the air-filled, mucous-lined environment, the presence of which requires an immune system capable of recognizing harmful populations while preventing reactions toward commensals. B cells in the lung play a key role in pulmonary immunity, generating Ag-specific Abs, as well as cytokine secretion for immune activation and regulation. In this study, we compared B cell subsets in human lungs versus circulating cells by analyzing patient-paired lung and blood samples. We found a significantly smaller pool of CD19+, CD20+ B cells in the lung relative to the blood. CD27+, IgD-, class-switched memory B cells (Bmems) composed a larger proportion of the pool of pulmonary B cells. The residency marker CD69 was also significantly higher in the lung. We also sequenced the Ig V region genes (IgVRGs) of class-switched Bmems that do, or do not, express CD69. We observed the IgVRGs of pulmonary Bmems to be as heavily mutated from the unmutated common ancestor as those in circulation. Furthermore, we found progenies within a quasi-clone can gain or lose CD69 expression, regardless of whether the parent clone expressed the residency marker. Overall, our results show that despite its vascularized nature, human lungs carry a unique proportion of B cell subsets. The IgVRGs of pulmonary Bmems are as diverse as those in blood, and progenies of Bmems retain the ability to gain or lose residency.
Collapse
Affiliation(s)
- Fumiaki Aihara
- Department of Microbiology, Boston University, Boston, MA
| | - Yumei Wang
- Department of Microbiology, Boston University, Boston, MA
| | | | - Rachel Fearns
- Department of Microbiology, Boston University, Boston, MA
| | | | - Feng Feng
- Department of Microbiology, Boston University, Boston, MA
| | | |
Collapse
|
2
|
Chudakov DB, Konovalova MV, Kashirina EI, Kotsareva OD, Shevchenko MA, Tsaregorodtseva DS, Fattakhova GV. DEPs Induce Local Ige Class Switching Independent of Their Ability to Stimulate iBALT de Novo Formation. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:13063. [PMID: 36293642 PMCID: PMC9603618 DOI: 10.3390/ijerph192013063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/04/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Diesel exhaust particles (DEPs) are leading to a general increase in atopic diseases worldwide. However, it is still unknown whether DEPs induce systemic B-cell IgE class switching in secondary lymphoid organs or locally in the lungs in inducible bronchus-associated lymphoid tissue (iBALT). The aim of this work was to identify the exact site of DEP-mediated B-cell IgE class switching and pro-allergic antibody production. METHODS We immunized BALB/c mice with different OVA doses (0.3 and 30 µg) intranasally in the presence and absence of two types of DEPs, SRM1650B and SRM2786. We used low (30 µg) and high (150 µg) DEP doses. RESULTS Only a high DEP dose induced IgE production, regardless of the particle type. Local IgE class switching was stimulated upon treatment with both types of particles with both low and high OVA doses. Despite the similar ability of the two standard DEPs to stimulate IgE production, their ability to induce iBALT formation and growth was markedly different upon co-administration with low OVA doses. CONCLUSIONS DEP-induced local IgE class switching takes place in preexisting iBALTs independent of de novo iBALT formation, at least in the case of SRM1650B co-administered with low OVA doses.
Collapse
Affiliation(s)
- Dmitrii Borisovich Chudakov
- Laboratory of Cell Interactions, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 16/10 Miklukho-Maklaya Str., Moscow 117997, Russia
| | - Mariya Vladimirovna Konovalova
- Laboratory of Cell Interactions, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 16/10 Miklukho-Maklaya Str., Moscow 117997, Russia
| | - Elena Igorevna Kashirina
- Laboratory of Cell Interactions, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 16/10 Miklukho-Maklaya Str., Moscow 117997, Russia
| | - Olga Dmitrievna Kotsareva
- Laboratory of Cell Interactions, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 16/10 Miklukho-Maklaya Str., Moscow 117997, Russia
| | - Marina Alexandrovna Shevchenko
- Laboratory of Cell Interactions, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 16/10 Miklukho-Maklaya Str., Moscow 117997, Russia
| | - Daria Sergeevna Tsaregorodtseva
- Faculty of Medical Biology, Sechenov First Moscow State Medical University, 2 Bolshaya Pirogovskaya Str., Moscow 1194535, Russia
| | - Gulnar Vaisovna Fattakhova
- Laboratory of Cell Interactions, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 16/10 Miklukho-Maklaya Str., Moscow 117997, Russia
| |
Collapse
|
3
|
Trousil J, Frgelecová L, Kubíčková P, Řeháková K, Drašar V, Matějková J, Štěpánek P, Pavliš O. Acute Pneumonia Caused by Clinically Isolated Legionella pneumophila Sg 1, ST 62: Host Responses and Pathologies in Mice. Microorganisms 2022; 10:179. [PMID: 35056629 PMCID: PMC8781576 DOI: 10.3390/microorganisms10010179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 11/16/2022] Open
Abstract
Legionnaires' disease is a severe form of lung infection caused by bacteria belonging to the genus Legionella. The disease severity depends on both host immunity and L. pneumophila virulence. The objective of this study was to describe the pathological spectrum of acute pneumonia caused by a virulent clinical isolate of L. pneumophila serogroup 1, sequence type 62. In A/JOlaHsd mice, we compared two infectious doses, namely, 104 and 106 CFU, and their impact on the mouse status, bacterial clearance, lung pathology, and blood count parameters was studied. Acute pneumonia resembling Legionnaires' disease has been described in detail.
Collapse
Affiliation(s)
- Jiří Trousil
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 00 Prague, Czech Republic;
| | - Lucia Frgelecová
- Department of Pathological Morphology and Parasitology, Faculty of Veterinary Medicine, University of Veterinary Sciences Brno, Palackého tř. 1946/1, 612 42 Brno, Czech Republic;
| | - Pavla Kubíčková
- Military Health Institute, Military Medical Agency, Tychonova 1, 160 00 Prague, Czech Republic; (P.K.); (O.P.)
| | - Kristína Řeháková
- Small Animal Clinical Laboratory, Faculty of Veterinary Medicine, University of Veterinary Sciences Brno, Palackého tř. 1946/1, 612 42 Brno, Czech Republic;
| | - Vladimír Drašar
- National Legionella Reference Laboratory, Public Health Institute Ostrava, Masarykovo náměstí 16, 682 01 Vyškov, Czech Republic;
| | - Jana Matějková
- Department of Medical Microbiology, Second Faculty of Medicine, Charles University, Motol University Hospital, V Úvalu 84, 150 06 Prague, Czech Republic;
| | - Petr Štěpánek
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 00 Prague, Czech Republic;
| | - Oto Pavliš
- Military Health Institute, Military Medical Agency, Tychonova 1, 160 00 Prague, Czech Republic; (P.K.); (O.P.)
| |
Collapse
|
4
|
Wirz OF, Jansen K, Satitsuksanoa P, Veen W, Tan G, Sokolowska M, Mirer D, Stanić B, Message SD, Kebadze T, Glanville N, Mallia P, Gern JE, Papadopoulos N, Akdis CA, Johnston SL, Nadeau K, Akdis M. Experimental rhinovirus infection induces an antiviral response in circulating B cells which is dysregulated in patients with asthma. Allergy 2022; 77:130-142. [PMID: 34169553 PMCID: PMC10138744 DOI: 10.1111/all.14985] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/28/2021] [Accepted: 06/05/2021] [Indexed: 01/11/2023]
Abstract
BACKGROUND Rhinoviruses are the predominant cause of respiratory viral infections and are strongly associated with asthma exacerbations. While humoral immunity plays an important role during virus infections, cellular aspects of this response are less well understood. Here, we investigated the antiviral response of circulating B cells upon experimental rhinovirus infection in healthy individuals and asthma patients. METHODS We purified B cells from experimentally infected healthy individuals and patients with asthma and subjected them to total RNA-sequencing. Rhinovirus-derived RNA was measured in isolated B cells using a highly sensitive PCR. B cells were stimulated with rhinovirus in vitro to further study gene expression, expression of antiviral proteins and B-cell differentiation in response rhinovirus stimulation. Protein expression of pro-inflammatory cytokines in response to rhinovirus was assessed using a proximity extension assay. RESULTS B cells isolated from experimentally infected subjects exhibited an antiviral gene profile linked to IFN-alpha, carried viral RNA in vivo and were transiently infected by rhinovirus in vitro. B cells rapidly differentiated into plasmablasts upon rhinovirus stimulation. While B cells lacked expression of interferons in response to rhinovirus exposure, co-stimulation with rhinovirus and IFN-alpha upregulated pro-inflammatory cytokine expression suggesting a potential new function of B cells during virus infections. Asthma patients showed extensive upregulation and dysregulation of antiviral gene expression. CONCLUSION These findings add to the understanding of systemic effects of rhinovirus infections on B-cell responses in the periphery, show potential dysregulation in patients with asthma and might also have implications during infection with other respiratory viruses.
Collapse
Affiliation(s)
- Oliver F. Wirz
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
| | - Kirstin Jansen
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
| | | | - Willem Veen
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
- Christine Kühne – Center for Allergy Research and Education (CK‐CARE) Davos Switzerland
| | - Ge Tan
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
- Functional Genomics Center Zürich ETH Zürich/University of Zürich Zürich Switzerland
| | - Milena Sokolowska
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
| | - David Mirer
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
| | - Barbara Stanić
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
| | - Simon D. Message
- National Heart and Lung Institute Imperial College London London UK
| | - Tatiana Kebadze
- National Heart and Lung Institute Imperial College London London UK
| | | | - Patrick Mallia
- National Heart and Lung Institute Imperial College London London UK
| | - James E. Gern
- Department of Pediatrics University of Wisconsin‐Madison Madison USA
| | - Nikolaos Papadopoulos
- Division of Infection, Immunity & Respiratory Medicine The University of Manchester Manchester UK
- Allergy Department 2nd Pediatric Clinic University of Athens Athens Greece
| | - Cezmi A. Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
- Christine Kühne – Center for Allergy Research and Education (CK‐CARE) Davos Switzerland
| | | | - Kari Nadeau
- Sean N. Parker Center for Allergy and Asthma Research Department of Medicine Stanford University Palo Alto California USA
| | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
| |
Collapse
|
5
|
Wirz OF, Üzülmez Ö, Jansen K, Veen W, Lammela A, Kainulainen L, Vuorinen T, Breiteneder H, Akdis CA, Jartti T, Akdis M. Increased antiviral response in circulating lymphocytes from hypogammaglobulinemia patients. Allergy 2020; 75:3147-3158. [PMID: 32533713 DOI: 10.1111/all.14445] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 04/21/2020] [Accepted: 04/29/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND B cells play a crucial role during rhinovirus (RV) infections by production of virus-neutralizing antibodies. A main feature of common variable immunodeficiency (CVID) is hypogammaglobulinemia (HG). HG patients have severely reduced levels of antibody-producing B cells and suffer from prolonged virus infections. Here, we addressed whether antiviral response of peripheral blood lymphocytes differs between HG patients and healthy individuals during natural RV infection. METHODS Using fluorescence-activated cell sorting, B-cell subsets were analyzed. Simultaneously, CD19 + B cells, CD14 + monocytes, and CD3 + T cells were sorted from frozen peripheral blood mononuclear cells from 11 RV-infected hypogammaglobulinemia patients, 7 RV-infected control subjects, and 14 noninfected control subjects. Real-time PCR was used to study expression of antiviral genes. A pan-RV PCR was used to detect RV genome in all samples. RESULTS In HG patients, total B-cell numbers, as well as IgA + and IgG + switched memory B cells, were reduced while naïve B cells and T cells were increased. STAT1 expression was increased in HG patients compared to controls in all lymphocyte subsets analyzed. The expression of antiviral genes IFITM1 and MX1 correlated with STAT1 expression in B cells and monocytes. RV RNA was found in 88.9% of monocytes from infected HG patients, 85.7% of monocytes from infected controls, and 7.1% of monocytes from uninfected controls. CONCLUSIONS We demonstrate an increased antiviral response in B cells and monocytes in HG patients and their correlation with STAT1 expression. Monocytes of infected HG patients and infected non-HG controls carry RV RNA.
Collapse
Affiliation(s)
- Oliver F. Wirz
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
| | - Öykü Üzülmez
- Department of Pathophysiology and Allergy Research Medical University of Vienna Vienna Austria
| | - Kirstin Jansen
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
| | - Willem Veen
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
- Christine Kühne—Center for Allergy Research and Education (CK‐CARE) Davos Switzerland
| | - Auli Lammela
- Department of Pediatrics and Adolescent Medicine Turku University Hospital and University of Turku Turku Finland
| | - Leena Kainulainen
- Department of Pediatrics and Adolescent Medicine Turku University Hospital and University of Turku Turku Finland
| | - Tytti Vuorinen
- Department of Clinical Virology Turku University Hospital Turku Finland
- Department of Virology University of Turku Turku Finland
| | - Heimo Breiteneder
- Department of Pathophysiology and Allergy Research Medical University of Vienna Vienna Austria
| | - Cezmi A. Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
- Christine Kühne—Center for Allergy Research and Education (CK‐CARE) Davos Switzerland
| | - Tuomas Jartti
- Department of Pediatrics and Adolescent Medicine Turku University Hospital and University of Turku Turku Finland
| | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
| |
Collapse
|
6
|
Chudakov DB, Ryasantsev DY, Tsaregorotseva DS, Kotsareva OD, Fattakhova GV, Svirshchevskaya EV. Tertiary lymphoid structure related B-cell IgE isotype switching and secondary lymphoid organ linked IgE production in mouse allergy model. BMC Immunol 2020; 21:45. [PMID: 32767965 PMCID: PMC7412793 DOI: 10.1186/s12865-020-00376-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 07/30/2020] [Indexed: 12/14/2022] Open
Abstract
Background Numerous data obtained by different research laboratories indicate that specific IgE production is triggered independently of specific IgG or IgA ones and so it is not linked to fully matured germinal centers formation in the secondary lymphoid organs. The aim of this study was to clarify whether specific IgE production is triggered by low antigen doses administrated in tertiary tissues enriched by lymphoid structures. Methods Ovalbumin (OVA) in different doses (100 ng to 10 μg) was administrated three times a week for 4–5 weeks intraperitoneally (i.p.) or subcutaneously (s.c.) to female BALB/c mice in the wither region which is enriched in fat-associated lymphoid clusters or in the foot pad region not containing them. Results OVA-specific IgE was predominantly induced by low but not high antigen doses and only after immunization into the withers. IgE isotype switching was triggered exclusively in the withers adipose tissue but not in the regional lymph nodes while mature IgE expressing cells were observed both in the withers and lymph nodes. Anti-proliferative genotoxic stress inducing drugs shifted the balance from IgG1 towards IgE production. Conclusions Tertiary lymphoid structures possess unique environment where B-cell antibody isotype switching to IgE predominantly occurs. This phenomenon is partially explained by hampered proliferation of B-cells in these structures.
Collapse
Affiliation(s)
- Dmitrii Borisovich Chudakov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of RAS, 117997, 16/10 Miklukho-Maklaya Street, Moscow, Russia.
| | - Dmitrii Yuryevich Ryasantsev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of RAS, 117997, 16/10 Miklukho-Maklaya Street, Moscow, Russia
| | | | - Olga Dmitrievna Kotsareva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of RAS, 117997, 16/10 Miklukho-Maklaya Street, Moscow, Russia
| | - Gulnar Vaisovna Fattakhova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of RAS, 117997, 16/10 Miklukho-Maklaya Street, Moscow, Russia
| | | |
Collapse
|
7
|
Lam JH, Smith FL, Baumgarth N. B Cell Activation and Response Regulation During Viral Infections. Viral Immunol 2020; 33:294-306. [PMID: 32326852 DOI: 10.1089/vim.2019.0207] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Acute viral infections are characterized by rapid increases in viral load, leading to cellular damage and the resulting induction of complex innate and adaptive antiviral immune responses that cause local and systemic inflammation. Successful antiviral immunity requires the activation of many immune cells, including T cells, natural killer cells, and macrophages. B cells play a unique part through their production of antibodies that can both neutralize and clear viral particles before virus entry into a cell. Protective antibodies are produced even before the first exposure of a pathogen, through the regulated secretion of so-called natural antibodies that are generated even in the complete absence of prior microbial exposure. An early wave of rapidly secreted antibodies from extrafollicular (EF) responses draws on the preexisting naive or memory repertoire of B cells to induce a strong protective response that in kinetics tightly follows the clearance of acute infections, such as with influenza virus. Finally, the generation of germinal centers (GCs) provides long-term protection through production of long-lived plasma cells and memory B cells, which shape and broaden the B cell repertoire for more effective responses following repeat exposures. In this study, we review B cell responses to acute viral infections, primarily influenza virus, from the earliest nonspecific B-1 cell to early, antigen-specific EF responses and finally to GC responses. Throughout, we address known factors that lead to distinct B cell response outcomes and discuss how their functions effect viral clearance, highlighting the critical contributions of each response type to the induction of highly protective antiviral humoral immunity.
Collapse
Affiliation(s)
- Jonathan H Lam
- Graduate Group in Immunology, Microbiology and Immunology, University of California, Davis, Davis, California, USA.,Center for Comparative Medicine, Microbiology and Immunology, University of California, Davis, Davis, California, USA
| | - Fauna L Smith
- Center for Comparative Medicine, Microbiology and Immunology, University of California, Davis, Davis, California, USA.,Integrated Pathobiology Graduate Group, Microbiology and Immunology, University of California, Davis, Davis, California, USA
| | - Nicole Baumgarth
- Graduate Group in Immunology, Microbiology and Immunology, University of California, Davis, Davis, California, USA.,Center for Comparative Medicine, Microbiology and Immunology, University of California, Davis, Davis, California, USA.,Integrated Pathobiology Graduate Group, Microbiology and Immunology, University of California, Davis, Davis, California, USA.,Department of Pathology, Microbiology and Immunology, University of California, Davis, Davis, California, USA
| |
Collapse
|
8
|
Lam JH, Baumgarth N. The Multifaceted B Cell Response to Influenza Virus. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2019; 202:351-359. [PMID: 30617116 PMCID: PMC6327962 DOI: 10.4049/jimmunol.1801208] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 10/17/2018] [Indexed: 01/08/2023]
Abstract
Protection from yearly recurring, highly acute infections with a pathogen that rapidly and continuously evades previously induced protective neutralizing Abs, as seen during seasonal influenza virus infections, can be expected to require a B cell response that is too highly variable, able to adapt rapidly, and able to reduce morbidity and death when sterile immunity cannot be garnered quickly enough. As we outline in this Brief Review, the influenza-specific B cell response is exactly that: it is multifaceted, involves both innate-like and conventional B cells, provides early and later immune protection, employs B cells with distinct BCR repertoires and distinct modes of activation, and continuously adapts to the ever-changing virus while enhancing overall protection. A formidable response to a formidable pathogen.
Collapse
Affiliation(s)
- Jonathan H Lam
- Center for Comparative Medicine, University of California, Davis, Davis, CA 95616
- Graduate Group in Immunology, University of California, Davis, Davis, CA 95616; and
| | - Nicole Baumgarth
- Center for Comparative Medicine, University of California, Davis, Davis, CA 95616;
- Graduate Group in Immunology, University of California, Davis, Davis, CA 95616; and
- Department of Pathology, Microbiology and Immunology, University of California, Davis, Davis, CA 95616
| |
Collapse
|
9
|
Trapecar M, Khan S, Cohn BL, Wu F, Sanjabi S. B cells are the predominant mediators of early systemic viral dissemination during rectal LCMV infection. Mucosal Immunol 2018; 11:1158-1167. [PMID: 29456247 PMCID: PMC6030459 DOI: 10.1038/s41385-018-0009-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 12/22/2017] [Accepted: 01/02/2018] [Indexed: 02/04/2023]
Abstract
Determining the magnitude of local immune response during mucosal exposure to viral pathogens is critical to understanding the mechanism of viral pathogenesis. We previously showed that vaginal inoculation of lymphocytic choriomeningitis virus (LCMV) fails to induce a robust innate immune response in the lower female reproductive tract (FRT), allowing high titer viral replication and a delay in T-cell-mediated viral control. Despite this immunological delay, LCMV replication remained confined mainly to the FRT and the draining iliac lymph node. Here, we show that rectal infection with LCMV triggers type I/III interferon responses, followed by innate immune activation and lymphocyte recruitment to the colon. In contrast to vaginal exposure, innate immunity controls LCMV replication in the colon, but virus rapidly disseminates systemically. Virus-induced inflammation promotes the recruitment of LCMV target cells to the colon followed by splenic viral dissemination by infected B cells, and to a lesser extent by CD8 T cells. These findings demonstrate major immunological differences between vaginal and rectal exposure to the same viral pathogen, highlighting unique risks associated with each of these common routes of sexual viral transmission.
Collapse
Affiliation(s)
- Martin Trapecar
- Virology and Immunology, Gladstone Institutes, San Francisco, CA, 94158, USA
| | - Shahzada Khan
- Virology and Immunology, Gladstone Institutes, San Francisco, CA, 94158, USA
| | - Benjamin L Cohn
- Virology and Immunology, Gladstone Institutes, San Francisco, CA, 94158, USA
| | - Frank Wu
- Virology and Immunology, Gladstone Institutes, San Francisco, CA, 94158, USA
| | - Shomyseh Sanjabi
- Virology and Immunology, Gladstone Institutes, San Francisco, CA, 94158, USA.
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, 94143, USA.
| |
Collapse
|
10
|
Zhiming W, Luman W, Tingting Q, Yiwei C. Chemokines and receptors in intestinal B lymphocytes. J Leukoc Biol 2018; 103:807-819. [PMID: 29443417 DOI: 10.1002/jlb.1ru0717-299rr] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Revised: 01/11/2018] [Accepted: 01/11/2018] [Indexed: 02/06/2023] Open
Abstract
Recent studies indicate that chemoattractant cytokines (chemokines) and their receptors modulate intestinal B lymphocytes in different ways, including regulating their maturity and differentiation in the bone marrow and homing to intestinal target tissues. Here, we review several important chemokine/chemokine receptor axes that guide intestinal B cells, focusing on the homing and migration of IgA antibody-secreting cells (IgA-ASCs) to intestinal-associated lymphoid tissues. We describe the selective regulation of these chemokine axes in coordinating the IgA-ASC trafficking in intestinal diseases. Finally, we discuss the role of B cells as chemokine producers serving dual roles in regulating the mucosal immune microenvironment.
Collapse
Affiliation(s)
- Wang Zhiming
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Wang Luman
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China.,Biotherapy Research Center, Fudan University, Shanghai, China
| | - Qian Tingting
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Chu Yiwei
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China.,Biotherapy Research Center, Fudan University, Shanghai, China
| |
Collapse
|
11
|
Shekhar S, Schenck K, Petersen FC. Exploring Host-Commensal Interactions in the Respiratory Tract. Front Immunol 2018; 8:1971. [PMID: 29387057 PMCID: PMC5776090 DOI: 10.3389/fimmu.2017.01971] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 12/20/2017] [Indexed: 01/03/2023] Open
Abstract
Commensal microbes are currently in the limelight in biomedical research because they play an important role in health and disease. Humans harbor an enormous diversity of commensals in various parts of the body, including the gastrointestinal and respiratory tracts. Advancement in metagenomic and other omic approaches, and development of suitable animal models have provided an unprecedented appreciation into the diversity of commensals, and the intricacies of their intimate communication with the host immune system. Most studies have focused on the host–commensal interaction in the gut, while less is known on this relationship in other sites of the body, such as the respiratory tract. In this article, we review emerging data from human and animal studies on the host responses to respiratory commensals, immune cross-reactivity between commensals and pathogens, and use of commensals as a vaccine delivery system. A better understanding of the delicate interplay between commensals and host may aid in efforts to develop effective vaccines and therapeutics.
Collapse
Affiliation(s)
- Sudhanshu Shekhar
- Faculty of Dentistry, Department of Oral Biology, University of Oslo, Oslo, Norway
| | - Karl Schenck
- Faculty of Dentistry, Department of Oral Biology, University of Oslo, Oslo, Norway
| | | |
Collapse
|
12
|
Kempsell KE, Kidd SP, Lewandowski K, Elmore MJ, Charlton S, Yeates A, Cuthbertson H, Hallis B, Altmann DM, Rogers M, Wattiau P, Ingram RJ, Brooks T, Vipond R. Whole genome protein microarrays for serum profiling of immunodominant antigens of Bacillus anthracis. Front Microbiol 2015; 6:747. [PMID: 26322022 PMCID: PMC4534840 DOI: 10.3389/fmicb.2015.00747] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 07/07/2015] [Indexed: 01/26/2023] Open
Abstract
A commercial Bacillus anthracis (Anthrax) whole genome protein microarray has been used to identify immunogenic Anthrax proteins (IAP) using sera from groups of donors with (a) confirmed B. anthracis naturally acquired cutaneous infection, (b) confirmed B. anthracis intravenous drug use-acquired infection, (c) occupational exposure in a wool-sorters factory, (d) humans and rabbits vaccinated with the UK Anthrax protein vaccine and compared to naïve unexposed controls. Anti-IAP responses were observed for both IgG and IgA in the challenged groups; however the anti-IAP IgG response was more evident in the vaccinated group and the anti-IAP IgA response more evident in the B. anthracis-infected groups. Infected individuals appeared somewhat suppressed for their general IgG response, compared with other challenged groups. Immunogenic protein antigens were identified in all groups, some of which were shared between groups whilst others were specific for individual groups. The toxin proteins were immunodominant in all vaccinated, infected or other challenged groups. However, a number of other chromosomally-located and plasmid encoded open reading frame proteins were also recognized by infected or exposed groups in comparison to controls. Some of these antigens e.g., BA4182 are not recognized by vaccinated individuals, suggesting that there are proteins more specifically expressed by live Anthrax spores in vivo that are not currently found in the UK licensed Anthrax Vaccine (AVP). These may perhaps be preferentially expressed during infection and represent expression of alternative pathways in the B. anthracis “infectome.” These may make highly attractive candidates for diagnostic and vaccine biomarker development as they may be more specifically associated with the infectious phase of the pathogen. A number of B. anthracis small hypothetical protein targets have been synthesized, tested in mouse immunogenicity studies and validated in parallel using human sera from the same study.
Collapse
Affiliation(s)
| | | | | | | | - Sue Charlton
- Public Health England Porton Down, Salisbury, UK
| | | | | | | | - Daniel M Altmann
- Department of Medicine, University College London, Hammersmith Hospital London, UK
| | - Mitch Rogers
- Public Health England Porton Down, Salisbury, UK
| | - Pierre Wattiau
- Department of Bacterial Diseases, CODA-CERVA (Veterinary and Agrochemical Research Centre) Brussels, Belgium
| | - Rebecca J Ingram
- Centre for Infection and Immunity, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast Belfast, UK
| | - Tim Brooks
- Public Health England Porton Down, Salisbury, UK
| | | |
Collapse
|
13
|
Sahay B, Owen JL, Zadeh M, Yang T, Lightfoot YL, Abed F, Mohamadzadeh M. Impaired colonic B-cell responses by gastrointestinal Bacillus anthracis infection. J Infect Dis 2014; 210:1499-507. [PMID: 24829464 DOI: 10.1093/infdis/jiu280] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Ingestion of Bacillus anthracis spores causes gastrointestinal (GI) anthrax. Humoral immune responses, particularly immunoglobulin A (IgA)-secreting B-1 cells, play a critical role in the clearance of GI pathogens. Here, we investigated whether B. anthracis impacts the function of colonic B-1 cells to establish active infection. GI anthrax led to significant inhibition of immunoglobulins (eg, IgA) and increased expression of program death 1 on B-1 cells. Furthermore, infection also diminished type 2 innate lymphoid cells (ILC2) and their ability to enhance differentiation and immunoglobulin production by secreting interleukin 5 (IL-5). Such B-1-cell and ILC2 dysfunction is potentially due to cleavage of p38 and Erk1/2 mitogen-activated protein kinases in these cells. Conversely, mice that survived infection generated neutralizing antibodies via the formation of robust germinal center B cells in Peyer's patches and had restored B-1-cell and ILC2 function. These data may provide additional insight for designing efficacious vaccines and therapeutics against this deadly pathogen.
Collapse
Affiliation(s)
- Bikash Sahay
- Department of Infectious Diseases and Pathology Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine
| | - Jennifer L Owen
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville
| | - Mojgan Zadeh
- Department of Infectious Diseases and Pathology Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine
| | - Tao Yang
- Department of Infectious Diseases and Pathology Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine
| | - Yaíma L Lightfoot
- Department of Infectious Diseases and Pathology Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine
| | - Firas Abed
- Department of Infectious Diseases and Pathology Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine
| | - Mansour Mohamadzadeh
- Department of Infectious Diseases and Pathology Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine
| |
Collapse
|