1
|
Ajoolabady A, Pratico D, Tang D, Zhou S, Franceschi C, Ren J. Immunosenescence and inflammaging: Mechanisms and role in diseases. Ageing Res Rev 2024; 101:102540. [PMID: 39395575 DOI: 10.1016/j.arr.2024.102540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 10/02/2024] [Accepted: 10/03/2024] [Indexed: 10/14/2024]
Abstract
Age-related changes initiate a cascade of cellular and molecular alterations that lead to immune system dysfunction or abnormal activation, predisposing individuals to age-related diseases. This phenomenon, commonly referred to as immunosenescence, highlighting aging-associated progressive decline of the immune system. Moreover, mounting evidence suggests that immunosenescence contributes to a related pathological phenomenon known as inflammaging. Inflammaging refers to chronic, low-grade, and systemic inflammation associated with aging, occurring despite the absence of overt stimuli. In the body, inflammation is typically activated in response to overt stimuli such as bacterial/microbial invasion or a pathological state, however, inflammaging occurrence and its underpinning mechanisms seem to be independent and in the absence of such stimuli. Despite recent advancements in molecular characterization and the scrutiny of disease relevance, these two interconnected concepts have remained largely unexplored and unrecognized. In this comprehensive review, we aim to shed light on the mechanistic and cellular aspects of immunosenescence and inflammaging, as well as their pivotal roles in the pathogenesis of aging-related diseases, including cancer, infections, dementia, and neurodegenerative disorders.
Collapse
Affiliation(s)
- Amir Ajoolabady
- Department of Biomedical Engineering, University of Alabama at Birmingham, AL 35294, USA
| | - Domenico Pratico
- Alzheimer's Center at Temple, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Shuqin Zhou
- Department of Emergency, Shanghai Tenth People's Hospital, School of Medicine Tongji University, Shanghai 200072, China
| | - Claudio Franceschi
- IRCCS Institute of Neurological Sciences of Bologna, Bologna, Italy; Department of Applied Mathematics and Laboratory of Systems Biology of Aging, Lobachevsky University, Nizhny Novgorod, Russia.
| | - Jun Ren
- Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China; National Clinical Research Center for Interventional Medicine, Shanghai 200032, China.
| |
Collapse
|
2
|
Losol P, Sokolowska M, Hwang YK, Ogulur I, Mitamura Y, Yazici D, Pat Y, Radzikowska U, Ardicli S, Yoon JE, Choi JP, Kim SH, van de Veen W, Akdis M, Chang YS, Akdis CA. Epithelial Barrier Theory: The Role of Exposome, Microbiome, and Barrier Function in Allergic Diseases. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2023; 15:705-724. [PMID: 37957791 PMCID: PMC10643858 DOI: 10.4168/aair.2023.15.6.705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/18/2023] [Accepted: 10/07/2023] [Indexed: 11/15/2023]
Abstract
Allergic diseases are a major public health problem with increasing prevalence. These immune-mediated diseases are characterized by defective epithelial barriers, which are explained by the epithelial barrier theory and continuously emerging evidence. Environmental exposures (exposome) including global warming, changes and loss of biodiversity, pollution, pathogens, allergens and mites, laundry and dishwasher detergents, surfactants, shampoos, body cleaners and household cleaners, microplastics, nanoparticles, toothpaste, enzymes and emulsifiers in processed foods, and dietary habits are responsible for the mucosal and skin barrier disruption. Exposure to barrier-damaging agents causes epithelial cell injury and barrier damage, colonization of opportunistic pathogens, loss of commensal bacteria, decreased microbiota diversity, bacterial translocation, allergic sensitization, and inflammation in the periepithelial area. Here, we review scientific evidence on the environmental components that impact epithelial barriers and microbiome composition and their influence on asthma and allergic diseases. We also discuss the historical overview of allergic diseases and the evolution of the hygiene hypothesis with theoretical evidence.
Collapse
Affiliation(s)
- Purevsuren Losol
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
- Medical Research Center, Seoul National University, Seoul, Korea
- Department of Molecular Biology and Genetics, School of Biomedicine, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| | - Milena Sokolowska
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Yu-Kyoung Hwang
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Ismail Ogulur
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Yasutaka Mitamura
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Duygu Yazici
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Yagiz Pat
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Urszula Radzikowska
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Sena Ardicli
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Jeong-Eun Yoon
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Jun-Pyo Choi
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Sae-Hoon Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
- Medical Research Center, Seoul National University, Seoul, Korea
| | - Willem van de Veen
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Yoon-Seok Chang
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
- Medical Research Center, Seoul National University, Seoul, Korea.
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| |
Collapse
|
3
|
Immunosenescence, Inflammaging, and Lung Senescence in Asthma in the Elderly. Biomolecules 2022; 12:biom12101456. [PMID: 36291665 PMCID: PMC9599177 DOI: 10.3390/biom12101456] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/02/2022] [Accepted: 10/04/2022] [Indexed: 11/24/2022] Open
Abstract
Prevalence of asthma in older adults is growing along with increasing global life expectancy. Due to poor clinical consequences such as high mortality, advancement in understanding the pathophysiology of asthma in older patients has been sought to provide prompt treatment for them. Age-related alterations of functions in the immune system and lung parenchyma occur throughout life. Alterations with advancing age are promoted by various stimuli, including pathobionts, fungi, viruses, pollutants, and damage-associated molecular patterns derived from impaired cells, abandoned cell debris, and senescent cells. Age-related changes in the innate and adaptive immune response, termed immunosenescence, includes impairment of phagocytosis and antigen presentation, enhancement of proinflammatory mediator generation, and production of senescence-associated secretory phenotype. Immnunosenescence could promote inflammaging (chronic low-grade inflammation) and contribute to late-onset adult asthma and asthma in the elderly, along with age-related pulmonary disease, such as chronic obstructive pulmonary disease and pulmonary fibrosis, due to lung parenchyma senescence. Aged patients with asthma exhibit local and systemic type 2 and non-type 2 inflammation, associated with clinical manifestations. Here, we discuss immunosenescence’s contribution to the immune response and the combination of type 2 inflammation and inflammaging in asthma in the elderly and present an overview of age-related features in the immune system and lung structure.
Collapse
|
4
|
Torrance BL, Haynes L. Cellular senescence is a key mediator of lung aging and susceptibility to infection. Front Immunol 2022; 13:1006710. [PMID: 36119079 PMCID: PMC9473698 DOI: 10.3389/fimmu.2022.1006710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 08/16/2022] [Indexed: 12/05/2022] Open
Abstract
Aging results in systemic changes that leave older adults at much higher risk for adverse outcomes following respiratory infections. Much work has been done over the years to characterize and describe the varied changes that occur with aging from the molecular/cellular up to the organismal level. In recent years, the systemic accumulation of senescent cells has emerged as a key mediator of many age-related declines and diseases of aging. Many of these age-related changes can impair the normal function of the respiratory system and its capability to respond appropriately to potential pathogens that are encountered daily. In this review, we aim to establish the effects of cellular senescence on the disruption of normal lung function with aging and describe how these effects compound to leave an aged respiratory system at great risk when exposed to a pathogen. We will also discuss the role cellular senescence may play in the inability of most vaccines to confer protection against respiratory infections when administered to older adults. We posit that cellular senescence may be the point of convergence of many age-related immunological declines. Enhanced investigation into this area could provide much needed insight to understand the aging immune system and how to effectively ameliorate responses to pathogens that continue to disproportionately harm this vulnerable population.
Collapse
Affiliation(s)
| | - Laura Haynes
- UConn Center on Aging and Department of Immunology, School of Medicine, University of Connecticut, Farmington, CT, United States
| |
Collapse
|
5
|
Agrawal S, Monteiro C, Baca CF, Mohammadi R, Subramanian V, de Melo Bento CA, Agrawal A. Metabolites and growth factors produced by airway epithelial cells induce tolerance in macrophages. Life Sci 2022; 302:120659. [PMID: 35623392 PMCID: PMC10081865 DOI: 10.1016/j.lfs.2022.120659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/13/2022] [Accepted: 05/21/2022] [Indexed: 11/27/2022]
Abstract
Macrophages play a role in preventing inflammation in the respiratory tract. To investigate the mechanisms that lead to tolerance in macrophages, we examined the crosstalk between airway epithelial cells (AECs) and macrophages using a 2D coculture model. Culture of macrophages with AECs led to a significant inhibition of LPS induced pro-inflammatory responses. More importantly, AECs induced the secretion of TGF-β and IL-10 from macrophages even in the absence of LPS stimulation. In addition, the expression of inhibitory molecule, CD200R was also upregulated on AEC exposed macrophages. Furthermore, the AECs exposed macrophages induced significantly increased level of T regulatory cells. Investigation into the possible mechanisms indicated that a combination of growth factor, G-CSF, and metabolites, Kynurenine and lactic acid produced by AECs is responsible for inducing tolerance in macrophages. Interestingly, all these molecules had differential effect on macrophages with G-CSF inducing TGF-β, Kynurenine elevating IL-10, and lactic acid upregulating CD200R. Furthermore, a cocktail of these factors/metabolites induced similar changes in macrophages as AEC exposure. Altogether, these data identify factors secreted by AECs that enhance tolerance in the respiratory tract. These mediators thus have the potential to be used for therapeutic purposes to modulate respiratory inflammation following local viral infections and lung diseases.
Collapse
Affiliation(s)
- Sudhanshu Agrawal
- Division of Basic and Clinical Immunology, Department of Medicine, University of California Irvine, CA, USA 92617
| | - Clarice Monteiro
- Division of Basic and Clinical Immunology, Department of Medicine, University of California Irvine, CA, USA 92617; Department of Microbiology and Parasitology, Federal University of the State of Rio de Janeiro, Rio de Janeiro, Brazil; Department of Microbiology, Immunology and Parasitology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | | | - Rezaa Mohammadi
- Department of Materials Science and Engineering, University of California Irvine, CA 92617, USA; Sue and Bill Stem Cell Center, University of California Irvine, CA 92617, USA
| | - Veedamali Subramanian
- Division of Gastroenterology, Department of Medicine, University of California Irvine, CA 92617, USA
| | - Cleonice Alves de Melo Bento
- Department of Microbiology and Parasitology, Federal University of the State of Rio de Janeiro, Rio de Janeiro, Brazil; Department of Microbiology, Immunology and Parasitology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Anshu Agrawal
- Division of Basic and Clinical Immunology, Department of Medicine, University of California Irvine, CA, USA 92617.
| |
Collapse
|
6
|
Lu X, Yang YM, Lu YQ. Immunosenescence: A Critical Factor Associated With Organ Injury After Sepsis. Front Immunol 2022; 13:917293. [PMID: 35924237 PMCID: PMC9339684 DOI: 10.3389/fimmu.2022.917293] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/22/2022] [Indexed: 11/17/2022] Open
Abstract
Progressive immune dysfunction associated with aging is known as immunosenescence. The age-related deterioration of immune function is accompanied by chronic inflammation and microenvironment changes. Immunosenescence can affect both innate and acquired immunity. Sepsis is a systemic inflammatory response that affects parenchymal organs, such as the respiratory system, cardiovascular system, liver, urinary system, and central nervous system, according to the sequential organ failure assessment (SOFA). The initial immune response is characterized by an excess release of inflammatory factors, followed by persistent immune paralysis. Moreover, immunosenescence was found to complement the severity of the immune disorder following sepsis. Furthermore, the immune characteristics associated with sepsis include lymphocytopenia, thymus degeneration, and immunosuppressive cell proliferation, which are very similar to the characteristics of immunosenescence. Therefore, an in-depth understanding of immunosenescence after sepsis and its subsequent effects on the organs may contribute to the development of promising therapeutic strategies. This paper focuses on the characteristics of immunosenescence after sepsis and rigorously analyzes the possible underlying mechanism of action. Based on several recent studies, we summarized the relationship between immunosenescence and sepsis-related organs. We believe that the association between immunosenescence and parenchymal organs might be able to explain the delayed consequences associated with sepsis.
Collapse
Affiliation(s)
- Xuan Lu
- Department of Geriatric and Emergency Medicine, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- The Key Laboratory for Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases of Zhejiang Province, Hangzhou, China
| | - Yun-Mei Yang
- Department of Geriatric and Emergency Medicine, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- The Key Laboratory for Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases of Zhejiang Province, Hangzhou, China
| | - Yuan-Qiang Lu
- Department of Geriatric and Emergency Medicine, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- The Key Laboratory for Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases of Zhejiang Province, Hangzhou, China
- *Correspondence: Yuan-Qiang Lu,
| |
Collapse
|
7
|
Jaiswal AK, Yadav J, Makhija S, Sandey M, Suryawanshi A, Mitra AK, Mishra A. Short palate, lung, and nasal epithelial clone 1 (SPLUNC1) level determines steroid-resistant airway inflammation in aging. Am J Physiol Lung Cell Mol Physiol 2022; 322:L102-L115. [PMID: 34851736 PMCID: PMC8759962 DOI: 10.1152/ajplung.00315.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 11/17/2021] [Accepted: 11/22/2021] [Indexed: 01/25/2023] Open
Abstract
Asthma and its heterogeneity change with age. Increased airspace neutrophil numbers contribute to severe steroid-resistant asthma exacerbation in the elderly, which correlates with the changes seen in adults with asthma. However, whether that resembles the same disease mechanism and pathophysiology in aged and adults is poorly understood. Here, we sought to address the underlying molecular mechanism of steroid-resistant airway inflammation development and response to corticosteroid (Dex) therapy in aged mice. To study the changes in inflammatory mechanism, we used a clinically relevant treatment model of house-dust mite (HDM)-induced allergic asthma and investigated lung adaptive immune response in adult (20-22 wk old) and aged (80-82 wk old) mice. Our result indicates an age-dependent increase in airway hyperresponsiveness (AHR), mixed granulomatous airway inflammation comprising eosinophils and neutrophils, and Th1/Th17 immune response with progressive decrease in frequencies and numbers of HDM-bearing dendritic cells (DC) accumulation in the draining lymph node (DLn) of aged mice as compared with adult mice. RNA-Seq experiments of the aged lung revealed short palate, lung, and nasal epithelial clone 1 (SPLUNC1) as one of the steroid-responsive genes, which progressively declined with age and further by HDM-induced inflammation. Moreover, we found increased glycolytic reprogramming, maturation/activation of DCs, the proliferation of OT-II cells, and Th2 cytokine secretion with recombinant SPLUNC1 (rSPLUNC1) treatment. Our results indicate a novel immunomodulatory role of SPLUNC1 regulating metabolic adaptation/maturation of DC. An age-dependent decline in the SPLUNC1 level may be involved in developing steroid-resistant airway inflammation and asthma heterogeneity.
Collapse
Affiliation(s)
- Anil Kumar Jaiswal
- Laboratory of Lung Inflammation, College of Veterinary Medicine, Auburn University, Auburn, Alabama
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, Alabama
| | - Jyoti Yadav
- Laboratory of Lung Inflammation, College of Veterinary Medicine, Auburn University, Auburn, Alabama
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, Alabama
| | - Sangeet Makhija
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, Alabama
| | - Maninder Sandey
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, Alabama
| | - Amol Suryawanshi
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, Alabama
| | - Amit Kumar Mitra
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, Alabama
- Center for Pharmacogenomics and Single-Cell Omics, Harrison School of Pharmacy, Auburn University, Auburn, Alabama
| | - Amarjit Mishra
- Laboratory of Lung Inflammation, College of Veterinary Medicine, Auburn University, Auburn, Alabama
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, Alabama
| |
Collapse
|
8
|
Galletti JG, de Paiva CS. Age-related changes in ocular mucosal tolerance: Lessons learned from gut and respiratory tract immunity. Immunology 2021; 164:43-56. [PMID: 33837534 DOI: 10.1111/imm.13338] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/28/2021] [Accepted: 03/24/2021] [Indexed: 12/12/2022] Open
Abstract
The ocular surface is the part of the visual system directly exposed to the environment, and it comprises the cornea, the first refractive tissue layer and its surrounding structures. The ocular surface has evolved to keep the cornea smooth and wet, a prerequisite for proper sight, and also protected. To this aim, the ocular surface is a bona fide mucosal niche with an immune system capable of fighting against dangerous pathogens. However, due to the potential harmful effects of uncontrolled inflammation, the ocular surface has several mechanisms to keep the immune response in check. Specifically, the ocular surface is maintained inflammation-free and functional by a particular form of peripheral tolerance known as mucosal tolerance, markedly different from the immune privilege of intraocular structures. Remarkably, conjunctival tolerance is akin to the oral and respiratory tolerance mechanisms found in the gut and airways, respectively. And also similarly, this form of immunoregulation in the eye is affected by ageing just as it is in the digestive and respiratory tracts. With ageing comes an increased prevalence of immune-based ocular surface disorders, which could be related to an age-related impairment of conjunctival tolerance. The purpose of this review was to summarize the present knowledge of ocular mucosal tolerance and how it is affected by the ageing process in the light of the current literature on mucosal immunoregulation of the gut and airways.
Collapse
Affiliation(s)
- Jeremias G Galletti
- Innate Immunity Laboratory, Institute of Experimental Medicine (IMEX), National Academy of Medicine/CONICET, Buenos Aires, Argentina
| | - Cintia S de Paiva
- Department of Ophthalmology, Ocular Surface Center, Cullen Eye Institute, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
9
|
Galletti JG, de Paiva CS. The ocular surface immune system through the eyes of aging. Ocul Surf 2021; 20:139-162. [PMID: 33621658 PMCID: PMC8113112 DOI: 10.1016/j.jtos.2021.02.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 02/04/2021] [Accepted: 02/16/2021] [Indexed: 02/06/2023]
Abstract
Since the last century, advances in healthcare, housing, and education have led to an increase in life expectancy. Longevity is accompanied by a higher prevalence of age-related diseases, such as cancer, autoimmunity, diabetes, and infection, and part of this increase in disease incidence relates to the significant changes that aging brings about in the immune system. The eye is not spared by aging either, presenting with age-related disorders of its own, and interestingly, many of these diseases have immune pathophysiology. Being delicate organs that must be exposed to the environment in order to capture light, the eyes are endowed with a mucosal environment that protects them, the so-called ocular surface. As in other mucosal sites, immune responses at the ocular surface need to be swift and potent to eliminate threats but are at the same time tightly controlled to prevent excessive inflammation and bystander damage. This review will detail how aging affects the mucosal immune response of the ocular surface as a whole and how this process relates to the higher incidence of ocular surface disease in the elderly.
Collapse
Affiliation(s)
- Jeremias G Galletti
- Innate Immunity Laboratory, Institute of Experimental Medicine (IMEX), CONICET-National Academy of Medicine, Buenos Aires, Argentina.
| | - Cintia S de Paiva
- Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
10
|
Liu WQ, Li WL, Ma SM, Liang L, Kou ZY, Yang J. Discovery of core gene families associated with liver metastasis in colorectal cancer and regulatory roles in tumor cell immune infiltration. Transl Oncol 2021; 14:101011. [PMID: 33450702 PMCID: PMC7810789 DOI: 10.1016/j.tranon.2021.101011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 12/01/2020] [Accepted: 01/04/2021] [Indexed: 01/21/2023] Open
Abstract
In this study, we aimed to uncover genes that drive the pathogenesis of liver metastasis in colorectal cancer (CRC), and identify effective genes that could serve as potential therapeutic targets for treating with colorectal liver metastasis patients based on two GEO datasets. Several bioinformatics approaches were implemented. First, differential expression analysis screened out key differentially expressed genes (DEGs) across the two GEO datasets. Based on gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses, we identified the enrichment functions and pathways of the DEGs that were associated with liver metastasis in CRC. Second, immune infiltration analysis identified key immune signature gene sets associated with CRC liver metastasis, among which two key immune gene families (CD and CCL) identified as key DEGs were filtered by protein-protein interaction (PPI) network. Some of the members in these gene families were associated with disease free survival (DFS) or overall survival (OS) in two subtypes of CRC, namely COAD and READ. Finally, functional enrichment analysis of the two gene families and their neighboring genes revealed that they were closely associated with cytokine, leukocyte proliferation and chemotaxis. These results are valuable in comprehending the pathogenesis of liver metastasis in CRC, and are of seminal importance in understanding the role of immune tumor infiltration in CRC. Our study also identified potentially effective therapeutic targets for liver metastasis in CRC including CCL20, CCL24 and CD70.
Collapse
Affiliation(s)
- Wei-Qing Liu
- Department of Internal Medicine-Oncology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, PR China
| | - Wen-Liang Li
- Department of Oncology, First Affiliated Hospital of Kunming Medical University, No. 295 Xichang road, Kunming, Yunnan 650032, PR China
| | - Shu-Min Ma
- Department of Oncology, First Affiliated Hospital of Kunming Medical University, No. 295 Xichang road, Kunming, Yunnan 650032, PR China
| | - Lei Liang
- Department of Oncology, First Affiliated Hospital of Kunming Medical University, No. 295 Xichang road, Kunming, Yunnan 650032, PR China
| | - Zhi-Yong Kou
- Department of Oncology, First Affiliated Hospital of Kunming Medical University, No. 295 Xichang road, Kunming, Yunnan 650032, PR China
| | - Jun Yang
- Department of Oncology, First Affiliated Hospital of Kunming Medical University, No. 295 Xichang road, Kunming, Yunnan 650032, PR China.
| |
Collapse
|
11
|
Lopez L, Sang PC, Tian Y, Sang Y. Dysregulated Interferon Response Underlying Severe COVID-19. Viruses 2020; 12:E1433. [PMID: 33322160 PMCID: PMC7764122 DOI: 10.3390/v12121433] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/06/2020] [Accepted: 12/09/2020] [Indexed: 12/16/2022] Open
Abstract
Innate immune interferons (IFNs), including type I and III IFNs, constitute critical antiviral mechanisms. Recent studies reveal that IFN dysregulation is key to determine COVID-19 pathogenesis. Effective IFN stimulation or prophylactic administration of IFNs at the early stage prior to severe COVID-19 may elicit an autonomous antiviral state, restrict the virus infection, and prevent COVID-19 progression. Inborn genetic flaws and autoreactive antibodies that block IFN response have been significantly associated with about 14% of patients with life-threatening COVID-19 pneumonia. In most severe COVID-19 patients without genetic errors in IFN-relevant gene loci, IFN dysregulation is progressively worsened and associated with the situation of pro-inflammation and immunopathy, which is prone to autoimmunity. In addition, the high correlation of severe COVID-19 with seniority, males, and individuals with pre-existing comorbidities will be plausibly explained by the coincidence of IFN aberrance in these situations. Collectively, current studies call for a better understanding of the IFN response regarding the spatiotemporal determination and subtype-specificity against SARS-CoV-2 infections, which are warranted to devise IFN-related prophylactics and therapies.
Collapse
Affiliation(s)
| | | | | | - Yongming Sang
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, 3500 John A. Merritt Boulevard, Nashville, TN 37209, USA; (L.L.); (P.C.S.); (Y.T.)
| |
Collapse
|
12
|
Vitkov L, Minnich B, Knopf J, Schauer C, Hannig M, Herrmann M. NETs Are Double-Edged Swords with the Potential to Aggravate or Resolve Periodontal Inflammation. Cells 2020; 9:E2614. [PMID: 33291407 PMCID: PMC7762037 DOI: 10.3390/cells9122614] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 12/24/2022] Open
Abstract
Periodontitis is a general term for diseases characterised by inflammatory destruction of tooth-supporting tissues, gradual destruction of the marginal periodontal ligament and resorption of alveolar bone. Early-onset periodontitis is due to disturbed neutrophil extracellular trap (NET) formation and clearance. Indeed, mutations that inactivate the cysteine proteases cathepsin C result in the massive periodontal damage seen in patients with deficient NET formation. In contrast, exaggerated NET formation due to polymorphonuclear neutrophil (PMN) hyper-responsiveness drives the pathology of late-onset periodontitis by damaging and ulcerating the gingival epithelium and retarding epithelial healing. Despite the gingival regeneration, periodontitis progression ends with almost complete loss of the periodontal ligament and subsequent tooth loss. Thus, NETs help to maintain periodontal health, and their dysregulation, either insufficiency or surplus, causes heavy periodontal pathology and edentulism.
Collapse
Affiliation(s)
- Ljubomir Vitkov
- Department of Biosciences, Vascular & Exercise Biology Unit, University of Salzburg, 5020 Salzburg, Austria; (L.V.); (B.M.)
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, Saarland University, 66424 Homburg, Germany
| | - Bernd Minnich
- Department of Biosciences, Vascular & Exercise Biology Unit, University of Salzburg, 5020 Salzburg, Austria; (L.V.); (B.M.)
| | - Jasmin Knopf
- Department of Internal Medicine 3—Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany; (J.K.); (C.S.); (M.H.)
| | - Christine Schauer
- Department of Internal Medicine 3—Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany; (J.K.); (C.S.); (M.H.)
| | - Matthias Hannig
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, Saarland University, 66424 Homburg, Germany
| | - Martin Herrmann
- Department of Internal Medicine 3—Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany; (J.K.); (C.S.); (M.H.)
| |
Collapse
|
13
|
McCoy K, Peterson A, Tian Y, Sang Y. Immunogenetic Association Underlying Severe COVID-19. Vaccines (Basel) 2020; 8:E700. [PMID: 33233531 PMCID: PMC7711778 DOI: 10.3390/vaccines8040700] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/15/2020] [Accepted: 11/17/2020] [Indexed: 12/16/2022] Open
Abstract
SARS-CoV2 has caused the current pandemic of new coronavirus disease 2019 (COVID-19) worldwide. Clinical outcomes of COVID-19 illness range broadly from asymptotic and mild to a life-threatening situation. This casts uncertainties for defining host determinants underlying the disease severity. Recent genetic analyses based on extensive clinical sample cohorts using genome-wide association studies (GWAS) and high throughput sequencing curation revealed genetic errors and gene loci associated with about 20% of life-threatening COVID-19 cases. Significantly, most of these critical genetic loci are enriched in two immune signaling pathways, i.e., interferon-mediated antiviral signaling and chemokine-mediated/inflammatory signaling. In line with these genetic profiling studies, the broad spectrum of COVID-19 illness could be explained by immuno-pathological regulation of these critical immunogenetic pathways through various epigenetic mechanisms, which further interconnect to other vital components such as those in the renin-angiotensin-aldosterone system (RAAS) because of its direct interaction with the virus causing COVID-19. Together, key genes unraveled by genetic profiling may provide targets for precisely early risk diagnosis and prophylactic design to relieve severe COVID-19. The confounding epigenetic mechanisms may be key to understanding the clinical broadness of COVID-19 illness.
Collapse
Affiliation(s)
- Kendall McCoy
- Department of Biology, College of Life and Physical Sciences, Tennessee State University, 3500 John A. Merritt Boulevard, Nashville, TN 37209, USA; (K.M.); (A.P.)
| | - Autumn Peterson
- Department of Biology, College of Life and Physical Sciences, Tennessee State University, 3500 John A. Merritt Boulevard, Nashville, TN 37209, USA; (K.M.); (A.P.)
| | - Yun Tian
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, 3500 John A. Merritt Boulevard, Nashville, TN 37209, USA;
| | - Yongming Sang
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, 3500 John A. Merritt Boulevard, Nashville, TN 37209, USA;
| |
Collapse
|
14
|
Drasler B, Karakocak BB, Tankus EB, Barosova H, Abe J, Sousa de Almeida M, Petri-Fink A, Rothen-Rutishauser B. An Inflamed Human Alveolar Model for Testing the Efficiency of Anti-inflammatory Drugs in vitro. Front Bioeng Biotechnol 2020; 8:987. [PMID: 32974315 PMCID: PMC7471931 DOI: 10.3389/fbioe.2020.00987] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 07/29/2020] [Indexed: 12/19/2022] Open
Abstract
A large number of prevalent lung diseases is associated with tissue inflammation. Clinically, corticosteroid therapies are applied systemically or via inhalation for the treatment of lung inflammation, and a number of novel therapies are being developed that require preclinical testing. In alveoli, macrophages and dendritic cells play a key role in initiating and diminishing pro-inflammatory reactions and, in particular, macrophage plasticity (M1 and M2 phenotypes shifts) has been reported to play a significant role in these reactions. Thus far, no studies with in vitro lung epithelial models have tested the comparison between systemic and direct pulmonary drug delivery. Therefore, the aim of this study was to develop an inflamed human alveolar epithelium model and to test the resolution of LPS-induced inflammation in vitro with a corticosteroid, methylprednisolone (MP). A specific focus of the study was the macrophage phenotype shifts in response to these stimuli. First, human monocyte-derived macrophages were examined for phenotype shifts upon exposure to lipopolysaccharide (LPS), followed by treatment with MP. A multicellular human alveolar model, composed of macrophages, dendritic cells, and epithelial cells, was then employed for the development of inflamed models. The models were used to test the anti-inflammatory potency of MP by monitoring the secretion of pro-inflammatory mediators (interleukin [IL]-8, tumor necrosis factor-α [TNF-α], and IL-1β) through four different approaches, mimicking clinical scenarios of inflammation and treatment. In macrophage monocultures, LPS stimulation shifted the phenotype towards M1, as demonstrated by increased release of IL-8 and TNF-α and altered expression of phenotype-associated surface markers (CD86, CD206). MP treatment of inflamed macrophages reversed the phenotype towards M2. In multicellular models, increased pro-inflammatory reactions after LPS exposure were observed, as demonstrated by protein secretion and gene expression measurements. In all scenarios, among the tested mediators the most pronounced anti-inflammatory effect of MP was observed for IL-8. Our findings demonstrate that our inflamed multicellular human lung model is a promising tool for the evaluation of anti-inflammatory potency of drug candidates in vitro. With the presented setup, our model allows a meaningful comparison of the systemic vs. inhalation administration routes for the evaluation of the efficacy of a drug in vitro.
Collapse
Affiliation(s)
- Barbara Drasler
- Institut Adolphe Merkle, Faculté des Sciences et de Médecine, Université de Fribourg, Fribourg, Switzerland
| | - Bedia Begum Karakocak
- Institut Adolphe Merkle, Faculté des Sciences et de Médecine, Université de Fribourg, Fribourg, Switzerland
| | - Esma Bahar Tankus
- Institut Adolphe Merkle, Faculté des Sciences et de Médecine, Université de Fribourg, Fribourg, Switzerland
| | - Hana Barosova
- Institut Adolphe Merkle, Faculté des Sciences et de Médecine, Université de Fribourg, Fribourg, Switzerland
| | - Jun Abe
- Department of Oncology, Microbiology and Immunology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Mauro Sousa de Almeida
- Institut Adolphe Merkle, Faculté des Sciences et de Médecine, Université de Fribourg, Fribourg, Switzerland
| | - Alke Petri-Fink
- Institut Adolphe Merkle, Faculté des Sciences et de Médecine, Université de Fribourg, Fribourg, Switzerland.,Département de Chimie, Faculté des Sciences et de Médecine, Université de Fribourg, Fribourg, Switzerland
| | - Barbara Rothen-Rutishauser
- Institut Adolphe Merkle, Faculté des Sciences et de Médecine, Université de Fribourg, Fribourg, Switzerland
| |
Collapse
|
15
|
Du JL, Li GN, He RW, Zhang SZ, Zhang X, Huang ZG. Association between potentially functional polymorphisms of chemokine family members and the survival of esophageal cancer patients in a Chinese population. Onco Targets Ther 2019; 12:4631-4641. [PMID: 31354296 PMCID: PMC6580125 DOI: 10.2147/ott.s192362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 04/26/2019] [Indexed: 11/23/2022] Open
Abstract
Background: The chemokine family plays an important role in the growth, invasion, and metastasis of tumors. However, most studies have only focused on a few genes or a few gene loci, and thus could not reveal the associations between functional polymorphisms of chemokine family members and tumor progression. This study aimed to determine the associations between single nucleotide polymorphisms (SNPs) of chemokine family members and the prognosis of esophageal cancer (EC). Methods: The Cox risk proportional model and log-rank test were used to analyze the associations of 16 potentially functional SNPs in 13 genes from the chemokine family with the survival of 729 Chinese patients with EC. Results: Prognostic analysis on the 16 SNPs showed that different genotypes of 5 SNPs were associated with patients’ survival and the risk of death. Multivariate Cox regression analysis showed that the risk of death was higher in CCL26rs2302009 genotype A/C carriers than in A/A carriers and it was also higher in CX3CL1rs2239352 genotype T/T carriers than in C/C carriers. Stepwise Cox regression analysis showed that CCL26rs2302009 genotype A/C was an independent prognostic factor of EC, and its association with increased risk of death was stronger in patients who were ≤60 years old, female, with tumors located in the middle part of esophagus, with undifferentiated or poorly differentiated tumors, with early-stage pathologic type disease, with the longest diameter of tumor ≤5cm than in their counterparts. Conclusion: These findings suggest that CCL26rs2302009 may be a candidate biomarker for EC and its effect on death risk are associated with the histological grade, pathologic type, and the longest diameter of tumor.
Collapse
Affiliation(s)
- Jin-Lin Du
- Department of Epidemiology and Health Statistics, School of Public Health, Guangdong Medical University, Dongguan, Guangdong, 523808, People's Republic of China
| | - Ge-Nan Li
- Department of Hospital Nutrition, First Affiliated Hospital of PLA General Hospital, Beijing, 100048, People's Republic of China
| | - Rong-Wei He
- Department of Epidemiology and Health Statistics, School of Public Health, Guangdong Medical University, Dongguan, Guangdong, 523808, People's Republic of China
| | - Shi-Zhuo Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Guangdong Medical University, Dongguan, Guangdong, 523808, People's Republic of China
| | - Xing Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Guangdong Medical University, Dongguan, Guangdong, 523808, People's Republic of China
| | - Zhi-Gang Huang
- Department of Epidemiology and Health Statistics, School of Public Health, Guangdong Medical University, Dongguan, Guangdong, 523808, People's Republic of China
| |
Collapse
|
16
|
Bian F, Xiao Y, Barbosa FL, de Souza RG, Hernandez H, Yu Z, Pflugfelder SC, de Paiva CS. Age-associated antigen-presenting cell alterations promote dry-eye inducing Th1 cells. Mucosal Immunol 2019; 12:897-908. [PMID: 30696983 PMCID: PMC6599474 DOI: 10.1038/s41385-018-0127-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 11/25/2018] [Accepted: 12/16/2018] [Indexed: 02/04/2023]
Abstract
Aging is a significant risk factor for dry eye. Here we used a murine aging model to investigate the effects of aging on antigen presenting cells (APCs) and generation of pathogenic T helper (Th)-1 cells. Our results showed that APCs from aged mice accumulate at the conjunctiva, have higher levels of co-activation marker CD86 and lower aldehyde dehydrogenase activity. Using topical ovalbumin peptide as a surrogate antigen, we observed an increased number of antigen-loaded APCs in the draining cervical lymph nodes in the aged group and loss of tight junction protein occludin in the conjunctiva. Aged cervical lymph nodes APCs showed a greater generation of Th1 cells than young APCs in antigen-presentation assays in vitro. Aged lacrimal glands, and draining nodes showed an accumulation of IFN-γ producing CD4+T cells, while Th-17 cells were present only in aged draining nodes. There was also an age-related increase in CD4+CXCR3+IFN-γ+ cells in the conjunctiva, nodes, and lacrimal glands while CD4+CCR6+IL-17A+ cells increased in the draining nodes of aged mice. Adoptive transfer of aged CD4+CXCR3+ cells into young, naive immunodeficient recipients caused greater goblet cell loss than young CD4+CXCR3+ donor cells. Our results demonstrate that age-associated changes in APCs are critical for the pathogenesis of age-related dry eye.
Collapse
Affiliation(s)
- Fang Bian
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX, USA
| | - Yangyan Xiao
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX, USA
- Department of Ophthalmology, the Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan Province, China
| | - Flavia L Barbosa
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX, USA
| | - Rodrigo G de Souza
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX, USA
| | - Humberto Hernandez
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX, USA
| | - Zhiyuan Yu
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX, USA
| | | | - Cintia S de Paiva
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
17
|
Agrawal S, Abud EM, Snigdha S, Agrawal A. IgM response against amyloid-beta in aging: a potential peripheral protective mechanism. ALZHEIMERS RESEARCH & THERAPY 2018; 10:81. [PMID: 30115117 PMCID: PMC6097437 DOI: 10.1186/s13195-018-0412-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 07/23/2018] [Indexed: 11/10/2022]
Abstract
BACKGROUND The immune system plays a major role in the pathogenesis of age-related dementia, including Alzheimer's disease (AD). An insight into age-associated changes in the immune response to amyloid-beta (Aβ) in individuals without AD may be beneficial in identifying mechanisms preventing accumulation of Aβ. METHODS We examined the response of human monocyte-derived dendritic cells (DCs), T cells, and peripheral blood mononuclear cells (PBMCs) from healthy aged and young subjects to Aβ peptide 1-42, Aβ fibrils, and recombinant, nonaggregated tau-4 protein with a view to understand the role of peripheral immunity in AD. RESULTS Our studies revealed that DCs from healthy aged subjects display weak reactivity towards the Aβ peptide and no reactivity towards Aβ fibrils and tau compared with their young counterparts. An analysis of old and young PBMCs revealed that there is no significant T-cell memory against Aβ peptide, fibrils, or tau. Remarkably, the plasma levels of IgM antibodies specific to Aβ peptide 1-42 were significantly increased in aged subjects compared with young subjects, while IgG levels were comparable. Aβ peptide-specific IgM and IgG levels were also determined in the plasma of AD subjects compared with age-matched controls to demonstrate that the immune response against Aβ is stronger in AD patients. A decline in Aβ peptide-specific IgM antibodies was observed in AD patients compared with age-matched controls. In contrast, the levels of IgG as well as interleukin-21, the major cytokine involved in class switching, were increased in AD and patients with mild cognitive impairment, indicating a strong immune response against Aβ. CONCLUSIONS Collectively, low immunogenicity of Aβ in healthy controls may prevent inflammation while the generation of specific IgM antibodies may help in the clearance of Aβ in healthy subjects.
Collapse
Affiliation(s)
- Sudhanshu Agrawal
- Division of Basic and Clinical Immunology, Department of Medicine, University of California, Irvine, Irvine, CA, 92697, USA
| | - Edsel M Abud
- UCI-MIND, University of California, Irvine, Irvine, CA, 92697, USA
| | - Shikha Snigdha
- UCI-MIND, University of California, Irvine, Irvine, CA, 92697, USA
| | - Anshu Agrawal
- Division of Basic and Clinical Immunology, Department of Medicine, University of California, Irvine, Irvine, CA, 92697, USA.
| |
Collapse
|
18
|
Bullone M, Lavoie JP. The Contribution of Oxidative Stress and Inflamm-Aging in Human and Equine Asthma. Int J Mol Sci 2017; 18:ijms18122612. [PMID: 29206130 PMCID: PMC5751215 DOI: 10.3390/ijms18122612] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 11/27/2017] [Accepted: 11/29/2017] [Indexed: 02/07/2023] Open
Abstract
Aging is associated with a dysregulation of the immune system, leading to a general pro-inflammatory state of the organism, a process that has been named inflamm-aging. Oxidative stress has an important role in aging and in the regulation of immune responses, probably playing a role in the development of age-related diseases. The respiratory system function physiologically declines with the advancement of age. In elderly asthmatic patients, this may contribute to disease expression. In this review, we will focus on age-related changes affecting the immune system and in respiratory structure and function that could contribute to asthma occurrence, and/or clinical presentation in the elderly. Also, naturally occurring equine asthma will be discussed as a possible model for studying the importance of oxidative stress and immun-aging/inflamm-aging in humans.
Collapse
Affiliation(s)
- Michela Bullone
- Department of Clinical and Biological Sciences, University of Turin, AUO San Luigi Gonzaga, Regione Gonzole 10, 10043 Orbassano, Italy.
| | - Jean-Pierre Lavoie
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Université de Montréal, 3200 Rue Sicotte, St-Hyacinthe, QC J2S 2M2, Canada.
| |
Collapse
|
19
|
Agrawal S, Ganguly S, Tran A, Sundaram P, Agrawal A. Retinoic acid treated human dendritic cells induce T regulatory cells via the expression of CD141 and GARP which is impaired with age. Aging (Albany NY) 2017; 8:1223-35. [PMID: 27244900 PMCID: PMC4931828 DOI: 10.18632/aging.100973] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 05/16/2016] [Indexed: 12/24/2022]
Abstract
Aged subjects display increased susceptibility to mucosal diseases. Retinoic Acid (RA) plays a major role in inducing tolerance in the mucosa. RA acts on Dendritic cells (DCs) to induce mucosal tolerance. Here we compared the response of DCs from aged and young individuals to RA with a view to understand the role of DCs in age-associated increased susceptibility to mucosal diseases. Our investigations revealed that compared to young DCs, RA stimulated DCs from aged subjects are defective in inducing IL-10 and T regulatory cells. Examinations of the underlying mechanisms indicated that RA exposure led to the upregulation of CD141 and GARP on DCs which rendered the DCs tolerogenic. CD141hi, GARP+ DCs displayed enhanced capacity to induce T regulatory cells compared to CD141lo and GARP− DCs. Unlike RA stimulated DCs from young, DCs from aged subjects exhibited diminished upregulation of both CD141 and GARP. The percentage of DCs expressing CD141 and GARP on RA treatment was significantly reduced in DCs from aged individuals. Furthermore, the remaining CD141hi, GARP+ DCs from aged individuals were also deficient in inducing T regs. In summary, reduced response of aged DCs to RA enhances mucosal inflammation in the elderly, increasing their susceptibility to mucosal diseases.
Collapse
Affiliation(s)
- Sudhanshu Agrawal
- Division of Basic and Clinical Immunology, Department of Medicine, University of California, Irvine, CA 92697, USA
| | - Sreerupa Ganguly
- Division of Basic and Clinical Immunology, Department of Medicine, University of California, Irvine, CA 92697, USA
| | - Alexander Tran
- Division of Basic and Clinical Immunology, Department of Medicine, University of California, Irvine, CA 92697, USA
| | - Padmaja Sundaram
- Division of Basic and Clinical Immunology, Department of Medicine, University of California, Irvine, CA 92697, USA
| | - Anshu Agrawal
- Division of Basic and Clinical Immunology, Department of Medicine, University of California, Irvine, CA 92697, USA
| |
Collapse
|
20
|
Agrawal A, Agrawal S, Gupta S. Role of Dendritic Cells in Inflammation and Loss of Tolerance in the Elderly. Front Immunol 2017; 8:896. [PMID: 28798751 PMCID: PMC5526855 DOI: 10.3389/fimmu.2017.00896] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 07/13/2017] [Indexed: 12/16/2022] Open
Abstract
Dendritic cells (DCs) play an important role in advancing age-associated progressive decline in adaptive immune responses, loss of tolerance, and development of chronic inflammation. In aged humans, DCs secrete increased levels of pro-inflammatory cytokines and decreased levels of anti-inflammatory and immune-regulatory cytokines. This may contribute to both chronic inflammation and loss of tolerance in aging. Aged DCs also display increased immune response against self-antigens contributing further to both inflammation and loss of tolerance. The secretion of innate protective cytokines such as type I and III interferons is decreased, and the function of DCs in airway remodeling and inflammation in aged is also compromised. Furthermore, the capacity of DCs to prime T cell responses also seems to be affected. Collectively, these changes in DC functions contribute to the immune dysfunction and inflammation in the elderly. This review only focuses on age-associated changes in DC function in humans.
Collapse
Affiliation(s)
- Anshu Agrawal
- Division of Basic and Clinical Immunology, Department of Medicine, University of California, Irvine, Irvine, CA, United States
| | - Sudhanshu Agrawal
- Division of Basic and Clinical Immunology, Department of Medicine, University of California, Irvine, Irvine, CA, United States
| | - Sudhir Gupta
- Division of Basic and Clinical Immunology, Department of Medicine, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
21
|
Agrawal A. Dendritic Cell-Airway Epithelial Cell Cross-Talk Changes with Age and Contributes to Chronic Lung Inflammatory Diseases in the Elderly. Int J Mol Sci 2017; 18:ijms18061206. [PMID: 28587289 PMCID: PMC5486029 DOI: 10.3390/ijms18061206] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 05/15/2017] [Accepted: 06/01/2017] [Indexed: 02/07/2023] Open
Abstract
Age-associated dysregulated immune and inflammatory responses are one of the major factors responsible for the prevalence of chronic respiratory diseases in the older population. Pulmonary dendritic cells (DCs) are present below the airway epithelial cells (AECs) and are critical in initiating effective immune responses to harmful pathogens while maintaining tolerance against harmless antigens. The interaction between DCs and AECs plays a crucial role in lung immunity at homeostasis and during infections. The functions of both DCs and AECs are impacted with age. The present report reviews how the potential crosstalk between pulmonary DCs and AECs is dysregulated in the elderly impairing the capacity to maintain tolerance at the respiratory surfaces, which results in severe and chronic respiratory inflammatory diseases. We also discuss how such DC-AECs crosstalk will provide insight into the mechanisms underlying the increased susceptibility of the elderly to pulmonary inflammatory diseases.
Collapse
Affiliation(s)
- Anshu Agrawal
- Division of Basic and Clinical Immunology, Department of Medicine, University of California Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
22
|
Agrawal S, Srivastava R, Rahmatpanah F, Madiraju C, BenMohamed L, Agrawal A. Airway epithelial cells enhance the immunogenicity of human myeloid dendritic cells under steady state. Clin Exp Immunol 2017; 189:279-289. [PMID: 28470729 DOI: 10.1111/cei.12983] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2017] [Indexed: 12/16/2022] Open
Abstract
Dendritic cells (DCs) and airway epithelial cells (AECs) are in close proximity, and AECs secrete factors such as retinoic acid which induce tolerance in DCs at homeostasis. However, the question remains as to how DCs in the lung are able to respond to pathogens in the immunosuppressive environment. Using an in vitro human myeloid DC (mDC)-AEC co-culture system, we demonstrate that AECs induced several gene changes in the mDCs cultured with AECs compared to the mDCs not cultured with AECs. Analysis revealed that several chemokine genes were altered. These chemokine genes could serve to attract neutrophils, natural killer (NK) T as well as T helper type 1 (Th1)/Th2 cells to the airways. Genes priming lipid and major histocompatibility complex (MHC) class II antigen presentation were also up-regulated, along with certain anti-microbial protein genes. In addition, the expression and function of pathogen-sensing Toll-like receptors (TLRs) as well as Nod-like receptors (NLRs) and their downstream signalling molecules were up-regulated in mDCs cultured with AECs. Moreover, murine mucosal DCs from the lung expressed significantly higher levels of TLRs and NLRs compared to peripheral DCs from the spleen. These results indicate that AECs prime mDCs to enhance their immunogenicity, which could be one of the mechanisms that compensates for the immunosuppressive mucosal environment.
Collapse
Affiliation(s)
- S Agrawal
- Division of Basic and Clinical Immunology, Department of Medicine, Irvine, CA, USA
| | - R Srivastava
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, Irvine, CA, USA
| | - F Rahmatpanah
- Department of pathology, University of California, Irvine, Irvine, CA, USA
| | - C Madiraju
- Division of Basic and Clinical Immunology, Department of Medicine, Irvine, CA, USA
| | - L BenMohamed
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, Irvine, CA, USA
| | - A Agrawal
- Division of Basic and Clinical Immunology, Department of Medicine, Irvine, CA, USA
| |
Collapse
|
23
|
Farid M, Agrawal A, Fremgen D, Tao J, Chuyi H, Nesburn AB, BenMohamed L. Age-related Defects in Ocular and Nasal Mucosal Immune System and the Immunopathology of Dry Eye Disease. Ocul Immunol Inflamm 2016; 24:327-47. [PMID: 25535823 PMCID: PMC4478284 DOI: 10.3109/09273948.2014.986581] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Dry eye disease (DED) is a prevalent public health concern that affects up to 30% of adults and is particularly chronic and severe in the elderly. Two interconnected mechanisms cause DED: (1) an age-related dysfunction of lacrimal and meibomian glands, which leads to decreased tear production and/or an increase in tear evaporation; and (2) an age-related uncontrolled inflammation of the surface of the eye triggered by yet-to-be-determined internal immunopathological mechanisms, independent of tear deficiency and evaporation. In this review we summarize current knowledge on animal models that mimic both the severity and chronicity of inflammatory DED and that have been reliably used to provide insights into the immunopathological mechanisms of DED, and we provide an overview of the opportunities and limitations of the rabbit model in investigating the role of both ocular and nasal mucosal immune systems in the immunopathology of inflammatory DED and in testing novel immunotherapies aimed at delaying or reversing the uncontrolled age-related inflammatory DED.
Collapse
Affiliation(s)
- Marjan Farid
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, California, USA
| | - Anshu Agrawal
- Division of Basic and Clinical Immunology, Department of Medicine, University of California Irvine, School of Medicine, Irvine, California, USA
| | - Daniel Fremgen
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, California, USA
| | - Jeremiah Tao
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, California, USA
| | - He Chuyi
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, California, USA
| | - Anthony B. Nesburn
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, California, USA
| | - Lbachir BenMohamed
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, California, USA
- Department of Molecular Biology, University of California Irvine, School of Medicine, Irvine, California, USA
- Biochemistry and Institute for Immunology, University of California Irvine, School of Medicine, Irvine, California, USA
| |
Collapse
|
24
|
Abstract
Human immune system aging results in impaired responses to pathogens or vaccines. In the innate immune system, which mediates the earliest pro-inflammatory responses to immunologic challenge, processes ranging from Toll-like Receptor function to Neutrophil Extracellular Trap formation are generally diminished in older adults. Dysregulated, enhanced basal inflammation with age reflecting activation by endogenous damage-associated ligands contributes to impaired innate immune responses. In the adaptive immune system, T and B cell subsets and function alter with age. The control of cytomegalovirus infection, particularly in the T lineage, plays a dominant role in the differentiation and diversity of the T cell compartment.
Collapse
Affiliation(s)
- Thilinie Bandaranayake
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06520, USA
| | - Albert C Shaw
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
25
|
Magrone T, Galantino M, Di Bitonto N, Borraccino L, Chiaromonte G, Jirillo E. Effects of thermal water inhalation in chronic upper respiratory tract infections in elderly and young patients. IMMUNITY & AGEING 2016; 13:18. [PMID: 27152115 PMCID: PMC4857412 DOI: 10.1186/s12979-016-0073-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 04/24/2016] [Indexed: 12/22/2022]
Abstract
Background Chronic upper respiratory tract infections (cURTI) are very frequent illnesses which occur at any age of life. In elderly, cURTI are complicated by immunosenescence, with involvement of lung immune responsiveness. Results In the present study, 51 elderly (age range: 66–86) and 51 young (age range 24–58) cURTI patients underwent a single cycle (two weeks) of inhalatory therapy with salt-bromide-iodine thermal water in the thermal station “Margherita di Savoia” (Margherita di Savoia, BAT, Italy). Peripheral blood serum cytokines and clinical assessment were performed before therapy (T0) and after six months (T1) and 12 months (T2) from inhalatory treatment. In both elderly and young patients, at baseline an increased release of T helper (h)1-related cytokines [interleukin (IL)-2 and interferon-γ] and of Th2-related cytokine (IL-4) was documented. Inhalatory treatment reduced the excessive secretion of all the above-cited cytokines. IL-10 values were above normality at all times considered in both groups of patients. In addition, an increase in IL-17 and IL-21 serum levels following therapy was observed in both groups of patients. Pro-inflammatory cytokine (IL-1β, IL-6, IL-8 and tumor necrosis factor-α) baseline values were lower than normal values at T0 in both elderly and young cURTI patients. Their levels increased following inhalatory treatment. Clinically, at T2 a dramatic reduction of frequency of upper respiratory tract infections was recorded in both groups of patients. Conclusion Thermal water inhalation is able to modulate systemic immune response in elderly and young cURTI patients, thus reducing excessive production of Th1 and Th2-related cytokines, on the one hand. On the other hand, increased levels of IL-21 (an inducer of Th17 cells) and of IL-17 may be interpreted as a protective mechanism, which likely leads to neutrophil recruitment in cURTI patients. Also restoration of pro-inflammatory cytokine release following inhalatory therapy may result in microbe eradication. Quite importantly, the maintenance of high levels of IL-10 during the follow-up would suggest a consistent regulatory role of this cytokine in attenuating the pro-inflammatory arm of the immune response.
Collapse
Affiliation(s)
- Thea Magrone
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, University of Bari, Policlinico, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Mauro Galantino
- Thermal Water Station "Margherita di Savoia", Margherita di Savoia, BAT Italy
| | - Nunzio Di Bitonto
- Thermal Water Station "Margherita di Savoia", Margherita di Savoia, BAT Italy
| | - Luisella Borraccino
- Thermal Water Station "Margherita di Savoia", Margherita di Savoia, BAT Italy
| | - Gerardo Chiaromonte
- Thermal Water Station "Margherita di Savoia", Margherita di Savoia, BAT Italy
| | - Emilio Jirillo
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, University of Bari, Policlinico, Piazza Giulio Cesare 11, 70124 Bari, Italy
| |
Collapse
|
26
|
Scichilone N, Ventura MT, Bonini M, Braido F, Bucca C, Caminati M, Del Giacco S, Heffler E, Lombardi C, Matucci A, Milanese M, Paganelli R, Passalacqua G, Patella V, Ridolo E, Rolla G, Rossi O, Schiavino D, Senna G, Steinhilber G, Vultaggio A, Canonica G. Choosing wisely: practical considerations on treatment efficacy and safety of asthma in the elderly. Clin Mol Allergy 2015; 13:7. [PMID: 26101468 PMCID: PMC4476207 DOI: 10.1186/s12948-015-0016-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2015] [Accepted: 03/26/2015] [Indexed: 12/22/2022] Open
Abstract
The prevalence of asthma in the most advanced ages is similar to that of younger ages. However, the concept that older individuals may suffer from allergic asthma has been largely denied in the past, and a common belief attributes to asthma the definition of "rare" disease. Indeed, asthma in the elderly is often underdiagnosed or diagnosed as COPD, thus leading to undertreatment of improper treatment. This is also due to the heterogeneity of clinical and functional presentations of geriatric asthma, including the partial loss of reversibility and the lower occurrence of the allergic component in this age range. The older asthmatic patients are also characterized the coexistence of comorbid conditions that, in conjunction with age-associated structural and functional changes of the lung, may contribute to complicate the management of asthma. The current review addresses the main issues related to the management of allergic asthma in the geriatric age. In particular, the paper aims at revising current pharmacological and non pharmacological treatments for allergic asthmatics of advanced ages, primarily focusing on their safety and efficacy, although most behaviors are an arbitrary extrapolation of what has been tested in young ages. In fact, age has always represented an exclusion criterion for eligibility to clinical trials. Experimental studies and real life observations specifically testing the efficacy and safety of therapeutic approaches in allergic asthma in the elderly are urgently needed.
Collapse
Affiliation(s)
- Nicola Scichilone
- />Department of Medicine, University of Palermo, via Trabucco 180, 90146 Palermo, Italy
| | - Maria T Ventura
- />Interdisciplinary Department of Medicine, Unit of Geriatric Immunoallergology, University of Bari, Bari, Italy
| | - Matteo Bonini
- />Lung Function Unit, Department of Public Health and Infectious Diseases “Sapienza”, University of Rome, Rome, Italy
| | - Fulvio Braido
- />Respiratory Diseases & Allergy Clinic, University of Genoa, IRCCS AOU San Martino-IST, Genoa, Italy
| | - Caterina Bucca
- />Pneumology Unit, Department of Medical Sciences, University of Turin, AOU San Giovanni Battista, Torino, Italy
| | - Marco Caminati
- />Allergy Unit, Verona University and General Hospital, Verona, Italy
| | - Stefano Del Giacco
- />Department of Medical Sciences “M. Aresu”, University of Cagliari, Cagliari, Italy
| | - Enrico Heffler
- />Department of Clinical and Experimental Medicine - Respiratory Medicine & Allergy, University of Catania, Catania, Italy
| | - Carlo Lombardi
- />Departmental Unit of Allergology-Clinical Immunology & Pneumology, Fondazione Poliambulanza, Brescia, Italy
| | - Andrea Matucci
- />Centre of Excellence DENOTHE, Dept. of Experimental and Clinical Medicine, Units of Immunoallergology Azienda Ospedaliero-Universitaria Careggi, Florence, Italy
| | - Manlio Milanese
- />Struttura Complessa di Pneumologia, ASL2 Savonese, Savona, Italy
| | - Roberto Paganelli
- />Laboratory of Immunology and Allergy, Department of Medicine and Sciences of Aging, University of G. d’Annunzio, Chieti Scalo, Italy
| | - Giovanni Passalacqua
- />Respiratory Diseases & Allergy Clinic, University of Genoa, IRCCS AOU San Martino-IST, Genoa, Italy
| | - Vincenzo Patella
- />Division of Allergy and Clinical Immunology, ASL SALERNO, Hospital of Battipaglia, 84100 Salerno, Italy
| | - Erminia Ridolo
- />Department of Clinical and Experimental Medicine, University of Parma, Parma, Italy
| | - Giovanni Rolla
- />Allergologia e Immunologia Clinica, AO Ordine Mauriziano & University of Torino, Torino, Italy
| | - Oliviero Rossi
- />Units of Immunoallergology Azienda Ospedaliero-Universitaria Careggi, Florence, Italy
| | - Domenico Schiavino
- />Università Cattolica del Sacro Cuore, Policlinico A.Gemelli, Rome, Italy
| | - Gianenrico Senna
- />Allergy Unit, Verona University and General Hospital, Verona, Italy
| | | | - Alessandra Vultaggio
- />Centre of Excellence DENOTHE, Dept. of Experimental and Clinical Medicine, Units of Immunoallergology Azienda Ospedaliero-Universitaria Careggi, Florence, Italy
| | - Giorgio Canonica
- />Respiratory Diseases & Allergy Clinic, University of Genoa, IRCCS AOU San Martino-IST, Genoa, Italy
| |
Collapse
|
27
|
Cao JN, Agrawal A, Sharman E, Jia Z, Gupta S. Alterations in gene array patterns in dendritic cells from aged humans. PLoS One 2014; 9:e106471. [PMID: 25191744 PMCID: PMC4156347 DOI: 10.1371/journal.pone.0106471] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 07/30/2014] [Indexed: 01/12/2023] Open
Abstract
Dendritic cells (DCs) are major antigen-presenting cells that play a key role in initiating and regulating innate and adaptive immune responses. DCs are critical mediators of tolerance and immunity. The functional properties of DCs decline with age. The purpose of this study was to define the age-associated molecular changes in DCs by gene array analysis using Affymatrix GeneChips. The expression levels of a total of 260 genes (1.8%) were significantly different (144 down-regulated and 116 upregulated) in monocyte-derived DCs (MoDCs) from aged compared to young human donors. Of the 260 differentially expressed genes, 24% were down-regulated by more than 3-fold, suggesting that a large reduction in expression occurred for a notable number of genes in the aged. Our results suggest that the genes involved in immune response to pathogens, cell migration and T cell priming display significant age-related changes. Furthermore, downregulated genes involved in cell cycle arrest and DNA replication may play a critical role in aging-associated genetic instability. These changes in gene expression provide molecular based evidence for age-associated functional abnormalities in human DCs that may be responsible for the defects in adaptive immunity observed in the elderly.
Collapse
Affiliation(s)
- Jia-ning Cao
- Division of Basic and Clinical Immunology, Department of Medicine, University of California Irvine, Irvine, California, United States of America
| | - Anshu Agrawal
- Division of Basic and Clinical Immunology, Department of Medicine, University of California Irvine, Irvine, California, United States of America
| | - Edward Sharman
- Department of Neurology, University of California Irvine, Irvine, California, United States of America
| | - Zhenyu Jia
- Department of Statistics, University of Akron, Akron, Ohio, United States of America
- Department of Family and Community Medicine, Northeast Ohio Medical University, Rootstown, Ohio, United States of America
- Pathology & Laboratory Medicine, University of California Irvine, Irvine, California, United States of America
| | - Sudhir Gupta
- Division of Basic and Clinical Immunology, Department of Medicine, University of California Irvine, Irvine, California, United States of America
- * E-mail:
| |
Collapse
|