1
|
Sánchez RM, Bermeo Losada JF, Marín Martínez JA. The research landscape concerning environmental factors in neurodevelopmental disorders: Endocrine disrupters and pesticides-A review. Front Neuroendocrinol 2024; 73:101132. [PMID: 38561126 DOI: 10.1016/j.yfrne.2024.101132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 03/08/2024] [Accepted: 03/29/2024] [Indexed: 04/04/2024]
Abstract
In recent years, environmental epidemiology and toxicology have seen a growing interest in the environmental factors that contribute to the increased prevalence of neurodevelopmental disorders, with the purpose of establishing appropriate prevention strategies. A literature review was performed, and 192 articles covering the topic of endocrine disruptors and neurodevelopmental disorders were found, focusing on polychlorinated biphenyls, polybrominated diphenyl ethers, bisphenol A, and pesticides. This study contributes to analyzing their effect on the molecular mechanism in maternal and infant thyroid function, essential for infant neurodevelopment, and whose alteration has been associated with various neurodevelopmental disorders. The results provide scientific evidence of the association that exists between the environmental neurotoxins and various neurodevelopmental disorders. In addition, other possible molecular mechanisms by which pesticides and endocrine disruptors may be associated with neurodevelopmental disorders are being discussed.
Collapse
Affiliation(s)
- Rebeca Mira Sánchez
- Universidad de Murcia, Spain; Instituto de Ciencias Medioambientales y Neurodesarrollo ICMYN, Murcia, Spain.
| | | | | |
Collapse
|
2
|
Lopes-Marques M, Mort M, Carneiro J, Azevedo A, Amaro AP, Cooper DN, Azevedo L. Meta-analysis of 46,000 germline de novo mutations linked to human inherited disease. Hum Genomics 2024; 18:20. [PMID: 38395944 PMCID: PMC10885371 DOI: 10.1186/s40246-024-00587-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND De novo mutations (DNMs) are variants that occur anew in the offspring of noncarrier parents. They are not inherited from either parent but rather result from endogenous mutational processes involving errors of DNA repair/replication. These spontaneous errors play a significant role in the causation of genetic disorders, and their importance in the context of molecular diagnostic medicine has become steadily more apparent as more DNMs have been reported in the literature. In this study, we examined 46,489 disease-associated DNMs annotated by the Human Gene Mutation Database (HGMD) to ascertain their distribution across gene and disease categories. RESULTS Most disease-associated DNMs reported to date are found to be associated with developmental and psychiatric disorders, a reflection of the focus of sequencing efforts over the last decade. Of the 13,277 human genes in which DNMs have so far been found, the top-10 genes with the highest proportions of DNM relative to gene size were H3-3 A, DDX3X, CSNK2B, PURA, ZC4H2, STXBP1, SCN1A, SATB2, H3-3B and TUBA1A. The distribution of CADD and REVEL scores for both disease-associated DNMs and those mutations not reported to be de novo revealed a trend towards higher deleteriousness for DNMs, consistent with the likely lower selection pressure impacting them. This contrasts with the non-DNMs, which are presumed to have been subject to continuous negative selection over multiple generations. CONCLUSION This meta-analysis provides important information on the occurrence and distribution of disease-associated DNMs in association with heritable disease and should make a significant contribution to our understanding of this major type of mutation.
Collapse
Affiliation(s)
- Mónica Lopes-Marques
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal
| | - Matthew Mort
- Institute of Medical Genetics, School of Medicine, Cardiff University, Cardiff, UK
| | - João Carneiro
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal
| | - António Azevedo
- CHUdSA-Centro Hospitalar Universitário de Santo António, Porto, Portugal
- UMIB-Unit for Multidisciplinary Research in Biomedicine, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
- ITR - Laboratory for Integrative and Translational Research in Population Health, Porto, Portugal
| | - Andreia P Amaro
- UMIB-Unit for Multidisciplinary Research in Biomedicine, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
- ITR - Laboratory for Integrative and Translational Research in Population Health, Porto, Portugal
| | - David N Cooper
- Institute of Medical Genetics, School of Medicine, Cardiff University, Cardiff, UK
| | - Luísa Azevedo
- UMIB-Unit for Multidisciplinary Research in Biomedicine, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal.
- ITR - Laboratory for Integrative and Translational Research in Population Health, Porto, Portugal.
| |
Collapse
|
3
|
Chen E, Facio FM, Aradhya KW, Rojahn S, Hatchell KE, Aguilar S, Ouyang K, Saitta S, Hanson-Kwan AK, Capurro NN, Takamine E, Jamuar SS, McKnight D, Johnson B, Aradhya S. Rates and Classification of Variants of Uncertain Significance in Hereditary Disease Genetic Testing. JAMA Netw Open 2023; 6:e2339571. [PMID: 37878314 PMCID: PMC10600581 DOI: 10.1001/jamanetworkopen.2023.39571] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 09/12/2023] [Indexed: 10/26/2023] Open
Abstract
Importance Variants of uncertain significance (VUSs) are rampant in clinical genetic testing, frustrating clinicians, patients, and laboratories because the uncertainty hinders diagnoses and clinical management. A comprehensive assessment of VUSs across many disease genes is needed to guide efforts to reduce uncertainty. Objective To describe the sources, gene distribution, and population-level attributes of VUSs and to evaluate the impact of the different types of evidence used to reclassify them. Design, Setting, and Participants This cohort study used germline DNA variant data from individuals referred by clinicians for diagnostic genetic testing for hereditary disorders. Participants included individuals for whom gene panel testing was conducted between September 9, 2014, and September 7, 2022. Data were analyzed from September 1, 2022, to April 1, 2023. Main Outcomes and Measures The outcomes of interest were VUS rates (stratified by age; clinician-reported race, ethnicity, and ancestry groups; types of gene panels; and variant attributes), percentage of VUSs reclassified as benign or likely benign vs pathogenic or likely pathogenic, and enrichment of evidence types used for reclassifying VUSs. Results The study cohort included 1 689 845 individuals ranging in age from 0 to 89 years at time of testing (median age, 50 years), with 1 203 210 (71.2%) female individuals. There were 39 150 Ashkenazi Jewish individuals (2.3%), 64 730 Asian individuals (3.8%), 126 739 Black individuals (7.5%), 5539 French Canadian individuals (0.3%), 169 714 Hispanic individuals (10.0%), 5058 Native American individuals (0.3%), 2696 Pacific Islander individuals (0.2%), 4842 Sephardic Jewish individuals (0.3%), and 974 383 White individuals (57.7%). Among all individuals tested, 692 227 (41.0%) had at least 1 VUS and 535 385 (31.7%) had only VUS results. The number of VUSs per individual increased as more genes were tested, and most VUSs were missense changes (86.6%). More VUSs were observed per sequenced gene in individuals who were not from a European White population, in middle-aged and older adults, and in individuals who underwent testing for disorders with incomplete penetrance. Of 37 699 unique VUSs that were reclassified, 30 239 (80.2%) were ultimately categorized as benign or likely benign. A mean (SD) of 30.7 (20.0) months elapsed for VUSs to be reclassified to benign or likely benign, and a mean (SD) of 22.4 (18.9) months elapsed for VUSs to be reclassified to pathogenic or likely pathogenic. Clinical evidence contributed most to reclassification. Conclusions and Relevance This cohort study of approximately 1.6 million individuals highlighted the need for better methods for interpreting missense variants, increased availability of clinical and experimental evidence for variant classification, and more diverse representation of race, ethnicity, and ancestry groups in genomic databases. Data from this study could provide a sound basis for understanding the sources and resolution of VUSs and navigating appropriate next steps in patient care.
Collapse
Affiliation(s)
- Elaine Chen
- Invitae Corporation, San Francisco, California
| | | | | | | | | | | | | | - Sulagna Saitta
- Division of Clinical Genetics, Departments of Pediatrics and Obstetrics and Gynecology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | | | - Nicole Nakousi Capurro
- School of Medicine, University of Valparaíso, Valparaíso, Chile
- Facultad de Medicina, Universidad Andrés Bello, Viña del Mar, Chile
| | - Eriko Takamine
- Department of Medical Genetics, Tokyo Medical and Dental University Hospital, Tokyo, Japan
| | - Saumya Shekhar Jamuar
- Genetics Service, KK Women’s and Children’s Hospital, Singapore
- SingHealth Duke-NUS Institute of Precision Medicine, Singapore
| | | | | | - Swaroop Aradhya
- Invitae Corporation, San Francisco, California
- Department of Pathology, Stanford University, Stanford, California
| |
Collapse
|
4
|
Brunklaus A, Feng T, Brünger T, Perez-Palma E, Heyne H, Matthews E, Semsarian C, Symonds JD, Zuberi SM, Lal D, Schorge S. Gene variant effects across sodium channelopathies predict function and guide precision therapy. Brain 2022; 145:4275-4286. [PMID: 35037686 PMCID: PMC9897196 DOI: 10.1093/brain/awac006] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 11/27/2021] [Accepted: 12/10/2021] [Indexed: 11/14/2022] Open
Abstract
Pathogenic variants in the voltage-gated sodium channel gene family lead to early onset epilepsies, neurodevelopmental disorders, skeletal muscle channelopathies, peripheral neuropathies and cardiac arrhythmias. Disease-associated variants have diverse functional effects ranging from complete loss-of-function to marked gain-of-function. Therapeutic strategy is likely to depend on functional effect. Experimental studies offer important insights into channel function but are resource intensive and only performed in a minority of cases. Given the evolutionarily conserved nature of the sodium channel genes, we investigated whether similarities in biophysical properties between different voltage-gated sodium channels can predict function and inform precision treatment across sodium channelopathies. We performed a systematic literature search identifying functionally assessed variants in any of the nine voltage-gated sodium channel genes until 28 April 2021. We included missense variants that had been electrophysiologically characterized in mammalian cells in whole-cell patch-clamp recordings. We performed an alignment of linear protein sequences of all sodium channel genes and correlated variants by their overall functional effect on biophysical properties. Of 951 identified records, 437 sodium channel-variants met our inclusion criteria and were reviewed for functional properties. Of these, 141 variants were epilepsy-associated (SCN1/2/3/8A), 79 had a neuromuscular phenotype (SCN4/9/10/11A), 149 were associated with a cardiac phenotype (SCN5/10A) and 68 (16%) were considered benign. We detected 38 missense variant pairs with an identical disease-associated variant in a different sodium channel gene. Thirty-five out of 38 of those pairs resulted in similar functional consequences, indicating up to 92% biophysical agreement between corresponding sodium channel variants (odds ratio = 11.3; 95% confidence interval = 2.8 to 66.9; P < 0.001). Pathogenic missense variants were clustered in specific functional domains, whereas population variants were significantly more frequent across non-conserved domains (odds ratio = 18.6; 95% confidence interval = 10.9-34.4; P < 0.001). Pore-loop regions were frequently associated with loss-of-function variants, whereas inactivation sites were associated with gain-of-function (odds ratio = 42.1, 95% confidence interval = 14.5-122.4; P < 0.001), whilst variants occurring in voltage-sensing regions comprised a range of gain- and loss-of-function effects. Our findings suggest that biophysical characterisation of variants in one SCN-gene can predict channel function across different SCN-genes where experimental data are not available. The collected data represent the first gain- versus loss-of-function topological map of SCN proteins indicating shared patterns of biophysical effects aiding variant analysis and guiding precision therapy. We integrated our findings into a free online webtool to facilitate functional sodium channel gene variant interpretation (http://SCN-viewer.broadinstitute.org).
Collapse
Affiliation(s)
- Andreas Brunklaus
- Correspondence to: Dr Andreas Brunklaus, MD Fraser of Allander Neurosciences Unit Office Block, Ground Floor, Zone 2 Royal Hospital for Children 1345 Govan Road Glasgow G51 4TF, UK E-mail:
| | | | | | - Eduardo Perez-Palma
- Centro de Genética y Genómica, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago, Chile
| | - Henrike Heyne
- Genomic and Personalized Medicine, Digital Health Center, Hasso Plattner Institute, Potsdam, Germany
- Hasso Plattner Institute, Mount Sinai School of Medicine, New York, NY, USA
- Institute for Molecular Medicine Finland: FIMM, Helsinki, Finland
| | - Emma Matthews
- Atkinson Morley Neuromuscular Centre, St George’s University Hospitals NHS Foundation Trust, London, UK
- Molecular and Clinical Sciences Research Institute, St George’s University of London, London, UK
| | - Christopher Semsarian
- Agnes Ginges Centre for Molecular Cardiology at Centenary Institute, The University of Sydney, Sydney, Australia
- Sydney Medical School Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
- Department of Cardiology, Royal Prince Alfred Hospital, Sydney, Australia
| | - Joseph D Symonds
- The Paediatric Neurosciences Research Group, Royal Hospital for Children, Glasgow, UK
- Institute of Health and Wellbeing, University of Glasgow, Glasgow, UK
| | - Sameer M Zuberi
- The Paediatric Neurosciences Research Group, Royal Hospital for Children, Glasgow, UK
- Institute of Health and Wellbeing, University of Glasgow, Glasgow, UK
| | - Dennis Lal
- Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, USA
- Stanley Center for Psychiatric Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Stephanie Schorge
- Correspondence may also be addressed to: Professor Stephanie Schorge, PhD Department of Neuroscience Physiology and Pharmacology UCL, London WC1E 6BT, UK E-mail:
| |
Collapse
|
5
|
Zang RX, Mumby MJ, Dikeakos JD. The Phosphofurin Acidic Cluster Sorting Protein 2 (PACS-2) E209K Mutation Responsible for PACS-2 Syndrome Increases Susceptibility to Apoptosis. ACS OMEGA 2022; 7:34378-34388. [PMID: 36188273 PMCID: PMC9520720 DOI: 10.1021/acsomega.2c04014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/06/2022] [Indexed: 06/16/2023]
Abstract
Phosphofurin acidic cluster sorting protein 2 (PACS-2) is a multifunctional cytosolic membrane trafficking protein with distinct roles in maintaining cellular homeostasis. Recent clinical reports have described 28 individuals possessing a de novo PACS-2 E209K mutation that present with epileptic seizures and cerebellar dysgenesis. As the PACS-2 E209K missense mutation has become a marker for neurodevelopmental disorders, we sought to characterize its biochemical properties. Accordingly, we observed that the PACS-2 E209K protein exhibited a slower turnover rate relative to PACS-2 wild type (WT) upon cycloheximide treatment in 293T cells. The longer half-life of PACS-2 E209K suggests a disruption in its proteostasis, with the potential for altered protein-protein interactions. Indeed, a regulatory protein in neurodevelopment known as 14-3-3ε was identified as having an increased association with PACS-2 E209K. Subsequently, when comparing the effect of PACS-2 WT and E209K expression on the staurosporine-induced apoptosis response, we found that PACS-2 E209K increased susceptibility to staurosporine-induced apoptosis in HCT 116 cells. Overall, our findings suggest PACS-2 E209K alters PACS-2 proteostasis and favors complex formation with 14-3-3ε, leading to increased cell death in the presence of environmental stressors.
Collapse
|
6
|
Sánchez-Luquez KY, Carpena MX, Karam SM, Tovo-Rodrigues L. The contribution of whole-exome sequencing to intellectual disability diagnosis and knowledge of underlying molecular mechanisms: A systematic review and meta-analysis. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2022; 790:108428. [PMID: 35905832 DOI: 10.1016/j.mrrev.2022.108428] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 07/21/2022] [Accepted: 07/23/2022] [Indexed: 01/01/2023]
Abstract
Whole-exome sequencing (WES) is useful for molecular diagnosis, family genetic counseling, and prognosis of intellectual disability (ID). However, ID molecular diagnosis ascertainment based on WES is highly dependent on de novo mutations (DNMs) and variants of uncertain significance (VUS). The quantification of DNM frequency in ID molecular diagnosis ascertainment and the biological mechanisms common to genes with VUS may provide objective information about WES use in ID diagnosis and etiology. We aimed to investigate and estimate the rate of ID molecular diagnostic assessment by WES, quantify the contribution of DNMs to this rate, and biologically and functionally characterize the genes whose mutations were identified through WES. A PubMed/Medline, Web of Science, Scopus, Science Direct, BIREME, and PsycINFO systematic review and meta-analysis was performed, including studies published between 2010 and 2022. Thirty-seven articles with data on ID molecular diagnostic yield using the WES approach were included in the review. WES testing accounted for an overall diagnostic rate of 42% (Confidence interval (CI): 35-50%), while the estimate restricted to DNMs was 11% (CI: 6-18%). Genetic information on mutations and genes was extracted and split into two groups: (1) genes whose mutation was used for positive molecular diagnosis, and (2) genes whose mutation led to uncertain molecular diagnosis. After functional enrichment analysis, in addition to their expected roles in neurodevelopment, genes from the first group were enriched in epigenetic regulatory mechanisms, immune system regulation, and circadian rhythm control. Genes from uncertain diagnosis cases were enriched in the renin angiotensin pathway. Taken together, our results support WES as an important approach to the molecular diagnosis of ID. The results also indicated relevant pathways that may underlie the pathogenesis of ID with the renin-angiotensin pathway being suggested to be a potential pathway underlying the pathogenesis of ID.
Collapse
Affiliation(s)
| | - Marina Xavier Carpena
- Postgraduate Program in Epidemiology, Universidade Federal de Pelotas, Pelotas, Brazil.
| | - Simone M Karam
- Postgraduate Program in Public Health, Universidade Federal do Rio Grande, Rio Grande, Brazil.
| | | |
Collapse
|
7
|
Prediction of genetic alteration of phospholipase C isozymes in brain disorders: Studies with deep learning. Adv Biol Regul 2021; 82:100833. [PMID: 34773889 DOI: 10.1016/j.jbior.2021.100833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/15/2021] [Accepted: 10/19/2021] [Indexed: 11/22/2022]
Abstract
Genetic mutations leading to the development of various diseases, such as cancer, diabetes, and neurodegenerative disorders, can be attributed to multiple mechanisms and exposure to diverse environments. These disorders further increase gene mutation rates and affect the activity of translated proteins, both phenomena associated with cellular responses. Therefore, maintaining the integrity of genetic and epigenetic information is critical for disease suppression and prevention. With the advent of genome sequencing technologies, large-scale genomic data-based machine learning tools, including deep learning, have been used to predict and identify somatic inactivation or negative dominant expression of target genes in various diseases. Although deep learning studies have recently been highlighted for their ability to distinguish between the genetic information of diseases, conventional wisdom is also necessary to explain the correlation between genotype and phenotype. Herein, we summarize the current understanding of phosphoinositide-specific phospholipase C isozymes (PLCs) and an overview of their associations with genetic variation, as well as their emerging roles in several diseases. We also predicted and discussed new findings of cryptic PLC splice variants by deep learning and the clinical implications of the PLC genetic variations predicted using these tools.
Collapse
|
8
|
Choi SA, Lee HS, Park TJ, Park S, Ko YJ, Kim SY, Lim BC, Kim KJ, Chae JH. Expanding the clinical phenotype and genetic spectrum of PURA-related neurodevelopmental disorders. Brain Dev 2021; 43:912-918. [PMID: 34116881 DOI: 10.1016/j.braindev.2021.05.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/28/2021] [Accepted: 05/16/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND PURA-related neurodevelopmental disorders (PURA-NDDs) include 5q31.3 deletion syndrome and PURA syndrome. PURA-NDDs are characterized by neonatal hypotonia, moderate to severe global developmental delay/intellectual disability (GDD/ID), facial dysmorphism, epileptic seizures, nonepileptic movement disorders, and ophthalmological problems. PURA-NDDs have recently been identified and underestimated in neurodevelopmental cohorts, but their diagnosis is still challenging. METHODS We retrospectively reviewed the clinical characteristics, genetic spectrum, and diagnostic journey of patients with PURA-NDDs. RESULTS We report 2 patients with 5q31.3 microdeletion and 5 with PURA pathogenic variants. They demonstrated hypotonia (7/7, 100%), feeding difficulties (4/5, 80%), and respiratory problems (4/7, 57%) in the neonatal period. All of them had severe GDD/ID and could not achieve independent walking and verbal responses. Distinctive facial features of open-tented upper vermilion, long philtrum, and anteverted nares and poor visual fixation and tracking with or without nystagmus were most commonly found (5/7, 71.4%). There were no significant differences in clinical phenotypes between 5q31.3 microdeletion syndrome and PURA syndrome. PURA-NDDs need to be considered as a differential diagnosis in individuals who show severe hypotonia, including feeding difficulties since birth and severe developmental retardation with distinctive facial and ophthalmological features. CONCLUSIONS Our data expands the phenotypic and genetic spectrum of PURA-NDD. Next-generation sequencing methods based on the detailed phenotypic evaluation would shorten the diagnostic delay and would help this rare disorder become a recognizable cause of neurodevelopmental delay.
Collapse
Affiliation(s)
- Sun Ah Choi
- Department of Pediatrics, Ewha Womans University Medical Center, Ewha Womans University College of Medicine, Seoul, Republic of Korea
| | - Heun-Sik Lee
- Division of Genome Science, Department of Precision Medicine, National Institute of Health, Republic of Korea
| | - Tae-Joon Park
- Division of Genome Science, Department of Precision Medicine, National Institute of Health, Republic of Korea
| | - Soojin Park
- Department of Medicine, Seoul National University College of Medicine Graduate School, Seoul, Republic of Korea; Division of Pediatric Neurology, Department of Pediatrics, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, Seoul, Republic of Korea
| | - Young Jun Ko
- Division of Pediatric Neurology, Department of Pediatrics, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, Seoul, Republic of Korea
| | - Soo Yeon Kim
- Division of Pediatric Neurology, Department of Pediatrics, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, Seoul, Republic of Korea; Rare Disease Center, Seoul National University Hospital, Seoul, Republic of Korea
| | - Byung Chan Lim
- Division of Pediatric Neurology, Department of Pediatrics, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, Seoul, Republic of Korea; Rare Disease Center, Seoul National University Hospital, Seoul, Republic of Korea; Department of Pediatrics, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Ki Joong Kim
- Division of Pediatric Neurology, Department of Pediatrics, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, Seoul, Republic of Korea; Department of Pediatrics, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jong-Hee Chae
- Division of Pediatric Neurology, Department of Pediatrics, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, Seoul, Republic of Korea; Rare Disease Center, Seoul National University Hospital, Seoul, Republic of Korea; Department of Pediatrics, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
9
|
Gholipour F, Yoshiura KI, Hosseinpourfeizi M, Elmi N, Teimourian S, Safaralizadeh R. Whole exome sequencing reveals pathogenic variants in KL and PUDP genes as the cause of intellectual disability in an Iranian family. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
10
|
Acharya A, Kavus H, Dunn P, Nasir A, Folk L, Withrow K, Wentzensen IM, Ruzhnikov MRZ, Fallot C, Smol T, Rama M, Brown K, Whalen S, Ziegler A, Barth M, Chassevent A, Smith-Hicks C, Afenjar A, Courtin T, Heide S, Font-Montgomery E, Heid C, Hamm JA, Love DR, Thabet F, Misra VK, Cunningham M, Leal SM, Jarvela I, Normand EA, Zou F, Helal M, Keren B, Torti E, Chung WK, Schrauwen I. Delineating the genotypic and phenotypic spectrum of HECW2-related neurodevelopmental disorders. J Med Genet 2021; 59:669-677. [PMID: 34321324 DOI: 10.1136/jmedgenet-2021-107871] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/06/2021] [Indexed: 11/03/2022]
Abstract
BACKGROUND Variants in HECW2 have recently been reported to cause a neurodevelopmental disorder with hypotonia, seizures and impaired language; however, only six variants have been reported and the clinical characteristics have only broadly been defined. METHODS Molecular and clinical data were collected from clinical and research cohorts. Massive parallel sequencing was performed and identified individuals with a HECW2-related neurodevelopmental disorder. RESULTS We identified 13 novel missense variants in HECW2 in 22 unpublished cases, of which 18 were confirmed to have a de novo variant. In addition, we reviewed the genotypes and phenotypes of previously reported and new cases with HECW2 variants (n=35 cases). All variants identified are missense, and the majority of likely pathogenic and pathogenic variants are located in or near the C-terminal HECT domain (88.2%). We identified several clustered variants and four recurrent variants (p.(Arg1191Gln);p.(Asn1199Lys);p.(Phe1327Ser);p.(Arg1330Trp)). Two variants, (p.(Arg1191Gln);p.(Arg1330Trp)), accounted for 22.9% and 20% of cases, respectively. Clinical characterisation suggests complete penetrance for hypotonia with or without spasticity (100%), developmental delay/intellectual disability (100%) and developmental language disorder (100%). Other common features are behavioural problems (88.9%), vision problems (83.9%), motor coordination/movement (75%) and gastrointestinal issues (70%). Seizures were present in 61.3% of individuals. Genotype-phenotype analysis shows that HECT domain variants are more frequently associated with cortical visual impairment and gastrointestinal issues. Seizures were only observed in individuals with variants in or near the HECT domain. CONCLUSION We provide a comprehensive review and expansion of the genotypic and phenotypic spectrum of HECW2 disorders, aiding future molecular and clinical diagnosis and management.
Collapse
Affiliation(s)
- Anushree Acharya
- Center for Statistical Genetics, Gertrude H. Sergievsky Center and the Department of Neurology, Columbia University Medical Center, New York, New York, USA
| | - Haluk Kavus
- Department of Pediatrics, Columbia University, New York, New York, USA
| | - Patrick Dunn
- The George Washington University, Washington, District of Columbia, USA
| | - Abdul Nasir
- Department of Molecular Science and Technology, Ajou University, Suwon, The Republic of Korea
| | | | | | | | - Maura R Z Ruzhnikov
- Neurology and Neurological Sciences, Pediatrics, Division of Medical Genetics, Stanford University and Lucile Packard Children's Hospital, Palo Alto, California, USA
| | | | - Thomas Smol
- Institut de Génétique, Univ Lille, EA7364 RADEME, CHU Lille, Lille, France
| | | | - Kathleen Brown
- Pediatrics-Clinical Genetics and Metabolism, School of Medicine, University of Colorado-Anschutz Medical Campus, Aurora, Colorado, USA
| | - Sandra Whalen
- UF de génétique Clinique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs, Assistance Publique-Hôpitaux de Paris (APHP) Sorbonne Université, Hôpital Armand Trousseau, ERN-ITHACA, Paris, France
| | - Alban Ziegler
- Department of Genetics, Angers University Hospital, Angers, France
| | - Magali Barth
- Department of Genetics, Angers University Hospital, Angers, France
| | - Anna Chassevent
- Division of Neurogenetics, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Constance Smith-Hicks
- Division of Neurogenetics, Kennedy Krieger Institute, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Alexandra Afenjar
- Assistance Publique-Hôpitaux de Paris (APHP) Sorbonne Université, Centre de Référence Malformations et maladies congénitales du cervelet et déficiences intellectuelles de causes rares, département de génétique et embryologie médicale, Hôpital Trousseau, Paris, France
| | - Thomas Courtin
- Département de génétique, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris (APHP), Paris, France
| | - Solveig Heide
- Department of Genetics, Pitié-Salpêtrière Hospital, Referral Center for Intellectual Disabilities of Rare Causes, Assistance Publique-Hôpitaux de Paris (APHP) Sorbonne Université, Paris, France
| | | | - Caleb Heid
- University Hospital Medical Genetics Clinic, University of Missouri, Columbia, Missouri, USA
| | - J Austin Hamm
- Pediatric Genetics, East Tennessee Children's Hospital, Knoxville, Tennessee, USA
| | | | - Farouq Thabet
- Pediatric Neurology Division, Sidra Medicine, Doha, Qatar
| | - Vinod K Misra
- Department of Pediatrics, Division of Genetic, Genomic, and Metabolic Disorders, Children's Hospital of Michigan, Detroit, Michigan, USA.,Discipline of Pediatrics, Central Michigan University, Mount Pleasant, Michigan, USA
| | - Mitch Cunningham
- Department of Pediatrics, Division of Genetic, Genomic, and Metabolic Disorders, Children's Hospital of Michigan, Detroit, Michigan, USA
| | - Suzanne M Leal
- Center for Statistical Genetics, Gertrude H. Sergievsky Center and the Department of Neurology, Columbia University Medical Center, New York, New York, USA.,Taub Institute for Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, New York, USA
| | - Irma Jarvela
- Department of Medical Genetics, University of Helsinki, Helsinki, Finland
| | | | | | - Mayada Helal
- Department of Pediatrics, Columbia University, New York, New York, USA
| | - Boris Keren
- Département de génétique, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris (APHP), Paris, France
| | | | - Wendy K Chung
- Department of Pediatrics, Columbia University, New York, New York, USA .,Department of Medicine, Columbia University, New York, New York, USA
| | - Isabelle Schrauwen
- Center for Statistical Genetics, Gertrude H. Sergievsky Center and the Department of Neurology, Columbia University Medical Center, New York, New York, USA
| |
Collapse
|
11
|
Sun H, Shen XR, Fang ZB, Jiang ZZ, Wei XJ, Wang ZY, Yu XF. Next-Generation Sequencing Technologies and Neurogenetic Diseases. Life (Basel) 2021; 11:life11040361. [PMID: 33921670 PMCID: PMC8072598 DOI: 10.3390/life11040361] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/05/2021] [Accepted: 04/16/2021] [Indexed: 12/18/2022] Open
Abstract
Next-generation sequencing (NGS) technology has led to great advances in understanding the causes of Mendelian and complex neurological diseases. Owing to the complexity of genetic diseases, the genetic factors contributing to many rare and common neurological diseases remain poorly understood. Selecting the correct genetic test based on cost-effectiveness, coverage area, and sequencing range can improve diagnosis, treatments, and prevention. Whole-exome sequencing and whole-genome sequencing are suitable methods for finding new mutations, and gene panels are suitable for exploring the roles of specific genes in neurogenetic diseases. Here, we provide an overview of the classifications, applications, advantages, and limitations of NGS in research on neurological diseases. We further provide examples of NGS-based explorations and insights of the genetic causes of neurogenetic diseases, including Charcot-Marie-Tooth disease, spinocerebellar ataxias, epilepsy, and multiple sclerosis. In addition, we focus on issues related to NGS-based analyses, including interpretations of variants of uncertain significance, de novo mutations, congenital genetic diseases with complex phenotypes, and single-molecule real-time approaches.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xue-Fan Yu
- Correspondence: ; Tel.: +86-157-5430-1836
| |
Collapse
|
12
|
|
13
|
Lichtig H, Artamonov A, Polevoy H, Reid CD, Bielas SL, Frank D. Modeling Bainbridge-Ropers Syndrome in Xenopus laevis Embryos. Front Physiol 2020; 11:75. [PMID: 32132929 PMCID: PMC7040374 DOI: 10.3389/fphys.2020.00075] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 01/23/2020] [Indexed: 12/14/2022] Open
Abstract
The Additional sex combs-like (ASXL1-3) genes are linked to human neurodevelopmental disorders. The de novo truncating variants in ASXL1-3 proteins serve as the genetic basis for severe neurodevelopmental diseases such as Bohring-Opitz, Shashi-Pena, and Bainbridge-Ropers syndromes, respectively. The phenotypes of these syndromes are similar but not identical, and include dramatic craniofacial defects, microcephaly, developmental delay, and severe intellectual disability, with a loss of speech and language. Bainbridge-Ropers syndrome resulting from ASXL3 gene mutations also includes features of autism spectrum disorder. Human genomic studies also identified missense ASXL3 variants associated with autism spectrum disorder, but lacking more severe Bainbridge-Ropers syndromic features. While these findings strongly implicate ASXL3 in mammalian brain development, its functions are not clearly understood. ASXL3 protein is a component of the polycomb deubiquitinase complex that removes mono-ubiquitin from Histone H2A. Dynamic chromatin modifications play important roles in the specification of cell fates during early neural patterning and development. In this study, we utilize the frog, Xenopus laevis as a simpler and more accessible vertebrate neurodevelopmental model system to understand the embryological cause of Bainbridge-Ropers syndrome. We have found that ASXL3 protein knockdown during early embryo development highly perturbs neural cell fate specification, potentially resembling the Bainbridge-Ropers syndrome phenotype in humans. Thus, the frog embryo is a powerful tool for understanding the etiology of Bainbridge-Ropers syndrome in humans.
Collapse
Affiliation(s)
- Hava Lichtig
- Department of Biochemistry, Faculty of Medicine, The Rappaport Family Institute for Research in the Medical Sciences, Technion - Israel Institute of Technology, Haifa, Israel
| | - Artyom Artamonov
- Department of Biochemistry, Faculty of Medicine, The Rappaport Family Institute for Research in the Medical Sciences, Technion - Israel Institute of Technology, Haifa, Israel
| | - Hanna Polevoy
- Department of Biochemistry, Faculty of Medicine, The Rappaport Family Institute for Research in the Medical Sciences, Technion - Israel Institute of Technology, Haifa, Israel
| | - Christine D Reid
- Department of Genetics, Stanford University, Stanford, CA, United States
| | - Stephanie L Bielas
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Dale Frank
- Department of Biochemistry, Faculty of Medicine, The Rappaport Family Institute for Research in the Medical Sciences, Technion - Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
14
|
Hiraide T, Watanabe S, Matsubayashi T, Yanagi K, Nakashima M, Ogata T, Saitsu H. A de novo TOP2B variant associated with global developmental delay and autism spectrum disorder. Mol Genet Genomic Med 2020; 8:e1145. [PMID: 31953910 PMCID: PMC7057084 DOI: 10.1002/mgg3.1145] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 01/07/2020] [Indexed: 01/01/2023] Open
Abstract
Background TOP2B encodes type II topoisomerase beta, which controls topological changes during DNA transcription. TOP2B is expressed in the developing nervous system and is involved in brain development and neural differentiation. Recently, a de novo missense TOP2B variant (c.187C>T) has been identified in an individual with neurodevelopmental disorder (NDD). However, the association between TOP2B variants and NDDs remains uncertain. Methods Trio‐based whole‐exome sequencing was performed on a 7‐year‐old girl, presenting muscle hypotonia, stereotypic hand movements, epilepsy, global developmental delay, and autism spectrum disorder. Brain magnetic resonance images were normal. She was unable to walk independently and spoke no meaningful words. Results We found a de novo variant in TOP2B (NM_001330700.1:c.187C>T, p.(His63Tyr)), which is identical to the previous case. The clinical features of the two individuals with the c.187C>T variant overlapped. Conclusion Our study supports the finding that TOP2B variants may cause NDDs.
Collapse
Affiliation(s)
- Takuya Hiraide
- Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu, Japan.,Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Seiji Watanabe
- Department of Pediatrics, Izu Medical and Welfare Center, Izunokuni, Japan
| | - Tomoko Matsubayashi
- Department of Pediatric Neurology, Shizuoka Children's Hospital, Shizuoka, Japan
| | - Kumiko Yanagi
- Department of Genome Medicine, National Center for Child Health and Development, Tokyo, Japan
| | - Mitsuko Nakashima
- Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Tsutomu Ogata
- Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Hirotomo Saitsu
- Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu, Japan
| |
Collapse
|
15
|
Lettieri A, Borgo C, Zanieri L, D’Amore C, Oleari R, Paganoni A, Pinna LA, Cariboni A, Salvi M. Protein Kinase CK2 Subunits Differentially Perturb the Adhesion and Migration of GN11 Cells: A Model of Immature Migrating Neurons. Int J Mol Sci 2019; 20:ijms20235951. [PMID: 31779225 PMCID: PMC6928770 DOI: 10.3390/ijms20235951] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 11/20/2019] [Accepted: 11/21/2019] [Indexed: 02/07/2023] Open
Abstract
Protein kinase CK2 (CK2) is a highly conserved and ubiquitous kinase is involved in crucial biological processes, including proliferation, migration, and differentiation. CK2 holoenzyme is a tetramer composed by two catalytically active (α/α’) and two regulatory (β) subunits and exerts its function on a broad range of targets. In the brain, it regulates different steps of neurodevelopment, such as neural differentiation, neuritogenesis, and synaptic plasticity. Interestingly, CK2 mutations have been recently linked to neurodevelopmental disorders; however, the functional requirements of the individual CK2 subunits in neurodevelopment have not been yet investigated. Here, we disclose the role of CK2 on the migration and adhesion properties of GN11 cells, an established model of mouse immortalized neurons, by different in vitro experimental approaches. Specifically, the cellular requirement of this kinase has been assessed pharmacologically and genetically by exploiting CK2 inhibitors and by generating subunit-specific CK2 knockout GN11 cells (with a CRISPR/Cas9-based approach). We show that CK2α’ subunit has a primary role in increasing cell adhesion and reducing migration properties of GN11 cells by activating the Akt-GSK3β axis, whereas CK2α subunit is dispensable. Further, the knockout of the CK2β regulatory subunits counteracts cell migration, inducing dramatic alterations in the cytoskeleton not observed in CK2α’ knockout cells. Collectively taken, our data support the view that the individual subunits of CK2 play different roles in cell migration and adhesion properties of GN11 cells, supporting independent roles of the different subunits in these processes.
Collapse
Affiliation(s)
- Antonella Lettieri
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, 20133 Milan, Italy; (A.L.); (L.Z.); (R.O.); (A.P.)
| | - Christian Borgo
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/B, 35131 Padova, Italy; (C.B.); (C.D.)
| | - Luca Zanieri
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, 20133 Milan, Italy; (A.L.); (L.Z.); (R.O.); (A.P.)
| | - Claudio D’Amore
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/B, 35131 Padova, Italy; (C.B.); (C.D.)
| | - Roberto Oleari
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, 20133 Milan, Italy; (A.L.); (L.Z.); (R.O.); (A.P.)
| | - Alyssa Paganoni
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, 20133 Milan, Italy; (A.L.); (L.Z.); (R.O.); (A.P.)
| | - Lorenzo A. Pinna
- CNR Institute of Neurosciences, Via U. Bassi 58/B, 35131 Padova, Italy;
| | - Anna Cariboni
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, 20133 Milan, Italy; (A.L.); (L.Z.); (R.O.); (A.P.)
- Correspondence: (A.C.); (M.S.)
| | - Mauro Salvi
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/B, 35131 Padova, Italy; (C.B.); (C.D.)
- Correspondence: (A.C.); (M.S.)
| |
Collapse
|
16
|
Yamamoto T, Imaizumi T, Yamamoto-Shimojima K, Lu Y, Yanagishita T, Shimada S, Chong PF, Kira R, Ueda R, Ishiyama A, Takeshita E, Momosaki K, Ozasa S, Akiyama T, Kobayashi K, Oomatsu H, Kitahara H, Yamaguchi T, Imai K, Kurahashi H, Okumura A, Oguni H, Seto T, Okamoto N. Genomic backgrounds of Japanese patients with undiagnosed neurodevelopmental disorders. Brain Dev 2019; 41:776-782. [PMID: 31171384 DOI: 10.1016/j.braindev.2019.05.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 05/08/2019] [Accepted: 05/21/2019] [Indexed: 01/07/2023]
Abstract
BACKGROUND Recently, many genes related to neurodevelopmental disorders have been identified by high-throughput genomic analysis; however, a comprehensive understanding of the mechanism underlying neurodevelopmental disorders remains to be established. To further understand these underlying mechanisms, we performed a comprehensive genomic analysis of patients with undiagnosed neurodevelopmental disorders. METHODS Genomic analysis using next-generation sequencing with a targeted panel was performed for a total of 133 Japanese patients (male/female, 81/52) with previously undiagnosed neurodevelopmental disorders, including developmental delay (DD), intellectual disability (ID), autism spectrum disorder (ASD), and epilepsy. Genomic copy numbers were also analyzed using the eXome Hidden Markov Model (XHMM). RESULTS Thirty-nine patients (29.3%) exhibited pathogenic or likely pathogenic findings with single-gene variants or chromosomal aberrations. Among them, 20 patients were presented here. Pathogenic or likely pathogenic variants were identified in 18 genes, including ACTG1, CACNA1A, CHD2, CDKL5, DNMT3A, EHMT1, GABRB3, GABRG2, GRIN2B, KCNQ3, KDM5C, MED13L, SCN2A, SHANK3, SMARCA2, STXBP1, SYNGAP1, and TBL1XR1. CONCLUSION A diagnostic yield of 29.3% in this study was nearly the same as that previously reported from other countries. Thus, we suggest that there is no difference in genomic backgrounds in Japanese patients with undiagnosed neurodevelopmental disabilities. Although most of the patients possessed de novo variants, one of the patients showed an X-linked inheritance pattern. As X-linked recessive disorders exhibit the possibility of recurrent occurrence in the family, comprehensive molecular diagnosis is important for genetic counseling.
Collapse
Affiliation(s)
- Toshiyuki Yamamoto
- Institute of Medical Genetics, Tokyo Women's Medical University, Tokyo, Japan; Tokyo Women's Medical University Institute of Integrated Medical Sciences, Tokyo, Japan.
| | - Taichi Imaizumi
- Institute of Medical Genetics, Tokyo Women's Medical University, Tokyo, Japan; Department of Pediatrics, St. Mariannna University School of Medicine, Kawasaki, Japan
| | - Keiko Yamamoto-Shimojima
- Institute of Medical Genetics, Tokyo Women's Medical University, Tokyo, Japan; Tokyo Women's Medical University Institute of Integrated Medical Sciences, Tokyo, Japan
| | - Yongping Lu
- Institute of Medical Genetics, Tokyo Women's Medical University, Tokyo, Japan
| | - Tomoe Yanagishita
- Institute of Medical Genetics, Tokyo Women's Medical University, Tokyo, Japan; Department of Pediatrics, Tokyo Women's Medical University, Tokyo, Japan
| | - Shino Shimada
- Department of Pediatrics, Tokyo Women's Medical University, Tokyo, Japan
| | - Pin Fee Chong
- Department of Pediatric Neurology, Fukuoka Children's Hospital, Fukuoka, Japan
| | - Ryutaro Kira
- Department of Pediatric Neurology, Fukuoka Children's Hospital, Fukuoka, Japan
| | - Riyo Ueda
- Department of Child Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Akihiko Ishiyama
- Department of Child Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Eri Takeshita
- Department of Child Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Ken Momosaki
- Department of Pediatrics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Shiro Ozasa
- Department of Pediatrics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Tomoyuki Akiyama
- Department of Child Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Katsuhiro Kobayashi
- Department of Child Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hiroo Oomatsu
- Department of Pediatrics, National Epilepsy Center, NHO Shizuoka Institute of Epilepsy and Neurological Disorders, Japan
| | - Hikaru Kitahara
- Department of Pediatrics, National Epilepsy Center, NHO Shizuoka Institute of Epilepsy and Neurological Disorders, Japan
| | - Tokito Yamaguchi
- Department of Pediatrics, National Epilepsy Center, NHO Shizuoka Institute of Epilepsy and Neurological Disorders, Japan
| | - Katsumi Imai
- Department of Pediatrics, National Epilepsy Center, NHO Shizuoka Institute of Epilepsy and Neurological Disorders, Japan
| | | | - Akihisa Okumura
- Department of Pediatrics, Aichi Medical University, Nagakute, Japan
| | - Hirokazu Oguni
- Department of Pediatrics, Tokyo Women's Medical University, Tokyo, Japan
| | - Toshiyuki Seto
- Department of Pediatrics, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Nobuhiko Okamoto
- Department of Medical Genetics, Osaka Women's and Children's Hospital, Izumi, Japan
| |
Collapse
|
17
|
Cardoso AR, Lopes-Marques M, Silva RM, Serrano C, Amorim A, Prata MJ, Azevedo L. Essential genetic findings in neurodevelopmental disorders. Hum Genomics 2019; 13:31. [PMID: 31288856 PMCID: PMC6617629 DOI: 10.1186/s40246-019-0216-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 06/26/2019] [Indexed: 12/12/2022] Open
Abstract
Neurodevelopmental disorders (NDDs) represent a growing medical challenge in modern societies. Ever-increasing sophisticated diagnostic tools have been continuously revealing a remarkably complex architecture that embraces genetic mutations of distinct types (chromosomal rearrangements, copy number variants, small indels, and nucleotide substitutions) with distinct frequencies in the population (common, rare, de novo). Such a network of interacting players creates difficulties in establishing rigorous genotype-phenotype correlations. Furthermore, individual lifestyles may also contribute to the severity of the symptoms fueling a large spectrum of gene-environment interactions that have a key role on the relationships between genotypes and phenotypes.Herein, a review of the genetic discoveries related to NDDs is presented with the aim to provide useful general information for the medical community.
Collapse
Affiliation(s)
- Ana R Cardoso
- i3S - Instituto de Investigação e Inovação em Saúde, Population Genetics and Evolution Group, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal.,IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, Rua Júlio Amaral de Carvalho 45, 4200-135, Porto, Portugal.,Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007, Porto, Portugal
| | - Mónica Lopes-Marques
- i3S - Instituto de Investigação e Inovação em Saúde, Population Genetics and Evolution Group, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal.,IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, Rua Júlio Amaral de Carvalho 45, 4200-135, Porto, Portugal.,Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007, Porto, Portugal
| | - Raquel M Silva
- Department of Medical Sciences and iBiMED, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.,Present Address: Center for Interdisciplinary Research in Health (CIIS), Institute of Health Sciences (ICS), Universidade Católica Portuguesa, 3504-505, Viseu, Portugal
| | - Catarina Serrano
- i3S - Instituto de Investigação e Inovação em Saúde, Population Genetics and Evolution Group, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal.,IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, Rua Júlio Amaral de Carvalho 45, 4200-135, Porto, Portugal.,Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007, Porto, Portugal
| | - António Amorim
- i3S - Instituto de Investigação e Inovação em Saúde, Population Genetics and Evolution Group, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal.,IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, Rua Júlio Amaral de Carvalho 45, 4200-135, Porto, Portugal.,Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007, Porto, Portugal
| | - Maria J Prata
- i3S - Instituto de Investigação e Inovação em Saúde, Population Genetics and Evolution Group, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal.,IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, Rua Júlio Amaral de Carvalho 45, 4200-135, Porto, Portugal.,Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007, Porto, Portugal
| | - Luísa Azevedo
- i3S - Instituto de Investigação e Inovação em Saúde, Population Genetics and Evolution Group, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal. .,IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, Rua Júlio Amaral de Carvalho 45, 4200-135, Porto, Portugal. .,Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007, Porto, Portugal.
| |
Collapse
|
18
|
Dulovic-Mahlow M, Trinh J, Kandaswamy KK, Braathen GJ, Di Donato N, Rahikkala E, Beblo S, Werber M, Krajka V, Busk ØL, Baumann H, Al-Sannaa NA, Hinrichs F, Affan R, Navot N, Al Balwi MA, Oprea G, Holla ØL, Weiss ME, Jamra RA, Kahlert AK, Kishore S, Tveten K, Vos M, Rolfs A, Lohmann K. De Novo Variants in TAOK1 Cause Neurodevelopmental Disorders. Am J Hum Genet 2019; 105:213-220. [PMID: 31230721 DOI: 10.1016/j.ajhg.2019.05.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 05/08/2019] [Indexed: 02/08/2023] Open
Abstract
De novo variants represent a significant cause of neurodevelopmental delay and intellectual disability. A genetic basis can be identified in only half of individuals who have neurodevelopmental disorders (NDDs); this indicates that additional causes need to be elucidated. We compared the frequency of de novo variants in patient-parent trios with (n = 2,030) versus without (n = 2,755) NDDs. We identified de novo variants in TAOK1 (thousand and one [TAO] amino acid kinase 1), which encodes the serine/threonine-protein kinase TAO1, in three individuals with NDDs but not in persons who did not have NDDs. Through further screening and the use of GeneMatcher, five additional individuals with NDDs were found to have de novo variants. All eight variants were absent from gnomAD (Genome Aggregation Database). The variant carriers shared a non-specific phenotype of developmental delay, and six individuals had additional muscular hypotonia. We established a fibroblast line of one mutation carrier, and we demonstrated that reduced mRNA levels of TAOK1 could be increased upon cycloheximide treatment. These results indicate nonsense-mediated mRNA decay. Further, there was neither detectable phosphorylated TAO1 kinase nor phosphorylated tau in these cells, and mitochondrial morphology was altered. Knockdown of the ortholog gene Tao1 (Tao, CG14217) in Drosophila resulted in delayed early development. The majority of the Tao1-knockdown flies did not survive beyond the third instar larval stage. When compared to control flies, Tao1 knockdown flies revealed changed morphology of the ventral nerve cord and the neuromuscular junctions as well as a decreased number of endings (boutons). Furthermore, mitochondria in mutant flies showed altered distribution and decreased size in axons of motor neurons. Thus, we provide compelling evidence that de novo variants in TAOK1 cause NDDs.
Collapse
|
19
|
Novel pathogenic variants and multiple molecular diagnoses in neurodevelopmental disorders. J Neurodev Disord 2019; 11:11. [PMID: 31238879 PMCID: PMC6593513 DOI: 10.1186/s11689-019-9270-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 05/23/2019] [Indexed: 01/27/2023] Open
Abstract
Background Rare denovo variants represent a significant cause of neurodevelopmental delay and intellectual disability (ID). Methods Exome sequencing was performed on 4351 patients with global developmental delay, seizures, microcephaly, macrocephaly, motor delay, delayed speech and language development, or ID according to Human Phenotype Ontology (HPO) terms. All patients had previously undergone whole exome sequencing as part of diagnostic genetic testing with a focus on variants in genes implicated in neurodevelopmental disorders up to January 2017. This resulted in a genetic diagnosis in 1336 of the patients. In this study, we specifically searched for variants in 14 recently implicated novel neurodevelopmental disorder (NDD) genes. Results We identified 65 rare, protein-changing variants in 11 of these 14 novel candidate genes. Fourteen variants in CDK13, CHD4, KCNQ3, KMT5B, TCF20, and ZBTB18 were scored pathogenic or likely pathogenic. Of note, two of these patients had a previously identified cause of their disease, and thus, multiple molecular diagnoses were made including pathogenic/likely pathogenic variants in FOXG1 and CDK13 or in TMEM237 and KMT5B. Conclusions Looking for pathogenic variants in newly identified NDD genes enabled us to provide a molecular diagnosis to 14 patients and their close relatives and caregivers. This underlines the relevance of re-evaluation of existing exome data on a regular basis to improve the diagnostic yield and serve the needs of our patients. Electronic supplementary material The online version of this article (10.1186/s11689-019-9270-4) contains supplementary material, which is available to authorized users.
Collapse
|
20
|
Springer A, Dyck Holzinger S, Andersen J, Buckley D, Fehlings D, Kirton A, Koclas L, Pigeon N, Van Rensburg E, Wood E, Oskoui M, Shevell M. Profile of children with cerebral palsy spectrum disorder and a normal MRI study. Neurology 2019; 93:e88-e96. [PMID: 31127072 DOI: 10.1212/wnl.0000000000007726] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 02/14/2019] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVE This study looks at what profile can be expected in children with cerebral palsy spectrum disorder (CP) and a normal MRI. METHODS The data were excerpted from the Canadian Cerebral Palsy Registry database. Only patients who had undergone MRI were included in the analysis. Neuroimaging classification was ascertained by university-based pediatric neuroradiologists and split into 2 categories: normal and abnormal MRIs. Six factors were then compared between those 2 groups: prematurity, perinatal adversity, presence of more than 1 comorbidity, CP subtype, bimanual dexterity (Manual Ability Classification System [MACS]), and gross motor function (Gross Motor Function Classification System [GMFCS]). RESULTS Participants with no perinatal adversity were 5.518 times more likely to have a normal MRI (p < 0.0001, 95% confidence interval [CI] 4.153-7.330). Furthermore, participants with dyskinetic, ataxic/hypotonic, and spastic diplegic forms of CP were 2.045 times more likely to have a normal MRI than those with hemiplegia, triplegia, and quadriplegia (p < 0.0001, 95% CI 1.506-2.778). No significant difference was found in prematurity, GMFCS levels, MACS levels, and the number of comorbidities. CONCLUSIONS Normal MRIs were associated with lack of perinatal adversity as well as with the dyskinetic, ataxic/hypotonic, and spastic diplegic CP subtypes. As MRI normality is not strongly associated with the severity of CP, continuous follow-up in children with normal imaging appears warranted. Further advanced imaging modalities, as well as strong consideration for metabolic and genetic testing, may provide additional insights into causal pathways in this population.
Collapse
Affiliation(s)
- Arielle Springer
- From the Faculty of Medicine (A.S.) and Departments of Pediatrics (M.O., M.S.) and Neurology & Neurosurgery (M.O., M.S.), McGill University; Canadian Cerebral Palsy Registry (S.D.H.), Research Institute of the McGill University Health Centre, Montreal; Department of Pediatrics (J.A.), University of Alberta, Edmonton; Janeway Children's Hospital (D.B.), St. John's; Department of Paediatrics (D.F.), Bloorview Research Institute, University of Toronto; Departments of Pediatrics and Clinical Neurosciences (A.K.), Cumming School of Medicine, University of Calgary; Centre de Réadaptation Marie Enfant du CHU Sainte-Justine (L.K.), Montreal; Centre Hospitalier Universitaire de Sherbrooke (N.P.); BC Children's Hospital (E.V.R.), Vancouver; and IWK Health Centre (E.W.), Halifax, Canada
| | - Sasha Dyck Holzinger
- From the Faculty of Medicine (A.S.) and Departments of Pediatrics (M.O., M.S.) and Neurology & Neurosurgery (M.O., M.S.), McGill University; Canadian Cerebral Palsy Registry (S.D.H.), Research Institute of the McGill University Health Centre, Montreal; Department of Pediatrics (J.A.), University of Alberta, Edmonton; Janeway Children's Hospital (D.B.), St. John's; Department of Paediatrics (D.F.), Bloorview Research Institute, University of Toronto; Departments of Pediatrics and Clinical Neurosciences (A.K.), Cumming School of Medicine, University of Calgary; Centre de Réadaptation Marie Enfant du CHU Sainte-Justine (L.K.), Montreal; Centre Hospitalier Universitaire de Sherbrooke (N.P.); BC Children's Hospital (E.V.R.), Vancouver; and IWK Health Centre (E.W.), Halifax, Canada
| | - John Andersen
- From the Faculty of Medicine (A.S.) and Departments of Pediatrics (M.O., M.S.) and Neurology & Neurosurgery (M.O., M.S.), McGill University; Canadian Cerebral Palsy Registry (S.D.H.), Research Institute of the McGill University Health Centre, Montreal; Department of Pediatrics (J.A.), University of Alberta, Edmonton; Janeway Children's Hospital (D.B.), St. John's; Department of Paediatrics (D.F.), Bloorview Research Institute, University of Toronto; Departments of Pediatrics and Clinical Neurosciences (A.K.), Cumming School of Medicine, University of Calgary; Centre de Réadaptation Marie Enfant du CHU Sainte-Justine (L.K.), Montreal; Centre Hospitalier Universitaire de Sherbrooke (N.P.); BC Children's Hospital (E.V.R.), Vancouver; and IWK Health Centre (E.W.), Halifax, Canada
| | - David Buckley
- From the Faculty of Medicine (A.S.) and Departments of Pediatrics (M.O., M.S.) and Neurology & Neurosurgery (M.O., M.S.), McGill University; Canadian Cerebral Palsy Registry (S.D.H.), Research Institute of the McGill University Health Centre, Montreal; Department of Pediatrics (J.A.), University of Alberta, Edmonton; Janeway Children's Hospital (D.B.), St. John's; Department of Paediatrics (D.F.), Bloorview Research Institute, University of Toronto; Departments of Pediatrics and Clinical Neurosciences (A.K.), Cumming School of Medicine, University of Calgary; Centre de Réadaptation Marie Enfant du CHU Sainte-Justine (L.K.), Montreal; Centre Hospitalier Universitaire de Sherbrooke (N.P.); BC Children's Hospital (E.V.R.), Vancouver; and IWK Health Centre (E.W.), Halifax, Canada
| | - Darcy Fehlings
- From the Faculty of Medicine (A.S.) and Departments of Pediatrics (M.O., M.S.) and Neurology & Neurosurgery (M.O., M.S.), McGill University; Canadian Cerebral Palsy Registry (S.D.H.), Research Institute of the McGill University Health Centre, Montreal; Department of Pediatrics (J.A.), University of Alberta, Edmonton; Janeway Children's Hospital (D.B.), St. John's; Department of Paediatrics (D.F.), Bloorview Research Institute, University of Toronto; Departments of Pediatrics and Clinical Neurosciences (A.K.), Cumming School of Medicine, University of Calgary; Centre de Réadaptation Marie Enfant du CHU Sainte-Justine (L.K.), Montreal; Centre Hospitalier Universitaire de Sherbrooke (N.P.); BC Children's Hospital (E.V.R.), Vancouver; and IWK Health Centre (E.W.), Halifax, Canada
| | - Adam Kirton
- From the Faculty of Medicine (A.S.) and Departments of Pediatrics (M.O., M.S.) and Neurology & Neurosurgery (M.O., M.S.), McGill University; Canadian Cerebral Palsy Registry (S.D.H.), Research Institute of the McGill University Health Centre, Montreal; Department of Pediatrics (J.A.), University of Alberta, Edmonton; Janeway Children's Hospital (D.B.), St. John's; Department of Paediatrics (D.F.), Bloorview Research Institute, University of Toronto; Departments of Pediatrics and Clinical Neurosciences (A.K.), Cumming School of Medicine, University of Calgary; Centre de Réadaptation Marie Enfant du CHU Sainte-Justine (L.K.), Montreal; Centre Hospitalier Universitaire de Sherbrooke (N.P.); BC Children's Hospital (E.V.R.), Vancouver; and IWK Health Centre (E.W.), Halifax, Canada
| | - Louise Koclas
- From the Faculty of Medicine (A.S.) and Departments of Pediatrics (M.O., M.S.) and Neurology & Neurosurgery (M.O., M.S.), McGill University; Canadian Cerebral Palsy Registry (S.D.H.), Research Institute of the McGill University Health Centre, Montreal; Department of Pediatrics (J.A.), University of Alberta, Edmonton; Janeway Children's Hospital (D.B.), St. John's; Department of Paediatrics (D.F.), Bloorview Research Institute, University of Toronto; Departments of Pediatrics and Clinical Neurosciences (A.K.), Cumming School of Medicine, University of Calgary; Centre de Réadaptation Marie Enfant du CHU Sainte-Justine (L.K.), Montreal; Centre Hospitalier Universitaire de Sherbrooke (N.P.); BC Children's Hospital (E.V.R.), Vancouver; and IWK Health Centre (E.W.), Halifax, Canada
| | - Nicole Pigeon
- From the Faculty of Medicine (A.S.) and Departments of Pediatrics (M.O., M.S.) and Neurology & Neurosurgery (M.O., M.S.), McGill University; Canadian Cerebral Palsy Registry (S.D.H.), Research Institute of the McGill University Health Centre, Montreal; Department of Pediatrics (J.A.), University of Alberta, Edmonton; Janeway Children's Hospital (D.B.), St. John's; Department of Paediatrics (D.F.), Bloorview Research Institute, University of Toronto; Departments of Pediatrics and Clinical Neurosciences (A.K.), Cumming School of Medicine, University of Calgary; Centre de Réadaptation Marie Enfant du CHU Sainte-Justine (L.K.), Montreal; Centre Hospitalier Universitaire de Sherbrooke (N.P.); BC Children's Hospital (E.V.R.), Vancouver; and IWK Health Centre (E.W.), Halifax, Canada
| | - Esias Van Rensburg
- From the Faculty of Medicine (A.S.) and Departments of Pediatrics (M.O., M.S.) and Neurology & Neurosurgery (M.O., M.S.), McGill University; Canadian Cerebral Palsy Registry (S.D.H.), Research Institute of the McGill University Health Centre, Montreal; Department of Pediatrics (J.A.), University of Alberta, Edmonton; Janeway Children's Hospital (D.B.), St. John's; Department of Paediatrics (D.F.), Bloorview Research Institute, University of Toronto; Departments of Pediatrics and Clinical Neurosciences (A.K.), Cumming School of Medicine, University of Calgary; Centre de Réadaptation Marie Enfant du CHU Sainte-Justine (L.K.), Montreal; Centre Hospitalier Universitaire de Sherbrooke (N.P.); BC Children's Hospital (E.V.R.), Vancouver; and IWK Health Centre (E.W.), Halifax, Canada
| | - Ellen Wood
- From the Faculty of Medicine (A.S.) and Departments of Pediatrics (M.O., M.S.) and Neurology & Neurosurgery (M.O., M.S.), McGill University; Canadian Cerebral Palsy Registry (S.D.H.), Research Institute of the McGill University Health Centre, Montreal; Department of Pediatrics (J.A.), University of Alberta, Edmonton; Janeway Children's Hospital (D.B.), St. John's; Department of Paediatrics (D.F.), Bloorview Research Institute, University of Toronto; Departments of Pediatrics and Clinical Neurosciences (A.K.), Cumming School of Medicine, University of Calgary; Centre de Réadaptation Marie Enfant du CHU Sainte-Justine (L.K.), Montreal; Centre Hospitalier Universitaire de Sherbrooke (N.P.); BC Children's Hospital (E.V.R.), Vancouver; and IWK Health Centre (E.W.), Halifax, Canada
| | - Maryam Oskoui
- From the Faculty of Medicine (A.S.) and Departments of Pediatrics (M.O., M.S.) and Neurology & Neurosurgery (M.O., M.S.), McGill University; Canadian Cerebral Palsy Registry (S.D.H.), Research Institute of the McGill University Health Centre, Montreal; Department of Pediatrics (J.A.), University of Alberta, Edmonton; Janeway Children's Hospital (D.B.), St. John's; Department of Paediatrics (D.F.), Bloorview Research Institute, University of Toronto; Departments of Pediatrics and Clinical Neurosciences (A.K.), Cumming School of Medicine, University of Calgary; Centre de Réadaptation Marie Enfant du CHU Sainte-Justine (L.K.), Montreal; Centre Hospitalier Universitaire de Sherbrooke (N.P.); BC Children's Hospital (E.V.R.), Vancouver; and IWK Health Centre (E.W.), Halifax, Canada
| | - Michael Shevell
- From the Faculty of Medicine (A.S.) and Departments of Pediatrics (M.O., M.S.) and Neurology & Neurosurgery (M.O., M.S.), McGill University; Canadian Cerebral Palsy Registry (S.D.H.), Research Institute of the McGill University Health Centre, Montreal; Department of Pediatrics (J.A.), University of Alberta, Edmonton; Janeway Children's Hospital (D.B.), St. John's; Department of Paediatrics (D.F.), Bloorview Research Institute, University of Toronto; Departments of Pediatrics and Clinical Neurosciences (A.K.), Cumming School of Medicine, University of Calgary; Centre de Réadaptation Marie Enfant du CHU Sainte-Justine (L.K.), Montreal; Centre Hospitalier Universitaire de Sherbrooke (N.P.); BC Children's Hospital (E.V.R.), Vancouver; and IWK Health Centre (E.W.), Halifax, Canada.
| |
Collapse
|
21
|
De novo variants in HK1 associated with neurodevelopmental abnormalities and visual impairment. Eur J Hum Genet 2019; 27:1081-1089. [PMID: 30778173 DOI: 10.1038/s41431-019-0366-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 12/15/2018] [Accepted: 02/02/2019] [Indexed: 12/18/2022] Open
Abstract
Hexokinase 1 (HK1) phosphorylates glucose to glucose-6-phosphate, the first rate-limiting step in glycolysis. Homozygous and heterozygous variants in HK1 have been shown to cause autosomal recessive non-spherocytic hemolytic anemia, autosomal recessive Russe type hereditary motor and sensory neuropathy, and autosomal dominant retinitis pigmentosa (adRP). We report seven patients from six unrelated families with a neurodevelopmental disorder associated with developmental delay, intellectual disability, structural brain abnormality, and visual impairments in whom we identified four novel, de novo missense variants in the N-terminal half of HK1. Hexokinase activity in red blood cells of two patients was normal, suggesting that the disease mechanism is not due to loss of hexokinase enzymatic activity.
Collapse
|
22
|
Liu J, Tong L, Song S, Niu Y, Li J, Wu X, Zhang J, Zai CC, Luo F, Wu J, Li H, Wong AHC, Sun R, Liu F, Li B. Novel and de novo mutations in pediatric refractory epilepsy. Mol Brain 2018; 11:48. [PMID: 30185235 PMCID: PMC6125990 DOI: 10.1186/s13041-018-0392-5] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 08/27/2018] [Indexed: 12/19/2022] Open
Abstract
Pediatric refractory epilepsy is a broad phenotypic spectrum with great genetic heterogeneity. Next-generation sequencing (NGS) combined with Sanger sequencing could help to understand the genetic diversity and underlying disease mechanisms in pediatric epilepsy. Here, we report sequencing results from a cohort of 172 refractory epilepsy patients aged 0-14 years. The pathogenicity of identified variants was evaluated in accordance with the American College of Medical Genetics and Genomics (ACMG) criteria. We identified 43 pathogenic or likely pathogenic variants in 40 patients (23.3%). Among these variants, 74.4% mutations (32/43) were de novo and 60.5% mutations (26/43) were novel. Patients with onset age of seizures ≤12 months had higher yields of deleterious variants compared to those with onset age of seizures > 12 months (P = 0.006). Variants in ion channel genes accounted for the greatest functional gene category (55.8%), with SCN1A coming first (16/43). 81.25% (13/16) of SCN1A mutations were de novo and 68.8% (11/16) were novel in Dravet syndrome. Pathogenic or likely pathogenic variants were found in the KCNQ2, STXBP1, SCN2A genes in Ohtahara syndrome. Novel deleterious variants were also found in West syndrome, Doose syndrome and glucose transporter type 1 deficiency syndrome patients. One de novo MECP2 mutation were found in a Rett syndrome patient. TSC1/TSC2 variants were found in 60% patients with tuberous sclerosis complex patients. Other novel mutations detected in unclassified epilepsy patients involve the SCN8A, CACNA1A, GABRB3, GABRA1, IQSEC2, TSC1, VRK2, ATP1A2, PCDH19, SLC9A6 and CHD2 genes. Our study provides novel insights into the genetic origins of pediatric epilepsy and represents a starting-point for further investigations into the molecular pathophysiology of pediatric epilepsy that could eventually lead to better treatments.
Collapse
Affiliation(s)
- Jing Liu
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, Shandong, People's Republic of China.,Shandong University, Jinan, Shandong, People's Republic of China
| | - Lili Tong
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, Shandong, People's Republic of China.,Shandong University, Jinan, Shandong, People's Republic of China
| | - Shuangshuang Song
- Qilu Children's hospital of Shandong University, Jinan, Shandong, People's Republic of China
| | - Yue Niu
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, Shandong, People's Republic of China.,Shandong University, Jinan, Shandong, People's Republic of China
| | - Jun Li
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, Shandong, People's Republic of China.,Shandong University, Jinan, Shandong, People's Republic of China
| | - Xiu Wu
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, Shandong, People's Republic of China.,Shandong University, Jinan, Shandong, People's Republic of China
| | - Jie Zhang
- MyGenostics Inc., Beijing, People's Republic of China
| | - Clement C Zai
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, University of Toronto, Toronto, ON, Canada
| | - Fang Luo
- MyGenostics Inc., Beijing, People's Republic of China
| | - Jian Wu
- MyGenostics Inc., Beijing, People's Republic of China
| | - Haiyin Li
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, University of Toronto, Toronto, ON, Canada
| | - Albert H C Wong
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, University of Toronto, Toronto, ON, Canada
| | - Ruopeng Sun
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, Shandong, People's Republic of China.,Shandong University, Jinan, Shandong, People's Republic of China
| | - Fang Liu
- Shandong University, Jinan, Shandong, People's Republic of China.,Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, University of Toronto, Toronto, ON, Canada
| | - Baomin Li
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, Shandong, People's Republic of China. .,Shandong University, Jinan, Shandong, People's Republic of China.
| |
Collapse
|
23
|
Demougeot L, Houdayer F, Pélissier A, Mohrez F, Thevenon J, Duffourd Y, Nambot S, Gautier E, Binquet C, Rossi M, Sanlaville D, Béjean S, Peyron C, Thauvin-Robinet C, Faivre L. [Changes in clinical practice related to the arrival of next-generation sequencing in the genetic diagnosis of developmental diseases]. Arch Pediatr 2018; 25:77-83. [PMID: 29395884 DOI: 10.1016/j.arcped.2017.12.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 09/29/2017] [Accepted: 12/10/2017] [Indexed: 12/11/2022]
Abstract
INTRODUCTION The arrival of high-throughput sequencing (HTS) has led to a sweeping change in the diagnosis of developmental abnormalities (DA) with or without intellectual deficiency (ID). With the prospect of deploying these new technologies, two questions have been raised: the representations of HTS among geneticists and the costs incurred due to these analyses. METHODS Geneticists attending a clinical genetics seminar were invited to complete a questionnaire. The statistical analysis was essentially descriptive and an analysis of costs was undertaken. RESULTS Of those responding to the questionnaire, 48% had already prescribed exome analysis and 25% had already had the occasion to disclose the results of such analyses. Ninety-six percent were aware that whole-exome sequencing (WES) had certain limits and 74% expressed misgivings concerning its use in medical practice. In parallel, the evaluation of costs showed that WES was less expensive than conventional procedures. DISCUSSION The survey revealed that geneticists had already come to terms with HTS as early as 2015. Among the major concerns expressed were the complexity of interpreting these tests and the many ethical implications. Geneticists seemed to be aware of the advantages but also the limits of these new technologies. The cost analysis raises questions about the place of HTS and in particular WES in the diagnostic work-up: should it be used early to obtain an etiological diagnosis rather than as the last resort? CONCLUSION It is essential for future generations of doctors and for the families concerned to learn about the concepts of HTS, which is set to become a major feature of new genomic medicine.
Collapse
Affiliation(s)
- L Demougeot
- Fédération hospitalo-universitaire médecine translationnelle et anomalies du développement (TRANSLAD), centre hospitalier universitaire de Dijon, 21079 Dijon, France; Filière de santé maladies rares anomalies du développement - déficience intellectuelle de causes rares (AnDDI-Rares), 21079 Dijon, France
| | - F Houdayer
- Centre de référence des anomalies de développement, service de génétique, hôpital Femme-Mère-Enfant, hospices Civils de Lyon, 69677 Bron, France
| | - A Pélissier
- Laboratoire d'économie et de gestion, pôle d'économie et de gestion, université de Bourgogne, 21066 Dijon, France
| | - F Mohrez
- Laboratoire d'économie et de gestion, pôle d'économie et de gestion, université de Bourgogne, 21066 Dijon, France
| | - J Thevenon
- Fédération hospitalo-universitaire médecine translationnelle et anomalies du développement (TRANSLAD), centre hospitalier universitaire de Dijon, 21079 Dijon, France; Filière de santé maladies rares anomalies du développement - déficience intellectuelle de causes rares (AnDDI-Rares), 21079 Dijon, France; Centre de génétique et centre de référence anomalies du développement et syndromes malformatifs de l'interrégion Est, centre hospitalier universitaire de Dijon, 21079 Dijon, France; Équipe génétique des anomalies du développement, UMR Inserm U1231, université de Bourgogne, 21079 Dijon, France
| | - Y Duffourd
- Fédération hospitalo-universitaire médecine translationnelle et anomalies du développement (TRANSLAD), centre hospitalier universitaire de Dijon, 21079 Dijon, France; Équipe génétique des anomalies du développement, UMR Inserm U1231, université de Bourgogne, 21079 Dijon, France
| | - S Nambot
- Fédération hospitalo-universitaire médecine translationnelle et anomalies du développement (TRANSLAD), centre hospitalier universitaire de Dijon, 21079 Dijon, France; Centre de génétique et centre de référence anomalies du développement et syndromes malformatifs de l'interrégion Est, centre hospitalier universitaire de Dijon, 21079 Dijon, France; Équipe génétique des anomalies du développement, UMR Inserm U1231, université de Bourgogne, 21079 Dijon, France
| | - E Gautier
- Fédération hospitalo-universitaire médecine translationnelle et anomalies du développement (TRANSLAD), centre hospitalier universitaire de Dijon, 21079 Dijon, France
| | - C Binquet
- Centre d'investigation clinique, centre hospitalier universitaire de Dijon, 21079 Dijon, France
| | - M Rossi
- Filière de santé maladies rares anomalies du développement - déficience intellectuelle de causes rares (AnDDI-Rares), 21079 Dijon, France; Centre de référence des anomalies de développement, service de génétique, hôpital Femme-Mère-Enfant, hospices Civils de Lyon, 69677 Bron, France
| | - D Sanlaville
- Filière de santé maladies rares anomalies du développement - déficience intellectuelle de causes rares (AnDDI-Rares), 21079 Dijon, France; Centre de référence des anomalies de développement, service de génétique, hôpital Femme-Mère-Enfant, hospices Civils de Lyon, 69677 Bron, France
| | - S Béjean
- Laboratoire d'économie et de gestion, pôle d'économie et de gestion, université de Bourgogne, 21066 Dijon, France
| | - C Peyron
- Laboratoire d'économie et de gestion, pôle d'économie et de gestion, université de Bourgogne, 21066 Dijon, France
| | - C Thauvin-Robinet
- Fédération hospitalo-universitaire médecine translationnelle et anomalies du développement (TRANSLAD), centre hospitalier universitaire de Dijon, 21079 Dijon, France; Filière de santé maladies rares anomalies du développement - déficience intellectuelle de causes rares (AnDDI-Rares), 21079 Dijon, France; Centre de génétique et centre de référence anomalies du développement et syndromes malformatifs de l'interrégion Est, centre hospitalier universitaire de Dijon, 21079 Dijon, France; Équipe génétique des anomalies du développement, UMR Inserm U1231, université de Bourgogne, 21079 Dijon, France
| | - L Faivre
- Fédération hospitalo-universitaire médecine translationnelle et anomalies du développement (TRANSLAD), centre hospitalier universitaire de Dijon, 21079 Dijon, France; Filière de santé maladies rares anomalies du développement - déficience intellectuelle de causes rares (AnDDI-Rares), 21079 Dijon, France; Centre de génétique et centre de référence anomalies du développement et syndromes malformatifs de l'interrégion Est, centre hospitalier universitaire de Dijon, 21079 Dijon, France; Équipe génétique des anomalies du développement, UMR Inserm U1231, université de Bourgogne, 21079 Dijon, France.
| |
Collapse
|
24
|
Han JY, Jang JH, Park J, Lee IG. Targeted Next-Generation Sequencing of Korean Patients With Developmental Delay and/or Intellectual Disability. Front Pediatr 2018; 6:391. [PMID: 30631761 PMCID: PMC6315160 DOI: 10.3389/fped.2018.00391] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 11/28/2018] [Indexed: 12/26/2022] Open
Abstract
Background: Differential diagnosis of developmental delay (DD) and/or intellectual disability (ID) is challenging because of the diversity of phenotypic manifestations as DD/ID patients usually have combined congenital malformations, autism-spectrum disorders, and/or seizure disorder. Thus, unbiased genomic approaches are needed to discover genetic alterations leading to DD and/or ID. Objective: The aim of this study was to investigate the clinical usefulness of targeted next-generation sequencing (NGS) to investigate genetic causes in 35 Korean patients with unexplained DD/ID. Methods: Targeted next-generation sequencing (NGS) using the TruSight One Panel was analyzed in 35 patients with unexplained DD/ID. Sanger sequencing was used to confirm candidate variants, and to define genetic inheritance mode of candidate variant as familial segregation testing. Results: Of 35 patients with DD and/or ID, 10 were found to have underlying genetic etiology and carried X-linked recessive inheritance of ZDHHC9 or autosomal dominant inheritance of SMARCB1, CHD8, LAMA5, NSD1, PAX6, CACNA1H, MBD5, FOXP1, or KCNK18 mutations. No autosomal recessive inherited mutation was identified in this study. As a result, the diagnostic yield of DD/ID by targeted NGS was 29% (10/35), mostly involving may be de novo mutation present in the proband only. A total of seven may be de novo mutations, one paternally inherited, and one maternally inherited mutations that had been reported previously to concede the genetic pathogenesis as known DD and/or ID genes were found in nine patients with available inheritance pattern except LAMA5. Mutations in nine causative genes were detected in patients with similar DD/ID phenotypes in the OMIM database, providing support for genetic evidence as the cause of DD and/or ID. Conclusion: Targeted NGS through singleton analysis with phenotype-first approaches was able to explain 10 out of 35 DD/ID cases. However, the excavation of plausible genetic causes may be de novo, and X-linked disease-causative variants in DD/ID-associated genes requires further genetic analysis.
Collapse
Affiliation(s)
- Ji Yoon Han
- Department of Pediatrics, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Ja Hyun Jang
- Department of Laboratory Medicine, Green Cross Genome, Yongin, South Korea
| | - Joonhong Park
- Department of Laboratory Medicine, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - In Goo Lee
- Department of Pediatrics, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| |
Collapse
|
25
|
Trinh J, Hüning I, Budler N, Hingst V, Lohmann K, Gillessen-Kaesbach G. A novel de novo mutation in CSNK2A1: reinforcing the link to neurodevelopmental abnormalities and dysmorphic features. J Hum Genet 2017; 62:1005-1006. [PMID: 28725024 DOI: 10.1038/jhg.2017.73] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Joanne Trinh
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Irina Hüning
- Institut für Humangenetik, Universität zu Lübeck, Lübeck, Germany
| | - Nadja Budler
- Institut für Humangenetik, Universität zu Lübeck, Lübeck, Germany
| | - Volker Hingst
- Institut für Diagnostische und Interventionelle Radiologie, Universitätsmedizin Rostock, Rostock, Germany
| | - Katja Lohmann
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | | |
Collapse
|
26
|
Worthey EA. Analysis and Annotation of Whole-Genome or Whole-Exome Sequencing Derived Variants for Clinical Diagnosis. ACTA ACUST UNITED AC 2017; 95:9.24.1-9.24.28. [PMID: 29044471 DOI: 10.1002/cphg.49] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Over the last 10 years, next-generation sequencing (NGS) has transformed genomic research through substantial advances in technology and reduction in the cost of sequencing, and also in the systems required for analysis of these large volumes of data. This technology is now being used as a standard molecular diagnostic test in some clinical settings. The advances in sequencing have come so rapidly that the major bottleneck in identification of causal variants is no longer the sequencing or analysis (given access to appropriate tools), but rather clinical interpretation. Interpretation of genetic findings in a complex and ever changing clinical setting is scarcely a new challenge, but the task is increasingly complex in clinical genome-wide sequencing given the dramatic increase in dataset size and complexity. This increase requires application of appropriate interpretation tools, as well as development and application of appropriate methodologies and standard procedures. This unit provides an overview of these items. Specific challenges related to implementation of genome-wide sequencing in a clinical setting are discussed. © 2017 by John Wiley & Sons, Inc.
Collapse
|
27
|
Targeted sequencing and functional analysis reveal brain-size-related genes and their networks in autism spectrum disorders. Mol Psychiatry 2017; 22:1282-1290. [PMID: 28831199 DOI: 10.1038/mp.2017.140] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 03/31/2017] [Accepted: 05/19/2017] [Indexed: 02/08/2023]
Abstract
Autism spectrum disorder (ASD) represents a set of complex neurodevelopmental disorders with large degrees of heritability and heterogeneity. We sequenced 136 microcephaly or macrocephaly (Mic-Mac)-related genes and 158 possible ASD-risk genes in 536 Chinese ASD probands and detected 22 damaging de novo mutations (DNMs) in 20 genes, including CHD8 and SCN2A, with recurrent events. Nine of the 20 genes were previously reported to harbor DNMs in ASD patients from other populations, while 11 of them were first identified in present study. We combined genetic variations of the 294 sequenced genes from publicly available whole-exome or whole-genome sequencing studies (4167 probands plus 1786 controls) with our Chinese population (536 cases plus 1457 controls) to optimize the power of candidate-gene prioritization. As a result, we prioritized 67 ASD-candidate genes that exhibited significantly higher probabilities of haploinsufficiency and genic intolerance, and significantly interacted and co-expressed with each another, as well as other known ASD-risk genes. Probands with DNMs or rare inherited mutations in the 67 candidate genes exhibited significantly lower intelligence quotients, supporting their strong functional impact. In addition, we prioritized 39 ASD-related Mic-Mac-risk genes, and showed their interaction and co-expression in a functional network that converged on chromatin remodeling, synapse transmission and cell cycle progression. Genes within the three functional subnetworks exhibited distinct and recognizable spatiotemporal-expression patterns in human brains and laminar-expression profiles in the developing neocortex, highlighting their important roles in brain development. Our results indicate some of Mic-Mac-risk genes are involved in ASD.
Collapse
|
28
|
Chakravorty S, Hegde M. Gene and Variant Annotation for Mendelian Disorders in the Era of Advanced Sequencing Technologies. Annu Rev Genomics Hum Genet 2017; 18:229-256. [PMID: 28415856 DOI: 10.1146/annurev-genom-083115-022545] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Comprehensive annotations of genetic and noncoding regions and corresponding accurate variant classification for Mendelian diseases are the next big challenge in the new genomic era of personalized medicine. Progress in the development of faster and more accurate pipelines for genome annotation and variant classification will lead to the discovery of more novel disease associations and candidate therapeutic targets. This ultimately will facilitate better patient recruitment in clinical trials. In this review, we describe the trends in research at the intersection of basic and clinical genomics that aims to increase understanding of overall genomic complexity, complex inheritance patterns of disease, and patient-phenotype-specific genomic associations. We describe the emerging field of translational functional genomics, which integrates other functional "-omics" approaches that support next-generation sequencing genomic data in order to facilitate personalized diagnostics, disease management, biomarker discovery, and medicine. We also discuss the utility of this integrated approach for diagnostic clinics and medical databases and its role in the future of personalized medicine.
Collapse
Affiliation(s)
- Samya Chakravorty
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia 30322;
| | - Madhuri Hegde
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia 30322;
| |
Collapse
|
29
|
Exome analysis of Smith-Magenis-like syndrome cohort identifies de novo likely pathogenic variants. Hum Genet 2017; 136:409-420. [PMID: 28213671 DOI: 10.1007/s00439-017-1767-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 02/03/2017] [Indexed: 12/12/2022]
Abstract
Smith-Magenis syndrome (SMS), a neurodevelopmental disorder characterized by dysmorphic features, intellectual disability (ID), and sleep disturbances, results from a 17p11.2 microdeletion or a mutation in the RAI1 gene. We performed exome sequencing on 6 patients with SMS-like phenotypes but without chromosomal abnormalities or RAI1 variants. We identified pathogenic de novo variants in two cases, a nonsense variant in IQSEC2 and a missense variant in the SAND domain of DEAF1, and candidate de novo missense variants in an additional two cases. One candidate variant was located in an alpha helix of Necdin (NDN), phased to the paternally inherited allele. NDN is maternally imprinted within the 15q11.2 Prader-Willi Syndrome (PWS) region. This can help clarify NDN's role in the PWS phenotype. No definitive pathogenic gene variants were detected in the remaining SMS-like cases, but we report our findings for future comparison. This study provides information about the inheritance pattern and recurrence risk for patients with identified variants and demonstrates clinical and genetic overlap of neurodevelopmental disorders. Identification and characterization of ID-related genes that assist in development of common developmental pathways and/or gene-networks, may inform disease mechanism and treatment strategies.
Collapse
|
30
|
Ku CS, Cooper DN, Patrinos GP. The Rise and Rise of Exome Sequencing. Public Health Genomics 2016; 19:315-324. [DOI: 10.1159/000450991] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 09/23/2016] [Indexed: 12/19/2022] Open
|
31
|
An JY, Claudianos C. Genetic heterogeneity in autism: From single gene to a pathway perspective. Neurosci Biobehav Rev 2016; 68:442-453. [DOI: 10.1016/j.neubiorev.2016.06.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 05/15/2016] [Accepted: 06/14/2016] [Indexed: 12/22/2022]
|
32
|
Affiliation(s)
- Shawn E. Levy
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806; ,
| | - Richard M. Myers
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806; ,
| |
Collapse
|
33
|
Berko ER, Cho MT, Eng C, Shao Y, Sweetser DA, Waxler J, Robin NH, Brewer F, Donkervoort S, Mohassel P, Bönnemann CG, Bialer M, Moore C, Wolfe LA, Tifft CJ, Shen Y, Retterer K, Millan F, Chung WK. De novo missense variants in HECW2 are associated with neurodevelopmental delay and hypotonia. J Med Genet 2016; 54:84-86. [PMID: 27389779 DOI: 10.1136/jmedgenet-2016-103943] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 06/13/2016] [Accepted: 06/15/2016] [Indexed: 11/04/2022]
Abstract
BACKGROUND The causes of intellectual disability (ID) are diverse and de novo mutations are increasingly recognised to account for a significant proportion of ID. METHODS AND RESULTS In this study, we performed whole exome sequencing on a large cohort of patients with ID or neurodevelopmental delay and identified four novel de novo predicted deleterious missense variants in HECW2 in six probands with ID/developmental delay and hypotonia. Other common features include seizures, strabismus, nystagmus, cortical visual impairment and dysmorphic facial features. HECW2 is an ubiquitin ligase that stabilises p73, a crucial mediator of neurodevelopment and neurogenesis. CONCLUSION This study implicates pathogenic genetic variants in HECW2 as potential causes of neurodevelopmental disorders in humans.
Collapse
Affiliation(s)
- Esther R Berko
- Department of Pediatrics, Columbia University Medical Center, New York, New York, USA
| | | | - Christine Eng
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Yunru Shao
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Texas Children's Hospital, Houston, Texas, USA
| | | | - Jessica Waxler
- Massachusetts General Hospital, Boston, Massachusetts, USA
| | | | - Fallon Brewer
- University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Sandra Donkervoort
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Payam Mohassel
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Carsten G Bönnemann
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Martin Bialer
- Cohen Children's Medical Center of NY, New Hyde Park, New York, USA
| | - Christine Moore
- Cohen Children's Medical Center of NY, New Hyde Park, New York, USA
| | - Lynne A Wolfe
- Office of the Clinical Director, National Institutes of Health, Bethesda, Maryland, USA.,Undiagnosed Diseases Program, National Institutes of Health, Bethesda, Maryland, USA
| | - Cynthia J Tifft
- Office of the Clinical Director, National Institutes of Health, Bethesda, Maryland, USA.,Undiagnosed Diseases Program, National Institutes of Health, Bethesda, Maryland, USA
| | - Yufeng Shen
- Departments of Systems Biology and Biomedical Informatics, Columbia University Medical Center, New York, New York, USA
| | | | | | - Wendy K Chung
- Department of Pediatrics, Columbia University Medical Center, New York, New York, USA.,Department of Medicine, Columbia University Medical Center, New York, New York, USA
| |
Collapse
|
34
|
Resequencing and Association Analysis of Six PSD-95-Related Genes as Possible Susceptibility Genes for Schizophrenia and Autism Spectrum Disorders. Sci Rep 2016; 6:27491. [PMID: 27271353 PMCID: PMC4895433 DOI: 10.1038/srep27491] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 05/20/2016] [Indexed: 12/21/2022] Open
Abstract
PSD-95 associated PSD proteins play a critical role in regulating the density and activity of glutamate receptors. Numerous previous studies have shown an association between the genes that encode these proteins and schizophrenia (SZ) and autism spectrum disorders (ASD), which share a substantial portion of genetic risks. We sequenced the protein-encoding regions of DLG1, DLG2, DLG4, DLGAP1, DLGAP2, and SynGAP in 562 cases (370 SZ and 192 ASD patients) on the Ion PGM platform. We detected 26 rare (minor allele frequency <1%), non-synonymous mutations, and conducted silico functional analysis and pedigree analysis when possible. Three variants, G344R in DLG1, G241S in DLG4, and R604C in DLGAP2, were selected for association analysis in an independent sample set of 1315 SZ patients, 382 ASD patients, and 1793 healthy controls. Neither DLG4-G241S nor DLGAP2-R604C was detected in any samples in case or control sets, whereas one additional SZ patient was found that carried DLG1-G344R. Our results suggest that rare missense mutations in the candidate PSD genes may increase susceptibility to SZ and/or ASD. These findings may strengthen the theory that rare, non-synonymous variants confer substantial genetic risks for these disorders.
Collapse
|
35
|
Millan F, Cho MT, Retterer K, Monaghan KG, Bai R, Vitazka P, Everman DB, Smith B, Angle B, Roberts V, Immken L, Nagakura H, DiFazio M, Sherr E, Haverfield E, Friedman B, Telegrafi A, Juusola J, Chung WK, Bale S. Whole exome sequencing reveals de novo pathogenic variants in KAT6A as a cause of a neurodevelopmental disorder. Am J Med Genet A 2016; 170:1791-8. [PMID: 27133397 DOI: 10.1002/ajmg.a.37670] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 04/06/2016] [Indexed: 01/06/2023]
Abstract
Neurodevelopmental disorders (NDD) are common, with 1-3% of general population being affected, but the etiology is unknown in most individuals. Clinical whole-exome sequencing (WES) has proven to be a powerful tool for the identification of pathogenic variants leading to Mendelian disorders, among which NDD represent a significant percentage. Performing WES with a trio-approach has proven to be extremely effective in identifying de novo pathogenic variants as a common cause of NDD. Here we report six unrelated individuals with a common phenotype consisting of NDD with severe speech delay, hypotonia, and facial dysmorphism. These patients underwent WES with a trio approach and de novo heterozygous predicted pathogenic novel variants in the KAT6A gene were identified. The KAT6A gene encodes a histone acetyltransfrease protein and it has long been known for its structural involvement in acute myeloid leukemia; however, it has not previously been associated with any congenital disorder. In animal models the KAT6A ortholog is involved in transcriptional regulation during development. Given the similar findings in animal models and our patient's phenotypes, we hypothesize that KAT6A could play a role in development of the brain, face, and heart in humans. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Brooke Smith
- Greenwood Genetic Center, Greenville, South Carolina
| | - Brad Angle
- Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois
| | - Victoria Roberts
- Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois
| | | | | | - Marc DiFazio
- Children's Outpatient Center of Montgomery County, Rockville, Maryland
| | - Elliott Sherr
- Institute of Human Genetics, University of California, San Francisco, California
| | | | | | | | | | - Wendy K Chung
- Departments of Pediatrics and Medicine, Columbia University Medical Center, New York, New York
| | | |
Collapse
|
36
|
De novo mutations in CSNK2A1 are associated with neurodevelopmental abnormalities and dysmorphic features. Hum Genet 2016; 135:699-705. [PMID: 27048600 DOI: 10.1007/s00439-016-1661-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Accepted: 03/23/2016] [Indexed: 10/22/2022]
Abstract
Whole exome sequencing (WES) can be used to efficiently identify de novo genetic variants associated with genetically heterogeneous conditions including intellectual disabilities. We have performed WES for 4102 (1847 female; 2255 male) intellectual disability/developmental delay cases and we report five patients with a neurodevelopmental disorder associated with developmental delay, intellectual disability, behavioral problems, hypotonia, speech problems, microcephaly, pachygyria and dysmorphic features in whom we have identified de novo missense and canonical splice site mutations in CSNK2A1, the gene encoding CK2α, the catalytic subunit of protein kinase CK2, a ubiquitous serine/threonine kinase composed of two regulatory (β) and two catalytic (α and/or α') subunits. Somatic mutations in CSNK2A1 have been implicated in various cancers; however, this is the first study to describe a human condition associated with germline mutations in any of the CK2 subunits.
Collapse
|
37
|
Baurley JW, Edlund CK, Pardamean CI, Conti DV, Bergen AW. Smokescreen: a targeted genotyping array for addiction research. BMC Genomics 2016; 17:145. [PMID: 26921259 PMCID: PMC4769529 DOI: 10.1186/s12864-016-2495-7] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 02/17/2016] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Addictive disorders are a class of chronic, relapsing mental disorders that are responsible for increased risk of mental and medical disorders and represent the largest, potentially modifiable cause of death. Tobacco dependence is associated with increased risk of disease and premature death. While tobacco control efforts and therapeutic interventions have made good progress in reducing smoking prevalence, challenges remain in optimizing their effectiveness based on patient characteristics, including genetic variation. In order to maximize collaborative efforts to advance addiction research, we have developed a genotyping array called Smokescreen. This custom array builds upon previous work in the analyses of human genetic variation, the genetics of addiction, drug metabolism, and response to therapy, with an emphasis on smoking and nicotine addiction. RESULTS The Smokescreen genotyping array includes 646,247 markers in 23 categories. The array design covers genome-wide common variation (65.67, 82.37, and 90.72% in African (YRI), East Asian (ASN), and European (EUR) respectively); most of the variation with a minor allele frequency ≥ 0.01 in 1014 addiction genes (85.16, 89.51, and 90.49% for YRI, ASN, and EUR respectively); and nearly all variation from the 1000 Genomes Project Phase 1, NHLBI GO Exome Sequencing Project and HapMap databases in the regions related to smoking behavior and nicotine metabolism: CHRNA5-CHRNA3-CHRNB4 and CYP2A6-CYP2B6. Of the 636 pilot DNA samples derived from blood or cell line biospecimens that were genotyped on the array, 622 (97.80%) passed quality control. In passing samples, 90.08% of markers passed quality control. The genotype reproducibility in 25 replicate pairs was 99.94%. For 137 samples that overlapped with HapMap2 release 24, the genotype concordance was 99.76%. In a genome-wide association analysis of the nicotine metabolite ratio in 315 individuals participating in nicotine metabolism laboratory studies, we identified genome-wide significant variants in the CYP2A6 region (min p = 9.10E-15). CONCLUSIONS We developed a comprehensive genotyping array for addiction research and demonstrated its analytic validity and utility through pilot genotyping of HapMap and study samples. This array allows researchers to perform genome-wide, candidate gene, and pathway-based association analyses of addiction, tobacco-use, treatment response, comorbidities, and associated diseases in a standardized, high-throughput platform.
Collapse
Affiliation(s)
- James W Baurley
- BioRealm LLC, 6101 W. Centinela Ave., Suite 270, Culver City, CA, 90230-6359, USA.
| | - Christopher K Edlund
- BioRealm LLC, 6101 W. Centinela Ave., Suite 270, Culver City, CA, 90230-6359, USA.
| | - Carissa I Pardamean
- BioRealm LLC, 6101 W. Centinela Ave., Suite 270, Culver City, CA, 90230-6359, USA.
| | - David V Conti
- BioRealm LLC, 6101 W. Centinela Ave., Suite 270, Culver City, CA, 90230-6359, USA.
| | - Andrew W Bergen
- BioRealm LLC, 6101 W. Centinela Ave., Suite 270, Culver City, CA, 90230-6359, USA.
| |
Collapse
|
38
|
Li J, Cai T, Jiang Y, Chen H, He X, Chen C, Li X, Shao Q, Ran X, Li Z, Xia K, Liu C, Sun ZS, Wu J. Genes with de novo mutations are shared by four neuropsychiatric disorders discovered from NPdenovo database. Mol Psychiatry 2016; 21:290-7. [PMID: 25849321 PMCID: PMC4837654 DOI: 10.1038/mp.2015.40] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 02/26/2015] [Accepted: 03/02/2015] [Indexed: 12/16/2022]
Abstract
Currently, many studies on neuropsychiatric disorders have utilized massive trio-based whole-exome sequencing (WES) and whole-genome sequencing (WGS) to identify numerous de novo mutations (DNMs). Here, we retrieved 17,104 DNMs from 3555 trios across four neuropsychiatric disorders: autism spectrum disorder, epileptic encephalopathy, intellectual disability and schizophrenia, in addition to unaffected siblings (control), from 36 studies by WES/WGS. After eliminating non-exonic variants, we focused on 3334 exonic DNMs for evaluation of their association with these diseases. Our results revealed a higher prevalence of DNMs in the probands of all four disorders compared with the one in the controls (P<1.3 × 10(-7)). The elevated DNM frequency is dominated by loss-of-function/deleterious single-nucleotide variants and frameshift indels (that is, extreme mutations, P<4.5 × 10(-5)). With extensive annotation of these 'extreme' mutations, we prioritized 764 candidate genes in these four disorders. A combined analysis of Gene Ontology, microRNA targets and transcription factor targets revealed shared biological process and non-coding regulatory elements of candidate genes in the pathology of neuropsychiatric disorders. In addition, weighted gene co-expression network analysis of human laminar-specific neocortical expression data showed that candidate genes are convergent on eight shared modules with specific layer enrichment and biological process features. Furthermore, we identified that 53 candidate genes are associated with more than one disorder (P<0.000001), suggesting a possibly shared genetic etiology underlying these disorders. Particularly, DNMs of the SCN2A gene are frequently occurred across all four disorders. Finally, we constructed a freely available NPdenovo database, which provides a comprehensive catalog of the DNMs identified in neuropsychiatric disorders.
Collapse
Affiliation(s)
- Jinchen Li
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China,Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, China,State Key Laboratory of Medical Genetics, Central South University, Changsha, China
| | - Tao Cai
- Experimental Medicine Section, NIDCR/NIH, Bethesda, Maryland, USA
| | - Yi Jiang
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, China
| | - Huiqian Chen
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, China
| | - Xin He
- Department of Human Genetics, University of Chicago, Chicago, USA
| | - Chao Chen
- State Key Laboratory of Medical Genetics, Central South University, Changsha, China,Department of Psychiatry, University of Illinois at Chicago, Chicago, USA
| | - Xianfeng Li
- State Key Laboratory of Medical Genetics, Central South University, Changsha, China
| | - Qianzhi Shao
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, China
| | - Xia Ran
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, China
| | - Zhongshan Li
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, China
| | - Kun Xia
- State Key Laboratory of Medical Genetics, Central South University, Changsha, China
| | - Chunyu Liu
- State Key Laboratory of Medical Genetics, Central South University, Changsha, China,Department of Psychiatry, University of Illinois at Chicago, Chicago, USA,Correspondence should be addressed to: Jinyu Wu (), Zhong Sheng Sun (), or Chunyu Liu ()
| | - Zhong Sheng Sun
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China,Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, China,Correspondence should be addressed to: Jinyu Wu (), Zhong Sheng Sun (), or Chunyu Liu ()
| | - Jinyu Wu
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China,Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, China,Correspondence should be addressed to: Jinyu Wu (), Zhong Sheng Sun (), or Chunyu Liu ()
| |
Collapse
|
39
|
Srivastava A, Ritesh KC, Tsan YC, Liao R, Su F, Cao X, Hannibal MC, Keegan CE, Chinnaiyan AM, Martin DM, Bielas SL. De novo dominant ASXL3 mutations alter H2A deubiquitination and transcription in Bainbridge-Ropers syndrome. Hum Mol Genet 2015; 25:597-608. [PMID: 26647312 DOI: 10.1093/hmg/ddv499] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 12/01/2015] [Indexed: 12/22/2022] Open
Abstract
De novo truncating mutations in Additional sex combs-like 3 (ASXL3) have been identified in individuals with Bainbridge-Ropers syndrome (BRS), characterized by failure to thrive, global developmental delay, feeding problems, hypotonia, dysmorphic features, profound speech delays and intellectual disability. We identified three novel de novo heterozygous truncating variants distributed across ASXL3, outside the original cluster of ASXL3 mutations previously described for BRS. Primary skin fibroblasts established from a BRS patient were used to investigate the functional impact of pathogenic variants. ASXL3 mRNA transcripts from the mutated allele are prone to nonsense-mediated decay, and expression of ASXL3 is reduced. We found that ASXL3 interacts with BAP1, a hydrolase that removes mono-ubiquitin from histone H2A lysine 119 (H2AK119Ub1) as a component of the Polycomb repressive deubiquitination (PR-DUB) complex. A significant increase in H2AK119Ub1 was observed in ASXL3 patient fibroblasts, highlighting an important functional role for ASXL3 in PR-DUB mediated deubiquitination. Transcriptomes of ASXL3 patient and control fibroblasts were compared to investigate the impact of chromatin changes on transcriptional regulation. Out of 564 significantly differentially expressed genes (DEGs) in ASXL3 patient fibroblasts, 52% were upregulated and 48% downregulated. DEGs were enriched in molecular processes impacting transcriptional regulation, development and proliferation, consistent with the features of BRS. This is the first single gene disorder linked to defects in deubiquitination of H2AK119Ub1 and suggests an important role for dynamic regulation of H2A mono-ubiquitination in transcriptional regulation and the pathophysiology of BRS.
Collapse
Affiliation(s)
| | | | | | | | - Fengyun Su
- Howard Hughes Medical Institute, Department of Pathology, Departments of Urology, Computational Medicine and Bioinformatics, and
| | - Xuhong Cao
- Howard Hughes Medical Institute, Department of Pathology, Departments of Urology, Computational Medicine and Bioinformatics, and
| | - Mark C Hannibal
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Catherine E Keegan
- Department of Human Genetics, Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Arul M Chinnaiyan
- Howard Hughes Medical Institute, Department of Pathology, Departments of Urology, Computational Medicine and Bioinformatics, and
| | - Donna M Martin
- Department of Human Genetics, Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, USA
| | | |
Collapse
|
40
|
Cherukuri PF, Maduro V, Fuentes-Fajardo KV, Lam K, Adams DR, Tifft CJ, Mullikin JC, Gahl WA, Boerkoel CF. Replicate exome-sequencing in a multiple-generation family: improved interpretation of next-generation sequencing data. BMC Genomics 2015; 16:998. [PMID: 26602380 PMCID: PMC4659195 DOI: 10.1186/s12864-015-2107-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 10/16/2015] [Indexed: 12/18/2022] Open
Abstract
Background Whole-exome sequencing (WES) is rapidly evolving into a tool of choice for rapid, and inexpensive identification of molecular genetic lesions within targeted regions of the human genome. While biases in WES coverage of nucleotides in targeted regions are recognized, it is not well understood how repetition of WES improves the interpretation of sequencing results in a clinical diagnostic setting. Method To address this, we compared independently generated exome-capture of six individuals from three-generations sequenced in triplicate. This generated between 48x-86x mean target depth of high-quality mapped bases (>Q20) for each technical replicate library. Cumulatively, we achieved 179 - 208x average target coverage for each individual in the pedigree. Using this experimental design, we evaluated stochastics in WES interpretation, genotyping sensitivity, and accuracy to detect de novo variants. Results In this study, we show that repetition of WES improved the interpretation of the capture target regions after aggregating the data (93.5 - 93.9 %). Compared to 81.2 - 89.6 % (50.2-55.4 Mb of 61.7 M) coverage of targeted bases at ≥20x in the individual technical replicates, the aggregated data covered 93.5 - 93.9 % of targeted bases (57.7 – 58.0 of 61.7 M) at ≥20x threshold, suggesting a 4.3 – 12.7 % improvement in coverage. Each individual’s aggregate dataset recovered 3.4 – 6.4 million bases within variable targeted regions. We uncovered technical variability (2-5 %) inherent to WES technique. We also show improved interpretation in assessing clinically important regions that lack interpretation under current conditions, affecting 12–16 of the 56 genes recommended for secondary analysis by American College of Medical Genetics (ACMG). We demonstrate that comparing technical replicate WES datasets and their derived aggregate data can effectively address overall WES genotyping discrepancies. Conclusion We describe a method to evaluate the reproducibility and stochastics in exome library preparation, and delineate the advantages of aggregating the data derived from technical replicates. The implications of this study are directly applicable to improved experimental design and provide an opportunity to rapidly, efficiently, and accurately arrive at reliable candidate nucleotide variants. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2107-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Praveen F Cherukuri
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, NIH, Bethesda, MD, USA. .,Inova Translational Medicine Institute, Inova Health System, Falls Church, VA, USA.
| | - Valerie Maduro
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, NIH, Bethesda, MD, USA.
| | - Karin V Fuentes-Fajardo
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, NIH, Bethesda, MD, USA.
| | - Kevin Lam
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, NIH, Bethesda, MD, USA.
| | | | - David R Adams
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, NIH, Bethesda, MD, USA. .,Office of the Clinical Director, National Human Genome Research Institute, NIH, Bethesda, MD, USA.
| | - Cynthia J Tifft
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, NIH, Bethesda, MD, USA. .,Office of the Clinical Director, National Human Genome Research Institute, NIH, Bethesda, MD, USA.
| | - James C Mullikin
- NIH Intramural Sequencing Center, National Human Genome Research Institute, NIH, Bethesda, MD, USA.
| | - William A Gahl
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, NIH, Bethesda, MD, USA. .,Office of the Clinical Director, National Human Genome Research Institute, NIH, Bethesda, MD, USA.
| | - Cornelius F Boerkoel
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, NIH, Bethesda, MD, USA.
| |
Collapse
|
41
|
Shang L, Henderson LB, Cho MT, Petrey DS, Fong CT, Haude KM, Shur N, Lundberg J, Hauser N, Carmichael J, Innis J, Schuette J, Wu YW, Asaikar S, Pearson M, Folk L, Retterer K, Monaghan KG, Chung WK. De novo missense variants in PPP2R5D are associated with intellectual disability, macrocephaly, hypotonia, and autism. Neurogenetics 2015; 17:43-9. [PMID: 26576547 DOI: 10.1007/s10048-015-0466-9] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 10/22/2015] [Indexed: 12/19/2022]
Abstract
Protein phosphatase 2A (PP2A) is a heterotrimeric protein serine/threonine phosphatase and is involved in a broad range of cellular processes. PPP2R5D is a regulatory B subunit of PP2A and plays an important role in regulating key neuronal and developmental regulation processes such as PI3K/AKT and glycogen synthase kinase 3 beta (GSK3β)-mediated cell growth, chromatin remodeling, and gene transcriptional regulation. Using whole-exome sequencing (WES), we identified four de novo variants in PPP2R5D in a total of seven unrelated individuals with intellectual disability (ID) and other shared clinical characteristics, including autism spectrum disorder, macrocephaly, hypotonia, seizures, and dysmorphic features. Among the four variants, two have been previously reported and two are novel. All four amino acids are highly conserved among the PP2A subunit family, and all change a negatively charged acidic glutamic acid (E) to a positively charged basic lysine (K) and are predicted to disrupt the PP2A subunit binding and impair the dephosphorylation capacity. Our data provides further support for PPP2R5D as a genetic cause of ID.
Collapse
Affiliation(s)
- Linshan Shang
- Department of Pediatrics, Columbia University Medical Center, New York, NY, USA
| | | | | | - Donald S Petrey
- Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, New York, NY, USA
| | - Chin-To Fong
- University of Rochester Medical Center, Rochester, NY, USA
| | | | | | | | | | | | - Jeffrey Innis
- Division of Pediatric Genetics, University of Michigan Health System, Ann Arbor, MI, USA
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Jane Schuette
- Division of Pediatric Genetics, University of Michigan Health System, Ann Arbor, MI, USA
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Yvonne W Wu
- Departments of Neurology and Pediatrics, University of California San Francisco, San Francisco, CA, USA
| | | | | | | | | | | | - Wendy K Chung
- Department of Pediatrics, Columbia University Medical Center, New York, NY, USA.
- Department of Medicine, Columbia University Medical Center, New York, NY, USA.
| |
Collapse
|
42
|
Incorporating Functional Information in Tests of Excess De Novo Mutational Load. Am J Hum Genet 2015; 97:272-83. [PMID: 26235986 DOI: 10.1016/j.ajhg.2015.06.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 06/26/2015] [Indexed: 12/11/2022] Open
Abstract
A number of recent studies have investigated the role of de novo mutations in various neurodevelopmental and neuropsychiatric disorders. These studies attempt to implicate causal genes by looking for an excess load of de novo mutations within those genes. Current statistical methods for assessing this excess are based on the implicit assumption that all qualifying mutations in a gene contribute equally to disease. However, it is well established that different mutations can have radically different effects on the ultimate protein product and, as a result, on disease risk. Here, we propose a method, fitDNM, that incorporates functional information in a test of excess de novo mutational load. Specifically, we derive score statistics from a retrospective likelihood that incorporates the probability of a mutation being damaging to gene function. We show that, under the null, the resulting test statistic is distributed as a weighted sum of Poisson random variables and we implement a saddlepoint approximation of this distribution to obtain accurate p values. Using simulation, we have shown that our method outperforms current methods in terms of statistical power while maintaining validity. We have applied this approach to four de novo mutation datasets of neurodevelopmental and neuropsychiatric disorders: autism spectrum disorder, epileptic encephalopathy, schizophrenia, and severe intellectual disability. Our approach also implicates genes that have been implicated by existing methods. Furthermore, our approach provides strong statistical evidence supporting two potentially causal genes: SUV420H1 in autism spectrum disorder and TRIO in a combined analysis of the four neurodevelopmental and neuropsychiatric disorders investigated here.
Collapse
|
43
|
Mutations in ARID2 are associated with intellectual disabilities. Neurogenetics 2015; 16:307-14. [DOI: 10.1007/s10048-015-0454-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 07/21/2015] [Indexed: 12/30/2022]
|
44
|
Tetreault M, Bareke E, Nadaf J, Alirezaie N, Majewski J. Whole-exome sequencing as a diagnostic tool: current challenges and future opportunities. Expert Rev Mol Diagn 2015; 15:749-60. [PMID: 25959410 DOI: 10.1586/14737159.2015.1039516] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Whole-exome sequencing (WES) represents a significant breakthrough in the field of human genetics. This technology has largely contributed to the identification of new disease-causing genes and is now entering clinical laboratories. WES represents a powerful tool for diagnosis and could reduce the 'diagnostic odyssey' for many patients. In this review, we present a technical overview of WES analysis, variants annotation and interpretation in a clinical setting. We evaluate the usefulness of clinical WES in different clinical indications, such as rare diseases, cancer and complex diseases. Finally, we discuss the efficacy of WES as a diagnostic tool and the impact on patient management.
Collapse
Affiliation(s)
- Martine Tetreault
- Department of Human Genetics, McGill University, Montreal, QC H3A 1B1, Canada
| | | | | | | | | |
Collapse
|
45
|
Chen J, Cao F, Liu L, Wang L, Chen X. Genetic studies of schizophrenia: an update. Neurosci Bull 2015; 31:87-98. [PMID: 25652814 DOI: 10.1007/s12264-014-1494-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 12/16/2014] [Indexed: 12/20/2022] Open
Abstract
Schizophrenia (SCZ) is a complex and heterogeneous mental disorder that affects about 1% of global population. In recent years, considerable progress has been made in genetic studies of SCZ. A number of common variants with small effects and rare variants with relatively larger effects have been identified. These variants include risk loci identified by genome-wide association studies, rare copy-number variants identified by comparative genomic analyses, and de novo mutations identified by high-throughput DNA sequencing. Collectively, they contribute to the heterogeneity of the disease. In this review, we update recent discoveries in the field of SCZ genetics, and outline the perspectives of future directions.
Collapse
Affiliation(s)
- Jingchun Chen
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, 23298, USA,
| | | | | | | | | |
Collapse
|
46
|
Li J, Jiang Y, Wang T, Chen H, Xie Q, Shao Q, Ran X, Xia K, Sun ZS, Wu J. mirTrios: an integrated pipeline for detection of de novo and rare inherited mutations from trios-based next-generation sequencing. J Med Genet 2015; 52:275-81. [PMID: 25596308 DOI: 10.1136/jmedgenet-2014-102656] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVES Recently, several studies documented that de novo mutations (DNMs) play important roles in the aetiology of sporadic diseases. Next-generation sequencing (NGS) enables variant calling at single-base resolution on a genome-wide scale. However, accurate identification of DNMs from NGS data still remains a major challenge. We developed mirTrios, a web server, to accurately detect DNMs and rare inherited mutations from NGS data in sporadic diseases. METHODS The expectation-maximisation (EM) model was adopted to accurately identify DNMs from variant call files of a trio generated by GATK (Genome Analysis Toolkit). The GATK results, which contain certain basic properties (such as PL, PRT and PART), are iteratively integrated into the EM model to strike a threshold for DNMs detection. Training sets of true and false positive DNMs in the EM model were built from whole genome sequencing data of 64 trios. RESULTS With our in-house whole exome sequencing datasets from 20 trios, mirTrios totally identified 27 DNMs in the coding region, 25 of which (92.6%) are validated as true positives. In addition, to facilitate the interpretation of diverse mutations, mirTrios can also be employed in the identification of rare inherited mutations. Embedded with abundant annotation of DNMs and rare inherited mutations, mirTrios also supports known diagnostic variants and causative gene identification, as well as the prioritisation of novel and promising candidate genes. CONCLUSIONS mirTrios provides an intuitive interface for the general geneticist and clinician, and can be widely used for detection of DNMs and rare inherited mutations, and annotation in sporadic diseases. mirTrios is freely available at http://centre.bioinformatics.zj.cn/mirTrios/.
Collapse
Affiliation(s)
- Jinchen Li
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, China State Key Laboratory of Medical Genetics, Central South University, Changsha, China
| | - Yi Jiang
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, China
| | - Tao Wang
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, China
| | - Huiqian Chen
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, China
| | - Qing Xie
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, China
| | - Qianzhi Shao
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, China
| | - Xia Ran
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, China
| | - Kun Xia
- State Key Laboratory of Medical Genetics, Central South University, Changsha, China
| | - Zhong Sheng Sun
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, China
| | - Jinyu Wu
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
47
|
Theoharides TC, Athanassiou M, Panagiotidou S, Doyle R. Dysregulated brain immunity and neurotrophin signaling in Rett syndrome and autism spectrum disorders. J Neuroimmunol 2014; 279:33-8. [PMID: 25669997 DOI: 10.1016/j.jneuroim.2014.12.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Revised: 11/18/2014] [Accepted: 12/02/2014] [Indexed: 12/21/2022]
Abstract
Rett syndrome is a neurodevelopmental disorder, which occurs in about 1:15,000 females and presents with neurologic and communication defects. It is transmitted as an X-linked dominant linked to mutations of the methyl-CpG-binding protein (MeCP2), a gene transcription suppressor, but its definitive pathogenesis is unknown thus hindering development of effective treatments. Almost half of children with Rett syndrome also have behavioral symptoms consistent with those of autism spectrum disorders (ASDs). PubMed was searched (2005-2014) using the terms: allergy, atopy, brain, brain-derived neurotrophic factor (BDNF), corticotropin-releasing hormone (CRH), cytokines, gene mutations, inflammation, mast cells (MCs), microglia, mitochondria, neurotensin (NT), neurotrophins, seizures, stress, and treatment. There are a number of intriguing differences and similarities between Rett syndrome and ASDs. Rett syndrome occurs in females, while ASDs more often in males, and the former has neurologic disabilities unlike ASDs. There is evidence of dysregulated immune system early in life in both conditions. Lack of microglial phagocytosis and decreased levels of BDNF appear to distinguish Rett syndrome from ASDs, in which there is instead microglia activation and/or proliferation and possibly defective BDNF signaling. Moreover, brain mast cell (MC) activation and focal inflammation may be more prominent in ASDs than Rett syndrome. The flavonoid luteolin blocks microglia and MC activation, provides BDNF-like activity, reverses Rett phenotype in mouse models, and has a significant benefit in children with ASDs. Appropriate formulations of luteolin or other natural molecules may be useful in the treatment of Rett syndrome.
Collapse
Affiliation(s)
- Theoharis C Theoharides
- Molecular Immunopharmacology and Drug Discovery Laboratory, Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA, USA; Department of Internal Medicine, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA, USA; Tufts Medical Center, Boston, MA, USA; Department of Psychiatry, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA, USA.
| | - Marianna Athanassiou
- Molecular Immunopharmacology and Drug Discovery Laboratory, Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA, USA
| | - Smaro Panagiotidou
- Molecular Immunopharmacology and Drug Discovery Laboratory, Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA, USA
| | - Robert Doyle
- Pediatric Psychopharmacology Unit, Massachusetts General Hospital, Boston MA, USA; Harvard Medical School, Boston MA, USA
| |
Collapse
|
48
|
Xing J, Wang C, Kimura H, Takasaki Y, Kunimoto S, Yoshimi A, Nakamura Y, Koide T, Banno M, Kushima I, Uno Y, Okada T, Aleksic B, Ikeda M, Iwata N, Ozaki N. Resequencing and association analysis of PTPRA, a possible susceptibility gene for schizophrenia and autism spectrum disorders. PLoS One 2014; 9:e112531. [PMID: 25393624 PMCID: PMC4231042 DOI: 10.1371/journal.pone.0112531] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 09/30/2014] [Indexed: 12/30/2022] Open
Abstract
Background The PTPRA gene, which encodes the protein RPTP-α, is critical to neurodevelopment. Previous linkage studies, genome-wide association studies, controlled expression analyses and animal models support an association with both schizophrenia and autism spectrum disorders, both of which share a substantial portion of genetic risks. Methods We sequenced the protein-encoding areas of the PTPRA gene for single nucleotide polymorphisms or small insertions/deletions (InDel) in 382 schizophrenia patients. To validate their association with the disorders, rare (minor allele frequency <1%), missense mutations as well as one InDel in the 3′UTR region were then genotyped in another independent sample set comprising 944 schizophrenia patients, 336 autism spectrum disorders patients, and 912 healthy controls. Results Eight rare mutations, including 3 novel variants, were identified during the mutation-screening phase. In the following association analysis, L59P, one of the two missense mutations, was only observed among patients of schizophrenia. Additionally, a novel duplication in the 3′UTR region, 174620_174623dupTGAT, was predicted to be located within a Musashi Binding Element. Major Conclusions No evidence was seen for the association of rare, missense mutations in the PTPRA gene with schizophrenia or autism spectrum disorders; however, we did find some rare variants with possibly damaging effects that may increase the susceptibility of carriers to the disorders.
Collapse
Affiliation(s)
- Jingrui Xing
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Chenyao Wang
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroki Kimura
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuto Takasaki
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shohko Kunimoto
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Akira Yoshimi
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yukako Nakamura
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takayoshi Koide
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masahiro Banno
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Itaru Kushima
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yota Uno
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takashi Okada
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Branko Aleksic
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
- * E-mail:
| | - Masashi Ikeda
- Department of Psychiatry, School of Medicine, Fujita Health University, Toyoake, Aichi, Japan
| | - Nakao Iwata
- Department of Psychiatry, School of Medicine, Fujita Health University, Toyoake, Aichi, Japan
| | - Norio Ozaki
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
49
|
Hunt D, Leventer RJ, Simons C, Taft R, Swoboda KJ, Gawne-Cain M, Magee AC, Turnpenny PD, Baralle D. Whole exome sequencing in family trios reveals de novo mutations in PURA as a cause of severe neurodevelopmental delay and learning disability. J Med Genet 2014; 51:806-13. [PMID: 25342064 PMCID: PMC4251168 DOI: 10.1136/jmedgenet-2014-102798] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Background De novo mutations are emerging as an important cause of neurocognitive impairment, and whole exome sequencing of case-parent trios is a powerful way of detecting them. Here, we report the findings in four such trios. Methods The Deciphering Developmental Disorders study is using whole exome sequencing in family trios to investigate children with severe, sporadic, undiagnosed developmental delay. Three of our patients were ascertained from the first 1133 children to have been investigated through this large-scale study. Case 4 was a phenotypically isolated case recruited into an undiagnosed rare disorders sequencing study. Results Protein-altering de novo mutations in PURA were identified in four subjects. They include two different frameshifts, one inframe deletion and one missense mutation. PURA encodes Pur-α, a highly conserved multifunctional protein that has an important role in normal postnatal brain development in animal models. The associated human phenotype of de novo heterozygous mutations in this gene is variable, but moderate to severe neurodevelopmental delay and learning disability are common to all. Neonatal hypotonia, early feeding difficulties and seizures, or ‘seizure-like’ movements, were also common. Additionally, it is suspected that anterior pituitary dysregulation may be within the spectrum of this disorder. Psychomotor developmental outcomes appear variable between patients, and we propose a possible genotype–phenotype correlation, with disruption of Pur repeat III resulting in a more severe phenotype. Conclusions These findings provide definitive evidence for the role of PURA in causing a variable syndrome of neurodevelopmental delay, learning disability, neonatal hypotonia, feeding difficulties, abnormal movements and epilepsy in humans, and help clarify the role of PURA in the previously described 5q31.3 microdeletion phenotype.
Collapse
Affiliation(s)
- David Hunt
- Wessex Clinical Genetics Service, Princess Anne Hospital, Southampton, UK
| | - Richard J Leventer
- The Royal Children's Hospital Department of Neurology, University of Melbourne Department of Paediatrics and the Murdoch Childrens Research Institute, Melbourne, Victoria, Australia
| | - Cas Simons
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, Australia
| | - Ryan Taft
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, Australia Departments of Integrated Systems Biology and of Pediatrics, School of Medicine and Health Sciences, George Washington University, USA Illumina, Inc., San Diego, California, USA
| | - Kathryn J Swoboda
- Pediatric Motor Disorders Research Program, Department of Neurology, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Mary Gawne-Cain
- Department of Radiology, Southampton General Hospital, Southampton, UK
| | | | - Alex C Magee
- Genetic Medicine, Belfast City Hospital, Belfast, Northern Ireland
| | - Peter D Turnpenny
- Peninsula Clinical Genetics Service, Royal Devon and Exeter Hospital (Heavitree), Exeter, UK
| | - Diana Baralle
- Wessex Clinical Genetics Service, Princess Anne Hospital, Southampton, UK Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, Hampshire, UK
| |
Collapse
|
50
|
Xue Y, Ankala A, Wilcox WR, Hegde MR. Solving the molecular diagnostic testing conundrum for Mendelian disorders in the era of next-generation sequencing: single-gene, gene panel, or exome/genome sequencing. Genet Med 2014; 17:444-51. [PMID: 25232854 DOI: 10.1038/gim.2014.122] [Citation(s) in RCA: 237] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 08/07/2014] [Indexed: 12/18/2022] Open
Abstract
Next-generation sequencing is changing the paradigm of clinical genetic testing. Today there are numerous molecular tests available, including single-gene tests, gene panels, and exome sequencing or genome sequencing. As a result, ordering physicians face the conundrum of selecting the best diagnostic tool for their patients with genetic conditions. Single-gene testing is often most appropriate for conditions with distinctive clinical features and minimal locus heterogeneity. Next-generation sequencing-based gene panel testing, which can be complemented with array comparative genomic hybridization and other ancillary methods, provides a comprehensive and feasible approach for heterogeneous disorders. Exome sequencing and genome sequencing have the advantage of being unbiased regarding what set of genes is analyzed, enabling parallel interrogation of most of the genes in the human genome. However, current limitations of next-generation sequencing technology and our variant interpretation capabilities caution us against offering exome sequencing or genome sequencing as either stand-alone or first-choice diagnostic approaches. A growing interest in personalized medicine calls for the application of genome sequencing in clinical diagnostics, but major challenges must be addressed before its full potential can be realized. Here, we propose a testing algorithm to help clinicians opt for the most appropriate molecular diagnostic tool for each scenario.
Collapse
Affiliation(s)
- Yuan Xue
- Emory Genetics Laboratory, Department of Human Genetics, Emory University, Atlanta, Georgia, USA
| | - Arunkanth Ankala
- Emory Genetics Laboratory, Department of Human Genetics, Emory University, Atlanta, Georgia, USA
| | - William R Wilcox
- Clinical Division, Department of Human Genetics, Emory University, Atlanta, Georgia, USA
| | - Madhuri R Hegde
- Emory Genetics Laboratory, Department of Human Genetics, Emory University, Atlanta, Georgia, USA
| |
Collapse
|