1
|
Santos Freire M, Victor de Oliveira Monteiro A, Moura Martins T, Socorro Silva Lima Duarte M, Carlos Lima A, Luiz Araújo Bentes Leal A, Rodolfo Pereira da Silva F, Fernando Marques Barcellos J. Genetic variations in immune mediators and prostate cancer risk: A field synopsis with Bayesian calculations. Cytokine 2024; 179:156630. [PMID: 38696882 DOI: 10.1016/j.cyto.2024.156630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/01/2024] [Accepted: 04/28/2024] [Indexed: 05/04/2024]
Abstract
OBJECTIVE Our study aimed to revaluate the significant data from meta-analyses on genetic variations in immune mediators and the risk of prostate cancer (PCa) by Bayesian approaches. METHODS We performed a search on the literature before September 5th, 2023, for meta-analytic studies on polymorphisms in immune mediator genes and the risk of PCa. Two Bayesian approaches were used to assess the level of noteworthiness in the meta-analytic data: the False-Positive Rate Probability (FPRP) and the Bayesian False Discovery Probability (BFDP) with a statistical power of 1.2 and 1.5 of Odds Ratio at a prior probability of 10-3 and 10-6. The quality evaluation of studies was performed with the Venice criteria. Gene-gene and protein-protein networks were designed for the genes and products enrolled in the results. RESULTS As results, 18 meta-analyses on 17 polymorphisms in several immune mediator genes were included (IL1B rs16944/rs1143627, IL4 rs2243250/rs2227284/rs2070874, IL6 1800795/rs1800796/rs1800797, IL8 rs4073, IL10 rs1800896/rs1800871/rs1800872, IL18 rs1946518, COX2 rs2745557, TNFA rs361525 and PTGS2 rs20417/689470). The Bayesian calculations showed the rs1143627 and the rs1946518 polymorphisms in IL1B and IL18 genes, respectively, were noteworthy. The Venice criteria showed that only four studies received the highest level of evidence. The gene-gene and protein-protein networks reinforced the findings on IL1B and IL18 genes. CONCLUSION In conclusion, this current Bayesian revaluation showed that the rs1143627 and the rs1946518 polymorphisms in the IL1B and IL18 genes, respectively, were noteworthy biomarker candidates for PCa risk.
Collapse
Affiliation(s)
- Matheus Santos Freire
- Post Graduation Program in Basic and Applied Immunology, Federal University of Amazonas, Manaus, Amazonas, Brazil
| | | | - Tayane Moura Martins
- Medicine College, Altamira University Campus, Federal University of Para, Altamira, PA, Brazil
| | | | - Antonio Carlos Lima
- Medicine College, Altamira University Campus, Federal University of Para, Altamira, PA, Brazil
| | | | - Felipe Rodolfo Pereira da Silva
- Post Graduation Program in Basic and Applied Immunology, Federal University of Amazonas, Manaus, Amazonas, Brazil; Medicine College, Altamira University Campus, Federal University of Para, Altamira, PA, Brazil.
| | | |
Collapse
|
2
|
Sultanov R, Mulyukina A, Zubkova O, Fedoseeva A, Bogomazova A, Klimina K, Larin A, Zatsepin T, Prikazchikova T, Lukina M, Bogomiakova M, Sharova E, Generozov E, Lagarkova M, Arapidi G. TP63-TRIM29 axis regulates enhancer methylation and chromosomal instability in prostate cancer. Epigenetics Chromatin 2024; 17:6. [PMID: 38481282 PMCID: PMC10938740 DOI: 10.1186/s13072-024-00529-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 02/09/2024] [Indexed: 03/17/2024] Open
Abstract
BACKGROUND Prostate adenocarcinoma (PRAD) is the second leading cause of cancer-related deaths in men. High variability in DNA methylation and a high rate of large genomic rearrangements are often observed in PRAD. RESULTS To investigate the reasons for such high variance, we integrated DNA methylation, RNA-seq, and copy number alterations datasets from The Cancer Genome Atlas (TCGA), focusing on PRAD, and employed weighted gene co-expression network analysis (WGCNA). Our results show that only single cluster of co-expressed genes is associated with genomic and epigenomic instability. Within this cluster, TP63 and TRIM29 are key transcription regulators and are downregulated in PRAD. We discovered that TP63 regulates the level of enhancer methylation in prostate basal epithelial cells. TRIM29 forms a complex with TP63 and together regulates the expression of genes specific to the prostate basal epithelium. In addition, TRIM29 binds DNA repair proteins and prevents the formation of the TMPRSS2:ERG gene fusion typically observed in PRAD. CONCLUSION Our study demonstrates that TRIM29 and TP63 are important regulators in maintaining the identity of the basal epithelium under physiological conditions. Furthermore, we uncover the role of TRIM29 in PRAD development.
Collapse
Affiliation(s)
- R Sultanov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia.
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia.
| | - A Mulyukina
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - O Zubkova
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - A Fedoseeva
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - A Bogomazova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - K Klimina
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - A Larin
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - T Zatsepin
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - T Prikazchikova
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - M Lukina
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - M Bogomiakova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - E Sharova
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - E Generozov
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - M Lagarkova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - G Arapidi
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
3
|
Lebok P, Bönte H, Kluth M, Möller-Koop C, Witzel I, Wölber L, Paluchowski P, Wilke C, Heilenkötter U, Müller V, Schmalfeldt B, Simon R, Sauter G, Terracciano L, Krech RH, von der Assen A, Burandt E. 6q deletion is frequent but unrelated to patient prognosis in breast cancer. Breast Cancer 2022; 29:216-223. [PMID: 34625909 PMCID: PMC8885507 DOI: 10.1007/s12282-021-01301-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 09/28/2021] [Indexed: 11/02/2022]
Abstract
BACKGROUND Deletions involving the long arm of chromosome 6 have been reported to occur in breast cancer, but little is known about the clinical relevance of this alteration. METHODS We made use of a pre-existing tissue microarray with 2197 breast cancers and employed a 6q15/centromere 6 dual-labeling probe for fluorescence in situ (FISH) analysis RESULTS: Heterozygous 6q15 deletions were found in 202 (18%) of 1099 interpretable cancers, including 19% of 804 cancers of no special type (NST), 3% of 29 lobular cancers, 7% of 41 cribriform cancers, and 28% of 18 cancers with papillary features. Homozygous deletions were not detected. In the largest subset of NST tumors, 6q15 deletions were significantly linked to advanced tumor stage and high grade (p < 0.0001 each). 6q deletions were also associated with estrogen receptor negativity (p = 0.0182), high Ki67 proliferation index (p < 0.0001), amplifications of HER2 (p = 0.0159), CCND1 (p = 0.0069), and cMYC (p = 0.0411), as well as deletions of PTEN (p = 0.0003), 8p21 (p < 0.0001), and 9p21 (p = 0.0179). However, 6q15 deletion was unrelated to patient survival in all cancers, in NST cancers, or in subsets of cancers defined by the presence or absence of lymph-node metastases. CONCLUSION Our data demonstrate that 6q deletion is a frequent event in breast cancer that is statistically linked to unfavorable tumor phenotype and features of genomic instability. The absence of any prognostic impact argues against a clinical applicability of 6q15 deletion testing in breast cancer patients.
Collapse
Affiliation(s)
- Patrick Lebok
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Hannah Bönte
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Martina Kluth
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Christina Möller-Koop
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Isabell Witzel
- Department of Gynecology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Linn Wölber
- Department of Gynecology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Peter Paluchowski
- Department of Gynecology, Regio Clinic Pinneberg, Pinneberg, Germany
| | - Christian Wilke
- Department of Gynecology, Regio Clinic Elmshorn, Elmshorn, Germany
| | - Uwe Heilenkötter
- Department of Gynecology, Clinical Centre Itzehoe, Itzehoe, Germany
| | - Volkmar Müller
- Department of Gynecology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Barbara Schmalfeldt
- Department of Gynecology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ronald Simon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany.
| | - Guido Sauter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Luigi Terracciano
- Department of Pathology, Basel University Clinics, Basel, Switzerland
| | | | | | - Eike Burandt
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| |
Collapse
|
4
|
PITX1 Is a Regulator of TERT Expression in Prostate Cancer with Prognostic Power. Cancers (Basel) 2022; 14:cancers14051267. [PMID: 35267575 PMCID: PMC8909694 DOI: 10.3390/cancers14051267] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 02/05/2023] Open
Abstract
Simple Summary Most prostate cancer is of an indolent form and is curable. However, some prostate cancer belongs to rather aggressive subtypes leading to metastasis and death, and immediate therapy is mandatory. However, for these, the therapeutic options are highly invasive, such as radical prostatectomy, radiation or brachytherapy. Hence, a precise diagnosis of these tumor subtypes is needed, and the thus far applied diagnostic means are insufficient for this. Besides this, for their endless cell divisions, prostate cancer cells need the enzyme telomerase to elongate their telomeres (chromatin endings). In this study, we developed a gene regulatory model based on large data from transcription profiles from prostate cancer and chromatin-immuno-precipitation studies. We identified the developmental regulator PITX1 regulating telomerase. Besides observing experimental evidence of PITX1′s functional role in telomerase regulation, we also found PITX1 serving as a prognostic marker, as concluded from an analysis of more than 15,000 prostate cancer samples. Abstract The current risk stratification in prostate cancer (PCa) is frequently insufficient to adequately predict disease development and outcome. One hallmark of cancer is telomere maintenance. For telomere maintenance, PCa cells exclusively employ telomerase, making it essential for this cancer entity. However, TERT, the catalytic protein component of the reverse transcriptase telomerase, itself does not suit as a prognostic marker for prostate cancer as it is rather low expressed. We investigated if, instead of TERT, transcription factors regulating TERT may suit as prognostic markers. To identify transcription factors regulating TERT, we developed and applied a new gene regulatory modeling strategy to a comprehensive transcriptome dataset of 445 primary PCa. Six transcription factors were predicted as TERT regulators, and most prominently, the developmental morphogenic factor PITX1. PITX1 expression positively correlated with telomere staining intensity in PCa tumor samples. Functional assays and chromatin immune-precipitation showed that PITX1 activates TERT expression in PCa cells. Clinically, we observed that PITX1 is an excellent prognostic marker, as concluded from an analysis of more than 15,000 PCa samples. PITX1 expression in tumor samples associated with (i) increased Ki67 expression indicating increased tumor growth, (ii) a worse prognosis, and (iii) correlated with telomere length.
Collapse
|
5
|
Ammendola S, Simbolo M, Ciaparrone C, Rizzo PC, Caffo M, Pinna G, Sala F, Scarpa A, Barresi V. Intraventricular Meningiomas: Clinical-Pathological and Genetic Features of a Monocentric Series. Curr Oncol 2022; 29:178-185. [PMID: 35049691 PMCID: PMC8775267 DOI: 10.3390/curroncol29010017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/24/2021] [Accepted: 12/29/2021] [Indexed: 11/21/2022] Open
Abstract
Intraventricular meningiomas (IVMs) are rare (0.5-5%) and usually low-grade (90% grade I) brain neoplasms. Their recurrence rate is lower than that of extra-axial meningiomas, but their surgical resection can be burdened with life-threatening complications, which represent the major cause of the reported 4% mortality. The aim of this study is to characterize the molecular portrait of IVMs to identify potential therapeutic targets. For this, we explored mutations and copy number variations (CNV) of 409 cancer-related genes and tumor mutational burden (TMB) of six cases, using next-generation sequencing. Five IVMs were grade I and one was grade II; none recurred, in spite of partial surgical resection in one case. NF2 mutation was the only recurring alteration and was present in three of the six IVMs, in association with SMARCB1 mutation in one case. None of the cases was hypermutated (TMB > 10 mutations/Mb). NF2-mutant progressing or recurring IVMs could potentially be treated with targeted therapies applied to other NF2-mutant tumors, as an alternative to surgery or radiosurgery, while in view of their low TMB they are unlikely candidates to immune check-point inhibition.
Collapse
Affiliation(s)
- Serena Ammendola
- Dipartimento di Diagnostica e Sanità Pubblica, Università degli Studi di Verona, 371234 Verona, Italy; (S.A.); (M.S.); (C.C.); (P.C.R.); (A.S.)
| | - Michele Simbolo
- Dipartimento di Diagnostica e Sanità Pubblica, Università degli Studi di Verona, 371234 Verona, Italy; (S.A.); (M.S.); (C.C.); (P.C.R.); (A.S.)
| | - Chiara Ciaparrone
- Dipartimento di Diagnostica e Sanità Pubblica, Università degli Studi di Verona, 371234 Verona, Italy; (S.A.); (M.S.); (C.C.); (P.C.R.); (A.S.)
| | - Paola Chiara Rizzo
- Dipartimento di Diagnostica e Sanità Pubblica, Università degli Studi di Verona, 371234 Verona, Italy; (S.A.); (M.S.); (C.C.); (P.C.R.); (A.S.)
| | - Maria Caffo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Section of Neurosurgery, University of Messina, 98122 Messina, Italy;
| | - Giampietro Pinna
- Unit of Neurosurgery, Department of Neurosciences, Hospital Trust of Verona, 37126 Verona, Italy;
| | - Francesco Sala
- Department of Neurosciences, Biomedicines and Movement Sciences, Institute of Neurosurgery, University of Verona, 37126 Verona, Italy;
| | - Aldo Scarpa
- Dipartimento di Diagnostica e Sanità Pubblica, Università degli Studi di Verona, 371234 Verona, Italy; (S.A.); (M.S.); (C.C.); (P.C.R.); (A.S.)
- ARC-Net Research Centre, University and Hospital Trust of Verona, 37134 Verona, Italy
| | - Valeria Barresi
- Dipartimento di Diagnostica e Sanità Pubblica, Università degli Studi di Verona, 371234 Verona, Italy; (S.A.); (M.S.); (C.C.); (P.C.R.); (A.S.)
| |
Collapse
|
6
|
Jillson LK, Yette GA, Laajala TD, Tilley WD, Costello JC, Cramer SD. Androgen Receptor Signaling in Prostate Cancer Genomic Subtypes. Cancers (Basel) 2021; 13:3272. [PMID: 34208794 PMCID: PMC8269091 DOI: 10.3390/cancers13133272] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/19/2021] [Accepted: 06/21/2021] [Indexed: 12/20/2022] Open
Abstract
While many prostate cancer (PCa) cases remain indolent and treatable, others are aggressive and progress to the metastatic stage where there are limited curative therapies. Androgen receptor (AR) signaling remains an important pathway for proliferative and survival programs in PCa, making disruption of AR signaling a viable therapy option. However, most patients develop resistance to AR-targeted therapies or inherently never respond. The field has turned to PCa genomics to aid in stratifying high risk patients, and to better understand the mechanisms driving aggressive PCa and therapy resistance. While alterations to the AR gene itself occur at later stages, genomic changes at the primary stage can affect the AR axis and impact response to AR-directed therapies. Here, we review common genomic alterations in primary PCa and their influence on AR function and activity. Through a meta-analysis of multiple independent primary PCa databases, we also identified subtypes of significantly co-occurring alterations and examined their combinatorial effects on the AR axis. Further, we discussed the subsequent implications for response to AR-targeted therapies and other treatments. We identified multiple primary PCa genomic subtypes, and given their differing effects on AR activity, patient tumor genetics may be an important stratifying factor for AR therapy resistance.
Collapse
Affiliation(s)
- Lauren K. Jillson
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (J.K.L.); (G.A.Y.); (T.D.L.); (J.C.C.)
| | - Gabriel A. Yette
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (J.K.L.); (G.A.Y.); (T.D.L.); (J.C.C.)
| | - Teemu D. Laajala
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (J.K.L.); (G.A.Y.); (T.D.L.); (J.C.C.)
- Department of Mathematics and Statistics, University of Turku, 20500 Turku, Finland
| | - Wayne D. Tilley
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia;
- Freemason’s Foundation Centre for Men’s Health, University of Adelaide, Adelaide, SA 5005, Australia
| | - James C. Costello
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (J.K.L.); (G.A.Y.); (T.D.L.); (J.C.C.)
| | - Scott D. Cramer
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (J.K.L.); (G.A.Y.); (T.D.L.); (J.C.C.)
| |
Collapse
|
7
|
Chen Q, Gu M, Cai ZK, Zhao H, Sun SC, Liu C, Zhan M, Chen YB, Wang Z. TGF-β1 promotes epithelial-to-mesenchymal transition and stemness of prostate cancer cells by inducing PCBP1 degradation and alternative splicing of CD44. Cell Mol Life Sci 2021; 78:949-962. [PMID: 32440711 PMCID: PMC11072728 DOI: 10.1007/s00018-020-03544-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 03/16/2020] [Accepted: 04/27/2020] [Indexed: 12/20/2022]
Abstract
CD44 is a marker of cancer stem cell (CSC) in many types of tumors. Alternative splicing of its 20 exons generates various CD44 isoforms that have different tissue specific expression and functions, including the CD44 standard isoform (CD44s) encoded by the constant exons and the CD44 variant isoforms (CD44v) with variant exon insertions. Switching between the CD44v and CD44s isoforms plays pivotal roles in tumor progression. Here we reported a novel mechanism of CD44 alternative splicing induced by TGF-β1 and its connection to enhanced epithelial-to-mesenchymal transition (EMT) and stemness in human prostate cancer cells. TGF-β1 treatment increased the expression of CD44s and N-cadherin while decreased the expression of CD44v and E-cadherin in DU-145 prostate cancer cells. Other EMT markers and cancer stem cell markers were also upregulated after TGF-β1 treatment. RNAi knockdown of CD44 reversed the phenotype, which could be rescued by overexpressing CD44s but not CD44v, indicating the alternatively spliced isoform CD44s mediated the activity of TGF-β1 treatment. Mechanistically, TGF-β1 treatment induced the phosphorylation, poly-ubiquitination, and degradation of PCBP1, a well-characterized RNA binding protein known to regulate CD44 splicing. RNAi knockdown of PCBP1 was able to mimic TGF-β1 treatment to increase the expression of CD44s, as well as the EMT and cancer stem cell markers. In vitro and in vivo experiments were performed to show that CD44s promoted prostate cancer cell migration, invasion, and tumor initiation. Taken together, we defined a mechanism by which TGF-β1 induces CD44 alternative splicing and promotes prostate cancer progression.
Collapse
Affiliation(s)
- Qi Chen
- Department of Urology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Meng Gu
- Department of Urology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Zhi-Kang Cai
- Department of Urology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Hu Zhao
- Department of Urology, Guanyun People's Hospital, Lianyungang, China
| | - Shi-Cheng Sun
- Department of Urology, Guanyun People's Hospital, Lianyungang, China
| | - Chong Liu
- Department of Urology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Ming Zhan
- Department of Urology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Yan-Bo Chen
- Department of Urology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, 639 Zhizaoju Road, Shanghai, 200011, China.
| | - Zhong Wang
- Department of Urology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, 639 Zhizaoju Road, Shanghai, 200011, China.
| |
Collapse
|
8
|
Liu Z, Liu S, Guo J, Sun L, Wang S, Wang Y, Qiu W, Lv J. Identification and Analysis of Key Genes Driving Gastric Cancer Through Bioinformatics. Genet Test Mol Biomarkers 2021; 25:1-11. [PMID: 33470887 DOI: 10.1089/gtmb.2020.0126] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Objective: The aim of this study was to use bioinformatic analyses to identify key genes and pathways driving gastric cancer (GC). Materials and Methods: The gene expression profiles, from human gastric tissue samples were downloaded from the Gene Expression Omnibus (GSE)29272 dataset. These data revealed 284 differentially expressed genes (DEGs) that included a group upregulated in cancer tissues (n = 142) and another group that were downregulated in cancer tissues. (n = 142). These DEGs were identified using the GEO2R. We used multiple online analysis tools, including, Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), protein-protein interaction networks, gene expression profiling interactive analysis (GEPIA), and the cBio Cancer Genomics Portal (cBioportal) database. Next, we identified the most significant DEGs using the Kaplan-Meier plotter (KM-plotter) database. Multiple bioinformatic platforms were used to identify candidate prognostic marker genes. We then analyzed freshly frozen GC tissues for the expression of these marker genes to validate the informatic findings. Results: We identified three DEGs related to overall survival from our analyses of the GEO data. Next, we analyzed these three DEGs in GEPIA and the cBioportal database and found that the biglycan (BGN) gene was related to invasion and metastases of GCs. This finding of differential gene expression was confirmed in a separate laboratory analysis of normal and GC tissues. In this analysis we found that high levels of BGN expression were correlated with GC clinicopathological characteristics, including microvascular tumor thrombus (p = 0.018), lymph node metastases (p = 0.013), and vessel invasion (p = 0.004). Conclusions: BGN expression levels appear to be an independent prognostic factor for predicting the survival times of GC patients.
Collapse
Affiliation(s)
- Zhao Liu
- Department of Oncology, Key Laboratory of Cancer Molecular and Translational Research, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shihai Liu
- Central Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jing Guo
- Department of Oncology, Key Laboratory of Cancer Molecular and Translational Research, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Libin Sun
- Department of Oncology, Key Laboratory of Cancer Molecular and Translational Research, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shasha Wang
- Department of Oncology, Key Laboratory of Cancer Molecular and Translational Research, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yixuan Wang
- Department of Oncology, Key Laboratory of Cancer Molecular and Translational Research, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wensheng Qiu
- Department of Oncology, Key Laboratory of Cancer Molecular and Translational Research, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jing Lv
- Department of Oncology, Key Laboratory of Cancer Molecular and Translational Research, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
9
|
Overexpression of the TRIM24 E3 Ubiquitin Ligase is Linked to Genetic Instability and Predicts Unfavorable Prognosis in Prostate Cancer. Appl Immunohistochem Mol Morphol 2021; 29:e29-e38. [PMID: 33491944 DOI: 10.1097/pai.0000000000000901] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 11/25/2020] [Indexed: 12/24/2022]
Abstract
Tripartite motif containing 24 (TRIM24) is a multifunctional protein involved in p53 degradation, chromatin binding, and transcriptional modulation of nuclear receptors. Emerging research has revealed that upregulation of TRIM24 in numerous tumor types is linked to poor prognosis, attributing an important role to TRIM24 in tumor biology. In order to better understand the role of TRIM24 in prostate cancer, we analyzed its immunohistochemical expression on a tissue microarray containing >17,000 prostate cancer specimens. TRIM24 immunostaining was detectable in 61% of 15,321 interpretable cancers, including low expression in 46% and high expression in 15% of cases. TRIM24 upregulation was associated with high Gleason grade, advanced pathologic tumor stage, lymph node metastasis, higher preoperative prostate-specific antigen level, increased cell proliferation as well as increased genomic instability, and predicted prognosis independent of clinicopathologic parameters available at the time of the initial biopsy (all P<0.0001). TRIM24 upregulation provides additional prognostic information in prostate cancer, particularly in patients with low Gleason grade tumors who may be eligible for active surveillance strategies, suggesting promising potential for TRIM24 in the routine diagnostic work-up of these patients.
Collapse
|
10
|
Marx A, Koopmann L, Höflmayer D, Büscheck F, Hube-Magg C, Steurer S, Eichenauer T, Clauditz TS, Wilczak W, Simon R, Sauter G, Izbicki JR, Huland H, Heinzer H, Graefen M, Haese A, Schlomm T, Bernreuther C, Lebok P, Bonk S. Reduced anoctamin 7 (ANO7) expression is a strong and independent predictor of poor prognosis in prostate cancer. Cancer Biol Med 2021; 18:245-255. [PMID: 33628598 PMCID: PMC7877177 DOI: 10.20892/j.issn.2095-3941.2019.0324] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 02/07/2020] [Indexed: 12/09/2022] Open
Abstract
Objective Anoctamin 7 (ANO7) is a calcium2+-dependent chloride ion channel protein. Its expression is restricted to prostate epithelial cells. The exact function is unknown. This study aimed to analyze ANO7 expression and its clinical significance in prostate cancer (PCa). Methods ANO7 expression was assessed by immunohistochemistry in 17,747 clinical PCa specimens. Results ANO7 was strongly expressed in normal prostate glandular cells but often less abundant in cancer cells. ANO7 staining was interpretable in 13,594 cancer tissues and considered strong in 34.4%, moderate in 48.7%, weak in 9.3%, and negative in 7.6%. Reduced staining was tightly linked to adverse tumor features [high classical and quantitative Gleason grade, lymph node metastasis, advanced tumor stage, high Ki67 labeling index, positive surgical margin, and early biochemical recurrence (P < 0.0001 each)]. The univariate Cox hazard ratio for prostate-specific antigen (PSA) recurrence after prostatectomy in patients with negative vs. strong ANO7 expression was 2.98 (95% confidence interval 2.61-3.38). The prognostic impact was independent of established pre- or postoperatively available parameters (P < 0.0001). Analysis of annotated molecular data showed that low ANO7 expression was linked to TMPRSS2:ERG fusions (P < 0.0001), elevated androgen receptor expression (P < 0.0001), as well as presence of 9 of 11 chromosomal deletions (P < 0.05 each). A particularly strong association of low ANO7 expression with phosphatase and tensin homolog (PTEN) deletion may indicate a functional relationship with the PTEN/AKT pathway. Conclusions These data identify reduced ANO7 protein expression as a strong and independent predictor of poor prognosis in PCa. ANO7 measurement, either alone or in combination, might provide clinically useful prognostic information in PCa.
Collapse
Affiliation(s)
- Andreas Marx
- Institute of Pathology, Klinikum Fürth, Fürth 90766, Germany
| | - Lena Koopmann
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Doris Höflmayer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Franziska Büscheck
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Claudia Hube-Magg
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Stefan Steurer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Till Eichenauer
- Department of Urology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Till S Clauditz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Waldemar Wilczak
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Ronald Simon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Guido Sauter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Jakob R Izbicki
- General, Visceral and Thoracic Surgery Department and Clinic, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Hartwig Huland
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Hans Heinzer
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Markus Graefen
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Alexander Haese
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Thorsten Schlomm
- Department of Urology, Charité - Universitätsmedizin Berlin, Berlin 10117, Germany
| | - Christian Bernreuther
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Patrick Lebok
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Sarah Bonk
- Department of Urology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| |
Collapse
|
11
|
Epithelial splicing regulatory protein 1 and 2 (ESRP1 and ESRP2) upregulation predicts poor prognosis in prostate cancer. BMC Cancer 2020; 20:1220. [PMID: 33339518 PMCID: PMC7749503 DOI: 10.1186/s12885-020-07682-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 11/23/2020] [Indexed: 01/26/2023] Open
Abstract
Background Epithelial splicing regulatory protein 1 (ESRP1) and 2 (ESRP2) regulate alternative splicing events of various pre-mRNAs. Some of these targets play a role in cancer-associated processes, including cytoskeleton reorganization and DNA-repair processes. This study was undertaken to estimate the impact of ESRP1 and ESRP2 alterations on prostate cancer patient prognosis. Methods A tissue microarray made from 17,747 individual cancer samples with comprehensive, pathological, clinical and molecular data was analyzed by immunohistochemistry for ESRP1 and ESRP2. Results Nuclear staining for ESRP1 was seen in 38.6% (36.0% low, 2.6% high) of 12,140 interpretable cancers and in 41.9% (36.4% low, 5.3% high) of 12,962 interpretable cancers for ESRP2. Nuclear protein expression was linked to advanced tumor stage, high Gleason score, presence of lymph node metastasis, early biochemical recurrence, and ERG-positive cancers (p < 0.0001 each). Expression of ESRPs was significantly linked to 11 (ESRP1)/9 (ESRP2) of 11 analyzed deletions in all cancers and to 8 (ESRP1)/9 (ESRP2) of 11 deletions in ERG-negative cancers portending a link to genomic instability. Combined ESRPs expression analysis suggested an additive effect and showed the worst prognosis for cancers with high ESRP1 and ESRP2 expression. Multivariate analyses revealed that the prognostic impact of ESRP1, ESRP2 and combined ESRP1/ESRP2 expression was independent of all established pre- and postoperative prognostic features. Conclusions Our data show a striking link between nuclear ESRP expression and adverse features in prostate cancer and identifies expression of ESRP1 and/or ESRP2 as independent prognostic markers with a potential for routine application.
Collapse
|
12
|
Pan-cancer driver copy number alterations identified by joint expression/CNA data analysis. Sci Rep 2020; 10:17199. [PMID: 33057153 PMCID: PMC7566486 DOI: 10.1038/s41598-020-74276-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 09/29/2020] [Indexed: 02/07/2023] Open
Abstract
AbstractAnalysis of large gene expression datasets from biopsies of cancer patients can identify co-expression signatures representing particular biomolecular events in cancer. Some of these signatures involve genomically co-localized genes resulting from the presence of copy number alterations (CNAs), for which analysis of the expression of the underlying genes provides valuable information about their combined role as oncogenes or tumor suppressor genes. Here we focus on the discovery and interpretation of such signatures that are present in multiple cancer types due to driver amplifications and deletions in particular regions of the genome after doing a comprehensive analysis combining both gene expression and CNA data from The Cancer Genome Atlas.
Collapse
|
13
|
Increased Cytoplasmic CD138 Expression Is Associated with Aggressive Characteristics in Prostate Cancer and Is an Independent Predictor for Biochemical Recurrence. BIOMED RESEARCH INTERNATIONAL 2020; 2020:5845374. [PMID: 33195694 PMCID: PMC7641694 DOI: 10.1155/2020/5845374] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 09/27/2020] [Accepted: 09/30/2020] [Indexed: 01/11/2023]
Abstract
Syndecan-1 (CD138) is a transmembrane proteoglycan expressed in various normal and malignant tissues. It is of interest due to a possible prognostic effect in tumors and its role as a target for the antibody-drug conjugate indatuximab ravtansine. Here, we analyzed 17,747 prostate cancers by immunohistochemistry. Membranous and cytoplasmic CD138 staining was separately recorded. In normal prostate glands, CD138 staining was limited to basal cells. In cancers, membranous CD138 positivity was seen in 19.6% and cytoplasmic CD138 staining in 11.2% of 12,851 interpretable cases. A comparison with clinico-pathological features showed that cytoplasmic CD138 staining was more linked to unfavorable tumor features than membranous staining. Cytoplasmic CD138 immunostaining was associated with high tumor stage (p < 0.0001), high Gleason grade (p < 0.0001), nodal metastases (p < 0.0001), positive surgical margin (p < 0.0001), and biochemical recurrence (p < 0.0001). This also holds true for both V-ets avian erythroblastosis virus E26 oncogene homolog (ERG) fusion positive and ERG fusion negative tumors although the cytoplasmic CD138 expression was markedly more frequent in ERG positive than in ERG negative tumors (p < 0.0001). Comparison with 11 previously analyzed chromosomal deletions identified a conspicuous association between cytoplasmic CD138 expression and 8p deletions (p < 0.0001) suggesting a possible functional interaction of CD138 with one or several 8p genes. Multivariate analysis revealed the cytoplasmic CD138 expression as an independent prognostic parameter in all cancers and in the ERG positive subgroup. In summary, our study indicates the cytoplasmic CD138 expression as a strong and independent predictor of poor prognosis in prostate cancer. Immunohistochemical measurement of CD138 protein may thus—perhaps in combination with other parameters—become clinically useful in the future.
Collapse
|
14
|
Liu W, Zheng SL, Na R, Wei L, Sun J, Gallagher J, Wei J, Resurreccion WK, Ernst S, Sfanos KS, Isaacs WB, Xu J. Distinct Genomic Alterations in Prostate Tumors Derived from African American Men. Mol Cancer Res 2020; 18:1815-1824. [PMID: 33115829 DOI: 10.1158/1541-7786.mcr-20-0648] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/11/2020] [Accepted: 08/26/2020] [Indexed: 11/16/2022]
Abstract
We aim to understand, from acquired genetic alterations in tumors, why African American (AA) men are more likely to develop aggressive prostate cancer. By analyzing somatic mutations in 39 genes using deeper next-generation sequencing with an average depth of 2,522 reads for tumor DNA and genome-wide DNA copy-number alterations (CNA) in prostate cancer in a total of 171 AA/black men and comparing with those in 860 European American (EA)/white men, we here present several novel findings. First, >35% of AA men harbor damaging mutations in APC, ATM, BRCA2, KDM6A, KMT2C, KMT2D, MED12, ZFHX3, and ZMYM3, each with >1% of mutated copies. Second, among genes with >10% of mutated copies in tumor cells, ZMYM3 is the most frequently mutated gene in AA prostate cancer. In a patient's tumor with >96% frameshift mutations of ZMYM3, we find allelic imbalances in 10 chromosomes, including losses of five and gains of another four chromosomes, suggesting its role in maintaining genomic integrity. Third, when compared to prostate cancer in EA/white men, a higher frequency of CNAs of MYC, THADA, NEIL3, LRP1B, BUB1B, MAP3K7, BNIP3L and RB1, and a lower frequency of deletions of RYBP, TP53, and TMPRSS2-ERG are observed in AA/black men. Finally, for the above genes with higher frequency of CNAs in AA than in EA, deletion of MAP3K7, BNIP3L, NEIL3 or RB1, or gain of MYC significantly associates with both higher Gleason grade and advanced pathologic stage in AA/black men. Deletion of THADA associates with advanced pathologic stage only. IMPLICATIONS: A higher frequency of damaging mutation in ZMYM3 causing genomic instability along with higher frequency of altered genomic regions including deletions of MAP3K7, BNIP3L, RB1, and NEIL3, and gain of MYC appear to be distinct somatically acquired genetic alterations that may contribute to more aggressive prostate cancer in AA/black men.
Collapse
Affiliation(s)
- Wennuan Liu
- Program for Personalized Cancer Care, NorthShore University HealthSystem, Evanston, Illinois.,Departments of Surgery, NorthShore University HealthSystem, Evanston, Illinois
| | - S Lilly Zheng
- Program for Personalized Cancer Care, NorthShore University HealthSystem, Evanston, Illinois.,Departments of Surgery, NorthShore University HealthSystem, Evanston, Illinois
| | - Rong Na
- Program for Personalized Cancer Care, NorthShore University HealthSystem, Evanston, Illinois
| | - Lin Wei
- Program for Personalized Cancer Care, NorthShore University HealthSystem, Evanston, Illinois
| | - Jishan Sun
- Program for Personalized Cancer Care, NorthShore University HealthSystem, Evanston, Illinois.,Departments of Surgery, NorthShore University HealthSystem, Evanston, Illinois
| | - Johnie Gallagher
- Program for Personalized Cancer Care, NorthShore University HealthSystem, Evanston, Illinois
| | - Jun Wei
- Program for Personalized Cancer Care, NorthShore University HealthSystem, Evanston, Illinois
| | - W Kyle Resurreccion
- Program for Personalized Cancer Care, NorthShore University HealthSystem, Evanston, Illinois
| | - Sarah Ernst
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Karen S Sfanos
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland.,Department of Urology and Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - William B Isaacs
- Department of Urology and Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Jianfeng Xu
- Program for Personalized Cancer Care, NorthShore University HealthSystem, Evanston, Illinois. .,Departments of Surgery, NorthShore University HealthSystem, Evanston, Illinois
| |
Collapse
|
15
|
Möller K, Kluth M, Ahmed M, Burkhardt L, Möller-Koop C, Büscheck F, Weidemann S, Tsourlakis MC, Minner S, Heinzer H, Huland H, Graefen M, Sauter G, Schlomm T, Dum D, Simon R. Chromosome 5 harbors two independent deletion hotspots at 5q13 and 5q21 that characterize biologically different subsets of aggressive prostate cancer. Int J Cancer 2020; 148:748-758. [PMID: 33045100 DOI: 10.1002/ijc.33344] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/10/2020] [Accepted: 08/19/2020] [Indexed: 12/17/2022]
Abstract
Deletion of chromosome 5q is common in prostate cancer and is linked to aggressive disease. Most previous studies focused on 5q21 where CHD1 is located, but deletion of mapping studies has identified a second deletion hotspot at 5q13. To clarify the prevalence and clinical relevance of 5q13 deletions and to determine the relative importance of 5q13 and 5q21 abnormalities, a tissue microarray containing samples from 12 427 prostate cancers was analyzed by fluorescence in situ hybridization. Deletion of 5q13 and 5q21 was found in 13.5% and 10%, respectively, of 7932 successfully analyzed cancers. Deletion was restricted to 5q13 in 49.4% and to 5q21 in 32.0% of cancers with a 5q deletion. Only 18.6% of 5q-deleted cancers had deletions of both loci. Both 5q13 and 5q21 deletions were significantly linked to advanced tumor stage, high Gleason grade, nodal metastasis and early biochemical recurrence (P < .005 each). Cancers with co-deletion of 5q13 and 5q21 had a worse prognosis than cancers with isolated 5q13 or 5q21 deletion (P = .0080). Comparison with TMPRSS2:ERG fusion status revealed that 5q21 deletions were tightly linked to ERG negativity (P < .0001) while 5q13 deletions were unrelated to the ERG status. In summary, 5q13 deletion and 5q21 deletion are common, but independent genomic alterations with different functional effects lead to aggressive prostate cancer.
Collapse
Affiliation(s)
- Katharina Möller
- Institute of Pathology, University Medical Center, Hamburg-Eppendorf, Germany
| | - Martina Kluth
- Institute of Pathology, University Medical Center, Hamburg-Eppendorf, Germany
| | - Malik Ahmed
- Institute of Pathology, University Medical Center, Hamburg-Eppendorf, Germany
| | - Lia Burkhardt
- Institute of Pathology, University Medical Center, Hamburg-Eppendorf, Germany
| | | | - Franziska Büscheck
- Institute of Pathology, University Medical Center, Hamburg-Eppendorf, Germany
| | - Sören Weidemann
- Institute of Pathology, University Medical Center, Hamburg-Eppendorf, Germany
| | | | - Sarah Minner
- Institute of Pathology, University Medical Center, Hamburg-Eppendorf, Germany
| | - Hans Heinzer
- Martini-Clinic, Prostate Cancer Center at University Medical Center, Hamburg-Eppendorf, Germany
| | - Hartwig Huland
- Martini-Clinic, Prostate Cancer Center at University Medical Center, Hamburg-Eppendorf, Germany
| | - Markus Graefen
- Martini-Clinic, Prostate Cancer Center at University Medical Center, Hamburg-Eppendorf, Germany
| | - Guido Sauter
- Institute of Pathology, University Medical Center, Hamburg-Eppendorf, Germany
| | - Thorsten Schlomm
- Department of Urology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - David Dum
- Institute of Pathology, University Medical Center, Hamburg-Eppendorf, Germany
| | - Ronald Simon
- Institute of Pathology, University Medical Center, Hamburg-Eppendorf, Germany
| |
Collapse
|
16
|
Genomic analyses of flow-sorted Hodgkin Reed-Sternberg cells reveal complementary mechanisms of immune evasion. Blood Adv 2020; 3:4065-4080. [PMID: 31816062 DOI: 10.1182/bloodadvances.2019001012] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 10/22/2019] [Indexed: 12/14/2022] Open
Abstract
Classical Hodgkin lymphoma (cHL) is composed of rare malignant Hodgkin Reed-Sternberg (HRS) cells within an extensive, but ineffective, inflammatory/immune cell infiltrate. HRS cells exhibit near-universal somatic copy gains of chromosome 9p/9p24.1, which increase expression of the programmed cell death protein 1 (PD-1) ligands. To define genetic mechanisms of response and resistance to PD-1 blockade and identify complementary treatment targets, we performed whole-exome sequencing of flow cytometry-sorted HRS cells from 23 excisional biopsies of newly diagnosed cHLs, including 8 Epstein-Barr virus-positive (EBV+) tumors. We identified significantly mutated cancer candidate genes (CCGs) as well as somatic copy number alterations and structural variations and characterized their contribution to disease-defining immune evasion mechanisms and nuclear factor κB (NF-κB), JAK/STAT, and PI3K signaling pathways. EBV- cHLs had a higher prevalence of genetic alterations in the NF-κB and major histocompatibility complex class I antigen presentation pathways. In this young cHL cohort (median age, 26 years), we identified a predominant mutational signature of spontaneous deamination of cytosine- phosphate-guanines ("Aging"), in addition to apolipoprotein B mRNA editing catalytic polypeptide-like, activation-induced cytidine deaminase, and microsatellite instability (MSI)-associated hypermutation. In particular, the mutational burden in EBV- cHLs was among the highest reported, similar to that of carcinogen-induced tumors. Together, the overall high mutational burden, MSI-associated hypermutation, and newly identified genetic alterations represent additional potential bases for the efficacy of PD-1 blockade in cHL. Of note, recurrent cHL alterations, including B2M, TNFAIP3, STAT6, GNA13, and XPO1 mutations and 2p/2p15, 6p21.32, 6q23.3, and 9p/9p24.1 copy number alterations, were also identified in >20% of primary mediastinal B-cell lymphomas, highlighting shared pathogenetic mechanisms in these diseases.
Collapse
|
17
|
Bonk S, Kluth M, Jansen K, Hube-Magg C, Makrypidi-Fraune G, Höflmayer D, Weidemann S, Möller K, Uhlig R, Büscheck F, Luebke AM, Burandt E, Clauditz TS, Steurer S, Schlomm T, Huland H, Heinzer H, Sauter G, Simon R, Dum D. Reduced KLK2 expression is a strong and independent predictor of poor prognosis in ERG-negative prostate cancer. Prostate 2020; 80:1097-1107. [PMID: 32628300 DOI: 10.1002/pros.24038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/11/2020] [Accepted: 06/15/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND Kallikrein-related peptidase 2 (KLK2)-like KLK3 (prostate-specific antigen [PSA])-belongs to the highly conserved serine proteases of the glandular kallikrein protein family (KLK family). Studies suggested that measurement of KLK2 serum levels advanced the predictive accuracy of PSA testing in prostate cancer. METHODS To clarify the potential utility of KLK2 as a prognostic tissue biomarker, KLK2 expression was analyzed by immunohistochemistry in more than 12 000 prostate cancers. RESULTS Normal epithelium cells usually showed weak to moderate KLK2 immunostaining, whereas KLK2 was negative in 23%, weak in 38%, moderate in 35%, and strong in 4% of 9576 analyzable cancers. Lost or reduced KLK2 immunostaining was associated with advanced tumor stage, high Gleason score, lymph node metastasis, increased cell proliferation, positive resection margin, and early PSA recurrence (P < .0001). Comparison with previously analyzed molecular alterations revealed a strong association of KLK2 loss and presence of TMPRSS2:ERG fusion (P < .0001), most of all analyzed common deletions (9 of 11; P ≤ .03), and decreased PSA immunostaining (P < .0001 each). Cancers with combined negative or weak immunostaining of KLK2 and PSA showed worse prognosis than cancers with at least moderate staining of one or both proteins (P < .0001). Multivariate analyses including established preoperative and postoperative prognostic parameters showed a strong independent prognostic impact of KLK2 loss alone or in combination of PSA, especially in erythroblast transformation-specific-negative cancers (P ≤ .006). CONCLUSIONS Loss of KLK2 expression is a potentially useful prognostic marker in prostate cancer. Analysis of KLK2 alone or in combination with PSA may be useful for estimating cancer aggressiveness at the time of biopsy.
Collapse
Affiliation(s)
- Sarah Bonk
- Department of General, Visceral and Thoracic Surgery and Clinic, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martina Kluth
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kristina Jansen
- Department of General, Visceral and Thoracic Surgery and Clinic, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Claudia Hube-Magg
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Doris Höflmayer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sören Weidemann
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Katharina Möller
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ria Uhlig
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Franziska Büscheck
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andreas M Luebke
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Eike Burandt
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Till S Clauditz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Steurer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thorsten Schlomm
- Department of Urology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Hartwig Huland
- Prostate Cancer Center (Martini-Clinic), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hans Heinzer
- Prostate Cancer Center (Martini-Clinic), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Guido Sauter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ronald Simon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - David Dum
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
18
|
Bonk S, Tasdelen P, Kluth M, Hube-Magg C, Makrypidi-Fraune G, Möller K, Höflmayer D, Dwertmann Rico S, Büscheck F, Minner S, Heinzer H, Graefen M, Hinsch A, Luebke AM, Dum D, Uhlig R, Schlomm T, Sauter G, Simon R, Weidemann SA. High B7-H3 expression is linked to increased risk of prostate cancer progression. Pathol Int 2020; 70:733-742. [PMID: 32776718 DOI: 10.1111/pin.12999] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/08/2020] [Accepted: 07/14/2020] [Indexed: 12/24/2022]
Abstract
B7-H3 is a member of the B7 superfamily of immune checkpoint molecules. B7-H3 up regulation has been linked to cancer development and progression in many tumors including prostate cancer. To clarify the potential utility of B7-H3 as a prognostic biomarker, B7-H3 expression was analyzed by immunohistochemistry in more than 17 000 prostate cancers. Normal prostatic glands were largely B7-H3 negative, while membranous B7-H3 immunostaining was seen in 47.0% of analyzed cancers. B7-H3 immunostaining was weak in 12.3%, moderate in 21.1% and strong in 13.5% of cases. High B7-H3 expression was associated with pT, Gleason score, lymph node metastasis, high Ki67 labeling index and early prostate-specific antigen recurrence (P < 0.0001 each). High B7-H3 expression was also linked to high androgen receptor expression and TMPRSS2:V-ets avian erythroblastosis virus E26 oncogene homolog (ERG) fusions (P < 0.0001 each). Multivariate analyses showed a strong independent prognostic impact of high B7-H3 expression in all cancers and in the ERG negative subgroup. Comparison with previously analyzed frequent chromosomal deletions revealed a close association with Phosphatase and Tensin Homolog deletions. Analysis of B7-H3, alone or in combination with other markers, might be of clinical utility, especially in the subgroup of ERG negative prostate cancers.
Collapse
Affiliation(s)
- Sarah Bonk
- Department of General, Visceral and Thoracic Surgery Department and Clinic, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Pinar Tasdelen
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martina Kluth
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Claudia Hube-Magg
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Katharina Möller
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Doris Höflmayer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Franziska Büscheck
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sarah Minner
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hans Heinzer
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Markus Graefen
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andrea Hinsch
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andreas M Luebke
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - David Dum
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ria Uhlig
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thorsten Schlomm
- Department of Urology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Guido Sauter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ronald Simon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sören A Weidemann
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
19
|
Secreted Frizzled-Related Protein 4 (SFRP4) Is an Independent Prognostic Marker in Prostate Cancers Lacking TMPRSS2: ERG Fusions. Pathol Oncol Res 2020; 26:2709-2722. [PMID: 32677026 PMCID: PMC7471174 DOI: 10.1007/s12253-020-00861-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 06/23/2020] [Indexed: 12/22/2022]
Abstract
Secreted frizzled-related protein 4 (SFRP4) controls WNT signaling and is thought to play a role for tumor aggressiveness. Here, we analyzed a tissue microarray containing 11,152 prostate cancers with pathological, clinical and molecular data by immunohistochemistry. SFRP4 expression was higher in cancer than in non-neoplastic acinar cells. SFRP4 staining was seen in 64.9% of tumors and classified as weak in 33.2%, moderate in 23.9% and strong in 7.8% of cancers. SFRP4 overexpression was linked to advanced tumor stage, high classical/quantitative Gleason grade (p < 0.0001 each), lymph node metastasis (p = 0.0002), and a positive surgical margin (p = 0.0017). SFRP4 positivity was markedly more frequent in ERG positive (77.4%) than in ERG negative cancers (57.4% p < 0.0001). Subset analyses in 2725 cancers with and 3592 cancers without TMPRSS2:ERG fusion revealed that associations with tumor phenotype and patient outcome were largely driven by the subset of ERG negative tumors. In a multivariate analysis including various postoperative and prognostic clinico-pathological features, SFRP4 protein expression emerged as an independent prognostic parameter in ERG negative cancers. SFRP4 immunostaining was significantly linked with 10 of 11 previously analyzed chromosomal deletions (p < 0.05 each). In conclusion, high SFRP4 immunostaining is associated with poor prognosis and genomic instability in ERG negative prostate cancers.
Collapse
|
20
|
Shorning BY, Dass MS, Smalley MJ, Pearson HB. The PI3K-AKT-mTOR Pathway and Prostate Cancer: At the Crossroads of AR, MAPK, and WNT Signaling. Int J Mol Sci 2020; 21:E4507. [PMID: 32630372 PMCID: PMC7350257 DOI: 10.3390/ijms21124507] [Citation(s) in RCA: 325] [Impact Index Per Article: 65.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/22/2020] [Accepted: 06/22/2020] [Indexed: 12/13/2022] Open
Abstract
Oncogenic activation of the phosphatidylinositol-3-kinase (PI3K), protein kinase B (PKB/AKT), and mammalian target of rapamycin (mTOR) pathway is a frequent event in prostate cancer that facilitates tumor formation, disease progression and therapeutic resistance. Recent discoveries indicate that the complex crosstalk between the PI3K-AKT-mTOR pathway and multiple interacting cell signaling cascades can further promote prostate cancer progression and influence the sensitivity of prostate cancer cells to PI3K-AKT-mTOR-targeted therapies being explored in the clinic, as well as standard treatment approaches such as androgen-deprivation therapy (ADT). However, the full extent of the PI3K-AKT-mTOR signaling network during prostate tumorigenesis, invasive progression and disease recurrence remains to be determined. In this review, we outline the emerging diversity of the genetic alterations that lead to activated PI3K-AKT-mTOR signaling in prostate cancer, and discuss new mechanistic insights into the interplay between the PI3K-AKT-mTOR pathway and several key interacting oncogenic signaling cascades that can cooperate to facilitate prostate cancer growth and drug-resistance, specifically the androgen receptor (AR), mitogen-activated protein kinase (MAPK), and WNT signaling cascades. Ultimately, deepening our understanding of the broader PI3K-AKT-mTOR signaling network is crucial to aid patient stratification for PI3K-AKT-mTOR pathway-directed therapies, and to discover new therapeutic approaches for prostate cancer that improve patient outcome.
Collapse
Affiliation(s)
| | | | | | - Helen B. Pearson
- The European Cancer Stem Cell Research Institute, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff CF24 4HQ, Wales, UK; (B.Y.S.); (M.S.D.); (M.J.S.)
| |
Collapse
|
21
|
Up regulation of the Hippo signalling effector YAP1 is linked to early biochemical recurrence in prostate cancers. Sci Rep 2020; 10:8916. [PMID: 32488048 PMCID: PMC7265544 DOI: 10.1038/s41598-020-65772-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 05/05/2020] [Indexed: 12/18/2022] Open
Abstract
The transcriptional coactivator YAP1 controls the balance between cell proliferation and apoptosis. YAP1 overexpression is linked to poor prognosis in many cancer types, yet its role in prostate cancer is unknown. Here, we applied YAP1 immunohistochemistry to a tissue microarray containing 17,747 clinical prostate cancer specimens. Cytoplasmic and nuclear YAP1 staining was seen in 81% and 63% of tumours. For both cytoplasmic and nuclear YAP1 staining, high levels were associated with advanced tumour stage, classical and quantitative Gleason grade, positive nodal stage, positive surgical margin, high KI67 labelling index, and early biochemical recurrence (p < 0.0001 each). The prognostic role of YAP1 staining was independent of established prognostic features in multivariate models (p < 0.001). Comparison with previously studied molecular markers identified associations between high YAP1 staining, TMPRSS2:ERG fusion (p < 0.0001), high androgen receptor (AR) expression (p < 0.0001), high Ki67 labelling index (p < 0.0001), and PTEN and 8p deletions (p < 0.0001 each). In conclusion, high YAP1 protein expression is an independent predictor of unfavourable disease course in prostate cancer. That cytoplasmic and nuclear YAP1 staining is equally linked to phenotype and prognosis fits well to a model where YAP1 activation during tumour progression includes up regulation, cytoplasmic accumulation and subsequent translocation to the nucleus.
Collapse
|
22
|
Möller K, Wecker AL, Höflmayer D, Fraune C, Makrypidi-Fraune G, Hube-Magg C, Kluth M, Steurer S, Clauditz TS, Wilczak W, Simon R, Sauter G, Huland H, Heinzer H, Haese A, Schlomm T, Weidemann S, Luebke AM, Minner S, Bernreuther C, Bonk S, Marx A. Upregulation of the heterogeneous nuclear ribonucleoprotein hnRNPA1 is an independent predictor of early biochemical recurrence in TMPRSS2:ERG fusion-negative prostate cancers. Virchows Arch 2020; 477:625-636. [PMID: 32417965 PMCID: PMC7581599 DOI: 10.1007/s00428-020-02834-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 04/20/2020] [Accepted: 04/28/2020] [Indexed: 11/25/2022]
Abstract
Heterogeneous nuclear ribonucleoprotein A1 (hnRNPA1) is a ubiquitous RNA splicing factor that is overexpressed and prognostically relevant in various human cancer types. To study the impact of hnRNPA1 expression in prostate cancer, we analyzed a tissue microarray containing 17,747 clinical prostate cancer specimens by immunohistochemistry. hnRNPA1 was expressed in normal prostate glandular cells but often overexpressed in cancer cells. hnRNPA1 immunostaining was interpretable in 14,258 cancers and considered strong in 33.4%, moderate in 45.9%, weak in 15.3%, and negative in 5.4%. Moderate to strong hnRNPA1 immunostaining was strongly linked to adverse tumor features including high classical and quantitative Gleason score, lymph node metastasis, advanced tumor stage, positive surgical margin, and early biochemical recurrence (p < 0.0001 each). The prognostic impact of hnRNPA1 immunostaining was independent of established preoperatively or postoperatively available prognostic parameters (p < 0.0001). Subset analyses revealed that all these associations were strongly driven by the fraction of cancers lacking the TMPRSS2:ERG gene fusion. Comparison with other key molecular data that were earlier obtained on the same TMA showed that hnRNPA1 overexpression was linked to high levels of androgen receptor (AR) expression (p < 0.0001) as well as presence of 9 of 11 chromosomal deletions (p < 0.05 each). A strong association between hnRNPA1 upregulation and tumor cell proliferation that was independent from the Gleason score supports a role for tumor cell aggressiveness. In conclusion, hnRNPA1 overexpression is an independent predictor of poor prognosis in ERG-negative prostate cancer. hnRNPA1 measurement, either alone or in combination, might provide prognostic information in ERG-negative prostate cancer.
Collapse
Affiliation(s)
- Katharina Möller
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Anna Lena Wecker
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Doris Höflmayer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Christoph Fraune
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Georgia Makrypidi-Fraune
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Claudia Hube-Magg
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Martina Kluth
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Stefan Steurer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Till S Clauditz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Waldemar Wilczak
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Ronald Simon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany.
| | - Guido Sauter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Hartwig Huland
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hans Heinzer
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alexander Haese
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thorsten Schlomm
- Department of Urology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Sören Weidemann
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Andreas M Luebke
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Sarah Minner
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Christian Bernreuther
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Sarah Bonk
- General, Visceral and Thoracic Surgery Department and Clinic, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andreas Marx
- Institute of Pathology, Klinikum Fürth, Fürth, Germany
| |
Collapse
|
23
|
Upregulation of Phosphatase 1 Nuclear-Targeting Subunit (PNUTS) Is an Independent Predictor of Poor Prognosis in Prostate Cancer. DISEASE MARKERS 2020; 2020:7050146. [PMID: 32377272 PMCID: PMC7196962 DOI: 10.1155/2020/7050146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 01/17/2020] [Indexed: 01/07/2023]
Abstract
Protein phosphatase 1 nuclear-targeting subunit (PNUTS) is ubiquitously expressed and associates with PTEN and protein phosphatase 1 (PP1) to control its activity. The role of PNUTS overexpression has hardly been studied in cancer. In this study, we used immunohistochemistry to quantitate PNUTS expression on a tissue microarray containing 17,747 clinical prostate cancer specimens. As compared to normal prostate epithelium, PNUTS expression was often higher in cancer. Among 12,235 interpretable tumors, PNUTS staining was negative in 21%, weak in 34%, moderate in 35%, and strong in 10% of cases. High PNUTS expression was associated with higher tumor stage, classical and quantitative Gleason grade, nodal stage, surgical margin, Ki67 labeling index, and early biochemical recurrence (p < 0.0001 each). PNUTS expression proved to be a moderate prognostic parameter with a maximal univariable Cox proportional hazard for PSA recurrence-free survival of 2.21 compared with 5.91 for Gleason grading. It was independent from established prognostic parameters in multivariable analysis. Comparison with molecular data available from earlier studies using the same TMA identified associations between high PNUTS expression and elevated androgen receptor expression (p < 0.0001), presence of TMPRSS2:ERG fusion (p < 0.0001), and 8 of 11 chromosomal deletions (3p13, 5q21, 8p21, 10q23, 12p13, 13q14, 16q24, and 17p13; p < 0.05 each). Particularly strong associations with PTEN and 12p13 deletions (p < 0.0001 each) may indicate a functional relationship, which has already been established for PNUTS and PTEN. PNUTS had no additional role on outcome in PTEN-deleted cancers. In conclusion, the results of our study identify high PNUTS protein levels as a predictor of poor prognosis possibly linked to increased levels of genomic instability. PNUTS measurement, either alone or in combination, might be of clinical utility in prostate cancers.
Collapse
|
24
|
Fraune C, Yehorov S, Luebke AM, Steurer S, Hube-Magg C, Büscheck F, Höflmayer D, Tsourlakis MC, Clauditz TS, Simon R, Sauter G, Weidemann S, Dum D, Kind S, Minner S, Schlomm T, Huland H, Heinzer H, Graefen M, Burandt E. Upregulation of PTTG1 is associated with poor prognosis in prostate cancer. Pathol Int 2020; 70:441-451. [PMID: 32314536 DOI: 10.1111/pin.12938] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 03/18/2020] [Accepted: 04/01/2020] [Indexed: 12/18/2022]
Abstract
Pituitary tumor-transforming gene 1 (PTTG1) is a regulator of chromosome stability. PTTG1 overexpression had been associated with tumor aggressiveness in several cancer types. To examine its prognostic utility in prostate cancer, a tissue microarray including 12 427 tumors with clinical and molecular data was analyzed by immunohistochemistry. PTTG1 immunostaining was largely absent in normal prostate epithelial cells. In cancers, staining was considered weak in 5.4%, moderate in 5.6% and strong in 0.8%. Strong staining was linked to advanced pT stage, high classical and quantitative Gleason grade, high Ki67-labeling index (all P < 0.0001) and lymph node metastasis (P = 0.0083). The prognostic impact of PTTG1 expression was independent of established preoperative and postoperative prognostic features. Comparison with molecular features revealed that PTTG1 upregulation was associated with nine of 12 common genomic deletions (P < 0.05), p53 alterations and high androgen receptor levels (P < 0.001 each), but was unrelated to the TMPRSS2:ERG fusion status. In conclusion, these data identify PTTG1 as a strong and independent prognostic feature in prostate cancer. PTTG1 measurement, either alone or in combination with other biomarkers might be instrumental for determining prostate cancer aggressiveness.
Collapse
Affiliation(s)
- Christoph Fraune
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Serhiy Yehorov
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andreas M Luebke
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Steurer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Claudia Hube-Magg
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Franziska Büscheck
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Doris Höflmayer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Till S Clauditz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ronald Simon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Guido Sauter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sören Weidemann
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - David Dum
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Simon Kind
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sarah Minner
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thorsten Schlomm
- Department of Urology, University Medical Center Charité-Berlin, Berlin, Germany
| | - Hartwig Huland
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hans Heinzer
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Markus Graefen
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Eike Burandt
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
25
|
Eichenauer T, Federlein F, Möller K, Chirico V, Kind S, Lennartz M, Lutz F, Hube-Magg C, Höflmayer D, Fisch M, Huland H, Heinzer H, Graefen M, Haese A, Schroeder C, Lebok P, Minner S, Simon R, Sauter G, Schlomm T, Wilczak W, Steurer S, Luebke AM. High CHK2 protein expression is a strong and independent prognostic feature in ERG negative prostate cancer. Pathology 2020; 52:421-430. [PMID: 32317175 DOI: 10.1016/j.pathol.2020.03.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 03/03/2020] [Accepted: 03/10/2020] [Indexed: 12/13/2022]
Abstract
Checkpoint kinase 2 (CHK2) is a serine-threonine kinase with a role in DNA repair, cell cycle arrest or apoptosis in response to DNA damage. Both reduced and increased CHK2 expression has been described in different tumour types with impact on patient prognosis. To evaluate prevalence and significance of altered CHK2 expression in prostate cancer, a tissue microarray containing 17,747 tumours was analysed by immunohistochemistry. Nuclear CHK2 immunostaining was absent or weak in benign prostate epithelium but often more prominent in cancers. CHK2 immunostaining was considered weak in 38.8%, moderate in 33.6% and strong in 11.2% of prostate cancers. High CHK2 expression was strongly associated with TMPRSS2:ERG fusions (p<0.0001). Subgroup analysis of ERG positive and negative cancers revealed that high CHK2 staining was significantly linked to advanced tumour stage, high Gleason score, positive nodal status, positive surgical margin, high preoperative PSA (p<0.0001 each) and early prostate-specific antigen (PSA) recurrence (p=0.0001) in the subset of ERG negative cancers, while most of these associations were absent in ERG positive cancers. In ERG negative cancers, high CHK2 expression was an independent predictor of patient prognosis, even if parameters were included that were only available postoperatively. High CHK2 expression was also linked to presence of chromosomal deletions, high level of androgen receptor expression, positive p53 immunostaining, and high Ki-67 labelling index. These provide further in vivo evidence for previously described functional interactions. In summary, high CHK2 expression is linked to adverse tumour features and independently predicts early biochemical recurrence in ERG negative prostate cancer. CHK2 measurement, either alone or in combination, might be of clinical utility in this prostate cancer subgroup.
Collapse
Affiliation(s)
- Till Eichenauer
- Department of Urology, University Medical Center Hamburg-Eppendorf, Germany
| | - Felix Federlein
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Katharina Möller
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Viktoria Chirico
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Simon Kind
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Maximilian Lennartz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Florian Lutz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Claudia Hube-Magg
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Doris Höflmayer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Margit Fisch
- Department of Urology, University Medical Center Hamburg-Eppendorf, Germany
| | - Hartwig Huland
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Germany
| | - Hans Heinzer
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Germany
| | - Markus Graefen
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Germany
| | - Alexander Haese
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Germany
| | - Cornelia Schroeder
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Germany
| | - Patrick Lebok
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Sarah Minner
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Ronald Simon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany.
| | - Guido Sauter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Thorsten Schlomm
- Department of Urology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Waldemar Wilczak
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Stefan Steurer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Andreas M Luebke
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| |
Collapse
|
26
|
Luebke AM, Ricken W, Kluth M, Hube-Magg C, Schroeder C, Büscheck F, Möller K, Dum D, Höflmayer D, Weidemann S, Fraune C, Hinsch A, Wittmer C, Schlomm T, Huland H, Heinzer H, Graefen M, Haese A, Minner S, Simon R, Sauter G, Wilczak W, Meiners J. Loss of the adhesion molecule CEACAM1 is associated with early biochemical recurrence in TMPRSS2:ERG fusion-positive prostate cancers. Int J Cancer 2020; 147:575-583. [PMID: 32150281 DOI: 10.1002/ijc.32957] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 02/12/2020] [Accepted: 03/02/2020] [Indexed: 12/16/2022]
Abstract
Altered expression of the carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) has been linked to adverse tumor features in various cancer types. To better understand the role of CEACAM1 in prostate cancer, we analyzed a tissue microarray containing tumor spots from 17,747 prostate cancer patients by means of immunohistochemistry. Normal prostate glands showed intense membranous CEACAM1 positivity. Immunostaining was interpretable in 13,625 cancers and was considered high in 28%, low in 43% and absent in 29% of tumors. Low and lost CEACAM1 expression was strongly linked to adverse tumor features including high classical and quantitative Gleason grade, lymph node metastasis, advanced tumor stage, positive surgical margin, a high number of genomic deletions and early biochemical recurrence (p < 0.0001 each). Subset analysis of molecularly defined cancer subsets revealed that these associations were strongest in V-ets avian erythroblastosis virus E26 oncogene homolog (ERG) fusion-positive cancers and that CEACAM1 loss was prognostic even in tumors harboring genomic deletions of the phosphatase and tensin homolog tumor suppressor (p < 0.0001). Multivariate analysis suggested that CEACAM1 analysis can provide independent prognostic information beyond established prognosis parameters at the stage of the initial biopsy when therapy decisions must be taken. In conclusion, loss of CEACAM1 expression predicts poor prognosis in prostate cancer and might provide clinically useful prognostic information particularly in cancers harboring the TMPRSS2:ERG fusion.
Collapse
Affiliation(s)
- Andreas M Luebke
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Wiebke Ricken
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martina Kluth
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Claudia Hube-Magg
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Cornelia Schroeder
- General, Visceral and Thoracic Surgery Department and Clinic, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Franziska Büscheck
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Katharina Möller
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - David Dum
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Doris Höflmayer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sören Weidemann
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph Fraune
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andrea Hinsch
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Corinna Wittmer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thorsten Schlomm
- Department of Urology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Hartwig Huland
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hans Heinzer
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Markus Graefen
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alexander Haese
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sarah Minner
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ronald Simon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Guido Sauter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Waldemar Wilczak
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jan Meiners
- General, Visceral and Thoracic Surgery Department and Clinic, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
27
|
Fraune C, Harms L, Büscheck F, Höflmayer D, Tsourlakis MC, Clauditz TS, Simon R, Möller K, Luebke AM, Möller-Koop C, Steurer S, Hube-Magg C, Sauter G, Weidemann S, Lebok P, Dum D, Kind S, Minner S, Izbicki JR, Schlomm T, Huland H, Heinzer H, Burandt E, Haese A, Graefen M, Schroeder C. Upregulation of the transcription factor TFAP2D is associated with aggressive tumor phenotype in prostate cancer lacking the TMPRSS2:ERG fusion. Mol Med 2020; 26:24. [PMID: 32143573 PMCID: PMC7060561 DOI: 10.1186/s10020-020-00148-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 02/13/2020] [Indexed: 01/15/2023] Open
Abstract
Background TFAP2D is a transcription factor important for modulating gene expression in embryogenesis. Its expression and prognostic role in prostate cancer has not been evaluated. Methods Therefore, a tissue microarray containing 17,747 prostate cancer specimens with associated pathological, clinical, and molecular data was analyzed by immunohistochemistry to assess the role of TFAP2D. Results TFAP2D expression was typically increased in prostate cancer as compared to adjacent non-neoplastic glands. TFAP2D staining was considered negative in 24.3% and positive in 75.7% of 13,545 interpretable cancers. TFAP2D staining was significantly linked to advanced tumor stage, high classical and quantitative Gleason grade, lymph node metastasis, and a positive surgical margin (p ≤ 0.0045). TFAP2D positivity was more common in ERG fusion positive (88.7%) than in ERG negative cancers (66.8%; p < 0.0001). Subset analyses in 3776 cancers with and 4722 cancers without TMPRSS2:ERG fusion revealed that associations with tumor phenotype and patient outcome were largely driven by the subset of ERG negative tumors. Multivariate analysis did not identify TFAP2D protein expression levels as a robust independent prognostic parameter. Positive TFAP2D immunostaining was significantly associated with 10 of 11 previously analyzed chromosomal deletions in ERG negative cancers (p ≤ 0.0244 each) indicating that elevated TFAP2D expression parallels genomic instability in prostate cancer. Conclusion These data demonstrate that TFAP2D protein overexpression is linked to prostate cancer progression and genomic instability in ERG negative prostate cancers.
Collapse
Affiliation(s)
- Christoph Fraune
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr 52, 20246, Hamburg, Germany
| | - Luisa Harms
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr 52, 20246, Hamburg, Germany
| | - Franziska Büscheck
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr 52, 20246, Hamburg, Germany
| | - Doris Höflmayer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr 52, 20246, Hamburg, Germany
| | - Maria Christina Tsourlakis
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr 52, 20246, Hamburg, Germany
| | - Till S Clauditz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr 52, 20246, Hamburg, Germany
| | - Ronald Simon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr 52, 20246, Hamburg, Germany.
| | - Katharina Möller
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr 52, 20246, Hamburg, Germany
| | - Andreas M Luebke
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr 52, 20246, Hamburg, Germany
| | - Christina Möller-Koop
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr 52, 20246, Hamburg, Germany
| | - Stefan Steurer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr 52, 20246, Hamburg, Germany
| | - Claudia Hube-Magg
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr 52, 20246, Hamburg, Germany
| | - Guido Sauter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr 52, 20246, Hamburg, Germany
| | - Sören Weidemann
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr 52, 20246, Hamburg, Germany
| | - Patrick Lebok
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr 52, 20246, Hamburg, Germany
| | - David Dum
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr 52, 20246, Hamburg, Germany
| | - Simon Kind
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr 52, 20246, Hamburg, Germany
| | - Sarah Minner
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr 52, 20246, Hamburg, Germany
| | - Jakob R Izbicki
- General, Visceral and Thoracic Surgery Department and Clinic, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thorsten Schlomm
- Department of Urology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Hartwig Huland
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hans Heinzer
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Eike Burandt
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr 52, 20246, Hamburg, Germany
| | - Alexander Haese
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Markus Graefen
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Cornelia Schroeder
- General, Visceral and Thoracic Surgery Department and Clinic, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
28
|
Höflmayer D, Hamuda M, Schroeder C, Hube-Magg C, Simon R, Göbel C, Hinsch A, Weidemann S, Möller K, Izbicki JR, Jacobsen F, Mandelkow T, Blessin NC, Lutz F, Viehweger F, Sauter G, Burandt E, Lebok P, Lennartz M, Fraune C, Minner S, Bonk S, Huland H, Graefen M, Schlomm T, Büscheck F. High RSF1 protein expression is an independent prognostic feature in prostate cancer. Acta Oncol 2020; 59:268-273. [PMID: 31687881 DOI: 10.1080/0284186x.2019.1686537] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Background: Remodelling and spacing factor 1 (RSF1) is involved in the regulation of chromatin remodelling and represents a potential therapeutic target. High RSF1 expression has been linked to adverse tumour features in many cancer types, but its role in prostate cancer is uncertain.Methods: In this study, RSF1 expression was analysed by immunohistochemistry on a tissue microarray with 17,747 prostate cancers.Results: Nuclear RSF1 staining of 16,456 interpetable cancers was considered strong, moderate, weak and negative in 25.2%, 48.7%, 5.3% and 20.8% of cancers respectively. Positive RSF1 expression was associated with advanced tumour stage, high Gleason grade, lymph node metastasis (p < .0001 each), early biochemical recurrence (p < .0003) and more frequent in the ERG positive than in the ERG negative subset (88% versus 71%; p < .0001). Subset analysis revealed, that associations between RSF1 expression and unfavourable tumour phenotype and PSA recurrence were present in both subgroups but stronger in the ERG negative than in the ERG positive subset. The univariate Cox proportional hazard ratio for PSA recurrence-free survival for strong versus negative RSF1 expression was a weak 1.60 compared with 5.91 for the biopsy Gleason grade ≥4 + 4 versus ≤3 + 3. The positive association of RSF1 protein detection with deletion of 3p13, 10q23 (PTEN), 12p13, 16q23, and 17p13 (p < .0001 each) suggest a role of high RSF1 expression in the development of genomic instability.Conclusion: In summary, the results of our study identify RSF1 as an independent prognostic marker in prostate cancer with a particularly strong role in ERG negative cases.
Collapse
Affiliation(s)
- Doris Höflmayer
- Institute of Pathology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Moslim Hamuda
- Institute of Pathology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Cornelia Schroeder
- General, Visceral and Thoracic Surgery Department and Clinic, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Claudia Hube-Magg
- Institute of Pathology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Ronald Simon
- Institute of Pathology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Cosima Göbel
- Institute of Pathology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Andrea Hinsch
- Institute of Pathology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Sören Weidemann
- Institute of Pathology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Katharina Möller
- Institute of Pathology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Jacob R. Izbicki
- General, Visceral and Thoracic Surgery Department and Clinic, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Frank Jacobsen
- Institute of Pathology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Tim Mandelkow
- Institute of Pathology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Niclas C. Blessin
- Institute of Pathology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Florian Lutz
- Institute of Pathology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Florian Viehweger
- Institute of Pathology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Guido Sauter
- Institute of Pathology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Eike Burandt
- Institute of Pathology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Patrick Lebok
- Institute of Pathology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Maximilian Lennartz
- Institute of Pathology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph Fraune
- Institute of Pathology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Sarah Minner
- Institute of Pathology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Sarah Bonk
- General, Visceral and Thoracic Surgery Department and Clinic, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Hartwig Huland
- Martini-Clinic, Prostate Cancer Centre, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Markus Graefen
- Martini-Clinic, Prostate Cancer Centre, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Thorsten Schlomm
- Department of Urology, Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Franziska Büscheck
- Institute of Pathology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
29
|
Nuclear up regulation of the BRCA1-associated ubiquitinase BAP1 is associated with tumor aggressiveness in prostate cancers lacking the TMPRSS2:ERG fusion. Oncotarget 2019; 10:7096-7111. [PMID: 31903168 PMCID: PMC6935259 DOI: 10.18632/oncotarget.27270] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 09/24/2019] [Indexed: 01/21/2023] Open
Abstract
Loss of the putative tumor suppressor BAP1 is a candidate biomarker for adverse prognosis in many cancer types, but conversely for improved survival in others. Studies on the expression and prognostic role of BAP1 in prostate cancer are currently lacking. We used a tissue microarray of 17,747 individual prostate cancer samples linked with comprehensive pathological, clinical and molecular data and studied the immunohistochemical expression of BAP1. BAP1 expression was typically up regulated in cancers as compared to adjacent normal prostatic glands. In 15,857 cancers, BAP1 staining was weak in 3.3%, moderate in 41.6% and strong in 17.4%. Strong BAP1 staining was associated with advanced tumor stage (p<0.0001), high classical and quantitative Gleason grade (p<0.0001), lymph node metastasis (p<0.0001), a positive surgical margin (p=0.0019) and early biochemical recurrence (p<0.0001). BAP1 expression was linked to ERG-fusion type cancers, with strong BAP1 staining in 12% of ERG-negative, but 30% of ERG-positive cancers (p<0.0001). Subset analyses in 5,415 cancers with and 4,217 cancers without TMPRSS2:ERG fusion revealed that these associations with tumor phenotype and patient outcome were largely driven by the subset of ERG-negative tumors. Multivariate analysis revealed that the prognostic impact was independent of established prognostic features in ERG negative p<0.001) but not in ERG positive cancers. BAP1 expression was further linked to androgen receptor (AR) expression: Only 2% of AR-negative, but 33% of strongly AR expressing cancers had strong BAP1 expression (p<0.0001). In conclusion, this study shows that BAP1 up regulation is linked to prostate cancer progression and aggressiveness.
Collapse
|
30
|
Höflmayer D, Steinhoff A, Hube-Magg C, Kluth M, Simon R, Burandt E, Tsourlakis MC, Minner S, Sauter G, Büscheck F, Wilczak W, Steurer S, Huland H, Graefen M, Haese A, Heinzer H, Schlomm T, Jacobsen F, Hinsch A, Poos AM, Oswald M, Rippe K, König R, Schroeder C. Expression of CCCTC-binding factor (CTCF) is linked to poor prognosis in prostate cancer. Mol Oncol 2019; 14:129-138. [PMID: 31736271 DOI: 10.1002/1878-0261.12597] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 10/22/2019] [Accepted: 11/12/2019] [Indexed: 01/06/2023] Open
Abstract
The chromatin-organizing factor CCCTC-binding factor (CTCF) is involved in transcriptional regulation, DNA-loop formation, and telomere maintenance. To evaluate the clinical impact of CTCF in prostate cancer, we analyzed CTCF expression by immunohistochemistry on a tissue microarray containing 17 747 prostate cancers. Normal prostate tissue showed negative to low CTCF expression, while in prostate cancers, CTCF expression was seen in 7726 of our 12 555 (61.5%) tumors and was considered low in 44.6% and high in 17% of cancers. Particularly, high CTCF expression was significantly associated with the presence of the transmembrane protease, serine 2:ETS-related gene fusion: Only 10% of ERG-negative cancers, but 30% of ERG-positive cancers had high-level CTCF expression (P < 0.0001). CTCF expression was significantly associated with advanced pathological tumor stage, high Gleason grade (P < 0.0001 each), nodal metastasis (P = 0.0122), and early biochemical recurrence (P < 0.0001). Multivariable modeling revealed that the prognostic impact of CTCF was independent from established presurgical parameters such as clinical stage and Gleason grade of the biopsy. Comparison with key molecular alterations showed strong associations with the expression of the Ki-67 proliferation marker and presence of phosphatase and tensin homolog deletions (P < 0.0001 each). The results of our study identify CTCF expression as a candidate biomarker for prognosis assessment in prostate cancer.
Collapse
Affiliation(s)
- Doris Höflmayer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Amélie Steinhoff
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Claudia Hube-Magg
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Martina Kluth
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Ronald Simon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Eike Burandt
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | | | - Sarah Minner
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Guido Sauter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Franziska Büscheck
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Waldemar Wilczak
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Stefan Steurer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Hartwig Huland
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Germany
| | - Markus Graefen
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Germany
| | - Alexander Haese
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Germany
| | - Hans Heinzer
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Germany
| | - Thorsten Schlomm
- Department of Urology, Charité - Universitätsmedizin Berlin, Germany
| | - Frank Jacobsen
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Andrea Hinsch
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Alexandra M Poos
- Integrated Research and Treatment Center, Center for Sepsis Control and Care (CSCC), Jena University Hospital, Germany.,Network Modeling, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Jena, Germany.,Faculty of Biosciences, Heidelberg University, Germany.,Division of Chromatin Networks, German Cancer Research Center (DKFZ) and Bioquant, Heidelberg, Germany
| | - Marcus Oswald
- Integrated Research and Treatment Center, Center for Sepsis Control and Care (CSCC), Jena University Hospital, Germany.,Network Modeling, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Jena, Germany
| | - Karsten Rippe
- Division of Chromatin Networks, German Cancer Research Center (DKFZ) and Bioquant, Heidelberg, Germany
| | - Rainer König
- Integrated Research and Treatment Center, Center for Sepsis Control and Care (CSCC), Jena University Hospital, Germany.,Network Modeling, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Jena, Germany
| | - Cornelia Schroeder
- General, Visceral and Thoracic Surgery Department and Clinic, University Medical Center Hamburg-Eppendorf, Germany
| |
Collapse
|
31
|
Claudin-1 upregulation is associated with favorable tumor features and a reduced risk for biochemical recurrence in ERG-positive prostate cancer. World J Urol 2019; 38:2185-2196. [PMID: 31745645 DOI: 10.1007/s00345-019-03017-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 11/07/2019] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Claudin-1 is a membrane-tight junction protein and important for the sealing of the paracellular cleft in epithelial and endothelial cells. Differential expression of Claudin-1 is linked to disease outcome in various cancers. MATERIAL AND METHODS To evaluate the potential relevance of Claudin-1 expression in prostate cancer, a tissue microarray containing samples of 17,747 tumors with annotated clinico-pathological and molecular data was immunohistochemically analyzed for Claudin-1 expression. RESULTS In normal prostate, glandular cells were always Claudin-1-negative while there was a strong staining of gland-surrounding basal cells. In contrast to normal prostatic glands, a positive Claudin-1 immunostaining, was found, however, in 38.7% of 12,441 interpretable cancers and was considered weak in 12.7%, moderate in 13.2%, and strong in 12.8% of cases. Positive Claudin-1 immunostaining was associated with favorable tumor features like low pT (p = 0.0032), low Gleason grade (p< 0.0001), and a reduced risk of PSA recurrence (p = 0.0005). A positive Claudin-1 staining was markedly more frequent in ERG-positive (63%) than in ERG-negative cancers (23%; p < 0.0001). Subset analyses revealed that all associations of Claudin-1 expression and favorable phenotype and prognosis were driven by ERG-positive cancers. Multivariate analyses revealed, however, that even in ERG-positive cancers, the prognostic impact of high Claudin-1 expression was not independent of established clinico-pathological parameters. Comparison with 12 previously analyzed chromosomal deletions identified conspicuous associations with PTEN and 12p13 deletions potentially indicating functional interactions. CONCLUSION These data identify a peculiar role for Claudin-1 in prostate cancer. The protein is overexpressed in a fraction of prostate cancers and increased Claudin-1 expression levels predict a favorable prognosis in ERG-positive cancer.
Collapse
|
32
|
Toth R, Schiffmann H, Hube-Magg C, Büscheck F, Höflmayer D, Weidemann S, Lebok P, Fraune C, Minner S, Schlomm T, Sauter G, Plass C, Assenov Y, Simon R, Meiners J, Gerhäuser C. Random forest-based modelling to detect biomarkers for prostate cancer progression. Clin Epigenetics 2019; 11:148. [PMID: 31640781 PMCID: PMC6805338 DOI: 10.1186/s13148-019-0736-8] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 09/03/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The clinical course of prostate cancer (PCa) is highly variable, demanding an individualized approach to therapy. Overtreatment of indolent PCa cases, which likely do not progress to aggressive stages, may be associated with severe side effects and considerable costs. These could be avoided by utilizing robust prognostic markers to guide treatment decisions. RESULTS We present a random forest-based classification model to predict aggressive behaviour of prostate cancer. DNA methylation changes between PCa cases with good or poor prognosis (discovery cohort with n = 70) were used as input. DNA was extracted from formalin-fixed tumour tissue, and genome-wide DNA methylation differences between both groups were assessed using Illumina HumanMethylation450 arrays. For the random forest-based modelling, the discovery cohort was randomly split into a training (80%) and a test set (20%). Our methylation-based classifier demonstrated excellent performance in discriminating prognosis subgroups in the test set (Kaplan-Meier survival analyses with log-rank p value < 0.0001). The area under the receiver operating characteristic curve (AUC) for the sensitivity analysis was 95%. Using the ICGC cohort of early- and late-onset prostate cancer (n = 222) and the TCGA PRAD cohort (n = 477) for external validation, AUCs for sensitivity analyses were 77.1% and 68.7%, respectively. Cancer progression-related DNA hypomethylation was frequently located in 'partially methylated domains' (PMDs)-large-scale genomic areas with progressive loss of DNA methylation linked to mitotic cell division. We selected several candidate genes with differential methylation in gene promoter regions for additional validation at the protein expression level by immunohistochemistry in > 12,000 tissue micro-arrayed PCa cases. Loss of ZIC2 protein expression was associated with poor prognosis and correlated with significantly shorter time to biochemical recurrence. The prognostic value of ZIC2 proved to be independent from established clinicopathological variables including Gleason grade, tumour stage, nodal stage and prostate-specific-antigen. CONCLUSIONS Our results highlight the prognostic relevance of methylation loss in PMD regions, as well as of several candidate genes not previously associated with PCa progression. Our robust and externally validated PCa classification model either directly or via protein expression analyses of the identified top-ranked candidate genes will support the clinical management of prostate cancer.
Collapse
Affiliation(s)
- Reka Toth
- Cancer Epigenomics, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Heiko Schiffmann
- Department of Pathology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Claudia Hube-Magg
- Department of Pathology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Franziska Büscheck
- Department of Pathology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Doris Höflmayer
- Department of Pathology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Sören Weidemann
- Department of Pathology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Patrick Lebok
- Department of Pathology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Christoph Fraune
- Department of Pathology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Sarah Minner
- Department of Pathology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Thorsten Schlomm
- Department of Pathology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany.,Department of Urology, Charité Universitätsmedizin Berlin, 10117, Berlin, Germany
| | - Guido Sauter
- Department of Pathology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Christoph Plass
- Cancer Epigenomics, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany.,German Cancer Consortium (DKTK), 69120, Heidelberg, Germany
| | - Yassen Assenov
- Cancer Epigenomics, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Ronald Simon
- Department of Pathology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Jan Meiners
- General, Visceral and Thoracic Surgery Department and Clinic, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Clarissa Gerhäuser
- Cancer Epigenomics, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany.
| |
Collapse
|
33
|
Weidemann SA, Sauer C, Luebke AM, Möller-Koop C, Steurer S, Hube-Magg C, Büscheck F, Höflmayer D, Tsourlakis MC, Clauditz TS, Simon R, Sauter G, Göbel C, Lebok P, Dum D, Fraune C, Kind S, Minner S, Izbicki J, Schlomm T, Huland H, Heinzer H, Burandt E, Haese A, Graefen M, Heumann A. High-level expression of protein tyrosine phosphatase non-receptor 12 is a strong and independent predictor of poor prognosis in prostate cancer. BMC Cancer 2019; 19:944. [PMID: 31606028 PMCID: PMC6790047 DOI: 10.1186/s12885-019-6182-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 09/20/2019] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Protein tyrosine phosphatase non-receptor 12 (PTPN12) is ubiquitously tyrosine phosphatase with tumor suppressive properties. METHODS PTPN12 expression was analyzed by immunohistochemistry on a tissue microarray with 13,660 clinical prostate cancer specimens. RESULTS PTPN12 staining was typically absent or weak in normal prostatic epithelium but seen in the majority of cancers, where staining was considered weak in 26.5%, moderate in 39.9%, and strong in 4.7%. High PTPN12 staining was associated with high pT category, high classical and quantitative Gleason grade, lymph node metastasis, positive surgical margin, high Ki67 labeling index and early prostate specific antigen recurrence (p < 0.0001 each). PTPN12 staining was seen in 86.4% of TMPRSS2:ERG fusion positive but in only 58.4% of ERG negative cancers. Subset analyses discovered that all associations with unfavorable phenotype and prognosis were markedly stronger in ERG positive than in ERG negative cancers but still retained in the latter group. Multivariate analyses revealed an independent prognostic impact of high PTPN12 expression in all cancers and in the ERG negative subgroup and to a lesser extent also in ERG positive cancers. Comparison with 12 previously analyzed chromosomal deletions revealed that high PTPN12 expression was significantly associated with 10 of 12 deletions in ERG negative and with 7 of 12 deletions in ERG positive cancers (p < 0.05 each) indicating that PTPN12 overexpression parallels increased genomic instability in prostate cancer. CONCLUSIONS These data identify PTPN12 as an independent prognostic marker in prostate cancer. PTPN12 analysis, either alone or in combination with other biomarkers might be of clinical utility in assessing prostate cancer aggressiveness.
Collapse
Affiliation(s)
- Sören A Weidemann
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Charlotte Sauer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Andreas M Luebke
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Christina Möller-Koop
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Stefan Steurer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Claudia Hube-Magg
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Franziska Büscheck
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Doris Höflmayer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Maria Christina Tsourlakis
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Till S Clauditz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Ronald Simon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.
| | - Guido Sauter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Cosima Göbel
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Patrick Lebok
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - David Dum
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Christoph Fraune
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Simon Kind
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Sarah Minner
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Jakob Izbicki
- General, Visceral and Thoracic Surgery Department and Clinic, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Thorsten Schlomm
- Department of Urology, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Hartwig Huland
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg, Eppendorf, Germany
| | - Hans Heinzer
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg, Eppendorf, Germany
| | - Eike Burandt
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Alexander Haese
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg, Eppendorf, Germany
| | - Markus Graefen
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg, Eppendorf, Germany
| | - Asmus Heumann
- General, Visceral and Thoracic Surgery Department and Clinic, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| |
Collapse
|
34
|
Up regulation of Rho-associated coiled-coil containing kinase1 (ROCK1) is associated with genetic instability and poor prognosis in prostate cancer. Aging (Albany NY) 2019; 11:7859-7879. [PMID: 31557128 PMCID: PMC6781985 DOI: 10.18632/aging.102294] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 09/14/2019] [Indexed: 12/26/2022]
Abstract
BACKGROUND AND OBJECTIVES Overexpression of the cytoskeleton-modulating kinase ROCK1 has been associated with unfavorable outcome in many cancers, but its impact in prostate cancer is largely unknown. RESULTS A weak ROCK1 staining was found in >90% of normal, and cancerous prostate tissues, but was generally stronger in cancer cells as compared to adjacent normal glands. In cancer, ROCK1 staining was considered weak, moderate, and strong in 22%, 53%, and 18% of cases respectively. Higher ROCK1 expression levels were associated with tumor stage, and Gleason grade, positive nodal stage, positive surgical margin, accelerated cell proliferation and early PSA recurrence in multivariable analysis. ROCK1 up regulation was associated with androgen receptor (AR) expression, TMPRSS2:ERG fusion, genomic deletions of the PTEN tumor suppressor, as well as recurrent deletions at chromosomes 3p, 5q, 6q. Strong ROCK1 staining was found in 3% of AR-negative, but in 27% of strongly AR positive cancers, in 13% of ERG-negative but in 25% of ERG positive cancers, and in 12% of PTEN normal but in 26% of PTEN deleted cancers. CONCLUSIONS This study identifies ROCK1 expression associated with prognosis in prostate cancer. METHODS We tested ROCK1 expression in 12 427 prostate cancer specimens and followed PSA recurrence after prostatectomy.
Collapse
|
35
|
Meiners J, Schulz K, Möller K, Höflmayer D, Burdelski C, Hube-Magg C, Simon R, Göbel C, Hinsch A, Reiswich V, Weidemann S, Izbicki JR, Sauter G, Jacobsen F, Möller-Koop C, Mandelkow T, Blessin NC, Lutz F, Viehweger F, Lennartz M, Fraune C, Heinzer H, Minner S, Bonk S, Huland H, Graefen M, Schlomm T, Büscheck F. Upregulation of SPDEF is associated with poor prognosis in prostate cancer. Oncol Lett 2019; 18:5107-5118. [PMID: 31612022 PMCID: PMC6781494 DOI: 10.3892/ol.2019.10885] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 07/16/2019] [Indexed: 12/12/2022] Open
Abstract
SAM pointed domain-containing Ets transcription factor (SPDEF), a member of the ETS transcription factor family, has been associated with prostate cancer development; however, its role in tumour development and progression is controversial. In the present study, SPDEF expression was analysed on a tissue microarray with >12,000 prostate cancer samples. SPDEF expression levels were higher in most prostate cancer samples than in normal prostate epithelium, suggesting SPDEF was upregulated in cancer. Nuclear SPDEF expression was identified in 80% of prostate cancer samples, and considered weak in 26.4%, moderate in 40.1% and strong in 13.5% of cases. SPDEF positivity was significantly associated with tumour stage, Gleason grade, lymph node metastasis and PSA recurrence (all P<0.0001). SPDEF overexpression was more common in ERG positive (94%) than in ERG negative cancer (69%; P<0.0001). Elevated SPDEF expression predicted poor prognosis independent from established prognostic parameters, including Gleason grade, pT, pN, serum PSA level and nodal status (P<0.01). In summary, SPDEF overexpression was associated with aggressive behaviour, particularly in ERG negative prostate cancer, and may have potential for clinical application.
Collapse
Affiliation(s)
- Jan Meiners
- Department of Pathology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany.,General, Visceral and Thoracic Surgery Department and Clinic, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Katharina Schulz
- Department of Pathology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Katharina Möller
- Department of Pathology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Doris Höflmayer
- Department of Pathology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Christoph Burdelski
- Department of Pathology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Claudia Hube-Magg
- Department of Pathology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Ronald Simon
- Department of Pathology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Cosima Göbel
- Department of Pathology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Andrea Hinsch
- Department of Pathology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Viktor Reiswich
- Department of Pathology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Sören Weidemann
- Department of Pathology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Jacob R Izbicki
- General, Visceral and Thoracic Surgery Department and Clinic, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Guido Sauter
- Department of Pathology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Frank Jacobsen
- Department of Pathology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Christina Möller-Koop
- Department of Pathology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Tim Mandelkow
- Department of Pathology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Niclas C Blessin
- Department of Pathology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Florian Lutz
- Department of Pathology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Florian Viehweger
- Department of Pathology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Maximillian Lennartz
- Department of Pathology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Christoph Fraune
- Department of Pathology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Hans Heinzer
- Prostate Cancer Center, Martini-Clinic, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Sarah Minner
- Department of Pathology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Sarah Bonk
- General, Visceral and Thoracic Surgery Department and Clinic, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Hartwig Huland
- Prostate Cancer Center, Martini-Clinic, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Markus Graefen
- Prostate Cancer Center, Martini-Clinic, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Thorsten Schlomm
- Department of Urology, Section for Translational Prostate Cancer Research, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany.,Department of Urology, Charité, Universitätsmedizin Berlin, D-10117 Berlin, Germany
| | - Franziska Büscheck
- Department of Pathology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| |
Collapse
|
36
|
Minner S, Hager D, Steurer S, Höflmayer D, Tsourlakis MC, Möller-Koop C, Clauditz TS, Hube-Magg C, Luebke AM, Simon R, Sauter G, Göbel C, Weidemann S, Lebok P, Dum D, Fraune C, Izbicki J, Burandt E, Schlomm T, Huland H, Heinzer H, Haese A, Graefen M, Heumann A. Down-Regulation of S100A8 is an Independent Predictor of PSA Recurrence in Prostate Cancer Treated by Radical Prostatectomy. Neoplasia 2019; 21:872-881. [PMID: 31382165 PMCID: PMC6698296 DOI: 10.1016/j.neo.2019.07.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 07/17/2019] [Indexed: 12/24/2022]
Abstract
Dysregulation of S100A8 is described in many different human tumor types, but its role in prostate cancer is unknown. To evaluate the clinical relevance of S100A8 expression in prostate cancer, a tissue microarray containing 13,665 tumors was analyzed by immunohistochemistry. Cytoplasmic S100A8 staining was compared to prostate cancer phenotype, patient prognosis and molecular features including TMPRSS2:ERG fusion status and deletions of PTEN, 3p, 5q and 6q. S100A8 immunostaining was typically seen in normal prostate tissue but lost in 60% of 9786 interpretable prostate cancers. In the remaining tumors, S100A8 was considered weak in 17.9%, moderate in 17.8% and strong in 5.4% of cases. Loss of S100A8 expression was linked to advanced tumor stage, high Gleason grade, positive nodal status, positive surgical margin and high preoperative PSA (P < .0001 each). In addition, loss of S100A8 expression was associated with TMPRSS2:ERG fusions (P < .0001), deletions of PTEN, 3p, and 6q (P < .005), and a high number of genomic deletions per tumor (P = .0009). Absence of S100A8 immunostaining was also linked to an elevated risk for early PSA recurrence (P < .0001). In a multivariate analysis limited to features that are preoperatively available, the prognostic impact of S100A8 expression (P < .0001) was independent of clinical stage, Gleason grade, and serum PSA level (P < .0001). Taken together, the results of our study demonstrate that complete loss of S100A8 expression is linked to adverse tumor features and predicts early biochemical recurrence in prostate cancer. S100A8 measurement, either alone or in combination might be of clinical utility in prostate cancers.
Collapse
Affiliation(s)
- Sarah Minner
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Dominik Hager
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Stefan Steurer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Doris Höflmayer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | | | | | - Till S Clauditz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Claudia Hube-Magg
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Andreas M Luebke
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Ronald Simon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany.
| | - Guido Sauter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Cosima Göbel
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Sören Weidemann
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Patrick Lebok
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - David Dum
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Christoph Fraune
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Jakob Izbicki
- General, Visceral and Thoracic Surgery Department and Clinic, University Medical Center Hamburg-Eppendorf, Germany
| | - Eike Burandt
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Thorsten Schlomm
- Department of Urology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Hartwig Huland
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg- Eppendorf, Germany
| | - Hans Heinzer
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg- Eppendorf, Germany
| | - Alexander Haese
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg- Eppendorf, Germany
| | - Markus Graefen
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg- Eppendorf, Germany
| | - Asmus Heumann
- General, Visceral and Thoracic Surgery Department and Clinic, University Medical Center Hamburg-Eppendorf, Germany
| |
Collapse
|
37
|
Testa U, Castelli G, Pelosi E. Cellular and Molecular Mechanisms Underlying Prostate Cancer Development: Therapeutic Implications. MEDICINES (BASEL, SWITZERLAND) 2019; 6:E82. [PMID: 31366128 PMCID: PMC6789661 DOI: 10.3390/medicines6030082] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/19/2019] [Accepted: 07/25/2019] [Indexed: 12/15/2022]
Abstract
Prostate cancer is the most frequent nonskin cancer and second most common cause of cancer-related deaths in man. Prostate cancer is a clinically heterogeneous disease with many patients exhibiting an aggressive disease with progression, metastasis, and other patients showing an indolent disease with low tendency to progression. Three stages of development of human prostate tumors have been identified: intraepithelial neoplasia, adenocarcinoma androgen-dependent, and adenocarcinoma androgen-independent or castration-resistant. Advances in molecular technologies have provided a very rapid progress in our understanding of the genomic events responsible for the initial development and progression of prostate cancer. These studies have shown that prostate cancer genome displays a relatively low mutation rate compared with other cancers and few chromosomal loss or gains. The ensemble of these molecular studies has led to suggest the existence of two main molecular groups of prostate cancers: one characterized by the presence of ERG rearrangements (~50% of prostate cancers harbor recurrent gene fusions involving ETS transcription factors, fusing the 5' untranslated region of the androgen-regulated gene TMPRSS2 to nearly the coding sequence of the ETS family transcription factor ERG) and features of chemoplexy (complex gene rearrangements developing from a coordinated and simultaneous molecular event), and a second one characterized by the absence of ERG rearrangements and by the frequent mutations in the E3 ubiquitin ligase adapter SPOP and/or deletion of CDH1, a chromatin remodeling factor, and interchromosomal rearrangements and SPOP mutations are early events during prostate cancer development. During disease progression, genomic and epigenomic abnormalities accrued and converged on prostate cancer pathways, leading to a highly heterogeneous transcriptomic landscape, characterized by a hyperactive androgen receptor signaling axis.
Collapse
Affiliation(s)
- Ugo Testa
- Department of Oncology, Istituto Superiore di Sanità, Vaile Regina Elena 299, 00161 Rome, Italy.
| | - Germana Castelli
- Department of Oncology, Istituto Superiore di Sanità, Vaile Regina Elena 299, 00161 Rome, Italy
| | - Elvira Pelosi
- Department of Oncology, Istituto Superiore di Sanità, Vaile Regina Elena 299, 00161 Rome, Italy
| |
Collapse
|
38
|
Bhatia V, Ateeq B. Molecular Underpinnings Governing Genetic Complexity of ETS-Fusion-Negative Prostate Cancer. Trends Mol Med 2019; 25:1024-1038. [PMID: 31353123 DOI: 10.1016/j.molmed.2019.07.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/18/2019] [Accepted: 07/03/2019] [Indexed: 01/16/2023]
Abstract
Inter- and intra-patient molecular heterogeneity of primary and metastatic prostate cancer (PCa) confers variable clinical outcome and poses a formidable challenge in disease management. High-throughput integrative genomics and functional approaches have untangled the complexity involved in this disease and revealed a spectrum of diverse aberrations prevalent in various molecular subtypes, including ETS fusion negative. Emerging evidence indicates that SPINK1 upregulation, mutations in epigenetic regulators or chromatin modifiers, and SPOP are associated with the ETS-fusion negative subtype. Additionally, patients with defects in a DNA-repair pathway respond to poly-(ADP-ribose)-polymerase (PARP) inhibition therapies. Furthermore, a new class of immunogenic subtype defined by CDK12 biallelic loss has also been identified in ETS-fusion-negative cases. This review focuses on the emerging molecular underpinnings driving key oncogenic aberrations and advancements in therapeutic strategies of this disease.
Collapse
Affiliation(s)
- Vipul Bhatia
- Molecular Oncology Laboratory, Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, 208016, U.P., India
| | - Bushra Ateeq
- Molecular Oncology Laboratory, Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, 208016, U.P., India.
| |
Collapse
|
39
|
Washino S, Rider LC, Romero L, Jillson LK, Affandi T, Ohm AM, Lam ET, Reyland ME, Costello JC, Cramer SD. Loss of MAP3K7 Sensitizes Prostate Cancer Cells to CDK1/2 Inhibition and DNA Damage by Disrupting Homologous Recombination. Mol Cancer Res 2019; 17:1985-1998. [PMID: 31300540 DOI: 10.1158/1541-7786.mcr-18-1335] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 05/31/2019] [Accepted: 07/08/2019] [Indexed: 12/11/2022]
Abstract
The combined loss of CHD1 and MAP3K7 promotes aggressive prostate cancer by unknown mechanisms. Because both of these genes are lost genetically in prostate cancer, they cannot be directly targeted. We applied an established computational systems pharmacology approach (TRAP) to identify altered signaling pathways and associated druggable targets. We compared gene expression profiles of prostate cancer with coloss of CHD1 and MAP3K7 with prostate cancer diploid for these genes using The Cancer Genome Atlas patient samples. This analysis prioritized druggable target genes that included CDK1 and CDK2. We validated that inhibitors of these druggable target genes, including the CDK1/CDK2 inhibitor dinaciclib, had antiproliferative and cytotoxic effects selectively on mouse prostate cells with knockdown of Chd1 and Map3k7. Dinaciclib had stronger effects on prostate cells with suppression of Map3k7 independent of Chd1 and also compared with cells without loss of Map3k7. Dinaciclib treatment reduced expression of homologous recombination (HR) repair genes such as ATM, ATR, BRCA2, and RAD51, blocked BRCA1 phosphorylation, reduced RAD51 foci formation, and increased γH2AX foci selectively in prostate cells with suppression of Map3k7, thus inhibiting HR repair of chromosomal double-strand breaks. Dinaciclib-induced HR disruption was also observed in human prostate cells with knockdown of MAP3K7. Cotreatment of dinaciclib with DNA-damaging agents or PARP inhibitor resulted in a stronger cytotoxic effect on prostate cells with suppression of MAP3K7 compared with those without loss of MAP3K7, or to each single agent. IMPLICATIONS: These findings demonstrate that loss of MAP3K7 is a main contributing factor to drug response through disruption of HR in prostate cancer.
Collapse
Affiliation(s)
- Satoshi Washino
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Leah C Rider
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Lina Romero
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Lauren K Jillson
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Trisiani Affandi
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Angela M Ohm
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Elaine T Lam
- Department of Internal Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Mary E Reyland
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - James C Costello
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Scott D Cramer
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado.
| |
Collapse
|
40
|
Schroeder C, Grell J, Hube-Magg C, Kluth M, Lang D, Simon R, Höflmayer D, Minner S, Burandt E, Clauditz TS, Büscheck F, Jacobsen F, Huland H, Graefen M, Schlomm T, Sauter G, Steurer S. Aberrant expression of the microtubule-associated protein tau is an independent prognostic feature in prostate cancer. BMC Cancer 2019; 19:193. [PMID: 30823906 PMCID: PMC6397474 DOI: 10.1186/s12885-019-5390-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 02/20/2019] [Indexed: 12/30/2022] Open
Abstract
Background Microtubule-associated protein Tau (MAPT) overexpression has been linked to poor prognosis and decreased response to taxane-based therapies in several cancer types, but its relevance in prostate cancer is unknown. Methods In this study, MAPT expression was analyzed by immunohistochemistry on a tissue microarray containing 17,747 prostate cancers. Results MAPT was absent in normal prostate epithelial cells but detectable in 1004 (8.2%) of 12,313 interpretable cancers. Its expression was associated with advanced tumor stage, high Gleason grade, positive lymph nodes, and early biochemical recurrence (p < 0.0001 each). For example, MAPT was found in 3.6% of 2072 Gleason ≤3 + 3 cancers but in 14.4% of 704 Gleason ≥4 + 4 cancers. High-level MAPT staining was also linked to TMPRSS2:ERG fusions (p < 0.0001). MAPT staining was seen in 15.2 and 16% of cancers with TMPRSS2:ERG fusion detected by immunohistochemistry and fluorescence in-situ hybridization, but in only 3.5 and 3.9% of cancers without ERG staining or ERG rearrangements. Moreover, an association was found between MAPT expression and PTEN deletions, with 19% MAPT positivity in 948 PTEN deleted cancers but only 7% MAPT positivity in 3895 tumors with normal PTEN copy numbers (p < 0.0001). Multivariate analysis revealed that the prognostic value of MAPT was independent from established parameters. Conventional large section analyses showed intratumoral MAPT heterogeneity in all three analyzed cancers. Conclusions The results of our study identify MAPT, as a moderate prognostic marker in prostate cancer, whose clinical impact, however, may be limited due to the rarity and heterogeneity of its expression. Electronic supplementary material The online version of this article (10.1186/s12885-019-5390-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Cornelia Schroeder
- General, Visceral and Thoracic Surgery Department and Clinic, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, D-20246, Hamburg, Germany
| | - Jan Grell
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, D-20246, Hamburg, Germany
| | - Claudia Hube-Magg
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, D-20246, Hamburg, Germany
| | - Martina Kluth
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, D-20246, Hamburg, Germany
| | - Dagmar Lang
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, D-20246, Hamburg, Germany
| | - Ronald Simon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, D-20246, Hamburg, Germany.
| | - Doris Höflmayer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, D-20246, Hamburg, Germany
| | - Sarah Minner
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, D-20246, Hamburg, Germany
| | - Eike Burandt
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, D-20246, Hamburg, Germany
| | - Till S Clauditz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, D-20246, Hamburg, Germany
| | - Franziska Büscheck
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, D-20246, Hamburg, Germany
| | - Frank Jacobsen
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, D-20246, Hamburg, Germany
| | - Hartwig Huland
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, D-20246, Hamburg, Germany
| | - Markus Graefen
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, D-20246, Hamburg, Germany
| | - Thorsten Schlomm
- Department of Urology, Charité - Universitätsmedizin Berlin, Charitéplatz 1, D-10117, Berlin, Germany
| | - Guido Sauter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, D-20246, Hamburg, Germany
| | - Stefan Steurer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, D-20246, Hamburg, Germany
| |
Collapse
|
41
|
Parry MA, Srivastava S, Ali A, Cannistraci A, Antonello J, Barros-Silva JD, Ubertini V, Ramani V, Lau M, Shanks J, Nonaka D, Oliveira P, Hambrock T, Leong HS, Dhomen N, Miller C, Brady G, Dive C, Clarke NW, Marais R, Baena E. Genomic Evaluation of Multiparametric Magnetic Resonance Imaging-visible and -nonvisible Lesions in Clinically Localised Prostate Cancer. Eur Urol Oncol 2019; 2:1-11. [PMID: 30929837 PMCID: PMC6472613 DOI: 10.1016/j.euo.2018.08.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 07/17/2018] [Accepted: 08/07/2018] [Indexed: 01/22/2023]
Abstract
BACKGROUND The prostate cancer (PCa) diagnostic pathway is undergoing a radical change with the introduction of multiparametric magnetic resonance imaging (mpMRI), genomic testing, and different prostate biopsy techniques. It has been proposed that these tests should be used in a sequential manner to optimise risk stratification. OBJECTIVE To characterise the genomic, epigenomic, and transcriptomic features of mpMRI-visible and -nonvisible PCa in clinically localised disease. DESIGN, SETTING, AND PARTICIPANTS Multicore analysis of fresh prostate tissue sampled immediately after radical prostatectomy was performed for intermediate- to high-risk PCa. INTERVENTION Low-pass whole-genome, exome, methylation, and transcriptome profiling of patient tissue cores taken from microscopically benign and cancerous areas in the same prostate. Circulating free and germline DNA was assessed from the blood of five patients. OUTCOME MEASUREMENT AND STATISTICAL ANALYSIS Correlations between preoperative mpMRI and genomic characteristics of tumour and benign prostate samples were assessed. Gene profiles for individual tumour cores were correlated with existing genomic classifiers currently used for prognostication. RESULTS AND LIMITATIONS A total of 43 prostate cores (22 tumour and 21 benign) were profiled from six whole prostate glands. Of the 22 tumour cores, 16 were tumours visible and six were tumours nonvisible on mpMRI. Intratumour genomic, epigenomic, and transcriptomic heterogeneity was found within mpMRI-visible lesions. This could potentially lead to misclassification of patients using signatures based on copy number or RNA expression. Moreover, three of the six cores obtained from mpMRI-nonvisible tumours harboured one or more genetic alterations commonly observed in metastatic castration-resistant PCa. No circulating free DNA alterations were found. Limitations include the small cohort size and lack of follow-up. CONCLUSIONS Our study supports the continued use of systematic prostate sampling in addition to mpMRI, as avoidance of systematic biopsies in patients with negative mpMRI may mean that clinically significant tumours harbouring genetic alterations commonly seen in metastatic PCa are missed. Furthermore, there is inconsistency in individual genomics when genomic classifiers are applied. PATIENT SUMMARY Our study shows that tumour heterogeneity within prostate tumours visible on multiparametric magnetic resonance imaging (mpMRI) can lead to misclassification of patients if only one core is used for genomic analysis. In addition, some cancers that were missed by mpMRI had genomic aberrations that are commonly seen in advanced metastatic prostate cancer. Avoiding biopsies in mpMRI-negative cases may mean that such potentially lethal cancers are missed.
Collapse
Affiliation(s)
- Marina A Parry
- Molecular Oncology, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, UK; Belfast-Manchester Movember Centre of Excellence, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, UK
| | - Shambhavi Srivastava
- Molecular Oncology, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, UK; Belfast-Manchester Movember Centre of Excellence, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, UK; Computational Biology, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, UK
| | - Adnan Ali
- Belfast-Manchester Movember Centre of Excellence, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, UK; Genitourinary Cancer Research Group, Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine & Health, The University of Manchester, Manchester Cancer Research Centre, Manchester, UK; Prostate Oncobiology, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, UK
| | - Alessio Cannistraci
- Molecular Oncology, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, UK; Belfast-Manchester Movember Centre of Excellence, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, UK
| | - Jenny Antonello
- Belfast-Manchester Movember Centre of Excellence, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, UK; Clinical and Experimental Pharmacology, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, UK
| | - João Diogo Barros-Silva
- Belfast-Manchester Movember Centre of Excellence, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, UK; Prostate Oncobiology, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, UK
| | - Valentina Ubertini
- Belfast-Manchester Movember Centre of Excellence, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, UK; Prostate Oncobiology, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, UK
| | - Vijay Ramani
- Department of Surgery, The Christie NHS Foundation Trust, Manchester, UK
| | - Maurice Lau
- Department of Surgery, The Christie NHS Foundation Trust, Manchester, UK
| | - Jonathan Shanks
- Department of Pathology, The Christie NHS Foundation Trust, Manchester, UK
| | - Daisuke Nonaka
- Department of Pathology, The Christie NHS Foundation Trust, Manchester, UK
| | - Pedro Oliveira
- Department of Pathology, The Christie NHS Foundation Trust, Manchester, UK
| | - Thomas Hambrock
- Department of Radiology, The Christie NHS Foundation Trust, Manchester, UK
| | - Hui Sun Leong
- Computational Biology, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, UK
| | - Nathalie Dhomen
- Molecular Oncology, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, UK
| | - Crispin Miller
- Belfast-Manchester Movember Centre of Excellence, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, UK; Computational Biology, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, UK; RNA Biology, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, UK
| | - Ged Brady
- Belfast-Manchester Movember Centre of Excellence, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, UK; Clinical and Experimental Pharmacology, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, UK
| | - Caroline Dive
- Belfast-Manchester Movember Centre of Excellence, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, UK; Clinical and Experimental Pharmacology, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, UK
| | - Noel W Clarke
- Belfast-Manchester Movember Centre of Excellence, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, UK; Genitourinary Cancer Research Group, Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine & Health, The University of Manchester, Manchester Cancer Research Centre, Manchester, UK; Department of Surgery, The Christie NHS Foundation Trust, Manchester, UK; Department of Urology, Salford NHS Foundation Trust, Salford, UK.
| | - Richard Marais
- Molecular Oncology, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, UK; Belfast-Manchester Movember Centre of Excellence, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, UK.
| | - Esther Baena
- Belfast-Manchester Movember Centre of Excellence, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, UK; Prostate Oncobiology, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, UK.
| |
Collapse
|
42
|
Kluth M, Al Kilani Z, Özden C, Hussein K, Frogh S, Möller‐Koop C, Burandt E, Steurer S, Büscheck F, Jacobsen F, Luebke AM, Minner S, Tsourlakis MC, Hoeflmayer D, Wittmer C, Schlomm T, Sauter G, Simon R, Wilczak W. 5q21 deletion is often heterogeneous in prostate cancer. Genes Chromosomes Cancer 2019; 58:509-515. [DOI: 10.1002/gcc.22730] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 12/31/2018] [Accepted: 01/04/2019] [Indexed: 01/30/2023] Open
Affiliation(s)
- Martina Kluth
- Institute of Pathology, University Medical Center Hamburg‐Eppendorf Hamburg Germany
| | - Zaid Al Kilani
- Institute of Pathology, University Medical Center Hamburg‐Eppendorf Hamburg Germany
| | - Cansu Özden
- Institute of Pathology, University Medical Center Hamburg‐Eppendorf Hamburg Germany
| | - Khakan Hussein
- Institute of Pathology, University Medical Center Hamburg‐Eppendorf Hamburg Germany
| | - Sohall Frogh
- Institute of Pathology, University Medical Center Hamburg‐Eppendorf Hamburg Germany
| | | | - Eike Burandt
- Institute of Pathology, University Medical Center Hamburg‐Eppendorf Hamburg Germany
| | - Stefan Steurer
- Institute of Pathology, University Medical Center Hamburg‐Eppendorf Hamburg Germany
| | - Franziska Büscheck
- Institute of Pathology, University Medical Center Hamburg‐Eppendorf Hamburg Germany
| | - Frank Jacobsen
- Institute of Pathology, University Medical Center Hamburg‐Eppendorf Hamburg Germany
| | - Andreas M. Luebke
- Institute of Pathology, University Medical Center Hamburg‐Eppendorf Hamburg Germany
| | - Sarah Minner
- Institute of Pathology, University Medical Center Hamburg‐Eppendorf Hamburg Germany
| | | | - Doris Hoeflmayer
- Institute of Pathology, University Medical Center Hamburg‐Eppendorf Hamburg Germany
| | - Corinna Wittmer
- Institute of Pathology, University Medical Center Hamburg‐Eppendorf Hamburg Germany
| | - Thorsten Schlomm
- Department of UrologyCharité Universitätsmedizin Berlin Berlin Germany
| | - Guido Sauter
- Institute of Pathology, University Medical Center Hamburg‐Eppendorf Hamburg Germany
| | - Ronald Simon
- Institute of Pathology, University Medical Center Hamburg‐Eppendorf Hamburg Germany
| | - Waldemar Wilczak
- Institute of Pathology, University Medical Center Hamburg‐Eppendorf Hamburg Germany
| |
Collapse
|
43
|
Munkley J, Li L, Krishnan SRG, Hysenaj G, Scott E, Dalgliesh C, Oo HZ, Maia TM, Cheung K, Ehrmann I, Livermore KE, Zielinska H, Thompson O, Knight B, McCullagh P, McGrath J, Crundwell M, Harries LW, Daugaard M, Cockell S, Barbosa-Morais NL, Oltean S, Elliott DJ. Androgen-regulated transcription of ESRP2 drives alternative splicing patterns in prostate cancer. eLife 2019; 8:47678. [PMID: 31478829 PMCID: PMC6788855 DOI: 10.7554/elife.47678] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 09/02/2019] [Indexed: 12/14/2022] Open
Abstract
Prostate is the most frequent cancer in men. Prostate cancer progression is driven by androgen steroid hormones, and delayed by androgen deprivation therapy (ADT). Androgens control transcription by stimulating androgen receptor (AR) activity, yet also control pre-mRNA splicing through less clear mechanisms. Here we find androgens regulate splicing through AR-mediated transcriptional control of the epithelial-specific splicing regulator ESRP2. Both ESRP2 and its close paralog ESRP1 are highly expressed in primary prostate cancer. Androgen stimulation induces splicing switches in many endogenous ESRP2-controlled mRNA isoforms, including splicing switches correlating with disease progression. ESRP2 expression in clinical prostate cancer is repressed by ADT, which may thus inadvertently dampen epithelial splice programmes. Supporting this, treatment with the AR antagonist bicalutamide (Casodex) induced mesenchymal splicing patterns of genes including FLNB and CTNND1. Our data reveals a new mechanism of splicing control in prostate cancer with important implications for disease progression.
Collapse
Affiliation(s)
- Jennifer Munkley
- Institute of Genetic MedicineUniversity of NewcastleNewcastleUnited Kingdom
| | - Ling Li
- Institute of Biomedical and Clinical Sciences, Medical School, College of Medicine and HealthUniversity of ExeterExeterUnited Kingdom
| | - S R Gokul Krishnan
- Institute of Genetic MedicineUniversity of NewcastleNewcastleUnited Kingdom
| | - Gerald Hysenaj
- Institute of Genetic MedicineUniversity of NewcastleNewcastleUnited Kingdom
| | - Emma Scott
- Institute of Genetic MedicineUniversity of NewcastleNewcastleUnited Kingdom
| | - Caroline Dalgliesh
- Institute of Genetic MedicineUniversity of NewcastleNewcastleUnited Kingdom
| | - Htoo Zarni Oo
- Department of Urologic SciencesUniversity of British ColumbiaVancouverCanada,Vancouver Prostate CentreVancouverCanada
| | - Teresa Mendes Maia
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de MedicinaUniversidade de LisboaLisboaPortugal,VIB Center for Medical BiotechnologyVIBGhentBelgium,VIB Proteomics CoreVIBGhentBelgium,Department for Biomolecular MedicineGhent UniversityGhentBelgium
| | - Kathleen Cheung
- Bioinformatics Support Unit, Faculty of Medical SciencesNewcastle UniversityNewcastleUnited Kingdom
| | - Ingrid Ehrmann
- Institute of Genetic MedicineUniversity of NewcastleNewcastleUnited Kingdom
| | - Karen E Livermore
- Institute of Genetic MedicineUniversity of NewcastleNewcastleUnited Kingdom
| | - Hanna Zielinska
- Institute of Biomedical and Clinical Sciences, Medical School, College of Medicine and HealthUniversity of ExeterExeterUnited Kingdom
| | - Oliver Thompson
- Institute of Biomedical and Clinical Sciences, Medical School, College of Medicine and HealthUniversity of ExeterExeterUnited Kingdom
| | - Bridget Knight
- NIHR Exeter Clinical Research FacilityRoyal Devon and Exeter NHS Foundation TrustExeterUnited Kingdom
| | - Paul McCullagh
- Department of PathologyRoyal Devon and Exeter NHS Foundation TrustExeterUnited Kingdom
| | - John McGrath
- Exeter Surgical Health Services Research UnitRoyal Devon and Exeter NHS Foundation TrustExeterUnited Kingdom
| | - Malcolm Crundwell
- Department of UrologyRoyal Devon and Exeter NHS Foundation TrustExeterUnited Kingdom
| | - Lorna W Harries
- Institute of Biomedical and Clinical Sciences, Medical School, College of Medicine and HealthUniversity of ExeterExeterUnited Kingdom
| | - Mads Daugaard
- Department of Urologic SciencesUniversity of British ColumbiaVancouverCanada,Vancouver Prostate CentreVancouverCanada
| | - Simon Cockell
- Bioinformatics Support Unit, Faculty of Medical SciencesNewcastle UniversityNewcastleUnited Kingdom
| | - Nuno L Barbosa-Morais
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de MedicinaUniversidade de LisboaLisboaPortugal
| | - Sebastian Oltean
- Institute of Biomedical and Clinical Sciences, Medical School, College of Medicine and HealthUniversity of ExeterExeterUnited Kingdom
| | - David J Elliott
- Institute of Genetic MedicineUniversity of NewcastleNewcastleUnited Kingdom
| |
Collapse
|
44
|
Gerhauser C, Favero F, Risch T, Simon R, Feuerbach L, Assenov Y, Heckmann D, Sidiropoulos N, Waszak SM, Hübschmann D, Urbanucci A, Girma EG, Kuryshev V, Klimczak LJ, Saini N, Stütz AM, Weichenhan D, Böttcher LM, Toth R, Hendriksen JD, Koop C, Lutsik P, Matzk S, Warnatz HJ, Amstislavskiy V, Feuerstein C, Raeder B, Bogatyrova O, Schmitz EM, Hube-Magg C, Kluth M, Huland H, Graefen M, Lawerenz C, Henry GH, Yamaguchi TN, Malewska A, Meiners J, Schilling D, Reisinger E, Eils R, Schlesner M, Strand DW, Bristow RG, Boutros PC, von Kalle C, Gordenin D, Sültmann H, Brors B, Sauter G, Plass C, Yaspo ML, Korbel JO, Schlomm T, Weischenfeldt J. Molecular Evolution of Early-Onset Prostate Cancer Identifies Molecular Risk Markers and Clinical Trajectories. Cancer Cell 2018; 34:996-1011.e8. [PMID: 30537516 PMCID: PMC7444093 DOI: 10.1016/j.ccell.2018.10.016] [Citation(s) in RCA: 178] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 08/17/2018] [Accepted: 10/29/2018] [Indexed: 12/28/2022]
Abstract
Identifying the earliest somatic changes in prostate cancer can give important insights into tumor evolution and aids in stratifying high- from low-risk disease. We integrated whole genome, transcriptome and methylome analysis of early-onset prostate cancers (diagnosis ≤55 years). Characterization across 292 prostate cancer genomes revealed age-related genomic alterations and a clock-like enzymatic-driven mutational process contributing to the earliest mutations in prostate cancer patients. Our integrative analysis identified four molecular subgroups, including a particularly aggressive subgroup with recurrent duplications associated with increased expression of ESRP1, which we validate in 12,000 tissue microarray tumors. Finally, we combined the patterns of molecular co-occurrence and risk-based subgroup information to deconvolve the molecular and clinical trajectories of prostate cancer from single patient samples.
Collapse
Affiliation(s)
- Clarissa Gerhauser
- Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Francesco Favero
- Finsen Laboratory, Rigshospitalet, DK-2200, Copenhagen, Denmark; Biotech Research & Innovation Centre (BRIC), University of Copenhagen, DK-2200, Copenhagen, Denmark
| | - Thomas Risch
- Max Planck Institute for Molecular Genetics, Otto Warburg Laboratory Gene Regulation and Systems Biology of Cancer, Ihnestrasse 63-73, 14195 Berlin, Germany
| | - Ronald Simon
- Department of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Lars Feuerbach
- Division Applied Bioinformatics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Yassen Assenov
- Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Doreen Heckmann
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Nikos Sidiropoulos
- Finsen Laboratory, Rigshospitalet, DK-2200, Copenhagen, Denmark; Biotech Research & Innovation Centre (BRIC), University of Copenhagen, DK-2200, Copenhagen, Denmark
| | - Sebastian M Waszak
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69120 Heidelberg, Germany
| | - Daniel Hübschmann
- Division of Theoretical Bioinformatics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Department for Bioinformatics and Functional Genomics, Institute of Pharmacy and Molecular Biotechnology and Bioquant, University of Heidelberg, Heidelberg 69120, Germany; Department of Pediatric Immunology, Hematology and Oncology, University Hospital, Heidelberg 69120, Germany
| | - Alfonso Urbanucci
- Centre for Molecular Medicine Norway, Nordic European Molecular Biology Laboratory Partnership, Forskningsparken, University of Oslo, 0316 Oslo, Norway; Institute for Cancer Genetics and Informatics, Oslo University Hospital, 0316 Oslo, Norway; Department of Core Facilities, Institute for Cancer Research, Oslo University Hospital, 0316 Oslo, Norway
| | - Etsehiwot G Girma
- Finsen Laboratory, Rigshospitalet, DK-2200, Copenhagen, Denmark; Biotech Research & Innovation Centre (BRIC), University of Copenhagen, DK-2200, Copenhagen, Denmark
| | - Vladimir Kuryshev
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Leszek J Klimczak
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences, Durham, 27709 NC, USA
| | - Natalie Saini
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, Durham, 27709 NC, USA
| | - Adrian M Stütz
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69120 Heidelberg, Germany
| | - Dieter Weichenhan
- Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Lisa-Marie Böttcher
- Department of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Reka Toth
- Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Josephine D Hendriksen
- Finsen Laboratory, Rigshospitalet, DK-2200, Copenhagen, Denmark; Biotech Research & Innovation Centre (BRIC), University of Copenhagen, DK-2200, Copenhagen, Denmark
| | - Christina Koop
- Department of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Pavlo Lutsik
- Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Sören Matzk
- Max Planck Institute for Molecular Genetics, Otto Warburg Laboratory Gene Regulation and Systems Biology of Cancer, Ihnestrasse 63-73, 14195 Berlin, Germany
| | - Hans-Jörg Warnatz
- Max Planck Institute for Molecular Genetics, Otto Warburg Laboratory Gene Regulation and Systems Biology of Cancer, Ihnestrasse 63-73, 14195 Berlin, Germany
| | - Vyacheslav Amstislavskiy
- Max Planck Institute for Molecular Genetics, Otto Warburg Laboratory Gene Regulation and Systems Biology of Cancer, Ihnestrasse 63-73, 14195 Berlin, Germany
| | - Clarissa Feuerstein
- Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Benjamin Raeder
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69120 Heidelberg, Germany
| | - Olga Bogatyrova
- Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | | | - Claudia Hube-Magg
- Department of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Martina Kluth
- Department of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Hartwig Huland
- Martini-Clinic Prostate Cancer Center at the University Medical Center Hamburg-Eppendorf, Martinistrasse 52, D-20246 Hamburg, Germany
| | - Markus Graefen
- Martini-Clinic Prostate Cancer Center at the University Medical Center Hamburg-Eppendorf, Martinistrasse 52, D-20246 Hamburg, Germany
| | - Chris Lawerenz
- Division of Theoretical Bioinformatics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Gervaise H Henry
- Department of Urology, UT Southwestern Medical Center, Dallas, TX 75390-9110, USA
| | - Takafumi N Yamaguchi
- Informatics & Biocomputing Program, Ontario Institute for Cancer Research, Toronto, Canada
| | - Alicia Malewska
- Department of Urology, UT Southwestern Medical Center, Dallas, TX 75390-9110, USA
| | - Jan Meiners
- Department of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Daniela Schilling
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; NCT Trial Center, National Center for Tumor Diseases and German Cancer Research Center, 69120 Heidelberg, Germany
| | - Eva Reisinger
- Division of Theoretical Bioinformatics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Roland Eils
- Division of Theoretical Bioinformatics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Department for Bioinformatics and Functional Genomics, Institute of Pharmacy and Molecular Biotechnology and Bioquant, University of Heidelberg, Heidelberg 69120, Germany
| | - Matthias Schlesner
- Division of Theoretical Bioinformatics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Bioinformatics and Omics Data Analytics (B240), German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Douglas W Strand
- Department of Urology, UT Southwestern Medical Center, Dallas, TX 75390-9110, USA
| | - Robert G Bristow
- Manchester Cancer Research Centre, University of Manchester, 555 Wilmslow Road, Manchester, UK
| | - Paul C Boutros
- Ontario Institute for Cancer Research, Toronto, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Christof von Kalle
- German Cancer Consortium (DKTK), 69120 Heidelberg, Germany; Division of Translational Oncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Dmitry Gordenin
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, Durham, 27709 NC, USA
| | - Holger Sültmann
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Benedikt Brors
- Division Applied Bioinformatics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany; German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Guido Sauter
- Department of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Christoph Plass
- Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Marie-Laure Yaspo
- Max Planck Institute for Molecular Genetics, Otto Warburg Laboratory Gene Regulation and Systems Biology of Cancer, Ihnestrasse 63-73, 14195 Berlin, Germany
| | - Jan O Korbel
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69120 Heidelberg, Germany.
| | - Thorsten Schlomm
- Martini-Clinic Prostate Cancer Center at the University Medical Center Hamburg-Eppendorf, Martinistrasse 52, D-20246 Hamburg, Germany; Charité Universitätsmedizin Berlin, Charitéplatz 1, D-10117 Berlin, Germany.
| | - Joachim Weischenfeldt
- Finsen Laboratory, Rigshospitalet, DK-2200, Copenhagen, Denmark; Biotech Research & Innovation Centre (BRIC), University of Copenhagen, DK-2200, Copenhagen, Denmark; European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69120 Heidelberg, Germany; Charité Universitätsmedizin Berlin, Charitéplatz 1, D-10117 Berlin, Germany.
| |
Collapse
|
45
|
Göbel C, Özden C, Schroeder C, Hube-Magg C, Kluth M, Möller-Koop C, Neubauer E, Hinsch A, Jacobsen F, Simon R, Sauter G, Michl U, Pehrke D, Huland H, Graefen M, Schlomm T, Luebke AM. Upregulation of centromere protein F is linked to aggressive prostate cancers. Cancer Manag Res 2018; 10:5491-5504. [PMID: 30519097 PMCID: PMC6234994 DOI: 10.2147/cmar.s165630] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Background Centromere protein F (CENPF) is a key component of the kinetochore complex and plays a crucial role in chromosome segregation and cell cycle progression. Recent work suggests that CENPF upregulation is linked to aggressive tumor features in a variety of malignancies including prostate cancer. Materials and methods Using a highly annotated tissue microarray, we analyzed CENPF protein expression from a cohort of 8,298 prostatectomized patients by immunohistochemistry to study its effect on prostate-specific antigen recurrence-free survival. Results CENPF overexpression was found in 53% of cancers, and was linked to higher Gleason grade, advanced pathological tumor stage, accelerated cell proliferation, and lymph node metastasis (p<0.0001, each). A comparison with other key molecular features accessible through the microarray revealed strong associations between CENPF overexpression and presence of erythroblast transformation-specific (ETS)-related gene (ERG) fusion as well as phosphatase and tensin homolog deletion (p<0.0001, each). CENPF overexpression was linked to early biochemical recurrence. A subset analysis revealed that this was driven by the ERG-negative subset (p<0.0001). This was independent of established preoperative and postoperative prognostic parameters in multivariate analyses. Conclusion The results of our study identify CENPF overexpression as an important mechanism and a potential biomarker for prostate cancer aggressiveness.
Collapse
Affiliation(s)
- Cosima Göbel
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany,
| | - Cansu Özden
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany,
| | - Cornelia Schroeder
- General, Visceral and Thoracic Surgery Department and Clinic, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Claudia Hube-Magg
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany,
| | - Martina Kluth
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany,
| | - Christina Möller-Koop
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany,
| | - Emily Neubauer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany,
| | - Andrea Hinsch
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany,
| | - Frank Jacobsen
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany,
| | - Ronald Simon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany,
| | - Guido Sauter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany,
| | - Uwe Michl
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Dirk Pehrke
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Urology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Hartwig Huland
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Markus Graefen
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thorsten Schlomm
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Urology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Andreas M Luebke
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany,
| |
Collapse
|
46
|
Gaviraghi M, Vivori C, Pareja Sanchez Y, Invernizzi F, Cattaneo A, Santoliquido BM, Frenquelli M, Segalla S, Bachi A, Doglioni C, Pelechano V, Cittaro D, Tonon G. Tumor suppressor PNRC1 blocks rRNA maturation by recruiting the decapping complex to the nucleolus. EMBO J 2018; 37:embj.201899179. [PMID: 30373810 DOI: 10.15252/embj.201899179] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 09/14/2018] [Accepted: 09/19/2018] [Indexed: 12/20/2022] Open
Abstract
Focal deletions occur frequently in the cancer genome. However, the putative tumor-suppressive genes residing within these regions have been difficult to pinpoint. To robustly identify these genes, we implemented a computational approach based on non-negative matrix factorization, NMF, and interrogated the TCGA dataset. This analysis revealed a metagene signature including a small subset of genes showing pervasive hemizygous deletions, reduced expression in cancer patient samples, and nucleolar function. Amid the genes belonging to this signature, we have identified PNRC1, a nuclear receptor coactivator. We found that PNRC1 interacts with the cytoplasmic DCP1α/DCP2 decapping machinery and hauls it inside the nucleolus. PNRC1-dependent nucleolar translocation of the decapping complex is associated with a decrease in the 5'-capped U3 and U8 snoRNA fractions, hampering ribosomal RNA maturation. As a result, PNRC1 ablates the enhanced proliferation triggered by established oncogenes such as RAS and MYC These observations uncover a previously undescribed mechanism of tumor suppression, whereby the cytoplasmic decapping machinery is hauled within nucleoli, tightly regulating ribosomal RNA maturation.
Collapse
Affiliation(s)
- Marco Gaviraghi
- Functional Genomics of Cancer Unit, Division of Experimental Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Claudia Vivori
- Functional Genomics of Cancer Unit, Division of Experimental Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Yerma Pareja Sanchez
- Science for Life Laboratory, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solna, Sweden
| | - Francesca Invernizzi
- Pathology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Angela Cattaneo
- Functional Proteomics Program, Istituto FIRC di Oncologia Molecolare (IFOM), Milan, Italy
| | - Benedetta Maria Santoliquido
- Functional Genomics of Cancer Unit, Division of Experimental Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Michela Frenquelli
- Functional Genomics of Cancer Unit, Division of Experimental Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Simona Segalla
- Functional Genomics of Cancer Unit, Division of Experimental Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Angela Bachi
- Functional Proteomics Program, Istituto FIRC di Oncologia Molecolare (IFOM), Milan, Italy
| | - Claudio Doglioni
- Pathology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Vicent Pelechano
- Science for Life Laboratory, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solna, Sweden
| | - Davide Cittaro
- Center for Translational Genomics and Bioinformatics, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Giovanni Tonon
- Functional Genomics of Cancer Unit, Division of Experimental Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy .,Center for Translational Genomics and Bioinformatics, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
47
|
Kluth M, Scherzai S, Büschek F, Fraune C, Möller K, Höflmayer D, Minner S, Göbel C, Möller-Koop C, Hinsch A, Neubauer E, Tsourlakis MC, Sauter G, Heinzer H, Graefen M, Wilczak W, Luebke AM, Burandt E, Steurer S, Schlomm T, Simon R. 13q deletion is linked to an adverse phenotype and poor prognosis in prostate cancer. Genes Chromosomes Cancer 2018; 57:504-512. [PMID: 29923647 DOI: 10.1002/gcc.22645] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 05/23/2018] [Accepted: 05/24/2018] [Indexed: 01/13/2023] Open
Abstract
Deletions of chromosome arm 13q belong to the most frequent molecular alterations in prostate cancer. To better understand the role of 13q deletion in prostate cancer we took advantage of our large prostate cancer tissue microarray comprising more than 12 000 cancer samples with full pathological and clinical follow-up data. Fluorescence in situ hybridization with probes for ENOX1 (13q14.11) and the retinoblastoma gene (RB1, 13q14.2) was employed. A 13q deletion was found in 21% of 7375 analyzable cancers. Deletions were always heterozygous and associated with high Gleason grade (P < .0001), advanced tumor stage (P < .0001), high preoperative prostate-specific antigen (PSA) levels (P = .0125), lymph node metastasis (P = .0377), positive resection margin (P = .0064), and early biochemical recurrence (P < .0001). 13q deletions were marginally more frequent in prostate cancers with negative ERG status (22.9%) than in ERG-positive tumors (18.7%; P < .0001). Loss of 13q predicted patient prognosis independently from established prognostic parameters that are available at the time of biopsy (P = .0004), including preoperative PSA level, clinical tumor stage, and biopsy Gleason grade. In summary, the results of our study identify 13q deletion as a frequent event in prostate cancer, which is linked to an adverse phenotype and poor prognosis in this disease.
Collapse
Affiliation(s)
- Martina Kluth
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Sekander Scherzai
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Franziska Büschek
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Christoph Fraune
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Katharina Möller
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Doris Höflmayer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Sarah Minner
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Cosima Göbel
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | | | - Andrea Hinsch
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Emily Neubauer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | | | - Guido Sauter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Hans Heinzer
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Germany
| | - Markus Graefen
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Germany
| | - Waldemar Wilczak
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Andreas M Luebke
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Eike Burandt
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Stefan Steurer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Thorsten Schlomm
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Germany.,Department of Urology, Section for Prostate Cancer Research, University Medical Center Hamburg-Eppendorf, Germany.,Department of Urology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Ronald Simon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| |
Collapse
|
48
|
Qin H, Moore RF, Ho CY, Eshleman J, Eberhart CG, Cuda J. Endocrine mucin-producing sweat gland carcinoma: A study of 11 cases with molecular analysis. J Cutan Pathol 2018; 45:681-687. [PMID: 29943394 DOI: 10.1111/cup.13308] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 06/15/2018] [Accepted: 06/21/2018] [Indexed: 12/20/2022]
Abstract
BACKGROUND Endocrine mucin-producing sweat gland carcinoma (EMPSGC) is a rare, low-grade adnexal neoplasm that most commonly involves the eyelid. Analogous to solid papillary carcinoma of the breast, it probably represents a precursor lesion to mucinous carcinoma. Here, we describe 11 cases of EMPSGC with molecular analysis. METHODS We performed a retrospective search of the Johns Hopkins Medical Institute pathology database and identified 11 cases of EMPSGC. Immunohistochemistry was performed for chromogranin, synaptophysin, neuron specific enolase, estrogen receptor (ER), epithelial membrane antigen (EMA), cytokeratin 7 (CK7), and cytokeratin 20 (CK20). Array comparative genomic hybridization (aCGH) and BRAFV600E pyrosequencing were performed on two and three cases, respectively. RESULTS We observed a strong female predilection (73% females, 8/11 cases) with an average age of 66 years (range, 56-83 years). EMPSGCs were associated with adjacent benign sweat gland cysts (3/11), atypical intraductal proliferation (1/11), and mucinous carcinoma (1/11). Immunohistochemically, all tumors expressed at least one neuroendocrine marker, ER, EMA, and CK7, and were negative for CK20. aCGH demonstrated a 6p11.2 to 6q16.1 deletion (1/2 cases). All cases were negative for BRAFV600E mutation (3/3 cases). CONCLUSION This series provides further histopathologic support that EMPSGC represents a multistage progression to mucinous carcinoma. Additional studies are needed to understand its molecular mechanisms.
Collapse
Affiliation(s)
- Huamin Qin
- Department of Pathology, Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
- Department of Pathology, Ophthalmology and Oncology, Johns Hopkins University, Baltimore, Maryland
| | - Robert F Moore
- Department of Pathology, Ophthalmology and Oncology, Johns Hopkins University, Baltimore, Maryland
| | - Cheng-Ying Ho
- Department of Pathology, University of Maryland, Baltimore, Maryland
| | - James Eshleman
- Department of Pathology, Ophthalmology and Oncology, Johns Hopkins University, Baltimore, Maryland
| | - Charles G Eberhart
- Department of Pathology, Ophthalmology and Oncology, Johns Hopkins University, Baltimore, Maryland
| | - Jonathan Cuda
- Department of Dermatology, Dermatopathology and Oral Pathology, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
49
|
Cordas Dos Santos DM, Eilers J, Sosa Vizcaino A, Orlova E, Zimmermann M, Stanulla M, Schrappe M, Börner K, Grimm D, Muckenthaler MU, Kulozik AE, Kunz JB. MAP3K7 is recurrently deleted in pediatric T-lymphoblastic leukemia and affects cell proliferation independently of NF-κB. BMC Cancer 2018; 18:663. [PMID: 29914415 PMCID: PMC6006985 DOI: 10.1186/s12885-018-4525-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 05/18/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Deletions of 6q15-16.1 are recurrently found in pediatric T-cell acute lymphoblastic leukemia (T-ALL). This chromosomal region includes the mitogen-activated protein kinase kinase kinase 7 (MAP3K7) gene which has a crucial role in innate immune signaling and was observed to be functionally and prognostically relevant in different cancer entities. Therefore, we correlated the presence of MAP3K7 deletions with clinical parameters in a cohort of 327 pediatric T-ALL patients and investigated the function of MAP3K7 in the T-ALL cell lines CCRF-CEM, Jurkat and MOLT-4. METHODS MAP3K7 deletions were detected by multiplex ligation-dependent probe amplification (MLPA). T-ALL cell lines were transduced with adeno-associated virus (AAV) vectors expressing anti-MAP3K7 shRNA or a non-silencing shRNA together with a GFP reporter. Transduction efficiency was measured by flow cytometry and depletion efficiency by RT-PCR and Western blots. Induction of apoptosis was measured by flow cytometry after staining with PE-conjugated Annexin V. In order to assess the contribution of NF-κB signaling to the effects of MAP3K7 depletion, cells were treated with TNF-α and cell lysates analyzed for components of the NF-κB pathway by Western blotting and for expression of the NF-κB target genes BCL2, CMYC, FAS, PTEN and TNF-α by RT-PCR. RESULTS MAP3K7 is deleted in approximately 10% and point-mutated in approximately 1% of children with T-ALL. In 32 of 33 leukemias the deletion of MAP3K7 also included the adjacent CASP8AP2 gene. MAP3K7 deletions were associated with the occurrence of SIL-TAL1 fusions and a mature immunophenotype, but not with response to treatment and outcome. Depletion of MAP3K7 expression in T-ALL cell lines by shRNAs slowed down proliferation and induced apoptosis, but neither changed protein levels of components of NF-κB signaling nor NF-κB target gene expression after stimulation with TNF-α. CONCLUSIONS This study revealed that the recurrent deletion of MAP3K7/CASP8AP2 is associated with SIL-TAL1 fusions and a mature immunophenotype, but not with response to treatment and risk of relapse. Homozygous deletions of MAP3K7 were not observed, and efficient depletion of MAP3K7 interfered with viability of T-ALL cells, indicating that a residual expression of MAP3K7 is indispensable for T-lymphoblasts.
Collapse
Affiliation(s)
- David M Cordas Dos Santos
- Department of Pediatric Oncology, Hematology, Immunology and Pulmonology, Heidelberg University Children's Hospital, Heidelberg, Germany.,Molecular Medicine Partnership Unit (MMPU), Heidelberg, Germany
| | - Juliane Eilers
- Department of Pediatric Oncology, Hematology, Immunology and Pulmonology, Heidelberg University Children's Hospital, Heidelberg, Germany.,Molecular Medicine Partnership Unit (MMPU), Heidelberg, Germany
| | - Alfonso Sosa Vizcaino
- Department of Pediatric Oncology, Hematology, Immunology and Pulmonology, Heidelberg University Children's Hospital, Heidelberg, Germany
| | - Elena Orlova
- Department of Pediatric Oncology, Hematology, Immunology and Pulmonology, Heidelberg University Children's Hospital, Heidelberg, Germany
| | - Martin Zimmermann
- Department of Pediatric Hematology and Oncology, MH Hannover, Hannover, Germany
| | - Martin Stanulla
- Department of Pediatric Hematology and Oncology, MH Hannover, Hannover, Germany
| | - Martin Schrappe
- Department of Pediatrics, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Kathleen Börner
- Department of Infectious Diseases, Virology, Heidelberg University Hospital, Heidelberg, Germany.,German Center for Infection Research (DZIF), Partner Site Heidelberg, Heidelberg, Germany.,BioQuant Center, Heidelberg University, Heidelberg, Germany
| | - Dirk Grimm
- Department of Infectious Diseases, Virology, Heidelberg University Hospital, Heidelberg, Germany.,German Center for Infection Research (DZIF), Partner Site Heidelberg, Heidelberg, Germany.,BioQuant Center, Heidelberg University, Heidelberg, Germany.,Cluster of Excellence CellNetworks, Heidelberg University, Heidelberg, Germany
| | - Martina U Muckenthaler
- Department of Pediatric Oncology, Hematology, Immunology and Pulmonology, Heidelberg University Children's Hospital, Heidelberg, Germany.,Molecular Medicine Partnership Unit (MMPU), Heidelberg, Germany
| | - Andreas E Kulozik
- Department of Pediatric Oncology, Hematology, Immunology and Pulmonology, Heidelberg University Children's Hospital, Heidelberg, Germany.,Molecular Medicine Partnership Unit (MMPU), Heidelberg, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Joachim B Kunz
- Department of Pediatric Oncology, Hematology, Immunology and Pulmonology, Heidelberg University Children's Hospital, Heidelberg, Germany. .,Molecular Medicine Partnership Unit (MMPU), Heidelberg, Germany. .,German Cancer Consortium (DKTK), Heidelberg, Germany.
| |
Collapse
|
50
|
Heinrich MC, Göbel C, Kluth M, Bernreuther C, Sauer C, Schroeder C, Möller-Koop C, Hube-Magg C, Lebok P, Burandt E, Sauter G, Simon R, Huland H, Graefen M, Heinzer H, Schlomm T, Heumann A. PSCA expression is associated with favorable tumor features and reduced PSA recurrence in operated prostate cancer. BMC Cancer 2018; 18:612. [PMID: 29855276 PMCID: PMC5984312 DOI: 10.1186/s12885-018-4547-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 05/22/2018] [Indexed: 11/28/2022] Open
Abstract
Background Prostate Stem Cell Antigen (PSCA) is frequently expressed in prostate cancer but its exact function is unclear. Methods To clarify contradictory findings on the prognostic role of PSCA expression, a tissue microarray containing 13,665 prostate cancers was analyzed by immunohistochemistry. Results PSCA staining was absent in normal epithelial and stromal cells of the prostate. Membranous and cytoplasmic PSCA staining was seen in 53.7% of 9642 interpretable tumors. Staining was weak in 22.4%, moderate in 24.5% and strong in 6.8% of tumors. PSCA expression was associated with favorable pathological and clinical tumor features: Early pathological tumor stage (p < 0.0001), low Gleason grade (p < 0.0001), absence of lymph node metastasis (p < 0.0001), low pre-operative PSA level (p = 0.0118), negative surgical margin (p < 0.0001) and reduced PSA recurrence (p < 0.0001). PSCA expression was an independent predictor of prognosis in multivariate analysis (hazard ratio 0.84, p < 0.0001). Conclusions The absence of statistical relationship to TMPRSS2:ERG fusion status, chromosomal deletion or high tumor cell proliferation argues against a major role of PSCA for regulation of cell cycle or genomic integrity. PSCA expression is linked to favorable prognosis. PSCA measurement is a candidate for inclusion in multi-parametric prognostic prostate cancer tests. Electronic supplementary material The online version of this article (10.1186/s12885-018-4547-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marie-Christine Heinrich
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, D-20246, Hamburg, Germany
| | - Cosima Göbel
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, D-20246, Hamburg, Germany
| | - Martina Kluth
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, D-20246, Hamburg, Germany
| | - Christian Bernreuther
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, D-20246, Hamburg, Germany
| | - Charlotte Sauer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, D-20246, Hamburg, Germany
| | - Cornelia Schroeder
- Department of Surgery, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, D-20246, Hamburg, Germany
| | - Christina Möller-Koop
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, D-20246, Hamburg, Germany
| | - Claudia Hube-Magg
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, D-20246, Hamburg, Germany
| | - Patrick Lebok
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, D-20246, Hamburg, Germany
| | - Eike Burandt
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, D-20246, Hamburg, Germany
| | - Guido Sauter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, D-20246, Hamburg, Germany
| | - Ronald Simon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, D-20246, Hamburg, Germany.
| | - Hartwig Huland
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, D-20246, Hamburg, Germany
| | - Markus Graefen
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, D-20246, Hamburg, Germany
| | - Hans Heinzer
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, D-20246, Hamburg, Germany
| | - Thorsten Schlomm
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, D-20246, Hamburg, Germany.,Department of Urology, Section for translational Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, D-20246, Hamburg, Germany
| | - Asmus Heumann
- Department of Surgery, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, D-20246, Hamburg, Germany
| |
Collapse
|