1
|
Legault LM, Dupas T, Breton-Larrivée M, Filion-Bienvenue F, Lemieux A, Langford-Avelar A, McGraw S. Sex-specific DNA methylation and gene expression changes in mouse placentas after early preimplantation alcohol exposure. ENVIRONMENT INTERNATIONAL 2024; 192:109014. [PMID: 39321537 DOI: 10.1016/j.envint.2024.109014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 09/13/2024] [Accepted: 09/14/2024] [Indexed: 09/27/2024]
Abstract
During pregnancy, exposure to alcohol represents an environmental insult capable of negatively impacting embryonic development. This influence can stem from disruption of molecular profiles, ultimately leading to manifestation of fetal alcohol spectrum disorder. Despite the central role of the placenta in proper embryonic development and successful pregnancy, studies on the placenta in a prenatal alcohol exposure and fetal alcohol spectrum disorder context are markedly lacking. Here, we employed a well-established model for preimplantation alcohol exposure, specifically targeting embryonic day 2.5, corresponding to the 8-cell stage. The exposure was administered to pregnant C57BL/6 female mice through subcutaneous injection, involving two doses of either 2.5 g/kg 50 % ethanol or an equivalent volume of saline at 2-hour intervals. Morphology, DNA methylation and gene expression patterns were assessed in male and female late-gestation (E18.5) placentas. While overall placental morphology was not altered, we found a significant decrease in male ethanol-exposed embryo weights. When looking at molecular profiles, we uncovered numerous differentially methylated regions (DMRs; 991 in males; 1309 in females) and differentially expressed genes (DEGs; 1046 in males; 340 in females) in the placentas. Remarkably, only 21 DMRs and 54 DEGs were common to both sexes, which were enriched for genes involved in growth factor response pathways. Preimplantation alcohol exposure had a greater impact on imprinted genes expression in male placentas (imprinted DEGs: 18 in males; 1 in females). Finally, by using machine learning model (L1 regularization), we were able to precisely discriminate control and ethanol-exposed placentas based on their specific DNA methylation patterns. This is the first study demonstrating that preimplantation alcohol exposure alters the DNA methylation and transcriptomic profiles of late-gestation placentas in a sex-specific manner. Our findings highlight that the DNA methylation profiles of the placenta could serve as a potent predictive molecular signature for early preimplantation alcohol exposure.
Collapse
Affiliation(s)
- Lisa-Marie Legault
- CHU Ste-Justine Azrieli Research Center, 3175 Chemin de la Côte-Sainte-Catherine, Montréal, QC H3T 1C5, Canada; Department of Biochemistry and Molecular Medicine, Université de Montréal, 2900 Boulevard Edouard‑Montpetit, Montréal, QC H3T 1J4, Canada.
| | - Thomas Dupas
- CHU Ste-Justine Azrieli Research Center, 3175 Chemin de la Côte-Sainte-Catherine, Montréal, QC H3T 1C5, Canada; Department of Obstetrics and Gynecology, Université de Montréal, 2900 Boulevard Edouard‑Montpetit, Montréal, QC H3T 1J4, Canada.
| | - Mélanie Breton-Larrivée
- CHU Ste-Justine Azrieli Research Center, 3175 Chemin de la Côte-Sainte-Catherine, Montréal, QC H3T 1C5, Canada; Department of Biochemistry and Molecular Medicine, Université de Montréal, 2900 Boulevard Edouard‑Montpetit, Montréal, QC H3T 1J4, Canada.
| | - Fannie Filion-Bienvenue
- CHU Ste-Justine Azrieli Research Center, 3175 Chemin de la Côte-Sainte-Catherine, Montréal, QC H3T 1C5, Canada; Department of Biochemistry and Molecular Medicine, Université de Montréal, 2900 Boulevard Edouard‑Montpetit, Montréal, QC H3T 1J4, Canada.
| | - Anthony Lemieux
- CHU Ste-Justine Azrieli Research Center, 3175 Chemin de la Côte-Sainte-Catherine, Montréal, QC H3T 1C5, Canada.
| | - Alexandra Langford-Avelar
- CHU Ste-Justine Azrieli Research Center, 3175 Chemin de la Côte-Sainte-Catherine, Montréal, QC H3T 1C5, Canada; Department of Biochemistry and Molecular Medicine, Université de Montréal, 2900 Boulevard Edouard‑Montpetit, Montréal, QC H3T 1J4, Canada.
| | - Serge McGraw
- CHU Ste-Justine Azrieli Research Center, 3175 Chemin de la Côte-Sainte-Catherine, Montréal, QC H3T 1C5, Canada; Department of Biochemistry and Molecular Medicine, Université de Montréal, 2900 Boulevard Edouard‑Montpetit, Montréal, QC H3T 1J4, Canada; Department of Obstetrics and Gynecology, Université de Montréal, 2900 Boulevard Edouard‑Montpetit, Montréal, QC H3T 1J4, Canada.
| |
Collapse
|
2
|
Vachalova V, Kumnova F, Synova T, Anandam KY, Abad C, Karahoda R, Staud F. Metformin inhibits OCT3-mediated serotonin transport in the placenta. Biomed Pharmacother 2024; 179:117399. [PMID: 39243433 DOI: 10.1016/j.biopha.2024.117399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/19/2024] [Accepted: 09/01/2024] [Indexed: 09/09/2024] Open
Abstract
Proper fetal development requires tight regulation of serotonin concentrations within the fetoplacental unit. This homeostasis is partly maintained by the placental transporter OCT3/SLC22A3, which takes up serotonin from the fetal circulation. Metformin, an antidiabetic drug commonly used to treat gestational diabetes mellitus, was shown to inhibit OCT3. We, therefore, hypothesized that its use during pregnancy could disrupt placental serotonin homeostasis. This hypothesis was tested using three experimental model systems: primary trophoblast cells isolated from the human term placenta, fresh villous human term placenta fragments, and rat term placenta perfusions. Inhibition of serotonin transport by metformin at three concentrations (1 μM, 10 μM, and 100 μM) was assessed in all three models. The OCT3 inhibitor decynium-22 (100 μM) and paroxetine (100 μM), a dual inhibitor of SERT and OCT3, were used as controls. In primary trophoblasts, paroxetine exhibited the strongest inhibition of serotonin uptake, followed by decynium-22. Metformin showed a concentration-dependent effect, reducing serotonin uptake by up to 57 % at the highest concentration. Its inhibitory effect was less pronounced in fresh villous fragments but remained statistically significant at all concentrations. In the perfused rat placenta, metformin demonstrated a concentration-dependent effect, reducing placental serotonin uptake by 44 % at the highest concentration tested. Our findings across all experimental models show inhibition of placental OCT3 by metformin, resulting in reduced serotonin uptake by the trophoblast. This sheds light on mechanisms that may underpin metformin-mediated effects on fetal development.
Collapse
Affiliation(s)
- Veronika Vachalova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Fiona Kumnova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Tetiana Synova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Kasin Yadunandam Anandam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Cilia Abad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Rona Karahoda
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Frantisek Staud
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic.
| |
Collapse
|
3
|
Li X, Liang X, Ma S, Zhao S, Wang W, Li M, Feng D, Tang M. SERT and OCT mediate 5-HT 1B receptor regulation of immobility behavior and uptake of 5-HT and HIS. Biomed Pharmacother 2024; 177:117017. [PMID: 38917762 DOI: 10.1016/j.biopha.2024.117017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/15/2024] [Accepted: 06/18/2024] [Indexed: 06/27/2024] Open
Abstract
5-HT clearance, commonly mediated by transporters in the uptake-1 and uptake-2 families, has been linked to 5-HT1B receptor's action on behaviors. Since no specific transporters identified yet, effects of serotonin transporter (SERT) and organic cation transporter (OCTs) on 5-HT1B-elicited immobility phenotype, and 5-HT and HIS uptake were then investigated. Intraperitoneal injections of SERT inhibitor fluoxetine (FLX) and/or OCTs inhibitor decynium (D22) were used prior to local perfusion of 5-HT1B agonist CP93129 into the ventral hippocampus to measure immobility times in the FST and TST, to measure 5-HT uptake efficiencies and HIS uptake efficiencies derived from linear regressions using the transient no-net-flux quantitative microdialysis in C57BL/6 mice. Exogenous 5-HT and HIS uptake were measured following incubation of FLX and/or D22 with CP93129 in the RBL-2H3 cells. Moreover, surface membrane levels of SERT and OCT were detected in response to CP93129. Local CP93129 prolonged immobility times, which were attenuated following pretreatment of either inhibitor. Local CP93129 lowered the slopes obtained from the lineal regressions for 5-HT and HIS (slope is reciprocal to uptake efficiency), which were then weakened following pretreatment of either inhibitor. Similar findings were obtained following CP93129 incubation, and co-incubation of CP93129 with either inhibitor in the RBL-2H3. Moreover, CP93129 dose-dependently moved SERT and OCT3 in the cytosol to the surface membrane. Both SERT and OCT are the target effectors mediating 5-HT1B regulation of immobility time and 5-HT uptake, OCT mediates 5-HT1B regulation of HIS uptake. Their underlying signal transductions need to be further explored.
Collapse
Affiliation(s)
- Xiang Li
- Department of Pharmacy, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| | - Xuankai Liang
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Shenglu Ma
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Shulei Zhao
- Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Wenyao Wang
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Mingxing Li
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Dan Feng
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Man Tang
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China.
| |
Collapse
|
4
|
Wu Y, Liu L, Zhao Y, Li X, Hu J, Li H, Zhao R. Xiaoyaosan promotes neurotransmitter transmission and alleviates CUMS-induced depression by regulating the expression of Oct1 and Oct3 in astrocytes of the prefrontal cortex. JOURNAL OF ETHNOPHARMACOLOGY 2024; 326:117923. [PMID: 38367929 DOI: 10.1016/j.jep.2024.117923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/12/2024] [Accepted: 02/15/2024] [Indexed: 02/19/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Xiaoyaosan (XYS) is a traditional prescription for the treatment of liver depression and qi stagnation, and pharmacological studies have shown that XYS has great potential to reverse depression. However, anti-depression targets and the mechanism of XYS are still not entirely clear. AIM OF THE STUDY The present study aims to explore and verify the anti-depression mechanism of XYS. MATERIALS AND METHODS The antidepressant effect of XYS was assessed in rats with depression induced by chronic unpredictable mild stimulation (CUMS). The levels of 5-hydroxytryptamine (5-HT), dopamine (DA), and norepinephrine (NE) in different brain regions were measured using ELISA. The expression of organic cation transporters (Octs) were detected by western blot and immunohistochemical techniques. Then, Decynium-22 (D22), an Octs inhibitor, was injected into the prefrontal cortex (PFC) to verify the correlation between Octs and depression-like behavior. Then, the effects of XYS on the behavior, neurotransmitter concentration, and Octs expression in D22-induced rats were examined. Finally, primary astrocytes were used to verify the mechanism of XYS exerting anti-depressant activity by regulating Octs. RESULTS The result showed that XYS had a significant positive impact on the behavior of depression rats induced by CUMS. XYS also improved the secretion of 5-HT, DA, and NE in the PFC, as well as the promotion of Oct1, Oct2, and Oct3 expression in the PFC. These results suggest that XYS has the potential to alleviate depression by enhancing the secretion of neurotransmitters. This may be related to XYS regulation of Oct's expression. When the expression of Octs was inhibited in the PFC, rats exhibited behavior similar to depression, and XYS was able to reverse this behavior, indicating that Octs play a significant role in the development of depression and XYS may exert its antidepressant effects through the regulation of Octs. Furthermore, the study also found that dopamine uptake decreased after inhibiting the expression of Octs, and XYS-containing serum could reverse the downregulation of Oct1 and Oct3 and promote intracellular dopamine homeostasis in the astrocytes. Overall, XYS may exert antidepressant effects by promoting dopamine uptake to improve neurotransmitter transport by regulating the protein expression of Oct1 and Oct3 in astrocytes. CONCLUSIONS The antidepressant effect of XYS may be attributed to its ability to regulate the expression of Oct1 and Oct3 in astrocytes of the PFC, thereby promoting neurotransmitter transport.
Collapse
Affiliation(s)
- Yayun Wu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, PR China; Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangdong, 510120, PR China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, 510120, PR China
| | - Lijuan Liu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, PR China; Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangdong, 510120, PR China
| | - Ya Zhao
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, PR China; Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangdong, 510120, PR China; State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Xiong Li
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, PR China; Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangdong, 510120, PR China
| | - Junhong Hu
- School Pharmaceutical Science, Guangzhou University Chinese Medicine, Guangzhou, 510120, Guangdong, PR China
| | - Hanlin Li
- School Pharmaceutical Science, Guangzhou University Chinese Medicine, Guangzhou, 510120, Guangdong, PR China
| | - Ruizhi Zhao
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, PR China; Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangdong, 510120, PR China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, 510120, PR China.
| |
Collapse
|
5
|
Reddy AP, Rawat P, Rohr N, Alvir R, Bisht J, Bushra MA, Luong J, Reddy AP. Role of Serotonylation and SERT Posttranslational Modifications in Alzheimer's Disease Pathogenesis. Aging Dis 2024:AD.2024.0328. [PMID: 39254383 DOI: 10.14336/ad.2024.0328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 03/28/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
The neurotransmitter serotonin (5-hydroxytryptamine, 5-HT) is implicated mainly in Alzheimer's disease (AD) and reported to be responsible for several processes and roles in the human body, such as regulating sleep, food intake, sexual behavior, anxiety, and drug abuse. It is synthesized from the amino acid tryptophan. Serotonin also functions as a signal between neurons to mature, survive, and differentiate. It plays a crucial role in neuronal plasticity, including cell migration and cell contact formation. Various psychiatric disorders, such as depression, schizophrenia, autism, and Alzheimer's disease, have been linked to an increase in serotonin-dependent signaling during the development of the nervous system. Recent studies have found 5-HT and other monoamines embedded in the nuclei of various cells, including immune cells, the peritoneal mast, and the adrenal medulla. Evidence suggests these monoamines to be involved in widespread intracellular regulation by posttranslational modifications (PTMs) of proteins. Serotonylation is the calcium-dependent process in which 5-HT forms a long-lasting covalent bond to small cytoplasmic G-proteins by endogenous transglutaminase 2 (TGM2). Serotonylation plays a role in various biological processes. The purpose of our article is to summarize historical developments and recent advances in serotonin research and serotonylation in depression, aging, AD, and other age-related neurological diseases. We also discussed several of the latest developments with Serotonin, including biological functions, pathophysiological implications and therapeutic strategies to treat patients with depression, dementia, and other age-related conditions.
Collapse
Affiliation(s)
- Arubala P Reddy
- Nutritional Sciences Department, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Priyanka Rawat
- Nutritional Sciences Department, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Nicholas Rohr
- Nutritional Sciences Department, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Razelle Alvir
- Nutritional Sciences Department, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Jasbir Bisht
- Nutritional Sciences Department, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Mst Anika Bushra
- Nutritional Sciences Department, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Jennifer Luong
- Nutritional Sciences Department, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Aananya P Reddy
- Nutritional Sciences Department, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA
| |
Collapse
|
6
|
Kajitani N, Okada-Tsuchioka M, Inoue A, Miyano K, Masuda T, Boku S, Iwamoto K, Ohtsuki S, Uezono Y, Aoki J, Takebayashi M. G protein-biased LPAR1 agonism of prototypic antidepressants: Implication in the identification of novel therapeutic target for depression. Neuropsychopharmacology 2024; 49:561-572. [PMID: 37673966 PMCID: PMC10789764 DOI: 10.1038/s41386-023-01727-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 08/01/2023] [Accepted: 08/24/2023] [Indexed: 09/08/2023]
Abstract
Prototypic antidepressants, such as tricyclic/tetracyclic antidepressants (TCAs), have multiple pharmacological properties and have been considered to be more effective than newer antidepressants, such as selective serotonin reuptake inhibitors, in treating severe depression. However, the clinical contribution of non-monoaminergic effects of TCAs remains elusive. In this study, we discovered that amitriptyline, a typical TCA, directly binds to the lysophosphatidic acid receptor 1 (LPAR1), a G protein-coupled receptor, and activates downstream G protein signaling, while exerting a little effect on β-arrestin recruitment. This suggests that amitriptyline acts as a G protein-biased agonist of LPAR1. This biased agonism was specific to TCAs and was not observed with other antidepressants. LPAR1 was found to be involved in the behavioral effects of amitriptyline. Notably, long-term infusion of mouse hippocampus with the potent G protein-biased LPAR agonist OMPT, but not the non-biased agonist LPA, induced antidepressant-like behavior, indicating that G protein-biased agonism might be necessary for the antidepressant-like effects. Furthermore, RNA-seq analysis revealed that LPA and OMPT have opposite patterns of gene expression changes in the hippocampus. Pathway analysis indicated that long-term treatment with OMPT activated LPAR1 downstream signaling (Rho and MAPK), whereas LPA suppressed LPAR1 signaling. Our findings provide insights into the mechanisms underlying the non-monoaminergic antidepressant effects of TCAs and identify the G protein-biased agonism of LPAR1 as a promising target for the development of novel antidepressants.
Collapse
Affiliation(s)
- Naoto Kajitani
- Department of Neuropsychiatry, Faculty of Life Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
- Center for Metabolic Regulation of Healthy Aging, Faculty of Life Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
- Division of Psychiatry and Neuroscience, Institute for Clinical Research, National Hospital Organization Kure Medical Center and Chugoku Cancer Center, Kure, 737-0023, Japan
| | - Mami Okada-Tsuchioka
- Division of Psychiatry and Neuroscience, Institute for Clinical Research, National Hospital Organization Kure Medical Center and Chugoku Cancer Center, Kure, 737-0023, Japan
| | - Asuka Inoue
- Laboratory of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8578, Japan
| | - Kanako Miyano
- Department of Pain Control Research, The Jikei University School of Medicine, Tokyo, 105-8461, Japan
- Division of Cancer Pathophysiology, National Cancer Center Research Institute, Tokyo, 104-0045, Japan
| | - Takeshi Masuda
- Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, 862-0973, Japan
| | - Shuken Boku
- Department of Neuropsychiatry, Faculty of Life Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Kazuya Iwamoto
- Department of Molecular Brain Science, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Sumio Ohtsuki
- Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, 862-0973, Japan
| | - Yasuhito Uezono
- Department of Pain Control Research, The Jikei University School of Medicine, Tokyo, 105-8461, Japan
| | - Junken Aoki
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Minoru Takebayashi
- Department of Neuropsychiatry, Faculty of Life Sciences, Kumamoto University, Kumamoto, 860-8556, Japan.
- Division of Psychiatry and Neuroscience, Institute for Clinical Research, National Hospital Organization Kure Medical Center and Chugoku Cancer Center, Kure, 737-0023, Japan.
| |
Collapse
|
7
|
Honan LE, Fraser-Spears R, Daws LC. Organic cation transporters in psychiatric and substance use disorders. Pharmacol Ther 2024; 253:108574. [PMID: 38072333 PMCID: PMC11052553 DOI: 10.1016/j.pharmthera.2023.108574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/01/2023] [Accepted: 11/30/2023] [Indexed: 12/23/2023]
Abstract
Psychiatric and substance use disorders inflict major public health burdens worldwide. Their widespread burden is compounded by a dearth of effective treatments, underscoring a dire need to uncover novel therapeutic targets. In this review, we summarize the literature implicating organic cation transporters (OCTs), including three subtypes of OCTs (OCT1, OCT2, and OCT3) and the plasma membrane monoamine transporter (PMAT), in the neurobiology of psychiatric and substance use disorders with an emphasis on mood and anxiety disorders, alcohol use disorder, and psychostimulant use disorder. OCTs transport monoamines with a low affinity but high capacity, situating them to play a central role in regulating monoamine homeostasis. Preclinical evidence discussed here suggests that OCTs may serve as promising targets for treatment of psychiatric and substance use disorders and encourage future research into their therapeutic potential.
Collapse
Affiliation(s)
- Lauren E Honan
- The University of Texas Health Science Center at San Antonio, Department of Cellular & Integrative Physiology, USA
| | - Rheaclare Fraser-Spears
- University of the Incarnate Word, Feik School of Pharmacy, Department of Pharmaceutical Sciences, USA
| | - Lynette C Daws
- The University of Texas Health Science Center at San Antonio, Department of Cellular & Integrative Physiology, USA; The University of Texas Health Science Center at San Antonio, Department of Pharmacology, USA.
| |
Collapse
|
8
|
Weber BL, Nicodemus MM, Hite AK, Spalding IR, Beaver JN, Scrimshaw LR, Kassis SK, Reichert JM, Ford MT, Russell CN, Hallal EM, Gilman TL. Heterotypic Stressors Unmask Behavioral Influences of PMAT Deficiency in Mice. Int J Mol Sci 2023; 24:16494. [PMID: 38003684 PMCID: PMC10671398 DOI: 10.3390/ijms242216494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/16/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023] Open
Abstract
Certain life stressors having enduring physiological and behavioral consequences, in part by eliciting dramatic signaling shifts in monoamine neurotransmitters. High monoamine levels can overwhelm selective transporters like the serotonin transporter. This is when polyspecific transporters like plasma membrane monoamine transporter (PMAT, Slc29a4) are hypothesized to contribute most to monoaminergic signaling regulation. Here, we employed two distinct counterbalanced stressors-fear conditioning and swim stress-in mice to systematically determine how reductions in PMAT function affect heterotypic stressor responsivity. We hypothesized that male heterozygotes would exhibit augmented stressor responses relative to female heterozygotes. Decreased PMAT function enhanced context fear expression, an effect unexpectedly obscured by a sham stress condition. Impaired cued fear extinction retention and enhanced context fear expression in males were conversely unmasked by a sham swim condition. Abrogated corticosterone levels in male heterozygotes that underwent swim stress after context fear conditioning did not map onto any measured behaviors. In sum, male heterozygous mouse fear behaviors proved malleable in response to preceding stressor or sham stress exposure. Combined, these data indicate that reduced male PMAT function elicits a form of stress-responsive plasticity. Future studies should assess how PMAT is differentially affected across sexes and identify downstream consequences of the stress-shifted corticosterone dynamics.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - T. Lee Gilman
- Department of Psychological Sciences, Brain Health Research Institute, Healthy Communities Research Institute, Kent State University, Kent, OH 44240, USA
| |
Collapse
|
9
|
Weber BL, Nicodemus MM, Hite AK, Spalding IR, Beaver JN, Scrimshaw LR, Kassis SK, Reichert JM, Ford MT, Russell CN, Hallal EM, Gilman TL. Heterotypic stressors unmask behavioral influences of PMAT deficiency in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.30.555632. [PMID: 37693400 PMCID: PMC10491137 DOI: 10.1101/2023.08.30.555632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Certain life stressors having enduring physiological and behavioral consequences, in part by eliciting dramatic signaling shifts in monoamine neurotransmitters. High monoamine levels can overwhelm selective transporters like the serotonin transporter. This is when polyspecific transporters like plasma membrane monoamine transporter (PMAT, Slc29a4) are hypothesized to contribute most to monoaminergic signaling regulation. Here, we employed two distinct counterbalanced stressors - fear conditioning, and swim stress - in mice to systematically determine how reductions in PMAT function affect heterotypic stressor responsivity. We hypothesized male heterozygotes would exhibit augmented stressor responses relative to female heterozygotes. Decreased PMAT function enhanced context fear expression, an effect unexpectedly obscured by a sham stress condition. Impaired cued fear extinction retention and enhanced context fear expression in males were conversely unmasked by a sham swim condition. Abrogated corticosterone levels in male heterozygotes that underwent swim stress after context fear conditioning did not map on to any measured behaviors. In sum, male heterozygous mouse fear behaviors proved malleable in response to preceding stressor or sham stress exposure. Combined, these data indicate reduced male PMAT function elicits a form of stress-responsive plasticity. Future studies should assess how PMAT is differentially affected across sexes and identify downstream consequences of the stress-shifted corticosterone dynamics.
Collapse
Affiliation(s)
- Brady L Weber
- Department of Psychological Sciences, Brain Health Research Institute, Healthy Communities Research Institute, Kent State University, Kent, OH, USA
| | - Marissa M Nicodemus
- Department of Psychological Sciences, Brain Health Research Institute, Healthy Communities Research Institute, Kent State University, Kent, OH, USA
| | - Allianna K Hite
- Department of Psychological Sciences, Brain Health Research Institute, Healthy Communities Research Institute, Kent State University, Kent, OH, USA
| | - Isabella R Spalding
- Department of Psychological Sciences, Brain Health Research Institute, Healthy Communities Research Institute, Kent State University, Kent, OH, USA
| | - Jasmin N Beaver
- Department of Psychological Sciences, Brain Health Research Institute, Healthy Communities Research Institute, Kent State University, Kent, OH, USA
| | - Lauren R Scrimshaw
- Department of Psychological Sciences, Brain Health Research Institute, Healthy Communities Research Institute, Kent State University, Kent, OH, USA
| | - Sarah K Kassis
- Department of Psychological Sciences, Brain Health Research Institute, Healthy Communities Research Institute, Kent State University, Kent, OH, USA
| | - Julie M Reichert
- Department of Psychological Sciences, Brain Health Research Institute, Healthy Communities Research Institute, Kent State University, Kent, OH, USA
| | - Matthew T Ford
- Department of Psychological Sciences, Brain Health Research Institute, Healthy Communities Research Institute, Kent State University, Kent, OH, USA
| | - Cameron N Russell
- Department of Psychological Sciences, Brain Health Research Institute, Healthy Communities Research Institute, Kent State University, Kent, OH, USA
| | - Elayna M Hallal
- Department of Psychological Sciences, Brain Health Research Institute, Healthy Communities Research Institute, Kent State University, Kent, OH, USA
| | - T Lee Gilman
- Department of Psychological Sciences, Brain Health Research Institute, Healthy Communities Research Institute, Kent State University, Kent, OH, USA
| |
Collapse
|
10
|
Weber BL, Beaver JN, Gilman TL. Summarizing studies using constitutive genetic deficiency to investigate behavioural influences of uptake 2 monoamine transporters. Basic Clin Pharmacol Toxicol 2023; 133:439-458. [PMID: 36316031 PMCID: PMC10657738 DOI: 10.1111/bcpt.13810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/14/2022] [Accepted: 10/24/2022] [Indexed: 11/27/2022]
Abstract
Burgeoning literature demonstrates that monoamine transporters with high transport capacity but lower substrate affinity (i.e., uptake 2) contribute meaningfully to regulation of monoamine neurotransmitter signalling. However, studying behavioural influences of uptake 2 is hindered by an absence of selective inhibitors largely free of off-target, confounding effects. This contrasts with study of monoamine transporters with low transport capacity but high substrate affinity (i.e., uptake 1), for which there are many reasonably selective inhibitors. To circumvent this dearth of pharmacological tools for studying uptake 2, researchers have instead employed mice with constitutive genetic deficiency in three separate transporters. By studying baseline behavioural shifts, plus behavioural responses to environmental and pharmacological manipulations-the latter primarily targeting uptake 1-investigators have been creatively characterizing the behavioural, and often sex-specific, influences of uptake 2. This non-systematic mini review summarizes current uptake 2 behaviour literature, highlighting emphases on stress responsivity in organic cation transporter 2 (OCT2) work, psychostimulant responsivity in OCT3 and plasma membrane monoamine transporter (PMAT) investigations, and antidepressant responsivity in all three. Collectively, this small but growing body of work reiterates the necessity for development of selective uptake 2-inhibiting drugs, with reviewed studies suggesting that these might advance personalized treatment approaches.
Collapse
Affiliation(s)
- Brady L Weber
- Department of Psychological Sciences & Brain Health Research Institute, Kent State University, Kent, Ohio, USA
| | - Jasmin N Beaver
- Department of Psychological Sciences & Brain Health Research Institute, Kent State University, Kent, Ohio, USA
| | - T Lee Gilman
- Department of Psychological Sciences & Brain Health Research Institute, Kent State University, Kent, Ohio, USA
| |
Collapse
|
11
|
Orrico-Sanchez A, Guiard BP, Manta S, Callebert J, Launay JM, Louis F, Paccard A, Gruszczynski C, Betancur C, Vialou V, Gautron S. Organic cation transporter 2 contributes to SSRI antidepressant efficacy by controlling tryptophan availability in the brain. Transl Psychiatry 2023; 13:302. [PMID: 37775532 PMCID: PMC10542329 DOI: 10.1038/s41398-023-02596-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 09/15/2023] [Accepted: 09/15/2023] [Indexed: 10/01/2023] Open
Abstract
Selective serotonin reuptake inhibitors (SSRI) are common first-line treatments for major depression. However, a significant number of depressed patients do not respond adequately to these pharmacological treatments. In the present preclinical study, we demonstrate that organic cation transporter 2 (OCT2), an atypical monoamine transporter, contributes to the effects of SSRI by regulating the routing of the essential amino acid tryptophan to the brain. Contrarily to wild-type mice, OCT2-invalidated mice failed to respond to prolonged fluoxetine treatment in a chronic depression model induced by corticosterone exposure recapitulating core symptoms of depression, i.e., anhedonia, social withdrawal, anxiety, and memory impairment. After corticosterone and fluoxetine treatment, the levels of tryptophan and its metabolites serotonin and kynurenine were decreased in the brain of OCT2 mutant mice compared to wild-type mice and reciprocally tryptophan and kynurenine levels were increased in mutants' plasma. OCT2 was detected by immunofluorescence in several structures at the blood-cerebrospinal fluid (CSF) or brain-CSF interface. Tryptophan supplementation during fluoxetine treatment increased brain concentrations of tryptophan and, more discreetly, of 5-HT in wild-type and OCT2 mutant mice. Importantly, tryptophan supplementation improved the sensitivity to fluoxetine treatment of OCT2 mutant mice, impacting chiefly anhedonia and short-term memory. Western blot analysis showed that glycogen synthase kinase-3β (GSK3β) and mammalian/mechanistic target of rapamycin (mTOR) intracellular signaling was impaired in OCT2 mutant mice brain after corticosterone and fluoxetine treatment and, conversely, tryptophan supplementation recruited selectively the mTOR protein complex 2. This study provides the first evidence of the physiological relevance of OCT2-mediated tryptophan transport, and its biological consequences on serotonin homeostasis in the brain and SSRI efficacy.
Collapse
Affiliation(s)
| | - Bruno P Guiard
- Université Paul Sabatier, CNRS, Research Center on Animal Cognition, Toulouse, France
| | - Stella Manta
- Université Paul Sabatier, CNRS, Research Center on Animal Cognition, Toulouse, France
| | - Jacques Callebert
- Sorbonne Paris Cité, Hôpital Lariboisière, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Jean-Marie Launay
- Sorbonne Paris Cité, Hôpital Lariboisière, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Franck Louis
- Sorbonne Université, INSERM, CNRS, Neuroscience Paris Seine, Paris, France
| | - Antoine Paccard
- Sorbonne Université, INSERM, CNRS, Neuroscience Paris Seine, Paris, France
| | | | - Catalina Betancur
- Sorbonne Université, INSERM, CNRS, Neuroscience Paris Seine, Paris, France
| | - Vincent Vialou
- Sorbonne Université, INSERM, CNRS, Neuroscience Paris Seine, Paris, France.
| | - Sophie Gautron
- Sorbonne Université, INSERM, CNRS, Neuroscience Paris Seine, Paris, France.
| |
Collapse
|
12
|
Zhang SQ, Deng Q, Zhu Q, Hu ZL, Long LH, Wu PF, He JG, Chen HS, Yue Z, Lu JH, Wang F, Chen JG. Cell type-specific NRBF2 orchestrates autophagic flux and adult hippocampal neurogenesis in chronic stress-induced depression. Cell Discov 2023; 9:90. [PMID: 37644025 PMCID: PMC10465581 DOI: 10.1038/s41421-023-00583-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 06/22/2023] [Indexed: 08/31/2023] Open
Abstract
Dysfunctional autophagy and impairment of adult hippocampal neurogenesis (AHN) each contribute to the pathogenesis of major depressive disorder (MDD). However, whether dysfunctional autophagy is linked to aberrant AHN underlying MDD remains unclear. Here we demonstrate that the expression of nuclear receptor binding factor 2 (NRBF2), a component of autophagy-associated PIK3C3/VPS34-containing phosphatidylinositol 3-kinase complex, is attenuated in the dentate gyrus (DG) under chronic stress. NRBF2 deficiency inhibits the activity of the VPS34 complex and impairs autophagic flux in adult neural stem cells (aNSCs). Moreover, loss of NRBF2 disrupts the neurogenesis-related protein network and causes exhaustion of aNSC pool, leading to the depression-like phenotype. Strikingly, overexpressing NRBF2 in aNSCs of the DG is sufficient to rescue impaired AHN and depression-like phenotype of mice. Our findings reveal a significant role of NRBF2-dependent autophagy in preventing chronic stress-induced AHN impairment and suggest the therapeutic potential of targeting NRBF2 in MDD treatment.
Collapse
Affiliation(s)
- Shao-Qi Zhang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qiao Deng
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qi Zhu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Zhuhai, Macau SAR, China
| | - Zhuang-Li Hu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- The Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan, Hubei, China
- Laboratory of Neuropsychiatric Diseases, The Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, Hubei, China
- The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, Hubei, China
| | - Li-Hong Long
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- The Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan, Hubei, China
- Laboratory of Neuropsychiatric Diseases, The Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, Hubei, China
- The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, Hubei, China
| | - Peng-Fei Wu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Laboratory of Neuropsychiatric Diseases, The Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, Hubei, China
- The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, Hubei, China
| | - Jin-Gang He
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Laboratory of Neuropsychiatric Diseases, The Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, Hubei, China
- The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, Hubei, China
| | - Hong-Sheng Chen
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- The Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan, Hubei, China
| | - Zhenyu Yue
- Department of Neurology, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jia-Hong Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Zhuhai, Macau SAR, China.
| | - Fang Wang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
- The Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan, Hubei, China.
- Laboratory of Neuropsychiatric Diseases, The Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, Hubei, China.
- The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, Hubei, China.
| | - Jian-Guo Chen
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
- The Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan, Hubei, China.
- Laboratory of Neuropsychiatric Diseases, The Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, Hubei, China.
- The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, Hubei, China.
| |
Collapse
|
13
|
Suo Y, Wright NJ, Guterres H, Fedor JG, Butay KJ, Borgnia MJ, Im W, Lee SY. Molecular basis of polyspecific drug and xenobiotic recognition by OCT1 and OCT2. Nat Struct Mol Biol 2023; 30:1001-1011. [PMID: 37291422 PMCID: PMC10895701 DOI: 10.1038/s41594-023-01017-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 05/04/2023] [Indexed: 06/10/2023]
Abstract
A wide range of endogenous and xenobiotic organic ions require facilitated transport systems to cross the plasma membrane for their disposition. In mammals, organic cation transporter (OCT) subtypes 1 and 2 (OCT1 and OCT2, also known as SLC22A1 and SLC22A2, respectively) are polyspecific transporters responsible for the uptake and clearance of structurally diverse cationic compounds in the liver and kidneys, respectively. Notably, it is well established that human OCT1 and OCT2 play central roles in the pharmacokinetics and drug-drug interactions of many prescription medications, including metformin. Despite their importance, the basis of polyspecific cationic drug recognition and the alternating access mechanism for OCTs have remained a mystery. Here we present four cryo-electron microscopy structures of apo, substrate-bound and drug-bound OCT1 and OCT2 consensus variants, in outward-facing and outward-occluded states. Together with functional experiments, in silico docking and molecular dynamics simulations, these structures uncover general principles of organic cation recognition by OCTs and provide insights into extracellular gate occlusion. Our findings set the stage for a comprehensive structure-based understanding of OCT-mediated drug-drug interactions, which will prove critical in the preclinical evaluation of emerging therapeutics.
Collapse
Affiliation(s)
- Yang Suo
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, USA
| | - Nicholas J Wright
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, USA
| | - Hugo Guterres
- Departments of Biological Sciences, Chemistry, and Bioengineering, Lehigh University, Bethlehem, PA, USA
| | - Justin G Fedor
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, USA
| | - Kevin John Butay
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, Durham, NC, USA
| | - Mario J Borgnia
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, Durham, NC, USA
| | - Wonpil Im
- Departments of Biological Sciences, Chemistry, and Bioengineering, Lehigh University, Bethlehem, PA, USA
| | - Seok-Yong Lee
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
14
|
Coutens B, Lejards C, Bouisset G, Verret L, Rampon C, Guiard BP. Enriched environmental exposure reduces the onset of action of the serotonin norepinephrin reuptake inhibitor venlafaxine through its effect on parvalbumin interneurons plasticity in mice. Transl Psychiatry 2023; 13:227. [PMID: 37365183 DOI: 10.1038/s41398-023-02519-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/04/2023] [Accepted: 06/12/2023] [Indexed: 06/28/2023] Open
Abstract
Mood disorders are associated with hypothalamic-pituitary-adrenal axis overactivity resulting from a decreased inhibitory feedback exerted by the hippocampus on this brain structure. Growing evidence suggests that antidepressants would regulate hippocampal excitatory/inhibitory balance to restore an effective inhibition on this stress axis. While these pharmacological compounds produce beneficial clinical effects, they also have limitations including their long delay of action. Interestingly, non-pharmacological strategies such as environmental enrichment improve therapeutic outcome in depressed patients as in animal models of depression. However, whether exposure to enriched environment also reduces the delay of action of antidepressants remains unknown. We investigated this issue using the corticosterone-induced mouse model of depression, submitted to antidepressant treatment by venlafaxine, alone or in combination with enriched housing. We found that the anxio-depressive phenotype of male mice was improved after only two weeks of venlafaxine treatment when combined with enriched housing, which is six weeks earlier than mice treated with venlafaxine but housed in standard conditions. Furthermore, venlafaxine combined with exposure to enriched environment is associated with a reduction in the number of parvalbumin-positive neurons surrounded by perineuronal nets (PNN) in the mouse hippocampus. We then showed that the presence of PNN in depressed mice prevented their behavioral recovery, while pharmacological degradation of hippocampal PNN accelerated the antidepressant action of venlafaxine. Altogether, our data support the idea that non-pharmacological strategies can shorten the onset of action of antidepressants and further identifies PV interneurons as relevant actors of this effect.
Collapse
Affiliation(s)
- Basile Coutens
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), CNRS UMR5169, Université de Toulouse, Toulouse, France
| | - Camille Lejards
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), CNRS UMR5169, Université de Toulouse, Toulouse, France
| | - Guillaume Bouisset
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), CNRS UMR5169, Université de Toulouse, Toulouse, France
| | - Laure Verret
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), CNRS UMR5169, Université de Toulouse, Toulouse, France
| | - Claire Rampon
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), CNRS UMR5169, Université de Toulouse, Toulouse, France.
| | - Bruno P Guiard
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), CNRS UMR5169, Université de Toulouse, Toulouse, France.
| |
Collapse
|
15
|
Britto-Júnior J, Lima AT, Fuguhara V, Monica FZ, Antunes E, De Nucci G. Investigation on the positive chronotropic action of 6-nitrodopamine in the rat isolated atria. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:1279-1290. [PMID: 36719453 DOI: 10.1007/s00210-023-02394-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 01/10/2023] [Indexed: 02/01/2023]
Abstract
6-Nitrodopamine (6-ND) is released from rat isolated atria being 100 times more potent than noradrenaline and adrenaline, and 10,000 times more potent than dopamine as a positive chronotropic agent. The present study aimed to investigate the interactions of 6-ND with the classical catecholamines, phosphodiesterase (PDE)-3 and PDE4, and the protein kinase A in rat isolated atria. Atrial incubation with 1 pM of dopamine, noradrenaline, or adrenaline had no effect on atrial frequency. Similar results were observed when the atria were incubated with 0.01 pM of 6-ND. However, co-incubation of 6-ND (0.01 pM) with dopamine, noradrenaline, or adrenaline (1 pM each) resulted in significant increases in atrial rate, which persisted over 30 min after washout of the agonists. The increased atrial frequency induced by co-incubation of 6-ND with the catecholamines was significantly reduced by the voltage-gated sodium channel blocker tetrodotoxin (1 µM, 30 min), indicating that the positive chronotropic effect of 6-ND is due in part to activation of nerve terminals. Pre-treatment of the animals with reserpine had no effect on the positive chronotropic effect induced by dopamine, noradrenaline, or adrenaline; however, reserpine markedly reduced the 6-ND (1 pM)-induced positive chronotropic effect. Incubation of the rat isolated atria with the protein kinase A inhibitor H-89 (1 µM, 30 min) abolished the increased atrial frequency induced by dopamine, noradrenaline, and adrenaline, but only attenuated the increases induced by 6-ND. 6-ND induces catecholamine release from adrenergic terminals and increases atrial frequency independently of PKA activation.
Collapse
Affiliation(s)
- José Britto-Júnior
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Rua Tessália Vieira de Camargo, 126, Cidade Universitária, 13083-887, Campinas, São Paulo, Brazil.
| | - Antonio Tiago Lima
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Rua Tessália Vieira de Camargo, 126, Cidade Universitária, 13083-887, Campinas, São Paulo, Brazil
| | - Vivian Fuguhara
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Rua Tessália Vieira de Camargo, 126, Cidade Universitária, 13083-887, Campinas, São Paulo, Brazil
| | - Fabiola Z Monica
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Rua Tessália Vieira de Camargo, 126, Cidade Universitária, 13083-887, Campinas, São Paulo, Brazil
| | - Edson Antunes
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Rua Tessália Vieira de Camargo, 126, Cidade Universitária, 13083-887, Campinas, São Paulo, Brazil
| | - Gilberto De Nucci
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Rua Tessália Vieira de Camargo, 126, Cidade Universitária, 13083-887, Campinas, São Paulo, Brazil
- Department of Pharmacology, Faculty of Medicine, São Leopoldo Mandic, Campinas, SP, Brazil
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, SP, Brazil
| |
Collapse
|
16
|
Suo Y, Wright NJ, Guterres H, Fedor JG, Butay KJ, Borgnia MJ, Im W, Lee SY. Molecular basis of polyspecific drug binding and transport by OCT1 and OCT2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.15.532610. [PMID: 36993738 PMCID: PMC10055046 DOI: 10.1101/2023.03.15.532610] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
A wide range of endogenous and xenobiotic organic ions require facilitated transport systems to cross the plasma membrane for their disposition 1, 2 . In mammals, organic cation transporter subtypes 1 and 2 (OCT1 and OCT2, also known as SLC22A1 and SLC22A2, respectively) are polyspecific transporters responsible for the uptake and clearance of structurally diverse cationic compounds in the liver and kidneys, respectively 3, 4 . Notably, it is well established that human OCT1 and OCT2 play central roles in the pharmacokinetics, pharmacodynamics, and drug-drug interactions (DDI) of many prescription medications, including metformin 5, 6 . Despite their importance, the basis of polyspecific cationic drug recognition and the alternating access mechanism for OCTs have remained a mystery. Here, we present four cryo-EM structures of apo, substrate-bound, and drug-bound OCT1 and OCT2 in outward-facing and outward-occluded states. Together with functional experiments, in silico docking, and molecular dynamics simulations, these structures uncover general principles of organic cation recognition by OCTs and illuminate unexpected features of the OCT alternating access mechanism. Our findings set the stage for a comprehensive structure-based understanding of OCT-mediated DDI, which will prove critical in the preclinical evaluation of emerging therapeutics.
Collapse
Affiliation(s)
- Yang Suo
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina, 27710, USA
| | - Nicholas J. Wright
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina, 27710, USA
| | - Hugo Guterres
- Departments of Biological Sciences, Chemistry, and Bioengineering, Lehigh University, Bethlehem, Pennsylvania, 18015, USA
| | - Justin G. Fedor
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina, 27710, USA
| | - Kevin John Butay
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | - Mario J. Borgnia
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | - Wonpil Im
- Departments of Biological Sciences, Chemistry, and Bioengineering, Lehigh University, Bethlehem, Pennsylvania, 18015, USA
| | - Seok-Yong Lee
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina, 27710, USA
| |
Collapse
|
17
|
Cusato J, Borghetti A, Teti E, Milesi M, Tettoni MC, Bonora S, Trunfio M, D’Avolio A, Compagno M, Di Giambenedetto S, Di Perri G, Calcagno A. Dolutegravir Discontinuation for Neuropsychiatric Symptoms in People Living with HIV and Their Outcomes after Treatment Change: A Pharmacogenetic Study. Metabolites 2022; 12:metabo12121202. [PMID: 36557240 PMCID: PMC9781993 DOI: 10.3390/metabo12121202] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/24/2022] [Accepted: 11/27/2022] [Indexed: 12/04/2022] Open
Abstract
Neuropsychiatric symptoms have been reported in patients receiving dolutegravir, a known inhibitor of the renal and neuronal-expressed organic anion transporter 2 (encoded by SLC22A2 gene). The effect of the genetic variant SLC22A2 808C>A on dolutegravir discontinuation was assessed and analyzed by real-time PCR. We enrolled 627 participants: CA/AA carriers showed a higher prevalence of pre-existing psychiatric comorbidities and use of antidepressants. After 27.9 months, 108 participants discontinued dolutegravir, 64 for neuropsychiatric symptoms. Patients with pre-existing psychiatric comorbidities were at higher risk of dolutegravir discontinuation, while patients carrying the SLC22A2 CA/AA genotype were not. Combining the two variables, an opposite effect of SLC22A2 variants according to pre-existing psychiatric disorders was observed. Using multivariate Cox models, the combined variable pre-existing psychiatric comorbidities/SLC22A2 variants and the use of non-tenofovir alafenamide containing antiretroviral regimens were predictors of dolutegravir discontinuation for neuropsychiatric symptoms. Within 30 days, the majority of participants had a complete resolution of symptoms (61.8%), while 32.7% and 5.5% had partial or no change after dolutegravir discontinuation, respectively. Discontinuation of dolutegravir for neuropsychiatric symptoms was not uncommon and more frequent in participants with pre-existing psychiatric disorders. We described an interaction between SLC22A2 genetic variant and psychiatric comorbidities. In 38.2% of patients, a complete neuropsychiatric symptoms resolution was not observed after dolutegravir discontinuation suggesting the involvement of additional factors.
Collapse
Affiliation(s)
- Jessica Cusato
- Laboratory of Clinical Pharmacology and Pharmacogenetics, Department of Medical Sciences, University of Turin, 10149 Turin, Italy
- Correspondence:
| | - Alberto Borghetti
- Institute of Clinical Infectious Diseases, Catholic University of Sacred Heart, 00168 Rome, Italy
| | - Elisabetta Teti
- Department of Systems Medicine, Infectious Diseases Clinic, University Hospital “Tor Vergata”, 00133 Rome, Italy
| | - Maurizio Milesi
- Unit of Infectious Diseases, Department of Medical Sciences, University of Turin, 10149 Turin, Italy
| | - Maria Cristina Tettoni
- Unit of Infectious Diseases, Department of Medical Sciences, University of Turin, 10149 Turin, Italy
| | - Stefano Bonora
- Unit of Infectious Diseases, Department of Medical Sciences, University of Turin, 10149 Turin, Italy
| | - Mattia Trunfio
- Unit of Infectious Diseases, Department of Medical Sciences, University of Turin, 10149 Turin, Italy
| | - Antonio D’Avolio
- Laboratory of Clinical Pharmacology and Pharmacogenetics, Department of Medical Sciences, University of Turin, 10149 Turin, Italy
| | - Mirko Compagno
- Department of Systems Medicine, Infectious Diseases Clinic, University Hospital “Tor Vergata”, 00133 Rome, Italy
| | - Simona Di Giambenedetto
- Institute of Clinical Infectious Diseases, Catholic University of Sacred Heart, 00168 Rome, Italy
| | - Giovanni Di Perri
- Unit of Infectious Diseases, Department of Medical Sciences, University of Turin, 10149 Turin, Italy
| | - Andrea Calcagno
- Unit of Infectious Diseases, Department of Medical Sciences, University of Turin, 10149 Turin, Italy
| |
Collapse
|
18
|
Andrews PW, Bosyj C, Brenton L, Green L, Gasser PJ, Lowry CA, Pickel VM. All the brain's a stage for serotonin: the forgotten story of serotonin diffusion across cell membranes. Proc Biol Sci 2022; 289:20221565. [PMID: 36321487 PMCID: PMC9627707 DOI: 10.1098/rspb.2022.1565] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/10/2022] [Indexed: 11/05/2022] Open
Abstract
In the conventional model of serotonin neurotransmission, serotonin released by neurons in the midbrain raphe nuclei exerts its actions on forebrain neurons by interacting with a large family of post-synaptic receptors. The actions of serotonin are terminated by active transport of serotonin back into the releasing neuron, which is mediated by the serotonin reuptake transporter (SERT). Because SERT is expressed pre-synaptically and is widely thought to be the only serotonin transporter in the forebrain, the conventional model does not include serotonin transport into post-synaptic neurons. However, a large body of evidence accumulating since the 1970s has shown that serotonin, despite having a positive charge, can cross cell membranes through a diffusion-like process. Multiple low-affinity, high-capacity, sodium-independent transporters, widely expressed in the brain, allow the carrier-mediated diffusion of serotonin into forebrain neurons. The amount of serotonin crossing cell membranes through this mechanism under physiological conditions is considerable. Most prominent textbooks fail to include this alternative method of serotonin uptake in the brain, and even most neuroscientists are unaware of it. This failure has limited our understanding of a key regulator of serotonergic neurotransmission, impeded research on the potential intracellular actions of serotonin in post-synaptic neurons and glial cells, and may have impeded our understanding of the mechanism by which antidepressant medications reduce depressive symptoms.
Collapse
Affiliation(s)
- Paul W. Andrews
- Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, Ontario, Canada
| | - Catherine Bosyj
- Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, Ontario, Canada
| | - Luke Brenton
- Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, Ontario, Canada
| | - Laura Green
- Neuroscience Institute, New York University, New York, NY, USA
| | - Paul J. Gasser
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, USA
| | - Christopher A. Lowry
- Department of Integrative Physiology, Center for Neuroscience, and Center for Microbial Exploration, University of Colorado Boulder, Boulder, CO, USA
| | - Virginia M. Pickel
- Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
19
|
Portal B, Vasile F, Zapata J, Lejards C, Ait Tayeb AEK, Colle R, Verstuyft C, Corruble E, Rouach N, Guiard BP. Astroglial Connexins Inactivation Increases Relapse of Depressive-like Phenotype after Antidepressant Withdrawal. Int J Mol Sci 2022; 23:13227. [PMID: 36362016 PMCID: PMC9656718 DOI: 10.3390/ijms232113227] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 09/11/2023] Open
Abstract
Studies suggest that astrocytic connexins (Cx) have an important role in the regulation of high brain functions through their ability to establish fine-tuned communication with neurons within the tripartite synapse. In light of these properties, growing evidence suggests a role of Cx in psychiatric disorders such as major depression but also in the therapeutic activity of antidepressant drugs. However, the real impact of Cx on treatment response and the underlying neurobiological mechanisms remain yet to be clarified. On this ground, the present study was designed to evaluate the functional activity of Cx in a mouse model of depression based on chronic corticosterone exposure and to determine to which extent their pharmacological inactivation influences the antidepressant-like activity of venlafaxine (VENLA). On the one hand, our results indicate that depressed mice have impaired Cx-based gap-junction and hemichannel activities. On the other hand, while VENLA exerts robust antidepressant-like activity in depressed mice; this effect is abolished by the pharmacological inhibition of Cx with carbenoxolone (CBX). Interestingly, the combination of VENLA and CBX is also associated with a higher rate of relapse after treatment withdrawal. To our knowledge, this study is one of the first to develop a model of relapse, and our results reveal that Cx-mediated dynamic neuroglial interactions play a critical role in the efficacy of monoaminergic antidepressant drugs, thus providing new targets for the treatment of depression.
Collapse
Affiliation(s)
- Benjamin Portal
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative, Université de Toulouse, CNRS, 31062 Toulouse, France
| | - Flora Vasile
- Neuroglial Interactions in Cerebral Physiopathology, Center for Interdisciplinary Research in Biology, Collège de France, CNRS UMR 7241, INSERM U1050, Labex Memolife, PSL Research University, 75005 Paris, France
| | - Jonathan Zapata
- Neuroglial Interactions in Cerebral Physiopathology, Center for Interdisciplinary Research in Biology, Collège de France, CNRS UMR 7241, INSERM U1050, Labex Memolife, PSL Research University, 75005 Paris, France
| | - Camille Lejards
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative, Université de Toulouse, CNRS, 31062 Toulouse, France
| | - Abd El Kader Ait Tayeb
- CESP, MOODS Team, INSERM, Faculté de Médecine, University of Paris-Saclay, 94275 Le Kremlin Bicêtre, France
- Service Hospitalo-Universitaire de Psychiatrie de Bicêtre, Hôpitaux Universitaires Paris-Saclay, Assistance Publique-Hôpitaux de Paris, Hôpital de Bicêtre, 94275 Le Kremlin Bicêtre, France
| | - Romain Colle
- CESP, MOODS Team, INSERM, Faculté de Médecine, University of Paris-Saclay, 94275 Le Kremlin Bicêtre, France
- Service Hospitalo-Universitaire de Psychiatrie de Bicêtre, Hôpitaux Universitaires Paris-Saclay, Assistance Publique-Hôpitaux de Paris, Hôpital de Bicêtre, 94275 Le Kremlin Bicêtre, France
| | - Céline Verstuyft
- CESP, MOODS Team, INSERM, Faculté de Médecine, University of Paris-Saclay, 94275 Le Kremlin Bicêtre, France
- Service de Génétique Moléculaire, Pharmacogénétique et Hormonologie de Bicêtre, Hôpitaux Universitaires Paris-Saclay, Assistance Publique-Hôpitaux de Paris, Hôpital de Bicêtre, 94275 Le Kremlin Bicêtre, France
| | - Emmanuelle Corruble
- CESP, MOODS Team, INSERM, Faculté de Médecine, University of Paris-Saclay, 94275 Le Kremlin Bicêtre, France
- Service Hospitalo-Universitaire de Psychiatrie de Bicêtre, Hôpitaux Universitaires Paris-Saclay, Assistance Publique-Hôpitaux de Paris, Hôpital de Bicêtre, 94275 Le Kremlin Bicêtre, France
| | - Nathalie Rouach
- Neuroglial Interactions in Cerebral Physiopathology, Center for Interdisciplinary Research in Biology, Collège de France, CNRS UMR 7241, INSERM U1050, Labex Memolife, PSL Research University, 75005 Paris, France
| | - Bruno P. Guiard
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative, Université de Toulouse, CNRS, 31062 Toulouse, France
| |
Collapse
|
20
|
Xie J, Han Y, Liang Y, Peng L, Wang T. Drosophila HisT is a specific histamine transporter that contributes to histamine recycling in glia. SCIENCE ADVANCES 2022; 8:eabq1780. [PMID: 36288320 PMCID: PMC9604546 DOI: 10.1126/sciadv.abq1780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 09/06/2022] [Indexed: 06/16/2023]
Abstract
Histamine is an important monoamine neurotransmitter that regulates multiple physiological activities in both vertebrates and invertebrates. Clearance and recycling of histamine are critical for sustaining histaminergic transmission. However, unlike other monoamine neurotransmitters, a histamine-specific transporter capable of clearing histamine from the synaptic cleft has not been identified. Here, through an in vitro histamine uptake screening, we identified an epithelial glia-expressing transporter, HisT (Histamine Transporter), that specifically transports histamine into cells. HisT misexpression in both pre- and postsynaptic neurons revealed a critical in vivo role for HisT in histamine transport and synaptic transmission. Last, we generated null hist alleles and demonstrated key physiological roles of HisT in maintaining histamine pools and sustaining visual transmission when the de novo synthesis of histamine synthesis was reduced. Our work identifies the first transporter that specifically recycles histamine and further indicates that the histamine clearance pathway may involve both the uptake-1 and uptake-2 transport systems.
Collapse
Affiliation(s)
- Jun Xie
- National Institute of Biological Sciences, Beijing 102206, China
| | - Yongchao Han
- National Institute of Biological Sciences, Beijing 102206, China
| | - Yufeng Liang
- National Institute of Biological Sciences, Beijing 102206, China
- School of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Lei Peng
- National Institute of Biological Sciences, Beijing 102206, China
- College of Biological Sciences, China Agricultural University, Beijing 100083, China
| | - Tao Wang
- National Institute of Biological Sciences, Beijing 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 100084, China
| |
Collapse
|
21
|
Stereoselectivity in the Membrane Transport of Phenylethylamine Derivatives by Human Monoamine Transporters and Organic Cation Transporters 1, 2, and 3. Biomolecules 2022; 12:biom12101507. [PMID: 36291716 PMCID: PMC9599461 DOI: 10.3390/biom12101507] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 11/24/2022] Open
Abstract
Stereoselectivity is well known and very pronounced in drug metabolism and receptor binding. However, much less is known about stereoselectivity in drug membrane transport. Here, we characterized the stereoselective cell uptake of chiral phenylethylamine derivatives by human monoamine transporters (NET, DAT, and SERT) and organic cation transporters (OCT1, OCT2, and OCT3). Stereoselectivity differed extensively between closely related transporters. High-affinity monoamine transporters (MATs) showed up to 2.4-fold stereoselective uptake of norepinephrine and epinephrine as well as of numerous analogs. While NET and DAT preferentially transported (S)-norepinephrine, SERT preferred the (R)-enantiomer. In contrast, NET and DAT showed higher transport for (R)-epinephrine and SERT for (S)-epinephrine. Generally, MAT stereoselectivity was lower than expected from their high affinity to several catecholamines and from the high stereoselectivity of some inhibitors used as antidepressants. Additionally, the OCTs differed strongly in their stereoselectivity. While OCT1 showed almost no stereoselective uptake, OCT2 was characterized by a roughly 2-fold preference for most (R)-enantiomers of the phenylethylamines. In contrast, OCT3 transported norphenylephrine and phenylephrine with 3.9-fold and 3.3-fold preference for their (R)-enantiomers, respectively, while the para-hydroxylated octopamine and synephrine showed no stereoselective OCT3 transport. Altogether, our data demonstrate that stereoselectivity is highly transporter-to-substrate specific and highly diverse even between homologous transporters.
Collapse
|
22
|
Gebauer L, Jensen O, Brockmöller J, Dücker C. Substrates and Inhibitors of the Organic Cation Transporter 3 and Comparison with OCT1 and OCT2. J Med Chem 2022; 65:12403-12416. [PMID: 36067397 DOI: 10.1021/acs.jmedchem.2c01075] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Organic cation transporters (OCTs) 1, 2, and 3 facilitate cellular uptake of structurally diverse endogenous and exogenous substances. However, their substrate and inhibitor specificity are not fully understood. We performed a broad in vitro screening for OCT3 substrates and inhibitors, allowing us to compare the substrate spectra and to study the relationship between transport and inhibition of transport. Generally, substrates were smaller and more hydrophilic than OCT3 inhibitors. The best model-based predictor of transport was the positive charge, while the best predictor of inhibition was the aromatic ring count. OCT3 inhibition was well correlated between different model substrates. Substrates of OCT3 were mainly weak inhibitors, and the best inhibitors were not substrates. As tested with 264 substances, OCT3 transport had significantly more overlap with OCT2 than OCT1. Our data further substantiate that specificity of OCT transport varies with minor substitutions rather than with the general scaffolds of substrates.
Collapse
Affiliation(s)
- Lukas Gebauer
- Institute of Clinical Pharmacology, University Medical Center Göttingen, Georg-August University, Robert-Koch-Straße 40, D-37075 Göttingen, Germany
| | - Ole Jensen
- Institute of Clinical Pharmacology, University Medical Center Göttingen, Georg-August University, Robert-Koch-Straße 40, D-37075 Göttingen, Germany
| | - Jürgen Brockmöller
- Institute of Clinical Pharmacology, University Medical Center Göttingen, Georg-August University, Robert-Koch-Straße 40, D-37075 Göttingen, Germany
| | - Christof Dücker
- Institute of Clinical Pharmacology, University Medical Center Göttingen, Georg-August University, Robert-Koch-Straße 40, D-37075 Göttingen, Germany
| |
Collapse
|
23
|
Coutens B, Yrondi A, Rampon C, Guiard BP. Psychopharmacological properties and therapeutic profile of the antidepressant venlafaxine. Psychopharmacology (Berl) 2022; 239:2735-2752. [PMID: 35947166 DOI: 10.1007/s00213-022-06203-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 07/26/2022] [Indexed: 10/15/2022]
Abstract
Major depression (MD) is one of the most common psychiatric disorders worldwide. Currently, the first-line treatment for MD targets the serotonin system but these drugs, notably the selective serotonin reuptake inhibitors, usually need 4 to 6 weeks before the benefit is felt and a significant proportion of patients shows an unsatisfactory response. Numerous treatments have been developed to circumvent these issues as venlafaxine, a mixed serotonin-norepinephrine reuptake inhibitor that binds and blocks both the SERT and NET transporters. Despite this pharmacological profile, it is difficult to have a valuable insight into its ability to produce more robust efficacy than single-acting agents. In this review, we provide an in-depth characterization of the pharmacological properties of venlafaxine from in vitro data to preclinical and clinical efficacy in depressed patients and animal models of depression to propose an indirect comparison with the most common antidepressants. Preclinical studies show that the antidepressant effect of venlafaxine is often associated with an enhancement of serotonergic neurotransmission at low doses. High doses of venlafaxine, which elicit a concomitant increase in 5-HT and NE tone, is associated with changes in different forms of plasticity in discrete brain areas. In particular, the hippocampus appears to play a crucial role in venlafaxine-mediated antidepressant effects notably by regulating processes such as adult hippocampal neurogenesis or the excitatory/inhibitory balance. Overall, depending on the dose used, venlafaxine shows a high efficacy on depressive-like symptoms in relevant animal models but to the same extent as common antidepressants. However, these data are counterbalanced by a lower tolerance. In conclusion, venlafaxine appears to be one of the most effective treatments for treatment of major depression. Still, direct comparative studies are warranted to provide definitive conclusions about its superiority.
Collapse
Affiliation(s)
- Basile Coutens
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative, Université de Toulouse, CNRS, 31000, Toulouse, France
| | - Antoine Yrondi
- Département de psychiatrie, CHU Toulouse-Purpan, Toulouse NeuroImaging Center, ToNIC, Université de Toulouse, Inserm, 31059, Toulouse, France
| | - Claire Rampon
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative, Université de Toulouse, CNRS, 31000, Toulouse, France
| | - Bruno P Guiard
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative, Université de Toulouse, CNRS, 31000, Toulouse, France.
| |
Collapse
|
24
|
Bi Y, Wang X, Li H, Tian Y, Han L, Gui C, Zhang Y. 3D-QSAR analysis of the interactions of flavonoids with human organic cation transporter 2. Toxicol Lett 2022; 368:1-8. [PMID: 35901987 DOI: 10.1016/j.toxlet.2022.07.811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/23/2022] [Accepted: 07/22/2022] [Indexed: 10/16/2022]
Abstract
Flavonoids are a class of phenolic and polyphenolic compounds widely distributed in vegetables, fruits, grains and herbs. Organic cation transporter 2 (OCT2) mediates the renal secretion of organic cations and is a key site of drug-drug interactions (DDIs). In this study, we systematically investigated the inhibitory effect of 28 flavonoids on OCT2-mediated uptake of 4-4-dimethylaminostyryl-N-methylpyridinium (ASP+). Among them, scullcapflavone II demonstrated the strongest inhibitory effect on OCT2-mediated uptake of ASP+ (IC50=11.2μM) in a competitive manner. Next, 3D-QSAR analyses of flavonoid OCT2 inhibitors were performed using both CoMFA and CoMSIA models. The date revealed that bulky substituents at the C-3 and C-4 positions of ring C as well as the C-7 position of ring A could prevent the interactions of flavonoids with OCT2. In contrast, a hydrophilic and negatively charge substituent on ring A was favorable for the interactions of flavonoids with OCT2. Consequently, baicalin (IC50=220.2μM) with a uronic acid substituent on ring A exhibited a stronger inhibition than baicalein (IC50=294.5μM); quercetin-3-O-galactoside (IC50=497.4μM) was a stronger inhibitor of OCT2 than rhamnetin 3-galactoside (IC50=1409.0μM). Taken together, our findings could be valuable in elucidating and predicting the interactions of flavonoids with OCT2.
Collapse
Affiliation(s)
- Yajuan Bi
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, P. R. China.
| | - Xue Wang
- Department of Nutritional Sciences and Toxicology, University of California Berkeley, Berkeley, CA 94720, USA.
| | - Huixiang Li
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, P. R. China.
| | - Yiqing Tian
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, P. R. China.
| | - Lifeng Han
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P. R. China.
| | - Chunshan Gui
- College of Pharmaceutical Sciences, Soochow University, Jiangsu 215123, P. R. China.
| | - Youcai Zhang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, P. R. China.
| |
Collapse
|
25
|
Ronaldson PT, Davis TP. Transport Mechanisms at the Blood-Brain Barrier and in Cellular Compartments of the Neurovascular Unit: Focus on CNS Delivery of Small Molecule Drugs. Pharmaceutics 2022; 14:1501. [PMID: 35890396 PMCID: PMC9324459 DOI: 10.3390/pharmaceutics14071501] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 02/06/2023] Open
Abstract
Ischemic stroke is a primary origin of morbidity and mortality in the United States and around the world. Indeed, several research projects have attempted to discover new drugs or repurpose existing therapeutics to advance stroke pharmacotherapy. Many of these preclinical stroke studies have reported positive results for neuroprotective agents; however, only one compound (3K3A-activated protein C (3K3A-APC)) has advanced to Phase III clinical trial evaluation. One reason for these many failures is the lack of consideration of transport mechanisms at the blood-brain barrier (BBB) and neurovascular unit (NVU). These endogenous transport processes function as a "gateway" that is a primary determinant of efficacious brain concentrations for centrally acting drugs. Despite the knowledge that some neuroprotective agents (i.e., statins and memantine) are substrates for these endogenous BBB transporters, preclinical stroke studies have largely ignored the role of transporters in CNS drug disposition. Here, we review the current knowledge on specific BBB transporters that either limit drug uptake into the brain (i.e., ATP-binding cassette (ABC) transporters) or can be targeted for optimized drug delivery (i.e., solute carrier (SLC) transporters). Additionally, we highlight the current knowledge on transporter expression in astrocytes, microglia, pericytes, and neurons with an emphasis on transport mechanisms in these cell types that can influence drug distribution within the brain.
Collapse
Affiliation(s)
- Patrick T. Ronaldson
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724-5050, USA;
| | | |
Collapse
|
26
|
Chan A, Willard A, Mulloy S, Ibrahim N, Sciaccotta A, Schonfeld M, Spencer SM. Metformin in nucleus accumbens core reduces cue-induced cocaine seeking in male and female rats. Addict Biol 2022; 27:e13165. [PMID: 35470560 PMCID: PMC9285471 DOI: 10.1111/adb.13165] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 02/24/2022] [Accepted: 02/28/2022] [Indexed: 11/29/2022]
Abstract
This study investigated the potential therapeutic effects of the FDA‐approved drug metformin on cue‐induced reinstatement of cocaine seeking. Metformin (dimethyl‐biguanide) is a first‐line treatment for type II diabetes that, among other mechanisms, is involved in the activation of adenosine monophosphate activated protein kinase (AMPK). Cocaine self‐administration and extinction is associated with decreased levels of phosphorylated AMPK within the nucleus accumbens core (NAcore). Previously, it was shown that increasing AMPK activity in the NAcore decreased cue‐induced reinstatement of cocaine seeking. Decreasing AMPK activity produced the opposite effect. The goal of the present study was to determine if metformin in the NAcore reduces cue‐induced cocaine seeking in adult male and female Sprague Dawley rats. Rats were trained to self‐administer cocaine followed by extinction prior to cue‐induced reinstatement trials. Metformin microinjected in the NAcore attenuated cue‐induced reinstatement in male and female rats. Importantly, metformin's effects on cocaine seeking were not due to a general depression of spontaneous locomotor activity. In female rats, metformin's effects did generalize to a reduction in cue‐induced reinstatement of sucrose seeking. These data support a potential role for metformin as a pharmacotherapy for cocaine use disorder but warrant caution given the potential for metformin's effects to generalize to a natural reward in female rats.
Collapse
Affiliation(s)
- Amy Chan
- Department of Pharmacology University of Minnesota Minneapolis Minnesota USA
- Department of Behavioral Neuroscience Oregon Health & Science University Portland Oregon USA
| | - Alexis Willard
- Department of Pharmacology University of Minnesota Minneapolis Minnesota USA
- Medical Discovery Team on Addiction University of Minnesota Minneapolis Minnesota USA
| | - Sarah Mulloy
- Department of Pharmacology University of Minnesota Minneapolis Minnesota USA
- Medical Discovery Team on Addiction University of Minnesota Minneapolis Minnesota USA
- Graduate Program in Neuroscience University of Minnesota Minneapolis Minnesota USA
| | - Noor Ibrahim
- Department of Pharmacology University of Minnesota Minneapolis Minnesota USA
| | - Allegra Sciaccotta
- Department of Pharmacology University of Minnesota Minneapolis Minnesota USA
| | - Mark Schonfeld
- Department of Pharmacology University of Minnesota Minneapolis Minnesota USA
- Medical Discovery Team on Addiction University of Minnesota Minneapolis Minnesota USA
- Graduate Program in Pharmacology University of Minnesota Minneapolis Minnesota USA
| | - Sade M. Spencer
- Department of Pharmacology University of Minnesota Minneapolis Minnesota USA
- Medical Discovery Team on Addiction University of Minnesota Minneapolis Minnesota USA
| |
Collapse
|
27
|
Puri NM, Romano GR, Lin TY, Mai QN, Irannejad R. The organic cation Transporter 2 regulates dopamine D1 receptor signaling at the Golgi apparatus. eLife 2022; 11:75468. [PMID: 35467530 PMCID: PMC9098220 DOI: 10.7554/elife.75468] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 04/22/2022] [Indexed: 11/13/2022] Open
Abstract
Dopamine is a key catecholamine in the brain and kidney, where it is involved in a number of physiological functions such as locomotion, cognition, emotion, endocrine regulation, and renal function. As a membrane-impermeant hormone and neurotransmitter, dopamine is thought to signal by binding and activating dopamine receptors, members of the G protein coupled receptor (GPCR) family, only on the plasma membrane. Here, using novel nanobody-based biosensors, we demonstrate for the first time that the dopamine D1 receptor (D1DR), the primary mediator of dopaminergic signaling in the brain and kidney, not only functions on the plasma membrane but becomes activated at the Golgi apparatus in the presence of its ligand. We present evidence that activation of the Golgi pool of D1DR is dependent on organic cation transporter 2 (OCT2), a dopamine transporter, providing an explanation for how the membrane-impermeant dopamine accesses subcellular pools of D1DR. We further demonstrate that dopamine activates Golgi-D1DR in murine striatal medium spiny neurons, and this activity depends on OCT2 function. We also introduce a new approach to selectively interrogate compartmentalized D1DR signaling by inhibiting Gαs coupling using a nanobody-based chemical recruitment system. Using this strategy, we show that Golgi-localized D1DRs regulate cAMP production and mediate local protein kinase A activation. Together, our data suggest that spatially compartmentalized signaling hubs are previously unappreciated regulatory aspects of D1DR signaling. Our data provide further evidence for the role of transporters in regulating subcellular GPCR activity.
Collapse
Affiliation(s)
- Natasha M Puri
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
| | - Giovanna R Romano
- Biochemistry Department, Weill Cornell Medicine, New York, United States
| | - Ting-Yu Lin
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, United States
| | - Quynh N Mai
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, United States
| | - Roshanak Irannejad
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, United States
| |
Collapse
|
28
|
de Oliveira Figueiredo EC, Bondiolotti BM, Laugeray A, Bezzi P. Synaptic Plasticity Dysfunctions in the Pathophysiology of 22q11 Deletion Syndrome: Is There a Role for Astrocytes? Int J Mol Sci 2022; 23:ijms23084412. [PMID: 35457231 PMCID: PMC9028090 DOI: 10.3390/ijms23084412] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 01/01/2023] Open
Abstract
The 22q11 deletion syndrome (DS) is the most common microdeletion syndrome in humans and gives a high probability of developing psychiatric disorders. Synaptic and neuronal malfunctions appear to be at the core of the symptoms presented by patients. In fact, it has long been suggested that the behavioural and cognitive impairments observed in 22q11DS are probably due to alterations in the mechanisms regulating synaptic function and plasticity. Often, synaptic changes are related to structural and functional changes observed in patients with cognitive dysfunctions, therefore suggesting that synaptic plasticity has a crucial role in the pathophysiology of the syndrome. Most interestingly, among the genes deleted in 22q11DS, six encode for mitochondrial proteins that, in mouse models, are highly expressed just after birth, when active synaptogenesis occurs, therefore indicating that mitochondrial processes are strictly related to synapse formation and maintenance of a correct synaptic signalling. Because correct synaptic functioning, not only requires correct neuronal function and metabolism, but also needs the active contribution of astrocytes, we summarize in this review recent studies showing the involvement of synaptic plasticity in the pathophysiology of 22q11DS and we discuss the relevance of mitochondria in these processes and the possible involvement of astrocytes.
Collapse
Affiliation(s)
| | - Bianca Maria Bondiolotti
- Department of Fundamental Neurosciences, University of Lausanne, 1005 Lausanne, Switzerland; (E.C.d.O.F.); (B.M.B.); (A.L.)
| | - Anthony Laugeray
- Department of Fundamental Neurosciences, University of Lausanne, 1005 Lausanne, Switzerland; (E.C.d.O.F.); (B.M.B.); (A.L.)
| | - Paola Bezzi
- Department of Fundamental Neurosciences, University of Lausanne, 1005 Lausanne, Switzerland; (E.C.d.O.F.); (B.M.B.); (A.L.)
- Department of Pharmacology and Physiology, University of Rome Sapienza, 00185 Rome, Italy
- Correspondence: or
| |
Collapse
|
29
|
Gu Y, Zhang N, Zhu S, Lu S, Jiang H, Zhou H. Estradiol reduced 5-HT reuptake by Downregulating the Gene Expression of Plasma Membrane Monoamine Transporter (PMAT, Slc29a4) through estrogen receptor β and the MAPK/ERK signaling pathway. Eur J Pharmacol 2022; 924:174939. [PMID: 35398393 DOI: 10.1016/j.ejphar.2022.174939] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 12/22/2022]
Abstract
Estrogen deficiency-induced female depression is closely related to 5-hydroxytriptamine (5-HT) deficiency. Estradiol (17β-estradiol, E2) regulates the monoamine transporters and acts as an antidepressant by affecting 5-HT clearance through estrogen receptors and related signaling pathways at the genome level, although the specific mechanisms require further exploration. The brain expresses higher levels of plasma membrane monoamine transporter (PMAT, involved in 5-HT reuptake of the uptake 2 system) than other uptake transporters. In this study, we found that estrogen-deficient ovariectomized (OVX) rats had high PMAT mRNA and protein expression levels in the hippocampus and estradiol significantly reduced these levels. Furthermore, estradiol inhibits PMAT expression and reduced 5-HT reuptake in neurons and astrocytes and estradiol regulated the PMAT expression mainly by affecting estrogen receptor β (ERβ) at the genomic level in astrocytes. Further cell and animal experiments showed that estradiol also regulated PMAT expression through the MAPK/ERK signaling pathway and not through the PI3K/AKT signaling pathway. In conclusion, estradiol inhibits 5-HT reuptake by regulating PMAT expression at the genomic level through ERβ and the MAPK/ERK signaling pathway, highlighting the importance of PMAT in the antidepressant effects of estradiol through 5-HT clearance reduction.
Collapse
Affiliation(s)
- Yong Gu
- Laboratory of Pharmaceutical Analysis and Drug Metabolism, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Nanxin Zhang
- Laboratory of Pharmaceutical Analysis and Drug Metabolism, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Shujie Zhu
- Laboratory of Pharmaceutical Analysis and Drug Metabolism, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Shuanghui Lu
- Laboratory of Pharmaceutical Analysis and Drug Metabolism, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Huidi Jiang
- Laboratory of Pharmaceutical Analysis and Drug Metabolism, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, PR China; Jinhua Institute of Zhejiang University, Jinhua, Zhejiang, PR China
| | - Hui Zhou
- Laboratory of Pharmaceutical Analysis and Drug Metabolism, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, PR China; Jinhua Institute of Zhejiang University, Jinhua, Zhejiang, PR China.
| |
Collapse
|
30
|
Zhong F, Chen Y, Chen J, Liao H, Li Y, Ma Y. Jatrorrhizine: A Review of Sources, Pharmacology, Pharmacokinetics and Toxicity. Front Pharmacol 2022; 12:783127. [PMID: 35095493 PMCID: PMC8793695 DOI: 10.3389/fphar.2021.783127] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/14/2021] [Indexed: 02/02/2023] Open
Abstract
Jatrorrhizine, an isoquinoline alkaloid, is a bioactive metabolite in common medicinal plants, such as Berberis vernae Schneid., Tinospora sagittata (Oliv.) Gagnep. and Coptis chinensis Franch. These plants have been used for centuries in traditional medicine for their wide-ranging pharmacological properties. This review emphasizes the latest and comprehensive information on the sources, pharmacology, pharmacokinetics and toxicity of jatrorrhizine. Studies on this alkaloid were collected from scientific internet databases, including the Web of Science, PubMed, ScienceDirect, Google Scholar, Elsevier, Springer, Wiley Online Library and Europe PMC and CNKI, using a combination of keywords involving “jatrorrhizine”, “sources”, “pharmacology,” “pharmacokinetics,” and “toxicology”. Jatrorrhizine exhibits anti-diabetic, antimicrobial, antiprotozoal, anticancer, anti-obesity and hypolipidemic properties, along with central nervous system activities and other beneficial activity. Studies of jatrorrhizine have laid the foundation for its application to the treatment of various diseases, but some issues still exist. Further investigations might emphasize 1) specific curative mechanisms of jatrorrhizine and clinical utility, 2) application prospect in the treatment of metabolic disorders, 3) comprehensive investigations of the toxicity mechanisms and 4) interactions of jatrorrhizine with other pharmaceuticals and development of derivatives.
Collapse
Affiliation(s)
- Furong Zhong
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yang Chen
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jia Chen
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hailang Liao
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yirou Li
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuntong Ma
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
31
|
Yee SW, Giacomini KM. Emerging Roles of the Human Solute Carrier 22 Family. Drug Metab Dispos 2021; 50:DMD-MR-2021-000702. [PMID: 34921098 PMCID: PMC9488978 DOI: 10.1124/dmd.121.000702] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/22/2021] [Accepted: 12/08/2021] [Indexed: 11/22/2022] Open
Abstract
The human Solute Carrier 22 family (SLC22), also termed the organic ion transporter family, consists of 28 distinct multi-membrane spanning proteins, which phylogenetically cluster together according to their charge specificity for organic cations (OCTs), organic anions (OATs) and organic zwitterion/cations (OCTNs). Some SLC22 family members are well characterized in terms of their substrates, transport mechanisms and expression patterns, as well as their roles in human physiology and pharmacology, whereas others remain orphans with no known ligands. Pharmacologically, SLC22 family members play major roles as determinants of the absorption and disposition of many prescription drugs, and several including the renal transporters, OCT2, OAT1 and OAT3 are targets for many clinically important drug-drug interactions. In addition, mutations in some of these transporters (SLC22A5 (OCTN2) and SLC22A12 (URAT1) lead to rare monogenic disorders. Genetic polymorphisms in SLC22 transporters have been associated with common human disease, drug response and various phenotypic traits. Three members in this family were deorphaned in very recently: SLC22A14, SLC22A15 and SLC22A24, and found to transport specific compounds such as riboflavin (SLC22A14), anti-oxidant zwitterions (SLC22A15) and steroid conjugates (SLC22A24). Their physiologic and pharmacological roles need further investigation. This review aims to summarize the substrates, expression patterns and transporter mechanisms of individual SLC22 family members and their roles in human disease and drug disposition and response. Gaps in our understanding of SLC22 family members are described. Significance Statement In recent years, three members of the SLC22 family of transporters have been deorphaned and found to play important roles in the transport of diverse solutes. New research has furthered our understanding of the mechanisms, pharmacological roles, and clinical impact of SLC22 transporters. This minireview provides overview of SLC22 family members of their physiologic and pharmacologic roles, the impact of genetic variants in the SLC22 family on disease and drug response, and summary of recent studies deorphaning SLC22 family members.
Collapse
Affiliation(s)
- Sook Wah Yee
- Bioengineering and Therapeutic Sciences, Univerity of California, San Francisco, United States
| | - Kathleen M Giacomini
- Bioengineering and Therapeutic Sciences, Univerity of California, San Francisco, United States
| |
Collapse
|
32
|
Overlap and Specificity in the Substrate Spectra of Human Monoamine Transporters and Organic Cation Transporters 1, 2, and 3. Int J Mol Sci 2021; 22:ijms222312816. [PMID: 34884618 PMCID: PMC8657982 DOI: 10.3390/ijms222312816] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 11/24/2021] [Accepted: 11/24/2021] [Indexed: 12/23/2022] Open
Abstract
Human monoamine transporters (MATs) are cation transporters critically involved in neuronal signal transmission. While inhibitors of MATs have been intensively studied, their substrate spectra have received far less attention. Polyspecific organic cation transporters (OCTs), predominantly known for their role in hepatic and renal drug elimination, are also expressed in the central nervous system and might modulate monoaminergic signaling. Using HEK293 cells overexpressing MATs or OCTs, we compared uptake of 48 compounds, mainly phenethylamine and tryptamine derivatives including matched molecular pairs, across noradrenaline, dopamine and serotonin transporters and OCTs (1, 2, and 3). Generally, MATs showed surprisingly high transport activities for numerous analogs of neurotransmitters, but their substrate spectra were limited by molar mass. Human OCT2 showed the broadest substrate spectrum, and also the highest overlap with MATs substrates. Comparative kinetic analyses revealed that the radiotracer meta-iodobenzylguanidine had the most balanced uptake across all six transporters. Matched molecular pair analyses comparing MAT and OCT uptake using the same methodology could provide a better understanding of structural determinants for high cell uptake by MATs or OCTs. The data may result in a better understanding of pharmacokinetics and toxicokinetics of small molecular organic cations and, possibly, in the development of more specific radiotracers for MATs.
Collapse
|
33
|
Abstract
Selective serotonin reuptake inhibitors (SSRIs) are the most commonly prescribed medications for psychiatric disorders, yet they leave the majority of patients without full symptom relief. Therefore, a major research challenge is to identify novel targets for the improved treatment of these disorders. SSRIs act by blocking the serotonin transporter (SERT), the high-affinity, low-capacity, uptake-1 transporter for serotonin. Other classes of antidepressant work by blocking the norepinephrine or dopamine transporters (NET and DAT), the high-affinity, low-capacity uptake-1 transporters for norepinephrine and dopamine, or by blocking combinations of SERT, NET, and DAT. It has been proposed that uptake-2 transporters, which include organic cation transporters (OCTs) and the plasma membrane monoamine transporter (PMAT), undermine the therapeutic utility of uptake-1 acting antidepressants. Uptake-2 transporters for monoamines have low affinity for these neurotransmitters, but a high capacity to transport them. Thus, activity of these transporters may limit the increase of extracellular monoamines thought to be essential for ultimate therapeutic benefit. Here preclinical evidence supporting a role for OCT2, OCT3, and PMAT in behaviors relevant to psychiatric disorders is presented. Importantly, preclinical evidence revealing these transporters as targets for the development of novel therapeutics for psychiatric disorders is discussed.
Collapse
|
34
|
Koepsell H. Update on drug-drug interaction at organic cation transporters: mechanisms, clinical impact, and proposal for advanced in vitro testing. Expert Opin Drug Metab Toxicol 2021; 17:635-653. [PMID: 33896325 DOI: 10.1080/17425255.2021.1915284] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Introduction: Organic cation transporters collectively called OCTs belong to three gene families (SLC22A1 OCT1, SLC22A2 OCT2, SLC22A3 OCT3, SLC22A4 OCTN1, SLC22A5 OCTN2, SLC29A4 PMAT, SLC47A1 MATE1, and SLC47A1 MATE2-K). OCTs transport structurally diverse drugs with overlapping selectivity. Some OCTs were shown to be critically involved in pharmacokinetics and therapeutic efficacy of cationic drugs. Drug-drug interactions at individual OCTs were shown to result in clinical effects. Procedures for in vitro testing of drugs for interaction with OCT1, OCT2, MATE1, and MATE2-K have been recommended.Areas covered: An overview of functional properties, cation selectivity, location, and clinical impact of OCTs is provided. In addition, clinically relevant drug-drug interactions in OCTs are compiled. Because it was observed that the half maximal concentration of drugs to inhibit transport by OCTs (IC50) is dependent on the transported cation and its concentration, an advanced protocol for in vitro testing of drugs for interaction with OCTs is proposed. In addition, it is suggested to include OCT3 and PMAT for in vitro testing.Expert opinion: Research on clinical roles of OCTs should be reinforced including more transporters and drugs. An improvement of the in vitro testing protocol considering recent data is imperative for the benefit of patients.
Collapse
Affiliation(s)
- Hermann Koepsell
- Institute of Anatomy and Cell Biology, University Würzburg, Würzburg, Germany
| |
Collapse
|
35
|
Benton KC, Lowry CA, Gasser PJ. Organic Cation Transporters and Nongenomic Glucocorticoid Action. Handb Exp Pharmacol 2021; 266:241-251. [PMID: 34104992 DOI: 10.1007/164_2021_493] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Corticosteroid hormones exert powerful influences on neuronal physiology and behavior by activating intracellular glucocorticoid receptors (GR) and mineralocorticoid receptors (MR), which act as ligand-gated transcription factors, altering gene expression. In addition to these genomic effects on physiology and behavior, which are usually delayed by minutes to hours, corticosteroid hormones also initiate rapid effects through diverse nongenomic mechanisms. One such mechanism involves the direct inhibition by corticosteroid hormones of monoamine transport mediated by the "uptake2" transporter, organic cation transporter 3 (OCT3), a high-capacity, low-affinity transporter for norepinephrine, epinephrine, dopamine, serotonin, and histamine. In this review we describe studies that demonstrate OCT3 expression and corticosterone-sensitive monoamine transport in the brain and present evidence supporting the hypothesis that corticosterone exerts rapid, nongenomic actions on glia and neurons, ultimately modulating physiology and behavior, by inhibiting OCT3-mediated monoamine clearance. We also describe the corticosteroid sensitivity of the other members of the uptake2 family and examine their potential contributions to nongenomic effects of corticosteroids in the brain.
Collapse
Affiliation(s)
- Kelsey C Benton
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, USA
| | - Christopher A Lowry
- Department of Integrative Physiology, Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Paul J Gasser
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, USA.
| |
Collapse
|
36
|
Jiang SH, Wang YH, Hu LP, Wang X, Li J, Zhang XL, Zhang ZG. The physiology, pathology and potential therapeutic application of serotonylation. J Cell Sci 2021; 134:268950. [PMID: 34085694 DOI: 10.1242/jcs.257337] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The classical neurotransmitter serotonin or 5-hydroxytryptamine (5-HT), synthesized from tryptophan, can be produced both centrally and peripherally. Through binding to functionally distinct receptors, serotonin is profoundly implicated in a number of fundamental physiological processes and pathogenic conditions. Recently, serotonin has been found covalently incorporated into proteins, a newly identified post-translational modification termed serotonylation. Transglutaminases (TGMs), especially TGM2, are responsible for catalyzing the transamidation reaction by transferring serotonin to the glutamine residues of target proteins. Small GTPases, extracellular matrix protein fibronectin, cytoskeletal proteins and histones are the most reported substrates for serotonylation, and their functions are triggered by this post-translational modification. This Review highlights the roles of serotonylation in physiology and diseases and provides perspectives for pharmacological interventions to ameliorate serotonylation for disease treatment.
Collapse
Affiliation(s)
- Shu-Heng Jiang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Ya-Hui Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Li-Peng Hu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Xu Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Jun Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Xue-Li Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Zhi-Gang Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| |
Collapse
|
37
|
Abstract
Catecholamines, including dopamine, norepinephrine, and epinephrine, are modulatory transmitters released from specialized neurons throughout the brain. Collectively, catecholamines exert powerful regulation of mood, motivation, arousal, and plasticity. Transporter-mediated uptake determines the peak concentration, duration, and physical spread of released catecholamines, thus playing key roles in determining the magnitude and duration of their modulatory effects. Most studies of catecholamine clearance have focused on the presynaptic high-affinity, low-capacity dopamine (DAT), and norepinephrine (NET) transporters, which are members of the uptake1 family of monoamine transporters. However, recent studies have demonstrated that members of the uptake2 family of monoamine transporters, including organic cation transporter 2 (OCT2), OCT3, and the plasma membrane monoamine transporter (PMAT) are expressed widely throughout the brain. In contrast to DAT and NET, these transporters have higher capacity and lower affinity for catecholamines and are multi-specific, each with the capacity to transport all catecholamines. The expression of these transporters in the brain suggests that they play significant roles in regulating catecholamine homeostasis. This review summarizes studies describing the anatomical distribution of OCT2, OCT3, and PMAT, their cellular and subcellular localization, and their contribution to the regulation of the clearance of catecholamines in the brain.
Collapse
|
38
|
Sweet DH. Organic Cation Transporter Expression and Function in the CNS. Handb Exp Pharmacol 2021; 266:41-80. [PMID: 33963461 DOI: 10.1007/164_2021_463] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The blood-brain barrier (BBB) and blood-cerebrospinal fluid barrier (BCSFB) represent major control checkpoints protecting the CNS, by exerting selective control over the movement of organic cations and anions into and out of the CNS compartment. In addition, multiple CNS cell types, e.g., astrocytes, ependymal cells, microglia, contribute to processes that maintain the status quo of the CNS milieu. To fulfill their roles, these barriers and cell types express a multitude of transporter proteins from dozens of different transporter families. Fundamental advances over the past few decades in our knowledge of transporter substrates, expression profiles, and consequences of loss of function are beginning to change basic theories regarding the contribution of various cell types and clearance networks to coordinated neuronal signaling, complex organismal behaviors, and overall CNS homeostasis. In particular, transporters belonging to the Solute Carrier (SLC) superfamily are emerging as major contributors, including the SLC22 organic cation/anion/zwitterion family of transporters (includes OCT1-3 and OCTN1-3), the SLC29 facilitative nucleoside family of transporters (includes PMAT), and the SLC47 multidrug and toxin extrusion family of transporters (includes MATE1-2). These transporters are known to interact with neurotransmitters, antidepressant and anxiolytic agents, and drugs of abuse. Clarifying their contributions to the underlying mechanisms regulating CNS permeation and clearance, as well as the health status of astrocyte, microglial and neuronal cell populations, will drive new levels of understanding as to maintenance of the CNS milieu and approaches to new therapeutics and therapeutic strategies in the treatment of CNS disorders. This chapter highlights organic cation transporters belonging to the SLC superfamily known to be expressed in the CNS, providing an overview of their identification, mechanism of action, CNS expression profile, interaction with neurotransmitters and antidepressant/antipsychotic drugs, and results from behavioral studies conducted in loss of function models (knockout/knockdown).
Collapse
Affiliation(s)
- Douglas H Sweet
- Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
39
|
Jensen O, Rafehi M, Gebauer L, Brockmöller J. Cellular Uptake of Psychostimulants - Are High- and Low-Affinity Organic Cation Transporters Drug Traffickers? Front Pharmacol 2021; 11:609811. [PMID: 33551812 PMCID: PMC7854383 DOI: 10.3389/fphar.2020.609811] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/09/2020] [Indexed: 12/20/2022] Open
Abstract
Psychostimulants are used therapeutically and for illegal recreational purposes. Many of these are inhibitors of the presynaptic noradrenaline, dopamine, and serotonin transporters (NET, DAT, and SERT). According to their physicochemical properties, some might also be substrates of polyspecific organic cation transporters (OCTs) that mediate uptake in liver and kidneys for metabolism and excretion. OCT1 is genetically highly polymorphic, with strong effects on transporter activity and expression. To study potential interindividual differences in their pharmacokinetics, 18 psychostimulants and hallucinogens were assessed in vitro for transport by different OCTs as well as by the high-affinity monoamine transporters NET, DAT, and SERT. The hallucinogenic natural compound mescaline was found to be strongly transported by wild-type OCT1 with a Km of 24.3 µM and a vmax of 642 pmol × mg protein−1 × min−1. Transport was modestly reduced in variants *2 and *7, more strongly reduced in *3 and *4, and lowest in *5 and *6, while *8 showed a moderately increased transport capacity. The other phenylethylamine derivatives methamphetamine, para-methoxymethamphetamine, (-)-ephedrine, and cathine ((+)-norpseudoephedrine), as well as dimethyltryptamine, were substrates of OCT2 with Km values in the range of 7.9–46.0 µM and vmax values between 70.7 and 570 pmol × mg protein−1 × min−1. Affinities were similar or modestly reduced and the transport capacities were reduced down to half in the naturally occurring variant A270S. Cathine was found to be a substrate for NET and DAT, with the Km being 21-fold and the vmax 10-fold higher for DAT but still significantly lower compared to OCT2. This study has shown that several psychostimulants and hallucinogens are substrates for OCTs. Given the extensive cellular uptake of mescaline by the genetically highly polymorphic OCT1, strong interindividual variation in the pharmacokinetics of mescaline might be possible, which could be a reason for highly variable adverse reactions. The involvement of the polymorphic OCT2 in the renal excretion of several psychostimulants could be one reason for individual differences in toxicity.
Collapse
Affiliation(s)
- Ole Jensen
- Institute of Clinical Pharmacology, University Medical Center Göttingen, Göttingen, Germany
| | - Muhammad Rafehi
- Institute of Clinical Pharmacology, University Medical Center Göttingen, Göttingen, Germany
| | - Lukas Gebauer
- Institute of Clinical Pharmacology, University Medical Center Göttingen, Göttingen, Germany
| | - Jürgen Brockmöller
- Institute of Clinical Pharmacology, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
40
|
Neurochemical characterization of mouse dorsal root ganglion neurons expressing organic cation transporter 2. Neuroreport 2021; 31:274-280. [PMID: 32032285 DOI: 10.1097/wnr.0000000000001416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Organic cation transporters (OCTs) are poly-specific carriers for endogenous and exogenous cationic compounds. These are widely distributed in the nervous system and mediate neuronal activities. As antineoplastic cationic drugs accumulate in the dorsal root ganglion (DRG), OCT function has been studied mainly in cultured DRG neurons. However, the histological distribution of OCTs in the DRG is unclear. This study investigated the localization of OCT2 (a member of OCTs) in mouse DRG neurons and determined their histochemical properties. OCT2 expression was found in about 20% of DRG neurons, which were small to medium size. OCT2-expressing neurons were labeled with markers for peptidergic nociceptive (substance P or calcitonin gene-related peptide) and tactile/proprioceptive (neurofilament 200 or tropomyosin receptor kinase B or C) neurons. OCT2 was also expressed in cholinergic DRG neurons identified by choline acetyltransferase promoter-derived Cre expression. In the spinal dorsal horn, OCT2 was distributed in superficial to deep laminae. OCT2 immunoreactivity was punctate in appearance and localized in the nerve terminals of sensory afferents with labeling of neurochemical markers. Our findings suggest that OCT2 as a low-affinity, high-capacity carrier may take up substrates including cationic neurotransmitters and drugs from the extracellular space around cell bodies in DRG neurons.
Collapse
|
41
|
Altered hippocampal gene expression, glial cell population, and neuronal excitability in aminopeptidase P1 deficiency. Sci Rep 2021; 11:932. [PMID: 33441619 PMCID: PMC7806765 DOI: 10.1038/s41598-020-79656-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 12/04/2020] [Indexed: 01/09/2023] Open
Abstract
Inborn errors of metabolism are often associated with neurodevelopmental disorders and brain injury. A deficiency of aminopeptidase P1, a proline-specific endopeptidase encoded by the Xpnpep1 gene, causes neurological complications in both humans and mice. In addition, aminopeptidase P1-deficient mice exhibit hippocampal neurodegeneration and impaired hippocampus-dependent learning and memory. However, the molecular and cellular changes associated with hippocampal pathology in aminopeptidase P1 deficiency are unclear. We show here that a deficiency of aminopeptidase P1 modifies the glial population and neuronal excitability in the hippocampus. Microarray and real-time quantitative reverse transcription-polymerase chain reaction analyses identified 14 differentially expressed genes (Casp1, Ccnd1, Myoc, Opalin, Aldh1a2, Aspa, Spp1, Gstm6, Serpinb1a, Pdlim1, Dsp, Tnfaip6, Slc6a20a, Slc22a2) in the Xpnpep1−/− hippocampus. In the hippocampus, aminopeptidase P1-expression signals were mainly detected in neurons. However, deficiency of aminopeptidase P1 resulted in fewer hippocampal astrocytes and increased density of microglia in the hippocampal CA3 area. In addition, Xpnpep1−/− CA3b pyramidal neurons were more excitable than wild-type neurons. These results indicate that insufficient astrocytic neuroprotection and enhanced neuronal excitability may underlie neurodegeneration and hippocampal dysfunction in aminopeptidase P1 deficiency.
Collapse
|
42
|
Li ZH, Ma PK, Huang YF, Zhang Z, Zheng W, Chen JH, Guo CE, Chen N, Bi XN, Zhang YJ. Jiaotai Pill () Alleviates Insomnia through Regulating Monoamine and Organic Cation Transporters in Rats. Chin J Integr Med 2021; 27:183-191. [PMID: 33420587 DOI: 10.1007/s11655-021-3284-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2020] [Indexed: 10/22/2022]
Abstract
OBJECTIVE To reveal the effect and mechanism of Jiaotai Pill (, JTP) on insomniac rats. METHODS The insomniac model was established by intraperitoneal injection of p-chlorophenylalanine (PCPA). In behavioral experiments, rats were divided into control, insomniac model, JTP [3.3 g/(kg•d)], and diazepam [4 mg/(kg•d)] groups. The treatment effect of JTP was evaluated by weight measurement (increasement of body weight), open field test (number of crossings) and forced swimming test (immobility time). A high performance liquid chromatography-electrochemical detection (HPLC-ECD) method was built to determine the concentration of monoamine transmitters in hypothalamus and peripheral organs from normal, model, JTP, citalopram [30 mg/(kg•d)], maprotiline [40 mg/(kg•d)] and bupropion [40 mg/(kg•d)] groups. Expressions of serotonin transporter (SERT), dopamine transporter (DAT), and norepinephrine transporter (NET) were analyzed by quantitative polymerase chain reaction (qPCR) and Western blot in normal, model and JTP groups. A high performance liquid chromatography-electrospray ionization mass spectrometry (HPLC-ESI-MS/MS) method was established to determine the pharmacokinetics, urine cumulative excretion of metformin in vivo, and tissue slice uptake in vitro, which were applied to assess the activity of organic cation transporters (OCTs) in hypothalamus and peripheral organs. RESULTS Compared with the insomniac model group, the body weight and spontaneous locomotor were increased, and the immobility time was decreased after treatment with JTP (P<0.01). Both serotonin and dopamine contents in hypothalamus and peripheral organs were increased (P<0.01). The norepinephrine content was increased in peripheral organs and decreased in hypothalamus (P<0.05 or P<0.01). At the same time, SERT, DAT, OCT1, OCT2, and OCT3 were down-regulated in hypothalamus and peripheral organs (P<0.05). NET was down-regulated in peripheral organs and up-regulated in hypothalamus (P<0.05 or P<0.01). Moreover, the activity of OCTs in hypothalamus and peripheral organs was inhibited (P<0.05). CONCLUSION JTP alleviates insomnia through regulation of monoaminergic system and OCTs in hypothalamus and peripheral organs.
Collapse
Affiliation(s)
- Zhi-Hui Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Peng-Kai Ma
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | | | - Zhe Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Wei Zheng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Jian-Hua Chen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Chang-E Guo
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Ning Chen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Xin-Ning Bi
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Yu-Jie Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China.
| |
Collapse
|
43
|
Betterton RD, Davis TP, Ronaldson PT. Organic Cation Transporter (OCT/OCTN) Expression at Brain Barrier Sites: Focus on CNS Drug Delivery. Handb Exp Pharmacol 2021; 266:301-328. [PMID: 33674914 PMCID: PMC8603467 DOI: 10.1007/164_2021_448] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Therapeutic delivery to the central nervous system (CNS) continues to be a considerable challenge in the pharmacological treatment and management of neurological disorders. This is primarily due to the physiological and biochemical characteristics of brain barrier sites (i.e., blood-brain barrier (BBB), blood-cerebrospinal fluid barrier (BCSFB)). Drug uptake into brain tissue is highly restricted by expression of tight junction protein complexes and adherens junctions between brain microvascular endothelial cells and choroid plexus epithelial cells. Additionally, efflux transport proteins expressed at the plasma membrane of these same endothelial and epithelial cells act to limit CNS concentrations of centrally acting drugs. In contrast, facilitated diffusion via transporter proteins allows for substrate-specific flux of molecules across the plasma membrane, directing drug uptake into the CNS. Organic Cation Transporters (OCTs) and Novel Organic Cation Transporters (OCTNs) are two subfamilies of the solute carrier 22 (SLC22) family of proteins that have significant potential to mediate delivery of positively charged, zwitterionic, and uncharged therapeutics. While expression of these transporters has been well characterized in peripheral tissues, the functional expression of OCT and OCTN transporters at CNS barrier sites and their role in delivery of therapeutic drugs to molecular targets in the brain require more detailed analysis. In this chapter, we will review current knowledge on localization, function, and regulation of OCT and OCTN isoforms at the BBB and BCSFB with a particular emphasis on how these transporters can be utilized for CNS delivery of therapeutic agents.
Collapse
Affiliation(s)
- Robert D Betterton
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Thomas P Davis
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Patrick T Ronaldson
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
44
|
Abstract
Inhibitors of Na+/Cl- dependent high affinity transporters for norepinephrine (NE), serotonin (5-HT), and/or dopamine (DA) represent frequently used drugs for treatment of psychological disorders such as depression, anxiety, obsessive-compulsive disorder, attention deficit hyperactivity disorder, and addiction. These transporters remove NE, 5-HT, and/or DA after neuronal excitation from the interstitial space close to the synapses. Thereby they terminate transmission and modulate neuronal behavioral circuits. Therapeutic failure and undesired central nervous system side effects of these drugs have been partially assigned to neurotransmitter removal by low affinity transport. Cloning and functional characterization of the polyspecific organic cation transporters OCT1 (SLC22A1), OCT2 (SLC22A2), OCT3 (SLC22A3) and the plasma membrane monoamine transporter PMAT (SLC29A4) revealed that every single transporter mediates low affinity uptake of NE, 5-HT, and DA. Whereas the organic transporters are all located in the blood brain barrier, OCT2, OCT3, and PMAT are expressed in neurons or in neurons and astrocytes within brain areas that are involved in behavioral regulation. Areas of expression include the dorsal raphe, medullary motoric nuclei, hypothalamic nuclei, and/or the nucleus accumbens. Current knowledge of the transport of monoamine neurotransmitters by the organic cation transporters, their interactions with psychotropic drugs, and their locations in the brain is reported in detail. In addition, animal experiments including behavior tests in wildtype and knockout animals are reported in which the impact of OCT2, OCT3, and/or PMAT on regulation of salt intake, depression, mood control, locomotion, and/or stress effect on addiction is suggested.
Collapse
Affiliation(s)
- Hermann Koepsell
- Institute of Anatomy and Cell Biology, University Würzburg, Würzburg, Germany.
| |
Collapse
|
45
|
Ishimoto T, Kato Y. Regulation of Neurogenesis by Organic Cation Transporters: Potential Therapeutic Implications. Handb Exp Pharmacol 2021; 266:281-300. [PMID: 33782772 DOI: 10.1007/164_2021_445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Neurogenesis is the process by which new neurons are generated from neural stem cells (NSCs), which are cells that have the ability to proliferate and differentiate into neurons, astrocytes, and oligodendrocytes. The process is essential for homeostatic tissue regeneration and the coordination of neural plasticity throughout life, as neurons cannot regenerate once injured. Therefore, defects in neurogenesis are related to the onset and exacerbation of several neuropsychiatric disorders, and therefore, the regulation of neurogenesis is considered to be a novel strategy for treatment. Neurogenesis is regulated not only by NSCs themselves, but also by the functional microenvironment surrounding the NSCs, known as the "neurogenic niche." The neurogenic niche consists of several types of neural cells, including neurons, glial cells, and vascular cells. To allow communication with these cells, transporters may be involved in the secretion and uptake of substrates that are essential for signal transduction. This chapter will focus on the involvement of polyspecific solute carriers transporting organic cations in the possible regulation of neurogenesis by controlling the concentration of several organic cation substrates in NSCs and the neurogenic niche. The potential therapeutic implications of neurogenesis regulation by these transporters will also be discussed.
Collapse
Affiliation(s)
| | - Yukio Kato
- Faculty of Pharmacy, Kanazawa University, Kanazawa, Japan.
| |
Collapse
|
46
|
Naganuma F, Yoshikawa T. Organic Cation Transporters in Brain Histamine Clearance: Physiological and Psychiatric Implications. Handb Exp Pharmacol 2021; 266:169-185. [PMID: 33641029 DOI: 10.1007/164_2021_447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Histamine acts as a neurotransmitter in the central nervous system and is involved in numerous physiological functions. Recent studies have identified the causative role of decreased histaminergic systems in various neurological disorders. Thus, the brain histamine system has attracted attention as a therapeutic target to improve brain function. Neurotransmitter clearance is one of the most important processes for the regulation of neuronal activity and is an essential target for diverse drugs. Our previous study has shown the importance of histamine N-methyltransferase for the inactivation of brain histamine and the intracellular localization of this enzyme; the study indicated that the transport system for the movement of positively charged histamine from the extracellular to intracellular space is a prerequisite for histamine inactivation. Several studies on in vitro astrocytic histamine transport have indicated the contribution of organic cation transporter 3 (OCT3) and plasma membrane monoamine transporter (PMAT) in histamine uptake, although the importance of these transporters in in vivo histamine clearance remains unknown. Immunohistochemical analyses have revealed the expression of OCT3 and PMAT on neurons, emphasizing the importance of investigating neuronal histamine uptake. Further studies using knockout mice or fast-scan cyclic voltammetry will accelerate the research on histamine transporters. In this review article, we summarize histamine transport assays and describe the candidate transporters responsible for histamine transport in the brain.
Collapse
Affiliation(s)
- Fumito Naganuma
- Department of Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan.,Division of Pharmacology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Takeo Yoshikawa
- Department of Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan.
| |
Collapse
|
47
|
Kölz C, Schaeffeler E, Schwab M, Nies AT. Genetic and Epigenetic Regulation of Organic Cation Transporters. Handb Exp Pharmacol 2021; 266:81-100. [PMID: 33674913 DOI: 10.1007/164_2021_450] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Organic cation transporters (OCTs) of the solute carrier family (SLC) 22 are the subject of intensive research because they mediate the transport of many clinically-relevant drugs such as the antidiabetic agent metformin, the opioid tramadol, and the antimigraine agent sumatriptan. OCT1 (SLC22A1) and OCT2 (SLC22A2) are highly expressed in human liver and kidney, respectively, while OCT3 (SLC22A3) shows a broader tissue distribution. As suggested from studies using knockout mice, particularly OCT2 and OCT3 appear to be of relevance for brain physiological function and drug response. The knowledge of genetic factors and epigenetic modifications affecting function and expression of OCTs is important for a better understanding of disease mechanisms and for personalized treatment of patients. This review briefly summarizes the impact of genetic variants and epigenetic regulation of OCTs in general. A comprehensive overview is given on the consequences of OCT2 and OCT3 knockout in mice and the implications of genetic OCT2 and OCT3 variants on central nervous system function in humans.
Collapse
Affiliation(s)
- Charlotte Kölz
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tuebingen, Tuebingen, Germany
| | - Elke Schaeffeler
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tuebingen, Tuebingen, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tuebingen, Tuebingen, Germany
| | - Matthias Schwab
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tuebingen, Tuebingen, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tuebingen, Tuebingen, Germany
- Departments of Clinical Pharmacology, Pharmacy and Biochemistry, University of Tuebingen, Tuebingen, Germany
| | - Anne T Nies
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany.
- University of Tuebingen, Tuebingen, Germany.
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tuebingen, Tuebingen, Germany.
| |
Collapse
|
48
|
Organic Cation Transporters in the Lung-Current and Emerging (Patho)Physiological and Pharmacological Concepts. Int J Mol Sci 2020; 21:ijms21239168. [PMID: 33271927 PMCID: PMC7730617 DOI: 10.3390/ijms21239168] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/24/2020] [Accepted: 11/27/2020] [Indexed: 02/07/2023] Open
Abstract
Organic cation transporters (OCT) 1, 2 and 3 and novel organic cation transporters (OCTN) 1 and 2 of the solute carrier 22 (SLC22) family are involved in the cellular transport of endogenous compounds such as neurotransmitters, l-carnitine and ergothioneine. OCT/Ns have also been implicated in the transport of xenobiotics across various biological barriers, for example biguanides and histamine receptor antagonists. In addition, several drugs used in the treatment of respiratory disorders are cations at physiological pH and potential substrates of OCT/Ns. OCT/Ns may also be associated with the development of chronic lung diseases such as allergic asthma and chronic obstructive pulmonary disease (COPD) and, thus, are possible new drug targets. As part of the Special Issue "Physiology, Biochemistry and Pharmacology of Transporters for Organic Cations", this review provides an overview of recent findings on the (patho)physiological and pharmacological functions of organic cation transporters in the lung.
Collapse
|
49
|
Organic Cation Transporters in Human Physiology, Pharmacology, and Toxicology. Int J Mol Sci 2020; 21:ijms21217890. [PMID: 33114309 PMCID: PMC7660683 DOI: 10.3390/ijms21217890] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 12/13/2022] Open
Abstract
Individual cells and epithelia control the chemical exchange with the surrounding environment by the fine-tuned expression, localization, and function of an array of transmembrane proteins that dictate the selective permeability of the lipid bilayer to small molecules, as actual gatekeepers to the interface with the extracellular space. Among the variety of channels, transporters, and pumps that localize to cell membrane, organic cation transporters (OCTs) are considered to be extremely relevant in the transport across the plasma membrane of the majority of the endogenous substances and drugs that are positively charged near or at physiological pH. In humans, the following six organic cation transporters have been characterized in regards to their respective substrates, all belonging to the solute carrier 22 (SLC22) family: the organic cation transporters 1, 2, and 3 (OCT1–3); the organic cation/carnitine transporter novel 1 and 2 (OCTN1 and N2); and the organic cation transporter 6 (OCT6). OCTs are highly expressed on the plasma membrane of polarized epithelia, thus, playing a key role in intestinal absorption and renal reabsorption of nutrients (e.g., choline and carnitine), in the elimination of waste products (e.g., trimethylamine and trimethylamine N-oxide), and in the kinetic profile and therapeutic index of several drugs (e.g., metformin and platinum derivatives). As part of the Special Issue Physiology, Biochemistry, and Pharmacology of Transporters for Organic Cations, this article critically presents the physio-pathological, pharmacological, and toxicological roles of OCTs in the tissues in which they are primarily expressed.
Collapse
|
50
|
Davla S, Artiushin G, Li Y, Chitsaz D, Li S, Sehgal A, van Meyel DJ. AANAT1 functions in astrocytes to regulate sleep homeostasis. eLife 2020; 9:e53994. [PMID: 32955431 PMCID: PMC7550187 DOI: 10.7554/elife.53994] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 09/18/2020] [Indexed: 01/23/2023] Open
Abstract
How the brain controls the need and acquisition of recovery sleep after prolonged wakefulness is an important issue in sleep research. The monoamines serotonin and dopamine are key regulators of sleep in mammals and in Drosophila. We found that the enzyme arylalkylamine N-acetyltransferase 1 (AANAT1) is expressed by Drosophila astrocytes and specific subsets of neurons in the adult brain. AANAT1 acetylates monoamines and inactivates them, and we found that AANAT1 limited the accumulation of serotonin and dopamine in the brain upon sleep deprivation (SD). Loss of AANAT1 from astrocytes, but not from neurons, caused flies to increase their daytime recovery sleep following overnight SD. Together, these findings demonstrate a crucial role for AANAT1 and astrocytes in the regulation of monoamine bioavailability and homeostatic sleep.
Collapse
Affiliation(s)
- Sejal Davla
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, McGill UniversityMontrealCanada
- BRaIN Program, Research Institute of the McGill University Health CentreMontrealCanada
- Integrated Program in Neuroscience, McGill UniversityMontrealCanada
| | - Gregory Artiushin
- Neuroscience Graduate Group, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Yongjun Li
- Biology Graduate Group, University of PennsylvaniaPhiladelphiaUnited States
| | - Daryan Chitsaz
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, McGill UniversityMontrealCanada
- Integrated Program in Neuroscience, McGill UniversityMontrealCanada
| | - Sally Li
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, McGill UniversityMontrealCanada
| | - Amita Sehgal
- Howard Hughes Medical Institute, Chronobiology and Sleep Institute, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Donald J van Meyel
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, McGill UniversityMontrealCanada
- BRaIN Program, Research Institute of the McGill University Health CentreMontrealCanada
| |
Collapse
|