1
|
Lee LW, Shafiani S, Crossley B, Emerson RO, Williamson D, Bunin A, Vargas J, Han AS, Kaplan IM, Green PHR, Kirsch I, Bhagat G. Characterisation of T cell receptor repertoires in coeliac disease. J Clin Pathol 2024; 77:116-124. [PMID: 36522177 PMCID: PMC10850686 DOI: 10.1136/jcp-2022-208541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 11/23/2022] [Indexed: 12/16/2022]
Abstract
AIMS Characterise T-cell receptor gene (TR) repertoires of small intestinal T cells of patients with newly diagnosed (active) coeliac disease (ACD), refractory CD type I (RCD I) and patients with CD on a gluten-free diet (GFD). METHODS Next-generation sequencing of complementarity-determining region 3 (CDR3) of rearranged T cell receptor β (TRB) and γ (TRG) genes was performed using DNA extracted from intraepithelial cell (IEC) and lamina propria cell (LPC) fractions and a small subset of peripheral blood mononuclear cell (PBMC) samples obtained from CD and non-CD (control) patients. Several parameters were assessed, including relative abundance and enrichment. RESULTS TRB and TRG repertoires of CD IEC and LPC samples demonstrated lower clonality but higher frequency of rearranged TRs compared with controls. No CD-related differences were detected in the limited number of PBMC samples. Previously published LP gliadin-specific TRB sequences were more frequently detected in LPC samples from patients with CD compared with non-CD controls. TRG repertoires of IECs from both ACD and GFD patients demonstrated increased abundance of certain CDR3 amino acid (AA) motifs compared with controls, which were encoded by multiple nucleotide variants, including one motif that was enriched in duodenal IECs versus the PBMCs of CD patients. CONCLUSIONS Small intestinal TRB and TRG repertoires of patients with CD are more diverse than individuals without CD, likely due to mucosal recruitment and accumulation of T cells because of protracted inflammation. Enrichment of the unique TRG CDR3 AA sequence in the mucosa of patients with CD may suggest disease-associated changes in the TCRγδ IE lymphocyte (IEL) landscape.
Collapse
Affiliation(s)
- Lik Wee Lee
- Computational Biology and Translational Medicine, Adaptive Biotechnologies Corp, Seattle, Washington, USA
| | - Shahin Shafiani
- Computational Biology and Translational Medicine, Adaptive Biotechnologies Corp, Seattle, Washington, USA
| | - Beryl Crossley
- Computational Biology and Translational Medicine, Adaptive Biotechnologies Corp, Seattle, Washington, USA
| | - Ryan O Emerson
- Computational Biology and Translational Medicine, Adaptive Biotechnologies Corp, Seattle, Washington, USA
| | - David Williamson
- Computational Biology and Translational Medicine, Adaptive Biotechnologies Corp, Seattle, Washington, USA
| | - Anna Bunin
- Department of Medicine, Celiac Disease Center, Columbia University Irving Medical Center, New York, New York, USA
| | - Justin Vargas
- Department of Medicine, Celiac Disease Center, Columbia University Irving Medical Center, New York, New York, USA
| | - Arnold S Han
- Department of Medicine, Celiac Disease Center, Columbia University Irving Medical Center, New York, New York, USA
| | - Ian M Kaplan
- Computational Biology and Translational Medicine, Adaptive Biotechnologies Corp, Seattle, Washington, USA
| | - Peter H R Green
- Department of Medicine, Celiac Disease Center, Columbia University Irving Medical Center, New York, New York, USA
| | - Ilan Kirsch
- Computational Biology and Translational Medicine, Adaptive Biotechnologies Corp, Seattle, Washington, USA
| | - Govind Bhagat
- Department of Pathology and Cell Biology and Department of Medicine, Celiac Disease Center, Columbia University Irving Medical Center, New York, New York, USA
| |
Collapse
|
2
|
Okura Y, Ikawa-Teranishi Y, Mizoroki A, Takahashi N, Tsushima T, Irie M, Harfuddin Z, Miura-Okuda M, Ito S, Nakamura G, Takesue H, Ozono Y, Nishihara M, Yamada K, Gan SW, Hayasaka A, Ishii S, Wakabayashi T, Muraoka M, Nagaya N, Hino H, Nemoto T, Kuramochi T, Torizawa T, Shimada H, Kitazawa T, Okazaki M, Nezu J, Sollid LM, Igawa T. Characterizations of a neutralizing antibody broadly reactive to multiple gluten peptide:HLA-DQ2.5 complexes in the context of celiac disease. Nat Commun 2023; 14:8502. [PMID: 38135691 PMCID: PMC10746718 DOI: 10.1038/s41467-023-44083-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
In human celiac disease (CeD) HLA-DQ2.5 presents gluten peptides to antigen-specific CD4+ T cells, thereby instigating immune activation and enteropathy. Targeting HLA-DQ2.5 with neutralizing antibody for treating CeD may be plausible, yet using pan-HLA-DQ antibody risks affecting systemic immunity, while targeting selected gluten peptide:HLA-DQ2.5 complex (pHLA-DQ2.5) may be insufficient. Here we generate a TCR-like, neutralizing antibody (DONQ52) that broadly recognizes more than twenty-five distinct gluten pHLA-DQ2.5 through rabbit immunization with multi-epitope gluten pHLA-DQ2.5 and multidimensional optimization. Structural analyses show that the proline-rich and glutamine-rich motif of gluten epitopes critical for pathogenesis is flexibly recognized by multiple tyrosine residues present in the antibody paratope, implicating the mechanisms for the broad reactivity. In HLA-DQ2.5 transgenic mice, DONQ52 demonstrates favorable pharmacokinetics with high subcutaneous bioavailability, and blocks immunity to gluten while not affecting systemic immunity. Our results thus provide a rationale for clinical testing of DONQ52 in CeD.
Collapse
Affiliation(s)
- Yuu Okura
- Translational Research Division, Chugai Pharmaceutical Co., Ltd., Tokyo, Japan
| | | | - Akihiko Mizoroki
- Research Division, Chugai Pharmaceutical Co., Ltd., Kanagawa, Japan
| | | | | | - Machiko Irie
- Research Division, Chugai Pharmaceutical Co., Ltd., Kanagawa, Japan
| | | | | | - Shunsuke Ito
- Translational Research Division, Chugai Pharmaceutical Co., Ltd., Kanagawa, Japan
| | - Genki Nakamura
- Research Division, Chugai Pharmaceutical Co., Ltd., Kanagawa, Japan
| | - Hiroaki Takesue
- Research Division, Chugai Pharmaceutical Co., Ltd., Kanagawa, Japan
| | - Yui Ozono
- Research Division, Chugai Pharmaceutical Co., Ltd., Kanagawa, Japan
| | | | - Kenta Yamada
- Research Division, Chugai Pharmaceutical Co., Ltd., Kanagawa, Japan
| | - Siok Wan Gan
- Chugai Pharmabody Research Pte. Ltd., Singapore, Singapore
| | - Akira Hayasaka
- Research Division, Chugai Pharmaceutical Co., Ltd., Kanagawa, Japan
| | - Shinya Ishii
- Research Division, Chugai Pharmaceutical Co., Ltd., Kanagawa, Japan
| | | | - Masaru Muraoka
- Research Division, Chugai Pharmaceutical Co., Ltd., Kanagawa, Japan
| | - Nishiki Nagaya
- Research Division, Chugai Pharmaceutical Co., Ltd., Kanagawa, Japan
| | - Hiroshi Hino
- Research Division, Chugai Pharmaceutical Co., Ltd., Kanagawa, Japan
| | - Takayuki Nemoto
- Translational Research Division, Chugai Pharmaceutical Co., Ltd., Kanagawa, Japan
| | - Taichi Kuramochi
- Research Division, Chugai Pharmaceutical Co., Ltd., Kanagawa, Japan
| | - Takuya Torizawa
- Research Division, Chugai Pharmaceutical Co., Ltd., Kanagawa, Japan
| | | | | | - Makoto Okazaki
- Chugai Pharmabody Research Pte. Ltd., Singapore, Singapore
| | - Junichi Nezu
- R&D Portfolio Management Department, Chugai Pharmaceutical Co., Ltd., Tokyo, Japan
| | - Ludvig M Sollid
- Department of Immunology, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Tomoyuki Igawa
- Translational Research Division, Chugai Pharmaceutical Co., Ltd., Tokyo, Japan.
| |
Collapse
|
3
|
Fowler A, FitzPatrick M, Shanmugarasa A, Ibrahim ASF, Kockelbergh H, Yang HC, Williams-Walker A, Luu Hoang KN, Evans S, Provine N, Klenerman P, Soilleux EJ. An Interpretable Classification Model Using Gluten-Specific TCR Sequences Shows Diagnostic Potential in Coeliac Disease. Biomolecules 2023; 13:1707. [PMID: 38136579 PMCID: PMC10742135 DOI: 10.3390/biom13121707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/18/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
Coeliac disease (CeD) is a T-cell mediated enteropathy triggered by dietary gluten which remains substantially under-diagnosed around the world. The diagnostic gold-standard requires histological assessment of intestinal biopsies taken at endoscopy while consuming a gluten-containing diet. However, there is a lack of concordance between pathologists in histological assessment, and both endoscopy and gluten challenge are burdensome and unpleasant for patients. Identification of gluten-specific T-cell receptors (TCRs) in the TCR repertoire could provide a less subjective diagnostic test, and potentially remove the need to consume gluten. We review published gluten-specific TCR sequences, and develop an interpretable machine learning model to investigate their diagnostic potential. To investigate this, we sequenced the TCR repertoires of mucosal CD4+ T cells from 20 patients with and without CeD. These data were used as a training dataset to develop the model, then an independently published dataset of 20 patients was used as the testing dataset. We determined that this model has a training accuracy of 100% and testing accuracy of 80% for the diagnosis of CeD, including in patients on a gluten-free diet (GFD). We identified 20 CD4+ TCR sequences with the highest diagnostic potential for CeD. The sequences identified here have the potential to provide an objective diagnostic test for CeD, which does not require the consumption of gluten.
Collapse
Affiliation(s)
- Anna Fowler
- Department of Health Data Science, Institute of Population Health, University of Liverpool, Liverpool L69 3GF, UK
| | - Michael FitzPatrick
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford OX3 9DU, UK; (M.F.); (P.K.)
| | | | - Amro Sayed Fadel Ibrahim
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK; (A.S.F.I.); (H.-C.Y.); (A.W.-W.); (K.N.L.H.); (S.E.); (E.J.S.)
| | - Hannah Kockelbergh
- Department of Health Data Science, Institute of Population Health, University of Liverpool, Liverpool L69 3GF, UK
| | - Han-Chieh Yang
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK; (A.S.F.I.); (H.-C.Y.); (A.W.-W.); (K.N.L.H.); (S.E.); (E.J.S.)
| | - Amelia Williams-Walker
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK; (A.S.F.I.); (H.-C.Y.); (A.W.-W.); (K.N.L.H.); (S.E.); (E.J.S.)
| | - Kim Ngan Luu Hoang
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK; (A.S.F.I.); (H.-C.Y.); (A.W.-W.); (K.N.L.H.); (S.E.); (E.J.S.)
| | - Shelley Evans
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK; (A.S.F.I.); (H.-C.Y.); (A.W.-W.); (K.N.L.H.); (S.E.); (E.J.S.)
| | - Nicholas Provine
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford OX3 9DU, UK; (M.F.); (P.K.)
| | - Paul Klenerman
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford OX3 9DU, UK; (M.F.); (P.K.)
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford OX1 3SY, UK
| | - Elizabeth J. Soilleux
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK; (A.S.F.I.); (H.-C.Y.); (A.W.-W.); (K.N.L.H.); (S.E.); (E.J.S.)
| |
Collapse
|
4
|
Seitz V, Gennermann K, Elezkurtaj S, Groth D, Schaper S, Dröge A, Lachmann N, Berg E, Lenze D, Kühl AA, Husemann C, Kleo K, Horst D, Lennerz V, Hennig S, Hummel M, Schumann M. Specific T-cell receptor beta-rearrangements of gluten-triggered CD8 + T-cells are enriched in celiac disease patients' duodenal mucosa. Clin Immunol 2023; 256:109795. [PMID: 37769786 DOI: 10.1016/j.clim.2023.109795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/12/2023] [Accepted: 09/25/2023] [Indexed: 10/02/2023]
Abstract
Celiac disease (CeD) is an autoimmune disorder affecting the small intestine with gluten as disease trigger. Infections including Influenza A, increase the CeD risk. While gluten-specific CD4+ T-cells, recognizing HLA-DQ2/DQ8 presented gluten-peptides, initiate and sustain the celiac immune response, CD8+ α/β intraepithelial T-cells elicit mucosal damage. Here, we subjected TCRs from a cohort of 56 CeD patients and 22 controls to an analysis employing 749 published CeD-related TCRβ-rearrangements derived from gluten-specific CD4+ T-cells and gluten-triggered peripheral blood CD8+ T-cells. We show, that in addition to TCRs from gluten-specific CD4+ T-cells, TCRs of gluten-triggered CD8+ T-cells are significantly enriched in CeD duodenal tissue samples. TCRβ-rearrangements of gluten-triggered CD8+ T-cells were even more expanded in patients than TCRs from gluten-specific CD4+ T-cells (p < 0.0002) and highest in refractory CeD. Sequence alignments with TCR-antigen databases suggest that a subgroup of these most likely indirectly gluten-triggered TCRs recognize microbial, viral, and autoantigens.
Collapse
Affiliation(s)
- V Seitz
- Institute of Pathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; HS Diagnomics GmbH, Berlin, Germany
| | | | - S Elezkurtaj
- Institute of Pathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - D Groth
- Bioinformatics, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | | | - A Dröge
- HS Diagnomics GmbH, Berlin, Germany
| | - N Lachmann
- Centre for Tumor Medicine, Histocompatibility & Immunogenetics Laboratory, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - E Berg
- Institute of Pathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - D Lenze
- Institute of Pathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - A A Kühl
- iPATH.Berlin - Core Unit of the Charité Universitätsmedizin Berlin, corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - C Husemann
- Institute of Pathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; German Cancer Consortium (DKTK), Partner Site Berlin, Berlin, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - K Kleo
- Institute of Pathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - D Horst
- Institute of Pathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | | | - S Hennig
- HS Diagnomics GmbH, Berlin, Germany
| | - M Hummel
- Institute of Pathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; German Cancer Consortium (DKTK), Partner Site Berlin, Berlin, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - M Schumann
- Medizinische Klinik m. S. Gastroenterologie, Infektiologie und Rheumatologie, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
| |
Collapse
|
5
|
Funsten MC, Yurkovetskiy LA, Kuznetsov A, Reiman D, Hansen CHF, Senter KI, Lee J, Ratiu J, Dahal-Koirala S, Antonopoulos DA, Dunny GM, Sollid LM, Serreze D, Khan AA, Chervonsky AV. Microbiota-dependent proteolysis of gluten subverts diet-mediated protection against type 1 diabetes. Cell Host Microbe 2023; 31:213-227.e9. [PMID: 36603588 PMCID: PMC9911364 DOI: 10.1016/j.chom.2022.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/02/2022] [Accepted: 12/08/2022] [Indexed: 01/06/2023]
Abstract
Diet and commensals can affect the development of autoimmune diseases like type 1 diabetes (T1D). However, whether dietary interventions are microbe-mediated was unclear. We found that a diet based on hydrolyzed casein (HC) as a protein source protects non-obese diabetic (NOD) mice in conventional and germ-free (GF) conditions via improvement in the physiology of insulin-producing cells to reduce autoimmune activation. The addition of gluten (a cereal protein complex associated with celiac disease) facilitates autoimmunity dependent on microbial proteolysis of gluten: T1D develops in GF animals monocolonized with Enterococcus faecalis harboring secreted gluten-digesting proteases but not in mice colonized with protease deficient bacteria. Gluten digestion by E. faecalis generates T cell-activating peptides and promotes innate immunity by enhancing macrophage reactivity to lipopolysaccharide (LPS). Gnotobiotic NOD Toll4-negative mice monocolonized with E. faecalis on an HC + gluten diet are resistant to T1D. These findings provide insights into strategies to develop dietary interventions to help protect humans against autoimmunity.
Collapse
Affiliation(s)
- Matthew C Funsten
- Committee on Immunology, The University of Chicago, Chicago, IL 60637, USA; Department of Pathology, The University of Chicago, Chicago, IL 60637, USA
| | - Leonid A Yurkovetskiy
- Department of Pathology, The University of Chicago, Chicago, IL 60637, USA; Committee on Microbiology, The University of Chicago, Chicago, IL 60637, USA
| | - Andrey Kuznetsov
- Department of Pathology, The University of Chicago, Chicago, IL 60637, USA
| | - Derek Reiman
- Toyota Technological Institute at Chicago, Chicago, IL 60637, USA
| | - Camilla H F Hansen
- Department of Pathology, The University of Chicago, Chicago, IL 60637, USA; Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg C, Denmark
| | - Katharine I Senter
- Department of Pathology, The University of Chicago, Chicago, IL 60637, USA
| | - Jean Lee
- Department of Pathology, The University of Chicago, Chicago, IL 60637, USA; Committee on Cancer Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Jeremy Ratiu
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | - Shiva Dahal-Koirala
- KG Jebsen Coeliac Disease Research Centre and Department of Immunology, University of Oslo and University of Oslo Hospital, 0372 Oslo, Norway
| | | | - Gary M Dunny
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Ludvig M Sollid
- KG Jebsen Coeliac Disease Research Centre and Department of Immunology, University of Oslo and University of Oslo Hospital, 0372 Oslo, Norway
| | | | - Aly A Khan
- Committee on Immunology, The University of Chicago, Chicago, IL 60637, USA; Department of Pathology, The University of Chicago, Chicago, IL 60637, USA; Institute for Population and Precision Health, The University of Chicago, Chicago, IL 60637, USA; Department of Family Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Alexander V Chervonsky
- Committee on Immunology, The University of Chicago, Chicago, IL 60637, USA; Department of Pathology, The University of Chicago, Chicago, IL 60637, USA; Committee on Microbiology, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
6
|
Anderson RP. Review article: Diagnosis of coeliac disease: a perspective on current and future approaches. Aliment Pharmacol Ther 2022; 56 Suppl 1:S18-S37. [PMID: 35815826 DOI: 10.1111/apt.16840] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 02/08/2022] [Accepted: 02/08/2022] [Indexed: 12/09/2022]
Abstract
Diagnostics will play a central role in addressing the ongoing dramatic rise in global prevalence of coeliac disease, and in deploying new non-dietary therapeutics. Clearer understanding of the immunopathogenesis of coeliac disease and the utility of serology has led to partial acceptance of non-biopsy diagnosis in selected cases. Non-biopsy diagnosis may expand further because research methods for measuring gluten-specific CD4+ T cells and the acute recall response to gluten ingestion in patients is now relatively straightforward. This perspective on diagnosis in the context of the immunopathogenesis of coeliac disease sets out to highlight current consensus, limitations of current practices, gluten food challenge for diagnosis and the potential for diagnostics that measure the underlying cause for coeliac disease, gluten-specific immunity.
Collapse
|
7
|
Amundsen SF, Stamnaes J, du Pré MF, Sollid LM. Transglutaminase 2 affinity and enzyme-substrate intermediate stability as determining factors for T-cell responses to gluten peptides in celiac disease. Eur J Immunol 2022; 52:1474-1481. [PMID: 35715890 PMCID: PMC9545004 DOI: 10.1002/eji.202249862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/06/2022] [Accepted: 06/15/2022] [Indexed: 11/18/2022]
Abstract
The adaptive immune response of celiac disease (CeD) involves presentation of gluten peptides to CD4+ T cells by transglutaminase 2 (TG2) specific B cells. This B‐cell/T‐cell crosstalk is facilitated by involvement of TG2:gluten peptide complexes that act principally in the form of enzyme‐substrate intermediates. Here, we have addressed how gluten peptide affinity and complex stability in the presence of secondary substrates affect the uptake of TG2:gluten peptide complexes by TG2‐specific B cells and the activation of gluten‐specific T cells. We studied affinity of various gluten peptides for TG2 by biochemical assay, and monitored uptake of gluten peptides by TG2‐specific B cells by flow cytometry. Crosstalk between TG2‐specific B cells and gluten‐specific T cells was assayed with transfectants expressing antigen receptors derived from CeD patients. We found that gluten peptides with high TG2 affinity showed better uptake by TG2‐specific B cells. Uptake by B cells, and subsequent activation of T cells, was negatively affected by polyamines acting as secondary TG2 substrates. These results show that affinity between gluten peptide and TG2 governs the selection of T‐cell epitopes via enhanced uptake of TG2:gluten complexes by TG2‐specific B cells, and that exogenous polyamines can influence the CeD immune responses by disrupting TG2:gluten complexes.
Collapse
Affiliation(s)
- Sunniva F Amundsen
- KG Jebsen Coeliac Disease Research Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Jorunn Stamnaes
- KG Jebsen Coeliac Disease Research Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Marie Fleur du Pré
- KG Jebsen Coeliac Disease Research Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department Immunology, Oslo University Hospital, Oslo, Norway
| | - Ludvig M Sollid
- KG Jebsen Coeliac Disease Research Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department Immunology, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
8
|
Christophersen A, Dahal‐Koirala S, Chlubnová M, Jahnsen J, Lundin KEA, Sollid LM. Phenotype-Based Isolation of Antigen-Specific CD4 + T Cells in Autoimmunity: A Study of Celiac Disease. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104766. [PMID: 35119226 PMCID: PMC8981484 DOI: 10.1002/advs.202104766] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 01/08/2022] [Indexed: 05/15/2023]
Abstract
The pathogenic immune response in celiac disease (CeD) is orchestrated by phenotypically distinct CD4+ T cells that recognize gluten epitopes in the context of disease-associated HLA-DQ allotypes. Cells with the same distinct phenotype, but with elusive specificities, are increased across multiple autoimmune conditions. Here, whether sorting of T cells based on their distinct phenotype (Tphe cells) yields gluten-reactive cells in CeD is tested. The method's efficiency is benchmarked by parallel isolation of gluten-reactive T cells (Ttet cells), using HLA-DQ:gluten peptide tetramers. From gut biopsies of 12 untreated HLA-DQ2.5+ CeD patients, Ttet+ /Tphe+ , Ttet- /Tphe+ , and Ttet- /Tphe- cells are sorted for single-cell T-cell receptor (TCR)-sequencing (n = 8) and T-cell clone (TCC)-generation (n = 5). The generated TCCs are TCR sequenced and tested for their reactivity against deamidated gluten. Gluten-reactivity is observed in 91.2% of Ttet+ /Tphe+ TCCs, 65.3% of Ttet- /Tphe+ TCCs and 0% of Ttet- /Tphe- TCCs. TCR sequencing reveals clonal expansion and sequence sharing across patients, features reflecting antigen-driven responses. The feasibility to isolate antigen-specific CD4+ T cells by the sole use of phenotypic markers in CeD outlines a potential avenue for characterizing disease-driving CD4+ T cells in autoimmune conditions.
Collapse
Affiliation(s)
- Asbjørn Christophersen
- KG Jebsen Coeliac Disease Research CentreUniversity of OsloOslo0372Norway
- Institute of Clinical MedicineUniversity of OsloOslo0450Norway
- Department of RheumatologyDermatology and Infectious DiseasesOslo University HospitalOslo0372Norway
| | - Shiva Dahal‐Koirala
- KG Jebsen Coeliac Disease Research CentreUniversity of OsloOslo0372Norway
- Institute of Clinical MedicineUniversity of OsloOslo0450Norway
| | - Markéta Chlubnová
- KG Jebsen Coeliac Disease Research CentreUniversity of OsloOslo0372Norway
- Institute of Clinical MedicineUniversity of OsloOslo0450Norway
| | - Jørgen Jahnsen
- Department of GastroenterologyAkershus University HospitalLørenskog1478Norway
| | - Knut E. A. Lundin
- KG Jebsen Coeliac Disease Research CentreUniversity of OsloOslo0372Norway
- Institute of Clinical MedicineUniversity of OsloOslo0450Norway
- Department of GastroenterologyOslo University Hospital RikshospitaletOslo0372Norway
| | - Ludvig M. Sollid
- KG Jebsen Coeliac Disease Research CentreUniversity of OsloOslo0372Norway
- Institute of Clinical MedicineUniversity of OsloOslo0450Norway
- Department of ImmunologyOslo University HospitalOslo0372Norway
| |
Collapse
|
9
|
Ishigaki K, Lagattuta KA, Luo Y, James EA, Buckner JH, Raychaudhuri S. HLA autoimmune risk alleles restrict the hypervariable region of T cell receptors. Nat Genet 2022; 54:393-402. [PMID: 35332318 PMCID: PMC9010379 DOI: 10.1038/s41588-022-01032-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 02/04/2022] [Indexed: 12/16/2022]
Abstract
Polymorphisms in the human leukocyte antigen (HLA) genes strongly influence autoimmune disease risk. HLA risk alleles may influence thymic selection to increase the frequency of T cell receptors (TCRs) reactive to autoantigens (central hypothesis). However, research in human autoimmunity has provided little evidence supporting the central hypothesis. Here we investigated the influence of HLA alleles on TCR composition at the highly diverse complementarity determining region 3 (CDR3), which confers antigen recognition. We observed unexpectedly strong HLA-CDR3 associations. The strongest association was found at HLA-DRB1 amino acid position 13, the position that mediates genetic risk for multiple autoimmune diseases. We identified multiple CDR3 amino acid features enriched by HLA risk alleles. Moreover, the CDR3 features promoted by the HLA risk alleles are more enriched in candidate pathogenic TCRs than control TCRs (for example, citrullinated epitope-specific TCRs in patients with rheumatoid arthritis). Together, these results provide genetic evidence supporting the central hypothesis.
Collapse
Affiliation(s)
- Kazuyoshi Ishigaki
- Center for Data Sciences, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Divisions of Genetics and Rheumatology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Laboratory for Human Immunogenetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Kaitlyn A Lagattuta
- Center for Data Sciences, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Divisions of Genetics and Rheumatology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA.,Graduate School of Arts and Sciences, Harvard University, Cambridge, MA, USA
| | - Yang Luo
- Center for Data Sciences, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Divisions of Genetics and Rheumatology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Eddie A James
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| | - Jane H Buckner
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| | - Soumya Raychaudhuri
- Center for Data Sciences, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA. .,Divisions of Genetics and Rheumatology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA. .,Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA. .,Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA. .,Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK.
| |
Collapse
|
10
|
Ciacchi L, Reid HH, Rossjohn J. Structural bases of T cell antigen receptor recognition in celiac disease. Curr Opin Struct Biol 2022; 74:102349. [PMID: 35272251 DOI: 10.1016/j.sbi.2022.102349] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/15/2022] [Accepted: 01/30/2022] [Indexed: 12/16/2022]
Abstract
Celiac disease (CeD) is a human leukocyte antigen (HLA)-linked autoimmune-like disorder that is triggered by the ingestion of gluten or related storage proteins. The majority of CeD patients are HLA-DQ2.5+, with the remainder being either HLA-DQ8+ or HLA-DQ2.2+. Structural studies have shown how deamidation of gluten epitopes engenders binding to HLA-DQ2.5/8, which then triggers an aberrant CD4+ T cell response. HLA tetramer studies, combined with structural investigations, have demonstrated that repeated patterns of TCR usage underpins the immune response to some HLADQ2.5/8 restricted gluten epitopes, with distinct TCR motifs representing common landing pads atop the HLA-gluten complexes. Structural studies have provided insight into TCR specificity and cross-reactivity towards gluten epitopes, as well as cross-reactivity to bacterial homologues of gluten epitopes, suggesting that environmental factors may directly play a role in CeD pathogenesis. Collectively, structural immunology-based studies in the CeD axis may lead to new therapeutics/diagnostics to treat CeD, and also serve as an exemplar for other T cell mediated autoimmune diseases.
Collapse
Affiliation(s)
- Laura Ciacchi
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, 3800, Australia
| | - Hugh H Reid
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, 3800, Australia
| | - Jamie Rossjohn
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, 3800, Australia; Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, CF14 4XN, United Kingdom.
| |
Collapse
|
11
|
Ciacchi L, Farenc C, Dahal-Koirala S, Petersen J, Sollid LM, Reid HH, Rossjohn J. Structural basis of T cell receptor specificity and cross-reactivity of two HLA-DQ2.5-restricted gluten epitopes in celiac disease. J Biol Chem 2022; 298:101619. [PMID: 35065967 PMCID: PMC8857473 DOI: 10.1016/j.jbc.2022.101619] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/15/2022] [Accepted: 01/18/2022] [Indexed: 11/17/2022] Open
Abstract
Celiac disease is a T cell-mediated chronic inflammatory condition often characterized by human leukocyte antigen (HLA)-DQ2.5 molecules presenting gluten epitopes derived from wheat, barley, and rye. Although some T cells exhibit cross-reactivity toward distinct gluten epitopes, the structural basis underpinning such cross-reactivity is unclear. Here, we investigated the T-cell receptor specificity and cross-reactivity of two immunodominant wheat gluten epitopes, DQ2.5-glia-α1a (PFPQPELPY) and DQ2.5-glia-ω1 (PFPQPEQPF). We show by surface plasmon resonance that a T-cell receptor alpha variable (TRAV) 4+-T-cell receptor beta variable (TRBV) 29-1+ TCR bound to HLA-DQ2.5-glia-α1a and HLA-DQ2.5-glia-ω1 with similar affinity, whereas a TRAV4- (TRAV9-2+) TCR recognized HLA-DQ2.5-glia-ω1 only. We further determined the crystal structures of the TRAV4+-TRBV29-1+ TCR bound to HLA-DQ2.5-glia-α1a and HLA-DQ2.5-glia-ω1, as well as the structure of an epitope-specific TRAV9-2+-TRBV7-3+ TCR-HLA-DQ2.5-glia-ω1 complex. We found that position 7 (p7) of the DQ2.5-glia-α1a and DQ2.5-glia-ω1 epitopes made very limited contacts with the TRAV4+ TCR, thereby explaining the TCR cross-reactivity across these two epitopes. In contrast, within the TRAV9-2+ TCR-HLA-DQ2.5-glia-ω1 ternary complex, the p7-Gln was situated in an electrostatic pocket formed by the hypervariable CDR3β loop of the TCR and Arg70β from HLA-DQ2.5, a polar network which would not be supported by the p7-Leu residue of DQ2.5-glia-α1a. In conclusion, we provide additional insights into the molecular determinants of TCR specificity and cross-reactivity to two closely-related epitopes in celiac disease.
Collapse
Affiliation(s)
- Laura Ciacchi
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Carine Farenc
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Shiva Dahal-Koirala
- Department of Immunology, University of Oslo and Oslo University Hospital-Rikshospitalet, Oslo, Norway; K. G. Jebsen Centre for Coeliac Disease Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Jan Petersen
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Ludvig M Sollid
- Department of Immunology, University of Oslo and Oslo University Hospital-Rikshospitalet, Oslo, Norway; K. G. Jebsen Centre for Coeliac Disease Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Hugh H Reid
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Jamie Rossjohn
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia; Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom.
| |
Collapse
|
12
|
Lindeman I, Sollid LM. Single-cell approaches to dissect adaptive immune responses involved in autoimmunity: the case of celiac disease. Mucosal Immunol 2022; 15:51-63. [PMID: 34531547 DOI: 10.1038/s41385-021-00452-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 02/04/2023]
Abstract
Single-cell analysis is a powerful technology that has found widespread use in recent years. For diseases with involvement of adaptive immunity, single-cell analysis of antigen-specific T cells and B cells is particularly informative. In autoimmune diseases, the adaptive immune system is obviously at play, yet the ability to identify the culprit T and B cells recognizing disease-relevant antigen can be difficult. Celiac disease, a widespread disorder with autoimmune components, is unique in that disease-relevant antigens for both T cells and B cells are well defined. Furthermore, the celiac disease gut lesion is readily accessible allowing for sampling of tissue-resident cells. Thus, disease-relevant T cells and B cells from the gut and blood can be studied at the level of single cells. Here we review single-cell studies providing information on such adaptive immune cells and outline some future perspectives in the area of single-cell analysis in autoimmune diseases.
Collapse
Affiliation(s)
- Ida Lindeman
- KG Jebsen Coeliac Disease Research Centre, University of Oslo, Oslo, Norway.,Department of Immunology, Oslo University Hospital, Oslo, Norway
| | - Ludvig M Sollid
- KG Jebsen Coeliac Disease Research Centre, University of Oslo, Oslo, Norway. .,Department of Immunology, Oslo University Hospital, Oslo, Norway. .,Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| |
Collapse
|
13
|
Yao Y, Wyrozżemski Ł, Lundin KEA, Sandve GK, Qiao SW. Differential expression profile of gluten-specific T cells identified by single-cell RNA-seq. PLoS One 2021; 16:e0258029. [PMID: 34618841 PMCID: PMC8496852 DOI: 10.1371/journal.pone.0258029] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 09/17/2021] [Indexed: 01/22/2023] Open
Abstract
Gluten-specific CD4+ T cells drive the pathogenesis of celiac disease and circulating gluten-specific T cells can be identified by staining with HLA-DQ:gluten tetramers. In this first single-cell RNA-seq study of tetramer-sorted T cells from untreated celiac disease patients blood, we found that gluten-specific T cells showed distinct transcriptomic profiles consistent with activated effector memory T cells that shared features with Th1 and follicular helper T cells. Compared to non-specific cells, gluten-specific T cells showed differential expression of several genes involved in T-cell receptor signaling, translational processes, apoptosis, fatty acid transport, and redox potentials. Many of the gluten-specific T cells studied shared T-cell receptor with each other, indicating that circulating gluten-specific T cells belong to a limited number of clones. Moreover, the transcriptional profiles of cells that shared the same clonal origin were transcriptionally more similar compared with between clonally unrelated gluten-specific cells.
Collapse
Affiliation(s)
- Ying Yao
- Department of Immunology, University of Oslo, Oslo, Norway
- Centre for Immune Regulation, University of Oslo, Oslo, Norway
- K.G. Jebsen Coeliac Disease Research Centre, University of Oslo, Oslo, Norway
| | - Łukasz Wyrozżemski
- Department of Immunology, University of Oslo, Oslo, Norway
- K.G. Jebsen Coeliac Disease Research Centre, University of Oslo, Oslo, Norway
| | - Knut E. A. Lundin
- Department of Immunology, University of Oslo, Oslo, Norway
- Centre for Immune Regulation, University of Oslo, Oslo, Norway
- K.G. Jebsen Coeliac Disease Research Centre, University of Oslo, Oslo, Norway
| | - Geir Kjetil Sandve
- K.G. Jebsen Coeliac Disease Research Centre, University of Oslo, Oslo, Norway
- Department of Informatics, University of Oslo, Oslo, Norway
| | - Shuo-Wang Qiao
- Department of Immunology, University of Oslo, Oslo, Norway
- Centre for Immune Regulation, University of Oslo, Oslo, Norway
- K.G. Jebsen Coeliac Disease Research Centre, University of Oslo, Oslo, Norway
- * E-mail:
| |
Collapse
|
14
|
Zhang Y, Yang X, Zhang Y, Zhang Y, Wang M, Ou JX, Zhu Y, Zeng H, Wu J, Lan C, Zhou HW, Yang W, Zhang Z. Tools for fundamental analysis functions of TCR repertoires: a systematic comparison. Brief Bioinform 2021; 21:1706-1716. [PMID: 31624828 PMCID: PMC7947996 DOI: 10.1093/bib/bbz092] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 07/02/2019] [Accepted: 07/05/2019] [Indexed: 12/30/2022] Open
Abstract
The full set of T cell receptors (TCRs) in an individual is known as his or her TCR repertoire. Defining TCR repertoires under physiological conditions and in response to a disease or vaccine may lead to a better understanding of adaptive immunity and thus has great biological and clinical value. In the past decade, several high-throughput sequencing-based tools have been developed to assign TCRs to germline genes and to extract complementarity-determining region 3 (CDR3) sequences using different algorithms. Although these tools claim to be able to perform the full range of fundamental TCR repertoire analyses, there is no clear consensus of which tool is best suited to particular projects. Here, we present a systematic analysis of 12 available TCR repertoire analysis tools using simulated data, with an emphasis on fundamental analysis functions. Our results shed light on the detailed functions of TCR repertoire analysis tools and may therefore help researchers in the field to choose the right tools for their particular experimental design.
Collapse
Affiliation(s)
- Yanfang Zhang
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.,Center for Biomedical Informatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.,Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou 510515, China.,Center for Precision Medicine, Shunde Hospital, Southern Medical University, Foshan, Guangdong, 528399, China
| | - Xiujia Yang
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.,Center for Biomedical Informatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.,Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou 510515, China
| | - Yanxia Zhang
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.,Center for Biomedical Informatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yan Zhang
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.,Center for Biomedical Informatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Minhui Wang
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jin Xia Ou
- Microbiome Medicine Center, Division of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Yan Zhu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.,Center for Biomedical Informatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Huikun Zeng
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.,Center for Biomedical Informatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jiaqi Wu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.,Center for Biomedical Informatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Chunhong Lan
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.,Center for Biomedical Informatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.,Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou 510515, China.,Center for Precision Medicine, Shunde Hospital, Southern Medical University, Foshan, Guangdong, 528399, China
| | - Hong-Wei Zhou
- Microbiome Medicine Center, Division of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Wei Yang
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.,Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Zhenhai Zhang
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.,Center for Biomedical Informatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.,Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou 510515, China.,Center for Precision Medicine, Shunde Hospital, Southern Medical University, Foshan, Guangdong, 528399, China
| |
Collapse
|
15
|
Dahal-Koirala S, Risnes LF, Neumann RS, Christophersen A, Lundin KEA, Sandve GK, Qiao SW, Sollid LM. Comprehensive Analysis of CDR3 Sequences in Gluten-Specific T-Cell Receptors Reveals a Dominant R-Motif and Several New Minor Motifs. Front Immunol 2021; 12:639672. [PMID: 33927715 PMCID: PMC8076556 DOI: 10.3389/fimmu.2021.639672] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 03/17/2021] [Indexed: 12/20/2022] Open
Abstract
Gluten-specific CD4+ T cells are drivers of celiac disease (CeD). Previous studies of gluten-specific T-cell receptor (TCR) repertoires have found public TCRs shared across multiple individuals, biased usage of particular V-genes and conserved CDR3 motifs. The CDR3 motifs within the gluten-specific TCR repertoire, however, have not been systematically investigated. In the current study, we analyzed the largest TCR database of gluten-specific CD4+ T cells studied so far consisting of TCRs of 3122 clonotypes from 63 CeD patients. We established a TCR database from CD4+ T cells isolated with a mix of HLA-DQ2.5:gluten tetramers representing four immunodominant gluten epitopes. In an unbiased fashion we searched by hierarchical clustering for common CDR3 motifs among 2764 clonotypes. We identified multiple CDR3α, CDR3β, and paired CDR3α:CDR3β motif candidates. Among these, a previously known conserved CDR3β R-motif used by TRAV26-1/TRBV7-2 TCRs specific for the DQ2.5-glia-α2 epitope was the most prominent motif. Furthermore, we identified the epitope specificity of altogether 16 new CDR3α:CDR3β motifs by comparing with TCR sequences of 231 T-cell clones with known specificity and TCR sequences of cells sorted with single HLA-DQ2.5:gluten tetramers. We identified 325 public TCRα and TCRβ sequences of which 145, 102 and 78 belonged to TCRα, TCRβ and paired TCRαβ sequences, respectively. While the number of public sequences was depended on the number of clonotypes in each patient, we found that the proportion of public clonotypes from the gluten-specific TCR repertoire of given CeD patients appeared to be stable (median 37%). Taken together, we here demonstrate that the TCR repertoire of CD4+ T cells specific to immunodominant gluten epitopes in CeD is diverse, yet there is clearly biased V-gene usage, presence of public TCRs and existence of conserved motifs of which R-motif is the most prominent.
Collapse
Affiliation(s)
- Shiva Dahal-Koirala
- K.G. Jebsen Coeliac Disease Research Centre, Department of Immunology, University of Oslo, Oslo, Norway.,Department of Immunology, University of Oslo and Oslo University Hospital-Rikshospitalet, Oslo, Norway
| | - Louise Fremgaard Risnes
- K.G. Jebsen Coeliac Disease Research Centre, Department of Immunology, University of Oslo, Oslo, Norway.,Department of Immunology, University of Oslo and Oslo University Hospital-Rikshospitalet, Oslo, Norway
| | - Ralf Stefan Neumann
- K.G. Jebsen Coeliac Disease Research Centre, Department of Immunology, University of Oslo, Oslo, Norway
| | - Asbjørn Christophersen
- K.G. Jebsen Coeliac Disease Research Centre, Department of Immunology, University of Oslo, Oslo, Norway.,Department of Immunology, University of Oslo and Oslo University Hospital-Rikshospitalet, Oslo, Norway
| | - Knut E A Lundin
- K.G. Jebsen Coeliac Disease Research Centre, Department of Immunology, University of Oslo, Oslo, Norway.,Department of Immunology, University of Oslo and Oslo University Hospital-Rikshospitalet, Oslo, Norway.,Department of Gastroenterology, Oslo University Hospital-Rikshospitalet, Oslo, Norway
| | - Geir Kjetil Sandve
- Biomedical Informatics, Department of Informatics, University of Oslo, Oslo, Norway
| | - Shuo-Wang Qiao
- K.G. Jebsen Coeliac Disease Research Centre, Department of Immunology, University of Oslo, Oslo, Norway.,Department of Immunology, University of Oslo and Oslo University Hospital-Rikshospitalet, Oslo, Norway
| | - Ludvig M Sollid
- K.G. Jebsen Coeliac Disease Research Centre, Department of Immunology, University of Oslo, Oslo, Norway.,Department of Immunology, University of Oslo and Oslo University Hospital-Rikshospitalet, Oslo, Norway
| |
Collapse
|
16
|
Yohannes DA, Kaukinen K, Kurppa K, Saavalainen P, Greco D. Clustering based approach for population level identification of condition-associated T-cell receptor β-chain CDR3 sequences. BMC Bioinformatics 2021; 22:159. [PMID: 33765908 PMCID: PMC7993519 DOI: 10.1186/s12859-021-04087-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 03/17/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Deep immune receptor sequencing, RepSeq, provides unprecedented opportunities for identifying and studying condition-associated T-cell clonotypes, represented by T-cell receptor (TCR) CDR3 sequences. However, due to the immense diversity of the immune repertoire, identification of condition relevant TCR CDR3s from total repertoires has mostly been limited to either "public" CDR3 sequences or to comparisons of CDR3 frequencies observed in a single individual. A methodology for the identification of condition-associated TCR CDR3s by direct population level comparison of RepSeq samples is currently lacking. RESULTS We present a method for direct population level comparison of RepSeq samples using immune repertoire sub-units (or sub-repertoires) that are shared across individuals. The method first performs unsupervised clustering of CDR3s within each sample. It then finds matching clusters across samples, called immune sub-repertoires, and performs statistical differential abundance testing at the level of the identified sub-repertoires. It finally ranks CDR3s in differentially abundant sub-repertoires for relevance to the condition. We applied the method on total TCR CDR3β RepSeq datasets of celiac disease patients, as well as on public datasets of yellow fever vaccination. The method successfully identified celiac disease associated CDR3β sequences, as evidenced by considerable agreement of TRBV-gene and positional amino acid usage patterns in the detected CDR3β sequences with previously known CDR3βs specific to gluten in celiac disease. It also successfully recovered significantly high numbers of previously known CDR3β sequences relevant to each condition than would be expected by chance. CONCLUSION We conclude that immune sub-repertoires of similar immuno-genomic features shared across unrelated individuals can serve as viable units of immune repertoire comparison, serving as proxy for identification of condition-associated CDR3s.
Collapse
Affiliation(s)
- Dawit A Yohannes
- Research Programs Unit, Translational Immunology, University of Helsinki, Helsinki, Finland.,Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
| | - Katri Kaukinen
- Department of Internal Medicine, Faculty of Medicine and Health Technology, Tampere University Hospital, Tampere University, Tampere, Finland
| | - Kalle Kurppa
- Department of Pediatrics, Tampere University Hospital and Center for Child Health Research, Tampere University, Tampere, Finland
| | - Päivi Saavalainen
- Research Programs Unit, Translational Immunology, University of Helsinki, Helsinki, Finland.,Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
| | - Dario Greco
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland. .,BioMediTech Institute, Tampere University, Tampere, Finland. .,Institute of Biotechnology, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
17
|
Kurki A, Kemppainen E, Laurikka P, Kaukinen K, Lindfors K. The use of peripheral blood mononuclear cells in celiac disease diagnosis and treatment. Expert Rev Gastroenterol Hepatol 2021; 15:305-316. [PMID: 33176106 DOI: 10.1080/17474124.2021.1850262] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: Celiac disease is characterized by an abnormal immune activation driven by the ingestion of gluten from wheat, barley, and rye. Gluten-specific CD4+ T cells play an important role in disease pathogenesis and are detectable among peripheral blood mononuclear cells (PBMCs). Areas covered: This review summarizes the use of celiac disease patient PBMCs in clinical applications focusing on their exploitation in the development of diagnostic approaches and novel drugs to replace or complement gluten-free diet. Expert opinion: The most used PBMC-based methods applied in celiac disease research include ELISpot and HLA-DQ:gluten tetramer technology. ELISpot has been utilized particularly in research aiming to develop a celiac disease vaccine and in studies addressing the toxicity of different grains in celiac disease. HLA-DQ:gluten tetramer technology on the other hand initially focused on improving current diagnostics but in combination with additional markers it is also a useful outcome measure in clinical trials to monitor the efficacy of drug candidates. In addition, the technology serves well in the more detailed characterization of celiac disease-specific T cells, thereby possibly revealing novel therapeutic targets. Future studies may also reveal clinical applications for PBMC microRNAs and/or dendritic cells or monocytes present among PBMCs.
Collapse
Affiliation(s)
- Alma Kurki
- Celiac Disease Research Center, Faculty of Medicine and Health Technology, Tampere University , Tampere, Finland
| | - Esko Kemppainen
- Celiac Disease Research Center, Faculty of Medicine and Health Technology, Tampere University , Tampere, Finland
| | - Pilvi Laurikka
- Celiac Disease Research Center, Faculty of Medicine and Health Technology, Tampere University , Tampere, Finland
| | - Katri Kaukinen
- Celiac Disease Research Center, Faculty of Medicine and Health Technology, Tampere University , Tampere, Finland.,Department of Internal Medicine, Tampere University Hospital , Tampere, Finland
| | - Katri Lindfors
- Celiac Disease Research Center, Faculty of Medicine and Health Technology, Tampere University , Tampere, Finland
| |
Collapse
|
18
|
Asri N, Rostami-Nejad M, Anderson RP, Rostami K. The Gluten Gene: Unlocking the Understanding of Gluten Sensitivity and Intolerance. APPLICATION OF CLINICAL GENETICS 2021; 14:37-50. [PMID: 33603437 PMCID: PMC7886246 DOI: 10.2147/tacg.s276596] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 01/18/2021] [Indexed: 12/14/2022]
Abstract
Wheat flour is one of the most important food ingredients containing several essential nutrients including proteins. Gluten is one of the major protein components of wheat consisted of glutenin (encoded on chromosome 1) and gliadin (encoded on chromosome 1 and 6) and there are around hundred genes encoding it in wheat. Gluten proteins have the ability of eliciting the pathogenic immune responses and hypersensitivity reactions in susceptible individuals called “gluten-related disorders (GRDs)”, which include celiac disease (CD), wheat allergy (WA), and non-celiac gluten sensitivity (NCGS). Currently removing gluten from the diet is the only effective treatment for mentioned GRDs and studies for the appropriate and alternative therapeutic approaches are ongoing. Accordingly, several genetic studies have focused on breeding wheat with low immunological properties through gene editing methods. The present review considers genetic characteristics of gluten protein components, focusing on their role in the incidence of gluten-related diseases, and genetic modifications conducted to produce wheat with less immunological properties.
Collapse
Affiliation(s)
- Nastaran Asri
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Rostami-Nejad
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Robert P Anderson
- Wesley Medical Research - The Wesley Hospital, Brisbane, Queensland, Australia
| | - Kamran Rostami
- Department of Gastroenterology, MidCentral DHB, Palmerston North, New Zealand
| |
Collapse
|
19
|
Abstract
T cells are an integral component of the adaptive immune response via the recognition of peptides by the cell surface-expressed T cell receptor (TCR). Rearrangement of the TCR genes results in a highly polymorphic repertoire on the T cells within a given individual. Although the diverse repertoire is beneficial for immune responses to foreign pathogens, recognition of self-peptides by T cells can contribute to the development of autoimmune disorders. Increasing evidence supports a pathogenic role for T cells in autoimmune pathology, and it is of interest to determine the TCR repertoires involved in autoimmune disease development. In this review, we summarize methodologies and advancements in the TCR sequencing field and discuss recent studies focused on TCR sequencing in a variety of autoimmune conditions. The rapidly evolving methodology of TCR sequencing has the potential to allow for a better understanding of autoimmune disease pathogenesis, identify disease-specific biomarkers, and aid in developing therapies to prevent and treat a number of these disorders.
Collapse
Affiliation(s)
- Angela M Mitchell
- Barbara Davis Center for Diabetes, University of Colorado, Aurora, CO, USA, 80045
| | - Aaron W Michels
- Barbara Davis Center for Diabetes, University of Colorado, Aurora, CO, USA, 80045
| |
Collapse
|
20
|
García-Santisteban I, Romero-Garmendia I, Cilleros-Portet A, Bilbao JR, Fernandez-Jimenez N. Celiac disease susceptibility: The genome and beyond. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 358:1-45. [PMID: 33707051 DOI: 10.1016/bs.ircmb.2020.10.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Celiac Disease (CeD) is an immune-mediated complex disease that is triggered by the ingestion of gluten and develops in genetically susceptible individuals. It has been known for a long time that the Human Leucocyte Antigen (HLA) molecules DQ2 and DQ8 are necessary, although not sufficient, for the disease development, and therefore other susceptibility genes and (epi)genetic events must participate in CeD pathogenesis. The advances in Genomics during the last 15 years have made CeD one of the immune-related disorders with the best-characterized genetic component. In the present work, we will first review the main Genome-Wide Association Studies (GWAS) carried out in the disorder, and emphasize post-GWAS discoveries, including diverse integrative strategies, SNP prioritization approaches, and insights into the Microbiome through the host Genomics. Second, we will explore CeD-related Epigenetics and Epigenomics, mostly focusing on the emerging knowledge of the celiac methylome, and the vast but yet under-explored non-coding RNA (ncRNA) landscape. We conclude that much has been done in the field although there are still completely unvisited areas in the post-Genomics of CeD. Chromatin conformation and accessibility, and Epitranscriptomics are promising domains that need to be unveiled to complete the big picture of the celiac Genome.
Collapse
Affiliation(s)
- Iraia García-Santisteban
- Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU) and Biocruces-Bizkaia Health Research Institute, Leioa, Spain
| | - Irati Romero-Garmendia
- Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU) and Biocruces-Bizkaia Health Research Institute, Leioa, Spain
| | - Ariadna Cilleros-Portet
- Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU) and Biocruces-Bizkaia Health Research Institute, Leioa, Spain
| | - Jose Ramon Bilbao
- Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU) and Biocruces-Bizkaia Health Research Institute, Leioa, Spain; Spanish Biomedical Research Center in Diabetes and associated Metabolic Disorders, CIBERDEM, Madrid, Spain
| | - Nora Fernandez-Jimenez
- Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU) and Biocruces-Bizkaia Health Research Institute, Leioa, Spain.
| |
Collapse
|
21
|
Hardy MY, Russell AK, Pizzey C, Jones CM, Watson KA, La Gruta NL, Cameron DJ, Tye-Din JA. Characterisation of clinical and immune reactivity to barley and rye ingestion in children with coeliac disease. Gut 2020; 69:830-840. [PMID: 31462555 DOI: 10.1136/gutjnl-2019-319093] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/23/2019] [Accepted: 08/15/2019] [Indexed: 12/08/2022]
Abstract
OBJECTIVE Barley and rye are major components of the Western diet, and historic feeding studies indicate that they cause clinical effects in patients with coeliac disease (CD). This toxicity has been attributed to sequence homology with immunogenic wheat sequences, but in adults with CD, these cereals stimulate unique T cells, indicating a critical contribution to gluten immunity independent of wheat. Clinical and immune feeding studies with these grains in children with CD are sparse. We undertook a barley and rye feeding study to characterise the clinical and T-cell responses in children with CD. DESIGN 42 children with human leucocyte antigen (HLA)-DQ2.5+ (aged 3-17 years) consumed barley or rye for 3 days. Blood-derived gluten-specific T cells were tested for reactivity against a panel of barley (hordein) and rye (secalin) peptides. Hordein and secalin-specific T-cell clones were generated and tested for grain cross-reactivity. T-cell receptor sequencing was performed on sorted single cells. T-cell responses were compared with those observed in adults with CD. RESULTS 90% of the children experienced adverse symptoms, mostly GI, and 61% had detectable gluten-specific T-cell responses targeting peptides homologous to those immunogenic in adults. Deamidation was important for peptide reactivity. Homozygosity for HLA-DQ2.5 predicted a stronger T-cell response. Gluten-specific T cells showed striking similarities in their cross-reactivity between children and adults. CONCLUSIONS Barley and rye induce a consistent range of clinical and T-cell responses in children with CD. The findings highlight the importance of a series of dominant hordein and secalin peptides pathogenic in children with CD, some independent of wheat, which closely correspond to those seen in adults.
Collapse
Affiliation(s)
- Melinda Y Hardy
- Immunology Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Amy K Russell
- Immunology Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Catherine Pizzey
- Department of Gastroenterology, The Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Claerwen M Jones
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - Katherine A Watson
- Immunology Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Nicole L La Gruta
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - Donald J Cameron
- Department of Gastroenterology and Clinical Nutrition, The Royal Children's Hospital, Parkville, Victoria, Australia
| | - Jason A Tye-Din
- Immunology Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia .,Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia.,Department of Gastroenterology, The Royal Melbourne Hospital, Parkville, Victoria, Australia.,Centre for Food and Allergy Research, Murdoch Children's Research Institute, Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
22
|
A molecular basis for the T cell response in HLA-DQ2.2 mediated celiac disease. Proc Natl Acad Sci U S A 2020; 117:3063-3073. [PMID: 31974305 DOI: 10.1073/pnas.1914308117] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The highly homologous human leukocyte antigen (HLA)-DQ2 molecules, HLA-DQ2.5 and HLA-DQ2.2, are implicated in the pathogenesis of celiac disease (CeD) by presenting gluten peptides to CD4+ T cells. However, while HLA-DQ2.5 is strongly associated with disease, HLA-DQ2.2 is not, and the molecular basis underpinning this differential disease association is unresolved. We here provide structural evidence for how the single polymorphic residue (HLA-DQ2.5-Tyr22α and HLA-DQ2.2-Phe22α) accounts for HLA-DQ2.2 additionally requiring gluten epitopes possessing a serine at the P3 position of the peptide. In marked contrast to the biased T cell receptor (TCR) usage associated with HLA-DQ2.5-mediated CeD, we demonstrate with extensive single-cell sequencing that a diverse TCR repertoire enables recognition of the immunodominant HLA-DQ2.2-glut-L1 epitope. The crystal structure of two CeD patient-derived TCR in complex with HLA-DQ2.2 and DQ2.2-glut-L1 (PFSEQEQPV) revealed a docking strategy, and associated interatomic contacts, which was notably distinct from the structures of the TCR:HLA-DQ2.5:gliadin epitope complexes. Accordingly, while the molecular surfaces of the antigen-binding clefts of HLA-DQ2.5 and HLA-DQ2.2 are very similar, differences in the nature of the peptides presented translates to differences in responding T cell repertoires and the nature of engagement of the respective antigen-presenting molecules, which ultimately is associated with differing disease penetrance.
Collapse
|
23
|
Cook L, Munier CML, Seddiki N, Hardy MY, Anderson RP, Zaunders J, Tye-Din JA, Kelleher AD, van Bockel D. Circulating gluten-specific, but not CMV-specific, CD39 + regulatory T cells have an oligoclonal TCR repertoire. Clin Transl Immunology 2020; 9:e1096. [PMID: 31956412 PMCID: PMC6955237 DOI: 10.1002/cti2.1096] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 11/25/2019] [Accepted: 11/25/2019] [Indexed: 01/12/2023] Open
Abstract
Objectives Understanding the T cell receptor (TCR) repertoire of regulatory CD4+ T‐cell (Treg) populations is important for strategies aiming to re‐establish tolerance in autoimmune diseases. We studied circulating deamidated gluten‐epitope‐specific CD39+ Tregs in patients with coeliac disease following an oral gluten challenge, and we used cytomegalovirus (CMV)‐specific CD39+ Tregs from healthy controls as a comparator population. Methods We used the OX40 assay to isolate antigen‐specific Tregs by induced surface co‐expression of CD25, OX40 and CD39. RACE PCR amplification and Sanger sequencing of the TCR β chain were used to analyse repertoire diversity. Results We found that, following oral gluten challenge, circulating gluten‐specific CD39+ Tregs had an oligoclonal TCR repertoire that contained public clonotypes. Conversely, the TCR repertoire of CMV‐epitope‐specific CD39+ Tregs from healthy controls was polyclonal. Discussion These data indicate that a biased TCR repertoire is not inherent to CD39+ Tregs, and, in this case, is apparently driven by the HLA‐DQ2.5‐restricted deamidated gluten peptide in coeliac disease patients. Conclusion This is the first assessment of the TCR repertoire within circulating human Tregs specific for foreign antigen. These data enhance our understanding of antigen‐specific CD4+ responses in the settings of chronic inflammation and infection and may help guide immunomonitoring strategies for CD4+ T cell‐based therapies, particularly for coeliac disease.
Collapse
Affiliation(s)
- Laura Cook
- Immunovirology and Pathogenesis Program The Kirby Institute UNSW Australia Sydney NSW Australia.,St Vincent's Centre for Applied Medical Research St Vincent's Hospital Sydney NSW Australia.,Present address: Department of Medicine and BC Children's Hospital Research Institute University of British Columbia Vancouver Canada
| | - C Mee Ling Munier
- Immunovirology and Pathogenesis Program The Kirby Institute UNSW Australia Sydney NSW Australia
| | - Nabila Seddiki
- Immunovirology and Pathogenesis Program The Kirby Institute UNSW Australia Sydney NSW Australia.,St Vincent's Centre for Applied Medical Research St Vincent's Hospital Sydney NSW Australia.,Present address: INSERM U955 and Université Paris-Est Créteil (UPEC)/Vaccine Research Institute Créteil France
| | - Melinda Y Hardy
- Immunology Division Walter and Eliza Hall Institute Parkville VIC Australia.,Department of Medical Biology The University of Melbourne Parkville VIC Australia
| | - Robert P Anderson
- Immunology Division Walter and Eliza Hall Institute Parkville VIC Australia.,Department of Medical Biology The University of Melbourne Parkville VIC Australia.,ImmusanT, Inc. Cambridge MA USA
| | - John Zaunders
- Immunovirology and Pathogenesis Program The Kirby Institute UNSW Australia Sydney NSW Australia.,St Vincent's Centre for Applied Medical Research St Vincent's Hospital Sydney NSW Australia
| | - Jason A Tye-Din
- Immunology Division Walter and Eliza Hall Institute Parkville VIC Australia.,Department of Medical Biology The University of Melbourne Parkville VIC Australia.,Department of Gastroenterology The Royal Melbourne Hospital Parkville VIC Australia
| | - Anthony D Kelleher
- Immunovirology and Pathogenesis Program The Kirby Institute UNSW Australia Sydney NSW Australia.,St Vincent's Centre for Applied Medical Research St Vincent's Hospital Sydney NSW Australia
| | - David van Bockel
- Immunovirology and Pathogenesis Program The Kirby Institute UNSW Australia Sydney NSW Australia
| |
Collapse
|
24
|
Dahal-Koirala S, Neumann RS, Jahnsen J, Lundin KEA, Sollid LM. On the immune response to barley in celiac disease: Biased and public T-cell receptor usage to a barley unique and immunodominant gluten epitope. Eur J Immunol 2019; 50:256-269. [PMID: 31628754 DOI: 10.1002/eji.201948253] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 09/03/2019] [Accepted: 10/16/2019] [Indexed: 01/17/2023]
Abstract
Celiac disease (CeD) is driven by CD4+ T-cell responses to dietary gluten proteins of wheat, barley, and rye when deamidated gluten epitopes are presented by certain disease-associated HLA-DQ allotypes. About 90% of the CeD patients express HLA-DQ2.5. In such patients, five gluten epitopes dominate the anti-gluten T-cell response; two epitopes unique to wheat, two epitopes present in wheat, barley, and rye and one epitope unique to barley. Despite presence of barley in commonly consumed food and beverages and hence being a prominent source of gluten, knowledge about T-cell responses elicited by barley in CeD is scarce. Therefore, in this study, we explored T-cell response toward the barley unique epitope DQ2.5-hor-3 (PIPEQPQPY) by undertaking HLA-DQ:gluten peptide tetramer staining, single-cell T-cell receptor (TCR) αβ sequencing, T-cell cloning, and T-cell proliferation studies. We demonstrate that majority of the CeD patients generate T-cell response to DQ2.5-hor-3, and this response is characterized by clonal expansion, preferential TCR V-gene usage and public TCR features thus echoing findings previously made for wheat gluten epitopes. The knowledge that biased and public TCRs underpin the T-cell response to all the immunodominant gluten epitopes in CeD suggests that such T cells are promising diagnostic and therapeutic targets.
Collapse
Affiliation(s)
- Shiva Dahal-Koirala
- K. G. Jebsen Centre for Coeliac Disease Research, University of Oslo, Oslo, Norway.,Department of Immunology, University of Oslo and Oslo University Hospital-Rikshospitalet, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ralf S Neumann
- K. G. Jebsen Centre for Coeliac Disease Research, University of Oslo, Oslo, Norway.,Department of Immunology, University of Oslo and Oslo University Hospital-Rikshospitalet, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Jørgen Jahnsen
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Gastroenterology, Akershus University Hospital, Lørenskog, Norway
| | - Knut E A Lundin
- K. G. Jebsen Centre for Coeliac Disease Research, University of Oslo, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Gastroenterology, Oslo University Hospital-Rikshospitalet, Oslo, Norway
| | - Ludvig M Sollid
- K. G. Jebsen Centre for Coeliac Disease Research, University of Oslo, Oslo, Norway.,Department of Immunology, University of Oslo and Oslo University Hospital-Rikshospitalet, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
25
|
Fernandez-Jimenez N, Garcia-Etxebarria K, Plaza-Izurieta L, Romero-Garmendia I, Jauregi-Miguel A, Legarda M, Ecsedi S, Castellanos-Rubio A, Cahais V, Cuenin C, Degli Esposti D, Irastorza I, Hernandez-Vargas H, Herceg Z, Bilbao JR. The methylome of the celiac intestinal epithelium harbours genotype-independent alterations in the HLA region. Sci Rep 2019; 9:1298. [PMID: 30718669 PMCID: PMC6362130 DOI: 10.1038/s41598-018-37746-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 12/13/2018] [Indexed: 12/12/2022] Open
Abstract
The Human Leucocyte Antigen (HLA) locus and other DNA sequence variants identified in Genome-Wide Association (GWA) studies explain around 50% of the heritability of celiac disease (CD). However, the pathogenesis of CD could be driven by other layers of genomic information independent from sequence variation, such as DNA methylation, and it is possible that allele-specific methylation explains part of the SNP associations. Since the DNA methylation landscape is expected to be different among cell types, we analyzed the methylome of the epithelial and immune cell populations of duodenal biopsies in CD patients and controls separately. We found a cell type-specific methylation signature that includes genes mapping to the HLA region, namely TAP1 and HLA-B. We also performed Immunochip SNP genotyping of the same samples and interrogated the expression of some of the affected genes. Our analysis revealed that the epithelial methylome is characterized by the loss of CpG island (CGI) boundaries, often associated to altered gene expression, and by the increased variability of the methylation across the samples. The overlap between differentially methylated positions (DMPs) and CD-associated SNPs or variants contributing to methylation quantitative trait loci (mQTLs) is minimal. In contrast, there is a notable enrichment of mQTLs among the most significant CD-associated SNPs. Our results support the notion that DNA methylation alterations constitute a genotype-independent event and confirm its role in the HLA region (apart from the well-known, DQ allele-specific effect). Finally, we find that a fraction of the CD-associated variants could exert its phenotypic effect through DNA methylation.
Collapse
Affiliation(s)
- Nora Fernandez-Jimenez
- Epigenetics Group, International Agency for Research on Cancer (IARC), 69372 Lyon CEDEX 08, Lyon, France
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Biocruces-Bizkaia Health Research Institute, Leioa, Basque Country, 48940, Spain
| | - Koldo Garcia-Etxebarria
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Biocruces-Bizkaia Health Research Institute, Leioa, Basque Country, 48940, Spain
- Department of Gastrointestinal and Liver Diseases, Biodonostia Health Research Institute, Donostia, Basque Country, Spain
| | - Leticia Plaza-Izurieta
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Biocruces-Bizkaia Health Research Institute, Leioa, Basque Country, 48940, Spain
| | - Irati Romero-Garmendia
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Biocruces-Bizkaia Health Research Institute, Leioa, Basque Country, 48940, Spain
| | - Amaia Jauregi-Miguel
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Biocruces-Bizkaia Health Research Institute, Leioa, Basque Country, 48940, Spain
| | - Maria Legarda
- Pediatric Gastroenterology Unit, Cruces University Hospital, Barakaldo, Basque Country, 48903, Spain
| | - Szilvia Ecsedi
- Epigenetics Group, International Agency for Research on Cancer (IARC), 69372 Lyon CEDEX 08, Lyon, France
- Universite Côte d'Azur, INSERM, CNRS, iBV, Nice, France
| | - Ainara Castellanos-Rubio
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Biocruces-Bizkaia Health Research Institute, Leioa, Basque Country, 48940, Spain
- Spanish Biomedical Research Center in Diabetes and associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Vincent Cahais
- Epigenetics Group, International Agency for Research on Cancer (IARC), 69372 Lyon CEDEX 08, Lyon, France
| | - Cyrille Cuenin
- Epigenetics Group, International Agency for Research on Cancer (IARC), 69372 Lyon CEDEX 08, Lyon, France
| | - Davide Degli Esposti
- Epigenetics Group, International Agency for Research on Cancer (IARC), 69372 Lyon CEDEX 08, Lyon, France
- Irstea - Laboratoire d'écotoxicologie, UR "Milieux aquatiques, écologie et pollutions", Villeurbanne, France
| | - Iñaki Irastorza
- Pediatric Gastroenterology Unit, Cruces University Hospital, Barakaldo, Basque Country, 48903, Spain
| | - Hector Hernandez-Vargas
- Epigenetics Group, International Agency for Research on Cancer (IARC), 69372 Lyon CEDEX 08, Lyon, France
- Department of Immunology, Virology and Inflammation; TGF beta and Immune Evasion Group; Cancer Research Center of Lyon; INSERM, CNRS, Centre Léon Bérard Hospital, Lyon, France
| | - Zdenko Herceg
- Epigenetics Group, International Agency for Research on Cancer (IARC), 69372 Lyon CEDEX 08, Lyon, France
| | - Jose Ramon Bilbao
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Biocruces-Bizkaia Health Research Institute, Leioa, Basque Country, 48940, Spain.
- Spanish Biomedical Research Center in Diabetes and associated Metabolic Disorders (CIBERDEM), Madrid, Spain.
| |
Collapse
|
26
|
Dahal-Koirala S, Ciacchi L, Petersen J, Risnes LF, Neumann RS, Christophersen A, Lundin KEA, Reid HH, Qiao SW, Rossjohn J, Sollid LM. Discriminative T-cell receptor recognition of highly homologous HLA-DQ2-bound gluten epitopes. J Biol Chem 2018; 294:941-952. [PMID: 30455354 DOI: 10.1074/jbc.ra118.005736] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 11/05/2018] [Indexed: 12/13/2022] Open
Abstract
Celiac disease (CeD) provides an opportunity to study the specificity underlying human T-cell responses to an array of similar epitopes presented by the same human leukocyte antigen II (HLA-II) molecule. Here, we investigated T-cell responses to the two immunodominant and highly homologous HLA-DQ2.5-restricted gluten epitopes, DQ2.5-glia-α1a (PFPQPELPY) and DQ2.5-glia-ω1 (PFPQPEQPF). Using HLA-DQ2.5-DQ2.5-glia-α1a and HLA-DQ2.5-DQ2.5-glia-ω1 tetramers and single-cell αβ T-cell receptor (TCR) sequencing, we observed that despite similarity in biased variable-gene usage in the TCR repertoire responding to these nearly identical peptide-HLA-II complexes, most of the T cells are specific for either of the two epitopes. To understand the molecular basis of this exquisite fine specificity, we undertook Ala substitution assays revealing that the p7 residue (Leu/Gln) is critical for specific epitope recognition by both DQ2.5-glia-α1a- and DQ2.5-glia-ω1-reactive T-cell clones. We determined high-resolution binary crystal structures of HLA-DQ2.5 bound to DQ2.5-glia-α1a (2.0 Å) and DQ2.5-glia-ω1 (2.6 Å). These structures disclosed that differences around the p7 residue subtly alter the neighboring substructure and electrostatic properties of the HLA-DQ2.5-peptide complex, providing the fine specificity underlying the responses against these two highly homologous gluten epitopes. This study underscores the ability of TCRs to recognize subtle differences in the peptide-HLA-II landscape in a human disease setting.
Collapse
Affiliation(s)
- Shiva Dahal-Koirala
- From the Department of Immunology, University of Oslo and Oslo University Hospital-Rikshospitalet, 0372 Oslo, Norway.,the K. G. Jebsen Centre for Coeliac Disease Research, University of Oslo, 0424 Oslo, Norway
| | - Laura Ciacchi
- the Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute and.,the Australian Research Council (ARC) Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia
| | - Jan Petersen
- the Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute and.,the Australian Research Council (ARC) Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia
| | - Louise Fremgaard Risnes
- From the Department of Immunology, University of Oslo and Oslo University Hospital-Rikshospitalet, 0372 Oslo, Norway.,the K. G. Jebsen Centre for Coeliac Disease Research, University of Oslo, 0424 Oslo, Norway
| | - Ralf Stefan Neumann
- the K. G. Jebsen Centre for Coeliac Disease Research, University of Oslo, 0424 Oslo, Norway
| | - Asbjørn Christophersen
- the K. G. Jebsen Centre for Coeliac Disease Research, University of Oslo, 0424 Oslo, Norway
| | - Knut E A Lundin
- the K. G. Jebsen Centre for Coeliac Disease Research, University of Oslo, 0424 Oslo, Norway.,the Department of Gastroenterology, Oslo University Hospital-Rikshospitalet, 0372 Oslo, Norway, and
| | - Hugh H Reid
- the Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute and.,the Australian Research Council (ARC) Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia
| | - Shuo-Wang Qiao
- From the Department of Immunology, University of Oslo and Oslo University Hospital-Rikshospitalet, 0372 Oslo, Norway.,the K. G. Jebsen Centre for Coeliac Disease Research, University of Oslo, 0424 Oslo, Norway
| | - Jamie Rossjohn
- the Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute and .,the Australian Research Council (ARC) Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia.,the Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff CF14 4XN, Wales, United Kingdom
| | - Ludvig M Sollid
- From the Department of Immunology, University of Oslo and Oslo University Hospital-Rikshospitalet, 0372 Oslo, Norway, .,the K. G. Jebsen Centre for Coeliac Disease Research, University of Oslo, 0424 Oslo, Norway
| |
Collapse
|
27
|
Ludvigsson JF, Ciacci C, Green PH, Kaukinen K, Korponay-Szabo IR, Kurppa K, Murray JA, Lundin KEA, Maki MJ, Popp A, Reilly NR, Rodriguez-Herrera A, Sanders DS, Schuppan D, Sleet S, Taavela J, Voorhees K, Walker MM, Leffler DA. Outcome measures in coeliac disease trials: the Tampere recommendations. Gut 2018; 67:1410-1424. [PMID: 29440464 PMCID: PMC6204961 DOI: 10.1136/gutjnl-2017-314853] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 12/19/2017] [Accepted: 01/08/2018] [Indexed: 12/12/2022]
Abstract
OBJECTIVE A gluten-free diet is the only treatment option of coeliac disease, but recently an increasing number of trials have begun to explore alternative treatment strategies. We aimed to review the literature on coeliac disease therapeutic trials and issue recommendations for outcome measures. DESIGN Based on a literature review of 10 062 references, we (17 researchers and 2 patient representatives from 10 countries) reviewed the use and suitability of both clinical and non-clinical outcome measures. We then made expert-based recommendations for use of these outcomes in coeliac disease trials and identified areas where research is needed. RESULTS We comment on the use of histology, serology, clinical outcome assessment (including patient-reported outcomes), quality of life and immunological tools including gluten immunogenic peptides for trials in coeliac disease. CONCLUSION Careful evaluation and reporting of outcome measures will increase transparency and comparability of coeliac disease therapeutic trials, and will benefit patients, healthcare and the pharmaceutical industry.
Collapse
Affiliation(s)
- Jonas F Ludvigsson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Department of Pediatrics, Örebro University Hospital, Örebro, Sweden
| | - Carolina Ciacci
- Coeliac Center at Department of Medicine and Surgery, Scuola Medica Salernitana, University of Salerno, Salerno, Italy
| | - Peter Hr Green
- Celiac Disease Center at Columbia University, New York, USA
| | - Katri Kaukinen
- Celiac Disease Research Center, Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
- Department of Internal Medicine, Tampere University Hospital, Tampere, Finland
| | - Ilma R Korponay-Szabo
- Coeliac Disease Centre, Heim Pál Children's Hospital, Budapest, Hungary
- Department of Paediatrics, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Kalle Kurppa
- Celiac Disease Research Center, Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
- Department of Paediatrics, Tampere University Hospital, Tampere, Finland
| | | | - Knut Erik Aslaksen Lundin
- Institute of Clinical Medicine and K.G. Jebsen Coeliac Disease Research Centre, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Gastroenterology, Oslo University Hospital, Oslo, Norway
| | - Markku J Maki
- Science Center, Tampere University Hospital, Tampere, Finland
- Tampere Centre for Child Health Research, Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Alina Popp
- Institute for Mother and Child Health Bucharest, University of Medicine and Pharmacy 'Carol Davila', Bucharest, Romania
- Tampere Centre for Child Health Research, University of Tampere, Tampere University Hospital, Tampere, Finland
| | - Norelle R Reilly
- Division of Pediatric Gastroenterology, Columbia University Medical Center, New York, USA
- Celiac Disease Center, Department of Medicine, Columbia University Medical Center, New York, USA
| | | | - David S Sanders
- Academic Unit of Gastroenterology, Royal Hallamshire Hospital, University of Sheffield, Sheffield, UK
| | - Detlef Schuppan
- Celiac Center, University Medical Center, Johannes-Gutenberg University, Mainz, Germany
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | | | - Juha Taavela
- Tampere Centre for Child Health Research, University of Tampere, Tampere University Hospital, Tampere, Finland
| | | | - Marjorie M Walker
- Faculty of Health and Medicine, School of Medicine and Public Health, University of Newcastle, Newcastle, New South Wales, Australia
| | - Daniel A Leffler
- Celiac Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
28
|
Risnes LF, Christophersen A, Dahal-Koirala S, Neumann RS, Sandve GK, Sarna VK, Lundin KE, Qiao SW, Sollid LM. Disease-driving CD4+ T cell clonotypes persist for decades in celiac disease. J Clin Invest 2018; 128:2642-2650. [PMID: 29757191 DOI: 10.1172/jci98819] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 03/22/2018] [Indexed: 11/17/2022] Open
Abstract
Little is known about the repertoire dynamics and persistence of pathogenic T cells in HLA-associated disorders. In celiac disease, a disorder with a strong association with certain HLA-DQ allotypes, presumed pathogenic T cells can be visualized and isolated with HLA-DQ:gluten tetramers, thereby enabling further characterization. Single and bulk populations of HLA-DQ:gluten tetramer-sorted CD4+ T cells were analyzed by high-throughput DNA sequencing of rearranged TCR-α and -β genes. Blood and gut biopsy samples from 21 celiac disease patients, taken at various stages of disease and in intervals of weeks to decades apart, were examined. Persistence of the same clonotypes was seen in both compartments over decades, with up to 53% overlap between samples obtained 16 to 28 years apart. Further, we observed that the recall response following oral gluten challenge was dominated by preexisting CD4+ T cell clonotypes. Public features were frequent among gluten-specific T cells, as 10% of TCR-α, TCR-β, or paired TCR-αβ amino acid sequences of total 1813 TCRs generated from 17 patients were observed in 2 or more patients. In established celiac disease, the T cell clonotypes that recognize gluten are persistent for decades, making up fixed repertoires that prevalently exhibit public features. These T cells represent an attractive therapeutic target.
Collapse
Affiliation(s)
- Louise F Risnes
- Centre for Immune Regulation, Department of Immunology, Oslo University Hospital, Rikshospitalet, and University of Oslo, Oslo, Norway
| | | | - Shiva Dahal-Koirala
- Centre for Immune Regulation, Department of Immunology, Oslo University Hospital, Rikshospitalet, and University of Oslo, Oslo, Norway
| | - Ralf S Neumann
- K.G. Jebsen Coeliac Disease Research Centre, Department of Immunology, and
| | - Geir K Sandve
- K.G. Jebsen Coeliac Disease Research Centre, Department of Immunology, and.,Biomedical Informatics, Department of Informatics, University of Oslo, Oslo, Norway
| | - Vikas K Sarna
- K.G. Jebsen Coeliac Disease Research Centre, Department of Immunology, and
| | - Knut Ea Lundin
- Centre for Immune Regulation, Department of Immunology, Oslo University Hospital, Rikshospitalet, and University of Oslo, Oslo, Norway.,K.G. Jebsen Coeliac Disease Research Centre, Department of Immunology, and.,Department of Gastroenterology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Shuo-Wang Qiao
- Centre for Immune Regulation, Department of Immunology, Oslo University Hospital, Rikshospitalet, and University of Oslo, Oslo, Norway.,K.G. Jebsen Coeliac Disease Research Centre, Department of Immunology, and
| | - Ludvig M Sollid
- Centre for Immune Regulation, Department of Immunology, Oslo University Hospital, Rikshospitalet, and University of Oslo, Oslo, Norway.,K.G. Jebsen Coeliac Disease Research Centre, Department of Immunology, and
| |
Collapse
|
29
|
Ritter J, Zimmermann K, Jöhrens K, Mende S, Seegebarth A, Siegmund B, Hennig S, Todorova K, Rosenwald A, Daum S, Hummel M, Schumann M. T-cell repertoires in refractory coeliac disease. Gut 2018; 67:644-653. [PMID: 28188172 PMCID: PMC5868243 DOI: 10.1136/gutjnl-2016-311816] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 12/01/2016] [Accepted: 12/08/2016] [Indexed: 01/16/2023]
Abstract
OBJECTIVE Refractory coeliac disease (RCD) is a potentially hazardous complication of coeliac disease (CD). In contrast to RCD type I, RCD type II is a precursor entity of enteropathy-associated T-cell lymphoma (EATL), which is associated with clonally expanding T-cells that are also found in the sequentially developing EATL. Using high-throughput sequencing (HTS), we aimed to establish the small-intestinal T-cell repertoire (TCR) in CD and RCD to unravel the role of distinct T-cell clonotypes in RCD pathogenesis. DESIGN DNA extracted from duodenal mucosa specimens of controls (n=9), active coeliacs (n=10), coeliacs on a gluten-free diet (n=9), RCD type I (n=8), RCD type II (n=8) and unclassified Marsh I cases (n=3) collected from 2002 to 2013 was examined by TCRβ-complementarity-determining regions 3 (CDR3) multiplex PCR followed by HTS of the amplicons. RESULTS On average, 106 sequence reads per sample were generated consisting of up to 900 individual TCRβ rearrangements. In RCD type II, the most frequent clonotypes (ie, sequence reads with identical CDR3) represent in average 42.6% of all TCRβ rearrangements, which was significantly higher than in controls (6.8%; p<0.01) or RCD type I (6.7%; p<0.01). Repeat endoscopies in individual patients revealed stability of clonotypes for up to several years without clinical symptoms of EATL. Dominant clonotypes identified in individual patients with RCD type II were unique and not related between patients. CD-associated, gliadin-dependent CDR3 motifs were only detectable at low frequencies. CONCLUSIONS TCRβ-HTS analysis unravels the TCR in CD and allows detailed analysis of individual TCRβ rearrangements. Dominant TCRβ sequences identified in patients with RCD type II are unique and not homologous to known gliadin-specific TCR sequences, supporting the assumption that these clonal T-cells expand independent of gluten stimulation.
Collapse
Affiliation(s)
- Julia Ritter
- Institute of Pathology, Charité—University Medicine, Berlin, Germany
| | - Karin Zimmermann
- Institute of Pathology, Charité—University Medicine, Berlin, Germany
| | - Korinna Jöhrens
- Institute of Pathology, Charité—University Medicine, Berlin, Germany
| | - Stefanie Mende
- Institute of Pathology, Charité—University Medicine, Berlin, Germany
| | - Anke Seegebarth
- Institute of Pathology, Charité—University Medicine, Berlin, Germany
| | - Britta Siegmund
- Department of Gastroenterology, Infectious Diseases and Rheumatology, Charité—University Medicine, Berlin, Germany
| | | | - Kremena Todorova
- Center for Tumor Medicine, Charité—University Medicine, Berlin, Germany
| | - Andreas Rosenwald
- Institute of Pathology, University of Würzburg, and Comprehensive Cancer Center Mainfranken (CCCMF), Würzburg, Germany
| | - Severin Daum
- Department of Gastroenterology, Infectious Diseases and Rheumatology, Charité—University Medicine, Berlin, Germany
| | - Michael Hummel
- Institute of Pathology, Charité—University Medicine, Berlin, Germany
| | - Michael Schumann
- Department of Gastroenterology, Infectious Diseases and Rheumatology, Charité—University Medicine, Berlin, Germany,Berlin Institute of Health, Berlin, Germany,Berlin-Brandenburg School for Regenerative Therapies, Berlin, Germany
| |
Collapse
|
30
|
Yohannes DA, Freitag TL, de Kauwe A, Kaukinen K, Kurppa K, Wacklin P, Mäki M, Arstila TP, Anderson RP, Greco D, Saavalainen P. Deep sequencing of blood and gut T-cell receptor β-chains reveals gluten-induced immune signatures in celiac disease. Sci Rep 2017; 7:17977. [PMID: 29269859 PMCID: PMC5740085 DOI: 10.1038/s41598-017-18137-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 12/06/2017] [Indexed: 12/16/2022] Open
Abstract
Celiac disease (CD) patients mount an abnormal immune response to gluten. T-cell receptor (TCR) repertoires directed to some immunodominant gluten peptides have previously been described, but the global immune response to in vivo gluten exposure in CD has not been systematically investigated yet. Here, we characterized signatures associated with gluten directed immune activity and identified gluten-induced T-cell clonotypes from total blood and gut TCR repertoires in an unbiased manner using immunosequencing. CD patient total TCR repertoires showed increased overlap and substantially altered TRBV-gene usage in both blood and gut samples, and increased diversity in the gut during gluten exposure. Using differential abundance analysis, we identified gluten-induced clonotypes in each patient that were composed of a large private and an important public component. Hierarchical clustering of public clonotypes associated with dietary gluten exposure identified subsets of highly similar clonotypes, the most proliferative of which showing significant enrichment for the motif ASS[LF]R[SW][TD][DT][TE][QA][YF] in PBMC repertoires. These results show that CD-associated clonotypes can be identified and that common gluten associated immune response features can be characterized in vivo from total repertoires, with potential use in disease stratification and monitoring.
Collapse
Affiliation(s)
- Dawit A Yohannes
- Research Programs Unit, Immunobiology, University of Helsinki, Helsinki, Finland.,Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
| | - Tobias L Freitag
- Research Programs Unit, Immunobiology, University of Helsinki, Helsinki, Finland.,Department of Bacteriology and Immunology, University of Helsinki, Helsinki, Finland
| | - Andrea de Kauwe
- Research Programs Unit, Immunobiology, University of Helsinki, Helsinki, Finland.,Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
| | - Katri Kaukinen
- Department of Internal Medicine, Tampere University Hospital and Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Kalle Kurppa
- Center for Child Health Research, University of Tampere and Tampere University Hospital, Tampere, Finland
| | - Pirjo Wacklin
- Finnish Red Cross Blood Transfusion Service, Helsinki, Finland
| | - Markku Mäki
- Center for Child Health Research, University of Tampere and Tampere University Hospital, Tampere, Finland
| | - T Petteri Arstila
- Research Programs Unit, Immunobiology, University of Helsinki, Helsinki, Finland.,Department of Bacteriology and Immunology, University of Helsinki, Helsinki, Finland
| | - Robert P Anderson
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia.,ImmusanT, Inc., Cambridge, MA, USA
| | - Dario Greco
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland.,Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Päivi Saavalainen
- Research Programs Unit, Immunobiology, University of Helsinki, Helsinki, Finland. .,Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
31
|
Abstract
PURPOSE OF REVIEW The genetic susceptibility and dominant protection for type 1 diabetes (T1D) associated with human leukocyte antigen (HLA) haplotypes, along with minor risk variants, have long been thought to shape the T cell receptor (TCR) repertoire and eventual phenotype of autoreactive T cells that mediate β-cell destruction. While autoantibodies provide robust markers of disease progression, early studies tracking autoreactive T cells largely failed to achieve clinical utility. RECENT FINDINGS Advances in acquisition of pancreata and islets from T1D organ donors have facilitated studies of T cells isolated from the target tissues. Immunosequencing of TCR α/β-chain complementarity determining regions, along with transcriptional profiling, offers the potential to transform biomarker discovery. Herein, we review recent studies characterizing the autoreactive TCR signature in T1D, emerging technologies, and the challenges and opportunities associated with tracking TCR molecular profiles during the natural history of T1D.
Collapse
Affiliation(s)
- Laura M Jacobsen
- Department of Pediatrics, College of Medicine, University of Florida Diabetes Institute, Gainesville, FL, USA
| | - Amanda Posgai
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida Diabetes Institute, Gainesville, FL, USA
| | - Howard R Seay
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida Diabetes Institute, Gainesville, FL, USA
| | - Michael J Haller
- Department of Pediatrics, College of Medicine, University of Florida Diabetes Institute, Gainesville, FL, USA
| | - Todd M Brusko
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida Diabetes Institute, Gainesville, FL, USA.
| |
Collapse
|
32
|
Jabri B, Sollid LM. T Cells in Celiac Disease. THE JOURNAL OF IMMUNOLOGY 2017; 198:3005-3014. [PMID: 28373482 DOI: 10.4049/jimmunol.1601693] [Citation(s) in RCA: 153] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 01/30/2017] [Indexed: 12/30/2022]
Abstract
Celiac disease is a human T cell-mediated autoimmune-like disorder caused by exposure to dietary gluten in genetically predisposed individuals. This review will discuss how CD4 T cell responses directed against an exogenous Ag can cause an autoreactive B cell response and participate in the licensing of intraepithelial lymphocytes to kill intestinal epithelial cells. Furthermore, this review will examine the mechanisms by which intraepithelial cytotoxic T cells mediate tissue destruction in celiac disease.
Collapse
Affiliation(s)
- Bana Jabri
- Department of Medicine, University of Chicago, Chicago, IL 60637; .,Department of Pathology, University of Chicago, Chicago, IL 60637.,Department of Pediatrics, University of Chicago, Chicago, IL 60637; and
| | - Ludvig M Sollid
- Department of Immunology, Centre for Immune Regulation, K.G. Jebsen Coeliac Disease Research Centre, University of Oslo and Oslo University Hospital-Rikshospitalet, N-0372 Oslo, Norway
| |
Collapse
|
33
|
Snir O, Chen X, Gidoni M, du Pré MF, Zhao Y, Steinsbø Ø, Lundin KE, Yaari G, Sollid LM. Stereotyped antibody responses target posttranslationally modified gluten in celiac disease. JCI Insight 2017; 2:93961. [PMID: 28878138 DOI: 10.1172/jci.insight.93961] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 07/06/2017] [Indexed: 11/17/2022] Open
Abstract
The role of B cells and posttranslational modifications in pathogenesis of organ-specific immune diseases is increasingly envisioned but remains poorly understood, particularly in human disorders. In celiac disease, transglutaminase 2-modified (TG2-modified; deamidated) gluten peptides drive disease-specific T cell and B cell responses, and antibodies to deamidated gluten peptides are excellent diagnostic markers. Here, we substantiate by high-throughput sequencing of IGHV genes that antibodies to a disease-specific, deamidated, and immunodominant B cell epitope of gluten (PLQPEQPFP) have biased and stereotyped usage of IGHV3-23 and IGHV3-15 gene segments with modest somatic mutations. X-ray crystal structures of 2 prototype IGHV3-15/IGKV4-1 and IGHV3-23/IGLV4-69 antibodies reveal peptide interaction mainly via germline-encoded residues. In-depth mutational analysis showed restricted selection and substitution patterns at positions involved in antigen binding. While the IGHV3-15/IGKV4-1 antibody interacts with Glu5 and Gln6, the IGHV3-23/IGLV4-69 antibody interacts with Gln3, Pro4, Pro7, and Phe8 - residues involved in substrate recognition by TG2. Hence, both antibodies, despite different interaction with the epitope, recognize signatures of TG2 processing that facilitates B cell presentation of deamidated gluten peptides to T cells, thereby providing a molecular framework for the generation of these clinically important antibodies. The study provides essential insight into the pathogenic mechanism of celiac disease.
Collapse
Affiliation(s)
- Omri Snir
- Centre for Immune Regulation and Department of Immunology, University of Oslo and Oslo University Hospital-Rikshospitalet, Oslo, Norway
| | - Xi Chen
- Centre for Immune Regulation and Department of Immunology, University of Oslo and Oslo University Hospital-Rikshospitalet, Oslo, Norway
| | - Moriah Gidoni
- Bioengineering Faculty of Engineering, Bar-Ilan University, Ramt Gan, Israel
| | - M Fleur du Pré
- Centre for Immune Regulation and Department of Immunology, University of Oslo and Oslo University Hospital-Rikshospitalet, Oslo, Norway
| | - Yuguang Zhao
- Division of Structural Biology, University of Oxford, Wellcome Trust Centre for Human Genetics, Headington, Oxford, United Kingdom
| | - Øyvind Steinsbø
- Centre for Immune Regulation and Department of Immunology, University of Oslo and Oslo University Hospital-Rikshospitalet, Oslo, Norway
| | - Knut Ea Lundin
- Department of Gastroenterology, Oslo University Hospital-Rikshospitalet, Oslo, Norway.,KG Jebsen Coeliac Disease Research Centre, University of Oslo, Oslo, Norway
| | - Gur Yaari
- Bioengineering Faculty of Engineering, Bar-Ilan University, Ramt Gan, Israel
| | - Ludvig M Sollid
- Centre for Immune Regulation and Department of Immunology, University of Oslo and Oslo University Hospital-Rikshospitalet, Oslo, Norway.,KG Jebsen Coeliac Disease Research Centre, University of Oslo, Oslo, Norway
| |
Collapse
|
34
|
Gunnarsen KS, Høydahl LS, Risnes LF, Dahal-Koirala S, Neumann RS, Bergseng E, Frigstad T, Frick R, du Pré MF, Dalhus B, Lundin KE, Qiao SW, Sollid LM, Sandlie I, Løset GÅ. A TCRα framework-centered codon shapes a biased T cell repertoire through direct MHC and CDR3β interactions. JCI Insight 2017; 2:95193. [PMID: 28878121 DOI: 10.1172/jci.insight.95193] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 08/03/2017] [Indexed: 12/15/2022] Open
Abstract
Selection of biased T cell receptor (TCR) repertoires across individuals is seen in both infectious diseases and autoimmunity, but the underlying molecular basis leading to these shared repertoires remains unclear. Celiac disease (CD) occurs primarily in HLA-DQ2.5+ individuals and is characterized by a CD4+ T cell response against gluten epitopes dominated by DQ2.5-glia-α1a and DQ2.5-glia-α2. The DQ2.5-glia-α2 response recruits a highly biased TCR repertoire composed of TRAV26-1 paired with TRBV7-2 harboring a semipublic CDR3β loop. We aimed to unravel the molecular basis for this signature. By variable gene segment exchange, directed mutagenesis, and cellular T cell activation studies, we found that TRBV7-3 can substitute for TRBV7-2, as both can contain the canonical CDR3β loop. Furthermore, we identified a pivotal germline-encoded MHC recognition motif centered on framework residue Y40 in TRAV26-1 engaging both DQB1*02 and the canonical CDR3β. This allowed prediction of expanded DQ2.5-glia-α2-reactive TCR repertoires, which were confirmed by single-cell sorting and TCR sequencing from CD patient samples. Our data refine our understanding of how HLA-dependent biased TCR repertoires are selected in the periphery due to germline-encoded residues.
Collapse
Affiliation(s)
- Kristin Støen Gunnarsen
- Centre for Immune Regulation and Department of Immunology, University of Oslo and Oslo University Hospital-Rikshospitalet, Oslo, Norway.,Department of Biosciences, University of Oslo, Oslo, Norway
| | - Lene Støkken Høydahl
- Centre for Immune Regulation and Department of Immunology, University of Oslo and Oslo University Hospital-Rikshospitalet, Oslo, Norway.,Department of Biosciences, University of Oslo, Oslo, Norway
| | - Louise Fremgaard Risnes
- Centre for Immune Regulation and Department of Immunology, University of Oslo and Oslo University Hospital-Rikshospitalet, Oslo, Norway
| | - Shiva Dahal-Koirala
- Centre for Immune Regulation and Department of Immunology, University of Oslo and Oslo University Hospital-Rikshospitalet, Oslo, Norway
| | - Ralf Stefan Neumann
- Centre for Immune Regulation and Department of Immunology, University of Oslo and Oslo University Hospital-Rikshospitalet, Oslo, Norway
| | - Elin Bergseng
- Centre for Immune Regulation and Department of Immunology, University of Oslo and Oslo University Hospital-Rikshospitalet, Oslo, Norway
| | | | - Rahel Frick
- Centre for Immune Regulation and Department of Immunology, University of Oslo and Oslo University Hospital-Rikshospitalet, Oslo, Norway.,Department of Biosciences, University of Oslo, Oslo, Norway
| | - M Fleur du Pré
- Centre for Immune Regulation and Department of Immunology, University of Oslo and Oslo University Hospital-Rikshospitalet, Oslo, Norway
| | - Bjørn Dalhus
- Department of Microbiology, Oslo University Hospital-Rikshospitalet, Oslo, Norway.,Department of Medical Biochemistry, Institute for Clinical Medicine, University of Oslo, Oslo, Norway
| | - Knut Ea Lundin
- Centre for Immune Regulation and Department of Immunology, University of Oslo and Oslo University Hospital-Rikshospitalet, Oslo, Norway.,KG Jebsen Coeliac Disease Research Centre and Department of Immunology, University of Oslo, Oslo, Norway.,Department of Gastroenterology, Oslo University Hospital-Rikshospitalet, Oslo, Norway
| | - Shuo-Wang Qiao
- Centre for Immune Regulation and Department of Immunology, University of Oslo and Oslo University Hospital-Rikshospitalet, Oslo, Norway.,KG Jebsen Coeliac Disease Research Centre and Department of Immunology, University of Oslo, Oslo, Norway
| | - Ludvig M Sollid
- Centre for Immune Regulation and Department of Immunology, University of Oslo and Oslo University Hospital-Rikshospitalet, Oslo, Norway.,KG Jebsen Coeliac Disease Research Centre and Department of Immunology, University of Oslo, Oslo, Norway
| | - Inger Sandlie
- Centre for Immune Regulation and Department of Immunology, University of Oslo and Oslo University Hospital-Rikshospitalet, Oslo, Norway.,Department of Biosciences, University of Oslo, Oslo, Norway
| | - Geir Åge Løset
- Centre for Immune Regulation and Department of Immunology, University of Oslo and Oslo University Hospital-Rikshospitalet, Oslo, Norway.,Department of Biosciences, University of Oslo, Oslo, Norway.,Nextera AS, Oslo, Norway
| |
Collapse
|
35
|
Oakes T, Popple AL, Williams J, Best K, Heather JM, Ismail M, Maxwell G, Gellatly N, Dearman RJ, Kimber I, Chain B. The T Cell Response to the Contact Sensitizer Paraphenylenediamine Is Characterized by a Polyclonal Diverse Repertoire of Antigen-Specific Receptors. Front Immunol 2017; 8:162. [PMID: 28261218 PMCID: PMC5311069 DOI: 10.3389/fimmu.2017.00162] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 01/31/2017] [Indexed: 01/07/2023] Open
Abstract
Paraphenylenediamine (PPD) is a common component of hair dyes and black henna tattoos and can cause skin sensitization and allergic contact dermatitis (ACD). The cutaneous inflammatory reaction associated with ACD is driven by both CD4+ and CD8+ T cells. However, the characteristics of such responses with respect to clonal breadth and magnitude are poorly defined. In this study, we have characterized the in vitro recall response of peripheral blood T cells prepared from PPD-allergic individuals to a PPD–human serum albumin (HSA) conjugate (PPD–HSA). Quantitative high throughput sequencing was used to characterize the changes in the repertoire of T cell receptor (TCR) α and β genes after exposure to antigen in vitro. The PPD conjugate induced expansion of T cells carrying selected TCRs, with around 800 sequences (around 1%) being 8 or more times as abundant after culture than before. The expanded sequences showed strong skewing of V and J usage, consistent with an antigen-driven clonal expansion. The complementarity-determining region 3 sequences of the expanded TCRs could be grouped into several families of related amino acid sequence, but the overall diversity of the expanded sample was not much less than that of a random sample of the same size. The results suggest a model in which PPD–HSA conjugate stimulates a broad diversity of TCRs, with a wide range of stimulation strengths, which manifest as different degrees of in vitro expansion.
Collapse
Affiliation(s)
- Theres Oakes
- Division of Infection and Immunity, UCL , London , UK
| | - Amy Lee Popple
- Faculty of Life Sciences, University of Manchester , Manchester , UK
| | - Jason Williams
- Contact Dermatitis Investigation Unit, Salford Royal NHS Foundation Trust , Manchester , UK
| | | | | | | | - Gavin Maxwell
- Unilever Safety and Environmental Assurance Centre, Colworth Science Park , Sharnbrook , UK
| | - Nichola Gellatly
- Unilever Safety and Environmental Assurance Centre, Colworth Science Park , Sharnbrook , UK
| | - Rebecca J Dearman
- Faculty of Life Sciences, University of Manchester , Manchester , UK
| | - Ian Kimber
- Faculty of Life Sciences, University of Manchester , Manchester , UK
| | - Benny Chain
- Division of Infection and Immunity, UCL , London , UK
| |
Collapse
|
36
|
Hardy MY, Tye-Din JA. Coeliac disease: a unique model for investigating broken tolerance in autoimmunity. Clin Transl Immunology 2016; 5:e112. [PMID: 27990287 PMCID: PMC5133362 DOI: 10.1038/cti.2016.58] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 09/12/2016] [Accepted: 09/12/2016] [Indexed: 01/06/2023] Open
Abstract
Coeliac disease, a prevalent immune-mediated enteropathy driven by dietary gluten, provides an exceptional human model to dissect the genetic, environmental and immunologic factors operating in autoimmunity. Despite the causative antigen being an exogenous food protein, coeliac disease has many features in common with autoimmune disease including a strong HLA class II association and the presence of pathogenic CD4+ T cells and autoantibodies. CD8+ intraepithelial lymphocytes specifically target and destroy intestinal epithelium in response to stress signals and not a specific antigen. A unique feature of coeliac disease is the ability to remove gluten to induce disease remission and reintroduce it to trigger a memory response. This provides an unparalleled opportunity to study disease-relevant CD4+ T cells that have been expanded in vivo. As a result, the causative peptides have been characterised at a level unprecedented for any autoimmune disease. Despite the complexity of the gluten proteome, resistance to gastrointestinal proteolysis and susceptibility to post-translational modification by transglutaminase help shape a restricted repertoire of immunogenic gluten peptides that have high affinity for disease-associated HLA. The critical steps in coeliac disease pathogenesis have been broadly elucidated and provide the basis for experimental therapies in pre-clinical or clinical development. However, little is known about how and why tolerance to gluten sometimes breaks or fails to develop. Understanding the interactions between genes, the environment, gluten immunity and the microbiome may provide novel approaches for the prevention and treatment of disease.
Collapse
Affiliation(s)
- Melinda Y Hardy
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Jason A Tye-Din
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia; Centre of Food and Allergy Research, Murdoch Children's Research Institute, Parkville, Victoria, Australia; Department of Gastroenterology, The Royal Melbourne Hospital, Parkville, Victoria, Australia
| |
Collapse
|
37
|
Petersen J, Kooy-Winkelaar Y, Loh KL, Tran M, van Bergen J, Koning F, Rossjohn J, Reid HH. Diverse T Cell Receptor Gene Usage in HLA-DQ8-Associated Celiac Disease Converges into a Consensus Binding Solution. Structure 2016; 24:1643-1657. [PMID: 27568928 DOI: 10.1016/j.str.2016.07.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 07/13/2016] [Accepted: 07/17/2016] [Indexed: 12/19/2022]
Abstract
In HLA-DQ8-associated celiac disease, TRAV26-2+-TRBV9+ and TRAV8-3+-TRBV6+ T cells recognize the immunodominant DQ8-glia-α1 epitope, whereupon a non-germline-encoded arginine residue played a key role in binding HLA-DQ8-glia-α1. Whether distinct T cell receptor (TCR) recognition modes exist for gliadin epitopes remains unclear. TCR repertoire analysis revealed populations of HLA-DQ8-glia-α1 and HLA-DQ8.5-glia-γ1 restricted TRAV20+-TRBV9+ T cells that did not possess a non-germline-encoded arginine residue. The crystal structures of a TRAV20+-TRBV9+ TCR-HLA-DQ8-glia-α1 complex and two TRAV20+-TRBV9+ TCR-HLA-DQ8.5-glia-γ1 complexes were determined. This revealed that the differential specificity toward DQ8-glia-α1 and DQ8.5-glia-γ1 was governed by CDR3β-loop-mediated interactions. Surprisingly, a germline-encoded arginine residue within the CDR1α loop of the TRAV20+ TCR substituted for the role of the non-germline-encoded arginine in the TRAV26-2+-TRBV9+ and TRAV8-3+-TRBV6+ TCRs. Thus, in celiac disease, the responding TCR repertoire is driven by a common mechanism that selects for structural elements within the TCR that have convergent binding solutions in HLA-DQ8-gliadin recognition.
Collapse
Affiliation(s)
- Jan Petersen
- Infection and Immunity Program, The Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, VIC 3800, Australia
| | - Yvonne Kooy-Winkelaar
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden 2333 ZA, The Netherlands
| | - Khai Lee Loh
- Infection and Immunity Program, The Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, VIC 3800, Australia
| | - Mai Tran
- Infection and Immunity Program, The Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, VIC 3800, Australia
| | - Jeroen van Bergen
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden 2333 ZA, The Netherlands
| | - Frits Koning
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden 2333 ZA, The Netherlands.
| | - Jamie Rossjohn
- Infection and Immunity Program, The Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, VIC 3800, Australia; Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK.
| | - Hugh H Reid
- Infection and Immunity Program, The Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, VIC 3800, Australia.
| |
Collapse
|
38
|
Rauhavirta T, Hietikko M, Salmi T, Lindfors K. Transglutaminase 2 and Transglutaminase 2 Autoantibodies in Celiac Disease: a Review. Clin Rev Allergy Immunol 2016; 57:23-38. [DOI: 10.1007/s12016-016-8557-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
39
|
Abstract
Celiac disease is an autoimmune-like disorder that is triggered by dietary gluten and has a strong genetic association with the human leukocyte antigen locus, specifically, HLA-DQ2.5/DQ8. Here, Dahai-Koirala et al. apply ex vivo single-cell sequencing of TCRs from celiac disease patients, and show that biased T-cell receptor usage underpins the response to two gluten epitopes, which has implications for disease pathogenesis, diagnosis, and treatment.
Collapse
Affiliation(s)
- J Rossjohn
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria, Australia.,Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK.,Department of Biochemistry and Molecular Biology, Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - F Koning
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
40
|
Christophersen A, Risnes LF, Bergseng E, Lundin KEA, Sollid LM, Qiao SW. Healthy HLA-DQ2.5+ Subjects Lack Regulatory and Memory T Cells Specific for Immunodominant Gluten Epitopes of Celiac Disease. THE JOURNAL OF IMMUNOLOGY 2016; 196:2819-26. [DOI: 10.4049/jimmunol.1501152] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 01/13/2016] [Indexed: 11/19/2022]
|