1
|
Wang Y, Liu C, Wang N, Weng D, Zhao Y, Yang H, Wang H, Xu S, Gao J, Lang C, Fan Z, Yu L, He Z. hAMSCs regulate EMT in the progression of experimental pulmonary fibrosis through delivering miR-181a-5p targeting TGFBR1. Stem Cell Res Ther 2025; 16:2. [PMID: 39757225 DOI: 10.1186/s13287-024-04095-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 12/04/2024] [Indexed: 01/07/2025] Open
Abstract
BACKGROUND Pulmonary fibrosis (PF) is a common and multidimensional devastating interstitial lung disease. The development of novel and more effective interventions for PF is an urgent clinical need. A previous study has found that miR-181a-5p plays an important role in the development of PF, and human amniotic mesenchymal stem cells (hAMSCs) exert potent therapeutic potential on PF. However, whether hAMSCs act on PF by delivering miR-181a-5p and its detailed mechanism still remain unknown. Thus, this study was designed to investigate the underlying possible mechanism of hAMSCs on PF in bleomycin (BLM)-induced mouse PF model, and a co-culture system of hAMSCs and A549 cells epithelial mesenchymal transition (EMT) model, focusing on its effects on collagen deposition, EMT, and epithelial cell cycle regulation. METHODS hAMSCs with different miR-181a-5p expression levels were constructed. BLM (4 mg/kg) was used to create a PF model, while TGF-β1 was used to induce A549 cells to construct an EMT model. Furthermore, the effects of different miR-181a-5p expression in hAMSCs on collagen deposition and EMT during lung fibrosis were assessed in vivo and in vitro. RESULTS We found that hAMSCs exerted anti-fibrotic effect in BLM-induced mouse PF model. Moreover, hAMSCs also exerted protective effect on TGFβ1-induced A549 cell EMT model. Furthermore, hAMSCs ameliorated PF by promoting epithelial cell proliferation, reducing epithelial cell apoptosis, and attenuating EMT of epithelial cells through paracrine effects. hAMSCs regulated EMT in PF through delivering miR-181a-5p targeting TGFBR1. CONCLUSIONS Our findings reveal for the first time that hAMSCs inhibit PF by promoting epithelial cell proliferation, reducing epithelial cell apoptosis, and attenuating EMT. Mechanistically, the therapeutic effect of hMASCs on PF is achieved through delivering miR-181a-5p targeting TGFBR1.
Collapse
Affiliation(s)
- Yanyang Wang
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China
- Collaborative Innovation Center of Chinese Ministry of Education, Zunyi Medical University, Zunyi, 563003, Guizhou, China
| | - Chan Liu
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China
- Collaborative Innovation Center of Chinese Ministry of Education, Zunyi Medical University, Zunyi, 563003, Guizhou, China
| | - Nuoxin Wang
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China
- Collaborative Innovation Center of Chinese Ministry of Education, Zunyi Medical University, Zunyi, 563003, Guizhou, China
| | - Dong Weng
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China
- Collaborative Innovation Center of Chinese Ministry of Education, Zunyi Medical University, Zunyi, 563003, Guizhou, China
| | - Yan Zhao
- Department of Prevention Healthcare, Southwest Hospital, First Affiliated Hospital of the Army Medical University, Chongqing, 400038, China
| | - Hongyu Yang
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China
- Collaborative Innovation Center of Chinese Ministry of Education, Zunyi Medical University, Zunyi, 563003, Guizhou, China
| | - Haoyuan Wang
- Department of Cardiothoracic Surgery, Liuzhou People's Hospital, Liuzhou, 545001, Guangxi, China
| | - Shangfu Xu
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China
- Collaborative Innovation Center of Chinese Ministry of Education, Zunyi Medical University, Zunyi, 563003, Guizhou, China
| | - Jianmei Gao
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi, 563000, Guizhou, China
| | - Changhui Lang
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Zhenhai Fan
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China
- Collaborative Innovation Center of Chinese Ministry of Education, Zunyi Medical University, Zunyi, 563003, Guizhou, China
| | - Limei Yu
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China
- Collaborative Innovation Center of Chinese Ministry of Education, Zunyi Medical University, Zunyi, 563003, Guizhou, China
| | - Zhixu He
- Center of Tissue Engineering and Stem Cell Research, Guizhou Medical University, Guiyang, 550025, Guizhou, China.
- Department of Pediatric Hematology, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550025, Guizhou, China.
| |
Collapse
|
2
|
Niayesh-Mehr R, Kalantar M, Bontempi G, Montaldo C, Ebrahimi S, Allameh A, Babaei G, Seif F, Strippoli R. The role of epithelial-mesenchymal transition in pulmonary fibrosis: lessons from idiopathic pulmonary fibrosis and COVID-19. Cell Commun Signal 2024; 22:542. [PMID: 39538298 PMCID: PMC11558984 DOI: 10.1186/s12964-024-01925-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
Despite the tremendous advancements in the knowledge of the pathophysiology and clinical aspects of SARS-CoV-2 infection, still many issues remain unanswered, especially in the long-term effects. Mounting evidence suggests that pulmonary fibrosis (PF) is one of the most severe complications associated with COVID-19. Therefore, understanding the molecular mechanisms behind its development is helpful to develop successful therapeutic strategies. Epithelial to mesenchymal transition (EMT) and its cell specific variants endothelial to mesenchymal transition (EndMT) and mesothelial to mesenchymal transition (MMT) are physio-pathologic cellular reprogramming processes induced by several infectious, inflammatory and biomechanical stimuli. Cells undergoing EMT acquire invasive, profibrogenic and proinflammatory activities by secreting several extracellular mediators. Their activity has been implicated in the pathogenesis of PF in a variety of lung disorders, including idiopathic pulmonary fibrosis (IPF) and COVID-19. Aim of this article is to provide an updated survey of the cellular and molecular mechanisms, with emphasis on EMT-related processes, implicated in the genesis of PF in IFP and COVID-19.
Collapse
Affiliation(s)
- Reyhaneh Niayesh-Mehr
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mojtaba Kalantar
- Department of Occupational Health, Shoushtar Faculty of Medical Sciences, Shoushtar, Iran
| | - Giulio Bontempi
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
- Gene Expression Laboratory, National Institute for Infectious Diseases, Lazzaro Spallanzani IRCCS, Rome, Italy
| | - Claudia Montaldo
- Gene Expression Laboratory, National Institute for Infectious Diseases, Lazzaro Spallanzani IRCCS, Rome, Italy
| | - Saeedeh Ebrahimi
- Department of Medical Microbiology (Bacteriology and Virology), Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Abdolamir Allameh
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ghader Babaei
- Department of Clinical Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Faezeh Seif
- Department of Basic Sciences, Shoushtar Faculty of Medical Sciences, Shoushtar, Iran.
| | - Raffaele Strippoli
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy.
- Gene Expression Laboratory, National Institute for Infectious Diseases, Lazzaro Spallanzani IRCCS, Rome, Italy.
| |
Collapse
|
3
|
Wang S, Yu H, Liu S, Liu Y, Gu X. Regulation of idiopathic pulmonary fibrosis: a cross-talk between TGF- β signaling and MicroRNAs. Front Med (Lausanne) 2024; 11:1415278. [PMID: 39386739 PMCID: PMC11461268 DOI: 10.3389/fmed.2024.1415278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 09/16/2024] [Indexed: 10/12/2024] Open
Abstract
Pulmonary fibrosis (PF) is a highly complex and challenging disease affecting the respiratory system. Patients with PF usually have an abbreviated survival period and a consequential high mortality rate after the diagnosis is confirmed, posing serious threats to human health. In clinical practice, PF is typically treated by antifibrotic agents, such as Pirfenidone and Nintedanib. However, these agents have been reported to correlate with substantial adverse effects, escalating costs, and insufficient efficacy. Moreover, it remains unclarified about the multifactorial pathology of PF. Therefore, there is an urgent demand for elucidating these underlying mechanisms and identifying safe, efficient, and targeted therapeutic strategies for PF treatment. The crucial role of the transforming growth factor-β (TGF-β) signaling pathway in PF development has been explored in many studies. MicroRNAs (miRNAs), which function as post-transcriptional regulators of gene expression, can significantly affect the development of PF by modulating TGF-β signaling. In turn, TGF-β signaling can regulate the expression and biogenesis of miRNAs, thereby substantially affecting the progression of PF. Hence, the therapeutic strategies that focus on the drug-targeted regulation of miRNAs, either by augmenting down-regulated miRNAs or inhibiting overexpressed miRNAs, may hinder the pathways related to TGF-β signaling. These strategies may contribute to the prevention and suppression of PF progression and may provide novel insights into the treatment of this disease.
Collapse
Affiliation(s)
| | | | | | | | - Xiu Gu
- Department of Pulmonary and Critical Care Medicine, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
4
|
Chilosi M, Piciucchi S, Ravaglia C, Spagnolo P, Sverzellati N, Tomassetti S, Wuyts W, Poletti V. "Alveolar stem cell exhaustion, fibrosis and bronchiolar proliferation" related entities. A narrative review. Pulmonology 2024:S2531-0437(24)00092-8. [PMID: 39277539 DOI: 10.1016/j.pulmoe.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/11/2024] [Accepted: 05/27/2024] [Indexed: 09/17/2024] Open
Affiliation(s)
- M Chilosi
- Department of Medical Specialities/Pulmonology Ospedale GB Morgagni, Forlì I
| | - S Piciucchi
- Department of Radiology, Ospedale GB Morgagni, Forlì I.
| | - C Ravaglia
- Department of Medical Specialities/Pulmonology Ospedale GB Morgagni, Forlì (I); DIMEC, Bologna University, Forlì Campus, Forlì I, Department
| | - P Spagnolo
- Respiratory Disease Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - N Sverzellati
- Scienze Radiologiche, Department of Medicine and Surgery, University Hospital Parma, Parma, Italy
| | - S Tomassetti
- Department of Experimental and Clinical Medicine, Careggi University Hospital, Florence, Italy
| | - W Wuyts
- Pulmonology Department, UZ Leuven, Leuven, Belgium
| | - V Poletti
- Department of Medical Specialities/Pulmonology Ospedale GB Morgagni, Forlì (I); DIMEC, Bologna University, Forlì Campus, Forlì I, Department; Department of Respiratory Diseases & Allergy, Aarhus University, Aarhus, Denmark
| |
Collapse
|
5
|
Bao J, Liu C, Song H, Mao Z, Qu W, Yu F, Shen Y, Jiang J, Chen X, Wang R, Wang Q, Chen W, Zheng S, Chen Y. Cepharanthine attenuates pulmonary fibrosis via modulating macrophage M2 polarization. BMC Pulm Med 2024; 24:444. [PMID: 39261812 PMCID: PMC11391720 DOI: 10.1186/s12890-024-03250-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 08/29/2024] [Indexed: 09/13/2024] Open
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is a group of chronic interstitial pulmonary diseases characterized by myofibroblast proliferation and extracellular matrix (ECM) deposition. However, current treatments are not satisfactory. Therefore, more effective therapies need to be explored. Cepharanthine (CEP) is a naturally occurring alkaloid that has recently been reported to have multiple pharmacological effects, particularly in chronic inflammation. METHODS For in vivo experiments, first, a pulmonary fibrosis murine model was generated via tracheal injection of bleomycin (BLM). Second, the clinical manifestations and histopathological changes of the mice were used to verify that treatment with CEP might significantly reduce BLM-induced fibrosis. Furthermore, flow cytometric analysis was used to analyze the changes in the number of M2 macrophages in the lung tissues before and after treatment with CEP to explore the relationship between macrophage M2 polarization and pulmonary fibrosis. In vitro, we constructed two co-culture systems (THP-1 and MRC5 cells, RAW264.7 and NIH 3T3 cells), and measured the expression of fibrosis-related proteins to explore whether CEP could reduce pulmonary fibrosis by regulating macrophage M2 polarization and fibroblast activation. RESULTS The results showed that the intranasal treatment of CEP significantly attenuated the symptoms of pulmonary fibrosis induced by BLM in a murine model. Our findings also indicated that CEP treatment markedly reduced the expression of fibrosis markers, including TGF-β1, collagen I, fibronectin and α-SMA, in the mouse lung. Furthermore, in vitro studies demonstrated that CEP attenuated pulmonary fibrosis by inhibiting fibroblast activation through modulating macrophage M2 polarization and reducing TGF-β1 expression. CONCLUSIONS This study demonstrated the potential and efficacy of CEP in the treatment of pulmonary fibrosis. In particular, this study revealed a novel mechanism of CEP in inhibiting fibroblast activation by regulating macrophage M2 polarization and reducing the expression of fibrosis-associated factors. Our findings open a new direction for future research into the treatment of pulmonary fibrosis.
Collapse
Affiliation(s)
- Jiaqi Bao
- Department of Laboratory Medicine, the First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China
- Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, Hangzhou, 310003, China
- Institute of Laboratory Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Chang Liu
- Department of Laboratory Medicine, the First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China
- Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, Hangzhou, 310003, China
- Institute of Laboratory Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Huafeng Song
- Department of Clinical Laboratory, The Fifth People's Hospital of Suzhou, Infectious Disease Hospital Affiliated to Soochow University, No. 10, Guangqian Road, Xiangcheng District, Suzhou, 215000, China
| | - Zheying Mao
- Department of Laboratory Medicine, the First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China
- Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, Hangzhou, 310003, China
- Institute of Laboratory Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Wenxin Qu
- Department of Laboratory Medicine, the First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China
- Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, Hangzhou, 310003, China
- Institute of Laboratory Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Fei Yu
- Department of Laboratory Medicine, the First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China
- Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, Hangzhou, 310003, China
- Institute of Laboratory Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Yifei Shen
- Department of Laboratory Medicine, the First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China
- Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, Hangzhou, 310003, China
- Institute of Laboratory Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Jingjing Jiang
- Department of Laboratory Medicine, the First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China
- Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, Hangzhou, 310003, China
- Institute of Laboratory Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Xiao Chen
- Department of Laboratory Medicine, the First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China
- Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, Hangzhou, 310003, China
- Institute of Laboratory Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Ruonan Wang
- Department of Laboratory Medicine, the First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China
- Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, Hangzhou, 310003, China
- Institute of Laboratory Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Qi Wang
- Department of Laboratory Medicine, the First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China
- Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, Hangzhou, 310003, China
- Institute of Laboratory Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Weizhen Chen
- Department of Laboratory Medicine, the First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China
- Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, Hangzhou, 310003, China
- Institute of Laboratory Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Shufa Zheng
- Department of Laboratory Medicine, the First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China.
- Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, Hangzhou, 310003, China.
- Institute of Laboratory Medicine, Zhejiang University, Hangzhou, 310003, China.
| | - Yu Chen
- Department of Laboratory Medicine, the First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China.
- Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, Hangzhou, 310003, China.
- Institute of Laboratory Medicine, Zhejiang University, Hangzhou, 310003, China.
| |
Collapse
|
6
|
Xing X, Rodeo SA. Emerging roles of non-coding RNAs in fibroblast to myofibroblast transition and fibrotic diseases. Front Pharmacol 2024; 15:1423045. [PMID: 39114349 PMCID: PMC11303237 DOI: 10.3389/fphar.2024.1423045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/01/2024] [Indexed: 08/10/2024] Open
Abstract
The transition of fibroblasts to myofibroblasts (FMT) represents a pivotal process in wound healing, tissue repair, and fibrotic diseases. This intricate transformation involves dynamic changes in cellular morphology, gene expression, and extracellular matrix remodeling. While extensively studied at the molecular level, recent research has illuminated the regulatory roles of non-coding RNAs (ncRNAs) in orchestrating FMT. This review explores the emerging roles of ncRNAs, including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), in regulating this intricate process. NcRNAs interface with key signaling pathways, transcription factors, and epigenetic mechanisms to fine-tune gene expression during FMT. Their functions are critical in maintaining tissue homeostasis, and disruptions in these regulatory networks have been linked to pathological fibrosis across various tissues. Understanding the dynamic roles of ncRNAs in FMT bears therapeutic promise. Targeting specific ncRNAs holds potential to mitigate exaggerated myofibroblast activation and tissue fibrosis. However, challenges in delivery and specificity of ncRNA-based therapies remain. In summary, ncRNAs emerge as integral regulators in the symphony of FMT, orchestrating the balance between quiescent fibroblasts and activated myofibroblasts. As research advances, these ncRNAs appear to be prospects for innovative therapeutic strategies, offering hope in taming the complexities of fibrosis and restoring tissue equilibrium.
Collapse
Affiliation(s)
- Xuewu Xing
- Department of Orthopaedics, Tianjin First Central Hospital, Tianjin, China
- Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, NY, United States
| | - Scott A. Rodeo
- Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, NY, United States
| |
Collapse
|
7
|
Sampsonas F, Bosgana P, Bravou V, Tzouvelekis A, Dimitrakopoulos FI, Kokkotou E. Interstitial Lung Diseases and Non-Small Cell Lung Cancer: Particularities in Pathogenesis and Expression of Driver Mutations. Genes (Basel) 2024; 15:934. [PMID: 39062713 PMCID: PMC11276289 DOI: 10.3390/genes15070934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
INTRODUCTION Interstitial lung diseases are a varied group of diseases associated with chronic inflammation and fibrosis. With the emerging and current treatment options, survival rates have vastly improved. Having in mind that the most common type is idiopathic pulmonary fibrosis and that a significant proportion of these patients will develop lung cancer as the disease progresses, prompt diagnosis and personalized treatment of these patients are fundamental. SCOPE AND METHODS The scope of this review is to identify and characterize molecular and pathogenetic pathways that can interconnect Interstitial Lung Diseases and lung cancer, especially driver mutations in patients with NSCLC, and to highlight new and emerging treatment options in that view. RESULTS Common pathogenetic pathways have been identified in sites of chronic inflammation in patients with interstitial lung diseases and lung cancer. Of note, the expression of driver mutations in EGFR, BRAF, and KRAS G12C in patients with NSCLC with concurrent interstitial lung disease is vastly different compared to those patients with NSCLC without Interstitial Lung Disease. CONCLUSIONS NSCLC in patients with Interstitial Lung Disease is a challenging diagnostic and clinical entity, and a personalized medicine approach is fundamental to improving survival and quality of life. Newer anti-fibrotic medications have improved survival in IPF/ILD patients; thus, the incidence of lung cancer is going to vastly increase in the next 5-10 years.
Collapse
Affiliation(s)
- Fotios Sampsonas
- Department of Respiratory Medicine, Medical School, University of Patras, 26504 Patras, Greece;
| | - Pinelopi Bosgana
- Department of Pathology, Medical School, University of Patras, 26504 Patras, Greece;
| | - Vasiliki Bravou
- Department of Anatomy, Embryology and Histology, Medical School, University of Patras, 26504 Patras, Greece;
| | - Argyrios Tzouvelekis
- Department of Respiratory Medicine, Medical School, University of Patras, 26504 Patras, Greece;
| | | | - Eleni Kokkotou
- Oncology Unit, The Third Department of Medicine, Medical School, National and Kapodistrian University of Athens, 15772 Athens, Greece;
| |
Collapse
|
8
|
Guan Y, Zhang J, Cai X, Cai Y, Song Z, Huang Y, Qian W, Pan Z, Zhang X. Astragaloside IV inhibits epithelial-mesenchymal transition and pulmonary fibrosis via lncRNA-ATB/miR-200c/ZEB1 signaling pathway. Gene 2024; 897:148040. [PMID: 38065426 DOI: 10.1016/j.gene.2023.148040] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/27/2023] [Indexed: 01/17/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive lung disease involving multiple factors and genes. Astragaloside IV (ASV) is one of the main bioactive ingredients extracted from the root of Astragalus membranaceus, which plays an important role in anti-inflammatory, antioxidant and improve cardiopulmonary function. Epithelial-mesenchymal transition (EMT) is a key driver of the process of pulmonary fibrosis, and Zinc finger E-box-binding homeobox 1 (ZEB1) can promote pulmonary fibrosis in an EMT-dependent manner. Here, we found that ASV effectively inhibited the ZEB1 and EMT in both bleomycin (BLM)-induced rat pulmonary fibrosis and TGF-β1-treated A549 cells. To further elucidate the molecular mechanisms underlying effects of ASV in IPF, we explored the truth using bioinformatics, plasmid construction, immunofluorescence staining, western blotting and other experiments. Dual luciferase reporter assay and bioinformatics proved that miR-200c not only acts as an upstream regulatory miRNA of ZEB1 but also has binding sites for the lncRNA-ATB. In A549 cell-based EMT models, ASV reduced the expression of lncRNA-ATB and upregulated miR-200c. Furthermore, overexpression of lncRNA-ATB and silencing of miR-200c reversed the down-regulation of ZEB1 and the inhibition of EMT processes by ASV. In addition, the intervention of ASV prevented lncRNA-ATB as a ceRNA from regulating the expression of ZEB1 through sponging miR-200c. Taken together, the results showed that ASV inhibited the EMT process through the lncRNA-ATB/miR-200c/ZEB1 signaling pathway, which provides a novel approach to the treatment of IPF.
Collapse
Affiliation(s)
- Yanyun Guan
- Department of Poisoning and Occupational Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Juan Zhang
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250062, China
| | - Xinrui Cai
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250062, China
| | - Yanan Cai
- Department of General Surgery, Tai'an 88 Hospital, Tai'an 271000, China
| | - Ziqiong Song
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250062, China
| | - Yuan Huang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250011, China
| | - Weibin Qian
- Department of Lung Disease, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250011, China.
| | - Zhifeng Pan
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250062, China.
| | - Xingguo Zhang
- Department of Poisoning and Occupational Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China.
| |
Collapse
|
9
|
Chen Y, Li Z, Ji G, Wang S, Mo C, Ding B. Lung regeneration: diverse cell types and the therapeutic potential. MedComm (Beijing) 2024; 5:e494. [PMID: 38405059 PMCID: PMC10885188 DOI: 10.1002/mco2.494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 02/27/2024] Open
Abstract
Lung tissue has a certain regenerative ability and triggers repair procedures after injury. Under controllable conditions, lung tissue can restore normal structure and function. Disruptions in this process can lead to respiratory system failure and even death, causing substantial medical burden. The main types of respiratory diseases are chronic obstructive pulmonary disease (COPD), idiopathic pulmonary fibrosis (IPF), and acute respiratory distress syndrome (ARDS). Multiple cells, such as lung epithelial cells, endothelial cells, fibroblasts, and immune cells, are involved in regulating the repair process after lung injury. Although the mechanism that regulates the process of lung repair has not been fully elucidated, clinical trials targeting different cells and signaling pathways have achieved some therapeutic effects in different respiratory diseases. In this review, we provide an overview of the cell type involved in the process of lung regeneration and repair, research models, and summarize molecular mechanisms involved in the regulation of lung regeneration and fibrosis. Moreover, we discuss the current clinical trials of stem cell therapy and pharmacological strategies for COPD, IPF, and ARDS treatment. This review provides a reference for further research on the molecular and cellular mechanisms of lung regeneration, drug development, and clinical trials.
Collapse
Affiliation(s)
- Yutian Chen
- The Department of Endovascular SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan UniversityChengduChina
| | - Zhen Li
- The Department of Endovascular SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Gaili Ji
- Department of GynecologyThe Third Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Shaochi Wang
- Department of Translational MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Chunheng Mo
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan UniversityChengduChina
| | - Bi‐Sen Ding
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan UniversityChengduChina
| |
Collapse
|
10
|
Melocchi L, Cervi G, Sartori G, Gandolfi L, Jocollé G, Cavazza A, Rossi G. Up-regulation by overexpression of c-MET in fibroblastic foci of usual interstitial pneumonia. Pathologica 2023; 115:308-317. [PMID: 37812383 PMCID: PMC10767799 DOI: 10.32074/1591-951x-920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 09/14/2023] [Indexed: 10/10/2023] Open
Abstract
Background Usual interstitial pneumonia (UIP) is the radiologic and histologic hallmark of idiopathic pulmonary fibrosis (IPF) and the commonest histologic pattern of other progressive fibrosing interstitial lung diseases (e.g., fibrotic hypersensitivity pneumonia). Analogous to lung cancer, activation of epithelial-to-mesenchymal transition (EMT) is one of the main molecular pathways recently identified by transcriptomic studies in IPF. Fibroblastic foci (FF) are considered the active/trigger component of UIP pattern. The proto-oncogene C-MET is a key gene among molecules promoting EMT against which several inhibitors are currently available or promising in ongoing studies on lung cancer. Methods Twenty surgical cases of diffuse fibrosing interstitial lung diseases (fILD) with UIP pattern and FF-rich (17 IPF and 3 patients with fibrotic hypersensitivity pneumonia, fHP) were retrospectively selected. FF were manually microdissected and analysed for c-MET gene alterations (FISH amplification and gene hot-spot mutations Sanger sequencing) and tested with a c-MET companion diagnostic antibody (clone SP44 metmab) by immunohistochemistry. Results FF are characterized by upregulation of c-MET as shown by overexpression of the protein in 80% of cases, while no gene amplification by FISH or mutations were detected. C-MET upregulation of FF was observed either in IPF and fHP, with a tropism for the epithelial cell component only. Conclusion Upregulation of c-MET in FF of ILD with UIP pattern further confirms the key role of the proto-oncogene c-MET in its pathogenesis, possibly representing an interesting and easily-detectable molecular target for selective therapy using specific inhibitors in future clinical trials, similar to lung cancer. It is reasonable to speculate that molecular alterations in FF can also be detected in FF by transbronchial cryobiopsy.
Collapse
Affiliation(s)
- Laura Melocchi
- Operative Unit of Pathology, Diagnostic Services Area, Fondazione Poliambulanza Hospital Institute, Brescia, Italy
| | - Giulia Cervi
- Respiratory Diseases Unit, Carlo Poma Hospital, Azienda Territoriale Socio Sanitaria (ATS) of Mantova, Mantova, Italy
| | - Giuliana Sartori
- Operative Unit of Pathologic Anatomy, Azienda USL-IRCCS Reggio Emilia, Reggio Emilia, Italy
| | - Laura Gandolfi
- Operative Unit of Pathology, Diagnostic Services Area, Fondazione Poliambulanza Hospital Institute, Brescia, Italy
| | - Genny Jocollé
- Operative Unit of Oncology, Azienda USL Valle d’Aosta, Aosta, Italy
| | - Alberto Cavazza
- Operative Unit of Pathologic Anatomy, Azienda USL-IRCCS Reggio Emilia, Reggio Emilia, Italy
| | - Giulio Rossi
- Operative Unit of Pathology, Diagnostic Services Area, Fondazione Poliambulanza Hospital Institute, Brescia, Italy
| |
Collapse
|
11
|
Singh P, Ali SN, Zaheer S, Singh M. Cellular mechanisms in the pathogenesis of interstitial lung diseases. Pathol Res Pract 2023; 248:154691. [PMID: 37480596 DOI: 10.1016/j.prp.2023.154691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/24/2023]
Abstract
The interstitial lung diseases (ILDs) are a large, heterogeneous group of several hundred generally rare pulmonary pathologies, which show injury, inflammation and/or scarring in the lung. Although the aetiology of these disorders remains largely unknown, various cellular mechanisms have an important role in pathogenesis of fibrosis on the background of occupational, environmental and genetic factors. We have tried to provide new insights into the interactions and cellular contributions, analysing the roles of various cells in the pathogenesis of idiopathic pulmonary fibrosis.
Collapse
Affiliation(s)
- Priyanka Singh
- Department of Pathology, VMMC, and Safdarjang Hospital, New Delhi, India
| | - Saba Naaz Ali
- Department of Pathology, VMMC, and Safdarjang Hospital, New Delhi, India
| | - Sufian Zaheer
- Department of Pathology, VMMC, and Safdarjang Hospital, New Delhi, India.
| | - Mukul Singh
- Department of Pathology, VMMC, and Safdarjang Hospital, New Delhi, India
| |
Collapse
|
12
|
Volpe MC, Ciucci G, Zandomenego G, Vuerich R, Ring NAR, Vodret S, Salton F, Marchesan P, Braga L, Marcuzzo T, Bussani R, Colliva A, Piazza S, Confalonieri M, Zacchigna S. Flt1 produced by lung endothelial cells impairs ATII cell transdifferentiation and repair in pulmonary fibrosis. Cell Death Dis 2023; 14:437. [PMID: 37454154 PMCID: PMC10349845 DOI: 10.1038/s41419-023-05962-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 06/30/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023]
Abstract
Pulmonary fibrosis is a devastating disease, in which fibrotic tissue progressively replaces lung alveolar structure, resulting in chronic respiratory failure. Alveolar type II cells act as epithelial stem cells, being able to transdifferentiate into alveolar type I cells, which mediate gas exchange, thus contributing to lung homeostasis and repair after damage. Impaired epithelial transdifferentiation is emerging as a major pathogenetic mechanism driving both onset and progression of fibrosis in the lung. Here, we show that lung endothelial cells secrete angiocrine factors that regulate alveolar cell differentiation. Specifically, we build on our previous data on the anti-fibrotic microRNA-200c and identify the Vascular Endothelial Growth Factor receptor 1, also named Flt1, as its main functional target in endothelial cells. Endothelial-specific knockout of Flt1 reproduces the anti-fibrotic effect of microRNA-200c against pulmonary fibrosis and results in the secretion of a pool of soluble factors and matrix components able to promote epithelial transdifferentiation in a paracrine manner. Collectively, these data indicate the existence of a complex endothelial-epithelial paracrine crosstalk in vitro and in vivo and position lung endothelial cells as a relevant therapeutic target in the fight against pulmonary fibrosis.
Collapse
Affiliation(s)
- Maria Concetta Volpe
- Cardiovascular Biology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Giulio Ciucci
- Cardiovascular Biology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Giulia Zandomenego
- Department of Life Sciences, University of Trieste, Trieste, Italy
- Functional Cell Biology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Roman Vuerich
- Cardiovascular Biology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Nadja Anneliese Ruth Ring
- Cardiovascular Biology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
- Ludwig Boltzmann Gesellschaft Research Group Senescence and Healing of Wounds, Vienna, Austria
| | - Simone Vodret
- Cardiovascular Biology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Francesco Salton
- Pulmonology Unit, University Hospital of Cattinara, Trieste, Italy
| | - Pietro Marchesan
- Cardiovascular Biology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Luca Braga
- Functional Cell Biology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Thomas Marcuzzo
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Rossana Bussani
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Andrea Colliva
- Cardiovascular Biology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Silvano Piazza
- Computational Biology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Marco Confalonieri
- Pulmonology Unit, University Hospital of Cattinara, Trieste, Italy
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Serena Zacchigna
- Cardiovascular Biology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy.
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy.
| |
Collapse
|
13
|
Arcuri S, Pennarossa G, De Iorio T, Gandolfi F, Brevini TAL. 3D ECM-Based Scaffolds Boost Young Cell Secretome-Derived EV Rejuvenating Effects in Senescent Cells. Int J Mol Sci 2023; 24:ijms24098285. [PMID: 37175996 PMCID: PMC10179031 DOI: 10.3390/ijms24098285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/26/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023] Open
Abstract
Aging is a complex, multifaceted degenerative process characterized by a progressive accumulation of macroscopic and microscopic modifications that cause a gradual decline of physiological functions. During the last few years, strategies to ease and counteract senescence or even rejuvenate cells and tissues were proposed. Here we investigate whether young cell secretome-derived extracellular vesicles (EVs) ameliorate the cellular and physiological hallmarks of aging in senescent cells. In addition, based on the assumption that extracellular matrix (ECM) provides biomechanical stimuli, directly influencing cell behavior, we examine whether ECM-based bio-scaffolds, obtained from decellularized ovaries of young swine, stably maintain the rejuvenated phenotype acquired by cells after exposure to young cell secretome. The results obtained demonstrate that young cells release EVs endowed with the ability to counteract aging. In addition, comparison between young and aged cell secretomes shows a significantly higher miR-200 content in EVs produced using fibroblasts isolated from young donors. The effect exerted by young cell secretome-derived EVs is transient, but can be stabilized using a young ECM microenvironment. This finding indicates a synergistic interaction occurring among molecular effectors and ECM-derived stimuli that cooperate to control a unique program, driving the cell clock. The model described in this paper may represent a useful tool to finely dissect the complex regulations and multiple biochemical and biomechanical cues driving cellular biological age.
Collapse
Affiliation(s)
- Sharon Arcuri
- Laboratory of Biomedical Embryology and Tissue Engineering, Department of Veterinary Medicine and Animal Sciences, Center for Stem Cell Research, Università degli Studi di Milano, Via Trentacoste 2, 20134 Milan, Italy
| | - Georgia Pennarossa
- Laboratory of Biomedical Embryology and Tissue Engineering, Department of Veterinary Medicine and Animal Sciences, Center for Stem Cell Research, Università degli Studi di Milano, Via Trentacoste 2, 20134 Milan, Italy
| | - Teresina De Iorio
- Laboratory of Biomedical Embryology and Tissue Engineering, Department of Veterinary Medicine and Animal Sciences, Center for Stem Cell Research, Università degli Studi di Milano, Via Trentacoste 2, 20134 Milan, Italy
| | - Fulvio Gandolfi
- Department of Agricultural and Environmental Sciences-Production, Landscape, Agroenergy, Università degli Studi di Milano, Via Celoria 2, 20133 Milan, Italy
| | - Tiziana A L Brevini
- Laboratory of Biomedical Embryology and Tissue Engineering, Department of Veterinary Medicine and Animal Sciences, Center for Stem Cell Research, Università degli Studi di Milano, Via Trentacoste 2, 20134 Milan, Italy
| |
Collapse
|
14
|
Pérez-Mies B, Caniego-Casas T, Bardi T, Carretero-Barrio I, Benito A, García-Cosío M, González-García I, Pizarro D, Rosas M, Cristóbal E, Ruano Y, Garrido MC, Rigual-Bobillo J, de Pablo R, Galán JC, Pestaña D, Palacios J. Progression to lung fibrosis in severe COVID-19 patients: A morphological and transcriptomic study in postmortem samples. Front Med (Lausanne) 2022; 9:976759. [PMID: 36405615 PMCID: PMC9669577 DOI: 10.3389/fmed.2022.976759] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 10/17/2022] [Indexed: 09/02/2023] Open
Abstract
The development of lung fibrosis is a major concern in patients recovered from severe COVID-19 pneumonia. This study aimed to document the evolution of diffuse alveolar damage (DAD) to the fibrosing pattern and define the transcriptional programs involved. Morphological, immunohistochemical and transcriptional analysis were performed in lung samples obtained from autopsy of 33 severe COVID-19 patients (median illness duration: 36 days). Normal lung and idiopathic pulmonary fibrosis (IPF) were used for comparison. Twenty-seven patients with DAD and disease evolution of more than 2 weeks had fibrosis. Pathways and genes related with collagen biosynthesis and extracellular matrix (ECM) biosynthesis and degradation, myofibroblastic differentiation and epithelial to mesenchymal transition (EMT) were overexpressed in COVID-19. This pattern had similarities with that observed in IPF. By immunohistochemistry, pathological fibroblasts (pFBs), with CTHRC1 and SPARC expression, increased in areas of proliferative DAD and decreased in areas of mature fibrosis. Immunohistochemical analysis demonstrated constitutive expression of cadherin-11 in normal epithelial cells and a similar pattern of cadherin and catenin expression in epithelial cells from both normal and COVID-19 samples. Transcriptomic analysis revealed downregulation of the Hippo pathway, concordant with the observation of YAP overexpression in hyperplastic alveolar epithelial cells. Progression to fibrosis in severe COVID-19 is associated with overexpression of fibrogenic pathways and increased in CTHRC1- and SPARC-positive pFBs. Whereas the Hippo pathway seemed to be implicated in the response to epithelial cell damage, EMT was not a major process implicated in COVID-19 mediated lung fibrosis.
Collapse
Affiliation(s)
- Belén Pérez-Mies
- Pathology, Hospital Universitario Ramón y Cajal, Madrid, Spain
- Instituto Ramon y Cajal de Investigación Sanitaria, Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
- Faculty of Medicine, Alcalá University, Alcalá de Henares, Spain
| | - Tamara Caniego-Casas
- Pathology, Hospital Universitario Ramón y Cajal, Madrid, Spain
- Instituto Ramon y Cajal de Investigación Sanitaria, Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Tommaso Bardi
- Instituto Ramon y Cajal de Investigación Sanitaria, Madrid, Spain
- Department of Anesthesiology and Surgical Critical Care, Hospital Ramón y Cajal, Madrid, Spain
| | - Irene Carretero-Barrio
- Pathology, Hospital Universitario Ramón y Cajal, Madrid, Spain
- Instituto Ramon y Cajal de Investigación Sanitaria, Madrid, Spain
- Faculty of Medicine, Alcalá University, Alcalá de Henares, Spain
| | - Amparo Benito
- Pathology, Hospital Universitario Ramón y Cajal, Madrid, Spain
- Instituto Ramon y Cajal de Investigación Sanitaria, Madrid, Spain
- Faculty of Medicine, Alcalá University, Alcalá de Henares, Spain
| | - Mónica García-Cosío
- Pathology, Hospital Universitario Ramón y Cajal, Madrid, Spain
- Instituto Ramon y Cajal de Investigación Sanitaria, Madrid, Spain
- Faculty of Medicine, Alcalá University, Alcalá de Henares, Spain
| | - Irene González-García
- Pathology, Hospital Universitario Ramón y Cajal, Madrid, Spain
- Instituto Ramon y Cajal de Investigación Sanitaria, Madrid, Spain
| | - David Pizarro
- Pathology, Hospital Universitario Ramón y Cajal, Madrid, Spain
- Instituto Ramon y Cajal de Investigación Sanitaria, Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Marta Rosas
- Pathology, Hospital Universitario Ramón y Cajal, Madrid, Spain
- Instituto Ramon y Cajal de Investigación Sanitaria, Madrid, Spain
| | - Eva Cristóbal
- Pathology, Hospital Universitario Ramón y Cajal, Madrid, Spain
- Instituto Ramon y Cajal de Investigación Sanitaria, Madrid, Spain
| | - Yolanda Ruano
- Department of Pathology, Medical School, Universidad Complutense, Instituto i + 12, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - María Concepción Garrido
- Department of Pathology, Medical School, Universidad Complutense, Instituto i + 12, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Juan Rigual-Bobillo
- Instituto Ramon y Cajal de Investigación Sanitaria, Madrid, Spain
- Department of Respiratory, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Raúl de Pablo
- Instituto Ramon y Cajal de Investigación Sanitaria, Madrid, Spain
- Faculty of Medicine, Alcalá University, Alcalá de Henares, Spain
- Medical Intensive Care Unit, Hospital Ramón y Cajal, Madrid, Spain
| | - Juan Carlos Galán
- Instituto Ramon y Cajal de Investigación Sanitaria, Madrid, Spain
- Clinical Microbiology Unit, Hospital Ramón y Cajal, Madrid, Spain
- Centro de Investigación Biomédica en Red en Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - David Pestaña
- Instituto Ramon y Cajal de Investigación Sanitaria, Madrid, Spain
- Faculty of Medicine, Alcalá University, Alcalá de Henares, Spain
- Department of Anesthesiology and Surgical Critical Care, Hospital Ramón y Cajal, Madrid, Spain
| | - José Palacios
- Pathology, Hospital Universitario Ramón y Cajal, Madrid, Spain
- Instituto Ramon y Cajal de Investigación Sanitaria, Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
- Faculty of Medicine, Alcalá University, Alcalá de Henares, Spain
| |
Collapse
|
15
|
Ravaglia C, Doglioni C, Chilosi M, Piciucchi S, Dubini A, Rossi G, Pedica F, Puglisi S, Donati L, Tomassetti S, Poletti V. Clinical, radiological and pathological findings in patients with persistent lung disease following SARS-CoV-2 infection. Eur Respir J 2022; 60:2102411. [PMID: 35301248 PMCID: PMC8932282 DOI: 10.1183/13993003.02411-2021] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 02/13/2022] [Indexed: 12/18/2022]
Abstract
Some patients experience pulmonary sequelae after SARS-CoV-2 infection, ranging from self-limited abnormalities to major lung diseases. Morphological analysis of lung tissue may help our understanding of pathogenic mechanisms and help to provide consistent personalised management. The aim of this study was to ascertain morphological and immunomolecular features of lung tissue. Transbronchial lung cryobiopsy was carried out in patients with persistent symptoms and computed tomography suggestive of residual lung disease after recovery from SARS-CoV-2 infection. 164 patients were referred for suspected pulmonary sequelae after COVID-19; 10 patients with >5% parenchymal lung disease underwent lung biopsy. The histological pattern of lung disease was not homogeneous and three different case clusters could be identified, which was mirrored by their clinical and radiological features. Cluster 1 ("chronic fibrosing") was characterised by post-infection progression of pre-existing interstitial pneumonias. Cluster 2 ("acute/subacute injury") was characterised by different types and grades of lung injury, ranging from organising pneumonia and fibrosing nonspecific interstitial pneumonia to diffuse alveolar damage. Cluster 3 ("vascular changes") was characterised by diffuse vascular increase, dilatation and distortion (capillaries and venules) within otherwise normal parenchyma. Clusters 2 and 3 had immunophenotypical changes similar to those observed in early/mild COVID-19 pneumonias (abnormal expression of STAT3 in hyperplastic pneumocytes and PD-L1, IDO and STAT3 in endothelial cells). This is the first study correlating histological/immunohistochemical patterns with clinical and radiological pictures of patients with post-COVID lung disease. Different phenotypes with potentially different underlying pathogenic mechanisms have been identified.
Collapse
Affiliation(s)
- Claudia Ravaglia
- Dept of Thoracic Diseases, G.B. Morgagni Hospital/University of Bologna, Forlì, Italy
| | - Claudio Doglioni
- Dept of Pathology, University Vita-Salute, Milan and San Raffaele Scientific Institute, Milan, Italy
| | - Marco Chilosi
- Dept of Pathology, Pederzoli Hospital, Peschiera del Garda, Italy
| | - Sara Piciucchi
- Dept of Radiology, G.B. Morgagni Hospital/University of Bologna, Forlì, Italy
| | - Alessandra Dubini
- Dept of Pathology, G.B. Morgagni Hospital/University of Bologna, Forlì, Italy
| | - Giulio Rossi
- Dept of Pathology, Fondazione Poliambulanza Istituto Ospedaliero Multispecialistico, Brescia, Italy
| | - Federica Pedica
- Dept of Pathology, San Raffaele Scientific Institute, Milan, Italy
| | - Silvia Puglisi
- Dept of Thoracic Diseases, G.B. Morgagni Hospital/University of Bologna, Forlì, Italy
| | - Luca Donati
- Biostatistics and Clinical Trial Unit, Istituto Romagnolo per lo Studio dei Tumori "Dino Amadori"-IRST S.r.l., IRCCS, Meldola, Italy
| | - Sara Tomassetti
- Dept of Experimental and Clinical Medicine, Careggi University Hospital, Firenze, Italy
| | - Venerino Poletti
- Dept of Thoracic Diseases, G.B. Morgagni Hospital/University of Bologna, Forlì, Italy
- DIMES, University of Bologna, Bologna, Italy
- Dept of Respiratory Diseases and Allergy, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
16
|
Weng C, Li G, Zhang D, Duan Z, Chen K, Zhang J, Li T, Wang J. Nanoscale Porphyrin Metal-Organic Frameworks Deliver siRNA for Alleviating Early Pulmonary Fibrosis in Acute Lung Injury. Front Bioeng Biotechnol 2022; 10:939312. [PMID: 35923570 PMCID: PMC9339993 DOI: 10.3389/fbioe.2022.939312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/07/2022] [Indexed: 11/13/2022] Open
Abstract
Acute lung injury (ALI) has high mortality and still lacks novel and efficient therapies. Zinc finger E-box binding homeobox 1 and 2 (ZEB1/2) are highly expressed in the early stage of ALI and are positively correlated with the progression of pulmonary fibrosis. Herein, we developed a nanoscale Zr(IV)-based porphyrin metal-organic (ZPM) framework to deliver small interfering ZEB1/2 (siZEB1/2) to alleviate early pulmonary fibrosis during ALI. This pH-responsive nano-ZPM system could effectively protect siRNAs during lung delivery until after internalization and rapidly trigger siRNA release under the mildly acidic environment of the endo/lysosome (pH 4.0–6.5) for transfection and gene silencing. Furthermore, the in vivo studies confirmed that this nano-ZPM system could anchor in inflamed lungs. Moreover, the ZEB1/2 silencing led to increased E-cadherin and decreased α-SMA levels. Overall, the nano-ZPM system was an excellent non-viral vector system to deliver siRNAs to alleviate early pulmonary fibrosis during ALI.
Collapse
Affiliation(s)
- Changmei Weng
- State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Guanhua Li
- State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Dongdong Zhang
- State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Zhaoxia Duan
- State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Kuijun Chen
- State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jieyuan Zhang
- State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Tao Li
- Center for Joint Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, Department of Preventive Medicine, Institute of Combined Injury, Third Military Medical University (Army Medical University), Chongqing, China
- *Correspondence: Tao Li, ; Jianmin Wang,
| | - Jianmin Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- *Correspondence: Tao Li, ; Jianmin Wang,
| |
Collapse
|
17
|
Sundararajan V, Burk UC, Bajdak-Rusinek K. Revisiting the miR-200 Family: A Clan of Five Siblings with Essential Roles in Development and Disease. Biomolecules 2022; 12:biom12060781. [PMID: 35740906 PMCID: PMC9221129 DOI: 10.3390/biom12060781] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/29/2022] [Accepted: 06/01/2022] [Indexed: 12/07/2022] Open
Abstract
Over two decades of studies on small noncoding RNA molecules illustrate the significance of microRNAs (miRNAs/miRs) in controlling multiple physiological and pathological functions through post-transcriptional and spatiotemporal gene expression. Among the plethora of miRs that are essential during animal embryonic development, in this review, we elaborate the indispensable role of the miR-200 family (comprising miR-200a, -200b, 200c, -141, and -429) in governing the cellular functions associated with epithelial homeostasis, such as epithelial differentiation and neurogenesis. Additionally, in pathological contexts, miR-200 family members are primarily involved in tumor-suppressive roles, including the reversal of the cancer-associated epithelial–mesenchymal transition dedifferentiation process, and are dysregulated during organ fibrosis. Moreover, recent eminent studies have elucidated the crucial roles of miR-200s in the pathophysiology of multiple neurodegenerative diseases and tissue fibrosis. Lastly, we summarize the key studies that have recognized the potential use of miR-200 members as biomarkers for the diagnosis and prognosis of cancers, elaborating the application of these small biomolecules in aiding early cancer detection and intervention.
Collapse
Affiliation(s)
- Vignesh Sundararajan
- Cancer Science Institute of Singapore, National University of Singapore, Center for Translational Medicine, Singapore 117599, Singapore;
| | - Ulrike C. Burk
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany;
| | - Karolina Bajdak-Rusinek
- Department of Medical Genetics, Faculty of Medical Sciences, Medical University of Silesia, 40-752 Katowice, Poland
- Correspondence: ; Tel.: +48-32-208-8382
| |
Collapse
|
18
|
Zheng J, Dong H, Zhang T, Ning J, Xu Y, Cai C. Development and Validation of a Novel Gene Signature for Predicting the Prognosis of Idiopathic Pulmonary Fibrosis Based on Three Epithelial-Mesenchymal Transition and Immune-Related Genes. Front Genet 2022; 13:865052. [PMID: 35559024 PMCID: PMC9086533 DOI: 10.3389/fgene.2022.865052] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/23/2022] [Indexed: 12/15/2022] Open
Abstract
Background: Increasing evidence has revealed that epithelial–mesenchymal transition (EMT) and immunity play key roles in idiopathic pulmonary fibrosis (IPF). However, correlation between EMT and immune response and the prognostic significance of EMT in IPF remains unclear. Methods: Two microarray expression profiling datasets (GSE70866 and GSE28221) were downloaded from the Gene Expression Omnibus (GEO) database. EMT- and immune-related genes were identified by gene set variation analysis (GSVA) and the Estimation of STromal and Immune cells in MAlignant Tumors using Expression data (ESTIMATE) algorithm. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed to investigate the functions of these EMT- and immune-related genes. Cox and least absolute shrinkage and selection operator (LASSO) regression analyses were used to screen prognostic genes and establish a gene signature. Gene Set Enrichment Analysis (GSEA) and Cell-type Identification By Estimating Relative Subsets Of RNA Transcripts (CIBERSORT) were used to investigate the function of the EMT- and immune-related signatures and correlation between the EMT- and immune-related signatures and immune cell infiltration. Quantitative real-time polymerase chain reaction (qRT-PCR) was performed to investigate the mRNA expression of genes in the EMT- and immune-related signatures. Results: Functional enrichment analysis suggested that these genes were mainly involved in immune response. Moreover, the EMT- and immune-related signatures were constructed based on three EMT- and immune-related genes (IL1R2, S100A12, and CCL8), and the K–M and ROC curves presented that the signature could affect the prognosis of IPF patients and could predict the 1-, 2-, and 3-year survival well. Furthermore, a nomogram was developed based on the expression of IL1R2, S100A12, and CCL8, and the calibration curve showed that the nomogram could visually and accurately predict the 1-, 2-, 3-year survival of IPF patients. Finally, we further found that immune-related pathways were activated in the high-risk group of patients, and the EMT- and immune-related signatures were associated with NK cells activated, macrophages M0, dendritic cells resting, mast cells resting, and mast cells activated. qRT-PCR suggested that the mRNA expression of IL1R2, S100A12, and CCL8 was upregulated in whole blood of IPF patients compared with normal samples. Conclusion: IL1R2, S100A12, and CCL8 might play key roles in IPF by regulating immune response and could be used as prognostic biomarkers of IPF.
Collapse
Affiliation(s)
- Jiafeng Zheng
- Department of Pediatric Respiratory Medicine, Tianjin Children's Hospital (Tianjin University Children's Hospital), Tianjin, China
| | - Hanquan Dong
- Department of Pediatric Respiratory Medicine, Tianjin Children's Hospital (Tianjin University Children's Hospital), Tianjin, China
| | - Tongqiang Zhang
- Department of Pediatric Respiratory Medicine, Tianjin Children's Hospital (Tianjin University Children's Hospital), Tianjin, China
| | - Jing Ning
- Department of Pediatric Respiratory Medicine, Tianjin Children's Hospital (Tianjin University Children's Hospital), Tianjin, China
| | - Yongsheng Xu
- Department of Pediatric Respiratory Medicine, Tianjin Children's Hospital (Tianjin University Children's Hospital), Tianjin, China
| | - Chunquan Cai
- Tianjin Institute of Pediatrics(Tianjin Key Laboratory of Birth Defects for Prevention and Treatment), Tianjin Children's Hospital (Tianjin University Children's Hospital), Tianjin, China
| |
Collapse
|
19
|
Kewalramani N, Machahua C, Poletti V, Cadranel J, Wells AU, Funke-Chambour M. Lung cancer in patients with fibrosing interstitial lung diseases – An overview of current knowledge and challenges. ERJ Open Res 2022; 8:00115-2022. [PMID: 35747227 PMCID: PMC9209850 DOI: 10.1183/23120541.00115-2022] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/18/2022] [Indexed: 11/30/2022] Open
Abstract
Patients with progressive fibrosing interstitial lung diseases (fILD) have increased morbidity and mortality. Lung fibrosis can be associated with lung cancer. The pathogenesis of both diseases shows similarities, although not all mechanisms are understood. The combination of the diseases is challenging, due to the amplified risk of mortality, and also because lung cancer treatment carries additional risks in patients with underlying lung fibrosis. Acute exacerbations in fILD patients are linked to increased mortality, and the risk of acute exacerbations is increased after lung cancer treatment with surgery, chemotherapy or radiotherapy. Careful selection of treatment modalities is crucial to improve survival while maintaining acceptable quality of life in patients with combined lung cancer and fILD. This overview of epidemiology, pathogenesis, treatment and a possible role for antifibrotic drugs in patients with lung cancer and fILD is the summary of a session presented during the virtual European Respiratory Society Congress in 2021. The review summarises current knowledge and identifies areas of uncertainty. Most current data relate to patients with combined idiopathic pulmonary fibrosis and lung cancer. There is a pressing need for additional prospective studies, required for the formulation of a consensus statement or guideline on the optimal care of patients with lung cancer and fILD. Lung fibrosis can be associated with lung cancer. More and better-designed studies are needed to determine the true incidence/prevalence of lung cancer in fILD. Optimal treatment strategies urgently need to be defined and evaluated.https://bit.ly/37CzTMu
Collapse
|
20
|
Affiliation(s)
- Talmadge E King
- From the University of California, San Francisco (T.E.K.); and the University of Colorado Anschutz Medical Campus, Aurora (J.S.L.)
| | - Joyce S Lee
- From the University of California, San Francisco (T.E.K.); and the University of Colorado Anschutz Medical Campus, Aurora (J.S.L.)
| |
Collapse
|
21
|
Moss BJ, Ryter SW, Rosas IO. Pathogenic Mechanisms Underlying Idiopathic Pulmonary Fibrosis. ANNUAL REVIEW OF PATHOLOGY 2022; 17:515-546. [PMID: 34813355 DOI: 10.1146/annurev-pathol-042320-030240] [Citation(s) in RCA: 266] [Impact Index Per Article: 88.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The pathogenesis of idiopathic pulmonary fibrosis (IPF) involves a complex interplay of cell types and signaling pathways. Recurrent alveolar epithelial cell (AEC) injury may occur in the context of predisposing factors (e.g., genetic, environmental, epigenetic, immunologic, and gerontologic), leading to metabolic dysfunction, senescence, aberrant epithelial cell activation, and dysregulated epithelial repair. The dysregulated epithelial cell interacts with mesenchymal, immune, and endothelial cells via multiple signaling mechanisms to trigger fibroblast and myofibroblast activation. Recent single-cell RNA sequencing studies of IPF lungs support the epithelial injury model. These studies have uncovered a novel type of AEC with characteristics of an aberrant basal cell, which may disrupt normal epithelial repair and propagate a profibrotic phenotype. Here, we review the pathogenesis of IPF in the context of novel bioinformatics tools as strategies to discover pathways of disease, cell-specific mechanisms, and cell-cell interactions that propagate the profibrotic niche.
Collapse
Affiliation(s)
- Benjamin J Moss
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Baylor College of Medicine, Houston, Texas 77030, USA; ,
| | - Stefan W Ryter
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA;
| | - Ivan O Rosas
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Baylor College of Medicine, Houston, Texas 77030, USA; ,
| |
Collapse
|
22
|
Takahashi M, Mizumura K, Gon Y, Shimizu T, Kozu Y, Shikano S, Iida Y, Hikichi M, Okamoto S, Tsuya K, Fukuda A, Yamada S, Soda K, Hashimoto S, Maruoka S. Iron-Dependent Mitochondrial Dysfunction Contributes to the Pathogenesis of Pulmonary Fibrosis. Front Pharmacol 2022; 12:643980. [PMID: 35058772 PMCID: PMC8765595 DOI: 10.3389/fphar.2021.643980] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 12/09/2021] [Indexed: 12/31/2022] Open
Abstract
Although the pathogenesis of pulmonary fibrosis remains unclear, it is known to involve epithelial injury and epithelial-mesenchymal transformation (EMT) as a consequence of cigarette smoke (CS) exposure. Moreover, smoking deposits iron in the mitochondria of alveolar epithelial cells. Iron overload in mitochondria causes the Fenton reaction, leading to reactive oxygen species (ROS) production, and ROS leakage from the mitochondria induces cell injury and inflammation in the lungs. Nevertheless, the mechanisms underlying iron metabolism and pulmonary fibrosis are yet to be elucidated. In this study, we aimed to determine whether iron metabolism and mitochondrial dysfunction are involved in the pathogenesis of pulmonary fibrosis. We demonstrated that administration of the iron chelator deferoxamine (DFO) reduced CS-induced pulmonary epithelial cell death, mitochondrial ROS production, and mitochondrial DNA release. Notably, CS-induced cell death was reduced by the administration of an inhibitor targeting ferroptosis, a unique iron-dependent form of non-apoptotic cell death. Transforming growth factor-β-induced EMT of pulmonary epithelial cells was also reduced by DFO. The preservation of mitochondrial function reduced Transforming growth factor-β-induced EMT. Furthermore, transbronchial iron chelation ameliorated bleomycin-induced pulmonary fibrosis and leukocyte migration in a murine model. Our findings indicate that iron metabolism and mitochondrial dysfunction are involved in the pathogenesis of pulmonary fibrosis. Thus, they may be leveraged as new therapeutic targets for pulmonary fibrosis.
Collapse
Affiliation(s)
- Mai Takahashi
- Division of Respiratory Medicine, Department of Internal Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Kenji Mizumura
- Division of Respiratory Medicine, Department of Internal Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Yasuhiro Gon
- Division of Respiratory Medicine, Department of Internal Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Tetsuo Shimizu
- Division of Respiratory Medicine, Department of Internal Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Yutaka Kozu
- Division of Respiratory Medicine, Department of Internal Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Sotaro Shikano
- Division of Respiratory Medicine, Department of Internal Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Yuko Iida
- Division of Respiratory Medicine, Department of Internal Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Mari Hikichi
- Division of Respiratory Medicine, Department of Internal Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Shinichi Okamoto
- Division of Respiratory Medicine, Department of Internal Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Kota Tsuya
- Division of Respiratory Medicine, Department of Internal Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Asami Fukuda
- Division of Respiratory Medicine, Department of Internal Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Shiho Yamada
- Division of Respiratory Medicine, Department of Internal Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Kaori Soda
- Division of Respiratory Medicine, Department of Internal Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Shu Hashimoto
- Division of Respiratory Medicine, Department of Internal Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Shuichiro Maruoka
- Division of Respiratory Medicine, Department of Internal Medicine, Nihon University School of Medicine, Tokyo, Japan
| |
Collapse
|
23
|
Zheng P, Sun S, Wang J, Cheng ZJ, Lei KC, Xue M, Zhang T, Huang H, Zhang XD, Sun B. Integrative omics analysis identifies biomarkers of idiopathic pulmonary fibrosis. Cell Mol Life Sci 2022; 79:66. [PMID: 35015148 PMCID: PMC11075137 DOI: 10.1007/s00018-021-04094-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 11/30/2021] [Accepted: 12/15/2021] [Indexed: 12/17/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is an interstitial lung disease characterized by chronic progressive pulmonary fibrosis and a poor prognosis. Genetic studies, including transcriptomic and proteomics, have provided new insight into revealing mechanisms of IPF. Herein we provided a novel strategy to identify biomarkers by integrative analysis of transcriptomic and proteomic profiles of IPF patients. We examined the landscape of IPF patients' gene expression in the transcription and translation phases and investigated the expression and functions of two new potential biomarkers. Differentially expressed (DE) mRNAs were mainly enriched in pathways associated with immune system activities and inflammatory responses, while DE proteins are related to extracellular matrix production and wound repair. The upregulated genes in both phases are associated with wound repair and cell differentiation, while the downregulated genes in both phases are associated with reduced immune activities and the damage of the alveolar tissues. On this basis, we identified thirteen potential marker genes. Among them, we validated the expression changes of butyrophilin-like 9 (BTNL9) and plasmolipin (PLLP) and investigated their functional pathways in the IPF mechanism. Both genes are downregulated in the tissues of IPF patients and Bleomycin-induced mice, and co-expression analysis indicates that they have a protective effect by inhibiting extracellular matrix production and promoting wound repair in alveolar epithelial cells.
Collapse
Affiliation(s)
- Peiyan Zheng
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Shixue Sun
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
- Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| | - Jingxian Wang
- National Joint Local Engineering Laboratory for Cell Engineering and Biomedicine Technique, Guizhou Province Key Laboratory of Regenerative Medicine, Key Laboratory of Adult Stem Cell Translational Research (Chinese Academy of Medical Sciences), Guizhou Medical University, Guizhou, 550025, China
| | - Zhangkai Jason Cheng
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Kuan Cheok Lei
- Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| | - Mingshan Xue
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Teng Zhang
- Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| | - Huimin Huang
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | | | - Baoqing Sun
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China.
| |
Collapse
|
24
|
Renzoni EA, Poletti V, Mackintosh JA. Disease pathology in fibrotic interstitial lung disease: is it all about usual interstitial pneumonia? Lancet 2021; 398:1437-1449. [PMID: 34499865 DOI: 10.1016/s0140-6736(21)01961-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/03/2021] [Accepted: 08/13/2021] [Indexed: 12/11/2022]
Abstract
The interstitial pneumonias comprise a diverse group of diseases that are typically defined by their cause (either idiopathic or non-idiopathic) and their distinct histopathological features, for which radiology, in the form of high-resolution CT, is often used as a surrogate. One trend, fuelled by the failure of conventional therapies in a subset of patients and the broad-spectrum use of antifibrotic therapies, has been the focus on the progressive fibrosing phenotype of interstitial lung disease. The histological pattern, known as usual interstitial pneumonia, is the archetype of progressive fibrosis. However, it is clear that progressive fibrosis is not exclusive to this histological entity. Techniques including immunohistochemistry and single-cell RNA sequencing are providing pathogenetic insights and, if integrated with traditional histopathology, are likely to have an effect on the pathological classification of interstitial lung disease. This review, which focuses on the histopathology of interstitial lung disease and its relationship with progressive fibrosis, asks the question: is it all about usual interstitial pneumonia?
Collapse
Affiliation(s)
- Elisabetta A Renzoni
- Interstitial Lung Disease Unit, Royal Brompton and Harefield Clinical Group, Guy's and St Thomas' NHS Foundation Trust, London, UK; Margaret Turner Warwick Centre for Fibrosing Lung Diseases, National Heart and Lung Institute, Imperial College London, London, UK
| | - Venerino Poletti
- Department of Respiratory Diseases and Allergy, Aarhus University Hospital, Aarhus, Denmark; Thoracic Diseases Department, GB Morgagni Hospital/University of Bologna, Forlì, Italy
| | - John A Mackintosh
- Department of Thoracic Medicine, The Prince Charles Hospital, Brisbane, Queensland, Australia.
| |
Collapse
|
25
|
Tan W, Wang Y, Chen Y, Chen C. Cell tracing reveals the transdifferentiation fate of mouse lung epithelial cells during pulmonary fibrosis in vivo. Exp Ther Med 2021; 22:1188. [PMID: 34475978 PMCID: PMC8406816 DOI: 10.3892/etm.2021.10622] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 06/22/2021] [Indexed: 12/17/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive and devastating interstitial lung disease. The origin of myofibroblasts is still to be elucidated and the existence of epithelial-mesenchymal transition (EMT) in IPF remains controversial. Hence, it is important to clarify the origin of fibroblasts by improving modeling and labeling methods and analyzing the differentiation pathway of alveolar epithelial cells (AEC) in pulmonary fibrosis with cell tracking technology. In the present study, adult transgenic mice with SPC-rtTA+/-/tetO7-CMV-Cre+/-/mTmG+/- were induced with doxycycline for 15 days. The gene knockout phenomenon occurred in type II AECs in the lung and the reporter gene cell membrane-localized enhanced green fluorescence protein (mEGFP) was expressed in the cell membrane. The expression of Cre recombinase and SPC was analyzed using immunohistochemical (IHC) staining to detect the labeling efficiency. A repetitive intraperitoneal bleomycin-induced pulmonary fibrosis model was established, and the mice were sacrificed on day 28. The co-localization of mEGFP and mesenchymal markers α-smooth muscle actin (α-SMA) and S100 calcium binding protein A4 (S100A4) were detected by multiple IHC staining. The results revealed that Cre was expressed in the airway and AECs in the lung tissue of adult transgenic mice with SPC-rtTA+/-/tetO7-CMV-Cre+/-/mTmG+/- induced by doxycycline; the labeling efficiency in the peripheral lung tissue was 63.27±7.51%. mEGFP was expressed on the membrane of type II AECs and their differentiated form of type I AECs. Expression of mEGFP was mainly observed in the fibrotic region in bleomycin-induced pulmonary fibrosis; 1.94±0.08% of α-SMA-positive cells were mEGFP-positive and 9.68±2.06% of S100A4-positive cells were mEGFP-positive in bleomycin-induced pulmonary fibrosis. In conclusion, the present results suggested that while EMT contributes to the pathogenesis of pulmonary fibrosis, it is not the major causative factor of this condition.
Collapse
Affiliation(s)
- Wei Tan
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology of The Ministry of Public Health, Key Laboratory of Medical Cell Biology of The Ministry of Education, China Medical University, Shenyang, Liaoning 110122, P.R. China.,Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Yaru Wang
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology of The Ministry of Public Health, Key Laboratory of Medical Cell Biology of The Ministry of Education, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Yuhua Chen
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology of The Ministry of Public Health, Key Laboratory of Medical Cell Biology of The Ministry of Education, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Cheng Chen
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology of The Ministry of Public Health, Key Laboratory of Medical Cell Biology of The Ministry of Education, China Medical University, Shenyang, Liaoning 110122, P.R. China
| |
Collapse
|
26
|
Chilosi M, Poletti V, Ravaglia C, Rossi G, Dubini A, Piciucchi S, Pedica F, Bronte V, Pizzolo G, Martignoni G, Doglioni C. The pathogenic role of epithelial and endothelial cells in early-phase COVID-19 pneumonia: victims and partners in crime. Mod Pathol 2021; 34:1444-1455. [PMID: 33883694 PMCID: PMC8058579 DOI: 10.1038/s41379-021-00808-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 02/04/2023]
Abstract
Current understanding of the complex pathogenesis of COVID-19 interstitial pneumonia pathogenesis in the light of biopsies carried out in early/moderate phase and histology data obtained at postmortem analysis is discussed. In autopsies the most observed pattern is diffuse alveolar damage with alveolar-epithelial type-II cell hyperplasia, hyaline membranes, and frequent thromboembolic disease. However, these observations cannot explain some clinical, radiological and physiopathological features observed in SARS-CoV-2 interstitial pneumonia, including the occurrence of vascular enlargement on CT and preserved lung compliance in subjects even presenting with or developing respiratory failure. Histological investigation on early-phase pneumonia on perioperative samples and lung biopsies revealed peculiar morphological and morpho-phenotypical changes including hyper-expression of phosphorylated STAT3 and immune checkpoint molecules (PD-L1 and IDO) in alveolar-epithelial and endothelial cells. These features might explain in part these discrepancies.
Collapse
Affiliation(s)
- Marco Chilosi
- Department of Pathology, Pederzoli Hospital, Peschiera del Garda, Italy.
| | - Venerino Poletti
- Department of Respiratory Diseases and Allergy, Aarhus University Hospital, Aarhus, Denmark
- Department of Diseases of the Thorax, G.B. Morgagni Hospital, Forlì, Italy
| | - Claudia Ravaglia
- Department of Diseases of the Thorax, G.B. Morgagni Hospital, Forlì, Italy
| | - Giulio Rossi
- Department of Pathology, Ravenna Hospital, Ravenna, Italy
| | | | - Sara Piciucchi
- Department of Radiology, G.B. Morgagni Hospital, Forlì, Italy
| | - Federica Pedica
- Department of Pathology, San Raffaele Scientific Institute, Milan, Italy
| | - Vincenzo Bronte
- Department of Medicine, Section of Immunology, University of Verona, Verona, Italy
| | - Giovanni Pizzolo
- Department of Medicine, Section of Hematology, University of Verona, Verona, Italy
| | - Guido Martignoni
- Department of Pathology, Pederzoli Hospital, Peschiera del Garda, Italy
- Department of Pathology and Diagnostics, University of Verona, Verona, Italy
| | - Claudio Doglioni
- Department of Pathology, San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
27
|
MicroRNA miR-215-5p regulates doxorubicin-induced cardiomyocyte injury by targeting ZEB2. J Cardiovasc Pharmacol 2021; 78:622-629. [PMID: 34282068 DOI: 10.1097/fjc.0000000000001110] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/21/2021] [Indexed: 11/26/2022]
Abstract
ABSTRACT Doxorubicin (DOX) is a chemotherapeutic drug for treating various cancers. However, the DOX-induced cardiotoxicity greatly limits its clinical application. MicroRNAs (miRNAs) are emerged as critical mediators of cardiomyocyte injury. This work explored the function of miR-215-5p in the regulation of DOX-induced mouse HL-1 cardiomyocyte injury. An in vitro model of DOX-treated cardiotoxicity was established in HL-1 cells. Gene expression was measured by RT-qPCR. Cell viability was detected using CCK-8. Cell death and apoptosis were tested using TUNEL, flow cytometry, and caspase 3/7 activity assays. Luciferase reporter assay was used to examine the target of miR-215-5p. We found that DOX induced cardiomyocyte injury and upregulated miR-215-5p in HL-1 cells. Inhibition of miR-215-5p attenuated DOX-induced cardiomyocyte death and apoptosis in vitro. Mechanistical experiments indicated that ZEB2 was targeted by miR-215-5p. Additionally, ZEB2 expression was reduced in DOX-treated HL-1 cells. Rescue assays indicated that ZEB2 knockdown reversed the effects of miR-215-5p inhibition. In conclusion, miR-215-5p inhibition protects HL-1 cells against DOX-induced injury by upregulating ZEB2 expression.
Collapse
|
28
|
Spagnolo P, Kropski JA, Jones MG, Lee JS, Rossi G, Karampitsakos T, Maher TM, Tzouvelekis A, Ryerson CJ. Idiopathic pulmonary fibrosis: Disease mechanisms and drug development. Pharmacol Ther 2021; 222:107798. [PMID: 33359599 PMCID: PMC8142468 DOI: 10.1016/j.pharmthera.2020.107798] [Citation(s) in RCA: 287] [Impact Index Per Article: 71.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 12/14/2020] [Indexed: 02/06/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic progressive disease of unknown cause characterized by relentless scarring of the lung parenchyma leading to reduced quality of life and earlier mortality. IPF is an age-related disorder, and with the population aging worldwide, the economic burden of IPF is expected to steadily increase in the future. The mechanisms of fibrosis in IPF remain elusive, with favored concepts of disease pathogenesis involving recurrent microinjuries to a genetically predisposed alveolar epithelium, followed by an aberrant reparative response characterized by excessive collagen deposition. Pirfenidone and nintedanib are approved for treatment of IPF based on their ability to slow functional decline and disease progression; however, they do not offer a cure and are associated with tolerability issues. In this review, we critically discuss how cutting-edge research in disease pathogenesis may translate into identification of new therapeutic targets, thus facilitate drug discovery. There is a growing portfolio of treatment options for IPF. However, targeting the multitude of profibrotic cytokines and growth factors involved in disease pathogenesis may require a combination of therapeutic strategies with different mechanisms of action.
Collapse
Affiliation(s)
- Paolo Spagnolo
- Respiratory Disease Unit, Department of Cardiac Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy.
| | | | - Mark G Jones
- NIHR Respiratory Biomedical Research Centre, University Hospital Southampton, Southampton, UK
| | - Joyce S Lee
- University of Colorado, School of Medicine, Department of Medicine, Aurora, CO, United States
| | - Giulio Rossi
- Pathology Unit, AUSL della Romagna, St. Maria delle Croci Hospital, Ravenna, Italy
| | | | - Toby M Maher
- National Heart and Lung Institute, Imperial College London and National Institute for Health Research Clinical Research Facility, Royal Brompton Hospital, London, UK; Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Argyrios Tzouvelekis
- Department of Respiratory Medicine, University Hospital of Patras, Patras, Greece
| | - Christopher J Ryerson
- Department of Medicine, University of British Columbia and Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, Canada
| |
Collapse
|
29
|
Sun LL, Chen CM, Zhang J, Wang J, Yang CZ, Lin LZ. Addendum: Glucose-Regulated Protein 78 Signaling Regulates Hypoxia-Induced Epithelial–Mesenchymal Transition in A549 Cells. Front Oncol 2021. [PMCID: PMC8204099 DOI: 10.3389/fonc.2021.637227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
30
|
Zhang H, Song M, Guo J, Ma J, Qiu M, Yang Z. The function of non-coding RNAs in idiopathic pulmonary fibrosis. Open Med (Wars) 2021; 16:481-490. [PMID: 33817326 PMCID: PMC8005778 DOI: 10.1515/med-2021-0231] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 01/20/2021] [Accepted: 01/20/2021] [Indexed: 12/12/2022] Open
Abstract
Non-coding ribonucleic acids (ncRNAs) are a diverse group of RNA molecules that are mostly not translated into proteins after transcription, including long non-coding RNAs (lncRNAs) with longer than 200 nucleotides non-coding transcripts and microRNAs (miRNAs) which are only 18–22 nucleotides. As families of evolutionarily conserved ncRNAs, lncRNAs activate and repress genes via a variety of mechanisms at both transcriptional and translational levels, whereas miRNAs regulate protein-coding gene expression mainly through mRNA silencing. ncRNAs are widely involved in biological functions, such as proliferation, differentiation, migration, angiogenesis, and apoptosis. Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease with a poor prognosis. The etiology of IPF is still unclear. Increasing evidence shows the close correlations between the development of IPF and aberrant expressions of ncRNAs than thought previously. In this study, we provide an overview of ncRNAs participated in pathobiology of IPF, seeking the early diagnosis biomarker and aiming for potential therapeutic applications for IPF.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Cardiovascular Diseases, First Affiliated Hospital of Baotou Medical College, Baotou, Inner Mongolia, China
| | - Miao Song
- Department of Cardiovascular Diseases, First Affiliated Hospital of Baotou Medical College, Baotou, Inner Mongolia, China.,Department of Pharmacy, Baotou Medical College, Baotou, Inner Mongolia, China
| | - Jianing Guo
- Comfort Medical Center, Central hospital of Ulanqab, Ulanqab, Inner Mongolia, China
| | - Junbing Ma
- Department of Cardiovascular Diseases, First Affiliated Hospital of Baotou Medical College, Baotou, Inner Mongolia, China
| | - Min Qiu
- Department of Cardiovascular Diseases, First Affiliated Hospital of Baotou Medical College, Baotou, Inner Mongolia, China.,Department of Pharmacy, Baotou Medical College, Baotou, Inner Mongolia, China
| | - Zheng Yang
- Department of Cardiovascular Diseases, First Affiliated Hospital of Baotou Medical College, Baotou, Inner Mongolia, China
| |
Collapse
|
31
|
Ruaro B, Salton F, Braga L, Wade B, Confalonieri P, Volpe MC, Baratella E, Maiocchi S, Confalonieri M. The History and Mystery of Alveolar Epithelial Type II Cells: Focus on Their Physiologic and Pathologic Role in Lung. Int J Mol Sci 2021; 22:2566. [PMID: 33806395 PMCID: PMC7961977 DOI: 10.3390/ijms22052566] [Citation(s) in RCA: 149] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/27/2021] [Accepted: 02/28/2021] [Indexed: 12/13/2022] Open
Abstract
Alveolar type II (ATII) cells are a key structure of the distal lung epithelium, where they exert their innate immune response and serve as progenitors of alveolar type I (ATI) cells, contributing to alveolar epithelial repair and regeneration. In the healthy lung, ATII cells coordinate the host defense mechanisms, not only generating a restrictive alveolar epithelial barrier, but also orchestrating host defense mechanisms and secreting surfactant proteins, which are important in lung protection against pathogen exposure. Moreover, surfactant proteins help to maintain homeostasis in the distal lung and reduce surface tension at the pulmonary air-liquid interface, thereby preventing atelectasis and reducing the work of breathing. ATII cells may also contribute to the fibroproliferative reaction by secreting growth factors and proinflammatory molecules after damage. Indeed, various acute and chronic diseases are associated with intensive inflammation. These include oedema, acute respiratory distress syndrome, fibrosis and numerous interstitial lung diseases, and are characterized by hyperplastic ATII cells which are considered an essential part of the epithelialization process and, consequently, wound healing. The aim of this review is that of revising the physiologic and pathologic role ATII cells play in pulmonary diseases, as, despite what has been learnt in the last few decades of research, the origin, phenotypic regulation and crosstalk of these cells still remain, in part, a mystery.
Collapse
Affiliation(s)
- Barbara Ruaro
- Pulmonology Department, University Hospital of Cattinara, 34128 Trieste, Italy; (F.S.); (P.C.); (M.C.)
| | - Francesco Salton
- Pulmonology Department, University Hospital of Cattinara, 34128 Trieste, Italy; (F.S.); (P.C.); (M.C.)
| | - Luca Braga
- ICGEB, Area Science Park, Padriciano, 34128 Trieste, Italy;
| | - Barbara Wade
- City of Health and Science of Turin, Department of Science of Public Health and Pediatrics, University of Torino, 34128 Trieste, Italy;
| | - Paola Confalonieri
- Pulmonology Department, University Hospital of Cattinara, 34128 Trieste, Italy; (F.S.); (P.C.); (M.C.)
| | - Maria Concetta Volpe
- Life Sciences Department, University of Trieste, 34128 Trieste, Italy; (M.C.V.); (S.M.)
| | - Elisa Baratella
- Department of Radiology, Department of Medicine, Surgery and Health Science, University of Trieste, 34128 Trieste, Italy;
| | - Serena Maiocchi
- Life Sciences Department, University of Trieste, 34128 Trieste, Italy; (M.C.V.); (S.M.)
| | - Marco Confalonieri
- Pulmonology Department, University Hospital of Cattinara, 34128 Trieste, Italy; (F.S.); (P.C.); (M.C.)
| |
Collapse
|
32
|
Ma H, Yang K, Li H, Luo M, Wufuer R, Kang L. Photodynamic effect of chlorin e6 on cytoskeleton protein of human colon cancer SW480 cells. Photodiagnosis Photodyn Ther 2021; 33:102201. [PMID: 33529743 DOI: 10.1016/j.pdpdt.2021.102201] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/14/2021] [Accepted: 01/22/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND Photodynamic therapy (PDT) is based on photochemical and photobiological reactions mediated by photosensitizers to achieve a killing effect on diseased cells. It is used in the treatment of malignant tumors, precancerous lesions and infections. OBJECTIVE In order to provide theoretical data for further study of the mechanism of PDT for colorectal cancer, SW480 cells were treated with Ce6-PDT and effect of photodynamic therapy (Ce6-PDT) on cytoskeleton and E-cadherin protein were observed. METHODS The survival of SW480 cells was detected by MTT assay. The morphological changes of SW480 cells after Ce6-PDT were observed by scanning electron microscope (ESM). The migration ability was determined by wound healing assay. The distribution of F-actin in the cytoplasm was observed with confocal laser scanning microscope. Western blot analysis was used to detect the expression of cytoskeleton proteins in SW480 cells after Ce6-PDT. RESULTS Compared with the control group, there was significant difference in cell viability of cells treated with Ce6-PDT (F = 78753.78, P < 0.05). The pseudopodia almost disappeared and cellular atrophy was clearly visible in the cells of Ce6-PDT group. The migration ability of cells treated with Ce6-PDT for 48 h was significantly lower than the control group (F = 11.794, P<0.001). The result of Western blot analysis showed that the expression of F-actin, α-tubulin, β-tubulin and Vimentin in the cells treated with Ce6-PDT were significantly higher than that in the control group (F = 22.251,8.109, 5.840, 4.685 and 18.754, P < 0.05). The expression of E-cadherin in cells of Ce6-PDT group was significantly higher than that in control group (F = 30.882, P < 0.001). Perhaps Ce6-PDT inhibits the proliferation and migration of colon cancer SW480 cells by enhancing the expression of E-cadherin, causing the disappearance of cell pseudopodia and the destruction of cytoskeleton. CONCLUSIONS The destruction of cytoskeleton might be one of the reasons for the inhibition of cell proliferation and migration by Ce6-PDT.
Collapse
Affiliation(s)
- Haixiu Ma
- College of Public Health, Xinjiang Medical University, Urumqi 830000, China
| | - Kaizhen Yang
- Teaching & Research Department, The First People's Hospital of Urumqi, Urumqi 830000, China
| | - Hongxia Li
- College of Public Health, Xinjiang Medical University, Urumqi 830000, China
| | - Mengyu Luo
- College of Public Health, Xinjiang Medical University, Urumqi 830000, China
| | - Reziwan Wufuer
- College of Public Health, Xinjiang Medical University, Urumqi 830000, China
| | - Ling Kang
- College of Public Health, Xinjiang Medical University, Urumqi 830000, China.
| |
Collapse
|
33
|
ZEB1: New advances in fibrosis and cancer. Mol Cell Biochem 2021; 476:1643-1650. [PMID: 33417164 DOI: 10.1007/s11010-020-04036-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 12/22/2020] [Indexed: 02/08/2023]
Abstract
Zinc finger E-box binding homeobox 1 (ZEB1) is an important transcription factor in epithelial mesenchymal transition (EMT) which participates in the numerous life processes, such as embryonic development, fibrosis and tumor progression. ZEB1 has multiple functions in human body and plays a crucial part in some life processes. ZEB1 is vital for the formation and development of the organs in the embryonic period. The abnormal expression of ZEB1 is a predictor for the poor prognosis or the poor survival in several cancers. ZEB1 contributes to the occurrence of fibrosis, cancer and even chemoresistance. Some research is indicated that fibrosis is finally developed into the cancers. Therefore, ZEB1 is probably taken as a biomarker in fibrosis or cancer. In this review, it is predicted of the structure of ZEB1 and the protein binding sites of ZEB1 with some protein, and it is discussed about the roles of ZEB1 in fibrosis and cancer progression to elaborate the potential applications of ZEB1 in clinic.
Collapse
|
34
|
Rackow AR, Nagel DJ, McCarthy C, Judge J, Lacy S, Freeberg MAT, Thatcher TH, Kottmann RM, Sime PJ. The self-fulfilling prophecy of pulmonary fibrosis: a selective inspection of pathological signalling loops. Eur Respir J 2020; 56:13993003.00075-2020. [PMID: 32943406 PMCID: PMC7931159 DOI: 10.1183/13993003.00075-2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 07/01/2020] [Indexed: 12/28/2022]
Abstract
Pulmonary fibrosis is a devastating, progressive disease and carries a prognosis worse than most cancers. Despite ongoing research, the mechanisms that underlie disease pathogenesis remain only partially understood. However, the self-perpetuating nature of pulmonary fibrosis has led several researchers to propose the existence of pathological signalling loops. According to this hypothesis, the normal wound-healing process becomes corrupted and results in the progressive accumulation of scar tissue in the lung. In addition, several negative regulators of pulmonary fibrosis are downregulated and, therefore, are no longer capable of inhibiting these feed-forward loops. The combination of pathological signalling loops and loss of a checks and balances system ultimately culminates in a process of unregulated scar formation. This review details specific signalling pathways demonstrated to play a role in the pathogenesis of pulmonary fibrosis. The evidence of detrimental signalling loops is elucidated with regard to epithelial cell injury, cellular senescence and the activation of developmental and ageing pathways. We demonstrate where these loops intersect each other, as well as common mediators that may drive these responses and how the loss of pro-resolving mediators may contribute to the propagation of disease. By focusing on the overlapping signalling mediators among the many pro-fibrotic pathways, it is our hope that the pulmonary fibrosis community will be better equipped to design future trials that incorporate the redundant nature of these pathways as we move towards finding a cure for this unrelenting disease.
Collapse
Affiliation(s)
- Ashley R Rackow
- Dept of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA.,Authors contributed equally to this work
| | - David J Nagel
- Division of Pulmonary Diseases and Critical Care, University of Rochester Medical Center, Rochester, NY, USA.,Authors contributed equally to this work
| | | | | | - Shannon Lacy
- US Army of Veterinary Corps, Fort Campbell, KY, USA
| | | | - Thomas H Thatcher
- Department of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - R Matthew Kottmann
- Division of Pulmonary Diseases and Critical Care, University of Rochester Medical Center, Rochester, NY, USA
| | - Patricia J Sime
- Division of Pulmonary Diseases and Critical Care, University of Rochester Medical Center, Rochester, NY, USA.,Department of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
35
|
Machado LS, Pieri NCG, Botigelli RC, de Castro RVG, de Souza AF, Bridi A, Lima MA, Fantinato Neto P, Pessôa LVDF, Martins SMMK, De Andrade AFC, Freude KK, Bressan FF. Generation of neural progenitor cells from porcine-induced pluripotent stem cells. J Tissue Eng Regen Med 2020; 14:1880-1891. [PMID: 33049106 DOI: 10.1002/term.3143] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/15/2020] [Accepted: 10/02/2020] [Indexed: 12/11/2022]
Abstract
In this study, porcine embryonic fibroblasts (pEFs) were reprogrammed into porcine-induced pluripotent stem cells (piPSCs) using either human or mouse specific sequences for the OCT4, SOX2, c-Myc, and KLF4 transcription factors. In total, three pEFs lines were reprogrammed, cultured for at least 15 passages, and characterized regarding their pluripotency status (alkaline phosphatase expression, embryoid body formation, expression of exogenous and endogenous genes, and immunofluorescence). Two piPSC lines were further differentiated, using chemical inhibitors, into putative neural progenitor-like (NPC-like) cells with subsequent analyses of their morphology and expression of neural markers such as NESTIN and GFAP as well as immunofluorescent labeling of NESTIN, β-TUBULIN III, and VIMENTIN. NPC-like cells were positive for all the neural markers tested. These results evidence of the generation of porcine NPC-like cells after in vitro induction with chemical inhibitors, representing an adequate model for future regenerative and translational medicine research.
Collapse
Affiliation(s)
- Lucas Simões Machado
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, Brazil.,Department of Surgery, Post-Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Naira Caroline Godoy Pieri
- Department of Animal Reproduction, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Ramon Cesar Botigelli
- Department of Pharmacology, Institute of Biosciences, São Paulo State University, Botucatu, Brazil
| | - Raquel Vasconcelos Guimarães de Castro
- Department of Preventive Veterinary Medicine and Animal Reproduction, Faculty of Agricultural and Veterinary Science, São Paulo State University, Jaboticabal, Brazil
| | - Aline Fernanda de Souza
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, Brazil
| | - Alessandra Bridi
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, Brazil
| | - Marina Amaro Lima
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, Brazil.,Department of Surgery, Post-Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Paulo Fantinato Neto
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, Brazil
| | - Laís Vicari de Figueiredo Pessôa
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, Brazil
| | | | - André Furugen Cesar De Andrade
- Department of Animal Reproduction, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Kristine Karla Freude
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Fabiana Fernandes Bressan
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, Brazil.,Department of Surgery, Post-Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
36
|
Salton F, Ruaro B, Confalonieri P, Confalonieri M. Epithelial-Mesenchymal Transition: A Major Pathogenic Driver in Idiopathic Pulmonary Fibrosis? ACTA ACUST UNITED AC 2020; 56:medicina56110608. [PMID: 33202716 PMCID: PMC7697350 DOI: 10.3390/medicina56110608] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 11/11/2020] [Indexed: 11/17/2022]
|
37
|
Pan L, Lu Y, Li Z, Tan Y, Yang H, Ruan P, Li R. Ginkgo biloba Extract EGb761 Attenuates Bleomycin-Induced Experimental Pulmonary Fibrosis in Mice by Regulating the Balance of M1/M2 Macrophages and Nuclear Factor Kappa B (NF-κB)-Mediated Cellular Apoptosis. Med Sci Monit 2020; 26:e922634. [PMID: 32799214 PMCID: PMC7448693 DOI: 10.12659/msm.922634] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background The aim of this study was to show whether the standardized Ginkgo biloba extract EGb761, a traditional Chinese medicine, has a therapeutic effect on pulmonary fibrosis (PF). Material/Methods Bleomycin (BLM) was used for establishing the PF mouse model. The mice were treated with a gradient of EGb761 for 28 days to determine an appropriate drug dose. On day 28, the effect of EGb761 on lung injury and inflammation was confirmed by hematoxylin and eosin and Masson staining and evaluated by pulmonary alveolitis and Ashcroft score. The balance of M1/M2 macrophages was evaluated with the respective markers inducible nitric oxide synthase and and interleukin-10 by real-time polymerase chain reaction. Furthermore, the expressions of fibrosis-associated protein α-smooth muscle actin (SMA), related inflammatory protein transforming growth factor (TGF)-β1, the apoptosis-related proteins B-cell lymphoma-associated X protein (Bax), B-cell lymphoma (Bcl)-2, caspase-3, caspase-9, and phosphorylated nuclear factor (NF)-κB (p65) were assessed by western blot. Results On day 28, PF was induced by treating with BLM, whereas EGb761 suppressed the PF of lung tissue. The BLM-induced imbalance of M1/M2 macrophages was reduced by EGb761. Furthermore, the increasing amounts of α-SMA and TGF-β1 induced by BLM were suppressed by EGb761. In addition, the protein or messenger ribonucleic acid expression levels of phosphorylated NF-κB (p65), caspase-3, and caspase-9 were upregulated, whereas Bax and Bcl-2 were downregulated. Treatment with EGb761 restored the levels of these proteins except for caspase-9. Conclusions This study illustrated the protective effect of EGb761 on BLM-induced PF by regulating the balance of M1/M2 macrophages and NF-κB (p65)-mediated apoptosis. The results demonstrated the potential clinical therapeutic effect of EGb761, providing a novel possibility for curing PF.
Collapse
Affiliation(s)
- Ling Pan
- Respiratory Medicine Department, Ruikang Hospital Affiliated to Guangxi Traditional Chinese Medicine University, Nanning, Guangxi, China (mainland)
| | - Yuehong Lu
- Respiratory Medicine Department, Ruikang Hospital Affiliated to Guangxi Traditional Chinese Medicine University, Nanning, Guangxi, China (mainland)
| | - Zhanhua Li
- Respiratory Medicine Department, Ruikang Hospital Affiliated to Guangxi Traditional Chinese Medicine University, Nanning, Guangxi, China (mainland)
| | - Yuping Tan
- Respiratory Medicine Department, Ruikang Hospital Affiliated to Guangxi Traditional Chinese Medicine University, Nanning, Guangxi, China (mainland)
| | - Hongmei Yang
- Respiratory Medicine Department, Ruikang Hospital Affiliated to Guangxi Traditional Chinese Medicine University, Nanning, Guangxi, China (mainland)
| | - Ping Ruan
- Respiratory Medicine Department, Ruikang Hospital Affiliated to Guangxi Traditional Chinese Medicine University, Nanning, Guangxi, China (mainland)
| | - Ruixiang Li
- Respiratory Medicine Department, Ruikang Hospital Affiliated to Guangxi Traditional Chinese Medicine University, Nanning, Guangxi, China (mainland)
| |
Collapse
|
38
|
Zou M, Zhang G, Zou J, Liu Y, Liu B, Hu X, Cheng Z. Inhibition of the ERK1/2-ubiquitous calpains pathway attenuates experimental pulmonary fibrosis in vivo and in vitro. Exp Cell Res 2020; 391:111886. [PMID: 32017927 DOI: 10.1016/j.yexcr.2020.111886] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 01/18/2020] [Accepted: 01/31/2020] [Indexed: 12/14/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a fibrotic lung disease with poor prognosis. Epithelial-mesenchymal transition (EMT) has been reported to play an important role in IPF. The extracellular signal-regulated kinases 1 and 2 (ERK1/2) cascade, which regulates EMT and oncogenesis, has been implicated in the pathogenesis of IPF. Calpains, Ca2+-dependent cysteine proteinases that mediate controlled proteolysis of many specific substrates including epithelial cell marker E-cadherin, participate in organ fibrosis. Calpain-1 and calpain-2 of calpain family are ubiquitous calpains. ERK1/2 signaling stimulates the ubiquitous calpains activity in cancer development, but whether ERK1/2 signaling mediates the ubiquitous calpains activity in pulmonary fibrosis is unknown. Here we investigated whether inhibition of ERK1/2 signaling and the ubiquitous calpains attenuated experimental pulmonary fibrosis and examined the potential mechanism. Our results showed that inhibition of ERK1/2 signaling and the ubiquitous calpains both attenuated bleomycin (BLM)-induced lung fibrosis in mice. Inhibition of ERK1/2 signaling downregulated the expression of calpain-1 and calpain-2 in vivo and in vitro. We detected decreased E-cadherin expression and increased calpain-1 expression in IPF patients. Inhibition of ERK1/2 signaling and the ubiquitous calpains both suppressed the development of EMT in vivo and in vitro. Our study indicated that inhibition of the ERK1/2-ubiquitous calpains pathway protected pulmonary fibrosis from BLM, possibly via inhibition of EMT. Therefore, targeting ubiquitous calpains may be a potential strategy to attenuate IPF.
Collapse
Affiliation(s)
- Menglin Zou
- Department of Respiratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Guqin Zhang
- Department of Respiratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jingfeng Zou
- Department of Respiratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yuan Liu
- Department of Respiratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Bing Liu
- Department of Respiratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xingxing Hu
- Department of Respiratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Zhenshun Cheng
- Department of Respiratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
39
|
MicroRNA-31/184 is involved in transforming growth factor-β-induced apoptosis in A549 human alveolar adenocarcinoma cells. Life Sci 2019; 242:117205. [PMID: 31874165 DOI: 10.1016/j.lfs.2019.117205] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 12/04/2019] [Accepted: 12/17/2019] [Indexed: 12/25/2022]
Abstract
AIMS TGF-β-induced alveolar epithelial cells apoptosis were involved in idiopathic pulmonary fibrosis (IPF). This study aimed to explore potential targets and mechanisms of IPF. MAIN METHODS mRNA and microRNA arrays were used to analyze differentially expressed genes and miRNAs. Several essential targets of TGF-β-SMADs and TGF-β-PI3K-AKT pathways were detected. KEY FINDINGS miR-31 and miR-184 expression levels were positively correlated with smad6 and smad2/akt expression levels in IPF patients. TGF-β could induce miR-31 and suppress miR-184 levels in A549 cells. miR-31 was confirmed to bind to the smad6-3'UTR and functionally suppress its expression. Down-regulated SMAD6 enhanced SMAD2/SMAD4 dimer formation and translocation due to its failure to prevent SMAD2 phosphorylation. In contrast, anti-fibrotic functions of miR-184 were abolished due to TGF-β directly suppressing miR-184 levels in A549 cells. When A549 was stimulated by TGF-β combined with or without miR-31 inhibitor/miR-184 mimic, it was showed that depleted miR-31 and/or increased miR-184 significantly ameliorated TGF-β-induced viability of A549 cells, as well as inhibited the expression of profibrotic factors, MMP7 and RUNX2. SIGNIFICANCE Inhibiting miR-31 and/or promoting miR-184 protect against TGF-β-induced fibrogenesis by respectively repressing the TGF-β-SMAD2 and TGF-β-PI3K-AKT signaling pathways, implying that miR-31/184 are potential targets and suggesting a new management strategy for IPF.
Collapse
|
40
|
Moimas S, Salton F, Kosmider B, Ring N, Volpe MC, Bahmed K, Braga L, Rehman M, Vodret S, Graziani ML, Wolfson MR, Marchetti N, Rogers TJ, Giacca M, Criner GJ, Zacchigna S, Confalonieri M. miR-200 family members reduce senescence and restore idiopathic pulmonary fibrosis type II alveolar epithelial cell transdifferentiation. ERJ Open Res 2019; 5:00138-2019. [PMID: 31857992 PMCID: PMC6911923 DOI: 10.1183/23120541.00138-2019] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 09/23/2019] [Indexed: 12/12/2022] Open
Abstract
Rationale Alveolar type II (ATII) cells act as adult stem cells contributing to alveolar type I (ATI) cell renewal and play a major role in idiopathic pulmonary fibrosis (IPF), as supported by familial cases harbouring mutations in genes specifically expressed by these cells. During IPF, ATII cells lose their regenerative potential and aberrantly express pathways contributing to epithelial–mesenchymal transition (EMT). The microRNA miR-200 family is downregulated in IPF, but its effect on human IPF ATII cells remains unproven. We wanted to 1) evaluate the characteristics and transdifferentiating ability of IPF ATII cells, and 2) test whether miR-200 family members can rescue the regenerative potential of fibrotic ATII cells. Methods ATII cells were isolated from control or IPF lungs and cultured in conditions promoting their transdifferentiation into ATI cells. Cells were either phenotypically monitored over time or transfected with miR-200 family members to evaluate the microRNA effect on the expression of transdifferentiation, senescence and EMT markers. Results IPF ATII cells show a senescent phenotype (p16 and p21), overexpression of EMT (ZEB1/2) and impaired expression of ATI cell markers (AQP5 and HOPX) after 6 days of culture in differentiating medium. Transfection with certain miR-200 family members (particularly miR-200b-3p and miR-200c-3p) reduced senescence marker expression and restored the ability to transdifferentiate into ATI cells. Conclusions We demonstrated that ATII cells from IPF patients express senescence and EMT markers, and display a reduced ability to transdifferentiate into ATI cells. Transfection with certain miR-200 family members rescues this phenotype, reducing senescence and restoring transdifferentiation marker expression. Idiopathic pulmonary fibrosis alveolar epithelial type II cells show senescence and EMT features, but miR-200b and miR-200c can restore the ability of type II cells to transdifferentiate in vitro into type I alveolar epithelial cellshttp://bit.ly/359tlit
Collapse
Affiliation(s)
- Silvia Moimas
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy.,These authors contributed equally to this work (co-first authors)
| | - Francesco Salton
- Pulmonology Dept, University Hospital of Cattinara, Trieste, Italy.,These authors contributed equally to this work (co-first authors)
| | - Beata Kosmider
- Center for Inflammation, Translational and Clinical Lung Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA.,Dept of Thoracic Medicine and Surgery, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA.,Dept of Physiology, Temple University, Philadelphia, PA, USA.,These authors contributed equally to this work (co-first authors)
| | - Nadja Ring
- Cardiovascular Biology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Maria C Volpe
- Pulmonology Dept, University Hospital of Cattinara, Trieste, Italy.,Dept of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Karim Bahmed
- Center for Inflammation, Translational and Clinical Lung Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA.,Dept of Thoracic Medicine and Surgery, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Luca Braga
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Michael Rehman
- Cardiovascular Biology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Simone Vodret
- Cardiovascular Biology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | | | - Marla R Wolfson
- Center for Inflammation, Translational and Clinical Lung Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA.,Dept of Thoracic Medicine and Surgery, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA.,Dept of Physiology, Temple University, Philadelphia, PA, USA.,CENTRe: Collaborative for Environmental and Neonatal Therapeutics, Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Nathaniel Marchetti
- Dept of Thoracic Medicine and Surgery, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Thomas J Rogers
- Center for Inflammation, Translational and Clinical Lung Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA.,Dept of Thoracic Medicine and Surgery, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Mauro Giacca
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy.,Dept of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Gerard J Criner
- Dept of Thoracic Medicine and Surgery, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA.,These authors contributed equally to this work (co-last authors)
| | - Serena Zacchigna
- Cardiovascular Biology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy.,Dept of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy.,These authors contributed equally to this work (co-last authors)
| | - Marco Confalonieri
- Pulmonology Dept, University Hospital of Cattinara, Trieste, Italy.,Dept of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy.,These authors contributed equally to this work (co-last authors)
| |
Collapse
|
41
|
Rossi G, Cavazza A. Critical reappraisal of underlying histological patterns in patients with suspected idiopathic pulmonary fibrosis. Curr Opin Pulm Med 2019; 25:434-441. [PMID: 31365377 DOI: 10.1097/mcp.0000000000000595] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE OF REVIEW Usual interstitial pneumonia (UIP) pattern is the histologic marker of idiopathic pulmonary fibrosis (IPF), but usefulness of ancillary histologic findings may discriminate idiopathic from secondary UIP. RECENT FINDINGS Alternative less invasive procedures may identify UIP pattern preventing conventional surgical lung biopsy, whereas genomic analysis may recognize UIP pattern from otherwise poorly diagnostic samples. SUMMARY High-resolution computed tomography identifies a 'definite' UIP pattern in about half of cases, failing to recognize UIP in the absence of honeycombing or in limited disease. Although radiologic criteria for UIP need redefinition to improve their diagnostic yield, histologic features of UIP did not significantly change from the 1960s but continue to represent a major diagnostic tool, particularly in challenging interstitial lung diseases. A careful recognition of some histologic ancillary findings in UIP (e.g., cellular/follicular bronchiolitis with germinal centers, chronic pleuritis, interstitial granulomas/giant cells, bridging fibrosis) may be helpful in supporting secondary forms (e.g., connective tissue disease, chronic hypersensitivity pneumonia) from IPF. Cryobiopsy and awake-biopsy are promising approaches to obtain representative lung tissue preventing conventional surgical lung biopsy. Genomic techniques have recently demonstrated good-to-high sensitivity and specificity to disclose UIP pattern starting from RNA obtained in transbronchial biopsy, possibly replacing and/or flanking soon traditional histology.
Collapse
Affiliation(s)
- Giulio Rossi
- Pathology Unit, AUSL Romagna, St. Maria delle Croci Hospital, Ravenna, Italy
- 'Degli Infermi' Hospital, Rimini, Italy
| | - Alberto Cavazza
- Pathology Unit, AUSL/IRCCS di Reggio Emilia, Reggio, Emilia, Italy
| |
Collapse
|
42
|
Augmenting canonical Wnt signalling in therapeutically inert cells converts them into therapeutically potent exosome factories. Nat Biomed Eng 2019; 3:695-705. [PMID: 31451800 PMCID: PMC6736698 DOI: 10.1038/s41551-019-0448-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 07/16/2019] [Indexed: 01/02/2023]
Abstract
Cardiosphere-derived cells (CDCs) are therapeutic candidates with disease-modifying bioactivity, but their variable potency has complicated their clinical translation. Transcriptomic analyses of CDCs from human donors have revealed that the therapeutic potency of these cells correlates with Wnt/β-catenin signalling and with β-catenin protein levels. Here, we show that skin fibroblasts engineered to overexpress β-catenin and the transcription factor Gata4 become immortal and therapeutically potent. Transplantation of the engineered fibroblasts into a mouse model of acute myocardial infarction led to improved cardiac function and mouse survival. And in the mdx mouse model of Duchenne muscular dystrophy, exosomes secreted by the engineered fibroblasts improved exercise capacity and reduced skeletal-muscle fibrosis. We also demonstrate that exosomes from high-potency CDCs exhibit enhanced levels of miR-92a (a known potentiator of the Wnt/β-catenin pathway), and that they activate cardioprotective bone-morphogenetic-protein signalling in cardiomyocytes. Our findings show that the modulation of canonical Wnt signalling can turn therapeutically inert mammalian cells into immortal exosome factories for cell-free therapies. Overexpression of β-catenin and the transcription factor Gata4 in skin fibroblasts converts them into therapeutically active cells that secrete reparative exosomes as shown in mice models of myocardial infarction and Duchenne muscular dystrophy.
Collapse
|
43
|
Hill C, Li J, Liu D, Conforti F, Brereton CJ, Yao L, Zhou Y, Alzetani A, Chee SJ, Marshall BG, Fletcher SV, Hancock D, Ottensmeier CH, Steele AJ, Downward J, Richeldi L, Lu X, Davies DE, Jones MG, Wang Y. Autophagy inhibition-mediated epithelial-mesenchymal transition augments local myofibroblast differentiation in pulmonary fibrosis. Cell Death Dis 2019; 10:591. [PMID: 31391462 PMCID: PMC6685977 DOI: 10.1038/s41419-019-1820-x] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 06/28/2019] [Accepted: 07/18/2019] [Indexed: 12/11/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF), the prototypic progressive fibrotic interstitial lung disease, is thought to be a consequence of repetitive micro-injuries to an ageing, susceptible alveolar epithelium. Ageing is a risk factor for IPF and incidence has been demonstrated to increase with age. Decreased (macro)autophagy with age has been reported extensively in a variety of systems and diseases, including IPF. However, it is undetermined whether the role of faulty autophagy is causal or coincidental in the context of IPF. Here, we report that in alveolar epithelial cells inhibition of autophagy promotes epithelial-mesenchymal transition (EMT), a process implicated in embryonic development, wound healing, cancer metastasis and fibrosis. We further demonstrate that this is attained, at least in part, by increased p62/SQSTM1 expression that promotes p65/RELA mediated-transactivation of an EMT transcription factor, Snail2 (SNAI2), which not only controls EMT but also regulates the production of locally acting profibrogenic mediators. Our data suggest that reduced autophagy induces EMT of alveolar epithelial cells and can contribute to fibrosis via aberrant epithelial-fibroblast crosstalk.
Collapse
Affiliation(s)
- Charlotte Hill
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Juanjuan Li
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Dian Liu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Franco Conforti
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, SO16 6YD, UK
| | - Christopher J Brereton
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, SO16 6YD, UK
| | - Liudi Yao
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Yilu Zhou
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Aiman Alzetani
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, SO16 6YD, UK
- University Hospital Southampton, Southampton, SO16 6YD, UK
| | - Serena J Chee
- University Hospital Southampton, Southampton, SO16 6YD, UK
- Cancer Sciences Unit, University of Southampton, Somers Building, Southampton General Hospital, Southampton, SO16 6YD, UK
| | - Ben G Marshall
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, SO16 6YD, UK
- University Hospital Southampton, Southampton, SO16 6YD, UK
| | - Sophie V Fletcher
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, SO16 6YD, UK
- University Hospital Southampton, Southampton, SO16 6YD, UK
| | - David Hancock
- Oncogene Biology, The Francis Crick Institute, London, NW1 1AT, UK
| | - Christian H Ottensmeier
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, SO16 6YD, UK
- Cancer Sciences Unit, University of Southampton, Somers Building, Southampton General Hospital, Southampton, SO16 6YD, UK
| | - Andrew J Steele
- Cancer Sciences Unit, University of Southampton, Somers Building, Southampton General Hospital, Southampton, SO16 6YD, UK
| | - Julian Downward
- Oncogene Biology, The Francis Crick Institute, London, NW1 1AT, UK
| | - Luca Richeldi
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, SO16 6YD, UK
- Unità Operativa Complessa di Pneumologia, Università Cattolica del Sacro Cuore, Fondazione Policlinico A Gemelli IRCCS, Rome, Italy
| | - Xin Lu
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7DQ, UK
| | - Donna E Davies
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, SO16 6YD, UK
- Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Mark G Jones
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, SO16 6YD, UK
- Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Yihua Wang
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK.
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK.
| |
Collapse
|
44
|
Feng YL, Chen DQ, Vaziri ND, Guo Y, Zhao YY. Small molecule inhibitors of epithelial-mesenchymal transition for the treatment of cancer and fibrosis. Med Res Rev 2019; 40:54-78. [PMID: 31131921 DOI: 10.1002/med.21596] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 03/20/2019] [Accepted: 04/26/2019] [Indexed: 02/07/2023]
Abstract
Tissue fibrosis and cancer both lead to high morbidity and mortality worldwide; thus, effective therapeutic strategies are urgently needed. Because drug resistance has been widely reported in fibrotic tissue and cancer, developing a strategy to discover novel targets for targeted drug intervention is necessary for the effective treatment of fibrosis and cancer. Although many factors lead to fibrosis and cancer, pathophysiological analysis has demonstrated that tissue fibrosis and cancer share a common process of epithelial-mesenchymal transition (EMT). EMT is associated with many mediators, including transcription factors (Snail, zinc-finger E-box-binding protein and signal transducer and activator of transcription 3), signaling pathways (transforming growth factor-β1, RAC-α serine/threonine-protein kinase, Wnt, nuclear factor-kappa B, peroxisome proliferator-activated receptor, Notch, and RAS), RNA-binding proteins (ESRP1 and ESRP2) and microRNAs. Therefore, drugs targeting EMT may be a promising therapy against both fibrosis and tumors. A large number of compounds that are synthesized or derived from natural products and their derivatives suppress the EMT by targeting these mediators in fibrosis and cancer. By targeting EMT, these compounds exhibited anticancer effects in multiple cancer types, and some of them also showed antifibrotic effects. Therefore, drugs targeting EMT not only have both antifibrotic and anticancer effects but also exert effective therapeutic effects on multiorgan fibrosis and cancer, which provides effective therapy against fibrosis and cancer. Taken together, the results highlighted in this review provide new concepts for discovering new antifibrotic and antitumor drugs.
Collapse
Affiliation(s)
- Ya-Long Feng
- School of Pharmacy, Faculty of Life Science & Medicine, Northwest University, Xi'an, Shaanxi, China
| | - Dan-Qian Chen
- School of Pharmacy, Faculty of Life Science & Medicine, Northwest University, Xi'an, Shaanxi, China
| | - Nosratola D Vaziri
- Department of Medicine, University of California Irvine, Irvine, California
| | - Yan Guo
- School of Pharmacy, Faculty of Life Science & Medicine, Northwest University, Xi'an, Shaanxi, China.,Department of Internal Medicine, University of New Mexico, Albuquerque, New Mexico
| | - Ying-Yong Zhao
- School of Pharmacy, Faculty of Life Science & Medicine, Northwest University, Xi'an, Shaanxi, China
| |
Collapse
|
45
|
Yao L, Conforti F, Hill C, Bell J, Drawater L, Li J, Liu D, Xiong H, Alzetani A, Chee SJ, Marshall BG, Fletcher SV, Hancock D, Coldwell M, Yuan X, Ottensmeier CH, Downward J, Collins JE, Ewing RM, Richeldi L, Skipp P, Jones MG, Davies DE, Wang Y. Paracrine signalling during ZEB1-mediated epithelial-mesenchymal transition augments local myofibroblast differentiation in lung fibrosis. Cell Death Differ 2019; 26:943-957. [PMID: 30050057 PMCID: PMC6252080 DOI: 10.1038/s41418-018-0175-7] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 07/03/2018] [Accepted: 07/09/2018] [Indexed: 01/06/2023] Open
Abstract
The contribution of epithelial-mesenchymal transition (EMT) to human lung fibrogenesis is controversial. Here we provide evidence that ZEB1-mediated EMT in human alveolar epithelial type II (ATII) cells contributes to the development of lung fibrosis by paracrine signalling to underlying fibroblasts. Activation of EGFR-RAS-ERK signalling in ATII cells induced EMT via ZEB1. ATII cells had extremely low extracellular matrix gene expression even after induction of EMT, however conditioned media from ATII cells undergoing RAS-induced EMT augmented TGFβ-induced profibrogenic responses in lung fibroblasts. This epithelial-mesenchymal crosstalk was controlled by ZEB1 via the expression of tissue plasminogen activator (tPA). In human fibrotic lung tissue, nuclear ZEB1 expression was detected in alveolar epithelium adjacent to sites of extracellular matrix (ECM) deposition, suggesting that ZEB1-mediated paracrine signalling has the potential to contribute to early fibrotic changes in the lung interstitium. Targeting this novel ZEB1 regulatory axis may be a viable strategy for the treatment of pulmonary fibrosis.
Collapse
Affiliation(s)
- Liudi Yao
- Biological Sciences, Faculty of Natural and Environmental Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Franco Conforti
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, SO16 6YD, UK
| | - Charlotte Hill
- Biological Sciences, Faculty of Natural and Environmental Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Joseph Bell
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
| | - Leena Drawater
- Biological Sciences, Faculty of Natural and Environmental Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Juanjuan Li
- Biological Sciences, Faculty of Natural and Environmental Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Dian Liu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hua Xiong
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Aiman Alzetani
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
- Department of Thoracic Surgery, University Hospital Southampton, Southampton, SO16 6YD, UK
| | - Serena J Chee
- University Hospital Southampton, Southampton, SO16 6YD, UK
- Cancer Sciences & NIHR and CRUK Experimental Cancer Sciences Unit, University of Southampton, Southampton, SO16 6YD, UK
| | - Ben G Marshall
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, SO16 6YD, UK
- University Hospital Southampton, Southampton, SO16 6YD, UK
| | - Sophie V Fletcher
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, SO16 6YD, UK
- University Hospital Southampton, Southampton, SO16 6YD, UK
| | - David Hancock
- Oncogene Biology, The Francis Crick Institute, London, NW1 1AT, UK
| | - Mark Coldwell
- Biological Sciences, Faculty of Natural and Environmental Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Xianglin Yuan
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Christian H Ottensmeier
- Cancer Sciences & NIHR and CRUK Experimental Cancer Sciences Unit, University of Southampton, Southampton, SO16 6YD, UK
| | - Julian Downward
- Oncogene Biology, The Francis Crick Institute, London, NW1 1AT, UK
| | - Jane E Collins
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
| | - Rob M Ewing
- Biological Sciences, Faculty of Natural and Environmental Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Luca Richeldi
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, SO16 6YD, UK
- Unità Operativa Complessa di Pneumologia, Università Cattolica del Sacro Cuore, Fondazione Policlinico A. Gemelli, Rome, Italy
| | - Paul Skipp
- Biological Sciences, Faculty of Natural and Environmental Sciences, University of Southampton, Southampton, SO17 1BJ, UK
- Centre for Proteomic Research, Institute for Life Sciences University of Southampton, Southampton, SO17 1BJ, UK
| | - Mark G Jones
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, SO16 6YD, UK
| | - Donna E Davies
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK.
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, SO16 6YD, UK.
- Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK.
| | - Yihua Wang
- Biological Sciences, Faculty of Natural and Environmental Sciences, University of Southampton, Southampton, SO17 1BJ, UK.
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK.
| |
Collapse
|
46
|
Salton F, Volpe MC, Confalonieri M. Epithelial⁻Mesenchymal Transition in the Pathogenesis of Idiopathic Pulmonary Fibrosis. ACTA ACUST UNITED AC 2019; 55:medicina55040083. [PMID: 30925805 PMCID: PMC6524028 DOI: 10.3390/medicina55040083] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 02/21/2019] [Accepted: 03/26/2019] [Indexed: 01/06/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a serious disease of the lung, which leads to extensive parenchymal scarring and death from respiratory failure. The most accepted hypothesis for IPF pathogenesis relies on the inability of the alveolar epithelium to regenerate after injury. Alveolar epithelial cells become apoptotic and rare, fibroblasts/myofibroblasts accumulate and extracellular matrix (ECM) is deposited in response to the aberrant activation of several pathways that are physiologically implicated in alveologenesis and repair but also favor the creation of excessive fibrosis via different mechanisms, including epithelial⁻mesenchymal transition (EMT). EMT is a pathophysiological process in which epithelial cells lose part of their characteristics and markers, while gaining mesenchymal ones. A role for EMT in the pathogenesis of IPF has been widely hypothesized and indirectly demonstrated; however, precise definition of its mechanisms and relevance has been hindered by the lack of a reliable animal model and needs further studies. The overall available evidence conceptualizes EMT as an alternative cell and tissue normal regeneration, which could open the way to novel diagnostic and prognostic biomarkers, as well as to more effective treatment options.
Collapse
Affiliation(s)
- Francesco Salton
- Pulmonology Department, University Hospital of Cattinara, 34149 Trieste, Italy.
| | | | - Marco Confalonieri
- Pulmonology Department, University Hospital of Cattinara, 34149 Trieste, Italy.
| |
Collapse
|
47
|
Abstract
INTRODUCTION Arthrofibrosis (AF) is the result of increased cell proliferation and synthesis of matrix proteins (collagen I, III, and VI). Especially after invasive knee surgery, e.g., ligament reconstruction or knee replacement, abnormal fibroblast proliferation with pathological periarticular fibrosis can be observed leading to severely limited joint motion. The pathogenesis of AF is currently not fully understood. The present work aims to determine pathogenic factors. MATERIALS AND METHODS A descriptive, histological and immunohistochemical comparative study was performed on tissue samples of 14 consecutive patients undergoing arthrolysis for joint stiffness due to AF. Seven human autopsy specimens served as control. Samples were stained for expression of relevant markers such as CD68, α-smooth muscle actin (ASMA), beta-catenin, BMP-2 and examined for the histological grade of AF (cell-rich versus cell-poor) and compared to a control. Furthermore, a microscopic evaluation of the samples for cell differentiation and number was performed. RESULTS Tissue sections of cell-rich fibrosis showed a significantly higher expression of CD68 compared to the control with less than 10% of CD68 positive cells (p = 0.002). In cell-poor fibrosis no statistically significant difference was obvious (p = 0.228). Expression of ASMA in synovia, vessels, cell-rich and cell-poor fibrosis showed median values of 2.00 in the AF group and 1.75 in the control. Both groups differed significantly (p = 0.003). AF tissue showed a significantly difference in expression of β-catenin (p < 0.001) compared to the control. The overall difference between AF and control group in expression of BMP-2 was also statistically significant (p = 0.002). CONCLUSIONS Expression of CD68, ASMA, beta-catenin and BMP-2 is significantly increased in AF tissue samples. Based on presented findings, histological evaluation and immunohistochemical assessment of CD68, ASMA, β-catenin and BMP-2 expression may proof useful to diagnose AF and to analyze AF activity.
Collapse
|
48
|
Qian W, Cai X, Qian Q, Peng W, Yu J, Zhang X, Tian L, Wang C. lncRNA ZEB1-AS1 promotes pulmonary fibrosis through ZEB1-mediated epithelial-mesenchymal transition by competitively binding miR-141-3p. Cell Death Dis 2019; 10:129. [PMID: 30755599 PMCID: PMC6372615 DOI: 10.1038/s41419-019-1339-1] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/29/2018] [Accepted: 01/07/2019] [Indexed: 12/11/2022]
Abstract
Long non-coding RNAs (lncRNAs) have been reported to be involved in various pathophysiological processes in many diseases. However, the role and mechanism of lncRNAs in pulmonary fibrosis have not been explicitly delineated. In the present study, we found that lncRNA ZEB1 antisense RNA 1 (ZEB1-AS1) is upregulated in the lungs of BLM-induced rats and TGF-β1-induced RLE-6TN cells, and positively correlated with the levels of ZEB1, an epithelial-mesenchymal transition (EMT) master regulator. Knockdown of ZEB1-AS1 alleviated BLM-induced fibrogenesis, in vivo, via inhibiting EMT progress. Mechanistically, we identified that ZEB1-AS1 promoted fibrogenesis in RLE-6TN cells and ZEB1-AS1 silencing inhibited TGF-β1-induced fibrogenesis through modulation of miR-141-3p. Further experiments revealed that ZEB1-AS1 acted as competing endogenous RNA (ceRNA) of miR-141-3p: forced expression of ZEB1-AS1 reduced the expression of miR-141-3p to activate Zinc-finger Ebox Binding Homeobox 1 (ZEB1) in RLE-6TN cells. In addition, we found that upregulation of miR-141-3p prevented fibrogenesis by targeting ZEB1. Therefore, our finding suggested lncRNA ZEB1-AS1 as a new profibrotic molecule that acts as a regulator of miR-141-3p/ZEB1 axis during lung fibrosis and demonstrated ZEB1-AS1 as a potential therapeutic target for the prevention and treatment of pulmonary fibrosis.
Collapse
Affiliation(s)
- Weibin Qian
- Department of Lung Disease, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250011, People's Republic of China.
| | - Xinrui Cai
- Department of Traditional Chinese Medicine, Shandong Academy of Occupational Health and Occupational Medicine, Shandong Academy of Medical Sciences, Jinan, Shandong, 250062, People's Republic of China.
| | - Qiuhai Qian
- Department of Endocrinology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250011, People's Republic of China.
| | - Wei Peng
- Department of Scientific Research, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250011, People's Republic of China
| | - Jie Yu
- Department of Chinese Internal Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250355, People's Republic of China
| | - Xinying Zhang
- Department of Endocrinology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250011, People's Republic of China
| | - Li Tian
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250355, People's Republic of China
| | - Can Wang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250355, People's Republic of China
| |
Collapse
|
49
|
Ji S, Su X, Zhang H, Han Z, Zhao Y, Liu Q. MicroRNA-372 functions as a tumor suppressor in cell invasion, migration and epithelial-mesenchymal transition by targeting ATAD2 in renal cell carcinoma. Oncol Lett 2018; 17:2400-2408. [PMID: 30719113 PMCID: PMC6350190 DOI: 10.3892/ol.2018.9871] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 12/05/2018] [Indexed: 12/30/2022] Open
Abstract
In recent years, renal cell carcinoma (RCC) has exhibited an increasing incidence and mortality rate worldwide. Accumulating evidence has identified that microRNAs (miRNAs) function as negative or positive regulators of many malignant tumors; however, the roles of miR-372 in RCC remain unclear. The focus of the present study was the functions of miR-372 in RCC metastasis and EMT. Data revealed that miR-372 expression levels were significantly downregulated in RCC tissue samples and cells. Moreover, the decreased expression levels were strongly associated with the poor survival rates and adverse clinical characteristics of RCC patients. Accordingly, miR-372 overexpression markedly inhibited RCC cell invasion, migration and EMT. In terms of the potential mechanisms, ATAD2, the expression of which was inversely correlated with miR-372 expression in RCC, was identified as a direct functional target of miR-372. Notably, ATAD2 silence exerted suppressive functions in RCC cells, being similar to the effects of miR-372 overexpression. In conclusion, findings of this study indicate that miR-372 repressed RCC EMT and metastasis via targeting ATAD2, suggesting that the miR-372/ATAD2 axis may be therapeutic biomarkers for RCC.
Collapse
Affiliation(s)
- Shiqi Ji
- Department of Urology, Beijing Ditan Hospital Capital Medical University, Capital Medical University, Beijing 100015, P.R. China
| | - Xiaolin Su
- Department of Emergency, Beijing First Hospital of Integrated Chinese and Western Medicine, Beijing 100021, P.R. China
| | - Haijian Zhang
- Department of Urology, Beijing Ditan Hospital Capital Medical University, Capital Medical University, Beijing 100015, P.R. China
| | - Zhixing Han
- Department of Urology, Beijing Ditan Hospital Capital Medical University, Capital Medical University, Beijing 100015, P.R. China
| | - Yuqian Zhao
- Department of Urology, Beijing Ditan Hospital Capital Medical University, Capital Medical University, Beijing 100015, P.R. China
| | - Qingjun Liu
- Department of Urology, Beijing Ditan Hospital Capital Medical University, Capital Medical University, Beijing 100015, P.R. China
| |
Collapse
|
50
|
Wang B, Ji G, Naeem H, Wang J, Kantharidis P, Powell D, Ricardo SD. The Use of Targeted Next Generation Sequencing to Explore Candidate Regulators of TGF-β1's Impact on Kidney Cells. Front Physiol 2018; 9:1755. [PMID: 30618784 PMCID: PMC6295563 DOI: 10.3389/fphys.2018.01755] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 11/20/2018] [Indexed: 12/26/2022] Open
Abstract
Aims/Hypothesis: Transforming growth factor-beta (TGF-β1) plays an important regulatory role in the progression of chronic kidney failure. Further, damage to kidney glomerular mesangial cells is central to the progression of diabetic nephropathy. The aim of this study was to explore the genetic associations between mRNA, microRNA, and epigenetics in mesangial cells in response to TGF-β1. Methods: The regulatory effects of TGF-β1 on mesangial cells were investigated at different molecular levels by treating mesangial cells with TGF-β1 for 3 days followed by genome-wide miRNA, RNA, DNA methylation, and H3K27me3 expression profiling using next generation sequencing (NGS). Results: Our results provide the first comprehensive, computationally integrated report of RNA-Seq, miRNA-Seq, and epigenomic analyses across all genetic variations, confirming the occurrence of DNA methylation and H3K27me3 in response to TGF-β1. Our findings show that the expression of KLF7 and Gja4 are involved in TGF-β1 regulated DNA methylation. Our data also provide evidence of the association between epigenetic changes and the expression of genes closely related to TGF-β1 regulation. Conclusion: This study has advanced our current knowledge of mechanisms that contribute to the expression of TGF-β1-regulated genes involved in the pathogenesis of kidney disease. The molecular underpinnings of TGF-β1 stimulation of kidney cells was determined, thereby providing a robust platform for further target exploration.
Collapse
Affiliation(s)
- Bo Wang
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Guanyu Ji
- Shenzhen E-GENE Tech Co., Ltd., Shenzhen, China
| | - Haroon Naeem
- Monash Bioinformatics Platform, Monash University, Clayton, VIC, Australia.,Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Junwen Wang
- Shenzhen E-GENE Tech Co., Ltd., Shenzhen, China
| | | | - David Powell
- Monash Bioinformatics Platform, Monash University, Clayton, VIC, Australia.,Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Sharon D Ricardo
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| |
Collapse
|