1
|
Legrand M, Louveau B, Macagno N, Mancini M, Kazakov DV, Pissaloux D, Tirode F, Tallet A, Mourah S, Lepiller Q, de la Fouchardière A, Sohier P, Frouin E, von Deimling A, Goto K, Cribier B, Calonje E, Taibjee S, Battistella M, Kervarrec T. Recurrent GRHL fusions in a subset of sebaceoma: microscopic and molecular characterisation of eight cases. Histopathology 2025; 86:571-584. [PMID: 39564735 PMCID: PMC11791738 DOI: 10.1111/his.15361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 09/16/2024] [Accepted: 10/16/2024] [Indexed: 11/21/2024]
Abstract
AIMS Sebaceous neoplasms constitute a group of adnexal tumours, including sebaceous adenoma, sebaceoma and sebaceous carcinoma. Although mismatch repair deficiency may be observed, the nature of the genetic alterations contributing to the development of most of these tumours is still unknown. In the present study, we describe the clinical, microscopic, and molecular features of eight sebaceomas with GRHL gene rearrangement. METHODS AND RESULTS Among these sebaceomas, four occurred in women and four in men; the median age was 63 years (range = 29-89). The tumours were located in the head and neck area in all cases. Microscopic examination revealed a well-demarcated lesion located in the dermis with focal extension into the subcutaneous tissue (three cases). The neoplasms displayed macronodular (eight cases), cribriform (seven cases) and organoid (six cases) growth patterns, occurring in combination. The tumours were mainly composed of immature basophilic cells associated with scattered mature sebocytes. Numerous small infundibular cysts were present in seven cases. Mitotic activity was low (none/one to four mitoses/mm2). Immunohistochemistry showed positivity for androgen receptor and p63. Preserved expression of MLH1, PMS2, MSH2 and MSH6 was observed in all cases. RNA-sequencing revealed RCOR1::GRHL2 (three cases), BCL6::GRHL1 (two cases), a BCOR::GRHL2 (one case), RCOR1::GRHL1 (one case) and TLE1::GRHL1 (one case) fusion transcript. Methylation analysis demonstrated that GRHL-fused sebaceomas form an independent cluster and highlight the proximity of such tumours with poromas with folliculo-sebaceous differentiation. CONCLUSIONS In conclusion, we report recurrent fusions of the GRHL genes in a distinctive subset of sebaceomas harbouring infundibulocystic differentiation, a frequent organoid growth pattern and lack of mismatch repair deficiency.
Collapse
Affiliation(s)
- Mélanie Legrand
- Department of PathologyUniversité de Tours, Centre Hospitalier Universitaire de ToursToursFrance
| | - Baptiste Louveau
- Department of Tumour Genomics and PharmacologyHôpital Saint Louis, Université Paris Cité, Human Immunology Pathophysiology and Immunotherapy (HIPI)ParisFrance
| | - Nicolas Macagno
- CARADERM Network, Fédération de Recherche CliniqueLilleFrance
- Department of Pathology, Aix Marseille UniversityLa Timone HospitalMarseilleFrance
| | - Maxence Mancini
- Department of Tumour Genomics and PharmacologyHôpital Saint Louis, Université Paris Cité, Human Immunology Pathophysiology and Immunotherapy (HIPI)ParisFrance
| | - Dmitry V Kazakov
- IDP Dermatohistopathologie InstitutPathologie Institut EngeZurichSwitzerland
| | | | - Franck Tirode
- Department of BiopathologyCenter Léon BérardLyonFrance
- Université de Lyon, Université Claude Bernard Lyon 1, Léon Bérard, Cancer Research Center of Lyon, Equipe Labellisée Ligue contre le CancerLyonFrance
| | - Anne Tallet
- Platform of Somatic Tumour Molecular GeneticsUniversité de Tours, Centre Hospitalier Universitaire de ToursToursFrance
| | - Samia Mourah
- Department of Tumour Genomics and PharmacologyHôpital Saint Louis, Université Paris Cité, Human Immunology Pathophysiology and Immunotherapy (HIPI)ParisFrance
| | - Quentin Lepiller
- French National Papillomavirus Reference Center, CHU de BesançonUniversité de Franche‐ComtéBesançonFrance
| | - Arnaud de la Fouchardière
- Department of BiopathologyCenter Léon BérardLyonFrance
- Université de Lyon, Université Claude Bernard Lyon 1, Léon Bérard, Cancer Research Center of Lyon, Equipe Labellisée Ligue contre le CancerLyonFrance
| | - Pierre Sohier
- CARADERM Network, Fédération de Recherche CliniqueLilleFrance
- Department of Pathology, Hôpital CochinAssistance Publique‐Hôpitaux de Paris, AP‐HP Centre‐Université Paris CitéParisFrance
| | - Eric Frouin
- CARADERM Network, Fédération de Recherche CliniqueLilleFrance
- Department of Pathologyuniversity Hospital of Nîmes, University of NîmesNîmesFrance
| | - Andreas von Deimling
- Department of NeuropathologyInstitute of Pathology, Ruprecht‐Karls‐UniversityHeidelbergGermany
- Clinical Cooperation Unit NeuropathologyGerman Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK)HeidelbergGermany
| | - Keisuke Goto
- Department of PathologyTokyo Metropolitan Cancer and Infectious Disease Center, Komagome HospitalTokyoJapan
- Department of Diagnostic PathologyShizuoka Cancer Center HospitalSuntoJapan
- Department of Diagnostic Pathology and CytologyOsaka International Cancer InstituteOsakaJapan
- Department of DermatologyHyogo Cancer CenterAkashiJapan
| | - Bernard Cribier
- CARADERM Network, Fédération de Recherche CliniqueLilleFrance
- Dermatology ClinicHôpitaux Universitaires and Université de Strasbourg, Hôpital CivilStrasbourgFrance
| | - Eduardo Calonje
- Department of Dermatopathology, St John's Institute of DermatologySt Thomas’ HospitalLondonUK
| | - Saleem Taibjee
- Dermatology DepartmentDorset County Hospital NHS Foundation TrustDorchesterUK
| | - Maxime Battistella
- CARADERM Network, Fédération de Recherche CliniqueLilleFrance
- Department of PathologySaint‐Louis University HospitalParisFrance
| | - Thibault Kervarrec
- Department of PathologyUniversité de Tours, Centre Hospitalier Universitaire de ToursToursFrance
- CARADERM Network, Fédération de Recherche CliniqueLilleFrance
- Biologie des infections à polyomavirus teamUniversité de ToursToursFrance
| |
Collapse
|
2
|
Botelho L, Dezonne RS, Wildemberg LE, Miranda RL, Gadelha MR, Andreiuolo F. Somatostatin receptors in pituitary somatotroph adenomas as predictors of response to somatostatin receptor ligands: A pathologist's perspective. Brain Pathol 2025; 35:e13313. [PMID: 39473262 DOI: 10.1111/bpa.13313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 10/04/2024] [Indexed: 12/28/2024] Open
Abstract
There are five subtypes of somatostatin receptors (SST1-5), which are expressed in several types of solid neoplasms, neuroendocrine tumors, and pituitary adenomas. Most commonly, SST2 and SST5, are of interest regarding diagnostic, treatment, and prognostic purposes. In this article the basic biological characteristics of SST are briefly reviewed, and focus given to the immunohistochemical evaluation of SST2 and SST5 in growth hormone (GH)-secreting pituitary tumors, and their quantification as predictors of response to treatment with somatostatin receptor ligands (SRL), the mainstay of the pharmacological therapy available for these tumors. Although many different scoring systems for SST2 immunohistochemistry showing correlation with SRL response have been reported, among which the immunoreactivity score (IRS) has been the most consistently used, a universally validated immunohistochemical technique and scoring scheme is lacking. Efforts should be made on collaborative multicenter studies aiming at validating homogeneous immunostaining protocols and a scoring system for SST2 and SST5 expression, to help clinicians to define the optimal therapeutic strategy for the patients with somatotroph tumors.
Collapse
Affiliation(s)
- Laura Botelho
- Neuropathology and Molecular Genetics Laboratory, Instituto Estadual do Cérebro Paulo Niemeyer, Rio de Janeiro, Brazil
- Department of Pathology, Rede D'Or, Rio de Janeiro, Brazil
| | - Rômulo Sperduto Dezonne
- Neuropathology and Molecular Genetics Laboratory, Instituto Estadual do Cérebro Paulo Niemeyer, Rio de Janeiro, Brazil
| | - Luiz Eduardo Wildemberg
- Neuroendocrinology Research Center, Endocrinology Division, Medical School and Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Neuroendocrinology Division, Instituto Estadual do Cérebro Paulo Niemeyer, Rio de Janeiro, Brazil
| | - Renan Lyra Miranda
- Neuropathology and Molecular Genetics Laboratory, Instituto Estadual do Cérebro Paulo Niemeyer, Rio de Janeiro, Brazil
| | - Mônica R Gadelha
- Neuropathology and Molecular Genetics Laboratory, Instituto Estadual do Cérebro Paulo Niemeyer, Rio de Janeiro, Brazil
- Neuroendocrinology Research Center, Endocrinology Division, Medical School and Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Neuroendocrinology Division, Instituto Estadual do Cérebro Paulo Niemeyer, Rio de Janeiro, Brazil
| | - Felipe Andreiuolo
- Neuropathology and Molecular Genetics Laboratory, Instituto Estadual do Cérebro Paulo Niemeyer, Rio de Janeiro, Brazil
- Department of Pathology, Rede D'Or, Rio de Janeiro, Brazil
- D'Or Institute for Research and Education, Rio de Janeiro, Brazil
| |
Collapse
|
3
|
Avsievich E, Salimgereeva D, Maluchenko A, Antysheva Z, Voloshin M, Feidorov I, Glazova O, Abramov I, Maksimov D, Kaziakhmedova S, Bodunova N, Karnaukhov N, Volchkov P, Krupinova J. Pancreatic Neuroendocrine Tumor: The Case Report of a Patient with Germline FANCD2 Mutation and Tumor Analysis Using Single-Cell RNA Sequencing. J Clin Med 2024; 13:7621. [PMID: 39768544 PMCID: PMC11728285 DOI: 10.3390/jcm13247621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/18/2024] [Accepted: 11/21/2024] [Indexed: 01/16/2025] Open
Abstract
Background: Neuroendocrine neoplasms are a rare and heterogeneous group of neoplasms. Small-sized (≤2 cm) pancreatic neuroendocrine tumors (PanNETs) are of particular interest as they are often associated with aggressive behavior, with no specific prognostic or progression markers. METHODS This article describes a clinical case characterized by a progressive growth of nonfunctional PanNET requiring surgical treatment in a patient with a germline FANCD2 mutation, previously not reported in PanNETs. The patient underwent whole exome sequencing and single-cell RNA sequencing. RESULTS The patient underwent surgical treatment. We confirmed the presence of the germline mutation FANCD2 and also detected the germline mutation WNT10A. The cellular composition of the PanNET was analyzed using single-cell sequencing, and the main cell clusters were identified. We analyzed the tumor genomics, and used the data to define the effect the germline FANCD2 mutation had. CONCLUSIONS Analysis of the mutational status of patients with PanNET may provide additional data that may influence treatment tactics, refine the plan for monitoring such patients, and provide more information about the pathogenesis of PanNET. PanNET research using scRNA-seq data may help in predicting the effect of therapy on neuroendocrine cells with FANCD2 mutations.
Collapse
Affiliation(s)
- Ekaterina Avsievich
- Moscow Clinical Scientific Center N.A. A.S. Loginov, Moscow 111123, Russia; (E.A.); (D.S.); (M.V.); (I.F.); (O.G.); (I.A.); (N.B.); (N.K.); (P.V.)
- Moscow Center for Advanced Studies, Kulakova Street 20, Moscow 123592, Russia; (A.M.); (Z.A.); (D.M.); (S.K.)
- Federal Research Center for Innovator, Emerging Biomedical and Pharmaceutical Technologies, Moscow 125315, Russia
| | - Diana Salimgereeva
- Moscow Clinical Scientific Center N.A. A.S. Loginov, Moscow 111123, Russia; (E.A.); (D.S.); (M.V.); (I.F.); (O.G.); (I.A.); (N.B.); (N.K.); (P.V.)
| | - Alesia Maluchenko
- Moscow Center for Advanced Studies, Kulakova Street 20, Moscow 123592, Russia; (A.M.); (Z.A.); (D.M.); (S.K.)
| | - Zoia Antysheva
- Moscow Center for Advanced Studies, Kulakova Street 20, Moscow 123592, Russia; (A.M.); (Z.A.); (D.M.); (S.K.)
- Federal Research Center for Innovator, Emerging Biomedical and Pharmaceutical Technologies, Moscow 125315, Russia
| | - Mark Voloshin
- Moscow Clinical Scientific Center N.A. A.S. Loginov, Moscow 111123, Russia; (E.A.); (D.S.); (M.V.); (I.F.); (O.G.); (I.A.); (N.B.); (N.K.); (P.V.)
| | - Ilia Feidorov
- Moscow Clinical Scientific Center N.A. A.S. Loginov, Moscow 111123, Russia; (E.A.); (D.S.); (M.V.); (I.F.); (O.G.); (I.A.); (N.B.); (N.K.); (P.V.)
| | - Olga Glazova
- Moscow Clinical Scientific Center N.A. A.S. Loginov, Moscow 111123, Russia; (E.A.); (D.S.); (M.V.); (I.F.); (O.G.); (I.A.); (N.B.); (N.K.); (P.V.)
- Moscow Center for Advanced Studies, Kulakova Street 20, Moscow 123592, Russia; (A.M.); (Z.A.); (D.M.); (S.K.)
| | - Ivan Abramov
- Moscow Clinical Scientific Center N.A. A.S. Loginov, Moscow 111123, Russia; (E.A.); (D.S.); (M.V.); (I.F.); (O.G.); (I.A.); (N.B.); (N.K.); (P.V.)
- Moscow Center for Advanced Studies, Kulakova Street 20, Moscow 123592, Russia; (A.M.); (Z.A.); (D.M.); (S.K.)
- Federal Research Center for Innovator, Emerging Biomedical and Pharmaceutical Technologies, Moscow 125315, Russia
| | - Denis Maksimov
- Moscow Center for Advanced Studies, Kulakova Street 20, Moscow 123592, Russia; (A.M.); (Z.A.); (D.M.); (S.K.)
- Federal Research Center for Innovator, Emerging Biomedical and Pharmaceutical Technologies, Moscow 125315, Russia
| | - Samira Kaziakhmedova
- Moscow Center for Advanced Studies, Kulakova Street 20, Moscow 123592, Russia; (A.M.); (Z.A.); (D.M.); (S.K.)
| | - Natalia Bodunova
- Moscow Clinical Scientific Center N.A. A.S. Loginov, Moscow 111123, Russia; (E.A.); (D.S.); (M.V.); (I.F.); (O.G.); (I.A.); (N.B.); (N.K.); (P.V.)
| | - Nikolay Karnaukhov
- Moscow Clinical Scientific Center N.A. A.S. Loginov, Moscow 111123, Russia; (E.A.); (D.S.); (M.V.); (I.F.); (O.G.); (I.A.); (N.B.); (N.K.); (P.V.)
| | - Pavel Volchkov
- Moscow Clinical Scientific Center N.A. A.S. Loginov, Moscow 111123, Russia; (E.A.); (D.S.); (M.V.); (I.F.); (O.G.); (I.A.); (N.B.); (N.K.); (P.V.)
- Moscow Center for Advanced Studies, Kulakova Street 20, Moscow 123592, Russia; (A.M.); (Z.A.); (D.M.); (S.K.)
- Federal Research Center for Innovator, Emerging Biomedical and Pharmaceutical Technologies, Moscow 125315, Russia
| | - Julia Krupinova
- Moscow Clinical Scientific Center N.A. A.S. Loginov, Moscow 111123, Russia; (E.A.); (D.S.); (M.V.); (I.F.); (O.G.); (I.A.); (N.B.); (N.K.); (P.V.)
- Moscow Center for Advanced Studies, Kulakova Street 20, Moscow 123592, Russia; (A.M.); (Z.A.); (D.M.); (S.K.)
- Federal Research Center for Innovator, Emerging Biomedical and Pharmaceutical Technologies, Moscow 125315, Russia
| |
Collapse
|
4
|
Leunissen DJG, Moonen L, von der Thüsen JH, den Bakker MA, Hillen LM, van Weert TJJ, Zur Hausen A, van den Bosch TPP, Lap LMV, Damhuis RA, Reynaert NL, van den Broek EC, Fernandez-Cuesta L, Foll M, Alcala N, Sexton-Oates A, Dingemans AMC, Speel EJM, Derks JL. Identification of Defined Molecular Subgroups on the Basis of Immunohistochemical Analyses and Potential Therapeutic Vulnerabilities of Pulmonary Carcinoids. J Thorac Oncol 2024:S1556-0864(24)02481-X. [PMID: 39581377 DOI: 10.1016/j.jtho.2024.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/04/2024] [Accepted: 11/19/2024] [Indexed: 11/26/2024]
Abstract
INTRODUCTION Multi-omic studies have identified three molecular separated pulmonary carcinoid (PC) subgroups (A1, A2, B) with distinctive mRNA expression profiles (e.g., orthopedia homeobox protein [OTP], achaete-scute homolog [ASCL1], and hepatocyte nuclear factor 1 homeobox A [HNF1A]). We aimed to establish an immunohistochemical (IHC) biomarker panel that enables subgroup identification, and assessment of its potential clinical relevance. METHODS All patients with resected pulmonary carcinoids (2003-2012) were identified from the Dutch Cancer/Pathology Registry, and tumors were revised. The IHC expression of OTP, ASCL1, and HNF1A was scored in a blinded fashion in a mRNA-profiled (n = 5 per subgroup) and national carcinoid cohort (N = 478). The expression of potential therapeutic targets (somatostatin receptor type 2a [SSTR2A] and delta-like canonical Notch ligand 3 [DLL3]) was assessed. Immunohistochemistry was assessed using H-scoring. RESULTS OTP, ASCL1, and HNF1A reported similar IHC and mRNA expression patterns in the matched primary samples. In the national cohort, IHC separated PCs into subgroups A1 (n = 224 [53%], OTPhigh-ASCL1high-HNF1Alow), A2 (n = 161 [38%], OTPhigh-ASCL1low-HNF1Ahigh), and B (n = 37 [9%], OTPlow-ASCL1low-HNF1Ahigh). In 12% of PCs, no distinct classification could be provided. Patients with A1 were enriched for older age (83% > 50 y), female individuals (83%), and peripheral location (55%) with low SSTR2A (median = 10) and high DLL3 (median = 52) expression. A2 included younger patients (34% < 40 y) and endobronchial/central (87%) tumors with high SSTR2A (median = 160), but low DLL3 (median 0) expression. Group B included more male individuals (59%) and recurrence was more frequent (19%) than in groups A1 (8%) and A2 (6%). Neuroendocrine cell hyperplasia was enriched in A1 (25%) compared with A2 (3%) and B (0%). CONCLUSIONS An OTP, ASCL1, and HNF1A IHC panel enables the identification of molecular-defined pulmonary carcinoid subgroups with distinct clinical phenotypes and diverging therapeutic vulnerabilities that require further prospective evaluation.
Collapse
Affiliation(s)
- Daphne J G Leunissen
- Department of Pathology, GROW Research Institute for Oncology and Reproduction, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Laura Moonen
- Department of Pathology, GROW Research Institute for Oncology and Reproduction, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Jan H von der Thüsen
- Department of Pathology and Clinical Bioinformatics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | | | - Lisa M Hillen
- Department of Pathology, GROW Research Institute for Oncology and Reproduction, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Tijmen J J van Weert
- Department of Pathology, GROW Research Institute for Oncology and Reproduction, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Axel Zur Hausen
- Department of Pathology, GROW Research Institute for Oncology and Reproduction, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Thierry P P van den Bosch
- Department of Pathology and Clinical Bioinformatics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Lisa M V Lap
- Department of Pathology, GROW Research Institute for Oncology and Reproduction, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Ronald A Damhuis
- Department of Research and Development, Association of Comprehensive Cancer Centres, Utrecht, The Netherlands
| | - Niki L Reynaert
- Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | | | - Lynnette Fernandez-Cuesta
- Rare Cancers Genomics Team (RCG), Genomic Epidemiology Branch (GEM), International Agency for Research on Cancer/World Health Organization (IARC/WHO), Lyon, France
| | - Matthieu Foll
- Rare Cancers Genomics Team (RCG), Genomic Epidemiology Branch (GEM), International Agency for Research on Cancer/World Health Organization (IARC/WHO), Lyon, France
| | - Nicolas Alcala
- Rare Cancers Genomics Team (RCG), Genomic Epidemiology Branch (GEM), International Agency for Research on Cancer/World Health Organization (IARC/WHO), Lyon, France
| | - Alexandra Sexton-Oates
- Rare Cancers Genomics Team (RCG), Genomic Epidemiology Branch (GEM), International Agency for Research on Cancer/World Health Organization (IARC/WHO), Lyon, France
| | - Anne-Marie C Dingemans
- GROW Research Institute for Oncology and Reproduction, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Ernst-Jan M Speel
- Department of Pathology, GROW Research Institute for Oncology and Reproduction, Maastricht University Medical Centre, Maastricht, The Netherlands; Department of Pathology and Clinical Bioinformatics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Jules L Derks
- GROW Research Institute for Oncology and Reproduction, Maastricht University Medical Centre, Maastricht, The Netherlands; Department of Pulmonary Medicine, Erasmus MC Cancer Institute, University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
5
|
Onish S, Takada‐Watanabe A, Osamura RY, Shiomi T, Kusano H, Maezawa Y, Murai H, Miyabayashi M, Koike S, Yoshida T, Takemoto M. Insulinoma with suspected mutant somatostatin receptor expression according to histological examination. Clin Case Rep 2024; 12:e9390. [PMID: 39507000 PMCID: PMC11538038 DOI: 10.1002/ccr3.9390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/07/2024] [Accepted: 08/15/2024] [Indexed: 11/08/2024] Open
Abstract
Key Clinical Message This case highlights the possibility of an insulinoma expressing an aberrant form of SSTRs resulting in a discrepancy between the preoperative octreotide assessment and postoperative SSTR expression. Abstract Insulinoma is a pancreatic disease that causes hyperinsulinemic hypoglycemia. The first-line treatment is surgery; however, somatostatin derivatives are administered in cases where surgery is not a viable option and to prevent preoperative hypoglycemia. Here, we report a case in which preoperative examination indicated a potential tumor with low somatostatin receptor 2 (SSTR2) and SSTR5 expression, whereas postoperative pathological examination indicated strong SSTR expression. We report the case of a 69-year-old Japanese female who experienced hypoglycemia-like symptoms for a decade such as sweating, fatigue, hunger, and confusion with an increase in episode frequency per year. Dynamic computed tomography revealed a 13-mm diameter nodule and aberrant blood flow in the pancreatic tail. Subsequently, the patient was diagnosed with pancreatic insulinoma. A preoperative octreotide test did not relieve hypoglycemia, and no uptake of 111indium-pentetreotide was observed, suggesting an insulinoma with low SSTR expression. However, postoperative histological studies suggested that the intracellular domain of SSTRs were highly expressed, while the extracellular domain may be mutated. We present a rare case of insulinoma expressing an aberrant form of SSTRs resulting in a discrepancy between the preoperative octreotide assessment and postoperative SSTR expression.
Collapse
Affiliation(s)
- Shunichiro Onish
- Department of Diabetes, Metabolism, and EndocrinologyInternational University of Health and Welfare, Narita HospitalChibaJapan
| | - Aki Takada‐Watanabe
- Department of Endocrinology, Hematology and GerontologyChiba University Graduate School of MedicineChibaJapan
| | - Robert Y. Osamura
- Department of Diagnostic PathologyNippon Koukan HospitalKawasaki CityJapan
| | - Takayuki Shiomi
- Department of Anatomic PathologyInternational University of Health and Welfare, Narita HospitalChibaJapan
| | - Hiroyuki Kusano
- Department of Anatomic PathologyInternational University of Health and Welfare, Narita HospitalChibaJapan
| | - Yoshiro Maezawa
- Department of Endocrinology, Hematology and GerontologyChiba University Graduate School of MedicineChibaJapan
| | - Hiroyuki Murai
- Department of NeurologyInternational University of Health and Welfare, Narita HospitalChibaJapan
| | - Makoto Miyabayashi
- Department of Endocrinology, Hematology and GerontologyChiba University Graduate School of MedicineChibaJapan
| | - Sakutaro Koike
- School of MedicineInternational University of Health and WelfareChibaJapan
| | - Tomohiko Yoshida
- Department of Diabetes, Metabolism, and EndocrinologyInternational University of Health and Welfare, Narita HospitalChibaJapan
| | - Minoru Takemoto
- Department of Diabetes, Metabolism, and EndocrinologyInternational University of Health and Welfare, Narita HospitalChibaJapan
| |
Collapse
|
6
|
Rauch H, Kitzberger C, Janghu K, Hawarihewa P, Nguyen NT, Min Y, Ballke S, Steiger K, Weber WA, Kossatz S. Combining [ 177Lu]Lu-DOTA-TOC PRRT with PARP inhibitors to enhance treatment efficacy in small cell lung cancer. Eur J Nucl Med Mol Imaging 2024; 51:4099-4110. [PMID: 39023784 PMCID: PMC11527929 DOI: 10.1007/s00259-024-06844-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 07/09/2024] [Indexed: 07/20/2024]
Abstract
PURPOSE Small cell lung cancer (SCLC) is a highly aggressive tumor with neuroendocrine origin. Although SCLC frequently express somatostatin receptor type 2 (SSTR2), a significant clinical benefit of SSTR2-targeted radionuclide therapies of SCLC was not observed so far. We hypothesize that combination treatment with a PARP inhibitor (PARPi) could lead to radiosensitization and increase the effectiveness of SSTR2-targeted therapy in SCLC. METHODS SSTR2-ligand uptake of the SCLC cell lines H69 and H446 was evaluated in vitro using flow cytometry, and in vivo using SPECT imaging and cut-and-count biodistribution. Single-agent (Olaparib, Rucaparib, [177Lu]Lu-DOTA-TOC) and combination treatment responses were determined in vitro via cell viability, clonogenic survival and γH2AX DNA damage assays. In vivo, we treated athymic nude mice bearing H69 or H446 xenografts with Olaparib, Rucaparib, or [177Lu]Lu-DOTA-TOC alone or with combination treatment regimens to assess the impact on tumor growth and survival of the treated mice. RESULTS H446 and H69 cells exhibited low SSTR2 expression, i.e. 60 to 90% lower uptake of SSTR2-ligands compared to AR42J cells. In vitro, combination treatment of [177Lu]Lu-DOTA-TOC with PARPi resulted in 2.9- to 67-fold increased potency relative to [177Lu]Lu-DOTA-TOC alone. We observed decreased clonogenic survival and higher amounts of persistent DNA damage compared to single-agent treatment for both Olaparib and Rucaparib. In vivo, tumor doubling times increased to 1.6-fold (H446) and 2.2-fold (H69) under combination treatment, and 1.0 to 1.1-fold (H446) and 1.1 to 1.7-fold (H69) in monotherapies compared to untreated animals. Concurrently, median survival was higher in the combination treatment groups in both models compared to monotherapy and untreated mice. Fractionating the PRRT dose did not lead to further improvement of therapeutic outcome. CONCLUSION The addition of PARPi can markedly improve the potency of SSTR2-targeted PRRT in SCLC models in SSTR2 low-expressing tumors. Further evaluation in humans seems justified based on the results as novel treatment options for SCLC are urgently needed.
Collapse
Affiliation(s)
- Hartmut Rauch
- Department of Nuclear Medicine, TUM School of Medicine and Health, University Hospital Klinikum Rechts Der Isar, and Central Institute for Translational Cancer Research (TranslaTUM), Technical University of Munich, Munich, Germany
| | - Carolin Kitzberger
- Department of Nuclear Medicine, TUM School of Medicine and Health, University Hospital Klinikum Rechts Der Isar, and Central Institute for Translational Cancer Research (TranslaTUM), Technical University of Munich, Munich, Germany
| | - Kirti Janghu
- Department of Nuclear Medicine, TUM School of Medicine and Health, University Hospital Klinikum Rechts Der Isar, and Central Institute for Translational Cancer Research (TranslaTUM), Technical University of Munich, Munich, Germany
| | - Pavithra Hawarihewa
- Department of Nuclear Medicine, TUM School of Medicine and Health, University Hospital Klinikum Rechts Der Isar, and Central Institute for Translational Cancer Research (TranslaTUM), Technical University of Munich, Munich, Germany
| | - Nghia T Nguyen
- Department of Nuclear Medicine, TUM School of Medicine and Health, University Hospital Klinikum Rechts Der Isar, and Central Institute for Translational Cancer Research (TranslaTUM), Technical University of Munich, Munich, Germany
| | - Yu Min
- Department of Nuclear Medicine, TUM School of Medicine and Health, University Hospital Klinikum Rechts Der Isar, and Central Institute for Translational Cancer Research (TranslaTUM), Technical University of Munich, Munich, Germany
| | - Simone Ballke
- Comparative Experimental Pathology (CEP), Institute of Pathology, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Katja Steiger
- Comparative Experimental Pathology (CEP), Institute of Pathology, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Wolfgang A Weber
- Department of Nuclear Medicine, TUM School of Medicine and Health, University Hospital Klinikum Rechts Der Isar, and Central Institute for Translational Cancer Research (TranslaTUM), Technical University of Munich, Munich, Germany
| | - Susanne Kossatz
- Department of Nuclear Medicine, TUM School of Medicine and Health, University Hospital Klinikum Rechts Der Isar, and Central Institute for Translational Cancer Research (TranslaTUM), Technical University of Munich, Munich, Germany.
- Department of Chemistry, TUM School of Natural Sciences, Technical University Munich, Munich, Germany.
| |
Collapse
|
7
|
Moser E, Ura A, Vogel L, Steiger K, Mogler C, Evert M, Märkl B, Scheidhauer K, Martignoni M, Friess H, von Werder A, Marinoni I, Perren A, Klöppel G, Kasajima A. ARX, PDX1, ISL1, and CDX2 Expression Distinguishes 5 Subgroups of Pancreatic Neuroendocrine Tumors With Correlations to Histology, Hormone Expression, and Outcome. Mod Pathol 2024; 37:100595. [PMID: 39147030 DOI: 10.1016/j.modpat.2024.100595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/22/2024] [Accepted: 08/09/2024] [Indexed: 08/17/2024]
Abstract
Many pancreatic neuroendocrine tumors (PanNETs) fall into 2 major prognostic subtypes based on DAXX/ATRX-induced alternative lengthening of telomerase phenotype and alpha- and beta-cell-like epigenomic profiles. However, these PanNETs are still flanked by other PanNETs that do not fit into either subtype. Furthermore, despite advanced genotyping, PanNETs are generally not well-characterized in terms of their histologic and hormonal phenotypes. We aimed to identify new subgroups of PanNETs by extending the currently used transcription factor signatures and investigating their correlation with histologic, hormonal, molecular, and prognostic findings. One hundred eighty-five PanNETs (nonfunctioning 165 and functioning 20), resected between 1996 and 2023, were classified into 5 subgroups (A1, A2, B, C, and D) by cluster analysis based on ARX, PDX1, islet-1 (ISL1), and CDX2 expressions and correlated with trabecular vs solid histology, expression of insulin, glucagon, polypeptide (PP), somatostatin, serotonin, gastrin, calcitonin, adrenocorticotropic hormone (ACTH), DAXX/ATRX, MEN1, and alternative lengthening of telomerase status by fluorescence in situ hybridization, and disease-free survival. A1 (46%, ARX+/ISL1+/PDX1-/CDX2-) and A2 (15%, ARX+/ISL1+/PDX1+/CDX2-) showed trabecular histology and glucagon/PP expression, with A2 also showing gastrin expression. B (18%, PDX1+/ISL1+/ARX-/CDX2-) showed solid histology, insulin, and somatostatin expression (P < .001). It included all insulinomas and had the best outcome (P < .01). C (15%, ARX-/PDX1-/ISL1-/CDX2-) showed solid histology and frequent expression of serotonin, calcitonin, and ACTH. D (5%, PDX1+/CDX2+/ISL1-/ARX-) showed solid histology, expressed ACTH/serotonin, and was an independent poor prognosticator (P < .01). Differential expressions of ARX, PDX1, ISL1, and CDX2 stratified PanNETs into 5 subgroups with different histologies, hormone expressions, and outcomes. Subgroups A1 and A2 resembled the alpha-cell-like type, and subgroup B, the beta-cell-like type. Subgroup C with almost no transcription factor signature was unclear in cell lineage, whereas the PDX+/CDX2+ signature of subgroup D suggested a pancreatic/intestinal cell lineage. Assigning PanNETs to the subgroups may help establish the diagnosis, predict the outcome, and guide the treatment.
Collapse
Affiliation(s)
- Elisa Moser
- Department of Pathology, TUM School of Medicine and Health, Technical University Munich, Munich, Germany
| | - Ayako Ura
- Department of Pathology, TUM School of Medicine and Health, Technical University Munich, Munich, Germany
| | - Loreen Vogel
- Department of Nuclear Medicine, TUM School of Medicine and Health, Technical University Munich, Munich, Germany
| | - Katja Steiger
- Department of Pathology, TUM School of Medicine and Health, Technical University Munich, Munich, Germany
| | - Carolin Mogler
- Department of Pathology, TUM School of Medicine and Health, Technical University Munich, Munich, Germany
| | - Matthias Evert
- Institute of Pathology, University of Regensburg, Regensburg, Bavaria, Germany
| | - Bruno Märkl
- Department of Pathology, Medical Faculty Augsburg, University of Augsburg, Augsburg, Bavaria, Germany
| | - Klemens Scheidhauer
- Department of Nuclear Medicine, TUM School of Medicine and Health, Technical University Munich, Munich, Germany
| | - Marc Martignoni
- Department of Surgery, TUM School of Medicine and Health, Technical University Munich, Munich, Germany
| | - Helmut Friess
- Department of Surgery, TUM School of Medicine and Health, Technical University Munich, Munich, Germany
| | - Alexander von Werder
- Department of Internal Medicine II, TUM School of Medicine and Health, Technical University Munich, Munich, Germany
| | - Ilaria Marinoni
- Institute of Tissue Medicine and Pathology, University of Bern, Bern, Switzerland
| | - Aurel Perren
- Institute of Tissue Medicine and Pathology, University of Bern, Bern, Switzerland
| | - Günter Klöppel
- Department of Pathology, TUM School of Medicine and Health, Technical University Munich, Munich, Germany
| | - Atsuko Kasajima
- Department of Pathology, TUM School of Medicine and Health, Technical University Munich, Munich, Germany.
| |
Collapse
|
8
|
Park SWS, Fransson S, Sundquist F, Nilsson JN, Grybäck P, Wessman S, Strömgren J, Djos A, Fagman H, Sjögren H, Georgantzi K, Herold N, Kogner P, Granberg D, Gaze MN, Martinsson T, Karlsson K, Stenman JJE. Heterogeneous SSTR2 target expression and a novel KIAA1549:: BRAF fusion clone in a progressive metastatic lesion following 177Lutetium-DOTATATE molecular radiotherapy in neuroblastoma: a case report. Front Oncol 2024; 14:1408729. [PMID: 39324010 PMCID: PMC11422106 DOI: 10.3389/fonc.2024.1408729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/20/2024] [Indexed: 09/27/2024] Open
Abstract
In this case report, we present the treatment outcomes of the first patient enrolled in the LuDO-N trial. The patient is a 21-month-old girl diagnosed with high-risk neuroblastoma (NB) and widespread skeletal metastasis. The patient initially underwent first-line therapy according to SIOPEN HRNBL-1 but was switched to second-line treatments due to disease progression, and she was finally screened for enrollment in the LuDO-N trial due to refractory disease. Upon enrollment, the patient received two rounds of the radiolabeled somatostatin analogue lutetium-177 octreotate (177Lu-DOTATATE), which was well tolerated. A dosimetry analysis revealed a heterogeneous uptake across tumor lesions, resulting in a significant absorbed dose of 54 Gy in the primary tumor, but only 2 Gy at one of the metastatic sites in the distal femur. While the initial treatment response showed disease stabilization, the distal femoral metastasis continued to progress, leading to the eventual death of the patient. A tissue analysis of the biopsies collected throughout the course of the disease revealed heterogeneous drug target expression of somatostatin receptor 2 (SSTR2) across and within tumor lesions. Furthermore, genomic profiling revealed a novel KIAA1549::BRAF fusion oncogene amplification in the distal femoral metastasis at recurrence that might be related with resistance to radiation, possibly through the downregulation of SSTR2. This case report demonstrates a mixed response to molecular radiotherapy (MRT) with 177Lu-DOTATATE. The observed variation in SSTR2 expression between tumor lesions suggests that heterogeneous target expression may have been the reason for treatment failure in this patient's case. Further investigation within the LuDO-N trial will give a more comprehensive understanding of the correlation between SSTR2 expression levels and treatment outcomes, which will be important to advance treatment strategies based on MRT for children with high-risk NB.
Collapse
Affiliation(s)
- Se Whee Sammy Park
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Susanne Fransson
- Department of Laboratory Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Fredrik Sundquist
- Department of Urology, Karolinska University Hospital, Stockholm, Sweden
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Joachim N Nilsson
- Department of Medical Radiation Physics and Nuclear Medicine, Karolinska University Hospital, Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Per Grybäck
- Department of Medical Radiation Physics and Nuclear Medicine, Karolinska University Hospital, Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Sandra Wessman
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- Department of Pathology and Cancer Diagnostics, Karolinska University Hospital, Stockholm, Sweden
| | - Jacob Strömgren
- Department of Pediatric Radiology, Karolinska University Hospital, Stockholm, Sweden
| | - Anna Djos
- Department of Laboratory Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Henrik Fagman
- Department of Laboratory Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Helene Sjögren
- Clinical Genetics and Genomics, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Kleopatra Georgantzi
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
- Department of Pediatric Oncology, Karolinska University Hospital, Stockholm, Sweden
| | - Nikolas Herold
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
- Department of Pediatric Oncology, Karolinska University Hospital, Stockholm, Sweden
| | - Per Kogner
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
- Department of Pediatric Oncology, Karolinska University Hospital, Stockholm, Sweden
| | - Dan Granberg
- Department of Breast, Endocrine Tumors and Sarcomas, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Mark N Gaze
- Department of Oncology, University College London Hospitals National Health Service (NHS) Foundation Trust, London, United Kingdom
| | - Tommy Martinsson
- Department of Laboratory Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Kasper Karlsson
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Jakob J E Stenman
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
- Department of Pediatric Surgery, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
9
|
Periferakis A, Tsigas G, Periferakis AT, Tone CM, Hemes DA, Periferakis K, Troumpata L, Badarau IA, Scheau C, Caruntu A, Savulescu-Fiedler I, Caruntu C, Scheau AE. Agonists, Antagonists and Receptors of Somatostatin: Pathophysiological and Therapeutical Implications in Neoplasias. Curr Issues Mol Biol 2024; 46:9721-9759. [PMID: 39329930 PMCID: PMC11430067 DOI: 10.3390/cimb46090578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/29/2024] [Accepted: 08/31/2024] [Indexed: 09/28/2024] Open
Abstract
Somatostatin is a peptide that plays a variety of roles such as neurotransmitter and endocrine regulator; its actions as a cell regulator in various tissues of the human body are represented mainly by inhibitory effects, and it shows potent activity despite its physiological low concentrations. Somatostatin binds to specific receptors, called somatostatin receptors (SSTRs), which have different tissue distributions and associated signaling pathways. The expression of SSTRs can be altered in various conditions, including tumors; therefore, they can be used as biomarkers for cancer cell susceptibility to certain pharmacological agents and can provide prognostic information regarding disease evolution. Moreover, based on the affinity of somatostatin analogs for the different types of SSTRs, the therapeutic range includes conditions such as tumors, acromegaly, post-prandial hypotension, hyperinsulinism, and many more. On the other hand, a number of somatostatin antagonists may prove useful in certain medical settings, based on their differential affinity for SSTRs. The aim of this review is to present in detail the principal characteristics of all five SSTRs and to provide an overview of the associated therapeutic potential in neoplasias.
Collapse
Affiliation(s)
- Argyrios Periferakis
- Department of Physiology, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Elkyda, Research & Education Centre of Charismatheia, 17675 Athens, Greece
- Akadimia of Ancient Greek and Traditional Chinese Medicine, 16675 Athens, Greece
| | - Georgios Tsigas
- Department of Physiology, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Aristodemos-Theodoros Periferakis
- Department of Physiology, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Elkyda, Research & Education Centre of Charismatheia, 17675 Athens, Greece
| | - Carla Mihaela Tone
- Department of Physiology, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Daria Alexandra Hemes
- Department of Physiology, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Konstantinos Periferakis
- Akadimia of Ancient Greek and Traditional Chinese Medicine, 16675 Athens, Greece
- Pan-Hellenic Organization of Educational Programs, 17236 Athens, Greece
| | - Lamprini Troumpata
- Department of Physiology, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Ioana Anca Badarau
- Department of Physiology, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Cristian Scheau
- Department of Physiology, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Radiology and Medical Imaging, "Foisor" Clinical Hospital of Orthopaedics, Traumatology and Osteoarticular TB, 030167 Bucharest, Romania
| | - Ana Caruntu
- Department of Oral and Maxillofacial Surgery, The "Carol Davila" Central Military Emergency Hospital, 010825 Bucharest, Romania
- Department of Oral and Maxillofacial Surgery, Faculty of Dental Medicine, "Titu Maiorescu" University, 031593 Bucharest, Romania
| | - Ilinca Savulescu-Fiedler
- Department of Internal Medicine, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Internal Medicine and Cardiology, Coltea Clinical Hospital, 030167 Bucharest, Romania
| | - Constantin Caruntu
- Department of Physiology, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Dermatology, "Prof. N.C. Paulescu" National Institute of Diabetes, Nutrition and Metabolic Diseases, 011233 Bucharest, Romania
| | - Andreea-Elena Scheau
- Department of Radiology and Medical Imaging, Fundeni Clinical Institute, 022328 Bucharest, Romania
| |
Collapse
|
10
|
Asioli S, Guaraldi F, Zoli M, Mazzatenta D, Villa C. How to standardize the diagnostic approach to pituitary neuroendocrine tumors. Minerva Endocrinol (Torino) 2024; 49:283-292. [PMID: 38656092 DOI: 10.23736/s2724-6507.24.04079-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Pituitary tumors present heterogeneous biochemical, clinico-radiological, and histological features. Although histologically benign, a non-negligible number of cases present an unpredictable aggressive behavior with local invasiveness, partial/complete resistance to treatment and/or recurrence after surgery, and, rarely, metastasize, overall leading to a significant increase of morbidity, and, thus, requiring skilled multidisciplinary management in referral Centers. Histopathological diagnosis is essential to stratify cancer patient risk and uniform follow-up among Centers. Classification of pituitary neoplasia is continuously evolving in relation to the increased knowledge of mechanisms underlying adenohypophyseal cell tumorigenesis, and the attempts of combining clinico-radiological, biochemical, intraoperative, histological, and molecular elements, with the aim of identifying aggressive forms through. An integrated standardized histopathological report has been proposed in 2019 by the European Pituitary Pathology Group, based on the indications of the 2017 WHO classification of pituitary tumors. The last edition of the WHO Classification of Central Nervous System Tumors and of Endocrine and Neuroendocrine Tumors brought substantial novelties: 1) the replacement of the term "adenoma" with "Pituitary Neuroendocrine Tumor" (PitNET), and of "carcinoma" with "metastatic PitNET," and the consequent ICD-11 recoding from benign to malignant disease; and 2) the pivotal role of lineage restricted pituitary transcription factors for histological typing and subtyping. However, this approach does not reflect the spectrum of tumor phenotypes based on hormone secretion, nor include molecular features. Efforts of interdisciplinary groups of pituitary experts should be strongly encouraged to better understand factors involved in PitNETs evolution and, consequently, standardize diagnosis and reporting based on the most recent knowledges, essential to stratify cancer patient risk and uniform follow-up among centers.
Collapse
Affiliation(s)
- Sofia Asioli
- Department of Biomedical and Neuromotor Sciences (DIBINEM), Bellaria Hospital, AUSL Bologna, University of Bologna, Bologna, Italy -
- Pituitary Neurosurgery Program, Pituitary Unit, IRCCS Institute of Neurological Sciences, Bologna, Italy -
| | - Federica Guaraldi
- Pituitary Neurosurgery Program, Pituitary Unit, IRCCS Institute of Neurological Sciences, Bologna, Italy
| | - Matteo Zoli
- Department of Biomedical and Neuromotor Sciences (DIBINEM), Bellaria Hospital, AUSL Bologna, University of Bologna, Bologna, Italy
- Pituitary Neurosurgery Program, Pituitary Unit, IRCCS Institute of Neurological Sciences, Bologna, Italy
| | - Diego Mazzatenta
- Department of Biomedical and Neuromotor Sciences (DIBINEM), Bellaria Hospital, AUSL Bologna, University of Bologna, Bologna, Italy
- Pituitary Neurosurgery Program, Pituitary Unit, IRCCS Institute of Neurological Sciences, Bologna, Italy
| | - Chiara Villa
- Department of Neuropathology, Assistance Publique-Hôpitaux de Paris (APHP), La Pitié-Salpêtrière University Hospital, Paris, France
- INSERM U1016, Cochin Institute, Paris, France
- Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR 8104), Paris, France
- Paris Descartes University, University of Paris, Paris, France
| |
Collapse
|
11
|
Shibata Y, Sudo T, Tazuma S, Onoe T, Yamaguchi A, Shigeta M, Kuraoka K, Yamamoto R, Takahashi S, Tashiro H. Surgical resection of double advanced pancreatic neuroendocrine tumors with multiple renal cell carcinoma associated with von Hippel-Lindau disease. Clin J Gastroenterol 2024; 17:697-704. [PMID: 38693425 DOI: 10.1007/s12328-024-01967-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 03/22/2024] [Indexed: 05/03/2024]
Abstract
Von Hippel-Lindau (VHL) disease, an autosomal dominant genetic disorder caused by a germline mutation, is associated with non-functional and slow-growing pancreatic neuroendocrine tumor (PNET) and kidney cancer. We describe the case of a 46 year-old man with a 35 mm mass in the pancreatic head causing stricture of the bile duct and main pancreatic duct, a 55 mm mass in the pancreatic tail causing obstruction of the splenic vein (SV), and multiple masses of > 36 mm on both kidneys. We performed a two-stage resection. First, a total pancreatectomy with superior mesenteric vein (SMV) resection and reconstruction and retroperitoneoscopic right partial nephrectomy (NP) for five lesions was performed, followed by retroperitoneoscopic left partial NP of the five lesions 6 months later. Postoperative histopathological examination revealed NET G2 in the pancreatic head with SMV invasion and somatostatin receptor type 2A (SSTR2A) positivity, NET G2 in the pancreatic tail showed SV invasion and negative SSTR2A, and multiple clear cell renal cell carcinomas (RCC) were also noted. Multiple liver recurrences occurred 22 months after primary surgery. The patient remains alive 41 months after primary surgery. Kidney cancer generally determines VHL prognosis; however, we experienced dual-advanced PNETs with a more defined prognosis than multiple RCC associated with VHL.
Collapse
Affiliation(s)
- Yoshiyuki Shibata
- Department of Surgery, Chugoku Cancer Center, National Hospital Organization Kure Medical Center, 3-1 Aoyama, Kure, Hiroshima, 737-0023, Japan.
| | - Takeshi Sudo
- Department of Surgery, Chugoku Cancer Center, National Hospital Organization Kure Medical Center, 3-1 Aoyama, Kure, Hiroshima, 737-0023, Japan
| | - Sho Tazuma
- Department of Surgery, Chugoku Cancer Center, National Hospital Organization Kure Medical Center, 3-1 Aoyama, Kure, Hiroshima, 737-0023, Japan
| | - Takashi Onoe
- Department of Surgery, Chugoku Cancer Center, National Hospital Organization Kure Medical Center, 3-1 Aoyama, Kure, Hiroshima, 737-0023, Japan
| | - Atsushi Yamaguchi
- Department of Gastroenterology, Chugoku Cancer Center, National Hospital Organization Kure Medical Center, 3-1 Aoyama, Kure, Hiroshima, 737-0023, Japan
| | - Masanobu Shigeta
- Department of Urology, Chugoku Cancer Center, National Hospital Organization Kure Medical Center, 3-1 Aoyama, Kure, Hiroshima, 737-0023, Japan
| | - Kazuya Kuraoka
- Department of Anatomical Pathology, Chugoku Cancer Center, National Hospital Organization Kure Medical Center, 3-1 Aoyama, Kure, Hiroshima, 737-0023, Japan
| | - Rie Yamamoto
- Department of Anatomical Pathology, Chugoku Cancer Center, National Hospital Organization Kure Medical Center, 3-1 Aoyama, Kure, Hiroshima, 737-0023, Japan
| | - Shinya Takahashi
- Department of Surgery, Graduate School of Biochemical and Health Science, Hiroshima University, 1-2-3 Kasumi, Minami-Ku, Hiroshima, 734-8551, Japan
| | - Hirotaka Tashiro
- Department of Surgery, Chugoku Cancer Center, National Hospital Organization Kure Medical Center, 3-1 Aoyama, Kure, Hiroshima, 737-0023, Japan
| |
Collapse
|
12
|
Vegni F, De Stefano IS, Policardo F, Tralongo P, Feraco A, Carlino A, Ferraro G, Zhang Q, Scaglione G, D'Alessandris N, Navarra E, Zannoni G, Santoro A, Mule A, Rossi ED. Neuroendocrine neoplasms of the breast: a review of literature. Virchows Arch 2024; 485:197-212. [PMID: 38980337 PMCID: PMC11329594 DOI: 10.1007/s00428-024-03856-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 06/14/2024] [Accepted: 06/18/2024] [Indexed: 07/10/2024]
Abstract
Primary neuroendocrine neoplasms (NENs) of the breast are characterized by neuroendocrine architectural and cytological features, which must be supported by immunohistochemical positivity for neuroendocrine markers (such as Chromogranin and Synaptophysin). According to the literature, making a diagnosis of primary neuroendocrine breast cancer always needs to rule out a possible primary neuroendocrine neoplasm from another site. Currently, the latest 2022 version of the WHO of endocrine and neuroendocrine neoplasms has classified breast NENs as well-differentiated neuroendocrine tumours (NETs) and aggressive neuroendocrine carcinomas (NECs), differentiating them from invasive breast cancers of no special type (IBCs-NST). with neuroendocrine features. The current review article describes six cases from our series and a comprehensive review of the literature in the field of NENs of the breast.
Collapse
Affiliation(s)
- Federica Vegni
- Division of Anatomic Pathology and Histology-Fondazione, Policlinico Universitario "Agostino Gemelli"-IRCCS, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168, Rome, Italy
| | - Ilenia Sara De Stefano
- Division of Anatomic Pathology and Histology-Fondazione, Policlinico Universitario "Agostino Gemelli"-IRCCS, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168, Rome, Italy
| | - Federica Policardo
- Division of Anatomic Pathology and Histology-Fondazione, Policlinico Universitario "Agostino Gemelli"-IRCCS, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168, Rome, Italy
| | - Pietro Tralongo
- Division of Anatomic Pathology and Histology-Fondazione, Policlinico Universitario "Agostino Gemelli"-IRCCS, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168, Rome, Italy
| | - Angela Feraco
- Division of Anatomic Pathology and Histology-Fondazione, Policlinico Universitario "Agostino Gemelli"-IRCCS, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168, Rome, Italy
| | - Angela Carlino
- Division of Anatomic Pathology and Histology-Fondazione, Policlinico Universitario "Agostino Gemelli"-IRCCS, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168, Rome, Italy
| | - Giulia Ferraro
- Division of Anatomic Pathology and Histology-Fondazione, Policlinico Universitario "Agostino Gemelli"-IRCCS, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168, Rome, Italy
| | - Qianqian Zhang
- Division of Anatomic Pathology and Histology-Fondazione, Policlinico Universitario "Agostino Gemelli"-IRCCS, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168, Rome, Italy
| | - Giulia Scaglione
- Division of Anatomic Pathology and Histology-Fondazione, Policlinico Universitario "Agostino Gemelli"-IRCCS, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168, Rome, Italy
| | - Nicoletta D'Alessandris
- Division of Anatomic Pathology and Histology-Fondazione, Policlinico Universitario "Agostino Gemelli"-IRCCS, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168, Rome, Italy
| | - Elena Navarra
- Division of Anatomic Pathology and Histology-Fondazione, Policlinico Universitario "Agostino Gemelli"-IRCCS, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168, Rome, Italy
| | - Gianfranco Zannoni
- Division of Anatomic Pathology and Histology-Fondazione, Policlinico Universitario "Agostino Gemelli"-IRCCS, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168, Rome, Italy
| | - Angela Santoro
- Division of Anatomic Pathology and Histology-Fondazione, Policlinico Universitario "Agostino Gemelli"-IRCCS, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168, Rome, Italy
| | - Antonino Mule
- Division of Anatomic Pathology and Histology-Fondazione, Policlinico Universitario "Agostino Gemelli"-IRCCS, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168, Rome, Italy
| | - Esther Diana Rossi
- Division of Anatomic Pathology and Histology-Fondazione, Policlinico Universitario "Agostino Gemelli"-IRCCS, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168, Rome, Italy.
| |
Collapse
|
13
|
Immler M, Wolfram M, Oevermann A, Walter I, Wolfesberger B, Tichy A, Gradner G. Expression of somatostatin receptors in canine and feline meningioma. Vet Med Sci 2024; 10:e1537. [PMID: 39011594 PMCID: PMC11250153 DOI: 10.1002/vms3.1537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 06/11/2024] [Accepted: 06/14/2024] [Indexed: 07/17/2024] Open
Abstract
OBJECTIVES The standard treatment for canine and feline meningiomas includes radiotherapy, surgical excision or combined therapy. However, new therapeutic approaches are required due to the possible recurrence or progression of meningiomas despite initial therapy. Adjunctive therapy with synthetic long-acting somatostatin (SST) analogues has been described in humans with SST-expressing tumours. The expression of SST receptors (SSTRs) by feline meningiomas is currently unknown, and there are little data about canine meningiomas. We hypothesized that SSTR is expressed by canine and feline meningiomas (S1). METHODS Seven canines and 11 felines with histologically confirmed meningiomas underwent STTR screening. RNA expressions of SSTR1, SSTR2, SSTR3 and SSTR5 (canine) and SSTR1-SSTR 5 (feline) in fresh frozen and formalin-fixed and paraffin-embedded (FFPE) samples were investigated using real-time (RT)-qPCR. The expression of SSTR1 and SSTR2 in FFPE samples was evaluated using immunohistochemistry (IHC). The specificity of applied antibodies for canine and feline species was confirmed by western blotting. RESULTS In canine meningiomas (n = 7), RNA expression of SSTR1, SSTR2 and SSTR5 was detected in all samples; SSTR3 RNA expression was detected in only 33% of samples. In feline meningiomas (n = 12), RNA expression of SSTR1, SSTR4, SSTR5 and SSTR2 was detected in 91%, 46%, 46% and 36% of samples, respectively; SSTR3 was not expressed. Overall, the detection rate was lower in FFPE samples. IHC revealed the expression of SSTR1 and SSTR2 in all samples from both species. However, it is important to exercise caution when interpreting IHC results due to the presence of diffuse background staining. CONCLUSIONS SSTRs are widely expressed in canine and feline meningiomas, thereby encouraging further studies investigating SSTR expression to conduct trials about the effect of adjunctive therapy with long-acting SST-analogues.
Collapse
Affiliation(s)
- Martin Immler
- University of Veterinary Medicine Vienna (Vetmeduni), Veterinaerplatz 1ViennaAustria
| | - Michael Wolfram
- University of Veterinary Medicine Vienna (Vetmeduni), Veterinaerplatz 1ViennaAustria
| | - Anna Oevermann
- Division of Neurological SciencesVetsuisse Faculty, University of Bern, Bremgartenstrasse 109a, 3012BernSwitzerland
| | - Ingrid Walter
- University of Veterinary Medicine Vienna (Vetmeduni), Veterinaerplatz 1ViennaAustria
| | - Birgitt Wolfesberger
- University of Veterinary Medicine Vienna (Vetmeduni), Veterinaerplatz 1ViennaAustria
| | - Alexander Tichy
- University of Veterinary Medicine Vienna (Vetmeduni), Veterinaerplatz 1ViennaAustria
| | - Gabriele Gradner
- University of Veterinary Medicine Vienna (Vetmeduni), Veterinaerplatz 1ViennaAustria
| |
Collapse
|
14
|
Angerilli V, Sabella G, Simbolo M, Lagano V, Centonze G, Gentili M, Mangogna A, Coppa J, Munari G, Businello G, Borga C, Schiavi F, Pusceddu S, Leporati R, Oldani S, Fassan M, Milione M. Comprehensive genomic and transcriptomic characterization of high-grade gastro-entero-pancreatic neoplasms. Br J Cancer 2024; 131:159-170. [PMID: 38729995 PMCID: PMC11231306 DOI: 10.1038/s41416-024-02705-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 04/20/2024] [Accepted: 04/24/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND High-grade gastro-entero-pancreatic neoplasms (HG GEP-NENs) can be stratified according to their morphology and Ki-67 values into three prognostic classes: neuroendocrine tumors grade 3 (NETs G3), neuroendocrine carcinomas with Ki-67 < 55% (NECs <55) and NECs with Ki-67 ≥ 55% (NECs ≥55). METHODS We analyzed a cohort of 49 HG GEP-NENs by targeted Next-Generation Sequencing (TrueSight Oncology 500), RNA-seq, and immunohistochemistry for p53, Rb1, SSTR-2A, and PD-L1. RESULTS Frequent genomic alterations affected TP53 (26%), APC (20%), KRAS and MEN1 (both 11%) genes. NET G3 were enriched in MEN1 (p = 0.02) mutations, while both NECs groups were enriched in TP53 (p = 0.001), APC (p = 0.002) and KRAS (p = 0.02) mutations and tumors with TMB ≥ 10 muts/Mb (p = 0.01). No differentially expressed (DE) gene was found between NECs <55% and NECs ≥55%, while 1129 DE genes were identified between NET G3 and NECs. A slight enrichment of CD4+ and CD8+ T cells in NECs and of cancer-associated fibroblasts and macrophages (M2-like) in NET G3. Multivariate analysis identified histologic type and Rb1 loss as independent prognostic factors for overall survival. CONCLUSIONS This study showed that GEP-NET G3 and GEP-NECs exhibit clear genomic and transcriptomic differences, differently from GEP-NECs <55% and GEP-NECs ≥55%, and provided molecular findings with prognostic and potentially predictive value.
Collapse
Affiliation(s)
| | - Giovanna Sabella
- First Pathology Unit, Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Michele Simbolo
- Department of Diagnostics and Public Health, University and Hospital Trust of Verona, Verona, Italy
| | - Vincenzo Lagano
- First Pathology Unit, Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Giovanni Centonze
- First Pathology Unit, Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Marco Gentili
- First Pathology Unit, Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Alessandro Mangogna
- Institute of Pathological Anatomy, Department of Medicine (DMED), University of Udine, Udine, Italy
| | - Jorgelina Coppa
- Hepatology and Hepato-Pancreatic-Biliary Surgery and Liver Transplantation, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Giada Munari
- Department of Medicine (DIMED), University of Padua, Padua, Italy
| | | | - Chiara Borga
- Department of Medicine (DIMED), University of Padua, Padua, Italy
| | | | - Sara Pusceddu
- Medical Oncology and Hematology Department, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Rita Leporati
- Medical Oncology and Hematology Department, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Simone Oldani
- Medical Oncology and Hematology Department, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Matteo Fassan
- Department of Medicine (DIMED), University of Padua, Padua, Italy
- Veneto Institute of Oncology (IOV-IRCCS), Padua, Italy
| | - Massimo Milione
- First Pathology Unit, Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.
| |
Collapse
|
15
|
Uchihara M, Tanabe A, Kojima Y, Shimoi T, Maeshima AM, Umamoto K, Shimomura A, Shimizu C, Yamazaki Y, Nakamura E, Matsui Y, Takemura N, Miyazaki H, Sudo K, Yonemori K, Kajio H. Immunohistochemical Profiling of SSTR2 and HIF-2α with the Tumor Microenvironment in Pheochromocytoma and Paraganglioma. Cancers (Basel) 2024; 16:2191. [PMID: 38927897 PMCID: PMC11201597 DOI: 10.3390/cancers16122191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/03/2024] [Accepted: 06/09/2024] [Indexed: 06/28/2024] Open
Abstract
Metastatic pheochromocytomas and paragangliomas (PPGLs) are rare endocrine malignancies with limited effective treatment options. The association between the tumor microenvironment (TME) with somatostatin receptor 2 (SSTR2) and hypoxia-induced factor-2α (HIF-2α) in PPGLs, critical for optimizing combination therapeutic strategies with immunotherapy, remains largely unexplored. To evaluate the association of SSTR2 and HIF-2α immunoreactivity with the TME in patients with PPGLs, we analyzed the expression of SSTR2A, HIF-2α, and TME components, including tumor-infiltrating lymphocytes (CD4 and CD8), tumor-associated macrophages (CD68 and CD163), and PD-L1, using immunohistochemistry in patients with PPGLs. The primary outcome was to determine the association of the immune profiles with SSTR2A and HIF-2α expression. Among 45 patients with PPGLs, SSTR2A and HIF2α were positively expressed in 21 (46.7%) and 14 (31.1%) patients, respectively. The median PD-L1 immunohistochemical score (IHS) was 2.0 (interquartile range: 0-30.0). Positive correlations were observed between CD4, CD8, CD68, and CD163 levels. A negative correlation was found between the CD163/CD68 ratio (an indicator of M2 polarization) and SSTR2A expression (r = -0.385, p = 0.006). HIF-2α expression showed a positive correlation with PD-L1 IHS (r = 0.348, p = 0.013). The co-expression of PD-L1 (HIS > 10) and HIF-2α was found in seven patients (15.6%). No associations were observed between SDHB staining results and the CD163/CD68 ratio, PD-L1, or SSTR2A expression. Our data suggest the potential of combination therapy with immunotherapy and peptide receptor radionuclide therapy or HIF-2α inhibitors as a treatment option in selected PPGL populations.
Collapse
Affiliation(s)
- Masaki Uchihara
- Department of Diabetes, Endocrinology and Metabolism, National Center for Global Health and Medicine, Toyama 1-21-1, Shinjuku-ku City, Tokyo 162-8655, Japan; (M.U.)
- Course of Advanced and Specialized Medicine, Juntendo University Graduate School of Medicine, 3-1-3 Hongoh, Bunkyo-ku, Tokyo 113-0033, Japan (C.S.)
- Department of General Internal Medicine, Oncological Endocrinology, National Cancer Center Hospital, Tsukiji 5-1-1, Chuo-ku, Tokyo 104-0045, Japan
| | - Akiyo Tanabe
- Department of Diabetes, Endocrinology and Metabolism, National Center for Global Health and Medicine, Toyama 1-21-1, Shinjuku-ku City, Tokyo 162-8655, Japan; (M.U.)
| | - Yuki Kojima
- Department of Medical Oncology, National Cancer Center Hospital, Tsukiji 5-1-1, Chuo-ku, Tokyo 104-0045, Japan (T.S.)
| | - Tatsunori Shimoi
- Department of Medical Oncology, National Cancer Center Hospital, Tsukiji 5-1-1, Chuo-ku, Tokyo 104-0045, Japan (T.S.)
| | - Akiko Miyagi Maeshima
- Department of Diagnostic Pathology, National Cancer Center Hospital, Tsukiji 5-1-1, Chuo-ku, Tokyo 104-0045, Japan
| | - Kotaro Umamoto
- Department of Diabetes, Endocrinology and Metabolism, National Center for Global Health and Medicine, Toyama 1-21-1, Shinjuku-ku City, Tokyo 162-8655, Japan; (M.U.)
- Department of General Internal Medicine, Oncological Endocrinology, National Cancer Center Hospital, Tsukiji 5-1-1, Chuo-ku, Tokyo 104-0045, Japan
| | - Akihiko Shimomura
- Course of Advanced and Specialized Medicine, Juntendo University Graduate School of Medicine, 3-1-3 Hongoh, Bunkyo-ku, Tokyo 113-0033, Japan (C.S.)
- Department of Breast and Medical Oncology, National Center for Global Health and Medicine, Toyama 1-21-1, Shinjuku-ku City, Tokyo 162-8655, Japan
| | - Chikako Shimizu
- Course of Advanced and Specialized Medicine, Juntendo University Graduate School of Medicine, 3-1-3 Hongoh, Bunkyo-ku, Tokyo 113-0033, Japan (C.S.)
- Department of Breast and Medical Oncology, National Center for Global Health and Medicine, Toyama 1-21-1, Shinjuku-ku City, Tokyo 162-8655, Japan
| | - Yuto Yamazaki
- Department of Pathology, Tohoku University Graduate School of Medicine, Seiryo-machi 2-1, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Eijiro Nakamura
- Department of Medical Oncology, National Cancer Center Hospital, Tsukiji 5-1-1, Chuo-ku, Tokyo 104-0045, Japan (T.S.)
- Department of Urology, National Cancer Center Hospital, Tsukiji 5-1-1, Chuo-ku, Tokyo 104-0045, Japan
| | - Yoshiyuki Matsui
- Department of Urology, National Cancer Center Hospital, Tsukiji 5-1-1, Chuo-ku, Tokyo 104-0045, Japan
| | - Nobuyuki Takemura
- Hepato-Biliary-Pancreatic Surgery Division, Department of Surgery, National Center for Global Health and Medicine, Toyama 1-21-1, Shinjuku-ku City, Tokyo 162-8655, Japan
| | - Hideyo Miyazaki
- Department of Urology, National Center for Global Health and Medicine, Toyama 1-21-1, Shinjuku-ku City, Tokyo 162-8655, Japan
| | - Kazuki Sudo
- Department of Medical Oncology, National Cancer Center Hospital, Tsukiji 5-1-1, Chuo-ku, Tokyo 104-0045, Japan (T.S.)
| | - Kan Yonemori
- Department of Medical Oncology, National Cancer Center Hospital, Tsukiji 5-1-1, Chuo-ku, Tokyo 104-0045, Japan (T.S.)
| | - Hiroshi Kajio
- Department of Diabetes, Endocrinology and Metabolism, National Center for Global Health and Medicine, Toyama 1-21-1, Shinjuku-ku City, Tokyo 162-8655, Japan; (M.U.)
| |
Collapse
|
16
|
Kono S, Nagano H, Taki Y, Kono T, Hashimoto N, Nakamura Y, Inoshita N, Ohtsuka M, Tanaka T. Prognostic marker of immunohistochemistry-based somatostatin receptors 2 and 5 H-scores in patients with pancreatic neuroendocrine neoplasms. ENDOCRINE AND METABOLIC SCIENCE 2024; 15:100176. [DOI: 10.1016/j.endmts.2024.100176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
|
17
|
Mori H, Tamura M, Ogawa R, Kimata Y, Endo S, Sekine K, Kodama S, Watanabe HH, Ookuma K, Jinzaki M. A Case of Pancreatic Neuroendocrine Tumor with Liver Metastases Demonstrating the Possibility of Enhanced ACTH Production by the SACI Test. Case Rep Endocrinol 2024; 2024:5923680. [PMID: 38681235 PMCID: PMC11055651 DOI: 10.1155/2024/5923680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 03/23/2024] [Accepted: 04/05/2024] [Indexed: 05/01/2024] Open
Abstract
Objective ACTH-producing pancreatic NETs have a propensity to metastasize, and in patients with metastases, there is no established method yet to precisely determine if the excess ACTH is produced by the primary or the metastatic tumors. Localizing the source of production of ACTH in such cases is important for devising suitable treatment strategies and evaluating the benefit of local therapies from the viewpoint of control of Cushing's syndrome. Methods We performed the selective arterial calcium injection (SACI) test combined with selective portal and hepatic venous sampling in a 32-year-old female patient with ectopic ACTH-producing pancreatic NET and liver metastases. Results The blood level of ACTH after Ca loading was significantly elevated only in the vessels thought to be directly feeding the pancreatic tumor, and Ca loading from any artery did not significantly increase ACTH concentrations in the hepatic veins compared to the main trunk of the portal vein. Conclusions The present case demonstrates that there might be an ACTH-producing p-NET that responds to Ca loading. Further in vitro studies are required to validate this possibility.
Collapse
Affiliation(s)
- Hirozumi Mori
- Department of Radiology, Saitama City Hospital, Saitama, Japan
| | - Masashi Tamura
- Department of Radiology, Keio University School of Medicine, Tokyo, Japan
| | - Ryo Ogawa
- Department of Radiology, Saitama City Hospital, Saitama, Japan
| | - Yuta Kimata
- Department of Medicine, Saitama City Hospital, Saitama, Japan
| | - Sho Endo
- Department of Medicine, Saitama City Hospital, Saitama, Japan
| | | | - Sayuri Kodama
- Department of Radiology, Saitama City Hospital, Saitama, Japan
| | | | - Kiyoshi Ookuma
- Department of Radiology, Saitama City Hospital, Saitama, Japan
| | - Masahiro Jinzaki
- Department of Radiology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
18
|
Chiloiro S, Moroni R, Giampietro A, Angelini F, Gessi M, Lauretti L, Mattogno PP, Calandrelli R, Tartaglione T, Carlino A, Gaudino S, Olivi A, Rindi G, De Marinis L, Pontecorvi A, Doglietto F, Bianchi A. The Multibiomarker Acro-TIME Score Predicts fg-SRLs Response: Preliminary Results of a Retrospective Acromegaly Cohort. J Clin Endocrinol Metab 2024; 109:1341-1350. [PMID: 37975821 DOI: 10.1210/clinem/dgad673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/15/2023] [Accepted: 11/15/2023] [Indexed: 11/19/2023]
Abstract
CONTEXT The prompt control of acromegaly is a primary treatment aim for reducing related disease morbidity and mortality. First-generation somatostatin receptor ligands (fg-SRLs) are the cornerstone of medical therapies. A non-negligible number of patients do not respond to this treatment. Several predictors of fg-SRL response were identified, but a comprehensive prognostic model is lacking. OBJECTIVE We aimed to design a prognostic model based on clinical and biochemical parameters, and pathological features, including data on immune tumor microenvironment. METHODS A retrospective, monocenter, cohort study was performed on 67 medically naïve patients with acromegaly. Fifteen clinical, pathological, and radiological features were collected and analyzed as independent risk factors of fg-SRLs response, using univariable and multivariable logistic regression analyses. A stepwise selection method was applied to identify the final regression model. A nomogram was then obtained. RESULTS Thirty-seven patients were fg-SRLs responders. An increased risk to poor response to fg-SRLs were observed in somatotropinomas with absent/cytoplasmatic SSTR2 expression (OR 5.493 95% CI 1.19-25.16, P = .028), with low CD68+/CD8+ ratio (OR 1.162, 95% CI 1.01-1.33, P = .032). Radical surgical resection was associated with a low risk of poor fg-SRLs response (OR 0.106, 95% CI 0.025-0.447 P = .002). The nomogram obtained from the stepwise regression model was based on the CD68+/CD8+ ratio, SSTR2 score, and the persistence of postsurgery residual tumor and was able to predict the response to fg-SRLs with good accuracy (area under the curve 0.85). CONCLUSION Although our predictive model should be validated in prospective studies, our data suggest that this nomogram may represent an easy to use tool for predicting the fg-SRL outcome early.
Collapse
Affiliation(s)
- Sabrina Chiloiro
- UOC Endocrinology and Diabetology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli, 00168 Roma, Italy
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Largo A. Gemelli, 00168 Roma, Italy
| | | | - Antonella Giampietro
- UOC Endocrinology and Diabetology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli, 00168 Roma, Italy
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Largo A. Gemelli, 00168 Roma, Italy
| | - Flavia Angelini
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Largo A. Gemelli, 00168 Roma, Italy
| | - Marco Gessi
- Department of Woman and Child Health Sciences and Public Health, Anatomic Pathology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli, 00168 Roma, Italy
| | - Liverana Lauretti
- Neurosurgery Unit, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Largo A. Gemelli, 00168 Roma, Italy
| | - Pier Paolo Mattogno
- Neurosurgery Unit, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Largo A. Gemelli, 00168 Roma, Italy
| | - Rosalinda Calandrelli
- UOSD Neuroradiologia Diagnostica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del S. Cuore, Largo A. Gemelli, 8, 00168 Rome, Italy
| | - Tommaso Tartaglione
- UOSD Neuroradiologia Diagnostica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del S. Cuore, Largo A. Gemelli, 8, 00168 Rome, Italy
| | - Angela Carlino
- Department of Woman and Child Health Sciences and Public Health, Anatomic Pathology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli, 00168 Roma, Italy
| | - Simona Gaudino
- UOSD Neuroradiologia Diagnostica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del S. Cuore, Largo A. Gemelli, 8, 00168 Rome, Italy
| | - Alessandro Olivi
- Neurosurgery Unit, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Largo A. Gemelli, 00168 Roma, Italy
| | - Guido Rindi
- Department of Woman and Child Health Sciences and Public Health, Anatomic Pathology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli, 00168 Roma, Italy
| | - Laura De Marinis
- UOC Endocrinology and Diabetology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli, 00168 Roma, Italy
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Largo A. Gemelli, 00168 Roma, Italy
| | - Alfredo Pontecorvi
- UOC Endocrinology and Diabetology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli, 00168 Roma, Italy
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Largo A. Gemelli, 00168 Roma, Italy
| | - Francesco Doglietto
- Neurosurgery Unit, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Largo A. Gemelli, 00168 Roma, Italy
| | - Antonio Bianchi
- UOC Endocrinology and Diabetology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli, 00168 Roma, Italy
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Largo A. Gemelli, 00168 Roma, Italy
| |
Collapse
|
19
|
Notohara K, Nakamura K. Tissue processing of endoscopic ultrasound-guided fine-needle aspiration specimens from solid pancreatic lesions. J Med Ultrason (2001) 2024; 51:261-274. [PMID: 38051462 DOI: 10.1007/s10396-023-01387-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/04/2023] [Indexed: 12/07/2023]
Abstract
Now that tissue cores can be obtained using fine-needle biopsy (FNB) needles, the ways tissues are handled for endoscopic ultrasound-guided fine-needle aspiration (EUS-FNA) are changing. Direct smear, touch smear of core tissues, and centrifugation have been used for cytological examinations, and liquid-based cytology (LBC), which allows immunostaining and genetic tests that use residual samples, is emerging as an alternative. We emphasize that liquid cytology (Cytospin™ cytology and LBC) is still important, because it enables the diagnosis of pancreatic ductal adenocarcinoma (PDAC) when cancerous cells are scarce in specimens. Cell blocks are being replaced by core tissues obtained via FNB needles. Recent reports indicate that rapid on-site evaluation (ROSE) is not necessary when FNB needles are used, and macroscopic on-site evaluation is used to evaluate specimen adequacy. Macroscopic findings of specimens are helpful in the diagnostic workup and for clarifying specimen-handling methods. In addition to the red strings and white cores observed in PDAC, mixed red and white strings, gray tissues, and gelatinous tissues are observed. Gray (necrotic) tissues and gelatinous (mucus) tissues are more suitable than histology for cell block or cytological processing. Tumor cells in neuroendocrine tumors (NETs) are numerous in red strings but cannot be observed macroscopically. ROSE might thus be necessary for lesions that may be NETs. Core tissues can be used for genetic tests, such as those used for KRAS mutations and comprehensive genomic profiling. Cytological materials, including slides and LBC specimens, can also be genetic test materials.
Collapse
Affiliation(s)
- Kenji Notohara
- Department of Anatomic Pathology, Kurashiki Central Hospital, 1-1-1 Miwa, Kurashiki, 710-8602, Japan.
| | - Kaori Nakamura
- Pathological Laboratory, Division of Medical Technology, Kurashiki Central Hospital, Kurashiki, Japan
| |
Collapse
|
20
|
Kim JY, Kim J, Kim YI, Yang DH, Yoo C, Park IJ, Ryoo BY, Ryu JS, Hong SM. Somatostatin receptor 2 (SSTR2) expression is associated with better clinical outcome and prognosis in rectal neuroendocrine tumors. Sci Rep 2024; 14:4047. [PMID: 38374188 PMCID: PMC10876978 DOI: 10.1038/s41598-024-54599-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 02/14/2024] [Indexed: 02/21/2024] Open
Abstract
Somatostatin analogues have recently been used as therapeutic targets for metastatic or surgically unresectable gastroenteropancreatic (GEP) neuroendocrine tumors (NETs), and associated somatostatin receptor (SSTR) expression has been well demonstrated in most GEP NETs, with the exception of rectal NETs. SSTR2 immunohistochemical expressions were evaluated in 350 surgically or endoscopically resected rectal NETs and compared to clinicopathologic factors. SSTR2 expression was observed in 234 (66.9%) rectal NET cases and associated tumors with smaller size (p = 0.001), low pT classification (p = 0.030), low AJCC tumor stage (p = 0.012), and absence of chromogranin expression (p = 0.009). Patients with rectal NET and SSTR2 expression had significantly better overall survival than those without SSTR2 expression both by univariable (p = 0.006) and multivariable (p = 0.014) analyses. In summary, approximately two-thirds of rectal NETs expressed SSTR2. SSTR2 expression was significantly associated with favorable behavior and good overall survival in patients with rectal NETs. Furthermore, SSTR2 expression can be used as prognostic factors. When metastatic disease occurs, SSTR2 expression can be used a possible target for somatostatin analogues.
Collapse
Affiliation(s)
- Joo Young Kim
- Department of Pathology, Chung-Ang University Hospital, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Jisup Kim
- Department of Pathology, Gil Medical Center, Gachon University College of Medicine, Inchon, Republic of Korea
| | - Yong-Il Kim
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Dong-Hoon Yang
- Departments of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Changhoon Yoo
- Departments of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - In Ja Park
- Departments of Colon and Rectal Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Baek-Yeol Ryoo
- Departments of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jin-Sook Ryu
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Seung-Mo Hong
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
21
|
Bräutigam K, Chouchane A, Konukiewitz B, Perren A. [Practical application of immunohistochemistry in pancreatic neuroendocrine neoplasms : Tips and pitfalls]. PATHOLOGIE (HEIDELBERG, GERMANY) 2024; 45:35-41. [PMID: 38175232 PMCID: PMC10827836 DOI: 10.1007/s00292-023-01276-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/11/2023] [Indexed: 01/05/2024]
Abstract
Pancreatic neuroendocrine neoplasms (PanNEN) are rather rare entities. Morphology, combined with immunohistochemistry, allows typing and grading, thereby leading therapeutic decisions. Depending on tumor stage and differential diagnosis, a broad diagnostic panel may be required. The present work summarizes the minimal diagnostic, prognostic, and predictive markers in PanNEN.Markers of choice for defining a neuroendocrine phenotype are synaptophysin, chromogranin A, and INSM1. The proliferation fraction Ki67 is indispensable for grading, while p53 and Rb1 can help in the differentiation from neuroendocrine carcinoma (NEC). Transcription factors, such as cdx2, TTF‑1, and Islet‑1, can indicate the site of a primary tumor in the setting of a cancer of unknown primary (CUP). DAXX/ATRX immunohistochemistry has mainly prognostic value. Molecular pathology studies currently have little practical value in the diagnosis of PanNEN.An important pitfall in routine diagnostics is the wide spectrum of differential diagnoses mimicking neuroendocrine neoplasms. An expanded immunohistochemical panel is strongly recommended in case of doubt.
Collapse
Affiliation(s)
- Konstantin Bräutigam
- Institut für Gewebemedizin und Pathologie, Universität Bern, Murtenstr. 31, 3008, Bern, Schweiz
| | - Aziz Chouchane
- Institut für Gewebemedizin und Pathologie, Universität Bern, Murtenstr. 31, 3008, Bern, Schweiz
| | - Björn Konukiewitz
- Institut für Pathologie, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Christian-Albrechts-Universität zu Kiel, Kiel, Deutschland
| | - Aurel Perren
- Institut für Gewebemedizin und Pathologie, Universität Bern, Murtenstr. 31, 3008, Bern, Schweiz.
| |
Collapse
|
22
|
Faggiano A. Long-acting somatostatin analogs and well differentiated neuroendocrine tumors: a 20-year-old story. J Endocrinol Invest 2024; 47:35-46. [PMID: 37581846 PMCID: PMC10776682 DOI: 10.1007/s40618-023-02170-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 07/28/2023] [Indexed: 08/16/2023]
Abstract
PURPOSE The specific indications of somatostatin analogs (SSAs) in patients with neuroendocrine tumor (NET) emerged over the time. The objective of this review is to summarize and discuss the most relevant data concerning long-acting SSAs in NET. METHODS A narrative review was performed including publications focusing on therapy with the long-acting octreotide, lanreotide, and pasireotide in patients with NET. RESULTS Long-acting SSAs confirm to be a manageable and widely used tool in patients with NET. Both long-acting octreotide and lanreotide are safe as the short-acting formulations, while patient compliance and adherence is further improved. Together with some randomized phase-3 trials, many retrospective and prospective studies have been performed in the last 20 years revealing a variable but substantial impact on progression free survival, not only in gastroenteropancreatic but also in lung and unknown primary NETs. The most frequent tumor response to SSAs is stable disease, but an objective response can be observed, more frequently by using high-dose schedules and in MEN1-related pancreatic NETs. Low tumor burden, low tumor grade (G1 and low G2), good performance status and use as first-line therapy are the main predictive factors to SSAs in NET patients. Pasireotide has been evaluated in few studies. This compound remains a promising SSA and would deserve to be further evaluated as a potential additional indication in NET therapy. CONCLUSIONS Long-acting SSAs are an effective and safe initial therapy of patients with well differentiated NET, allowing tumor growth as well as symptoms control for long-time in selected patients.
Collapse
Affiliation(s)
- A Faggiano
- Endocrinology Unit, Department of Clinical and Molecular Medicine, Sapienza University of Rome, Sant'Andrea Hospital, ENETS Center of Excellence, Via di Grottarossa 1038, 00189, Rome, Italy.
| |
Collapse
|
23
|
Amano S, Hirashita T, Kawano Y, Nishida H, Orimoto H, Kawamura M, Kawasaki T, Masuda T, Endo Y, Ohta M, Daa T, Inomata M. Apoptosis-related factors are relevant to progression of pancreatic neuroendocrine tumors. World J Surg Oncol 2023; 21:381. [PMID: 38082268 PMCID: PMC10714622 DOI: 10.1186/s12957-023-03267-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/05/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Multidisciplinary therapy centered on antitumor drugs is indicated in patients with unresectable pancreatic neuroendocrine tumors (PanNET). However, the criteria for selection of optimal therapeutic agents is controversial. The aim of this study was to assess the malignancy of PanNET for optimal therapeutic drug selection. METHODS Forty-seven patients with PanNET who underwent surgery were reviewed retrospectively, and immunohistochemical characteristics, including expression of GLUT1, SSTR2a, SSTR5, Survivin, X-chromosome-linked inhibitor of apoptosis protein (XIAP), and Caspase3 in the resected specimens, were investigated. Relapse-free survival (RFS) and overall survival (OS) were evaluated with regard to the characteristics using the Kaplan-Meier method and compared with the log-rank test. RESULTS GLUT1 expression showed significant correlation with sex (p = 0.036) and mitotic rate (p = 0.048). Survivin and XIAP expression showed significant correlation with T-stage (p = 0.014 and 0.009), p-Stage (p = 0.028 and 0.045), and mitotic rate (p = 0.023 and 0.007). XIAP expression also significantly influenced OS (p = 0.044). CONCLUSIONS Survivin and XIAP correlated with grade of malignancy, and expression of XIAP in particular was associated with a poor prognosis. Expression of these proteins may be a useful indicator to select optimal therapeutic agents in PanNET.
Collapse
Affiliation(s)
- Shota Amano
- Department of Gastroenterological and Pediatric Surgery, Oita University Faculty of Medicine, 1-1 Idaigaoka, Hasama-Machi, Yufu, Oita, 879-5593, Japan.
- Department of Diagnostic Pathology, Oita University Faculty of Medicine, Oita, Japan.
| | - Teijiro Hirashita
- Department of Gastroenterological and Pediatric Surgery, Oita University Faculty of Medicine, 1-1 Idaigaoka, Hasama-Machi, Yufu, Oita, 879-5593, Japan
| | - Yoko Kawano
- Department of Gastroenterological and Pediatric Surgery, Oita University Faculty of Medicine, 1-1 Idaigaoka, Hasama-Machi, Yufu, Oita, 879-5593, Japan
| | - Haruto Nishida
- Department of Diagnostic Pathology, Oita University Faculty of Medicine, Oita, Japan
| | - Hiroki Orimoto
- Department of Gastroenterological and Pediatric Surgery, Oita University Faculty of Medicine, 1-1 Idaigaoka, Hasama-Machi, Yufu, Oita, 879-5593, Japan
| | - Masahiro Kawamura
- Department of Gastroenterological and Pediatric Surgery, Oita University Faculty of Medicine, 1-1 Idaigaoka, Hasama-Machi, Yufu, Oita, 879-5593, Japan
| | - Takahide Kawasaki
- Department of Gastroenterological and Pediatric Surgery, Oita University Faculty of Medicine, 1-1 Idaigaoka, Hasama-Machi, Yufu, Oita, 879-5593, Japan
- Department of Comprehensive Surgery for Community Medicine, Oita University Faculty of Medicine, Oita, Japan
| | - Takashi Masuda
- Department of Gastroenterological and Pediatric Surgery, Oita University Faculty of Medicine, 1-1 Idaigaoka, Hasama-Machi, Yufu, Oita, 879-5593, Japan
| | - Yuichi Endo
- Department of Gastroenterological and Pediatric Surgery, Oita University Faculty of Medicine, 1-1 Idaigaoka, Hasama-Machi, Yufu, Oita, 879-5593, Japan
| | - Masayuki Ohta
- Department of Gastroenterological and Pediatric Surgery, Oita University Faculty of Medicine, 1-1 Idaigaoka, Hasama-Machi, Yufu, Oita, 879-5593, Japan
- Global Oita Medical Advanced Research Center for Health, Oita University, Oita, Japan
| | - Tsutomu Daa
- Department of Diagnostic Pathology, Oita University Faculty of Medicine, Oita, Japan
| | - Masafumi Inomata
- Department of Gastroenterological and Pediatric Surgery, Oita University Faculty of Medicine, 1-1 Idaigaoka, Hasama-Machi, Yufu, Oita, 879-5593, Japan
| |
Collapse
|
24
|
Adili A, O Connor T, Wales P, Seemann M, Höller S, Hummer B, Freiberger SN, Rauthe S, Rupp NJ. Challenging Tumor Heterogeneity with HER2, p16 and Somatostatin Receptor 2 Expression in a Case of EBV-Associated Lymphoepithelial Carcinoma of the Salivary Gland. Head Neck Pathol 2023; 17:1052-1057. [PMID: 37847488 PMCID: PMC10739679 DOI: 10.1007/s12105-023-01592-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/09/2023] [Indexed: 10/18/2023]
Abstract
BACKGROUND Lymphoepithelial carcinoma of the salivary glands (LECSG) is a rare disease in the Western hemisphere that is typically associated with an EBV infection. The molecular mechanisms of LECSG tumorigenesis are poorly understood. RESULTS Here we report a case of EBV-associated LECSG with an unusual immunophenotype. The tumor exhibited bi-morphic histological features with a mutually exclusive expression of HER2 and p16. The p16-positive domain of the tumor immunohistochemically co-expressed late membrane protein 1 (LMP-1), while the HER2 positive domain did not. Both tumor regions expressed SSTR2. METHODS In situ hybridization confirmed the EBV origin of the tumor while extensive immunohistochemical characterization and the recently established RNA-based next generation sequencing panel ("SalvGlandDx" panel) did not reveal evidence for another salivary gland neoplasm. No HPV co-infection was detected by in situ hybridization or PCR-based screenings and no ERBB2 gene amplification was detected by fluorescence in situ hybridization. CONCLUSION These findings suggest tumor heterogeneity and lack of genomic aberrations in EBV-associated LECSGs. The heterogenous and unusual immunohistochemical features explain the diagnostic difficulties and simultaneously extend the immunophenotype spectrum of this tumor entity.
Collapse
Affiliation(s)
- Arlind Adili
- Institute of Pathology, Viollier AG, Allschwil, Switzerland
| | - Tracy O Connor
- Department of Biology, North Park University, 3225 W. Foster Avenue, Chicago Illinois, 60625, USA
| | - Philipp Wales
- Hals-, Nasen-, Ohrenmedizin, Kantonsspital Olten, Olten, Switzerland
| | - Marcus Seemann
- Radiologie Bürgerspital Solothurn, 4500, Solothurn, Switzerland
| | - Sylvia Höller
- Institute of Pathology, Stadtspital Triemli, Zurich, Switzerland
| | - Barbara Hummer
- Institute of Pathology, Viollier AG, Allschwil, Switzerland
| | - Sandra N Freiberger
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Schmelzbergstrasse 12, 8091, Zurich, Switzerland
- Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Stephan Rauthe
- Institute of Pathology, Viollier AG, Allschwil, Switzerland
| | - Niels J Rupp
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Schmelzbergstrasse 12, 8091, Zurich, Switzerland.
- Faculty of Medicine, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
25
|
Legrand M, Pissaloux D, Tirode F, Tallet A, Collin C, Chantreau PL, Berthon P, Jullie ML, Sohier P, Calonje E, Luzar B, Moulonguet I, Goto K, Cokelaere K, Lamant L, Balme B, Deschamps L, Macagno N, Cribier B, Battistella M, de la Fouchardière A, Kervarrec T. SSTR2A is a diagnostic marker of trichogerminoma. J Eur Acad Dermatol Venereol 2023; 37:e1344-e1347. [PMID: 37421254 DOI: 10.1111/jdv.19319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 06/27/2023] [Indexed: 07/10/2023]
Affiliation(s)
- Mélanie Legrand
- Department of Pathology, Université de Tours, Centre Hospitalier Universitaire de Tours, Tours, France
| | - Daniel Pissaloux
- Department of Biopathology, Center Léon Bérard, Lyon, France
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Equipe Labellisée Ligue contre le Cancer, Lyon, France
| | - Franck Tirode
- Department of Biopathology, Center Léon Bérard, Lyon, France
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Equipe Labellisée Ligue contre le Cancer, Lyon, France
| | - Anne Tallet
- Platform of Somatic Tumor Molecular Genetics, Université de Tours, Centre Hospitalier Universitaire de Tours, Tours, France
| | - Christine Collin
- Platform of Somatic Tumor Molecular Genetics, Université de Tours, Centre Hospitalier Universitaire de Tours, Tours, France
| | - Paul-Louis Chantreau
- Department of Pathology, Université de Tours, Centre Hospitalier Universitaire de Tours, Tours, France
| | - Patricia Berthon
- "Biologie des infections à polyomavirus" team, UMR INRA ISP 1282, Université de Tours, Tours, France
| | - Marie-Laure Jullie
- French Network of Rare Skin Cancers, CARADERM, France
- Department of Pathology, Hôpital Haut-Lévêque, CHU de Bordeaux, Pessac, France, CARADERM network
| | - Pierre Sohier
- French Network of Rare Skin Cancers, CARADERM, France
- Department of Pathology, Hôpital Cochin, AP-HP, AP-HP.Centre - Faculté de Médecine, University Paris Cité, Paris, France
| | - Eduardo Calonje
- Department of Dermatopathology, St John's Institute of Dermatology, St Thomas's Hospital, London, UK
| | - Boštjan Luzar
- Institute of Pathology, Medical Faculty University of Ljubljana, Ljubljana, Slovenia
| | - Isabelle Moulonguet
- Department of Pathology, APHP Hôpital Saint Louis, Université Paris Cité, Paris, France
| | - Keisuke Goto
- Department of Pathology, Tokyo Metropolitan Cancer and Infectious Disease Center Komagome Hospital, Tokyo, Japan
- Department of Diagnostic Pathology, Shizuoka Cancer Center Hospital, Japan
- Department of Diagnostic Pathology and Cytology, Osaka International Cancer Institute, Osaka, Japan
- Department of Dermatology, Hyogo Cancer Center, Akashi, Japan
| | | | - Laurence Lamant
- Department of Pathology, CHU Toulouse, Institut Universitaire du Cancer Toulouse Oncopole, Université Toulouse III Paul Sabatier, Toulouse, France
| | - Brigitte Balme
- Department of Pathology, Centre Hospitalier Universitaire de Lyon, Lyon, France
| | - Lydia Deschamps
- Department of Pathology, APHP Bichat Hospital, Paris, France
| | - Nicolas Macagno
- French Network of Rare Skin Cancers, CARADERM, France
- Department of Pathology, Timone University Hospital, Marseille, France
| | - Bernard Cribier
- French Network of Rare Skin Cancers, CARADERM, France
- Dermatology Clinic, Hôpitaux Universitaires & Université de Strasbourg, Hôpital Civil, Strasbourg, France
| | - Maxime Battistella
- French Network of Rare Skin Cancers, CARADERM, France
- Department of Pathology, APHP Hôpital Saint Louis, Université Paris Cité, Paris, France
| | - Arnaud de la Fouchardière
- Department of Biopathology, Center Léon Bérard, Lyon, France
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Equipe Labellisée Ligue contre le Cancer, Lyon, France
| | - Thibault Kervarrec
- Department of Pathology, Université de Tours, Centre Hospitalier Universitaire de Tours, Tours, France
- "Biologie des infections à polyomavirus" team, UMR INRA ISP 1282, Université de Tours, Tours, France
- French Network of Rare Skin Cancers, CARADERM, France
| |
Collapse
|
26
|
Corti F, Brizzi MP, Amoroso V, Giuffrida D, Panzuto F, Campana D, Prinzi N, Milione M, Cascella T, Spreafico C, Randon G, Oldani S, Leporati R, Scotto G, Pulice I, Stocchetti BL, Porcu L, Coppa J, Di Bartolomeo M, de Braud F, Pusceddu S. Assessing the safety and activity of cabozantinib combined with lanreotide in gastroenteropancreatic and thoracic neuroendocrine tumors: rationale and protocol of the phase II LOLA trial. BMC Cancer 2023; 23:908. [PMID: 37752423 PMCID: PMC10523723 DOI: 10.1186/s12885-023-11287-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 08/09/2023] [Indexed: 09/28/2023] Open
Abstract
BACKGROUND Well-differentiated (WD) neuroendocrine tumors (NETs) are a group of rare neoplasms with limited therapeutic options. Cabozantinib is an inhibitor of multiple tyrosine kinases with a pivotal role in NET pathogenesis, including c-MET and Vascular Endothelial Growth Factor Receptor 2 (VEGFR2). LOLA is the first prospective phase II trial aiming to assess the safety and activity of cabozantinib combined with lanreotide in WD NETs of gastroenteropancreatic (GEP), thoracic and of unknown origin. METHODS This is a multicenter, open-label, double-cohort, non comparative, non-randomized, three-stage phase II trial. Eligible patients have to meet the following inclusion criteria: diagnosis of advanced or metastatic, progressive, non-functioning WD thoracic NETs, GEP-NETs or NETs of unknown origin with Ki67 ≥ 10%; positive 68 Ga-PET uptake or somatostatin receptor 2 immunohistochemical (IHC) stain; maximum 1 prior systemic regimen for metastatic disease. Two cohorts will be considered: pNETs and carcinoids (typical or atypical lung and thymus NETs, gastro-intestinal NETs or NETs of unknown origin). In stage I, the primary objective is to find the optimal dose of cabozantinib in combination with lanreotide and to evaluate the safety of the combination (percentage of patients experiencing grade 3-5 toxicities according to NCI-CTCAE version 5.0). Starting dose of cabozantinib is 60 mg/day continuously, plus lanreotide 120 mg every 28 days. In stage II and III, co-primary endpoints are safety and overall response rate (ORR) according to RECIST version 1.1. The uninteresting antitumor activity is fixed in ORR ≤ 5%. Secondary endpoints are progression-free survival and overall survival. Exploratory objectives include the assessment of c-MET, AXL and VEGFR2 IHC expression, to identify predictive or prognostic tissue biomarkers. Enrolment started in July 2020, with an expected trial duration of 42 months comprehensive of accrual, treatment and follow-up. Considering a drop-out rate of 5%, the maximum number of enrolled patients will be 69. DISCUSSION Supported by a solid rationale, the trial has the potential to generate milestone data about the synergistic effects of cabozantinib plus lanreotide in a group of NET patients with relatively aggressive disease and limited therapeutic options. TRIAL REGISTRATION LOLA is registered at ClinicalTrials.gov (NCT04427787) and EudraCT (2019-004506-10).
Collapse
Affiliation(s)
- Francesca Corti
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale Dei Tumori Di Milano, ENETS Center of Excellence, Via Giacomo Venezian 1, 20133, Milan, Italy
| | - Maria Pia Brizzi
- Azienda Ospedaliera Universitaria San Luigi Gonzaga, Orbassano, Italy
| | - Vito Amoroso
- Medical Oncology Unit, Department of Medical & Surgical Specialties, Radiological Sciences & Public Health, University of Brescia at Spedali Civili Hospital, Brescia, Italy
| | - Dario Giuffrida
- Medical Oncology Department, Istituto Oncologico del Mediterraneo, Catania, Viagrande, Italy
| | - Francesco Panzuto
- Department of Medical-Surgical Sciences and Translational Medicine, Sapienza University of Rome, Digestive Disease Unit, ENETS Center of Excellence, Sant' Andrea University Hospital, Rome, Italy
| | - Davide Campana
- Division of Medical Oncology, IRCCS Azienda Ospedaliera- Universitaria Bologna, NET Team Bologna, ENETS Center of Excellence, Bologna, Italy
| | - Natalie Prinzi
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale Dei Tumori Di Milano, ENETS Center of Excellence, Via Giacomo Venezian 1, 20133, Milan, Italy
| | - Massimo Milione
- First Division of Pathology, Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale Dei Tumori Di Milano, Milan, Italy
| | - Tommaso Cascella
- Department of Radiology, Fondazione IRCCS Istituto Nazionale Dei Tumori Di Milano, ENETS Center of Excellence, Milan, Italy
| | - Carlo Spreafico
- Department of Radiology, Fondazione IRCCS Istituto Nazionale Dei Tumori Di Milano, ENETS Center of Excellence, Milan, Italy
| | - Giovanni Randon
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale Dei Tumori Di Milano, ENETS Center of Excellence, Via Giacomo Venezian 1, 20133, Milan, Italy
| | - Simone Oldani
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale Dei Tumori Di Milano, ENETS Center of Excellence, Via Giacomo Venezian 1, 20133, Milan, Italy
| | - Rita Leporati
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale Dei Tumori Di Milano, ENETS Center of Excellence, Via Giacomo Venezian 1, 20133, Milan, Italy
| | - Giulia Scotto
- Azienda Ospedaliera Universitaria San Luigi Gonzaga, Orbassano, Italy
| | - Iolanda Pulice
- Clinical Trial Center, Fondazione IRCCS Istituto Nazionale Dei Tumori Di Milano, Milan, Italy
| | - Benedetta Lombardi Stocchetti
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale Dei Tumori Di Milano, ENETS Center of Excellence, Via Giacomo Venezian 1, 20133, Milan, Italy
| | - Luca Porcu
- Methodology for Clinical Research Laboratory, Oncology Department, Istituto Di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Jorgelina Coppa
- Gastro-Entero-Pancreatic Surgical and Liver Transplantation Unit, Fondazione IRCCS Istituto Nazionale Dei Tumori Di Milano, ENETS Center of Excellence, Milan, Italy
| | - Maria Di Bartolomeo
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale Dei Tumori Di Milano, ENETS Center of Excellence, Via Giacomo Venezian 1, 20133, Milan, Italy
| | - Filippo de Braud
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale Dei Tumori Di Milano, ENETS Center of Excellence, Via Giacomo Venezian 1, 20133, Milan, Italy
- Department of Oncology and Hemato-Oncology, Università Degli Studi Di Milano, Milan, Italy
| | - Sara Pusceddu
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale Dei Tumori Di Milano, ENETS Center of Excellence, Via Giacomo Venezian 1, 20133, Milan, Italy.
| |
Collapse
|
27
|
Fischer A, Kloos S, Maccio U, Friemel J, Remde H, Fassnacht M, Pamporaki C, Eisenhofer G, Timmers HJLM, Robledo M, Fliedner SMJ, Wang K, Maurer J, Reul A, Zitzmann K, Bechmann N, Žygienė G, Richter S, Hantel C, Vetter D, Lehmann K, Mohr H, Pellegata NS, Ullrich M, Pietzsch J, Ziegler CG, Bornstein SR, Kroiss M, Reincke M, Pacak K, Grossman AB, Beuschlein F, Nölting S. Metastatic Pheochromocytoma and Paraganglioma: Somatostatin Receptor 2 Expression, Genetics, and Therapeutic Responses. J Clin Endocrinol Metab 2023; 108:2676-2685. [PMID: 36946182 PMCID: PMC10505550 DOI: 10.1210/clinem/dgad166] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 03/01/2023] [Accepted: 03/17/2023] [Indexed: 03/23/2023]
Abstract
CONTEXT Pheochromocytomas and paragangliomas (PPGLs) with pathogenic mutations in the succinate dehydrogenase subunit B (SDHB) are associated with a high metastatic risk. Somatostatin receptor 2 (SSTR2)-dependent imaging is the most sensitive imaging modality for SDHB-related PPGLs, suggesting that SSTR2 expression is a significant cell surface therapeutic biomarker of such tumors. OBJECTIVE Exploration of the relationship between SSTR2 immunoreactivity and SDHB immunoreactivity, mutational status, and clinical behavior of PPGLs. Evaluation of SSTR-based therapies in metastatic PPGLs. METHODS Retrospective analysis of a multicenter cohort of PPGLs at 6 specialized Endocrine Tumor Centers in Germany, The Netherlands, and Switzerland. Patients with PPGLs participating in the ENSAT registry were included. Clinical data were extracted from medical records, and immunohistochemistry (IHC) for SDHB and SSTR2 was performed in patients with available tumor tissue. Immunoreactivity of SSTR2 was investigated using Volante scores. The main outcome measure was the association of SSTR2 IHC positivity with genetic and clinical-pathological features of PPGLs. RESULTS Of 202 patients with PPGLs, 50% were SSTR2 positive. SSTR2 positivity was significantly associated with SDHB- and SDHx-related PPGLs, with the strongest SSTR2 staining intensity in SDHB-related PPGLs (P = .01). Moreover, SSTR2 expression was significantly associated with metastatic disease independent of SDHB/SDHx mutation status (P < .001). In metastatic PPGLs, the disease control rate with first-line SSTR-based radionuclide therapy was 67% (n = 22, n = 11 SDHx), and with first-line "cold" somatostatin analogs 100% (n = 6, n = 3 SDHx). CONCLUSION SSTR2 expression was independently associated with SDHB/SDHx mutations and metastatic disease. We confirm a high disease control rate of somatostatin receptor-based therapies in metastatic PPGLs.
Collapse
Affiliation(s)
- Alessa Fischer
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ), and University of Zurich (UZH), CH-8091 Zurich, Switzerland
| | - Simon Kloos
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ), and University of Zurich (UZH), CH-8091 Zurich, Switzerland
| | - Umberto Maccio
- Department of Pathology and Molecular Pathology, University Hospital Zurich, CH-8091 Zurich, Switzerland
| | - Juliane Friemel
- Department of Pathology and Molecular Pathology, University Hospital Zurich, CH-8091 Zurich, Switzerland
| | - Hanna Remde
- Department of Internal Medicine I, Division of Endocrinology and Diabetes, University Hospital, University of Würzburg, 97080 Würzburg, Germany
| | - Martin Fassnacht
- Department of Internal Medicine I, Division of Endocrinology and Diabetes, University Hospital, University of Würzburg, 97080 Würzburg, Germany
| | - Christina Pamporaki
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Graeme Eisenhofer
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Henri J L M Timmers
- Division of Endocrinology, Department of Internal Medicine, Radboud University Medical Center, 6525 GA Nijmegen, Netherlands
| | - Mercedes Robledo
- Hereditary Endocrine Cancer Group, Spanish National Cancer Research Center (CNIO), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain
| | - Stephanie M J Fliedner
- First Department of Medicine, University Medical Center Schleswig-Holstein, 23538 Lübeck, Germany
| | - Katharina Wang
- Department of Medicine IV, University Hospital, Ludwig-Maximilians-University Munich, 80336 Munich, Germany
| | - Julian Maurer
- Department of Medicine IV, University Hospital, Ludwig-Maximilians-University Munich, 80336 Munich, Germany
| | - Astrid Reul
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ), and University of Zurich (UZH), CH-8091 Zurich, Switzerland
| | - Kathrin Zitzmann
- Department of Medicine IV, University Hospital, Ludwig-Maximilians-University Munich, 80336 Munich, Germany
| | - Nicole Bechmann
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse, 01307 Dresden, Germany
| | - Gintarė Žygienė
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse, 01307 Dresden, Germany
| | - Susan Richter
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse, 01307 Dresden, Germany
| | - Constanze Hantel
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ), and University of Zurich (UZH), CH-8091 Zurich, Switzerland
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Diana Vetter
- Department of Visceral and Transplantation Surgery, University Hospital, 8091 Zürich, Switzerland
| | - Kuno Lehmann
- Department of Visceral and Transplantation Surgery, University Hospital, 8091 Zürich, Switzerland
| | - Hermine Mohr
- Institute for Diabetes and Cancer, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Natalia S Pellegata
- Institute for Diabetes and Cancer, Helmholtz Zentrum München, 85764 Neuherberg, Germany
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy
| | - Martin Ullrich
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - Jens Pietzsch
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
- Faculty of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, Dresden, Germany
| | - Christian G Ziegler
- Department of Internal Medicine I, Division of Endocrinology and Diabetes, University Hospital, University of Würzburg, 97080 Würzburg, Germany
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Stefan R Bornstein
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ), and University of Zurich (UZH), CH-8091 Zurich, Switzerland
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Matthias Kroiss
- Department of Medicine IV, University Hospital, Ludwig-Maximilians-University Munich, 80336 Munich, Germany
| | - Martin Reincke
- Department of Medicine IV, University Hospital, Ludwig-Maximilians-University Munich, 80336 Munich, Germany
| | - Karel Pacak
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Rockville, MD 20847, USA
| | - Ashley B Grossman
- Green Templeton College, University of Oxford, Oxford, UK
- NET Unit, ENETS Centre of Excellence, Royal Free Hospital, London, UK
| | - Felix Beuschlein
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ), and University of Zurich (UZH), CH-8091 Zurich, Switzerland
- Department of Medicine IV, University Hospital, Ludwig-Maximilians-University Munich, 80336 Munich, Germany
| | - Svenja Nölting
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ), and University of Zurich (UZH), CH-8091 Zurich, Switzerland
- Department of Medicine IV, University Hospital, Ludwig-Maximilians-University Munich, 80336 Munich, Germany
| |
Collapse
|
28
|
Kumari N, Verma R, Agrawal V, Singh UP. Primary Renal Well-Differentiated Neuroendocrine Tumors: Analyis of Six Cases from a Tertiary Care Center in North India with Review of Literature. Int J Surg Pathol 2023; 31:982-992. [PMID: 35903907 DOI: 10.1177/10668969221113494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Well-differentiated renal neuroendocrine tumors are rare tumors. As their biologic behavior is not fully known, there is a need to know more about these cases. We performed a retrospective chart review of all the cases diagnosed with renal neuroendocrine tumors from January 2016 to December 2020 (five years) in order to understand their clinical features, morphological characteristics and outcome. We included six cases with mean age of 46.2 years (4 males) in our study. All patients underwent radical nephrectomy. Histologically all showed tumor disposed in nests and trabeculae and majority of the tumors belonged to well-differentiated neuroendocrine tumor Grade 1 (WHO criteria of gastoroenteropancreatic neuroendocrine neoplasms). Lymph node metastasis was seen in two cases at the time of clinical presentation. All the tumors were diffusely positive for neuroendocrine tumor markers (synaptophysin, chromogranin, NSE, CD56). Follow-up data was available in all cases with an average follow-up of two years and neither has shown evidence of metastasis or relapse till last follow-up. Role of morphological patterns and immunohistochemical markers is highlighted with the importance of including Ki-67 index in grading them to better understand their outcome.
Collapse
Affiliation(s)
- Neha Kumari
- Department of Pathology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Raebareli Road, Lucknow, India
| | - Ritu Verma
- Department of Pathology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Raebareli Road, Lucknow, India
| | - Vinita Agrawal
- Department of Pathology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Raebareli Road, Lucknow, India
| | - Uday Pratap Singh
- Department of Urology and Renal Transplantation, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Raebareli Road, Lucknow, India
| |
Collapse
|
29
|
Watanabe H, Fujishima F, Unno M, Sasano H, Suzuki T. Somatostatin Receptor 2 in 10 Different Types of Human Non-Neoplastic Gastrointestinal Neuroendocrine Cells. Pathol Res Pract 2023; 244:154418. [PMID: 36989844 DOI: 10.1016/j.prp.2023.154418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/16/2023] [Accepted: 03/16/2023] [Indexed: 03/19/2023]
Abstract
Somatostatin is known to inhibit the secretion of various hormones by acting on endocrine cells through the somatostatin receptor 2 (SSTR2). Immunohistochemical evaluation of SSTR2 has become increasingly important in clinical practice to determine treatment strategies for patients with a neuroendocrine tumor (NET). Gastrointestinal (GI) tracts contain various neuroendocrine cells that constitute a diffuse endocrine system and some NETs are derived from those cells. In addition, NETs have been well known to express a variable spectrum of proteins shared by their normal cell counterparts of the specific anatomical sites. Thus, we may derive the kinetics of SSTR2 expression of NETs, including de novo expression, from the SSTR2 expression of the corresponding normal neuroendocrine cells. Therefore, a detailed study on the distribution of SSTR2 in normal human neuroendocrine cells may contribute to understanding the expression of SSTR2 in GI-NETs. However, the detailed cellular localization of SSTR2 in non-neoplastic neuroendocrine cells remains unknown. Therefore, we immunolocalized SSTR2 in neuroendocrine cells of normal human GI tracts, including the stomach, duodenum, ileum, and rectum, obtained from 41 surgically resected tissue specimens. Double immunohistochemistry of SSTR2 and hormones or hormone-associated proteins was performed. In all GI neuroendocrine cells, cell types other than D- and EC-cells demonstrated a high percentage of SSTR2-positive cases or a high double-positive ratio. In particular, EC-cells showed lower SSTR2-positive ratios in all sites. Midgut NETs, which often produce serotonin, are excellent targets for somatostatin analogs and are positive for SSTR2. Thus, we speculated that EC-cell NETs might lead to the de novo expression of SSTR2. In addition, a previous report showed high SSTR2 expression in ECL-cell NETs and gastrinomas, which could be because they are derived from neuroendocrine cells with high SSTR2 expression. This study may contribute to understanding the expression of SSTR2 in GI-NETs.
Collapse
Affiliation(s)
- Hirofumi Watanabe
- Department of Pathology, Tohoku University Hospital, Sendai, Miyagi, Japan
| | | | - Michiaki Unno
- Department of Surgery, Tohoku University, Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Hironobu Sasano
- Department of Pathology, Tohoku University Hospital, Sendai, Miyagi, Japan
| | - Takashi Suzuki
- Department of Pathology, Tohoku University Hospital, Sendai, Miyagi, Japan
| |
Collapse
|
30
|
Giampietro A, Menotti S, Chiloiro S, Pontecorvi A, De Marinis L, Bianchi A. De-escalation treatment with pasireotide for acromegaly: a long-term experience. Endocrine 2023; 80:505-510. [PMID: 36808072 DOI: 10.1007/s12020-023-03325-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/08/2023] [Indexed: 02/21/2023]
Abstract
INTRODUCTION Pasireotide long-acting release (LAR) is approved for second-line treatment of acromegaly. Starting pasireotide LAR 40 mg every 4 weeks is recommended and then up-titrate to 60 mg monthly in case of IGF-I uncontrolled levels. We present three patients treated with a de-escalation approach with pasireotide LAR. CASE 1: A 61-year-old female diagnosed with resistant acromegaly was treated with pasireotide LAR 60 mg every 28 days. When IGF-I reached the lower age range, therapy was decreased to pasireotide LAR 40 mg and then to 20 mg. In 2021 and 2022, IGF-I value remained within the normal range. CASE 2: A 40-year-old female diagnosed with resistant acromegaly underwent three neurosurgeries. In 2011, she was enrolled in the PAOLA study and assigned to pasireotide LAR 60 mg. Due to IGF-I overcontrol and radiological stability, therapy was downscaled to 40 mg in 2016 and to 20 mg in 2019. The patient developed hyperglycemia, which was treated with metformin. CASE 3: A 37-year-old male diagnosed with resistant acromegaly was treated with pasireotide LAR 60 mg in 2011. In 2018, therapy was decreased to 40 mg due to IGF-I overcontrol and in 2022 to 20 mg. He developed hyperglycemia, but HbA1c values remained under 48 nmol/L for 7 years. CONCLUSION De-escalation treatment with pasireotide LAR may allow a greater proportion of patients to achieve control of acromegaly, particularly in selected cases of clinically aggressive acromegaly potentially responsive to pasireotide (high IGF-I values, invasion of the cavernous sinuses, partial resistance to first-line somatostatin analogues and positive expression of somatostatin receptor 5). Another benefit may be IGF-I oversuppression overtime. The major risk seems to be hyperglycemia.
Collapse
Affiliation(s)
- Antonella Giampietro
- UOC Endocrinologia, Fondazione Policlinico A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
| | - Sara Menotti
- UOC Endocrinologia, Fondazione Policlinico A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
| | - Sabrina Chiloiro
- UOC Endocrinologia, Fondazione Policlinico A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168, Rome, Italy.
| | - Alfredo Pontecorvi
- UOC Endocrinologia, Fondazione Policlinico A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
| | - Laura De Marinis
- UOC Endocrinologia, Fondazione Policlinico A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
| | - Antonio Bianchi
- UOC Endocrinologia, Fondazione Policlinico A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
| |
Collapse
|
31
|
Ruggeri RM, Benevento E, De Cicco F, Fazzalari B, Guadagno E, Hasballa I, Tarsitano MG, Isidori AM, Colao A, Faggiano A. Neuroendocrine neoplasms in the context of inherited tumor syndromes: a reappraisal focused on targeted therapies. J Endocrinol Invest 2023; 46:213-234. [PMID: 36038743 DOI: 10.1007/s40618-022-01905-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 08/16/2022] [Indexed: 01/25/2023]
Abstract
PURPOSE Neuroendocrine neoplasms can occur as part of inherited disorders, usually in the form of well-differentiated, slow-growing tumors (NET). The main predisposing syndromes include: multiple endocrine neoplasias type 1 (MEN1), associated with a large spectrum of gastroenteropancreatic and thoracic NETs, and type 4 (MEN4), associated with a wide tumour spectrum similar to that of MEN1; von Hippel-Lindau syndrome (VHL), tuberous sclerosis (TSC), and neurofibromatosis 1 (NF-1), associated with pancreatic NETs. In the present review, we propose a reappraisal of the genetic basis and clinical features of gastroenteropancreatic and thoracic NETs in the setting of inherited syndromes with a special focus on molecularly targeted therapies for these lesions. METHODS Literature search was systematically performed through online databases, including MEDLINE (via PubMed), and Scopus using multiple keywords' combinations up to June 2022. RESULTS Somatostatin analogues (SSAs) remain the mainstay of systemic treatment for NETs, and radiolabelled SSAs can be used for peptide-receptor radionuclide therapy for somatostatin receptor (SSTR)-positive NETs. Apart of these SSTR-targeted therapies, other targeted agents have been approved for NETs: the mTOR inhibitor everolimus for lung, gastroenteropatic and unknown origin NET, and sunitinib, an antiangiogenic tyrosine kinase inhibitor, for pancreatic NET. Novel targeted therapies with other antiangiogenic agents and immunotherapies have been also under evaluation. CONCLUSIONS Major advances in the understanding of genetic and epigenetic mechanisms of NET development in the context of inherited endocrine disorders have led to the recognition of molecular targetable alterations, providing a rationale for the implementation of treatments and development of novel targeted therapies.
Collapse
Affiliation(s)
- R M Ruggeri
- Unit of Endocrinology, Department of Clinical and Experimental Medicine, University of Messina, AOU Policlinico "Gaetano Martino" University Hospital, 98125, Messina, Italy.
| | - E Benevento
- Department of Clinical Medicine and Surgery, Endocrinology Unit, University Federico II, Naples, Italy
| | - F De Cicco
- SSD Endocrine Disease and Diabetology, ASL TO3, Pinerolo, TO, Italy
| | - B Fazzalari
- Endocrinology Unit, Department of Clinical and Molecular Medicine, Sant'Andrea Hospital, ENETS Center of Excellence, Sapienza University of Rome, Rome, Italy
| | - E Guadagno
- Department of Clinical Medicine and Surgery, Endocrinology Unit, University Federico II, Naples, Italy
| | - I Hasballa
- Endocrinology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - M G Tarsitano
- Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - A M Isidori
- Gruppo NETTARE, Policlinico Umberto I, Università Sapienza, Rome, Italy
| | - A Colao
- Department of Clinical Medicine and Surgery, Endocrinology Unit, University Federico II, Naples, Italy
- UNESCO Chair "Education for Health and Sustainable Development", Federico II University, Naples, Italy
| | - A Faggiano
- Endocrinology Unit, Department of Clinical and Molecular Medicine, Sant'Andrea Hospital, ENETS Center of Excellence, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
32
|
Centonze G, Maisonneuve P, Simbolo M, Lagano V, Grillo F, Prinzi N, Pusceddu S, Missiato L, Colantuono M, Sabella G, Bercich L, Mangogna A, Rolli L, Grisanti S, Benvenuti MR, Pastorino U, Roz L, Scarpa A, Berruti A, Capella C, Milione M. Ascl1 and OTP tumour expressions are associated with disease-free survival in lung atypical carcinoids. Histopathology 2023; 82:870-884. [PMID: 36720841 DOI: 10.1111/his.14873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/11/2023] [Accepted: 01/28/2023] [Indexed: 02/02/2023]
Abstract
According to World Health Organization guidelines, atypical carcinoids (ACs) are well-differentiated lung neuroendocrine tumours with 2-10 mitoses/2 mm2 and/or foci of necrosis (usually punctate). Besides morphological criteria, no further tools in predicting AC clinical outcomes are proposed. The aim of this work was to identify novel factors able to predict AC disease aggressiveness and progression. METHODS AND RESULTS: Three hundred-seventy lung carcinoids were collected and centrally reviewed by two expert pathologists. Morphology and immunohistochemical markers (Ki-67, TTF-1, CD44, OTP, SSTR2A, Ascl1, p53, and Rb1) were studied and correlated with disease-free survival (DFS) and overall survival (OS). Fifty-eight of 370 tumours were defined as AC. Survival analysis showed that patients with Ascl1 + ACs and those with OTP-ACs had a significantly worse DFS than patients with Ascl1-ACs and OTP + ACs, respectively. Combining Ascl1 and OTP expressions, groups were formed reflecting the aggressiveness of disease (P = 0.0005). Ki-67 ≥10% patients had a significantly worse DFS than patients with Ki-67 <10%. At multivariable analysis, Ascl1 (present versus absent, hazard ratio [HR] = 3.42, 95% confidence interval [CI] 1.35-8.65, P = 0.009) and OTP (present versus absent, HR = 0.26, 95% CI 0.10-0.68, P = 0.006) were independently associated with DFS. The prognosis of patients with Ki-67 ≥10% tended to be worse compared to that with Ki-67 <10%. On the contrary, OTP (present versus absent, HR = 0.28, 95% CI 0.09-0.89, P = 0.03), tumour stage (III-IV versus I-II, HR = 4.25, 95% CI 1.42-12.73, P = 0.01) and increasing age (10-year increase, HR = 1.67, 95% CI 1.04-2.68, P = 0.03) were independently associated with OS. CONCLUSION: This retrospective analysis of lung ACs showed that Ascl1 and OTP could be the main prognostic drivers of postoperative recurrence.
Collapse
Affiliation(s)
- Giovanni Centonze
- 1st Pathology Division, Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.,Tumor Genomics Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Patrick Maisonneuve
- Division of Epidemiology and Biostatistics, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Michele Simbolo
- Department of Diagnostics and Public Health, Section of Pathology, University of Verona, Verona, Italy
| | - Vincenzo Lagano
- 1st Pathology Division, Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Federica Grillo
- Unit of Pathology, Department of Surgical Sciences and Integrated Diagnostics, University of Genoa and Ospedale Policlinico San Martino, Genoa, Italy
| | - Natalie Prinzi
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Sara Pusceddu
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Loretta Missiato
- 1st Pathology Division, Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Marilena Colantuono
- 1st Pathology Division, Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Giovanna Sabella
- 1st Pathology Division, Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Luisa Bercich
- Department of Pathology, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Alessandro Mangogna
- Institute for Maternal and Child Health, IRCCS Burlo Garofalo, Trieste, Italy
| | - Luigi Rolli
- Thoracic Surgery Unit, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Salvatore Grisanti
- Medical Oncology Unit, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, ASST Spedali Civili, Brescia, Italy
| | - Mauro Roberto Benvenuti
- Thoracic Surgery Unit, Department of Medical and Surgical Specialties Radiological Sciences and Public Health, Medical Oncology, University of Brescia, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Ugo Pastorino
- Thoracic Surgery Unit, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Luca Roz
- Tumor Genomics Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Aldo Scarpa
- Department of Diagnostics and Public Health, Section of Pathology, University of Verona, Verona, Italy.,ARC-NET Research Center for Applied Research on Cancer, and Department of Diagnostics and Public Health, Section of Pathology, University of Verona, Verona, Italy
| | - Alfredo Berruti
- Medical Oncology Unit, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, ASST Spedali Civili, Brescia, Italy
| | - Carlo Capella
- Unit of Pathology, Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Massimo Milione
- 1st Pathology Division, Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| |
Collapse
|
33
|
Centonze G, Maisonneuve P, Simbolo M, Lagano V, Grillo F, Fabbri A, Prinzi N, Garzone G, Filugelli M, Pardo C, Mietta A, Pusceddu S, Sabella G, Bercich L, Mangogna A, Rolli L, Grisanti S, Benvenuti MR, Pastorino U, Roz L, Scarpa A, Berruti A, Capella C, Milione M. Lung carcinoid tumours: histology and Ki-67, the eternal rivalry. Histopathology 2023; 82:324-339. [PMID: 36239545 PMCID: PMC10092270 DOI: 10.1111/his.14819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/12/2022] [Accepted: 10/03/2022] [Indexed: 12/13/2022]
Abstract
WHO classification of Thoracic Tumours defines lung carcinoid tumours (LCTs) as well-differentiated neuroendocrine neoplasms (NENs) classified in low grade typical (TC) and intermediate grade atypical carcinoids (AC). Limited data exist concerning protein expression and morphologic factors able to predict disease aggressiveness. Though Ki-67 has proved to be a powerful diagnostic and prognostic factor for Gastro-entero-pancreatic NENs, its role in lung NENs is still debated. A retrospective series of 370 LCT from two oncology centers was centrally reviewed. Morphology and immunohistochemical markers (Ki-67, TTF-1, CD44, OTP, SSTR-2A, Ascl1, and p53) were studied and correlated with Overall Survival (OS), Cancer-specific survival (CSS) and Disease-free survival (DFS). Carcinoid histology was confirmed in 355 patients: 297 (83.7%) TC and 58 (16.3%) AC. Ki-67 at 3% was the best value in predicting DFS. Ki-67 ≥ 3% tumours were significantly associated with AC histology, stage III-IV, smoking, vascular invasion, tumour spread through air spaces OTP negativity, and TTF-1, Ascl1 and p53 positivity. After adjustment for center and period of diagnosis, both Ki-67 (≥3 versus <3) and histology (AC versus TC) alone significantly added prognostic information to OS and CSS multivariable model with age, stage and OTP; addition of both variables did not provide further prognostic information. Conversely, an improved significance of the DFS prediction model at multivariate analysis was seen by adding Ki-67 (≥3 versus <3, P adj = 0.01) to TC and AC histological distinction, age, lymph node involvement, residual tumour and OTP. Ki-67 ≥ 3% plays a potentially pivotal role in LCT prognosis, irrespective of histological grade.
Collapse
Affiliation(s)
- Giovanni Centonze
- 1st Pathology Division, Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.,Tumor Genomics Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Patrick Maisonneuve
- Division of Epidemiology and Biostatistics, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Michele Simbolo
- Department of Diagnostics and Public Health, Section of Pathology, University of Verona, Verona, Italy
| | - Vincenzo Lagano
- 1st Pathology Division, Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Federica Grillo
- Unit of Pathology, Department of Surgical Sciences and Integrated Diagnostics, University of Genoa and Ospedale Policlinico San Martino, Genoa, Italy
| | - Alessandra Fabbri
- 2nd Pathology Division, Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Natalie Prinzi
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Giovanna Garzone
- 1st Pathology Division, Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Martina Filugelli
- 1st Pathology Division, Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Carlotta Pardo
- 1st Pathology Division, Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Alessia Mietta
- 1st Pathology Division, Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Sara Pusceddu
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Giovanna Sabella
- 1st Pathology Division, Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Luisa Bercich
- Department of Pathology, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Alessandro Mangogna
- Institute for Maternal and Child Health, IRCCS Burlo Garofalo, Trieste, Italy
| | - Luigi Rolli
- Thoracic Surgery Unit, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Salvatore Grisanti
- Medical Oncology Unit, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, ASST Spedali Civili, Brescia, Italy
| | - Mauro Roberto Benvenuti
- Thoracic Surgery Unit, Department of Medical and Surgical Specialties Radiological Sciences and Public Health, Medical Oncology, University of Brescia, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Ugo Pastorino
- Thoracic Surgery Unit, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Luca Roz
- Tumor Genomics Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Aldo Scarpa
- Department of Diagnostics and Public Health, Section of Pathology, University of Verona, Verona, Italy.,ARC-NET Research Center for Applied Research on Cancer, and Department of Diagnostics and Public Health, Section of Pathology, University of Verona, Verona, Italy
| | - Alfredo Berruti
- Medical Oncology Unit, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, ASST Spedali Civili, Brescia, Italy
| | - Carlo Capella
- Unit of Pathology, Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Massimo Milione
- 1st Pathology Division, Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| |
Collapse
|
34
|
Bianchi A, Chiloiro S, Giampietro A, Gaudino S, Calandrelli R, Mazzarella C, Caldarella C, Rigante M, Gessi M, Lauretti L, De Marinis L, Olivi A, Pontecorvi A, Doglietto F. Multidisciplinary management of difficult/aggressive growth-hormone pituitary neuro-endocrine tumors. Front Endocrinol (Lausanne) 2023; 14:1123267. [PMID: 37206441 PMCID: PMC10189777 DOI: 10.3389/fendo.2023.1123267] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 03/13/2023] [Indexed: 05/21/2023] Open
Abstract
Growth Hormone-secreting adenomas exhibits variable biological behavior and heterogeneous natural history, ranging from small adenomas and mild disease, to invasive and aggressive neoplasms with more severe clinical picture. Patients not cured or controlled after neurosurgical and first-generation somatostatin receptor ligands (SRL) therapy could require multiple surgical, medical and/or radiation treatments to achieve disease control. To date, no clinical, laboratory, histopathological, or neuroradiological markers are able to define the aggressiveness or predict the disease prognosis in patients with acromegaly. Therefore, the management of these patients requires careful evaluation of laboratory assessments, diagnostic criteria, neuroradiology examinations, and neurosurgical approaches to choose an effective and patient-tailored medical therapy. A multidisciplinary approach is particularly useful in difficult/aggressive acromegaly to schedule multimodal treatment, which includes radiation therapy, chemotherapy with temozolomide and other, recent emerging treatments. Herein, we describe the role of the different members of the multidisciplinary team according to our personal experience; a flow-chart for the therapeutic approach of difficult/aggressive acromegaly patients is proposed.
Collapse
Affiliation(s)
- Antonio Bianchi
- Pituitary Unit, Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario Agostino Gemelli, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
- Endocrinology and Diabetes Unit, Department of Medical and Surgical Translational Sciences, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario Agostino Gemelli, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Sabrina Chiloiro
- Pituitary Unit, Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario Agostino Gemelli, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
- Endocrinology and Diabetes Unit, Department of Medical and Surgical Translational Sciences, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario Agostino Gemelli, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
- *Correspondence: Sabrina Chiloiro,
| | - Antonella Giampietro
- Pituitary Unit, Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario Agostino Gemelli, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
- Endocrinology and Diabetes Unit, Department of Medical and Surgical Translational Sciences, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario Agostino Gemelli, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Simona Gaudino
- Radiology and Neuroradiology Unit, Department of Imaging, Radiation Therapy and Hematology, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario Agostino Gemelli, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Rosalinda Calandrelli
- Radiology and Neuroradiology Unit, Department of Imaging, Radiation Therapy and Hematology, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario Agostino Gemelli, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Ciro Mazzarella
- Radiation Therapy Unit, Department of Imaging, Radiation Therapy and Hematology, Fondazione Policlinico Universitario Agostino Gemelli, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Carmelo Caldarella
- Nuclear Medicine Unit, Department of Imaging, Radiation Therapy and Hematology, Fondazione Policlinico Universitario Agostino Gemelli, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Mario Rigante
- Department of Aging, Neurological, Orthopedic and Head-Neck Sciences, Fondazione Policlinico Universitario Agostino Gemelli, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Marco Gessi
- Neuropathology Unit, Fondazione Policlinico Universitario Agostino Gemelli, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
- Pathology Unit of Head and Neck, Lung and Endocrine Systems, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario Agostino Gemelli, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Liverana Lauretti
- Neurosurgery Unit, Department of Neurosciences, Fondazione Policlinico Universitario Agostino Gemelli, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
- Neurosurgery Unit, Department of Neurosciences, Catholic University School of Medicine, Rome, Italy
| | - Laura De Marinis
- Pituitary Unit, Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario Agostino Gemelli, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
- Endocrinology and Diabetes Unit, Department of Medical and Surgical Translational Sciences, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario Agostino Gemelli, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Alessandro Olivi
- Neurosurgery Unit, Department of Neurosciences, Fondazione Policlinico Universitario Agostino Gemelli, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
- Neurosurgery Unit, Department of Neurosciences, Catholic University School of Medicine, Rome, Italy
| | - Alfredo Pontecorvi
- Pituitary Unit, Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario Agostino Gemelli, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
- Endocrinology and Diabetes Unit, Department of Medical and Surgical Translational Sciences, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario Agostino Gemelli, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Francesco Doglietto
- Neurosurgery Unit, Department of Neurosciences, Fondazione Policlinico Universitario Agostino Gemelli, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
- Neurosurgery Unit, Department of Neurosciences, Catholic University School of Medicine, Rome, Italy
| |
Collapse
|
35
|
Melikyan M, Gubaeva D, Shadrina A, Bolmasova A, Kareva M, Tiulpakov A, Efremenkov A, Sokolov Y, Brusgaard K, Christesen HT, Andersen K, Stepanov A, Averyanova J, Makarov S, Gurevich L. Insulinoma in childhood: a retrospective review of 22 patients from one referral centre. Front Endocrinol (Lausanne) 2023; 14:1127173. [PMID: 37152923 PMCID: PMC10155867 DOI: 10.3389/fendo.2023.1127173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/27/2023] [Indexed: 05/09/2023] Open
Abstract
Background Insulinomas are very rare in childhood with sparse knowledge on the clinical aspects and the presence of Multiple Endocrine Neoplasia type 1 (MEN1). Methods We conducted a retrospective review of patients diagnosed with insulinoma between 1995 and 2021, presenting to one referral centre in Russia. Clinical, biochemical, genetic, imaging and histological data were collected. In addition, follow-up and family data were obtained. Results A total of twenty-two children aged 5 to 16 years were identified. The median (range) gap between the first hypoglycaemia symptoms and diagnosis was 10 (1-46) months. Twelve children (55%) were misdiagnosed to have epilepsy and were treated with anticonvulsants before hypoglycemia was revealed. Contrast enhanced MRI and/or CT were accurate to localize the lesion in 82% (n=18). Five patients (23%) had multiple pancreatic lesions. All children underwent surgical treatment. The median (range) diameter of removed tumors was 1.5 (0.3-6) cm. Histopathological studies confirmed the presence of insulinoma in all cases. Immunohistochemical studies revealed G2 differentiation grade in 10 out of 17 cases. Two patients were diagnosed with metastatic insulinoma. One of them had metastases at the time of insulinoma diagnosis, while the other was diagnosed with liver metastases eight years after the surgery. Eight children (36%) were found to carry MEN1 mutations, inherited n=5, de novo n=1, no data, n=2. Children with MEN1 had significantly higher number of pancreatic tumors compared to sporadic cases. All of them developed additional MEN1 symptoms during the following 2-13 years. In the five patients with inherited MEN1, seven family members had hitherto undiscovered MEN1 manifestations. Conclusions In this large cohort of children with rare pediatric insulinomas, MEN1 syndrome and G2 tumors were frequent, as well as hitherto undiscovered MEN1 manifestations in family members. Our data emphasize the need of genetic testing in all children with insulinoma and their relatives, even in the absence of any other features, as well as the importance of a prolonged follow-up observation.
Collapse
Affiliation(s)
- Maria Melikyan
- Department of Pediatric Endocrinology, Endocrinology Research Center, Moscow, Russia
- Department of Endocrinology, Yerevan State Medical University, Yerevan, Armenia
- Department of pediatrics, Center of Medical Genetics and Primary Health Care, Yerevan, Armenia
- *Correspondence: Maria Melikyan,
| | - Diliara Gubaeva
- Department of Pediatric Endocrinology, Endocrinology Research Center, Moscow, Russia
- Department of Pediatric Endocrinology, Alder Hey Children’s Hospital, Liverpool, United Kingdom
| | - Anna Shadrina
- Department of Pediatric Endocrinology, Endocrinology Research Center, Moscow, Russia
| | - Anna Bolmasova
- Department of Pediatric Endocrinology, Endocrinology Research Center, Moscow, Russia
| | - Maria Kareva
- Department of Pediatric Endocrinology, Endocrinology Research Center, Moscow, Russia
| | - Anatoly Tiulpakov
- Department of Pediatric Endocrinology, Endocrinology Research Center, Moscow, Russia
- Department of Endocrinology, Federal State Budgetary Scientific Institution Research Centre for Medical Genetics (RCMG), Moscow, Russia
| | - Artem Efremenkov
- Department of Pediatric Surgery, Central Clinical Hospital, Moscow, Russia
| | - Yuri Sokolov
- Department of Pediatric Surgery, Endocrinology Research Center, Moscow, Russia
| | - Klaus Brusgaard
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
- Odense Pancreas Center OPAC and Steno Diabetes Center Odense, Odense, Denmark
- Department of Endocrinology, Hans Christian Andersen Children’s Hospital, Odense University Hospital, Odense, Denmark
| | - Henrik T. Christesen
- Odense Pancreas Center OPAC and Steno Diabetes Center Odense, Odense, Denmark
- Department of Endocrinology, Hans Christian Andersen Children’s Hospital, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Kirstine Andersen
- Odense Pancreas Center OPAC and Steno Diabetes Center Odense, Odense, Denmark
- Department of Endocrinology, Hans Christian Andersen Children’s Hospital, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Alexey Stepanov
- Department of Abdominal Surgery, Russian Children's Clinical Hospital, Moscow, Russia
| | - Julia Averyanova
- Department of Abdominal Surgery, Russian Children's Clinical Hospital, Moscow, Russia
| | - Sergey Makarov
- Department of Abdominal Surgery, Russian Children's Clinical Hospital, Moscow, Russia
| | - Larisa Gurevich
- Morphological Department of Oncology, State Budget Health Agency Moscow Region Moscow Regional Research Clinical Institute, Moscow, Russia
| |
Collapse
|
36
|
Chiloiro S, Bianchi A, Giampietro A, Pontecorvi A, Raverot G, Marinis LD. Second line treatment of acromegaly: Pasireotide or Pegvisomant? Best Pract Res Clin Endocrinol Metab 2022; 36:101684. [PMID: 35931640 DOI: 10.1016/j.beem.2022.101684] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Acromegaly is a chronic disease with an increased mortality in case of persistently active disease. The treatment of acromegaly is mainly based on the surgical resection of the GH secreting pituitary tumor and, in cases with persistent disease, on the medical therapy with first generation somatostatin analogues (first gen-SSAs). Data from national registries, meta-analysis and epidemiology studies showed that 24%-65% of acromegaly patients treated with first gen-SSA did not reach the control of disease, requiring second line therapies, as the second gen-SSAs and the GH receptor antagonist. According to the high efficacy of these treatments and their molecular mechanisms of action, the choice of second line therapies should be personalized. In this review, we summarize the evidence on clinical, molecular and morphological aspects that may predict the response to second line therapies, in order to integrate and translate in the clinical practice for a patient-tailored therapeutic approach.
Collapse
Affiliation(s)
- Sabrina Chiloiro
- Pituitary Unit, Division of Endocrinology and Metabolism, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Largo A. Gemelli, number 8, Rome, Italy; Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy.
| | - Antonio Bianchi
- Pituitary Unit, Division of Endocrinology and Metabolism, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Largo A. Gemelli, number 8, Rome, Italy; Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Antonella Giampietro
- Pituitary Unit, Division of Endocrinology and Metabolism, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Largo A. Gemelli, number 8, Rome, Italy; Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Alfredo Pontecorvi
- Pituitary Unit, Division of Endocrinology and Metabolism, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Largo A. Gemelli, number 8, Rome, Italy; Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Gérald Raverot
- Fédération d'endocrinologie, Centre de référence Maladies Rares Hypophysaires (HYPO), Hospices Civils de Lyon, Groupement hospitalier Est, Bron, France; Université Lyon 1, Lyon, France; Inserm U1052, CNRS UMR5286, Cancer Research Center of Lyon, 69372, Lyon, France
| | - Laura De Marinis
- Pituitary Unit, Division of Endocrinology and Metabolism, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Largo A. Gemelli, number 8, Rome, Italy; Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
37
|
Proteogenomic landscape and clinical characterization of GH-producing pituitary adenomas/somatotroph pituitary neuroendocrine tumors. Commun Biol 2022; 5:1304. [PMID: 36435867 PMCID: PMC9701206 DOI: 10.1038/s42003-022-04272-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 11/16/2022] [Indexed: 11/28/2022] Open
Abstract
The clinical characteristics of growth hormone (GH)-producing pituitary adenomas/somatotroph pituitary neuroendocrine tumors (GHomas/somatotroph PitNETs) vary across patients. In this study, we aimed to integrate the genetic alterations, protein expression profiles, transcriptomes, and clinical characteristics of GHomas/somatotroph PitNETs to identify molecules associated with acromegaly characteristics. Targeted capture sequencing and copy number analysis of 36 genes and nontargeted proteomics analysis were performed on fresh-frozen samples from 121 sporadic GHomas/somatotroph PitNETs. Targeted capture sequencing revealed GNAS as the only driver gene, as previously reported. Classification by consensus clustering using both RNA sequencing and proteomics revealed many similarities between the proteome and the transcriptome. Gene ontology analysis was performed for differentially expressed proteins between wild-type and mutant GNAS samples identified by nontargeted proteomics and involved in G protein-coupled receptor (GPCR) pathways. The results suggested that GNAS mutations impact endocrinological features in acromegaly through GPCR pathway induction. ATP2A2 and ARID5B correlated with the GH change rate in the octreotide loading test, and WWC3, SERINC1, and ZFAND3 correlated with the tumor volume change rate after somatostatin analog treatment. These results identified a biological connection between GNAS mutations and the clinical and biochemical characteristics of acromegaly, revealing molecules associated with acromegaly that may affect medical treatment efficacy.
Collapse
|
38
|
Centonze G, Maisonneuve P, Prinzi N, Pusceddu S, Albarello L, Pisa E, Barberis M, Vanoli A, Spaggiari P, Bossi P, Cattaneo L, Sabella G, Solcia E, La Rosa S, Grillo F, Tagliabue G, Scarpa A, Papotti M, Volante M, Mangogna A, Del Gobbo A, Ferrero S, Rolli L, Roca E, Bercich L, Benvenuti M, Messerini L, Inzani F, Pruneri G, Busico A, Perrone F, Tamborini E, Pellegrinelli A, Kankava K, Berruti A, Pastorino U, Fazio N, Sessa F, Capella C, Rindi G, Milione M. Prognostic Factors across Poorly Differentiated Neuroendocrine Neoplasms: A Pooled Analysis. Neuroendocrinology 2022; 113:457-469. [PMID: 36417840 DOI: 10.1159/000528186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 10/17/2022] [Indexed: 11/25/2022]
Abstract
INTRODUCTION Poorly differentiated neuroendocrine carcinomas (NECs) are characterized by aggressive clinical course and poor prognosis. No reliable prognostic markers have been validated to date; thus, the definition of a specific NEC prognostic algorithm represents a clinical need. This study aimed to analyze a large NEC case series to validate the specific prognostic factors identified in previous studies on gastro-entero-pancreatic and lung NECs and to assess if further prognostic parameters can be isolated. METHODS A pooled analysis of four NEC retrospective studies was performed to evaluate the prognostic role of Ki-67 cut-off, the overall survival (OS) according to primary cancer site, and further prognostic parameters using multivariable Cox proportional hazards model and machine learning random survival forest (RSF). RESULTS 422 NECs were analyzed. The most represented tumor site was the colorectum (n = 156, 37%), followed by the lungs (n = 111, 26%), gastroesophageal site (n = 83, 20%; 66 gastric, 79%) and pancreas (n = 42, 10%). The Ki-67 index was the most relevant predictor, followed by morphology (pure or mixed/combined NECs), stage, and site. The predicted RSF response for survival at 1, 2, or 3 years showed decreasing survival with increasing Ki-67, pure NEC morphology, stage III-IV, and colorectal NEC disease. Patients with Ki-67 <55% and mixed/combined morphology had better survival than those with pure morphology. Morphology pure or mixed/combined became irrelevant in NEC survival when Ki-67 was ≥55%. The prognosis of metastatic patients who did not receive any treatment tended to be worse compared to that of the treated group. The prognostic impact of Rb1 immunolabeling appears to be limited when multiple risk factors are simultaneously assessed. CONCLUSION The most effective parameters to predict OS for NEC patients could be Ki-67, pure or mixed/combined morphology, stage, and site.
Collapse
Affiliation(s)
- Giovanni Centonze
- 1st Pathology Unit, Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Patrick Maisonneuve
- Division of Epidemiology and Biostatistics, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Natalie Prinzi
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Sara Pusceddu
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Luca Albarello
- Pathology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Eleonora Pisa
- Division of Pathology, European Institute of Oncology (IEO), Milan, Italy
| | - Massimo Barberis
- Division of Pathology, European Institute of Oncology (IEO), Milan, Italy
| | - Alessandro Vanoli
- Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Paola Spaggiari
- Department of Pathology, IRCCS Humanitas Research Hospital, Rozzano, Italy
| | - Paola Bossi
- Department of Pathology, IRCCS Humanitas Research Hospital, Rozzano, Italy
| | - Laura Cattaneo
- 1st Pathology Unit, Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Giovanna Sabella
- 1st Pathology Unit, Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Enrico Solcia
- Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Stefano La Rosa
- Unit of Pathology, Department of Medicine and Surgery and Research Center for the Study of Hereditary and Familial tumors, University of Insubria, Varese, Italy
| | - Federica Grillo
- Unit of Pathology, Department of Surgical Sciences and Integrated Diagnostics, University of Genoa and Ospedale Policlinico San Martino, Genoa, Italy
| | - Giovanna Tagliabue
- Lombardy Cancer Registry, Varese Province Cancer Registry Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Aldo Scarpa
- ARC-NET Research Center for Applied Research on Cancer, Verona, Italy
- Department of Diagnostics and Public Health, Section of Pathology, University of Verona, Verona, Italy
| | - Mauro Papotti
- Department of Oncology, University of Turin, Turin, Italy
| | - Marco Volante
- Department of Oncology, University of Turin, Turin, Italy
| | - Alessandro Mangogna
- Institute for Maternal and Child Health, IRCCS Burlo Garofalo, Trieste, Italy
| | - Alessandro Del Gobbo
- Division of Pathology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Stefano Ferrero
- Division of Pathology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Biomedical Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Luigi Rolli
- Thoracic Surgery Unit, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Elisa Roca
- Thoracic Oncology - Lung Unit, Pederzoli Hospital, Peschiera del Garda, Verona, Italy
| | - Luisa Bercich
- Department of Pathology, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Mauro Benvenuti
- Thoracic Surgery Unit, Department of Medical and Surgical Specialties Radiological Sciences and Public Health, Medical Oncology, University of Brescia, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Luca Messerini
- Diagnostic and Molecular Pathology, Department of Experimental and Clinical Medicine, University of Florence, Firenze, Italy
| | - Frediano Inzani
- Anatomic Pathology Unit, Fondazione Policlinico Universitario A. Gemelli, Rome, Italy
| | - Giancarlo Pruneri
- 2nd Pathology Division, Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Adele Busico
- 2nd Pathology Division, Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Federica Perrone
- 2nd Pathology Division, Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Elena Tamborini
- 2nd Pathology Division, Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Alessio Pellegrinelli
- Department of Pathology, ASST Franciacorta, Mellino Mellini Hospital, Brescia, Italy
| | - Ketevani Kankava
- Scientific and Diagnostic Pathology Laboratory, Tbilisi State Medical University, Tbilisi, Georgia
| | - Alfredo Berruti
- Medical Oncology Unit, ASST Spedali Civili of Brescia, Department of Medical and Surgical Specialties, Radiological Science, Brescia, Italy
- Public Health, University of Brescia, Brescia, Italy
| | - Ugo Pastorino
- Thoracic Surgery Unit, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Nicola Fazio
- Gastrointestinal Medical Oncology and Neuroendocrine Tumors Unit, European Institute of Oncology (IEO), Milan, Italy
| | - Fausto Sessa
- Unit of Pathology, Department of Medicine and Surgery and Research Center for the Study of Hereditary and Familial tumors, University of Insubria, Varese, Italy
| | - Carlo Capella
- Unit of Pathology, Department of Medicine and Surgery and Research Center for the Study of Hereditary and Familial tumors, University of Insubria, Varese, Italy
| | - Guido Rindi
- Section of Anatomic Pathology, Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore/Unit of Anatomic Pathology, Rome, Italy
- Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS/Roma European Neuroendocrine Tumor Society (ENETS) Center of Excellence, Rome, Italy
| | - Massimo Milione
- 1st Pathology Unit, Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| |
Collapse
|
39
|
Lazow MA, Fuller C, Trout AT, Stanek JR, Reuss J, Turpin BK, Szabo S, Salloum R. Immunohistochemical assessment and clinical, histopathologic, and molecular correlates of membranous somatostatin type-2A receptor expression in high-risk pediatric central nervous system tumors. Front Oncol 2022; 12:996489. [PMID: 36465400 PMCID: PMC9713413 DOI: 10.3389/fonc.2022.996489] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 10/31/2022] [Indexed: 01/27/2024] Open
Abstract
INTRODUCTION 177Lu-DOTATATE, a radionuclide therapy that binds somatostatin type-2A receptors (SST2A), has demonstrated efficacy in neuroendocrine tumors and evidence of central nervous system (CNS) penetration, supporting potential expansion within pediatric neuro-oncology. Understanding the prevalence of SST2A expression across pediatric CNS tumors is essential to identify patients who may benefit from somatostatin receptor-targeted therapy and to further elucidate the oncogenic role of SST2A. METHODS SST2A immunohistochemistry (IHC) was performed on tumor specimens and interpreted by an experienced pathologist (blinded), utilizing semi-quantitative scoring of membranous expression within viable tumor. Immunoreactive cell percentage was visually scored as 0 (none), 1 (<10%), 2 (10-50%), 3 (51-80%), or 4 (>80%). Staining intensity was scored as 0 (none), 1 (weak), 2 (moderate), or 3 (strong). Combined scores for each specimen were calculated by multiplying percent immunoreactivity and staining intensity values (Range: 0-12). RESULTS A total of 120 tumor samples from 114 patients were analyzed. Significant differences in SST2A IHC scores were observed across histopathologic diagnoses, with consistently high scores in medulloblastoma (mean ± SD: 7.5 ± 3.6 [n=38]) and meningioma (5.7 ± 3.4 [n=15]), compared to minimal or absent expression in ATRT (0.3 ± 0.6 [n=3]), ETMR (1.0 ± 0 [n=3]), ependymoma (grades I-III; 0.2 ± 0.7 [n=27]), and high-grade glioma (grades III-IV; 0.4 ± 0.7 [n=23]). Pineoblastoma (3.8 ± 1.5 [n=4]) and other embryonal tumors (2.0 ± 4.0 [n=7]) exhibited intermediate, variable expression. Among medulloblastomas, SST2A IHC scores were higher in non-SHH (8.5 ± 3.1) than SHH (5.0 ± 3.3) molecular subgroups (p=0.033). In a subset of paired primary and recurrent specimens from four patients, SST2A IHC scores remained largely unchanged. DISCUSSION High membranous SST2A expression was demonstrated in medulloblastoma, meningioma, and some rarer embryonal tumors with potential diagnostic, biologic, and therapeutic implications. Somatostatin receptor-targeted therapy such as 177Lu-DOTATATE deserves further investigation in these highly SST2A-expressing pediatric CNS tumors.
Collapse
Affiliation(s)
- Margot A. Lazow
- Pediatric Neuro-Oncology Program, Nationwide Children’s Hospital, Columbus, OH, United States
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, United States
- Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Christine Fuller
- Department of Pathology, Upstate Medical University, Syracuse, NY, United States
| | - Andrew T. Trout
- Department of Radiology and Medical Imaging, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Joseph R. Stanek
- Pediatric Neuro-Oncology Program, Nationwide Children’s Hospital, Columbus, OH, United States
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, United States
| | - Jaime Reuss
- Department of Pathology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Brian K. Turpin
- Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Sara Szabo
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Department of Pathology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Ralph Salloum
- Pediatric Neuro-Oncology Program, Nationwide Children’s Hospital, Columbus, OH, United States
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, United States
| |
Collapse
|
40
|
Hu HF, Hu YH, Xu XW, Ye Z, Lou X, Zhang WH, Chen XM, Zhang Y, Yu XJ, Gao HL, Xu JY, Ji SR. Role of Somatostatin Receptor 2 in Nonfunctional Pancreatic Neuroendocrine Tumors: Clinicopathological Analysis of 223 Cases and Whole Exome Sequencing of a Multifocal Case. Pancreas 2022; 51:1404-1410. [PMID: 37099786 DOI: 10.1097/mpa.0000000000002199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
OBJECTIVES Somatostatin receptors are commonly expressed in most pancreatic neuroendocrine tumors (pNETs), a rare type of pancreatic tumors with high heterogeneity. However, the role of somatostatin receptor 2 (SSTR2) has seldom been investigated separately in pNET. This retrospective study aims to evaluate the role of SSTR2 in the clinicopathological features and genomic background of nonfunctional and well-differentiated pNET. METHODS A total of 223 cases of nonfunctional well-differentiated pNET were included, and the correlation between SSTR2 status and clinicopathological outcome was evaluated. In addition, we performed whole exome sequencing in SSTR2-positive and SSTR2-negative pNETs and identified that the 2 lesions harbored different mutational landscapes. RESULTS Negative SSTR2 immunochemistry staining was significantly related to an earlier onset of disease, larger tumor size, advanced stage of American Joint Committee on Cancer, and tumor metastasis in lymph nodes and liver. Under pathological assessment, positive peripheral aggression, vascular invasion, and perineural invasion were markedly increased in SSTR2-negative cases. Moreover, SSTR2-negative patients exhibited significantly worse progression-free survival than SSTR2-positive patients (hazard ratio, 0.23; 95% confidence interval, 0.10-0.53; P = 0.001). CONCLUSIONS Somatostatin receptor 2-negative nonfunctional pNET might represent a subtype of pNET with poor outcomes and evolve from a different genomic background.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xue-Min Chen
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Yue Zhang
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, China
| | | | | | - Jun-Yan Xu
- Department of Hepatopancreatobiliary Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | | |
Collapse
|
41
|
Combined Large Cell Neuroendocrine Carcinomas of the Lung: Integrative Molecular Analysis Identifies Subtypes with Potential Therapeutic Implications. Cancers (Basel) 2022; 14:cancers14194653. [PMID: 36230576 PMCID: PMC9562868 DOI: 10.3390/cancers14194653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 09/18/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary In this manuscript, we offer an integrated molecular analysis of 44 combined large cell neuroendocrine carcinomas (CoLCNECs) in order to deepen the knowledge about these rare histotypes and to clarify their relationship with lung cancers. In the present state of research, molecular studies are still scant, consisting of small and heterogeneous cohorts, and the genomic landscape is poorly characterized. This study shows that CoLCNECs constitute a standalone group of neuroendocrine neoplasm, with three different molecular profiles, two of which overlap with pure LCNEC or adenocarcinoma. CoLCNECs can be considered an independent histologic category with specific genomic and transcriptomic features, different and therefore not comparable to other lung cancers. Indeed, in addition to a histological re-evaluation of lung cancer classification, our study may help to develop a new diagnostic approach for novel and personalized treatments in CoLCNECs. Abstract Background: Combined large cell neuroendocrine carcinoma (CoLCNEC) is given by the association of LCNEC with adeno or squamous or any non-neuroendocrine carcinoma. Molecular bases of CoLCNEC pathogenesis are scant and no standardized therapies are defined. Methods: 44 CoLCNECs: 26 with adenocarcinoma (CoADC), 7 with squamous cell carcinoma (CoSQC), 3 with small cell carcinoma (CoSCLC), 4 with atypical carcinoid (CoAC) and 4 napsin-A positive LCNEC (NapA+), were assessed for alterations in 409 genes and transcriptomic profiling of 20,815 genes. Results: Genes altered included TP53 (n = 30), RB1 (n = 14) and KRAS (n = 13). Targetable alterations included six KRAS G12C mutations and ALK-EML4 fusion gene. Comparison of CoLCNEC transcriptomes with 86 lung cancers of pure histology (8 AC, 19 ADC, 19 LCNEC, 11 SCLC and 29 SQC) identified CoLCNEC as a separate entity of neuroendocrine tumours with three different molecular profiles, two of which showed a non-neuroendocrine lineage. Hypomethylation, activation of MAPK signalling and association to immunotherapy signature specifically characterized each of three CoLCNEC molecular clusters. Prognostic stratification was also provided. Conclusions: CoLCNECs are an independent histologic category. Our findings support the extension of routine evaluation of KRAS mutations, fusion genes and immune-related markers to offer new perspectives in the therapeutic management of CoLCNEC.
Collapse
|
42
|
Correlation of somatostatin receptor PET/CT imaging features and immunohistochemistry in neuroendocrine tumors of the lung: a retrospective observational study. Eur J Nucl Med Mol Imaging 2022; 49:4182-4193. [PMID: 35674739 DOI: 10.1007/s00259-022-05848-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 05/22/2022] [Indexed: 11/04/2022]
Abstract
PURPOSE To correlate somatostatin receptor (SSTR) and proliferative activity profile (SSTR2, SSTR5, Ki-67) at immunohistochemistry (IHC) with SSTR-PET/CT imaging features in a retrospective series of lung neuroendocrine tumors (NET). Proliferative activity by Ki-67 and 18F-FDG-PET/CT parameters (when available) were also correlated. METHODS Among 551 patients who underwent SSTR-PET/CT with 68Ga-DOTA-somatostatin analogs (SSA) between July 2011 and March 2020 for lung neuroendocrine neoplasms, 32 patients with a confirmed diagnosis of NET were included. For 14 of them, 18F-FDG-PET/CT was available. PET/CT images were reviewed by qualitative and semi-quantitative analyses. Immunohistochemistry for SSTR2, SSTR5, and Ki-67 was assessed. Inferential analysis was performed including kappa statistics and Spearman's rank correlation test. RESULTS Definitive diagnosis consisted of 26 typical carcinoids-G1 and six atypical carcinoids-G2. Positive SSTR2-IHC was found in 62.5% of samples while SSTR5-IHC positivity was 19.4%. A correlation between SSTR2-IHC and SSTR-PET/CT was found in 24/32 cases (75.0%, p = 0.003): 20 were concordantly positive, 4 concordantly negative. For positive IHC, 100% concordance with SSTR-PET/CT (both positive) was observed, while for negative IHC concordance (both negative) was 33.3%. In 8 cases, IHC was negative while SSTR-PET/CT was positive, even though with low-grade uptake in all but one. A significant correlation between SUVmax values at SSTR-PET/CT and the SSTR2-IHC scores was found, with low SUVmax values corresponding to negative IHC and higher SUVmax values to positive IHC (p = 0.002). CONCLUSION This retrospective study showed an overall good agreement between SSTR2-IHC and tumor uptake at SSTR-PET/CT in lung NETs. SSTR-PET/CT SUVmax values can be used as a parameter of SSTR2 density. Within the limits imposed by the relatively small cohort, our data suggest that SSTR2-IHC may surrogate SSTR-PET/CT in selected lung NET patients for clinical decision making when SSTR-PET/CT is not available.
Collapse
|
43
|
Large Cell Neuroendocrine Carcinoma of the Skin/Conjunctiva: A Series of 6 Cases including 1 Combined Case With Squamous Cell Carcinoma. Am J Dermatopathol 2022; 44:718-727. [PMID: 35642978 DOI: 10.1097/dad.0000000000002229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
ABSTRACT This study sought to reveal the clinicopathologic characteristics of large cell neuroendocrine carcinoma (LCNEC) of the skin/conjunctiva. The retrieved patients included 3 men and 3 women with a median age of 85 (63-95) years. All lesions occurred on the face, including the ears, with a median tumor size of 11.5 (7-65) mm. Lymph node metastasis was observed in 5 (83%) of 6 cases, and distant metastasis was noted in 2 (33%). One patient (17%) who had a 13-mm-sized tumor died of the tumor 13 months after excision. All tumors were mainly located in the dermis, and one of them also exhibited intraepithelial spreading. The cytology resembled that of an LCNEC in other organs. No adnexal differentiation was observed. Five cases were of the pure type, but one had a component of squamous cell carcinoma. Immunoreactivities for CAM5.2, CK7, CK19, BerEP4, epithelial membrane antigen, neuron-specific enolase, synaptophysin, c-KIT, GATA3, and bcl-2 were frequently present, but CK20, neurofilament, Merkel cell polyomavirus large T antigen, mammaglobin, estrogen receptor, HER2, and TTF1 were completely negative in all cases. Mutant-pattern immunostaining of p53, PTEN, and Rb was frequently observed. The Ki67 rate exceeded 70% in all cases. LCNEC of the skin/conjunctiva is a morphologically-defined group of primary cutaneous/conjunctival neuroendocrine neoplasm, although it may be heterogeneous similar to other-site LCNEC or Merkel cell carcinoma. This study highlighted the predominant location for the face, high metastatic and lethal potential, possible combination with other tumor components, and frequent mutant-type immunoexpressions of p53, PTEN, and Rb in this tumor group.
Collapse
|
44
|
Coopmans EC, van der Lely AJ, Neggers SJCMM. Approach to the Patient With Treatment-resistant Acromegaly. J Clin Endocrinol Metab 2022; 107:1759-1766. [PMID: 35090028 PMCID: PMC9315163 DOI: 10.1210/clinem/dgac037] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Indexed: 11/29/2022]
Abstract
Although most tumors in patients with acromegaly are benign and are cured or controlled by surgery and/or first-generation somatostatin receptor ligands therapy, some can behave more aggressively and are resistant to these standard therapies. Acromegaly, if left untreated, is a rare and chronic disorder, commonly caused by a GH-producing pituitary adenoma and is associated with significant comorbidities and an increased mortality. Transsphenoidal surgery is considered the mainstay of acromegaly management, but medical therapy has an increasingly important role. However, disease activity is not fully controlled in a significant number of patients treated with surgery and/or high-dose first-generation somatostatin receptor ligand monotherapy. In these circumstances, therefore, repeated surgery, second-line medical therapy, and radiotherapy, alone or combined as multimodal therapeutic strategies should be considered, in a patient-centered perspective.
Collapse
Affiliation(s)
- Eva C Coopmans
- Department of Medicine, Section Endocrinology, Pituitary Center Rotterdam, Erasmus University Medical Center, 3000 CA Rotterdam, the Netherlands
| | - Aart J van der Lely
- Department of Medicine, Section Endocrinology, Pituitary Center Rotterdam, Erasmus University Medical Center, 3000 CA Rotterdam, the Netherlands
| | - Sebastian J C M M Neggers
- Correspondence: S. Neggers, Erasmus University Medical Center Rotterdam, PO box 2040, 3000 CA Rotterdam, The Netherlands.
| |
Collapse
|
45
|
Akabane M, Kobayashi Y, Kinowaki K, Okubo S, Shindoh J, Hashimoto M. Primary hepatic neuroendocrine neoplasm diagnosed by somatostatin receptor scintigraphy: A case report. World J Clin Cases 2022; 10:2222-2228. [PMID: 35321183 PMCID: PMC8895177 DOI: 10.12998/wjcc.v10.i7.2222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 07/15/2021] [Accepted: 01/23/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Primary hepatic neuroendocrine neoplasm (NEN) is a rare condition, and it is difficult to differentiate between primary and metastatic hepatic NENs. Herein, we report a case of primary hepatic NEN that initially mimicked a hemangioma but showed a gradual increase in size on long-term careful observation.
CASE SUMMARY A 47-year-old woman was incidentally diagnosed with a 12-mm liver mass, suspected to be a hemangioma. Since then, regular follow-up had been carried out. Ten years later, she was referred to our institute due to the tumor (located in segment 4) having increased to 20 mm. Several imaging studies depicted no apparent extrahepatic lesion. Positron emission tomography (PET)/computed tomography exhibited significant accumulation in the mass lesion, which made us consider the possibility of malignancy. Left hepatectomy was performed. The histopathological diagnosis was neuroendocrine tumor grade 2, with somatostatin receptor 2a/5 positivity. Postoperative somatostatin receptor scintigraphy (SRS) showed no other site, leading to the diagnosis of NEN of primary hepatic origin. The gradual growth of the hepatic NEN over 10 years suggested that it was likely to be a primary liver tumor.
CONCLUSION In this case, positivity on PET and postoperative SRS may have helped determine whether the tumor was primary or metastatic.
Collapse
Affiliation(s)
- Miho Akabane
- Division of Hepatobiliary-pancreatic Surgery, Department of Gastroenterological Surgery, Toranomon Hospital, Tokyo 105-8470, Japan
| | - Yuta Kobayashi
- Division of Hepatobiliary-pancreatic Surgery, Department of Gastroenterological Surgery, Toranomon Hospital, Tokyo 105-8470, Japan
| | - Keiichi Kinowaki
- Department of Diagnostic Pathology, Toranomon Hospital, Tokyo 105-8470, Japan
| | - Satoshi Okubo
- Division of Hepatobiliary-pancreatic Surgery, Department of Gastroenterological Surgery, Toranomon Hospital, Tokyo 105-8470, Japan
| | - Junichi Shindoh
- Division of Hepatobiliary-pancreatic Surgery, Department of Gastroenterological Surgery, Toranomon Hospital, Tokyo 105-8470, Japan
| | - Masaji Hashimoto
- Division of Hepatobiliary-pancreatic Surgery, Department of Gastroenterological Surgery, Toranomon Hospital, Tokyo 105-8470, Japan
| |
Collapse
|
46
|
Rass L, Rahvar AH, Matschke J, Saeger W, Renné T, Aberle J, Flitsch J, Rotermund R. Differences in somatostatin receptor subtype expression in patients with acromegaly: new directions for targeted therapy? Hormones (Athens) 2022; 21:79-89. [PMID: 34674191 PMCID: PMC8818633 DOI: 10.1007/s42000-021-00327-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 10/04/2021] [Indexed: 11/02/2022]
Abstract
PURPOSE To analyze the expression of somatostatin receptor (SSTR)2a and 5 by immunohistochemistry (IHC) in surgically resected somatotrophic pituitary adenomas and to associate expression rates with tumor size and clinical, biochemical, and histological parameters and response to somatostatin analog (SA) therapy. METHODS Forty-three microsurgically treated patients with histopathologically proven growth hormone (GH)-producing pituitary adenoma were included (WHO 2017). SSTR subtype expression was analyzed in adenoma tissues using monoclonal antibodies (Abcam, SSTR2a-UMB1, SSTR5-UMB4). Expression rates were classified as low (≤ 20% staining positivity), moderate (21-50%), and high (> 50%). Furthermore, biochemical parameters such as human growth hormone (hGH) and insulin-like growth factor-1 (IGF-1) levels were measured and clinical, biochemical, radiological, and histological data were evaluated. RESULTS Of the 43 patients included in this study, 28 were female and 15 were male. The median age was 52 years (range 17-72 years). The median tumor size was 1.2 cm (range: 0.13-3.93 cm). All resected tumors showed positivity for somatotrophic hormone (STH). In all tissue samples, SSTR2a signal expression was detectable in immunohistochemistry, while only 39 samples were positive for SSTR5. Thirty-six samples had a high expression of SSTR2a, while three had a moderate and four a low SSTR2a signal. In comparison, SSTR5 signal was high in 26 out of 43 samples, while seven adenomas showed a moderate and six cases a low expression rate of SSTR5. The median IGF-1 was 714.2 µg/l and the median GH 19.6 mU/l (= 6.53 µg/l). The present study indicates that there is no significant relationship between the expression rates of receptor subtypes and the parameters we analyzed. However, our study revealed that smaller adenomas have a lower baseline GH level (p = 0.015), CONCLUSION: IHC with monoclonal antibodies appears to be a suitable method to determine the expression rates of SSTR2a and 5 at protein levels, as it is not possible to draw conclusions regarding receptor subtypes solely on the basis of the parameters analyzed.
Collapse
Affiliation(s)
- Lena Rass
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Amir-Hossein Rahvar
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jakob Matschke
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Wolfgang Saeger
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thomas Renné
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jens Aberle
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jörg Flitsch
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Roman Rotermund
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany.
| |
Collapse
|
47
|
Kontogeorgos G, Thodou E, Osamura RY, Lloyd RV. High-risk pituitary adenomas and strategies for predicting response to treatment. Hormones (Athens) 2022; 21:1-14. [PMID: 35061210 DOI: 10.1007/s42000-021-00333-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 10/18/2021] [Indexed: 12/30/2022]
Abstract
High-risk pituitary adenomas are aggressive. They show clinical and imaging features similar to those of carcinomas, including infiltration of the surrounding brain structures, but lack cerebrospinal or systemic metastases. In addition, they display distinct behavior, including tendency for fast growth and frequent recurrences, which are difficult to control. The term "high-risk" adenoma was first introduced in the 4th edition of the World Health Organization Classification of Endocrine Tumors in 2017. Five defined adenoma types belong to this category, including sparsely granulated somatotroph, lactotroph in men, Crooke cell, silent corticotroph, and plurihormonal PIT-1 positive adenomas. The morphological and immunohistochemical characteristics of high-risk adenomas are herein described in detail. In addition, the clinical features and the treatment options are presented. This review focuses on predictive markers assessed by immunohistochemistry, which help clinicians to design the appropriate treatment strategies for high-risk adenomas. Somatostatin receptor status predicts effectiveness of postsurgical treatment with somatostatin analogs, and MGMT expression predicts response to treatment with temozolomide. This comprehensive review presents the clinical and pathological features of high-risk pituitary adenomas, underlines the contribution of immunohistochemistry, and emphasizes the leading role of pathology in the design of optimal clinical management.
Collapse
Affiliation(s)
- George Kontogeorgos
- Division of Endocrinology, First Propaedeutic Department of Internal Medicine, Laikon Hospital, National and Kapodistrian University of Athens, Athens, Greece.
- Department of Pathology and Pituitary Tumor Reference Center, G. Gennimatas General Hospital of Athens, Athens, Greece.
| | - Eleni Thodou
- Department of Pathology, University of Thessaly, Larissa, Greece
| | - Robert Y Osamura
- Department of Pathology, Nippon Koukan Hospital, Kawasaki, Kanagawa, Japan
| | - Ricardo V Lloyd
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| |
Collapse
|
48
|
Rindi G, Mete O, Uccella S, Basturk O, La Rosa S, Brosens LAA, Ezzat S, de Herder WW, Klimstra DS, Papotti M, Asa SL. Overview of the 2022 WHO Classification of Neuroendocrine Neoplasms. Endocr Pathol 2022; 33:115-154. [PMID: 35294740 DOI: 10.1007/s12022-022-09708-2] [Citation(s) in RCA: 370] [Impact Index Per Article: 123.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/28/2022] [Indexed: 02/07/2023]
Abstract
In this review, we detail the changes and the relevant features that are applied to neuroendocrine neoplasms (NENs) in the 2022 WHO Classification of Endocrine and Neuroendocrine Tumors. Using a question-and-answer approach, we discuss the consolidation of the nomenclature that distinguishes neuronal paragangliomas from epithelial neoplasms, which are divided into well-differentiated neuroendocrine tumors (NETs) and poorly differentiated neuroendocrine carcinomas (NECs). The criteria for these distinctions based on differentiation are outlined. NETs are generally (but not always) graded as G1, G2, and G3 based on proliferation, whereas NECs are by definition high grade; the importance of Ki67 as a tool for classification and grading is emphasized. The clinical relevance of proper classification is explained, and the importance of hormonal function is examined, including eutopic and ectopic hormone production. The tools available to pathologists for accurate classification include the conventional biomarkers of neuroendocrine lineage and differentiation, INSM1, synaptophysin, chromogranins, and somatostatin receptors (SSTRs), but also include transcription factors that can identify the site of origin of a metastatic lesion of unknown primary site, as well as hormones, enzymes, and keratins that play a role in functional and structural correlation. The recognition of highly proliferative, well-differentiated NETs has resulted in the need for biomarkers that can distinguish these G3 NETs from NECs, including stains to determine expression of SSTRs and those that can indicate the unique molecular pathogenetic alterations that underlie the distinction, for example, global loss of RB and aberrant p53 in pancreatic NECs compared with loss of ATRX, DAXX, and menin in pancreatic NETs. Other differential diagnoses are discussed with recommendations for biomarkers that can assist in correct classification, including the distinctions between epithelial and non-epithelial NENs that have allowed reclassification of epithelial NETs in the spine, in the duodenum, and in the middle ear; the first two may be composite tumors with neuronal and glial elements, and as this feature is integral to the duodenal lesion, it is now classified as composite gangliocytoma/neuroma and neuroendocrine tumor (CoGNET). The many other aspects of differential diagnosis are detailed with recommendations for biomarkers that can distinguish NENs from non-neuroendocrine lesions that can mimic their morphology. The concepts of mixed neuroendocrine and non-neuroendocrine (MiNEN) and amphicrine tumors are clarified with information about how to approach such lesions in routine practice. Theranostic biomarkers that assist patient management are reviewed. Given the significant proportion of NENs that are associated with germline mutations that predispose to this disease, we explain the role of the pathologist in identifying precursor lesions and applying molecular immunohistochemistry to guide genetic testing.
Collapse
Affiliation(s)
- Guido Rindi
- Department of Life Sciences and Public Health, Section of Anatomic Pathology, Università Cattolica del Sacro Cuore, Rome, Italy.
- Department of Woman and Child Health Sciences and Public Health, Anatomic Pathology Unit, Fondazione Policlinico Universitario A. Gemelli - IRCCS, Largo A. Gemelli, 8, 00168, Rome, Italy.
- ENETS Center of Excellence, Rome, Italy.
| | - Ozgur Mete
- Department of Pathology, University Health Network, University of Toronto, 200 Elizabeth Street, 11th floor, Toronto, ON, M5G 2C4, Canada.
| | - Silvia Uccella
- Unit of Pathology, Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Olca Basturk
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Stefano La Rosa
- Unit of Pathology, Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Lodewijk A A Brosens
- Department of Pathology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Shereen Ezzat
- Department of Medicine, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Wouter W de Herder
- Department of Internal Medicine, Sector of Endocrinology, Erasmus MC Cancer Institute, ENETS Center of Excellence Rotterdam, Erasmus MC, Rotterdam, The Netherlands
| | - David S Klimstra
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Paige.AI, New York, NY, USA
| | - Mauro Papotti
- Department of Oncology, University of Turin, Turin, Italy
| | - Sylvia L Asa
- Department of Pathology, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
49
|
Mizuno T, Inoshita N, Fukuhara N, Tatsushima K, Takeshita A, Yamada S, Nishioka H, Takeuchi Y. Pasireotide-resistant Refractory Cushing's Disease without Somatostatin Receptor 5 Expression. Intern Med 2022; 61:679-685. [PMID: 34471015 PMCID: PMC8943369 DOI: 10.2169/internalmedicine.6314-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Pasireotide, which has a high affinity for somatostatin receptor (SSTR) 5, has attracted attention as a new treatment for refractory Cushing's disease. The patient was a 28-year-old man. He had refractory Cushing's disease and underwent multiple surgeries, radiotherapy, and medication therapy. An examination of the adenoma by immunohistochemistry revealed a low SSTR5 expression. An USP8 mutation was not detected by reverse transcription polymerase chain reaction. Although we administered pasireotide, it was ineffective. While a further investigation is necessary, the analysis of SSTR5 expression may support the prediction of the efficiency of pasireotide for Cushing's disease. We report this case as a useful reference when considering whether or not to use pasireotide for refractory corticotroph adenomas.
Collapse
Affiliation(s)
- Tomoko Mizuno
- Department of Endocrinolgy and Metabolism, Toranomon Hospital, Japan
| | - Naoko Inoshita
- Department of Pathology, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology Hospital, Japan
- Department of Hypothalamic and Pituitary Surgery, Toranomon Hospital, Japan
| | - Noriaki Fukuhara
- Department of Hypothalamic and Pituitary Surgery, Toranomon Hospital, Japan
| | - Keita Tatsushima
- Department of Endocrinolgy and Metabolism, Toranomon Hospital, Japan
| | - Akira Takeshita
- Department of Endocrinolgy and Metabolism, Toranomon Hospital, Japan
| | - Shozo Yamada
- Department of Hypothalamic and Pituitary Surgery, Toranomon Hospital, Japan
- Neurosurgery Center, Moriyama Memorial Hospital, Japan
| | - Hiroshi Nishioka
- Department of Hypothalamic and Pituitary Surgery, Toranomon Hospital, Japan
| | - Yasuhiro Takeuchi
- Department of Endocrinolgy and Metabolism, Toranomon Hospital, Japan
| |
Collapse
|
50
|
Roden AC, Rakshit S, Johnson GB, Jenkins SM, Mansfield AS. Correlation of Somatostatin Receptor 2 Expression, 68Ga-DOTATATE PET Scan and Octreotide Treatment in Thymic Epithelial Tumors. Front Oncol 2022; 12:823667. [PMID: 35198446 PMCID: PMC8859934 DOI: 10.3389/fonc.2022.823667] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 01/10/2022] [Indexed: 12/14/2022] Open
Abstract
Somatostatin receptor 2 (SSTR2) has been shown to be expressed in a subset of neuroendocrine tumors and carcinomas and plays a role in imaging studies and guiding therapy. Patients with tumors expressing SSTR2 may be successfully treated with somatostatin inhibitors or radiolabeled somatostatin analogues. We studied SSTR2 expression in TET and correlated it with 68Ga-DOTATATE PET/CT or 68Ga-DOTATATE PET/MR results and treatment outcome. An institutional database of TET was searched for thymoma, thymic carcinoma, and thymic neuroendocrine tumor (TNET) with available resection specimens. Cases were subtyped (2021 WHO classification) and staged (8th AJCC/UICC staging). A section was stained with anti-SSTR2 antibody (clone UMB1). Percent tumor cells with membranous staining was recorded if present in ≥1% of tumor cells. Medical records were searched for 68Ga-DOTATATE PET scans and treatment. Statistical analysis was performed. Eighty patients (1969-2021) with a median age of 61.3 years (range, 19.1-87.3) (37 males, 46.3%) had thymic carcinoma (N=33), TNET (N=7), or thymoma (N=40). SSTR2 expression was identified in 29 (of 80, 36.3%) TET including 2/2 (100%) small cell carcinomas, 2/5 (40.0%) atypical carcinoid tumors, 16/23 (69.6%) squamous cell carcinomas, 2/2 (100%) lymphoepithelial carcinomas, 1/1 (100%) adenosquamous carcinoma, and 6/40 (15.0%) thymomas. SSTR2 expression in ≥50% of tumor cells (vs 1-49%) was associated with younger age (p=0.023) and shorter recurrence/metastasis-free survival (p=0.007). 68Ga-DOTATATE PET scans (N=9) revealed a Krenning score of 3 in patients with atypical carcinoid tumor, small cell carcinoma, and squamous cell carcinoma (N=1 each) with SSTR2 expression in 95, 100, and 5% of tumor cells, respectively. Scans with Krenning scores of ≤2 (N=5) were seen in tumors with no SSTR2 expression in 80% of cases and a single atypical carcinoid tumor with SSTR2 expression in 10% of tumor cells. One scan resulted as "increased uptake" was in a patient with no SSTR2 expression. In conclusion, 68Ga-DOTATATE PET scans correlated with SSTR2 expression in TET in most patients and appeared to be useful to identify patients with TET who may be amenable to treatment with somatostatin analogues. Larger studies including more patients with 68Ga-DOTATATE PET scans are necessary to independently and prospectively validate our findings.
Collapse
Affiliation(s)
- Anja C. Roden
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
| | - Sagar Rakshit
- Division of Medical Oncology, Mayo Clinic, Rochester, MN, United States
| | - Geoffrey B. Johnson
- Department of Radiology, Mayo Clinic, Rochester, MN, United States
- Department of Immunology, Mayo Clinic, Rochester, MN, United States
| | - Sarah M. Jenkins
- Department of Immunology, Mayo Clinic, Rochester, MN, United States
- Division of Clinical Trials and Biostatistics, Mayo Clinic, Rochester, MN, United States
| | | |
Collapse
|