1
|
Chen PH, Kao YH, Chen YJ. Pathophysiological Mechanisms of Psychosis-Induced Atrial Fibrillation: The Links between Mental Disorder and Arrhythmia. Rev Cardiovasc Med 2024; 25:343. [PMID: 39355592 PMCID: PMC11440412 DOI: 10.31083/j.rcm2509343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/16/2024] [Accepted: 06/21/2024] [Indexed: 10/03/2024] Open
Abstract
Atrial fibrillation (AF) is a common phenomenon of sustained arrhythmia leading to heart failure or stroke. Patients with mental disorders (MD), particularly schizophrenia and bipolar disorder, are at a high risk of AF triggered by the dysregulation of the autonomic nervous system, atrial stretch, oxidative stress, inflammation, and electrical or structural remodeling. Moreover, pathophysiological mechanisms underlying MD may also contribute to the genesis of AF. An overactivated hypothalamic-pituitary-adrenal axis, aberrant renin-angiotensin-aldosterone system, abnormal serotonin signaling, disturbed sleep, and genetic/epigenetic factors can adversely alter atrial electrophysiology and structural substrates, leading to the development of AF. In this review, we provide an update of our collective knowledge of the pathophysiological and molecular mechanisms that link MD and AF. Targeting the pathogenic mechanisms of MD-specific AF may facilitate the development of therapeutics that mitigate AF and cardiovascular mortality in this patient population.
Collapse
Affiliation(s)
- Pao-Huan Chen
- Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, 11031 Taipei, Taiwan
- Department of Psychiatry, Taipei Medical University Hospital, 11031 Taipei, Taiwan
| | - Yu-Hsun Kao
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, 11031 Taipei, Taiwan
- Department of Medical Education and Research, Wan Fang Hospital, Taipei Medical University, 11696 Taipei, Taiwan
| | - Yi-Jen Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, 11031 Taipei, Taiwan
- Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, 11031 Taipei, Taiwan
- Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, 11696 Taipei, Taiwan
| |
Collapse
|
2
|
Hirakawa H, Terao T. The genetic association between bipolar disorder and dementia: a qualitative review. Front Psychiatry 2024; 15:1414776. [PMID: 39228919 PMCID: PMC11368786 DOI: 10.3389/fpsyt.2024.1414776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/05/2024] [Indexed: 09/05/2024] Open
Abstract
Bipolar disorder is a chronic disorder characterized by fluctuations in mood state and energy and recurrent episodes of mania/hypomania and depression. Bipolar disorder may be regarded as a neuro-progressive disorder in which repeated mood episodes may lead to cognitive decline and dementia development. In the current review, we employed genome-wide association studies to comprehensively investigate the genetic variants associated with bipolar disorder and dementia. Thirty-nine published manuscripts were identified: 20 on bipolar disorder and 19 on dementia. The results showed that the genes CACNA1C, GABBR2, SCN2A, CTSH, MSRA, and SH3PXD2A were overlapping between patients with bipolar disorder and dementia. In conclusion, the genes CACNA1C, GABBR2, SCN2A, CTSH, MSRA, and SH3PXD2A may be associated with the neuro-progression of bipolar disorder to dementia. Further genetic studies are needed to comprehensively clarify the role of genes in cognitive decline and the development of dementia in patients with bipolar disorder.
Collapse
Affiliation(s)
- Hirofumi Hirakawa
- Department of Neuropsychiatry, Oita University Faculty of Medicine, Yufu, Oita, Japan
| | | |
Collapse
|
3
|
Philibert CE, Garcia-Marcos M. Smooth operator(s): dialing up and down neurotransmitter responses by G-protein regulators. Trends Cell Biol 2024:S0962-8924(24)00140-5. [PMID: 39054106 DOI: 10.1016/j.tcb.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/19/2024] [Accepted: 07/01/2024] [Indexed: 07/27/2024]
Abstract
G-protein-coupled receptors (GPCRs) are essential mediators of neuromodulation and prominent pharmacological targets. While activation of heterotrimeric G-proteins (Gαβɣ) by GPCRs is essential in this process, much less is known about the postreceptor mechanisms that influence G-protein activity. Neurons express G-protein regulators that shape the amplitude and kinetics of GPCR-mediated synaptic responses. Although many of these operate by directly altering how G-proteins handle guanine-nucleotides enzymatically, recent discoveries have revealed alternative mechanisms by which GPCR-stimulated G-protein responses are modulated at the synapse. In this review, we cover the molecular basis for, and consequences of, the action of two G-protein regulators that do not affect the enzymatic activity of G-proteins directly: Gα inhibitory interacting protein (GINIP), which binds active Gα subunits, and potassium channel tetramerization domain-containing 12 (KCTD12), which binds active Gβγ subunits.
Collapse
Affiliation(s)
- Clementine E Philibert
- Department of Biochemistry and Cell Biology, Chobanian and Avedisian School of Medicine, Boston University, Boston, MA 02118, USA
| | - Mikel Garcia-Marcos
- Department of Biochemistry and Cell Biology, Chobanian and Avedisian School of Medicine, Boston University, Boston, MA 02118, USA; Department of Biology, College of Arts and Sciences, Boston University, Boston, MA 02115, USA.
| |
Collapse
|
4
|
Cheng J, Wang Z, Tang M, Zhang W, Li G, Tan S, Mu C, Hu M, Zhang D, Jia X, Wen Y, Guo H, Xu D, Liu L, Li J, Xia K, Li F, Duan R, Xu Z, Yuan L. KCTD10 regulates brain development by destabilizing brain disorder-associated protein KCTD13. Proc Natl Acad Sci U S A 2024; 121:e2315707121. [PMID: 38489388 PMCID: PMC10963008 DOI: 10.1073/pnas.2315707121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 02/02/2024] [Indexed: 03/17/2024] Open
Abstract
KCTD10 belongs to the KCTD (potassiumchannel tetramerization domain) family, many members of which are associated with neuropsychiatric disorders. However, the biological function underlying the association with brain disorders remains to be explored. Here, we reveal that Kctd10 is highly expressed in neuronal progenitors and layer V neurons throughout brain development. Kctd10 deficiency triggers abnormal proliferation and differentiation of neuronal progenitors, reduced deep-layer (especially layer V) neurons, increased upper-layer neurons, and lowered brain size. Mechanistically, we screened and identified a unique KCTD10-interacting protein, KCTD13, associated with neurodevelopmental disorders. KCTD10 mediated the ubiquitination-dependent degradation of KCTD13 and KCTD10 ablation resulted in a considerable increase of KCTD13 expression in the developing cortex. KCTD13 overexpression in neuronal progenitors led to reduced proliferation and abnormal cell distribution, mirroring KCTD10 deficiency. Notably, mice with brain-specific Kctd10 knockout exhibited obvious motor deficits. This study uncovers the physiological function of KCTD10 and provides unique insights into the pathogenesis of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Jianbo Cheng
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, Key Lab of Rare Pediatric Diseases of Ministry of Education, School of Life Sciences, Central South University, Changsha, Hunan410078, China
| | - Zhen Wang
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, Key Lab of Rare Pediatric Diseases of Ministry of Education, School of Life Sciences, Central South University, Changsha, Hunan410078, China
| | - Manpei Tang
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, Key Lab of Rare Pediatric Diseases of Ministry of Education, School of Life Sciences, Central South University, Changsha, Hunan410078, China
| | - Wen Zhang
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, Key Lab of Rare Pediatric Diseases of Ministry of Education, School of Life Sciences, Central South University, Changsha, Hunan410078, China
| | - Guozhong Li
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, Key Lab of Rare Pediatric Diseases of Ministry of Education, School of Life Sciences, Central South University, Changsha, Hunan410078, China
| | - Senwei Tan
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, Key Lab of Rare Pediatric Diseases of Ministry of Education, School of Life Sciences, Central South University, Changsha, Hunan410078, China
| | - Chenjun Mu
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, Key Lab of Rare Pediatric Diseases of Ministry of Education, School of Life Sciences, Central South University, Changsha, Hunan410078, China
| | - Mengyuan Hu
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, Key Lab of Rare Pediatric Diseases of Ministry of Education, School of Life Sciences, Central South University, Changsha, Hunan410078, China
| | - Dan Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing100101, China
| | - Xiangbin Jia
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, Key Lab of Rare Pediatric Diseases of Ministry of Education, School of Life Sciences, Central South University, Changsha, Hunan410078, China
| | - Yangxuan Wen
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, Key Lab of Rare Pediatric Diseases of Ministry of Education, School of Life Sciences, Central South University, Changsha, Hunan410078, China
| | - Hui Guo
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, Key Lab of Rare Pediatric Diseases of Ministry of Education, School of Life Sciences, Central South University, Changsha, Hunan410078, China
- Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, Hunan410078, China
| | - Dan Xu
- Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou350005, China
| | - Liang Liu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing100053, China
| | - Jiada Li
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, Key Lab of Rare Pediatric Diseases of Ministry of Education, School of Life Sciences, Central South University, Changsha, Hunan410078, China
- Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, Hunan410078, China
| | - Kun Xia
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, Key Lab of Rare Pediatric Diseases of Ministry of Education, School of Life Sciences, Central South University, Changsha, Hunan410078, China
- Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, Hunan410078, China
| | - Faxiang Li
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, Key Lab of Rare Pediatric Diseases of Ministry of Education, School of Life Sciences, Central South University, Changsha, Hunan410078, China
- Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, Hunan410078, China
| | - Ranhui Duan
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, Key Lab of Rare Pediatric Diseases of Ministry of Education, School of Life Sciences, Central South University, Changsha, Hunan410078, China
- Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, Hunan410078, China
| | - Zhiheng Xu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing100101, China
| | - Ling Yuan
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, Key Lab of Rare Pediatric Diseases of Ministry of Education, School of Life Sciences, Central South University, Changsha, Hunan410078, China
- Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, Hunan410078, China
| |
Collapse
|
5
|
Caballero-Florán RN, Nelson AD, Min L, Jenkins PM. Effects of chronic lithium treatment on neuronal excitability and GABAergic transmission in an Ank3 mutant mouse model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.26.564203. [PMID: 37961630 PMCID: PMC10634991 DOI: 10.1101/2023.10.26.564203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Bipolar disorder (BD) is a common psychiatric disease that can lead to psychosocial disability, decreased quality of life, and high risk for suicide. Genome-wide association studies have shown that the ANK3 gene is a significant risk factor for BD, but the mechanisms involved in BD pathophysiology are not yet fully understood. Previous work has shown that ankyrin-G, the protein encoded by ANK3, stabilizes inhibitory synapses in vivo through its interaction with the GABAA receptor-associated protein (GABARAP). We generated a mouse model with a missense p.W1989R mutation in Ank3, that abolishes the interaction between ankyrin-G and GABARAP, which leads to reduced inhibitory signaling in the somatosensory cortex and increased pyramidal cell excitability. Humans with the same mutation exhibit BD symptoms, which can be attenuated with lithium therapy. In this study, we describe that chronic treatment of Ank3 p.W1989R mice with lithium normalizes neuronal excitability in cortical pyramidal neurons and increases inhibitory GABAergic postsynaptic currents. The same outcome in inhibitory transmission was observed when mice were treated with the GSK-3β inhibitor Tideglusib. These results suggest that lithium treatment modulates the excitability of pyramidal neurons in the cerebral cortex by increasing GABAergic neurotransmission, likely via GSK-3 inhibition. In addition to the importance of these findings regarding ANK3 variants as a risk factor for BD development, this study may have significant implications for treating other psychiatric disorders associated with alterations in inhibitory signaling, such as schizophrenia, autism spectrum disorder, and major depressive disorder.
Collapse
Affiliation(s)
| | - Andrew D Nelson
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143
| | - Lia Min
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Paul M Jenkins
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109
- Department of Psychiatry, University of Michigan Medical School, Ann Arbor, MI 48109
| |
Collapse
|
6
|
Jiang Y, Wei D, Xie Y. Functional modular networks identify the pivotal genes associated with morphine addiction and potential drug therapies. BMC Anesthesiol 2023; 23:151. [PMID: 37138216 PMCID: PMC10155436 DOI: 10.1186/s12871-023-02111-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 04/25/2023] [Indexed: 05/05/2023] Open
Abstract
BACKGROUND Chronic morphine usage induces lasting molecular and microcellular adaptations in distinct brain areas, resulting in addiction-related behavioural abnormalities, drug-seeking, and relapse. Nonetheless, the mechanisms of action of the genes responsible for morphine addiction have not been exhaustively studied. METHODS We obtained morphine addiction-related datasets from the Gene Expression Omnibus (GEO) database and screened for Differentially Expressed Genes (DEGs). Weighted Gene Co-expression Network Analysis (WGCNA) functional modularity constructs were analyzed for genes associated with clinical traits. Venn diagrams were filtered for intersecting common DEGs (CDEGs). Gene Ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis for functional annotation. Protein-protein interaction network (PPI) and CytoHubba were used to screen for hub genes. Potential treatments for morphine addiction were figured out with the help of an online database. RESULTS Sixty-five common differential genes linked to morphine addiction were identified, and functional enrichment analysis showed that they were primarily involved in ion channel activity, protein transport, the oxytocin signalling pathway, neuroactive ligand-receptor interactions, and other signalling pathways. Based on the PPI network, ten hub genes (CHN2, OLIG2, UGT8A, CACNB2, TIMP3, FKBP5, ZBTB16, TSC22D3, ISL1, and SLC2A1) were checked. In the data set GSE7762, all of the Area Under Curve (AUC) values for the hub gene Receiver Operating Characteristic (ROC) curves were greater than 0.8. We also used the DGIdb database to look for eight small-molecule drugs that might be useful for treating morphine addiction. CONCLUSIONS The hub genes are crucial genes associated with morphine addiction in the mouse striatum. The oxytocin signalling pathway may play a vital role in developing morphine addiction.
Collapse
Affiliation(s)
- Yage Jiang
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021 China
| | - Donglei Wei
- Department of Traumatology Orthopedic Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021 China
| | - Yubo Xie
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021 China
- Guangxi Key Laboratory of Enhanced Recovery After Surgery for Gastrointestinal Cancer, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021 China
| |
Collapse
|
7
|
Autism associated mutations in β 2 subunit of voltage-gated calcium channels constitutively activate gene expression. Cell Calcium 2022; 108:102672. [PMID: 36427431 DOI: 10.1016/j.ceca.2022.102672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/23/2022] [Accepted: 11/08/2022] [Indexed: 11/13/2022]
Abstract
Membrane depolarization triggers gene expression through voltage-gated calcium channels (VGCC) in a process called Excitation-transcription (ET) coupling. Mutations in the channel subunits α11.2, or β2d, are associated with neurodevelopmental disorders such as ASD. Here, we found that two mutations S143F and G113S within the rat Cavβ2a corresponding to autistic related mutations Cavβ2dS197F and Cavβ2dG167S in the human Cavβ2d, activate ET-coupling via the RAS/ERK/CREB pathway. Membrane depolarization of HEK293 cells co-expressing α11.2 and α2δ with Cavβ2aS143F or Cavβ2aG113S triggers constitutive transcriptional activation, which is correlated with facilitated channel activity. Similar to the Timothy-associated autistic mutation α11.2G406R, constitutive gene activation is attributed to a hyperpolarizing shift in the activation kinetics of Cav1.2. Pulldown of RasGRF2 and RhoGEF by wt and the Cavβ2a autistic mutants is consistent with Cavβ2/Ras activation in ET coupling and implicates Rho signaling as yet another molecular pathway activated by Cavα11.2/Cavβ2 . Facilitated spontaneous channel activity preceding enhanced gene activation via the Ras/ERK/CREB pathway, appears a general molecular mechanism for Ca2+ channel mediated ASD and other neurodevelopmental disorders.
Collapse
|
8
|
Modelling the Human Blood-Brain Barrier in Huntington Disease. Int J Mol Sci 2022; 23:ijms23147813. [PMID: 35887162 PMCID: PMC9321930 DOI: 10.3390/ijms23147813] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/07/2022] [Accepted: 07/12/2022] [Indexed: 02/05/2023] Open
Abstract
While blood–brain barrier (BBB) dysfunction has been described in neurological disorders, including Huntington’s disease (HD), it is not known if endothelial cells themselves are functionally compromised when promoting BBB dysfunction. Furthermore, the underlying mechanisms of BBB dysfunction remain elusive given the limitations with mouse models and post mortem tissue to identify primary deficits. We established models of BBB and undertook a transcriptome and functional analysis of human induced pluripotent stem cell (iPSC)-derived brain-like microvascular endothelial cells (iBMEC) from HD patients or unaffected controls. We demonstrated that HD-iBMECs have abnormalities in barrier properties, as well as in specific BBB functions such as receptor-mediated transcytosis.
Collapse
|
9
|
Dandapath I, Gupta R, Singh J, Shukla N, Jha P, Sharma V, Suri A, Sharma MC, Suri V, Sarkar C, Kulshreshtha R. Long Non-coding RNA and mRNA Co-expression Network Reveals Novel Players in Pleomorphic Xanthoastrocytoma. Mol Neurobiol 2022; 59:5149-5167. [PMID: 35674862 DOI: 10.1007/s12035-022-02893-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 05/18/2022] [Indexed: 11/25/2022]
Abstract
Histological interpretation of the rare pleomorphic xanthoastrocytoma (PXA) has been the holy grail for treatment options. However, no stand-alone clinical interventions have been developed owing to the lack of gene expression profiling data in PXA/APXA patients. We first time report the comprehensive analyses of the coding as well as long non-coding RNA (lncRNA) signatures of PXA/APXA patients. Several genes such as IGFBP2, NF1, FOS, ERBB2, and lncRNAs such as NEAT1, HOTAIRM1, and GAS5 known to play crucial roles in glioma patients were also deregulated in PXA patients suggesting the commonality in the molecular signatures. PPI network, co-expression, and lncRNA-mRNA interaction studies unraveled hub genes (such as ERBB2, FOS, RPA1) and networks that may play a critical role in PXA biology. The most enriched pathways based on gene profiles were related to TLR, chemokine, MAPK, Rb, and PI3K-Akt signaling pathways. The lncRNA targets were enriched in glucuronidation, adipogenesis, TGF-beta signaling, EGF/EGFR signaling, and cell cycle pathways. Interestingly, several mRNAs like PARVG, and ABI2 were found to be targeted by multiple lncRNAs suggesting a tight control of their levels. Some of the most prominent lncRNA-mRNA pairs were LOC728730: MRPL9, XLOC_l2_011987: ASIC2, lnc-C1QTNF5-1: RNF26. Notably, several lncRNAs such as lnc-CETP-1, lnc-XRCC3-1, lnc-RPL31-1, lnc-USP13-1, and MAPKAPK5-AS1, and genes such as RPA1, NTRK3, and CNRP1 showed strong correlation to the progression-free survival of PXA patients suggesting their potential as novel biomarkers. Overall, the findings of this study may facilitate the development of a new realm of RNA biology in PXA that may have clinical significance in the future.
Collapse
Affiliation(s)
- Iman Dandapath
- Neuropathology Laboratory, All India Institute of Medical Sciences, Neurosciences Centre, New Delhi, 110029, India
| | - Rahul Gupta
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Jyotsna Singh
- Neuropathology Laboratory, All India Institute of Medical Sciences, Neurosciences Centre, New Delhi, 110029, India
| | - Nidhi Shukla
- Neuropathology Laboratory, All India Institute of Medical Sciences, Neurosciences Centre, New Delhi, 110029, India
| | - Prerana Jha
- Neuropathology Laboratory, All India Institute of Medical Sciences, Neurosciences Centre, New Delhi, 110029, India
| | - Vikas Sharma
- All India Institute of Medical Sciences, CCRF, New Delhi, 110029, India
| | - Ashish Suri
- Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - M C Sharma
- Neuropathology Laboratory, All India Institute of Medical Sciences, Neurosciences Centre, New Delhi, 110029, India
| | - Vaishali Suri
- Neuropathology Laboratory, All India Institute of Medical Sciences, Neurosciences Centre, New Delhi, 110029, India.
| | - Chitra Sarkar
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, 110029, India.
| | - Ritu Kulshreshtha
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, 110016, India.
| |
Collapse
|
10
|
Chen CK, Wu LSH, Huang MC, Kuo CJ, Cheng ATA. Antidepressant Treatment and Manic Switch in Bipolar I Disorder: A Clinical and Molecular Genetic Study. J Pers Med 2022; 12:jpm12040615. [PMID: 35455731 PMCID: PMC9033004 DOI: 10.3390/jpm12040615] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 03/27/2022] [Accepted: 03/31/2022] [Indexed: 02/01/2023] Open
Abstract
Affective switch is an important clinical issue when treating bipolar disorder. Though commonly seen in clinical practice, the benefits of prescribing antidepressants for bipolar depression are still controversial. To date, there have been few genetic studies and no genome-wide association study (GWAS), focusing on manic switch following bipolar depression. This study aims to investigate the effects of individual genomics and antidepressant medication on the risk of manic switch in bipolar I disorder (BPI). A total of 1004 patients with BPI who had at least one depressive episode with complete data on antidepressant treatment and outcome were included. Clinical assessment of mania and depression was performed by trained psychiatric nurses and psychiatrists using the Chinese version of the Schedules for Clinical Assessment in Neuropsychiatry (SCAN), and the diagnosis of BPI was made according to DSM-IV criteria. Manic switch was defined as a manic episode occurring within eight weeks of remission from an acute depressive episode. The age at first depressive episode of the study patients was 30.7 years (SD 12.5) and 56% of all patients were female. GWAS was carried out in a discovery group of 746 patients, followed by replication in an independent group of 255 patients. The top SNP rs10262219 on chromosome 7 showed the strongest allelic association with manic switch (p = 2.21 × 10−7) in GWAS, which was however not significantly replicated. Antidepressant treatment significantly (odds ratio 1.7; 95% CI 1.3−2.2; p < 0.001) increased the risk of manic switch. In logistic regression analysis, the CC genotype of rs10262219 (odds ratio 3.0; 95% CI 1.7−5.2) and antidepressant treatment (odds ratio 2.3; 95% CI 1.4−3.7) significantly increased the risk of manic switch with a joint effect (odds ratio 5.9; 95% CI 3.7−9.4). In conclusion, antidepressant medication and rs10262219 variants jointly increased the risk of manic switch after bipolar depression.
Collapse
Affiliation(s)
- Chih-Ken Chen
- Community Medicine Research Center & Department of Psychiatry, Chang Gung Memorial Hospital, Keelung 204, Taiwan;
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Lawrence Shih-Hsin Wu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan;
| | - Ming-Chyi Huang
- Taipei City Psychiatric Center, Department of General Psychiatry, Taipei City Hospital, Taipei 10341, Taiwan; (M.-C.H.); (C.-J.K.)
- Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Taipei 106, Taiwan
| | - Chian-Jue Kuo
- Taipei City Psychiatric Center, Department of General Psychiatry, Taipei City Hospital, Taipei 10341, Taiwan; (M.-C.H.); (C.-J.K.)
- Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Taipei 106, Taiwan
| | - Andrew Tai-Ann Cheng
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan;
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
- Correspondence: ; Tel.: +886-2-27899119; Fax: +886-2-27823047
| |
Collapse
|
11
|
Thiesler H, Küçükerden M, Gretenkort L, Röckle I, Hildebrandt H. News and Views on Polysialic Acid: From Tumor Progression and Brain Development to Psychiatric Disorders, Neurodegeneration, Myelin Repair and Immunomodulation. Front Cell Dev Biol 2022; 10:871757. [PMID: 35617589 PMCID: PMC9013797 DOI: 10.3389/fcell.2022.871757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 03/08/2022] [Indexed: 12/15/2022] Open
Abstract
Polysialic acid (polySia) is a sugar homopolymer consisting of at least eight glycosidically linked sialic acid units. It is a posttranslational modification of a limited number of proteins with the neural cell adhesion molecule NCAM being the most prominent. As extensively reviewed before, polySia-NCAM is crucial for brain development and synaptic plasticity but also modulates tumor growth and malignancy. Functions of polySia have been attributed to its polyanionic character, its spatial expansion into the extracellular space, and its modulation of NCAM interactions. In this mini-review, we first summarize briefly, how the modulation of NCAM functions by polySia impacts tumor cell growth and leads to malformations during brain development of polySia-deficient mice, with a focus on how the latter may be linked to altered behaviors in the mouse model and to neurodevelopmental predispositions to psychiatric disorders. We then elaborate on the implications of polySia functions in hippocampal plasticity, learning and memory of mice in light of recently described polySia changes related to altered neurogenesis in the aging human brain and in neurodegenerative disease. Furthermore, we highlight recent progress that extends the range of polySia functions across diverse fields of neurobiology such as cortical interneuron development and connectivity, myelination and myelin repair, or the regulation of microglia activity. We discuss possible common and distinct mechanisms that may underlie these seemingly divergent roles of polySia, and provide prospects for new therapeutic approaches building on our improved understanding of polySia functions.
Collapse
Affiliation(s)
| | | | | | | | - Herbert Hildebrandt
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| |
Collapse
|
12
|
Küçükerden M, Schuster UE, Röckle I, Alvarez-Bolado G, Schwabe K, Hildebrandt H. Compromised mammillary body connectivity and psychotic symptoms in mice with di- and mesencephalic ablation of ST8SIA2. Transl Psychiatry 2022; 12:51. [PMID: 35115485 PMCID: PMC8814025 DOI: 10.1038/s41398-022-01816-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 11/13/2022] Open
Abstract
Altered long-range connectivity is a common finding across neurodevelopmental psychiatric disorders, but causes and consequences are not well understood. Genetic variation in ST8SIA2 has been associated with schizophrenia, autism, and bipolar disorder, and St8sia2-/- mice show a number of related neurodevelopmental and behavioral phenotypes. In the present study, we use conditional knockout (cKO) to dissect neurodevelopmental defects and behavioral consequences of St8sia2 deficiency in cortical interneurons, their cortical environment, or in the di- and mesencephalon. Neither separate nor combined cortical and diencephalic ablation of St8sia2 caused the disturbed thalamus-cortex connectivity observed in St8sia2-/- mice. However, cortical ablation reproduced hypoplasia of corpus callosum and fornix and mice with di- and mesencephalic ablation displayed smaller mammillary bodies with a prominent loss of parvalbumin-positive projection neurons and size reductions of the mammillothalamic tract. In addition, the mammillotegmental tract and the mammillary peduncle, forming the reciprocal connections between mammillary bodies and Gudden's tegmental nuclei, as well as the size of Gudden's ventral tegmental nucleus were affected. Only mice with these mammillary deficits displayed enhanced MK-801-induced locomotor activity, exacerbated impairment of prepulse inhibition in response to apomorphine, and hypoanxiety in the elevated plus maze. We therefore propose that compromised mammillary body connectivity, independent from hippocampal input, leads to these psychotic-like responses of St8sia2-deficient mice.
Collapse
Affiliation(s)
- Melike Küçükerden
- grid.10423.340000 0000 9529 9877Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany ,grid.412970.90000 0001 0126 6191Center for Systems Neuroscience Hannover (ZSN), Hannover, Germany
| | - Ute E. Schuster
- grid.10423.340000 0000 9529 9877Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Iris Röckle
- grid.10423.340000 0000 9529 9877Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Gonzalo Alvarez-Bolado
- grid.7700.00000 0001 2190 4373Institute for Anatomy and Cell Biology, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
| | - Kerstin Schwabe
- grid.412970.90000 0001 0126 6191Center for Systems Neuroscience Hannover (ZSN), Hannover, Germany ,grid.10423.340000 0000 9529 9877Department of Neurosurgery, Hannover Medical School, Hannover, Germany
| | - Herbert Hildebrandt
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany. .,Center for Systems Neuroscience Hannover (ZSN), Hannover, Germany.
| |
Collapse
|
13
|
Members of the KCTD family are major regulators of cAMP signaling. Proc Natl Acad Sci U S A 2022; 119:2119237119. [PMID: 34934014 PMCID: PMC8740737 DOI: 10.1073/pnas.2119237119] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2021] [Indexed: 11/18/2022] Open
Abstract
Neuromodulation is pivotal for brain function. One of the key pathways engaged by neuromodulators is signaling via second messenger cAMP, which controls a myriad of fundamental reactions. This study identifies KCTD5, a ubiquitin ligase adapter, as a regulatory element in this pathway and determines that it works by an unusual dual mode controlling the activity of cAMP-generating enzyme in neurons through both zinc transport and G protein signaling. Cyclic adenosine monophosphate (cAMP) is a pivotal second messenger with an essential role in neuronal function. cAMP synthesis by adenylyl cyclases (AC) is controlled by G protein–coupled receptor (GPCR) signaling systems. However, the network of molecular players involved in the process is incompletely defined. Here, we used CRISPR/Cas9–based screening to identify that members of the potassium channel tetradimerization domain (KCTD) family are major regulators of cAMP signaling. Focusing on striatal neurons, we show that the dominant isoform KCTD5 exerts its effects through an unusual mechanism that modulates the influx of Zn2+ via the Zip14 transporter to exert unique allosteric effects on AC. We further show that KCTD5 controls the amplitude and sensitivity of stimulatory GPCR inputs to cAMP production by Gβγ-mediated AC regulation. Finally, we report that KCTD5 haploinsufficiency in mice leads to motor deficits that can be reversed by chelating Zn2+. Together, our findings uncover KCTD proteins as major regulators of neuronal cAMP signaling via diverse mechanisms.
Collapse
|
14
|
Genome-Wide Association Study of Lithium-Induced Dry Mouth in Bipolar I Disorder. J Pers Med 2021; 11:jpm11121265. [PMID: 34945737 PMCID: PMC8706003 DOI: 10.3390/jpm11121265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/26/2021] [Accepted: 11/27/2021] [Indexed: 11/17/2022] Open
Abstract
Dry mouth is a rather common unpleasant adverse drug reaction (ADR) to lithium treatment in bipolar disorders that often lead to poor adherence or early dropout. The aim of this study was to identify the genetic variants of dry mouth associated with lithium treatment in patients with bipolar I (BPI) disorder. In total, 1242 BPI patients who had ever received lithium treatment were identified by the Taiwan Bipolar Consortium for this study. The proportions of patients who experienced impaired drug compliance during lithium medication were comparable between those only with dry mouth and those with any other ADR (86% and 93%, respectively). Dry mouth appeared to be the most prevalent (47.3%) ADR induced by lithium treatment. From the study patients, 921 were included in a genome-wide association study (GWAS), and replication was conducted in the remaining 321 patients. The SNP rs10135918, located in the immunoglobulin heavy chain locus (IGH), showed the strongest associations in the GWAS (p = 2.12 × 10−37) and replication groups (p = 6.36 × 10−13) (dominant model) for dry mouth with a sensitivity of 84.9% in predicting dry mouth induced by lithium. Our results may be translated into clinical recommendation to help identify at-risk individuals for early identification and management of dry mouth, which will improve medication adherence.
Collapse
|
15
|
Pinna A, Colasanti A. The Neurometabolic Basis of Mood Instability: The Parvalbumin Interneuron Link-A Systematic Review and Meta-Analysis. Front Pharmacol 2021; 12:689473. [PMID: 34616292 PMCID: PMC8488267 DOI: 10.3389/fphar.2021.689473] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 08/18/2021] [Indexed: 12/23/2022] Open
Abstract
The neurobiological bases of mood instability are poorly understood. Neuronal network alterations and neurometabolic abnormalities have been implicated in the pathophysiology of mood and anxiety conditions associated with mood instability and hence are candidate mechanisms underlying its neurobiology. Fast-spiking parvalbumin GABAergic interneurons modulate the activity of principal excitatory neurons through their inhibitory action determining precise neuronal excitation balance. These interneurons are directly involved in generating neuronal networks activities responsible for sustaining higher cerebral functions and are especially vulnerable to metabolic stress associated with deficiency of energy substrates or mitochondrial dysfunction. Parvalbumin interneurons are therefore candidate key players involved in mechanisms underlying the pathogenesis of brain disorders associated with both neuronal networks' dysfunction and brain metabolism dysregulation. To provide empirical support to this hypothesis, we hereby report meta-analytical evidence of parvalbumin interneurons loss or dysfunction in the brain of patients with Bipolar Affective Disorder (BPAD), a condition primarily characterized by mood instability for which the pathophysiological role of mitochondrial dysfunction has recently emerged as critically important. We then present a comprehensive review of evidence from the literature illustrating the bidirectional relationship between deficiency in mitochondrial-dependent energy production and parvalbumin interneuron abnormalities. We propose a mechanistic explanation of how alterations in neuronal excitability, resulting from parvalbumin interneurons loss or dysfunction, might manifest clinically as mood instability, a poorly understood clinical phenotype typical of the most severe forms of affective disorders. The evidence we report provides insights on the broader therapeutic potential of pharmacologically targeting parvalbumin interneurons in psychiatric and neurological conditions characterized by both neurometabolic and neuroexcitability abnormalities.
Collapse
Affiliation(s)
- Antonello Pinna
- School of Life Sciences, University of Sussex, Brighton, United Kingdom.,Department of Neuroscience, Brighton and Sussex Medical School, University of Sussex, Brighton, United Kingdom
| | - Alessandro Colasanti
- Department of Neuroscience, Brighton and Sussex Medical School, University of Sussex, Brighton, United Kingdom
| |
Collapse
|
16
|
Yang D, Chen J, Cheng X, Cao B, Chang H, Li X, Yang C, Wu Q, Sun J, Manry D, Pan Y, Dong Y, Li J, Xu T, Cao L. SERINC2 increases the risk of bipolar disorder in the Chinese population. Depress Anxiety 2021; 38:985-995. [PMID: 34288243 DOI: 10.1002/da.23186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/28/2021] [Accepted: 05/22/2021] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Although common variants in a large collection of patients are associated with increased risk for bipolar disorder (BD), studies have only been able to predict 25%-45% of risks, suggesting that lots of variants that contribute to the risk for BD haven't been identified. Our study aims to identify novel BD risk genes. METHODS We performed whole-exome sequencing of 27 individuals from 6 BD multi-affected Chinese families to identify candidate variants. Targeted sequencing of one of the novel risk genes, SERINC2, in additional sporadic 717 BD patients and 312 healthy controls (HC) validated the association. Magnetic resonance imaging (MRI) were performed to evaluate the effect of the variant to brain structures from 213 subjects (4 BD subjects from a multi-affected family, 130 sporadic BD subjects and 79 HC control). RESULTS BD pedigrees had an increased burden of uncommon variants in extracellular matrix (ECM) and calcium ion binding. By large-scale sequencing we identified a novel recessive BD risk gene, SERINC2, which plays a role in synthesis of sphingolipid and phosphatidylserine (PS). MRI image results show the homozygous nonsense variant in SERINC2 affects the volume of white matter in cerebellum. CONCLUSIONS Our study identified SERINC2 as a risk gene of BD in the Chinese population.
Collapse
Affiliation(s)
- Dong Yang
- Team for Growth Control and Size Innovative Research, Westlake University, Hangzhou, Zhejiang, China.,Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Jianshan Chen
- Guangzhou Huiai Hospital, Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiongchao Cheng
- Department of Clinical Psychology, Nanning Fifth People's Hospital, Nanning, Guangxi, China
| | - Bo Cao
- Department of Psychiatry, University of Alberta, Edmonton, Alberta, Canada
| | - Hao Chang
- Howard Hughes Medical Institute, Department of Genetics, Yale Cancer Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Xuan Li
- Guangzhou Huiai Hospital, Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Chanjuan Yang
- Guangzhou Huiai Hospital, Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Qiuxia Wu
- Guangzhou Huiai Hospital, Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jiaqi Sun
- Guangzhou Huiai Hospital, Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Diane Manry
- Howard Hughes Medical Institute, Department of Genetics, Yale Cancer Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Yukun Pan
- Howard Hughes Medical Institute, Department of Genetics, Yale Cancer Center, Yale University School of Medicine, New Haven, Connecticut, USA.,Yeda Research Institute of Gene and Cell Therapy, Taizhou, Zhejiang, China
| | - Yongli Dong
- Howard Hughes Medical Institute, Department of Genetics, Yale Cancer Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Jiaojiao Li
- Team for Growth Control and Size Innovative Research, Westlake University, Hangzhou, Zhejiang, China.,Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Tian Xu
- Team for Growth Control and Size Innovative Research, Westlake University, Hangzhou, Zhejiang, China.,Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.,Howard Hughes Medical Institute, Department of Genetics, Yale Cancer Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Liping Cao
- Guangzhou Huiai Hospital, Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
17
|
Lin TY, Chang YC, Hsiao YJ, Chien Y, Jheng YC, Wu JR, Ching LJ, Hwang DK, Hsu CC, Lin TC, Chou YB, Huang YM, Chen SJ, Yang YP, Tsai PH. Identification of Novel Genomic-Variant Patterns of OR56A5, OR52L1, and CTSD in Retinitis Pigmentosa Patients by Whole-Exome Sequencing. Int J Mol Sci 2021; 22:ijms22115594. [PMID: 34070492 PMCID: PMC8198027 DOI: 10.3390/ijms22115594] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 12/24/2022] Open
Abstract
Inherited retinal dystrophies (IRDs) are rare but highly heterogeneous genetic disorders that affect individuals and families worldwide. However, given its wide variability, its analysis of the driver genes for over 50% of the cases remains unexplored. The present study aims to identify novel driver genes, disease-causing variants, and retinitis pigmentosa (RP)-associated pathways. Using family-based whole-exome sequencing (WES) to identify putative RP-causing rare variants, we identified a total of five potentially pathogenic variants located in genes OR56A5, OR52L1, CTSD, PRF1, KBTBD13, and ATP2B4. Of the variants present in all affected individuals, genes OR56A5, OR52L1, CTSD, KBTBD13, and ATP2B4 present as missense mutations, while PRF1 and CTSD present as frameshift variants. Sanger sequencing confirmed the presence of the novel pathogenic variant PRF1 (c.124_128del) that has not been reported previously. More causal-effect or evidence-based studies will be required to elucidate the precise roles of these SNPs in the RP pathogenesis. Taken together, our findings may allow us to explore the risk variants based on the sequencing data and upgrade the existing variant annotation database in Taiwan. It may help detect specific eye diseases such as retinitis pigmentosa in East Asia.
Collapse
Affiliation(s)
- Ting-Yi Lin
- College of Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan;
| | - Yun-Chia Chang
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 112304, Taiwan; (Y.-C.C.); (D.-K.H.); (C.-C.H.); (T.-C.L.); (Y.-B.C.); (Y.-M.H.); (S.-J.C.)
| | - Yu-Jer Hsiao
- College of Medicine, National Yang-Ming Chiao-Tung University, Taipei 11217, Taiwan;
| | - Yueh Chien
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (Y.C.); (Y.-C.J.); (J.-R.W.); (L.-J.C.)
- Institute of Pharmacology, National Yang-Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Ying-Chun Jheng
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (Y.C.); (Y.-C.J.); (J.-R.W.); (L.-J.C.)
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei 112304, Taiwan
- Big Data Center, Taipei Veterans General Hospital, Taipei 112201, Taiwan
| | - Jing-Rong Wu
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (Y.C.); (Y.-C.J.); (J.-R.W.); (L.-J.C.)
| | - Lo-Jei Ching
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (Y.C.); (Y.-C.J.); (J.-R.W.); (L.-J.C.)
| | - De-Kuang Hwang
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 112304, Taiwan; (Y.-C.C.); (D.-K.H.); (C.-C.H.); (T.-C.L.); (Y.-B.C.); (Y.-M.H.); (S.-J.C.)
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (Y.C.); (Y.-C.J.); (J.-R.W.); (L.-J.C.)
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei 112304, Taiwan
- Institute of Clinical Medicine, National Yang-Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Chih-Chien Hsu
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 112304, Taiwan; (Y.-C.C.); (D.-K.H.); (C.-C.H.); (T.-C.L.); (Y.-B.C.); (Y.-M.H.); (S.-J.C.)
| | - Tai-Chi Lin
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 112304, Taiwan; (Y.-C.C.); (D.-K.H.); (C.-C.H.); (T.-C.L.); (Y.-B.C.); (Y.-M.H.); (S.-J.C.)
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (Y.C.); (Y.-C.J.); (J.-R.W.); (L.-J.C.)
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei 112304, Taiwan
- Institute of Clinical Medicine, National Yang-Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Yu-Bai Chou
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 112304, Taiwan; (Y.-C.C.); (D.-K.H.); (C.-C.H.); (T.-C.L.); (Y.-B.C.); (Y.-M.H.); (S.-J.C.)
| | - Yi-Ming Huang
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 112304, Taiwan; (Y.-C.C.); (D.-K.H.); (C.-C.H.); (T.-C.L.); (Y.-B.C.); (Y.-M.H.); (S.-J.C.)
| | - Shih-Jen Chen
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 112304, Taiwan; (Y.-C.C.); (D.-K.H.); (C.-C.H.); (T.-C.L.); (Y.-B.C.); (Y.-M.H.); (S.-J.C.)
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Yi-Ping Yang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (Y.C.); (Y.-C.J.); (J.-R.W.); (L.-J.C.)
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Internal Medicine, Taipei Veterans General Hospital, Taipei 112201, Taiwan
- Critical Center, Taipei Veterans General Hospital, Taipei 112201, Taiwan
- Correspondence: (Y.-P.Y.); (P.H.T.); Tel.: +886-2-2875-7394 (Y.-P.Y.); +886-2-2875-7394 (P.H.T.)
| | - Ping-Hsing Tsai
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (Y.C.); (Y.-C.J.); (J.-R.W.); (L.-J.C.)
- Institute of Pharmacology, National Yang-Ming Chiao Tung University, Taipei 112304, Taiwan
- Correspondence: (Y.-P.Y.); (P.H.T.); Tel.: +886-2-2875-7394 (Y.-P.Y.); +886-2-2875-7394 (P.H.T.)
| |
Collapse
|
18
|
Genome-wide association study of early-onset bipolar I disorder in the Han Taiwanese population. Transl Psychiatry 2021; 11:301. [PMID: 34016946 PMCID: PMC8137921 DOI: 10.1038/s41398-021-01407-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 04/05/2021] [Accepted: 04/21/2021] [Indexed: 02/04/2023] Open
Abstract
The search for susceptibility genes underlying the heterogeneous bipolar disorder has been inconclusive, often with irreproducible results. There is a hope that narrowing the phenotypes will increase the power of genetic analysis. Early-onset bipolar disorder is thought to be a genetically homogeneous subtype with greater symptom severity. We conducted a genome-wide association study (GWAS) for this subtype in bipolar I (BPI) disorder. Study participants included 1779 patients of Han Chinese descent with BPI disorder recruited by the Taiwan Bipolar Consortium. We conducted phenotype assessment using the Chinese version of the Schedules for Clinical Assessment in Neuropsychiatry and prepared a life chart with graphic depiction of lifetime clinical course for each of the BPI patient recruited. The assessment of onset age was based on this life chart with early onset defined as ≤20 years of age. We performed GWAS in a discovery group of 516 early-onset and 790 non-early-onset BPI patients, followed by a replication study in an independent group of 153 early-onset and 320 non-early-onset BPI patients and a meta-analysis with these two groups. The SNP rs11127876, located in the intron of CADM2, showed association with early-onset BPI in the discovery cohort (P = 7.04 × 10-8) and in the test of replication (P = 0.0354). After meta-analysis, this SNP was demonstrated to be a new genetic locus in CADM2 gene associated with early-onset BPI disorder (P = 5.19 × 10-8).
Collapse
|
19
|
Li W, Cai X, Li HJ, Song M, Zhang CY, Yang Y, Zhang L, Zhao L, Liu W, Wang L, Shao M, Zhang Y, Zhang C, Cai J, Zhou DS, Li X, Hui L, Jia QF, Qu N, Zhong BL, Zhang SF, Chen J, Xia B, Li Y, Song X, Fan W, Tang W, Tang W, Tang J, Chen X, Yue W, Zhang D, Fang Y, Xiao X, Li M, Lv L, Chang H. Independent replications and integrative analyses confirm TRANK1 as a susceptibility gene for bipolar disorder. Neuropsychopharmacology 2021; 46:1103-1112. [PMID: 32791513 PMCID: PMC8114920 DOI: 10.1038/s41386-020-00788-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/02/2020] [Accepted: 07/27/2020] [Indexed: 02/07/2023]
Abstract
Genetic analyses for bipolar disorder (BD) have achieved prominent success in Europeans in recent years, whereas its genetic basis in other populations remains relatively less understood. We herein report that the leading risk locus for BD in European genome-wide association studies (GWAS), the single-nucleotide polymorphism (SNP) rs9834970 near TRANK1 at 3p22 region, is also genome-wide significantly associated with BD in a meta-analysis of four independent East Asian samples including 5748 cases and 65,361 controls (p = 2.27 × 10-8, odds ratio = 1.136). Expression quantitative trait loci (eQTL) analyses and summary data-based Mendelian randomization (SMR) analyses in multiple human brain samples suggest that lower TRANK1 mRNA expression is a principal BD risk factor explaining its genetic risk signals at 3p22. We also identified another SNP rs4789 in the 3' untranslated region (3'UTR) of TRANK1 showing stronger eQTL associations as well as genome-wide significant association with BD. Despite the relatively unclear neuronal function of TRANK1, our mRNA expression analyses in the human brains and in rat primary cortical neurons reveal that genes highly correlated with TRANK1 are significantly enriched in the biological processes related to dendritic spine, synaptic plasticity, axon guidance and circadian entrainment, and are also more likely to exhibit strong associations in psychiatric GWAS (e.g., the CACNA1C gene). Overall, our results support that TRANK1 is a potential BD risk gene. Further studies elucidating its roles in this illness are needed.
Collapse
Affiliation(s)
- Wenqiang Li
- grid.412990.70000 0004 1808 322XHenan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan China ,grid.412990.70000 0004 1808 322XHenan Key Lab of Biological Psychiatry, International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang Medical University, Xinxiang, Henan China
| | - Xin Cai
- grid.9227.e0000000119573309Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan China ,grid.410726.60000 0004 1797 8419Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan China
| | - Hui-Juan Li
- grid.9227.e0000000119573309Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan China ,grid.410726.60000 0004 1797 8419Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan China
| | - Meng Song
- grid.412990.70000 0004 1808 322XHenan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan China ,grid.412990.70000 0004 1808 322XHenan Key Lab of Biological Psychiatry, International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang Medical University, Xinxiang, Henan China
| | - Chu-Yi Zhang
- grid.9227.e0000000119573309Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan China ,grid.410726.60000 0004 1797 8419Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan China
| | - Yongfeng Yang
- grid.412990.70000 0004 1808 322XHenan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan China ,grid.412990.70000 0004 1808 322XHenan Key Lab of Biological Psychiatry, International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang Medical University, Xinxiang, Henan China
| | - Luwen Zhang
- grid.412990.70000 0004 1808 322XHenan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan China ,grid.412990.70000 0004 1808 322XHenan Key Lab of Biological Psychiatry, International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang Medical University, Xinxiang, Henan China
| | - Lijuan Zhao
- grid.9227.e0000000119573309Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan China ,grid.410726.60000 0004 1797 8419Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan China
| | - Weipeng Liu
- grid.9227.e0000000119573309Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan China ,grid.410726.60000 0004 1797 8419Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan China
| | - Lu Wang
- grid.9227.e0000000119573309Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan China ,grid.410726.60000 0004 1797 8419Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan China
| | - Minglong Shao
- grid.412990.70000 0004 1808 322XHenan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan China ,grid.412990.70000 0004 1808 322XHenan Key Lab of Biological Psychiatry, International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang Medical University, Xinxiang, Henan China
| | - Yan Zhang
- grid.412990.70000 0004 1808 322XHenan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan China ,grid.412990.70000 0004 1808 322XHenan Key Lab of Biological Psychiatry, International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang Medical University, Xinxiang, Henan China
| | - Chen Zhang
- grid.16821.3c0000 0004 0368 8293Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Cai
- grid.16821.3c0000 0004 0368 8293Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dong-Sheng Zhou
- grid.452715.00000 0004 1782 599XDepartment of Psychiatry, Ningbo Kangning Hospital, Ningbo, Zhejiang China
| | - Xingxing Li
- grid.452715.00000 0004 1782 599XDepartment of Psychiatry, Ningbo Kangning Hospital, Ningbo, Zhejiang China
| | - Li Hui
- grid.263761.70000 0001 0198 0694Suzhou Guangji Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, Jiangsu China
| | - Qiu-Fang Jia
- grid.263761.70000 0001 0198 0694Suzhou Guangji Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, Jiangsu China
| | - Na Qu
- grid.33199.310000 0004 0368 7223Affiliated Wuhan Mental Health Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei China ,grid.503241.10000 0004 1760 9015Research Center for Psychological and Health Sciences, China University of Geosciences, Wuhan, Hubei China
| | - Bao-Liang Zhong
- grid.33199.310000 0004 0368 7223Affiliated Wuhan Mental Health Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei China ,grid.503241.10000 0004 1760 9015Research Center for Psychological and Health Sciences, China University of Geosciences, Wuhan, Hubei China
| | - Shu-Fang Zhang
- grid.33199.310000 0004 0368 7223Affiliated Wuhan Mental Health Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei China ,grid.503241.10000 0004 1760 9015Research Center for Psychological and Health Sciences, China University of Geosciences, Wuhan, Hubei China
| | - Jing Chen
- grid.33199.310000 0004 0368 7223Affiliated Wuhan Mental Health Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei China ,grid.503241.10000 0004 1760 9015Research Center for Psychological and Health Sciences, China University of Geosciences, Wuhan, Hubei China
| | - Bin Xia
- grid.33199.310000 0004 0368 7223Affiliated Wuhan Mental Health Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei China ,grid.503241.10000 0004 1760 9015Research Center for Psychological and Health Sciences, China University of Geosciences, Wuhan, Hubei China
| | - Yi Li
- grid.33199.310000 0004 0368 7223Affiliated Wuhan Mental Health Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei China ,grid.503241.10000 0004 1760 9015Research Center for Psychological and Health Sciences, China University of Geosciences, Wuhan, Hubei China
| | - Xueqin Song
- grid.412633.1The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan China
| | - Weixing Fan
- Jinhua Second Hospital, Jinhua, Zhejiang China
| | - Wei Tang
- grid.268099.c0000 0001 0348 3990Department of Psychiatry, The Affiliated Kangning Hospital of Wenzhou Medical University, Wenzhou, Zhejiang China
| | - Wenxin Tang
- grid.469604.90000 0004 1765 5222Hangzhou Seventh People’s Hospital, Hangzhou, Zhejiang China
| | - Jinsong Tang
- grid.13402.340000 0004 1759 700XDepartment of Psychiatry, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang China ,Key Laboratory of Medical Neurobiology of Zhejiang Province, Hangzhou, Zhejiang China
| | - Xiaogang Chen
- grid.216417.70000 0001 0379 7164Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan China ,National Clinical Research Center for Mental Disorders, Changsha, Hunan China ,National Technology Institute of Mental Disorders, Changsha, Hunan China ,Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan China ,grid.489086.bMental Health Institute of Central South University, Changsha, Hunan China ,Hunan Medical Center for Mental Health, Changsha, Hunan China
| | - Weihua Yue
- grid.11135.370000 0001 2256 9319Peking University Sixth Hospital/Institute of Mental Health, Beijing, China ,grid.459847.30000 0004 1798 0615NHC Key Laboratory of Mental Health (Peking University) and National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China ,grid.11135.370000 0001 2256 9319Peking-Tsinghua Joint Center for Life Sciences and PKU IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Dai Zhang
- grid.11135.370000 0001 2256 9319Peking University Sixth Hospital/Institute of Mental Health, Beijing, China ,grid.459847.30000 0004 1798 0615NHC Key Laboratory of Mental Health (Peking University) and National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China ,grid.11135.370000 0001 2256 9319Peking-Tsinghua Joint Center for Life Sciences and PKU IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Yiru Fang
- grid.16821.3c0000 0004 0368 8293Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao Xiao
- grid.9227.e0000000119573309Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan China
| | - Ming Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China. .,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China. .,KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.
| | - Luxian Lv
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China. .,Henan Key Lab of Biological Psychiatry, International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang Medical University, Xinxiang, Henan, China. .,Henan Province People's Hospital, Zhengzhou, Henan, China.
| | - Hong Chang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.
| |
Collapse
|
20
|
Janiri D, Kotzalidis GD, di Luzio M, Giuseppin G, Simonetti A, Janiri L, Sani G. Genetic neuroimaging of bipolar disorder: a systematic 2017-2020 update. Psychiatr Genet 2021; 31:50-64. [PMID: 33492063 DOI: 10.1097/ypg.0000000000000274] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
There is evidence of genetic polymorphism influences on brain structure and function, genetic risk in bipolar disorder (BD), and neuroimaging correlates of BD. How genetic influences related to BD could be reflected on brain changes in BD has been efficiently reviewed in a 2017 systematic review. We aimed to confirm and extend these findings through a Preferred Reporting Items for Systematic reviews and Meta-Analyses-based systematic review. Our study allowed us to conclude that there is no replicated finding in the timeframe considered. We were also unable to further confirm prior results of the BDNF gene polymorphisms to affect brain structure and function in BD. The most consistent finding is an influence of the CACNA1C rs1006737 polymorphism in brain connectivity and grey matter structure and function. There was a tendency of undersized studies to obtain positive results and large, genome-wide polygenic risk studies to find negative results in BD. The neuroimaging genetics in BD field is rapidly expanding.
Collapse
Affiliation(s)
- Delfina Janiri
- Department of Neurology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS
- Department of Psychiatry and Neurology, Sapienza University of Rome
| | - Georgios D Kotzalidis
- NESMOS Department, Sant'Andrea University Hospital, School of Medicine and Psychology, Sapienza University
| | - Michelangelo di Luzio
- Department of Neuroscience, Section of Psychiatry, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giulia Giuseppin
- Department of Neuroscience, Section of Psychiatry, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Alessio Simonetti
- Department of Psychiatry and Neurology, Sapienza University of Rome
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, Texas, USA
| | - Luigi Janiri
- Department of Neuroscience, Section of Psychiatry, Università Cattolica del Sacro Cuore, Rome, Italy
- Department of Psychiatry, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Gabriele Sani
- Department of Neuroscience, Section of Psychiatry, Università Cattolica del Sacro Cuore, Rome, Italy
- Department of Psychiatry, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| |
Collapse
|
21
|
Andlauer TFM, Guzman-Parra J, Streit F, Strohmaier J, González MJ, Gil Flores S, Cabaleiro Fabeiro FJ, Del Río Noriega F, Perez FP, Haro González J, Orozco Diaz G, de Diego-Otero Y, Moreno-Küstner B, Auburger G, Degenhardt F, Heilmann-Heimbach S, Herms S, Hoffmann P, Frank J, Foo JC, Treutlein J, Witt SH, Cichon S, Kogevinas M, Rivas F, Mayoral F, Müller-Myhsok B, Forstner AJ, Nöthen MM, Rietschel M. Bipolar multiplex families have an increased burden of common risk variants for psychiatric disorders. Mol Psychiatry 2021; 26:1286-1298. [PMID: 31712721 PMCID: PMC7985020 DOI: 10.1038/s41380-019-0558-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 07/17/2019] [Accepted: 07/24/2019] [Indexed: 12/13/2022]
Abstract
Multiplex families with a high prevalence of a psychiatric disorder are often examined to identify rare genetic variants with large effect sizes. In the present study, we analysed whether the risk for bipolar disorder (BD) in BD multiplex families is influenced by common genetic variants. Furthermore, we investigated whether this risk is conferred mainly by BD-specific risk variants or by variants also associated with the susceptibility to schizophrenia or major depression. In total, 395 individuals from 33 Andalusian BD multiplex families (166 BD, 78 major depressive disorder, 151 unaffected) as well as 438 subjects from an independent, BD case/control cohort (161 unrelated BD, 277 unrelated controls) were analysed. Polygenic risk scores (PRS) for BD, schizophrenia (SCZ), and major depression were calculated and compared between the cohorts. Both the familial BD cases and unaffected family members had higher PRS for all three psychiatric disorders than the independent controls, with BD and SCZ being significant after correction for multiple testing, suggesting a high baseline risk for several psychiatric disorders in the families. Moreover, familial BD cases showed significantly higher BD PRS than unaffected family members and unrelated BD cases. A plausible hypothesis is that, in multiplex families with a general increase in risk for psychiatric disease, BD development is attributable to a high burden of common variants that confer a specific risk for BD. The present analyses demonstrated that common genetic risk variants for psychiatric disorders are likely to contribute to the high incidence of affective psychiatric disorders in the multiplex families. However, the PRS explained only part of the observed phenotypic variance, and rare variants might have also contributed to disease development.
Collapse
Affiliation(s)
- Till F M Andlauer
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
- Department of Neurology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Jose Guzman-Parra
- Department of Mental Health, University Regional Hospital of Málaga, Institute of Biomedicine of Málaga (IBIMA), Málaga, Spain
| | - Fabian Streit
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Jana Strohmaier
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | | | - Susana Gil Flores
- Department of Mental Health, University Hospital of Reina Sofia, Córdoba, Spain
| | | | | | | | | | - Guillermo Orozco Diaz
- Unidad de Gestión Clínica del Dispositivo de Cuidados Críticos y Urgencias del Distrito Sanitario Málaga-Coin-Guadalhorce, Málaga, Spain
| | - Yolanda de Diego-Otero
- Department of Mental Health, University Regional Hospital of Málaga, Institute of Biomedicine of Málaga (IBIMA), Málaga, Spain
| | - Berta Moreno-Küstner
- Department of Personality, Assessment and Psychological Treatment, University of Malaga, Institute of Biomedicine of Málaga (IBIMA), Málaga, Spain
| | - Georg Auburger
- Department of Neurology, Goethe University Medical School, Frankfurt am Main, Germany
| | - Franziska Degenhardt
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Stefanie Heilmann-Heimbach
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Stefan Herms
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Per Hoffmann
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
- Department of Biomedicine, University of Basel, Basel, Switzerland
- Institute of Neuroscience and Medicine (INM-1), Research Center Jülich, Jülich, Germany
| | - Josef Frank
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Jerome C Foo
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Jens Treutlein
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Stephanie H Witt
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Sven Cichon
- Department of Biomedicine, University of Basel, Basel, Switzerland
- Institute of Neuroscience and Medicine (INM-1), Research Center Jülich, Jülich, Germany
| | | | - Fabio Rivas
- Department of Mental Health, University Regional Hospital of Málaga, Institute of Biomedicine of Málaga (IBIMA), Málaga, Spain
| | - Fermín Mayoral
- Department of Mental Health, University Regional Hospital of Málaga, Institute of Biomedicine of Málaga (IBIMA), Málaga, Spain
| | - Bertram Müller-Myhsok
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Andreas J Forstner
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
- Department of Biomedicine, University of Basel, Basel, Switzerland
- Centre for Human Genetics, University of Marburg, Marburg, Germany
- Department of Psychiatry (UPK), University of Basel, Basel, Switzerland
| | - Markus M Nöthen
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Marcella Rietschel
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
| |
Collapse
|
22
|
Li HJ, Zhang C, Hui L, Zhou DS, Li Y, Zhang CY, Wang C, Wang L, Li W, Yang Y, Qu N, Tang J, He Y, Zhou J, Yang Z, Li X, Cai J, Yang L, Chen J, Fan W, Tang W, Tang W, Jia QF, Liu W, Zhuo C, Song X, Liu F, Bai Y, Zhong BL, Zhang SF, Chen J, Xia B, Lv L, Liu Z, Hu S, Li XY, Liu JW, Cai X, Yao YG, Zhang Y, Yan H, Chang S, Zhao JP, Yue WH, Luo XJ, Chen X, Xiao X, Fang Y, Li M. Novel Risk Loci Associated With Genetic Risk for Bipolar Disorder Among Han Chinese Individuals: A Genome-Wide Association Study and Meta-analysis. JAMA Psychiatry 2021; 78:320-330. [PMID: 33263727 PMCID: PMC7711567 DOI: 10.1001/jamapsychiatry.2020.3738] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
IMPORTANCE The genetic basis of bipolar disorder (BD) in Han Chinese individuals is not fully understood. OBJECTIVE To explore the genetic basis of BD in the Han Chinese population. DESIGN, SETTING, AND PARTICIPANTS A genome-wide association study (GWAS), followed by independent replication, was conducted to identify BD risk loci in Han Chinese individuals. Individuals with BD were diagnosed based on DSM-IV criteria and had no history of schizophrenia, mental retardation, or substance dependence; individuals without any personal or family history of mental illnesses, including BD, were included as control participants. In total, discovery samples from 1822 patients and 4650 control participants passed quality control for the GWAS analysis. Replication analyses of samples from 958 patients and 2050 control participants were conducted. Summary statistics from the European Psychiatric Genomics Consortium 2 (PGC2) BD GWAS (20 352 cases and 31 358 controls) were used for the trans-ancestry genetic correlation analysis, polygenetic risk score analysis, and meta-analysis to compare BD genetic risk between Han Chinese and European individuals. The study was performed in February 2020. MAIN OUTCOMES AND MEASURES Single-nucleotide variations with P < 5.00 × 10-8 were considered to show genome-wide significance of statistical association. RESULTS The Han Chinese discovery GWAS sample included 1822 cases (mean [SD] age, 35.43 [14.12] years; 838 [46%] male) and 4650 controls (mean [SD] age, 27.48 [5.97] years; 2465 [53%] male), and the replication sample included 958 cases (mean [SD] age, 37.82 [15.54] years; 412 [43%] male) and 2050 controls (mean [SD] age, 27.50 [6.00] years; 1189 [58%] male). A novel BD risk locus in Han Chinese individuals was found near the gene encoding transmembrane protein 108 (TMEM108, rs9863544; P = 2.49 × 10-8; odds ratio [OR], 0.650; 95% CI, 0.559-0.756), which is required for dendritic spine development and glutamatergic transmission in the dentate gyrus. Trans-ancestry genetic correlation estimation (ρge = 0.652, SE = 0.106; P = 7.30 × 10-10) and polygenetic risk score analyses (maximum liability-scaled Nagelkerke pseudo R2 = 1.27%; P = 1.30 × 10-19) showed evidence of shared BD genetic risk between Han Chinese and European populations, and meta-analysis identified 2 new GWAS risk loci near VRK2 (rs41335055; P = 4.98 × 10-9; OR, 0.849; 95% CI, 0.804-0.897) and RHEBL1 (rs7969091; P = 3.12 × 10-8; OR, 0.932; 95% CI, 0.909-0.956). CONCLUSIONS AND RELEVANCE This GWAS study identified several loci and genes involved in the heritable risk of BD, providing insights into its genetic architecture and biological basis.
Collapse
Affiliation(s)
- Hui-Juan Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Chen Zhang
- Clinical Research Center and Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Shanghai Key Laboratory of Psychotic Disorders, Shanghai, China
| | - Li Hui
- Suzhou Guangji Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Dong-Sheng Zhou
- Department of Psychiatry, Ningbo Kangning Hospital, Ningbo, Zhejiang, China
| | - Yi Li
- Affiliated Wuhan Mental Health Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China,Research Center for Psychological and Health Sciences, China University of Geosciences, Wuhan, Hubei, China
| | - Chu-Yi Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Chuang Wang
- Department of Pharmacology and Provincial Key Laboratory of Pathophysiology in Ningbo University School of Medicine, Ningbo, Zhejiang, China
| | - Lu Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Wenqiang Li
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China,Henan Key Lab of Biological Psychiatry, International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang Medical University, Xinxiang, Henan, China
| | - Yongfeng Yang
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China,Henan Key Lab of Biological Psychiatry, International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang Medical University, Xinxiang, Henan, China
| | - Na Qu
- Affiliated Wuhan Mental Health Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China,Research Center for Psychological and Health Sciences, China University of Geosciences, Wuhan, Hubei, China
| | - Jinsong Tang
- Department of Psychiatry, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China,Key Laboratory of Medical Neurobiology of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Ying He
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China,National Clinical Research Center for Mental Disorders, Changsha, Hunan, China,National Technology Institute of Mental Disorders, Changsha, Hunan, China,Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan, China,Mental Health Institute of Central South University, Changsha, Hunan, China,Hunan Medical Center for Mental Health, Changsha, Hunan, China
| | - Jun Zhou
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China,National Clinical Research Center for Mental Disorders, Changsha, Hunan, China,National Technology Institute of Mental Disorders, Changsha, Hunan, China,Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan, China,Mental Health Institute of Central South University, Changsha, Hunan, China,Hunan Medical Center for Mental Health, Changsha, Hunan, China
| | - Zihao Yang
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China,National Clinical Research Center for Mental Disorders, Changsha, Hunan, China,National Technology Institute of Mental Disorders, Changsha, Hunan, China,Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan, China,Mental Health Institute of Central South University, Changsha, Hunan, China,Hunan Medical Center for Mental Health, Changsha, Hunan, China
| | - Xingxing Li
- Department of Psychiatry, Ningbo Kangning Hospital, Ningbo, Zhejiang, China
| | - Jun Cai
- Clinical Research Center and Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Shanghai Key Laboratory of Psychotic Disorders, Shanghai, China
| | - Lu Yang
- Clinical Research Center and Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Chen
- Clinical Research Center and Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weixing Fan
- Jinhua Second Hospital, Jinhua, Zhejiang, China
| | - Wei Tang
- Department of Psychiatry, The Affiliated Kangning Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wenxin Tang
- Hangzhou Seventh People’s Hospital, Hangzhou, Zhejiang, China
| | - Qiu-Fang Jia
- Suzhou Guangji Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Weiqing Liu
- Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Chuanjun Zhuo
- Department of Psychiatric-Neuroimaging-Genetics and Morbidity Laboratory (PNGC-Lab), Nankai University Affiliated Tianjin Anding Hospital, Tianjin Mental Health Center, Mental Health Teaching Hospital, Tianjin Medical University, Tianjin, China
| | - Xueqin Song
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Fang Liu
- Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yan Bai
- Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Bao-Liang Zhong
- Affiliated Wuhan Mental Health Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China,Research Center for Psychological and Health Sciences, China University of Geosciences, Wuhan, Hubei, China
| | - Shu-Fang Zhang
- Affiliated Wuhan Mental Health Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China,Research Center for Psychological and Health Sciences, China University of Geosciences, Wuhan, Hubei, China
| | - Jing Chen
- Affiliated Wuhan Mental Health Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China,Research Center for Psychological and Health Sciences, China University of Geosciences, Wuhan, Hubei, China
| | - Bin Xia
- Affiliated Wuhan Mental Health Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China,Research Center for Psychological and Health Sciences, China University of Geosciences, Wuhan, Hubei, China
| | - Luxian Lv
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China,Henan Key Lab of Biological Psychiatry, International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang Medical University, Xinxiang, Henan, China,Henan Province People’s Hospital, Zhengzhou, Henan, China
| | - Zhongchun Liu
- Department of Psychiatry, Renmin Hospital, Wuhan University, Wuhan, Hubei, China
| | - Shaohua Hu
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China,The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, Zhejiang, China
| | - Xiao-Yan Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Jie-Wei Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Xin Cai
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Yong-Gang Yao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China,Kunming Institute of Zoology–The Chinese University of Hong Kong (KIZ-CUHK) Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China,CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Yuyanan Zhang
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, China,National Health Commission (NHC) Key Laboratory of Mental Health (Peking University) and National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Hao Yan
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, China,National Health Commission (NHC) Key Laboratory of Mental Health (Peking University) and National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Suhua Chang
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, China,National Health Commission (NHC) Key Laboratory of Mental Health (Peking University) and National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Jing-Ping Zhao
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China,National Clinical Research Center for Mental Disorders, Changsha, Hunan, China,National Technology Institute of Mental Disorders, Changsha, Hunan, China,Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan, China,Mental Health Institute of Central South University, Changsha, Hunan, China,Hunan Medical Center for Mental Health, Changsha, Hunan, China
| | - Wei-Hua Yue
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, China,National Health Commission (NHC) Key Laboratory of Mental Health (Peking University) and National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China,Peking-Tsinghua Joint Center for Life Sciences and Peking University (PKU) International Data Group (IDG)/McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Xiong-Jian Luo
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China,Kunming Institute of Zoology–The Chinese University of Hong Kong (KIZ-CUHK) Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Xiaogang Chen
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China,National Clinical Research Center for Mental Disorders, Changsha, Hunan, China,National Technology Institute of Mental Disorders, Changsha, Hunan, China,Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan, China,Mental Health Institute of Central South University, Changsha, Hunan, China,Hunan Medical Center for Mental Health, Changsha, Hunan, China
| | - Xiao Xiao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Yiru Fang
- Clinical Research Center and Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Shanghai Key Laboratory of Psychotic Disorders, Shanghai, China,CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Ming Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China,Kunming Institute of Zoology–The Chinese University of Hong Kong (KIZ-CUHK) Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China,CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | | |
Collapse
|
23
|
Mullins N, Huang H. Genetic Architecture of Bipolar Disorder in Individuals of Han Chinese and European Ancestries. JAMA Psychiatry 2021; 78:248-249. [PMID: 33263741 DOI: 10.1001/jamapsychiatry.2020.3639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Niamh Mullins
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York.,Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Hailiang Huang
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts.,Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston.,Department of Medicine, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
24
|
Deng SL, Hu ZL, Mao L, Gao B, Yang Q, Wang F, Chen JG. The effects of Kctd12, an auxiliary subunit of GABA B receptor in dentate gyrus on behavioral response to chronic social defeat stress in mice. Pharmacol Res 2021; 163:105355. [PMID: 33285230 DOI: 10.1016/j.phrs.2020.105355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 11/17/2020] [Accepted: 12/01/2020] [Indexed: 12/28/2022]
Abstract
Adaptive responses to stress are critical to enhance physical and mental well-being, but excessive or prolonged stress may cause inadaptability and increase the risks of psychiatric disorders, such as depression. GABABR signaling is fundamental to brain function and has been identified in neuropsychiatric disorders. KCTD12 is a critical auxiliary subunit in GABABR signaling, but its role in mental disorders, such as depression is unclear. In the present study, we used a well-validated mice model, chronic social defeat stress (CSDS) to investigate behavioral responses to stress and explore the role of Kctd12 in stress response, as well as the relevant mechanisms. We found that CSDS increased the expression of Kctd12 in the dentate gyrus (DG), a subregion of hippocampus. Overexpression of Kctd12 in DG induced higher responsiveness to acute stress and increased vulnerability to social stress in mice, whereas knock-down of Kctd12 in DG prevented the social avoidance. Furthermore, an increased expression of GABAB receptor 2 (GB2) in the DG of CSDS-treated mice was observed, and CGP35348, an antagonist of GABABR, improved the stress-induced behavior responses along with suppressing the excess expression of Kctd12. In addition, Kctd12 regulated the excitability of granule cell in DG, and the stimulation of neuronal activity by silencing Kctd12 contributed to the antidepressant-like effect of fluoxetine. These findings identify that the Kctd12 in DG works as a critical mediator of stress responses, providing a promising therapeutic target in stress-related psychiatric disorders, including depression.
Collapse
Affiliation(s)
- Si-Long Deng
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhuang-Li Hu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation (HUST), Wuhan, 430030, China; Laboratory of Neuropsychiatric Diseases, The Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, 430030, China; The Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan, 430030, China
| | - Li Mao
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Bo Gao
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qiong Yang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Fang Wang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation (HUST), Wuhan, 430030, China; Laboratory of Neuropsychiatric Diseases, The Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, 430030, China; The Collaborative-Innovation Center for Brain Science, Wuhan, 430030, China; The Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan, 430030, China.
| | - Jian-Guo Chen
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation (HUST), Wuhan, 430030, China; Laboratory of Neuropsychiatric Diseases, The Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, 430030, China; The Collaborative-Innovation Center for Brain Science, Wuhan, 430030, China; The Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan, 430030, China.
| |
Collapse
|
25
|
Combined cellomics and proteomics analysis reveals shared neuronal morphology and molecular pathway phenotypes for multiple schizophrenia risk genes. Mol Psychiatry 2021; 26:784-799. [PMID: 31142819 PMCID: PMC7910218 DOI: 10.1038/s41380-019-0436-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 03/05/2019] [Accepted: 04/17/2019] [Indexed: 01/23/2023]
Abstract
An enigma in studies of neuropsychiatric disorders is how to translate polygenic risk into disease biology. For schizophrenia, where > 145 significant GWAS loci have been identified and only a few genes directly implicated, addressing this issue is a particular challenge. We used a combined cellomics and proteomics approach to show that polygenic risk can be disentangled by searching for shared neuronal morphology and cellular pathway phenotypes of candidate schizophrenia risk genes. We first performed an automated high-content cellular screen to characterize neuronal morphology phenotypes of 41 candidate schizophrenia risk genes. The transcription factors Tcf4 and Tbr1 and the RNA topoisomerase Top3b shared a neuronal phenotype marked by an early and progressive reduction in synapse numbers upon knockdown in mouse primary neuronal cultures. Proteomics analysis subsequently showed that these three genes converge onto the syntaxin-mediated neurotransmitter release pathway, which was previously implicated in schizophrenia, but for which genetic evidence was weak. We show that dysregulation of multiple proteins in this pathway may be due to the combined effects of schizophrenia risk genes Tcf4, Tbr1, and Top3b. Together, our data provide new biological functions for schizophrenia risk genes and support the idea that polygenic risk is the result of multiple small impacts on common neuronal signaling pathways.
Collapse
|
26
|
Defining phenotypes of long-term lithium and valproate response, including combination therapy: a modified application of the Alda scale in patients with bipolar disorders. Int J Bipolar Disord 2020; 8:36. [PMID: 33215250 PMCID: PMC7677416 DOI: 10.1186/s40345-020-00199-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 08/25/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND When evaluating the long-term treatment response to mood stabilizers using the Alda scale, mood stabilizer combination therapy is typically considered a confounding factor, and patients receiving combination therapy are excluded from the analysis. However, this may result in bias if those under combination therapy are worse treatment responders. This study aims to explore whether the Alda scale is applicable to patients taking lithium and valproate combination therapy. We compared long-term treatment response in patients receiving monotherapy and combination therapy of the two drugs, and investigated clinical correlates of the responses to each drug. METHODS The study subjects consisted of 102 patients with bipolar I (BD-I) or bipolar II (BD-II) disorder who had been undergoing maintenance treatment with lithium and/or valproate for more than 2 years at a single specialized bipolar disorder clinic. Long-term treatment response was measured using the Alda scale and compared among the lithium monotherapy group, the valproate monotherapy group, and the mood stabilizer combination group. Clinical correlates of long-term treatment response were evaluated in lithium users and valproate users separately. RESULTS There were no significant differences in terms of baseline illness characteristics among groups. The combination group showed the worst treatment response for all the response measurements applied. This group also had the higher rate of 'poor responder' with a statistically significant difference compared to valproate group. Older age at onset and (hypo)manic episode at onset showed significant positive associations with total Alda score in lithium users, while comorbid anxiety disorders, obsessive-compulsive disorder and mixed episode showed significant negative associations in valproate users. CONCLUSIONS The combination group had poorer long-term treatment response but did not show distinct clinical characteristics compared to the monotherapy groups. When exploring the long-term effects of mood stabilizers, excluding patients undergoing combination treatment could result in bias because they may represent a poor response group. The long-term treatment responses of lithium and valproate had different clinical correlates.
Collapse
|
27
|
Rosenbaum MI, Clemmensen LS, Bredt DS, Bettler B, Strømgaard K. Targeting receptor complexes: a new dimension in drug discovery. Nat Rev Drug Discov 2020; 19:884-901. [PMID: 33177699 DOI: 10.1038/s41573-020-0086-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2020] [Indexed: 12/11/2022]
Abstract
Targeting receptor proteins, such as ligand-gated ion channels and G protein-coupled receptors, has directly enabled the discovery of most drugs developed to modulate receptor signalling. However, as the search for novel and improved drugs continues, an innovative approach - targeting receptor complexes - is emerging. Receptor complexes are composed of core receptor proteins and receptor-associated proteins, which have profound effects on the overall receptor structure, function and localization. Hence, targeting key protein-protein interactions within receptor complexes provides an opportunity to develop more selective drugs with fewer side effects. In this Review, we discuss our current understanding of ligand-gated ion channel and G protein-coupled receptor complexes and discuss strategies for their pharmacological modulation. Although such strategies are still in preclinical development for most receptor complexes, they exemplify how receptor complexes can be drugged, and lay the groundwork for this nascent area of research.
Collapse
Affiliation(s)
- Mette Ishøy Rosenbaum
- Center for Biopharmaceuticals, Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Louise S Clemmensen
- Center for Biopharmaceuticals, Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - David S Bredt
- Neuroscience Discovery, Janssen Pharmaceutical Companies of Johnson & Johnson, San Diego, CA, USA
| | - Bernhard Bettler
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Kristian Strømgaard
- Center for Biopharmaceuticals, Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
28
|
Mahmood T, El-Asrag ME, Poulter JA, Cardno AG, Tomlinson A, Ahmed S, Al-Amri A, Nazari J, Neill J, Chamali RS, Kiwan N, Ghuloum S, Alhaj HA, Randerson Moor J, Khan S, Al-Amin H, Johnson CA, Woodruff P, Wilkinson ID, Ali M, Clapcote SJ, Inglehearn CF. A Recessively Inherited Risk Locus on Chromosome 13q22-31 Conferring Susceptibility to Schizophrenia. Schizophr Bull 2020; 47:796-802. [PMID: 33159203 PMCID: PMC8084434 DOI: 10.1093/schbul/sbaa161] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We report a consanguineous family in which schizophrenia segregates in a manner consistent with recessive inheritance of a rare, partial-penetrance susceptibility allele. From 4 marriages between 2 sets of siblings who are half first cousins, 6 offspring have diagnoses of psychotic disorder. Homozygosity mapping revealed a 6.1-Mb homozygous region on chromosome 13q22.2-31.1 shared by all affected individuals, containing 13 protein-coding genes. Microsatellite analysis confirmed homozygosity for the affected haplotype in 12 further apparently unaffected members of the family. Psychiatric reports suggested an endophenotype of milder psychiatric illness in 4 of these individuals. Exome and genome sequencing revealed no potentially pathogenic coding or structural variants within the risk haplotype. Filtering for noncoding variants with a minor allele frequency of <0.05 identified 17 variants predicted to have significant effects, the 2 most significant being within or adjacent to the SCEL gene. RNA sequencing of blood from an affected homozygote showed the upregulation of transcription from NDFIP2 and SCEL. NDFIP2 is highly expressed in brain, unlike SCEL, and is involved in determining T helper (Th) cell type 1 and Th2 phenotypes, which have previously been implicated with schizophrenia.
Collapse
Affiliation(s)
- Tariq Mahmood
- Becklin Centre, Leeds and York Partnership NHS Foundation Trust, Leeds, UK
| | - Mohammed E El-Asrag
- Leeds Institute of Medical Research, University of Leeds, Leeds, UK
- Department of Zoology, Faculty of Science, Benha University, Benha, Egypt
- Division of Cardiovascular Sciences, School of Medicine, University of Manchester, Manchester, UK
| | - James A Poulter
- Leeds Institute of Medical Research, University of Leeds, Leeds, UK
| | | | - Anneka Tomlinson
- Becklin Centre, Leeds and York Partnership NHS Foundation Trust, Leeds, UK
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - Sophia Ahmed
- NIHR-Sheffield Biomedical Research Centre, University of Sheffield, Sheffield, UK
| | - Ahmed Al-Amri
- Leeds Institute of Medical Research, University of Leeds, Leeds, UK
- National Genetic Centre, Royal Hospital, Muscat, Oman
| | - Jamshid Nazari
- Becklin Centre, Leeds and York Partnership NHS Foundation Trust, Leeds, UK
| | - Joanna Neill
- Division of Pharmacy and Optometry, University of Manchester, Manchester, UK
| | - Rifka S Chamali
- Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, Qatar
| | - Nancy Kiwan
- Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, Qatar
| | - Suhaila Ghuloum
- Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, Qatar
- Psychiatry Department, Hamad Medical Corporation, Doha, Qatar
| | - Hamid A Alhaj
- Sheffield Health and Social Care NHS Foundation Trust, Sheffield, UK
| | | | - Shabana Khan
- Leeds Institute of Medical Research, University of Leeds, Leeds, UK
| | - Hassen Al-Amin
- Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, Qatar
| | - Colin A Johnson
- Leeds Institute of Medical Research, University of Leeds, Leeds, UK
| | - Peter Woodruff
- NIHR-Sheffield Biomedical Research Centre, University of Sheffield, Sheffield, UK
- Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, Qatar
- Psychiatry Department, Hamad Medical Corporation, Doha, Qatar
- Sheffield Health and Social Care NHS Foundation Trust, Sheffield, UK
| | - Iain D Wilkinson
- NIHR-Sheffield Biomedical Research Centre, University of Sheffield, Sheffield, UK
| | - Manir Ali
- Leeds Institute of Medical Research, University of Leeds, Leeds, UK
| | | | - Chris F Inglehearn
- Leeds Institute of Medical Research, University of Leeds, Leeds, UK
- To whom correspondence should be addressed; Beckett Street, Leeds, LS9 7TF, UK; tel: 44-(0)113-343-8646, e-mail:
| |
Collapse
|
29
|
Chen J, Tan J, Greenshaw AJ, Sawalha J, Liu Y, Zhang X, Zou W, Cheng X, Deng W, Zhang Y, Cui L, Liu C, Sun J, Cheng X, Wu Q, Li S, Mai S, Lan X, Chen Y, Cai Y, Zheng C, Cheng D, Zhang B, Yang C, Li X, Li X, Ye B, Yousefnezhad M, Zhang Y, Zhao L, Soares JC, Zhang X, Li T, Cao B, Cao L. CACNB2 rs11013860 polymorphism correlates of prefrontal cortex thickness in bipolar patients with first-episode mania. J Affect Disord 2020; 268:82-87. [PMID: 32158010 DOI: 10.1016/j.jad.2020.02.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 01/28/2020] [Accepted: 02/01/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND The β2 subunit of the voltage-gated l-type calcium channel gene(CACNB2) rs11013860 polymorphism is a putative genetic susceptibility marker for bipolar disorder (BD). However, the neural effects of CACNB2 rs11013860 in BD are largely unknown. METHODS Forty-six bipolar patients with first-episode mania and eighty-three healthy controls (HC) were genotyped for CACNB2 rs11013860 and were scanned with a 3.0 Tesla structural magnetic resonance imaging system to measure cortical thickness of prefrontal cortex (PFC) components (superior frontal cortex, orbitofrontal cortex, middle and inferior frontal gyri). RESULTS Cortical thickness was thinner in patients on all PFC measurements compared to HC (p < 0.050). Moreover, we found a significant interaction between CACNB2 genotype and diagnosis for the right superior frontal cortical thickness (F = 8.190, p = 0.040). Bonferroni corrected post-hoc tests revealed that, in CACNB2 A-allele carriers, patients displayed thinner superior frontal thickness compared to HC (p < 0.001). In patients, CACNB2 A-allele carriers also exhibited reduced superior frontal thickness compared to CACNB2 CC-allele carriers (p = 0.016). LIMITATIONS Lithium treatment may influence our results, and the sample size in our study is relatively small. CONCLUSIONS Our results suggest that the CACNB2 rs11013860 might impact PFC thickness in patients with first-episode mania. These findings provide evidence to support CACNB2 rs11013860 involvement in the emotion-processing neural circuitry abnormality in the early stage of BD, which will ultimately contribute to revealing the link between the variation in calcium channel genes and the neuropathological mechanism of BD.
Collapse
Affiliation(s)
- Jianshan Chen
- Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou HuiAi Hospital, Guangzhou, Guangdong, PR China
| | - Jiuwei Tan
- Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou HuiAi Hospital, Guangzhou, Guangdong, PR China
| | - Andrew J Greenshaw
- Department of Psychiatry, University of Alberta, Edmonton, Alberta, Canada
| | - Jeff Sawalha
- Department of Psychiatry, University of Alberta, Edmonton, Alberta, Canada
| | - Yang Liu
- Department of Psychiatry, University of Alberta, Edmonton, Alberta, Canada
| | - Xiaofei Zhang
- Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou HuiAi Hospital, Guangzhou, Guangdong, PR China
| | - Wenjin Zou
- Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou HuiAi Hospital, Guangzhou, Guangdong, PR China
| | - Xiaofang Cheng
- Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou HuiAi Hospital, Guangzhou, Guangdong, PR China
| | - Wenhao Deng
- Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou HuiAi Hospital, Guangzhou, Guangdong, PR China
| | - Yizhi Zhang
- Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou HuiAi Hospital, Guangzhou, Guangdong, PR China; General Hospital of Southern Theater Command, Guangzhou, Guangdong, PR China
| | - Liqian Cui
- The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, PR China
| | - Chuihong Liu
- Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou HuiAi Hospital, Guangzhou, Guangdong, PR China
| | - Jiaqi Sun
- Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou HuiAi Hospital, Guangzhou, Guangdong, PR China
| | - Xiongchao Cheng
- Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou HuiAi Hospital, Guangzhou, Guangdong, PR China; Nanning Fifth People's Hospital, Nanning, Guangxi Zhuang autonomous region, PR China
| | - Qiuxia Wu
- Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou HuiAi Hospital, Guangzhou, Guangdong, PR China
| | - Suyi Li
- Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou HuiAi Hospital, Guangzhou, Guangdong, PR China
| | - Siming Mai
- Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou HuiAi Hospital, Guangzhou, Guangdong, PR China
| | - Xiaofeng Lan
- Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou HuiAi Hospital, Guangzhou, Guangdong, PR China
| | - Yingmei Chen
- Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou HuiAi Hospital, Guangzhou, Guangdong, PR China
| | - Yinglian Cai
- Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou HuiAi Hospital, Guangzhou, Guangdong, PR China
| | - Chaodun Zheng
- Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou HuiAi Hospital, Guangzhou, Guangdong, PR China
| | - Daomeng Cheng
- Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou HuiAi Hospital, Guangzhou, Guangdong, PR China
| | - Bin Zhang
- Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou HuiAi Hospital, Guangzhou, Guangdong, PR China
| | - Chanjuan Yang
- Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou HuiAi Hospital, Guangzhou, Guangdong, PR China
| | - Xuan Li
- Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou HuiAi Hospital, Guangzhou, Guangdong, PR China
| | - Xinmin Li
- Department of Psychiatry, University of Alberta, Edmonton, Alberta, Canada
| | - Biyu Ye
- Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou HuiAi Hospital, Guangzhou, Guangdong, PR China
| | | | - Yamin Zhang
- The Mental Health Center, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
| | - Liansheng Zhao
- The Mental Health Center, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
| | - Jair C Soares
- Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Xiangyang Zhang
- Institute of Psychology, Chinese Academy of Sciences, Beijing, PR China
| | - Tao Li
- The Mental Health Center, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
| | - Bo Cao
- Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou HuiAi Hospital, Guangzhou, Guangdong, PR China; Department of Psychiatry, University of Alberta, Edmonton, Alberta, Canada.
| | - Liping Cao
- Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou HuiAi Hospital, Guangzhou, Guangdong, PR China.
| |
Collapse
|
30
|
Scott J, Etain B, Manchia M, Brichant-Petitjean C, Geoffroy PA, Schulze T, Alda M, Bellivier F. An examination of the quality and performance of the Alda scale for classifying lithium response phenotypes. Bipolar Disord 2020; 22:255-265. [PMID: 31466131 DOI: 10.1111/bdi.12829] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
OBJECTIVES The Retrospective Assessment of the Lithium Response Phenotype Scale (Alda scale) is the most widely used clinical measure of lithium response phenotypes. We assess its performance against recommended psychometric and clinimetric standards. METHODS We used data from the Consortium for Lithium Genetics and a French study of lithium response phenotypes (combined sample >2500) to assess reproducibility, responsiveness, validity, and interpretability of the A scale (assessing change in illness activity), the B scale, and its items (assessing confounders of response) and the previously established response categories derived from the Total Score for the Alda scale. RESULTS The key findings are that the B scale is vulnerable to error measurement. For example, some items contribute little to overall performance of the Alda scale (eg, B2) and that the B scale does not reliably assess a single construct (uncertainty in response). Machine learning models indicate that it may be more useful to employ an algorithm for combining the ratings of individual B items in a sequence that clarifies the noise to signal ratio instead of using a composite score. CONCLUSIONS This study highlights three important topics. First, empirical approaches can help determine which aspects of the performance of any scale can be improved. Second, the B scale of the Alda is best applied as a multidimensional index (identifying several independent confounders of the assessment of response). Third, an integrated science approach to precision psychiatry is vital, otherwise phenotypic misclassifications will undermine the reliability and validity of findings from genetics and biomarker studies.
Collapse
Affiliation(s)
- Jan Scott
- Institute of Neuroscience, Newcastle University, Newcastle, UK
- Université Paris Diderot and INSERM UMRS1144, Paris, France
| | - Bruno Etain
- Université Paris Diderot and INSERM UMRS1144, Paris, France
- Département de Psychiatrie et de Médecine Addictologique, AP-HP, GH Saint-Louis-Lariboisière-F. Widal, Paris, France
| | - Mirko Manchia
- Section of Psychiatry, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
- Department of Pharmacology, Dalhousie University, Halifax, NS, Canada
| | | | | | - Thomas Schulze
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, Germany
| | - Martin Alda
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
- National Institute of Mental Health, Klecany, Czech Republic
| | - Frank Bellivier
- Université Paris Diderot and INSERM UMRS1144, Paris, France
- Département de Psychiatrie et de Médecine Addictologique, AP-HP, GH Saint-Louis-Lariboisière-F. Widal, Paris, France
| | | |
Collapse
|
31
|
Amygdala GluN2B-NMDAR dysfunction is critical in abnormal aggression of neurodevelopmental origin induced by St8sia2 deficiency. Mol Psychiatry 2020; 25:2144-2161. [PMID: 30089788 PMCID: PMC7473847 DOI: 10.1038/s41380-018-0132-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 06/02/2018] [Accepted: 06/28/2018] [Indexed: 11/23/2022]
Abstract
Aggression is frequently observed in neurodevelopmental psychiatric disorders such as schizophrenia, autism, and bipolar disorder. Due to a lack of understanding of its underlying mechanisms, effective treatments for abnormal aggression are still missing. Recently, genetic variations in Sialyltransferase 2 (St8sia2) have been linked to these disorders and aggression. Here we identify abnormal aggressive behaviors and concomitant blunted fear learning in St8sia2 knockout (-/-) mice. It is worth noting that the amygdala of St8sia2-/- mice shows diminished threat-induced activation, as well as alterations in synaptic structure and function, including impaired GluN2B-containing NMDA receptor-mediated synaptic transmission and plasticity. Pharmacological rescue of NMDA receptor activity in the amygdala of St8sia2-/- mice with the partial agonist D-cycloserine restores synaptic plasticity and normalizes behavioral aberrations. Pathological aggression and associated traits were recapitulated by specific amygdala neonatal St8sia2 silencing. Our results establish a developmental link between St8sia2 deficiency and a pathological aggression syndrome, specify synaptic targets for therapeutic developments, and highlight D-cycloserine as a plausible treatment.
Collapse
|
32
|
Psychiatric Genetics, Epigenetics, and Cellular Models in Coming Years. JOURNAL OF PSYCHIATRY AND BRAIN SCIENCE 2019; 4. [PMID: 31608310 PMCID: PMC6788748 DOI: 10.20900/jpbs.20190012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Psychiatric genetic studies have uncovered hundreds of loci associated with various psychiatric disorders. We take the opportunity to review achievements in the past and provide our view of what is coming in the fields of molecular genetics, epigenetics, and cellular models. We expect that SNP-array and sequencing-based studies of genetic associations will continue to expand, covering more disorders, drug responses, phenotypes, and diverse populations. Epigenetic studies of psychiatric disorders will be another promising field with the growing recognition that environmental factors impact the risk for psychiatric disorders by modulating epigenetic factors. Functional studies of genetic findings will be needed in cellular models to provide important connections between genetic and epigenetic variants and biological phenotypes.
Collapse
|
33
|
Sereikaite V, Fritzius T, Kasaragod VB, Bader N, Maric HM, Schindelin H, Bettler B, Strømgaard K. Targeting the γ-Aminobutyric Acid Type B (GABA B) Receptor Complex: Development of Inhibitors Targeting the K + Channel Tetramerization Domain (KCTD) Containing Proteins/GABA B Receptor Protein-Protein Interaction. J Med Chem 2019; 62:8819-8830. [PMID: 31509708 DOI: 10.1021/acs.jmedchem.9b01087] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Targeting multiprotein receptor complexes, rather than receptors directly, is a promising concept in drug discovery. This is particularly relevant to the GABAB receptor complex, which plays a prominent role in many brain functions and diseases. Here, we provide the first studies targeting a key protein-protein interaction of the GABAB receptor complex-the interaction with KCTD proteins. By employing the μSPOT technology, we first defined the GABAB receptor-binding epitope mediating the KCTD interaction. Subsequently, we developed a highly potent peptide-based inhibitor that interferes with the KCTD/GABAB receptor complex and efficiently isolates endogenous KCTD proteins from mouse brain lysates. X-ray crystallography and SEC-MALS revealed inhibitor induced oligomerization of KCTD16 into a distinct hexameric structure. Thus, we provide a template for modulating the GABAB receptor complex, revealing a fundamentally novel approach for targeting GABAB receptor-associated neuropsychiatric disorders.
Collapse
Affiliation(s)
- Vita Sereikaite
- Center for Biopharmaceuticals, Department of Drug Design and Pharmacology , University of Copenhagen , 2100 Copenhagen , Denmark
| | - Thorsten Fritzius
- Department of Biomedicine , University of Basel , CH-4056 Basel , Switzerland
| | - Vikram B Kasaragod
- Rudolf Virchow Center for Experimental Biomedicine , University of Würzburg , 97080 Würzburg , Germany
| | - Nicole Bader
- Rudolf Virchow Center for Experimental Biomedicine , University of Würzburg , 97080 Würzburg , Germany
| | - Hans M Maric
- Center for Biopharmaceuticals, Department of Drug Design and Pharmacology , University of Copenhagen , 2100 Copenhagen , Denmark
| | - Hermann Schindelin
- Rudolf Virchow Center for Experimental Biomedicine , University of Würzburg , 97080 Würzburg , Germany
| | - Bernhard Bettler
- Department of Biomedicine , University of Basel , CH-4056 Basel , Switzerland
| | - Kristian Strømgaard
- Center for Biopharmaceuticals, Department of Drug Design and Pharmacology , University of Copenhagen , 2100 Copenhagen , Denmark
| |
Collapse
|
34
|
Lithium and GADL1 regulate glycogen synthase kinase-3 activity to modulate KCTD12 expression. Sci Rep 2019; 9:10255. [PMID: 31311980 PMCID: PMC6635502 DOI: 10.1038/s41598-019-46655-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 06/28/2019] [Indexed: 01/09/2023] Open
Abstract
Potassium channel tetramerization domain containing 12 (KCTD12), the auxiliary GABAB receptor subunit, is identified as a susceptibility gene for bipolar I (BPI) disorder in the Han Chinese population. Moreover, the single-nucleotide polymorphism (SNP) rs17026688 in glutamate decarboxylase–like protein 1 (GADL1) is shown to be associated with lithium response in Han Chinese BPI patients. In this study, we demonstrated for the first time the relationship among lithium, GADL1, and KCTD12. In circulating CD11b+ macrophage cells, BPI patients showed a significantly higher percentage of KCTD12 expression than healthy controls. Among BPI patients, carriers of the ‘T’ allele (i.e., CT or TT) at site rs17026688 were found to secrete lower amounts of GADL1 but higher amounts of GABA b receptor 2 (GABBR2) in the plasma. In human SH-SY5Y neuroblastoma cells, lithium treatment increased the percentage of KCTD12 expression. Through inhibition of glycogen synthase kinase-3 (GSK-3), lithium induced cyclic AMP-response element binding protein (CREB)–mediated KCTD12 promoter activation. On the other hand, GADL1 overexpression enhanced GSK-3 activation and inhibited KCTD12 expression. We found that lithium induced, whereas GADL1 inhibited, KCTD12 expression. These findings suggested that KCTD12 may be an important gene with respect to neuron excitability and lithium response in BPI patients. Therefore, targeting GSK-3 activity and/or KCTD12 expression may constitute a possible therapeutic strategy for treating patients with BPI disorder.
Collapse
|
35
|
Teng X, Aouacheria A, Lionnard L, Metz KA, Soane L, Kamiya A, Hardwick JM. KCTD: A new gene family involved in neurodevelopmental and neuropsychiatric disorders. CNS Neurosci Ther 2019; 25:887-902. [PMID: 31197948 PMCID: PMC6566181 DOI: 10.1111/cns.13156] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/02/2019] [Accepted: 05/13/2019] [Indexed: 12/12/2022] Open
Abstract
The underlying molecular basis for neurodevelopmental or neuropsychiatric disorders is not known. In contrast, mechanistic understanding of other brain disorders including neurodegeneration has advanced considerably. Yet, these do not approach the knowledge accrued for many cancers with precision therapeutics acting on well-characterized targets. Although the identification of genes responsible for neurodevelopmental and neuropsychiatric disorders remains a major obstacle, the few causally associated genes are ripe for discovery by focusing efforts to dissect their mechanisms. Here, we make a case for delving into mechanisms of the poorly characterized human KCTD gene family. Varying levels of evidence support their roles in neurocognitive disorders (KCTD3), neurodevelopmental disease (KCTD7), bipolar disorder (KCTD12), autism and schizophrenia (KCTD13), movement disorders (KCTD17), cancer (KCTD11), and obesity (KCTD15). Collective knowledge about these genes adds enhanced value, and critical insights into potential disease mechanisms have come from unexpected sources. Translation of basic research on the KCTD-related yeast protein Whi2 has revealed roles in nutrient signaling to mTORC1 (KCTD11) and an autophagy-lysosome pathway affecting mitochondria (KCTD7). Recent biochemical and structure-based studies (KCTD12, KCTD13, KCTD16) reveal mechanisms of regulating membrane channel activities through modulation of distinct GTPases. We explore how these seemingly varied functions may be disease related.
Collapse
Affiliation(s)
- Xinchen Teng
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical SciencesSoochow UniversitySuzhouChina
- W. Harry Feinstone Department of Molecular Microbiology and ImmunologyJohns Hopkins University Bloomberg School of Public HealthBaltimoreMaryland
| | - Abdel Aouacheria
- ISEM, Institut des Sciences de l'Evolution de Montpellier, CNRS, EPHE, IRDUniversité de MontpellierMontpellierFrance
| | - Loïc Lionnard
- ISEM, Institut des Sciences de l'Evolution de Montpellier, CNRS, EPHE, IRDUniversité de MontpellierMontpellierFrance
| | - Kyle A. Metz
- W. Harry Feinstone Department of Molecular Microbiology and ImmunologyJohns Hopkins University Bloomberg School of Public HealthBaltimoreMaryland
- Present address:
Feinberg School of MedicineNorthwestern UniversityChicagoUSA
| | - Lucian Soane
- W. Harry Feinstone Department of Molecular Microbiology and ImmunologyJohns Hopkins University Bloomberg School of Public HealthBaltimoreMaryland
| | - Atsushi Kamiya
- Department of Psychiatry and Behavioral SciencesJohns Hopkins School of MedicineBaltimoreMaryland
| | - J. Marie Hardwick
- W. Harry Feinstone Department of Molecular Microbiology and ImmunologyJohns Hopkins University Bloomberg School of Public HealthBaltimoreMaryland
| |
Collapse
|
36
|
Li W, Yang Y, Luo B, Zhang Y, Song X, Li M, Lv L. Association of SYNE1 locus with bipolar disorder in Chinese population. Hereditas 2019; 156:19. [PMID: 31236099 PMCID: PMC6580462 DOI: 10.1186/s41065-019-0095-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 06/11/2019] [Indexed: 01/08/2023] Open
Abstract
Objectives Genome-wide association studies (GWAS) suggest that rs9371601 in the SYNE1 gene is a risk SNP for bipolar disorder (BPD) in populations of European ancestry, but further replication analyses across distinct populations are needed. Methods We analyzed the association between rs9371601 and BPD in a Han Chinese sample of 1315 BPD cases and 1956 controls. Results We observed a significant association between rs9371601 and BPD in Han Chinese (p = 0.0121, OR = 0.859). However, further examinations revealed that the Europeans and Chinese subjects had different BPD risk alleles at the locus. We then found that rs9371601 had different “minor alleles” and distinct linkage disequilibrium (LD) patterns surrounding itself in Europeans and Han Chinese, which might be the explanation of the observed inconsistent association signals for this locus in different populations. Our explorative analyses of the biological impact of rs9371601 suggested that this SNP was significantly associated with the methylation of a CpG site (cg01844274, p = 5.05⨯10− 6) within SYNE1 in human dorsal lateral prefrontal cortex (DLPFC) tissues. Conclusions Our data confirms the association between rs9371601 and BPD, but the underlying biological mechanism remains to be fully elucidated in further studies. Electronic supplementary material The online version of this article (10.1186/s41065-019-0095-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wenqiang Li
- 1Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan China.,2Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, Henan China
| | - Yongfeng Yang
- 1Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan China.,2Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, Henan China
| | - Binbin Luo
- 1Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan China.,2Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, Henan China
| | - Yan Zhang
- 1Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan China.,2Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, Henan China
| | - Xueqin Song
- 3The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan China
| | - Ming Li
- 4Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan China
| | - Luxian Lv
- 1Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan China.,2Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, Henan China.,5Henan Province People's Hospital, Zhengzhou, Henan China
| |
Collapse
|
37
|
Fritzius T, Bettler B. The organizing principle of GABA B receptor complexes: Physiological and pharmacological implications. Basic Clin Pharmacol Toxicol 2019; 126 Suppl 6:25-34. [PMID: 31033219 PMCID: PMC7317483 DOI: 10.1111/bcpt.13241] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 04/15/2019] [Indexed: 12/19/2022]
Abstract
GABAB receptors (GBRs), the G protein-coupled receptors for the neurotransmitter γ-aminobutyric acid (GABA), regulate synaptic transmission at most synapses in the brain. Proteomic approaches revealed that native GBR complexes assemble from an inventory of ~30 proteins that provide a molecular basis for the functional diversity observed with these receptors. Studies with reconstituted GBR complexes in heterologous cells and complementary knockout studies have allowed to identify cellular and physiological functions for obligate and several non-obligate receptor components. It emerges that modular association of receptor components in space and time generates a variety of multiprotein receptor complexes with different localizations, kinetic properties and effector channels. This article summarizes current knowledge on the organizing principle of GBR complexes. We further discuss unanticipated receptor functions, links to disease and opportunities for drug discovery arising from the identification of novel receptor components.
Collapse
Affiliation(s)
- Thorsten Fritzius
- Department of Biomedicine, Institute of Physiology, University of Basel, Basel, Switzerland
| | - Bernhard Bettler
- Department of Biomedicine, Institute of Physiology, University of Basel, Basel, Switzerland
| |
Collapse
|
38
|
Structural basis for auxiliary subunit KCTD16 regulation of the GABA B receptor. Proc Natl Acad Sci U S A 2019; 116:8370-8379. [PMID: 30971491 DOI: 10.1073/pnas.1903024116] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Metabotropic GABAB receptors mediate a significant fraction of inhibitory neurotransmission in the brain. Native GABAB receptor complexes contain the principal subunits GABAB1 and GABAB2, which form an obligate heterodimer, and auxiliary subunits, known as potassium channel tetramerization domain-containing proteins (KCTDs). KCTDs interact with GABAB receptors and modify the kinetics of GABAB receptor signaling. Little is known about the molecular mechanism governing the direct association and functional coupling of GABAB receptors with these auxiliary proteins. Here, we describe the high-resolution structure of the KCTD16 oligomerization domain in complex with part of the GABAB2 receptor. A single GABAB2 C-terminal peptide is bound to the interior of an open pentamer formed by the oligomerization domain of five KCTD16 subunits. Mutation of specific amino acids identified in the structure of the GABAB2-KCTD16 interface disrupted both the biochemical association and functional modulation of GABAB receptors and G protein-activated inwardly rectifying K+ channel (GIRK) channels. These interfacial residues are conserved among KCTDs, suggesting a common mode of KCTD interaction with GABAB receptors. Defining the binding interface of GABAB receptor and KCTD reveals a potential regulatory site for modulating GABAB-receptor function in the brain.
Collapse
|
39
|
Eszlari N, Millinghoffer A, Petschner P, Gonda X, Baksa D, Pulay AJ, Réthelyi JM, Breen G, Deakin JFW, Antal P, Bagdy G, Juhasz G. Genome-wide association analysis reveals KCTD12 and miR-383-binding genes in the background of rumination. Transl Psychiatry 2019; 9:119. [PMID: 30886212 PMCID: PMC6423133 DOI: 10.1038/s41398-019-0454-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 01/31/2019] [Accepted: 02/13/2019] [Indexed: 12/12/2022] Open
Abstract
Ruminative response style is a passive and repetitive way of responding to stress, associated with several disorders. Although twin and candidate gene studies have proven the genetic underpinnings of rumination, no genome-wide association study (GWAS) has been conducted yet. We performed a GWAS on ruminative response style and its two subtypes, brooding and reflection, among 1758 European adults recruited in the general population of Budapest, Hungary, and Manchester, United Kingdom. We evaluated single-nucleotide polymorphism (SNP)-based, gene-based and gene set-based tests, together with inferences on genes regulated by our most significant SNPs. While no genome-wide significant hit emerged at the SNP level, the association of rumination survived correction for multiple testing with KCTD12 at the gene level, and with the set of genes binding miR-383 at the gene set level. SNP-level results were concordant between the Budapest and Manchester subsamples for all three rumination phenotypes. SNP-level results and their links to brain expression levels based on external databases supported the role of KCTD12, SRGAP3, and SETD5 in rumination, CDH12 in brooding, and DPYSL5, MAPRE3, KCNK3, ATXN7L3B, and TPH2 in reflection, among others. The relatively low sample size is a limitation of our study. Results of the first GWAS on rumination identified genes previously implicated in psychiatric disorders underscoring the transdiagnostic nature of rumination, and pointed to the possible role of the dorsolateral prefrontal cortex, hippocampus, and cerebellum in this cognitive process.
Collapse
Affiliation(s)
- Nora Eszlari
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary. .,NAP-2-SE New Antidepressant Target Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary.
| | - Andras Millinghoffer
- 0000 0001 0942 9821grid.11804.3cNAP-2-SE New Antidepressant Target Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary ,0000 0001 2180 0451grid.6759.dDepartment of Measurement and Information Systems, Budapest University of Technology and Economics, Budapest, Hungary
| | - Peter Petschner
- 0000 0001 0942 9821grid.11804.3cDepartment of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary ,0000 0001 0942 9821grid.11804.3cMTA-SE Neuropsychopharmacology and Neurochemistry Research Group, Hungarian Academy of Sciences, Semmelweis University, Budapest, Hungary
| | - Xenia Gonda
- 0000 0001 0942 9821grid.11804.3cNAP-2-SE New Antidepressant Target Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary ,0000 0001 0942 9821grid.11804.3cMTA-SE Neuropsychopharmacology and Neurochemistry Research Group, Hungarian Academy of Sciences, Semmelweis University, Budapest, Hungary ,0000 0001 0942 9821grid.11804.3cDepartment of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary
| | - Daniel Baksa
- 0000 0001 0942 9821grid.11804.3cDepartment of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary ,0000 0001 0942 9821grid.11804.3cSE-NAP 2 Genetic Brain Imaging Migraine Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
| | - Attila J. Pulay
- 0000 0001 0942 9821grid.11804.3cDepartment of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary
| | - János M. Réthelyi
- 0000 0001 0942 9821grid.11804.3cDepartment of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary ,0000 0001 0942 9821grid.11804.3cNAP2 Molecular Psychiatry Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
| | - Gerome Breen
- 0000 0001 2322 6764grid.13097.3cSocial, Genetic and Developmental Psychiatry Centre, King’s College London, London, UK
| | - John Francis William Deakin
- 0000000121662407grid.5379.8Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK ,0000 0004 0417 0074grid.462482.eManchester Academic Health Sciences Centre, Manchester, UK ,0000 0004 0430 6955grid.450837.dGreater Manchester Mental Health NHS Foundation Trust, Prestwich, Manchester, M25 3BL UK
| | - Peter Antal
- 0000 0001 2180 0451grid.6759.dDepartment of Measurement and Information Systems, Budapest University of Technology and Economics, Budapest, Hungary
| | - Gyorgy Bagdy
- 0000 0001 0942 9821grid.11804.3cDepartment of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary ,0000 0001 0942 9821grid.11804.3cNAP-2-SE New Antidepressant Target Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary ,0000 0001 0942 9821grid.11804.3cMTA-SE Neuropsychopharmacology and Neurochemistry Research Group, Hungarian Academy of Sciences, Semmelweis University, Budapest, Hungary
| | - Gabriella Juhasz
- 0000 0001 0942 9821grid.11804.3cDepartment of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary ,0000 0001 0942 9821grid.11804.3cNAP-2-SE New Antidepressant Target Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary ,0000 0001 0942 9821grid.11804.3cMTA-SE Neuropsychopharmacology and Neurochemistry Research Group, Hungarian Academy of Sciences, Semmelweis University, Budapest, Hungary ,0000 0001 0942 9821grid.11804.3cSE-NAP 2 Genetic Brain Imaging Migraine Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary ,0000000121662407grid.5379.8Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK ,0000 0004 0417 0074grid.462482.eManchester Academic Health Sciences Centre, Manchester, UK
| |
Collapse
|
40
|
Structural basis for KCTD-mediated rapid desensitization of GABA B signalling. Nature 2019; 567:127-131. [PMID: 30814734 PMCID: PMC6405316 DOI: 10.1038/s41586-019-0990-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 01/24/2019] [Indexed: 11/23/2022]
Abstract
The GABAB receptor is one of the principal inhibitory neurotransmitter receptors in the brain, and it signals through heterotrimeric G proteins to activate a variety of effectors including G protein-coupled inwardly-rectifying potassium channels (GIRKs)1,2. GABAB receptor signaling is tightly regulated by auxiliary subunits called KCTDs, which control the kinetics of GIRK activation and desensitization3–5. However, the mechanistic basis for KCTD modulation of GABAB signaling remains incompletely understood. Here, using a combination of X-ray crystallography, electron microscopy, functional and biochemical experiments we reveal the molecular details of KCTD binding to both GABAB receptors and Gβγ subunits. KCTDs associate with the receptor by forming an asymmetric pentameric ring around a region of the receptor C-terminal tail, while a second KCTD domain, H1, engages in a symmetric interaction with five copies of Gβγ in which the G protein subunits also directly interact with one another. We further show that KCTD binding to Gβγ is highly cooperative, defining a model in which KCTDs cooperatively strip G proteins from GIRK channels to induce rapid desensitization following receptor activation. These results provide a framework for understanding the molecular basis for the precise temporal control of GABAB signaling by KCTD proteins.
Collapse
|
41
|
Liu F, Gong X, Yao X, Cui L, Yin Z, Li C, Tang Y, Wang F. Variation in the CACNB2 gene is associated with functional connectivity of the Hippocampus in bipolar disorder. BMC Psychiatry 2019; 19:62. [PMID: 30744588 PMCID: PMC6371424 DOI: 10.1186/s12888-019-2040-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 01/28/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Calcium voltage-gated channel auxiliary subunit β2 is a protein that, in humans, is encoded by the CACNB2 gene. The β2 subunit is an auxiliary protein of voltage-gated calcium channels, which is predominantly expressed in hippocampal pyramidal neurons. A single-nucleotide polymorphism at the CACNB2 gene (rs11013860) has been reported in genome-wide association studies to be associated with bipolar disorder (BD). However, the neural effects of rs11013860 expression are unknown. Thus, the current study investigated the mechanisms of how the CACNB2 gene influences hippocampal-cortical limbic circuits in patients with bipolar disorder (BD). METHODS A total of 202 subjects were studied [69 BD patients and 133 healthy controls (HC)]. Participants agreed to undergo resting-state functional magnetic resonance imaging (rs-fMRI) and have blood drawn for genetic testing. Participants were found to belong to either a CC group homozygous for the C-allele (17 BD, 41 HC), or an A-carrier group carrying the high risk A-allele (AA/CA genotypes; 52 BD, 92 HC). Brain activity was assessed using resting-state functional connectivity (rs-FC) analyses. RESULTS A main effect of genotype showed that the rs-FC of the AA/CA group was elevated more than that of the CC-group between the hippocampus and the regions of right-inferior temporal, fusiform, and left-inferior occipital gyri. Additionally, a significant diagnosis × genotype interaction was noted between the hippocampus and right pars triangularis. Furthermore, in BD patients, the AA/CA group showed lower rs-FC when compared to that of the CC group. Additionally, individuals from HC within the AA/CA group showed higher rs-FC than that of the CC group. Finally, within C-allele-carrying groups, individuals with BD showed significantly increased rs-FC compared to that of HC. CONCLUSIONS Our study demonstrates that BD patients with the CACNB2 rs11013860 AA/CA genotype may exhibit altered hippocampal-cortical connectivity.
Collapse
Affiliation(s)
- Fang Liu
- grid.412636.4Department of Psychiatry, First Affiliated Hospital, China Medical University, 155 Nanjing North Street, Shenyang, 110001 Liaoning China ,0000 0004 0369 4060grid.54549.39The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaohong Gong
- A605, Building School of Life SCiences, Songhu Road 2005, Dinstric Yangpu, Shanghai, China
| | - Xudong Yao
- grid.412636.4Department of Psychiatry, First Affiliated Hospital, China Medical University, 155 Nanjing North Street, Shenyang, 110001 Liaoning China ,0000 0004 0369 4060grid.54549.39The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Lingling Cui
- grid.412636.4Department of Radiology, First Affiliated Hospital, China Medical University, Shenyang, Liaoning People’s Republic of China
| | - Zhiyang Yin
- grid.412636.4Department of Psychiatry, First Affiliated Hospital, China Medical University, 155 Nanjing North Street, Shenyang, 110001 Liaoning China
| | - Chao Li
- grid.412636.4Department of Radiology, First Affiliated Hospital, China Medical University, Shenyang, Liaoning People’s Republic of China
| | - Yanqing Tang
- Department of Psychiatry, First Affiliated Hospital, China Medical University, 155 Nanjing North Street, Shenyang, 110001, Liaoning, China. .,Department of Geriatric Medicine, First Affiliated Hospital, China Medical University, Shenyang, Liaoning, People's Republic of China.
| | - Fei Wang
- Department of Psychiatry, First Affiliated Hospital, China Medical University, 155 Nanjing North Street, Shenyang, 110001, Liaoning, China. .,Department of Radiology, First Affiliated Hospital, China Medical University, Shenyang, Liaoning, People's Republic of China. .,Brain Function Research Section, First Affiliated Hospital, China Medical University, Shenyang, Liaoning, People's Republic of China.
| |
Collapse
|
42
|
Mehta D, Czamara D. GWAS of Behavioral Traits. Curr Top Behav Neurosci 2019; 42:1-34. [PMID: 31407241 DOI: 10.1007/7854_2019_105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Over the past decade, genome-wide association studies (GWAS) have evolved into a powerful tool to investigate genetic risk factors for human diseases via a hypothesis-free scan of the genome. The success of GWAS for psychiatric disorders and behavioral traits have been somewhat mixed, partly owing to the complexity and heterogeneity of these traits. Significant progress has been made in the last few years in the development and implementation of complex statistical methods and algorithms incorporating GWAS. Such advanced statistical methods applied to GWAS hits in combination with incorporation of different layers of genomics data have catapulted the search for novel genes for behavioral traits and improved our understanding of the complex polygenic architecture of these traits.This chapter will give a brief overview on GWAS and statistical methods currently used in GWAS. The chapter will focus on reviewing the current literature and highlight some of the most important GWAS on psychiatric and other behavioral traits and will conclude with a discussion on future directions.
Collapse
Affiliation(s)
- Divya Mehta
- School of Psychology and Counselling, Faculty of Health, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia.
| | - Darina Czamara
- Department of Translational Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| |
Collapse
|
43
|
Zhao L, Chang H, Zhou DS, Cai J, Fan W, Tang W, Tang W, Li X, Liu W, Liu F, He Y, Bai Y, Sun Y, Dai J, Li L, Xiao X, Zhang C, Li M. Replicated associations of FADS1, MAD1L1, and a rare variant at 10q26.13 with bipolar disorder in Chinese population. Transl Psychiatry 2018; 8:270. [PMID: 30531795 PMCID: PMC6286364 DOI: 10.1038/s41398-018-0337-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 10/07/2018] [Accepted: 11/13/2018] [Indexed: 12/12/2022] Open
Abstract
Genetic analyses of psychiatric illnesses, such as bipolar disorder (BPD), have revealed essential information regarding the underlying pathological mechanisms. While such studies in populations of European ancestry have achieved prominent success, understanding the genetic risk factors of these illnesses (especially BPD) in Chinese population remains an urgent task. Given the lack of genome-wide association study (GWAS) of BPD in Chinese population from Mainland China, replicating the previously reported GWAS hits in distinct populations will provide valuable information for future GWAS analysis in Han Chinese. In the present study, we have recruited 1146 BPD cases and 1956 controls from Mainland China for genetic analyses, as well as 65 Han Chinese brain amygdala tissues for mRNA expression analyses. Using this clinical sample, one of the largest Han Chinese BPD samples till now, we have conducted replication analyses of 21 single nucleotide polymorphisms (SNPs) extracted from previous GWAS of distinct populations. Among the 21 tested SNPs, 16 showed the same direction of allelic effects in our samples compared with previous studies; 6 SNPs achieved nominal significance (p < 0.05) at one-tailed test, and 2 additional SNPs showed marginal significance (p < 0.10). Aside from replicating previously reported BPD risk SNPs, we herein also report several intriguing findings: (1) the SNP rs174576 was associated with BPD in our Chinese sample and in the overall global meta-analysis, and was significantly correlated with FADS1 mRNA in diverse public RNA-seq datasets as well as our in house collected Chinese amygdala samples; (2) two (partially) independent SNPs in MAD1L1 were both significantly associated with BPD in our Chinese sample, which was also supported by haplotype analysis; (3) a rare SNP rs78089757 in 10q26.13 region was a genome-wide significant variant for BPD in East Asians, and this SNP was near monomorphic in Europeans. In sum, these results confirmed several significant BPD risk genes. We hope this Chinese BPD case-control sample and the current brain amygdala tissues (with continuous increasing sample size in the near future) will provide helpful resources in elucidating the genetic and molecular basis of BPD in this major world population.
Collapse
Affiliation(s)
- Lijuan Zhao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Hong Chang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China
| | - Dong-Sheng Zhou
- Department of Psychiatry, Ningbo Kangning Hospital, Ningbo, Zhejiang, China
| | - Jun Cai
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weixing Fan
- Jinhua Second Hospital, Jinhua, Zhejiang, China
| | - Wei Tang
- Wenzhou Kangning Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wenxin Tang
- Hangzhou Seventh People's Hospital, Hangzhou, Zhejiang, China
| | - Xingxing Li
- Department of Psychiatry, Ningbo Kangning Hospital, Ningbo, Zhejiang, China
| | - Weiqing Liu
- Department of Psychiatry, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Fang Liu
- Department of Psychiatry, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yuanfang He
- Department of Psychiatry, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yan Bai
- Department of Psychiatry, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yan Sun
- Wuhan Institute for Neuroscience and Neuroengineering, South-Central University for Nationalities, Wuhan, Hubei, China
- Chinese Brain Bank Center, Wuhan, Hubei, China
| | - Jiapei Dai
- Wuhan Institute for Neuroscience and Neuroengineering, South-Central University for Nationalities, Wuhan, Hubei, China
- Chinese Brain Bank Center, Wuhan, Hubei, China
| | - Lingyi Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China
| | - Xiao Xiao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China.
| | - Chen Zhang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Ming Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China.
- CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
44
|
Mental disorders and an acidic glycan-from the perspective of polysialic acid (PSA/polySia) and the synthesizing enzyme, ST8SIA2. Glycoconj J 2018; 35:353-373. [PMID: 30058042 DOI: 10.1007/s10719-018-9832-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 07/02/2018] [Accepted: 07/03/2018] [Indexed: 02/08/2023]
Abstract
Mental disorders, such as schizophrenia, bipolar disorder, and autism spectrum disorder, are challenging to manage, worldwide. Understanding the molecular mechanisms underlying these disorders is essential and required. Studies investigating such molecular mechanisms are well performed and important findings are accumulating apace. Based on the fact that these disorders are due in part to the accumulation of genetic and environmental risk factors, consideration of multi-molecular and/or multi-system dependent phenomena might be important. Acidic glycans are an attractive family of molecules for understanding these disorders, because impairment of the fine-tuned glycan system affects a large number of molecules that are deeply involved in normal brain function. One of the candidates of this important family of glycan epitopes in the brain is polysialic acid (PSA/polySia). PSA is a well-known molecule because of its role as an oncodevelopmental antigen and is also widely used as a marker of adult neurogenesis. Recently, several reports have suggested that PSA and PSA-related genes are associated with multiple mental disorders. The relationships among PSA, PSA-related genes, and mental disorders are reviewed here.
Collapse
|
45
|
Ikeda M, Takahashi A, Kamatani Y, Okahisa Y, Kunugi H, Mori N, Sasaki T, Ohmori T, Okamoto Y, Kawasaki H, Shimodera S, Kato T, Yoneda H, Yoshimura R, Iyo M, Matsuda K, Akiyama M, Ashikawa K, Kashiwase K, Tokunaga K, Kondo K, Saito T, Shimasaki A, Kawase K, Kitajima T, Matsuo K, Itokawa M, Someya T, Inada T, Hashimoto R, Inoue T, Akiyama K, Tanii H, Arai H, Kanba S, Ozaki N, Kusumi I, Yoshikawa T, Kubo M, Iwata N. A genome-wide association study identifies two novel susceptibility loci and trans population polygenicity associated with bipolar disorder. Mol Psychiatry 2018; 23:639-647. [PMID: 28115744 PMCID: PMC5822448 DOI: 10.1038/mp.2016.259] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 11/29/2016] [Accepted: 12/13/2016] [Indexed: 11/09/2022]
Abstract
Genome-wide association studies (GWASs) have identified several susceptibility loci for bipolar disorder (BD) and shown that the genetic architecture of BD can be explained by polygenicity, with numerous variants contributing to BD. In the present GWAS (Phase I/II), which included 2964 BD and 61 887 control subjects from the Japanese population, we detected a novel susceptibility locus at 11q12.2 (rs28456, P=6.4 × 10-9), a region known to contain regulatory genes for plasma lipid levels (FADS1/2/3). A subsequent meta-analysis of Phase I/II and the Psychiatric GWAS Consortium for BD (PGC-BD) identified another novel BD gene, NFIX (Pbest=5.8 × 10-10), and supported three regions previously implicated in BD susceptibility: MAD1L1 (Pbest=1.9 × 10-9), TRANK1 (Pbest=2.1 × 10-9) and ODZ4 (Pbest=3.3 × 10-9). Polygenicity of BD within Japanese and trans-European-Japanese populations was assessed with risk profile score analysis. We detected higher scores in BD cases both within (Phase I/II) and across populations (Phase I/II and PGC-BD). These were defined by (1) Phase II as discovery and Phase I as target, or vice versa (for 'within Japanese comparisons', Pbest~10-29, R2~2%), and (2) European PGC-BD as discovery and Japanese BD (Phase I/II) as target (for 'trans-European-Japanese comparison,' Pbest~10-13, R2~0.27%). This 'trans population' effect was supported by estimation of the genetic correlation using the effect size based on each population (liability estimates~0.7). These results indicate that (1) two novel and three previously implicated loci are significantly associated with BD and that (2) BD 'risk' effect are shared between Japanese and European populations.
Collapse
Affiliation(s)
- M Ikeda
- Department of Psychiatry, Fujita Health University School of Medicine, Toyoake, Japan
| | - A Takahashi
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Laboratory for Omics Informatics, Omics Research Center, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Y Kamatani
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Y Okahisa
- Department of Neuropsychiatry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - H Kunugi
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - N Mori
- Department of Psychiatry and Neurology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - T Sasaki
- Laboratory of Health Education, Graduate School of Education, the University of Tokyo, Tokyo, Japan
| | - T Ohmori
- Department of Psychiatry, Course of Integrated Brain Sciences, Medical Informatics, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan
| | - Y Okamoto
- Department of Psychiatry and Neurosciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - H Kawasaki
- Department of Psychiatry, Fukuoka University, Faculty of Medicine, Fukuoka, Japan
| | - S Shimodera
- Department of Neuropsychiatry, Kochi Medical School, Kochi University, Nankoku, Japan
| | - T Kato
- Laboratory for Molecular Dynamics of Mental Disorders, RIKEN Brain Science Institute, Wako, Japan
| | - H Yoneda
- Department of Neuropsychiatry, Osaka Medical College, Takatsuki, Japan
| | - R Yoshimura
- Department of Psychiatry, University of Occupational and Environmental Health, Kitakyusyu, Japan
| | - M Iyo
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan
| | - K Matsuda
- Laboratory of Clinical Sequence, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - M Akiyama
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - K Ashikawa
- Laboratory for Genotyping Development, Center for Integrative Medical Sciences, RIKEN, Japan
| | - K Kashiwase
- Japanese Red Cross Kanto-Koshinetsu Block Blood Center, Tokyo, Japan
| | - K Tokunaga
- Department of Human Genetics, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - K Kondo
- Department of Psychiatry, Fujita Health University School of Medicine, Toyoake, Japan
| | - T Saito
- Department of Psychiatry, Fujita Health University School of Medicine, Toyoake, Japan
| | - A Shimasaki
- Department of Psychiatry, Fujita Health University School of Medicine, Toyoake, Japan
| | - K Kawase
- Department of Psychiatry, Fujita Health University School of Medicine, Toyoake, Japan
| | - T Kitajima
- Department of Psychiatry, Fujita Health University School of Medicine, Toyoake, Japan
| | - K Matsuo
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - M Itokawa
- Center for Medical Cooperation, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - T Someya
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - T Inada
- Department of Psychiatry, Nagoya University, Graduate School of Medicine, Nagoya, Japan
| | - R Hashimoto
- Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, Osaka University, Suita, Japan
| | - T Inoue
- Department of Psychiatry, Tokyo Medical University, Tokyo, Japan
| | - K Akiyama
- Department of Biological Psychiatry and Neuroscience, Dokkyo Medical University School of Medicine, Mibu, Japan
| | - H Tanii
- Department of Neuropsychiatry, Mie University, Graduate School of Medicine, Tsu, Japan
| | - H Arai
- Department of Psychiatry and Behavioral Sciences, Juntendo Graduate School of Medicine, Tokyo, Japan
| | - S Kanba
- Department of Neuropsychiatry, Kyushu University, Graduate School of Medical Sciences, Fukuoka, Japan
| | - N Ozaki
- Department of Psychiatry, Nagoya University, Graduate School of Medicine, Nagoya, Japan
| | - I Kusumi
- Department of Psychiatry, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - T Yoshikawa
- Laboratory for Molecular Psychiatry, RIKEN Brain Science Institute, Wako, Japan
| | - M Kubo
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - N Iwata
- Department of Psychiatry, Fujita Health University School of Medicine, Toyoake, Japan
| |
Collapse
|
46
|
Ikeda M, Saito T, Kondo K, Iwata N. Genome-wide association studies of bipolar disorder: A systematic review of recent findings and their clinical implications. Psychiatry Clin Neurosci 2018; 72:52-63. [PMID: 29057581 DOI: 10.1111/pcn.12611] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 10/16/2017] [Accepted: 10/17/2017] [Indexed: 01/05/2023]
Abstract
Recent advances in molecular genetics have enabled assessments of the associations among genetic variants (e.g., single-nucleotide polymorphisms) and susceptibility for complex diseases, including psychiatric disorders. Specifically, genome-wide association studies (GWAS), meta-analyses of the GWAS summary statistics, and mega-analyses (which use raw data, not summary statistics) of GWAS have provided revolutionary results and have identified numerous susceptibility genes or single-nucleotide polymorphisms. By using several tens of thousands of subjects, >40 genes have been identified as being associated with susceptibility for bipolar disorder so far. The purpose of this systematic review was to summarize the recent findings of bipolar disorder GWAS and discuss their clinical implications.
Collapse
Affiliation(s)
- Masashi Ikeda
- Department of Psychiatry, Fujita Health University School of Medicine, Toyoake, Japan
| | - Takeo Saito
- Department of Psychiatry, Fujita Health University School of Medicine, Toyoake, Japan
| | - Kenji Kondo
- Department of Psychiatry, Fujita Health University School of Medicine, Toyoake, Japan
| | - Nakao Iwata
- Department of Psychiatry, Fujita Health University School of Medicine, Toyoake, Japan
| |
Collapse
|
47
|
Abstract
OBJECTIVE Converging evidence has suggested ankyrin 3 (ANK3) as a risk gene for bipolar disorder (BD). However, association studies investigating its genetic variants and BD susceptibility have reported inconsistent results. In the present meta-analysis, we aimed to establish whether ANK3 single nucleotide polymorphisms (SNPs) confer increased risk for BD. METHODS PubMed, Medline, PsycINFO, Embase, and Scopus were searched for literature published up to January 2017. Fourteen case-control studies met our eligibility criteria. We targeted ANK3 SNPs that have been reported by three or more studies to be included in the current meta-analysis, resulting in a final list of four SNPs: rs10994336, rs9804190, rs10994397, and rs1938526. Odds ratios (ORs) for the allele model were calculated using a random effect model as a measure of association. Additional experimental characteristics and between-study heterogeneity were explored using sensitivity test, subgroup analysis, and meta-regression techniques. Publication bias was also assessed using Egger's test and rank correlation test. RESULTS Overall, a significant association was found between BD and rs10994336 (OR=1.18; 95% confidence interval: 1.06-1.31; P=0.0027) as well as rs1938526 (OR=1.16; 95% confidence interval: 1.06-1.28; P=0.0016). Subsequent sensitivity analysis and publication bias test reaffirmed the stability and consistency of these results. CONCLUSION The current meta-analysis provides corroborating evidence suggesting two ANK3 SNPs are associated with an increased susceptibility for developing BD. However, broader coverage is needed on less explored SNPs to further elucidate the genetic effect of other ANK3 variants that may harbor potential BD risk.
Collapse
|
48
|
Wang L, Chen J, Li Z, Sun W, Chen B, Li S, Li W, Lu D, Wang Y, Shi Y. Association study of NDST3 gene for schizophrenia, bipolar disorder, major depressive disorder in the Han Chinese population. Am J Med Genet B Neuropsychiatr Genet 2018; 177:3-9. [PMID: 29140583 DOI: 10.1002/ajmg.b.32573] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 07/05/2017] [Indexed: 12/14/2022]
Abstract
The NDST3 gene at 4q26 was a functional candidate gene for mental disorders. Recently, a novel genome-wide significant risk locus at chromosome 4q26 was identified and the top single nucleotide polymorphism rs11098403 in the vicinity of NDST3 gene was reported to confer risk of schizophrenia in Caucasian. Nevertheless, association between NDST3 gene polymorphisms and schizophrenia, bipolar disorder, or major depressive disorders has not been well studied in the Han Chinese population. To further investigate whether NDST3 is a risk gene for these mental disorders, we genotyped and analyzed eight tag SNPs (rs11098403, rs10857057, rs2389521, rs4833564, rs6837896, rs7689157, rs3817274, rs609512) covering NDST3 gene in 1,248 schizophrenia cases, 1,056 major depression cases, 1,344 bipolar disorder cases, and 1,248 controls of Chinese origin. However, there was no significant difference in allelic or genotypic frequency observed between each case group and healthy controls. Accordingly, our study does not support that the NDST3 gene plays a major role in schizophrenia, bipolar disorder, and major depressive disorder in the Han Chinese population.
Collapse
Affiliation(s)
- Lin Wang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), The Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Jianhua Chen
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), The Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, P. R. China.,Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
| | - Zhiqiang Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), The Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Weiming Sun
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), The Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Boyu Chen
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), The Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Sining Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), The Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, P. R. China.,ULink College of Shanghai, Shanghai, P. R. China
| | - Weidong Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), The Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Dajiang Lu
- School of Kinesiology, Shanghai University of Sport, Shanghai, P. R. China
| | - Yonggang Wang
- Department of Neurology, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Yongyong Shi
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), The Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, P. R. China.,Shanghai Changning Mental Health Center, Shanghai, P. R. China.,Institute of Neuropsychiatric Science and Systems Biological Medicine, Shanghai Jiao Tong University, Shanghai, P. R. China
| |
Collapse
|
49
|
Porcelli S, Lee SJ, Han C, Patkar AA, Albani D, Jun TY, Pae CU, Serretti A. Hot Genes in Schizophrenia: How Clinical Datasets Could Help to Refine their Role. J Mol Neurosci 2017; 64:273-286. [DOI: 10.1007/s12031-017-1016-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 12/12/2017] [Indexed: 11/25/2022]
|
50
|
Integration of Multiple Genomic Data Sources in a Bayesian Cox Model for Variable Selection and Prediction. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2017; 2017:7340565. [PMID: 28828032 PMCID: PMC5554576 DOI: 10.1155/2017/7340565] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 04/23/2017] [Accepted: 05/11/2017] [Indexed: 11/18/2022]
Abstract
Bayesian variable selection becomes more and more important in statistical analyses, in particular when performing variable selection in high dimensions. For survival time models and in the presence of genomic data, the state of the art is still quite unexploited. One of the more recent approaches suggests a Bayesian semiparametric proportional hazards model for right censored time-to-event data. We extend this model to directly include variable selection, based on a stochastic search procedure within a Markov chain Monte Carlo sampler for inference. This equips us with an intuitive and flexible approach and provides a way for integrating additional data sources and further extensions. We make use of the possibility of implementing parallel tempering to help improve the mixing of the Markov chains. In our examples, we use this Bayesian approach to integrate copy number variation data into a gene-expression-based survival prediction model. This is achieved by formulating an informed prior based on copy number variation. We perform a simulation study to investigate the model's behavior and prediction performance in different situations before applying it to a dataset of glioblastoma patients and evaluating the biological relevance of the findings.
Collapse
|