1
|
Jiang X, Sultan AA, Dimick MK, Zai CC, Kennedy JL, MacIntosh BJ, Goldstein BI. The association of genetic variation in CACNA1C with resting-state functional connectivity in youth bipolar disorder. Int J Bipolar Disord 2023; 11:3. [PMID: 36637564 PMCID: PMC9839925 DOI: 10.1186/s40345-022-00281-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 12/13/2022] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND CACNA1C rs1006737 A allele, identified as a genetic risk variant for bipolar disorder (BD), is associated with anomalous functional connectivity in adults with and without BD. Studies have yet to investigate the association of CACNA1C rs1006737 with resting-state functional connectivity (rsFC) in youth BD. METHODS Participants included 139 youth with BD-I, -II, or -not otherwise specified, ages 13-20 years, including 27 BD A-carriers, 41 BD non-carriers, 32 healthy controls (HC) A-carriers, and 39 HC non-carriers. Anterior cingulate cortex (ACC), amygdala, and orbitofrontal cortex (OFC) were examined as regions-of-interest in seed-to-voxel analyses. General linear models included main effects of diagnosis and rs1006737, and an interaction term, controlling for age, sex, and race. RESULTS We observed a main effect of BD diagnosis on rsFC between the right amygdala and the right occipital pole (p = 0.02), and a main effect of rs1006737 genotypes on rsFC between the right OFC and bilateral occipital cortex (p < 0.001). Two significant BD diagnosis-by-CACNA1C rs1006737 interactions were also identified. The A allele was associated with positive rsFC between the right ACC and right amygdala in BD but negative rsFC in HC (p = 0.01), and negative rsFC between the left OFC and left putamen in BD but positive rsFC in HC (p = 0.01). CONCLUSION This study found that the rs1006737 A allele, identified as a genetic risk variant for BD in adults, was differentially associated with rsFC in youth with BD in regions relevant to emotion, executive function, and reward. Future task-based approaches are warranted to better understand brain connectivity in relation to CACNA1C in BD.
Collapse
Affiliation(s)
- Xinyue Jiang
- grid.155956.b0000 0000 8793 5925Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, ON Canada ,grid.17063.330000 0001 2157 2938Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON Canada
| | - Alysha A. Sultan
- grid.155956.b0000 0000 8793 5925Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, ON Canada ,grid.17063.330000 0001 2157 2938Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON Canada
| | - Mikaela K. Dimick
- grid.155956.b0000 0000 8793 5925Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, ON Canada ,grid.17063.330000 0001 2157 2938Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON Canada
| | - Clement C. Zai
- grid.155956.b0000 0000 8793 5925Tanenbaum Centre for Pharmacogenetics, Psychiatric Neurogenetics Section, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON Canada ,grid.17063.330000 0001 2157 2938Department of Psychiatry, University of Toronto, Toronto, Canada
| | - James L. Kennedy
- grid.155956.b0000 0000 8793 5925Tanenbaum Centre for Pharmacogenetics, Psychiatric Neurogenetics Section, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON Canada ,grid.17063.330000 0001 2157 2938Department of Psychiatry, University of Toronto, Toronto, Canada
| | - Bradley J. MacIntosh
- grid.17063.330000 0001 2157 2938Heart and Stroke Foundation, Canadian Partnership for Stroke Recovery, Sunnybrook Research Institute, Toronto, ON Canada ,grid.17063.330000 0001 2157 2938Department of Medical Biophysics, University of Toronto, Toronto, ON Canada ,grid.17063.330000 0001 2157 2938Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON Canada
| | - Benjamin I. Goldstein
- grid.155956.b0000 0000 8793 5925Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, ON Canada ,grid.17063.330000 0001 2157 2938Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON Canada ,grid.17063.330000 0001 2157 2938Department of Psychiatry, University of Toronto, Toronto, Canada
| |
Collapse
|
2
|
Vouga Ribeiro N, Tavares V, Bramon E, Toulopoulou T, Valli I, Shergill S, Murray R, Prata D. Effects of psychosis-associated genetic markers on brain volumetry: a systematic review of replicated findings and an independent validation. Psychol Med 2022; 52:1-16. [PMID: 36168994 PMCID: PMC9811278 DOI: 10.1017/s0033291722002896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 08/13/2022] [Accepted: 08/24/2022] [Indexed: 01/12/2023]
Abstract
BACKGROUND Given psychotic illnesses' high heritability and associations with brain structure, numerous neuroimaging-genetics findings have been reported in the last two decades. However, few findings have been replicated. In the present independent sample we aimed to replicate any psychosis-implicated SNPs (single nucleotide polymorphisms), which had previously shown at least two main effects on brain volume. METHODS A systematic review for SNPs showing a replicated effect on brain volume yielded 25 studies implicating seven SNPs in five genes. Their effect was then tested in 113 subjects with either schizophrenia, bipolar disorder, 'at risk mental state' or healthy state, for whole-brain and region-of-interest (ROI) associations with grey and white matter volume changes, using voxel-based morphometry. RESULTS We found FWER-corrected (Family-wise error rate) (i.e. statistically significant) associations of: (1) CACNA1C-rs769087-A with larger bilateral hippocampus and thalamus white matter, across the whole brain; and (2) CACNA1C-rs769087-A with larger superior frontal gyrus, as ROI. Higher replication concordance with existing literature was found, in decreasing order, for: (1) CACNA1C-rs769087-A, with larger dorsolateral-prefrontal/superior frontal gyrus and hippocampi (both with anatomical and directional concordance); (2) ZNF804A-rs11681373-A, with smaller angular gyrus grey matter and rectus gyri white matter (both with anatomical and directional concordance); and (3) BDNF-rs6265-T with superior frontal and middle cingulate gyri volume change (with anatomical and allelic concordance). CONCLUSIONS Most literature findings were not herein replicated. Nevertheless, high degree/likelihood of replication was found for two genome-wide association studies- and one candidate-implicated SNPs, supporting their involvement in psychosis and brain structure.
Collapse
Affiliation(s)
- Nuno Vouga Ribeiro
- Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Vânia Tavares
- Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Elvira Bramon
- Division of Psychiatry, University College London, London, UK
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’ College London, London, UK
- Institute of Cognitive Neuroscience, University College London, London, UK
| | - Timothea Toulopoulou
- Department of Psychology & National Magnetic Resonance Research Center (UMRAM), Aysel Sabuncu Brain Research Centre (ASBAM), Bilkent University, Ankara, Turkey
| | - Isabel Valli
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’ College London, London, UK
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Sukhi Shergill
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’ College London, London, UK
| | - Robin Murray
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’ College London, London, UK
| | - Diana Prata
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- Department of Old Age Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| |
Collapse
|
3
|
Phenotypes, mechanisms and therapeutics: insights from bipolar disorder GWAS findings. Mol Psychiatry 2022; 27:2927-2939. [PMID: 35351989 DOI: 10.1038/s41380-022-01523-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 03/02/2022] [Accepted: 03/10/2022] [Indexed: 12/25/2022]
Abstract
Genome-wide association studies (GWAS) have reported substantial genomic loci significantly associated with clinical risk of bipolar disorder (BD), and studies combining techniques of genetics, neuroscience, neuroimaging, and pharmacology are believed to help tackle clinical problems (e.g., identifying novel therapeutic targets). However, translating findings of psychiatric genetics into biological mechanisms underlying BD pathogenesis remains less successful. Biological impacts of majority of BD GWAS risk loci are obscure, and the involvement of many GWAS risk genes in this illness is yet to be investigated. It is thus necessary to review the progress of applying BD GWAS risk genes in the research and intervention of the disorder. A comprehensive literature search found that a number of such risk genes had been investigated in cellular or animal models, even before they were highlighted in BD GWAS. Intriguingly, manipulation of many BD risk genes (e.g., ANK3, CACNA1C, CACNA1B, HOMER1, KCNB1, MCHR1, NCAN, SHANK2 etc.) resulted in altered murine behaviors largely restoring BD clinical manifestations, including mania-like symptoms such as hyperactivity, anxiolytic-like behavior, as well as antidepressant-like behavior, and these abnormalities could be attenuated by mood stabilizers. In addition to recapitulating phenotypic characteristics of BD, some GWAS risk genes further provided clues for the neurobiology of this illness, such as aberrant activation and functional connectivity of brain areas in the limbic system, and modulated dendritic spine morphogenesis as well as synaptic plasticity and transmission. Therefore, BD GWAS risk genes are undoubtedly pivotal resources for modeling this illness, and might be translational therapeutic targets in the future clinical management of BD. We discuss both promising prospects and cautions in utilizing the bulk of useful resources generated by GWAS studies. Systematic integrations of findings from genetic and neuroscience studies are called for to promote our understanding and intervention of BD.
Collapse
|
4
|
Demin KA, Kupriyanova OV, Shevyrin VA, Derzhavina KA, Krotova NA, Ilyin NP, Kolesnikova TO, Galstyan DS, Kositsyn YM, Khaybaev AAS, Seredinskaya MV, Dubrovskii Y, Sadykova RG, Nerush MO, Mor MS, Petersen EV, Strekalova T, Efimova EV, Kuvarzin SR, Yenkoyan KB, Bozhko DV, Myrov VO, Kolchanova SM, Polovian AI, Galumov GK, Kalueff AV. Acute behavioral and Neurochemical Effects of Novel N-Benzyl-2-Phenylethylamine Derivatives in Adult Zebrafish. ACS Chem Neurosci 2022; 13:1902-1922. [PMID: 35671176 DOI: 10.1021/acschemneuro.2c00123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Hallucinogenic drugs potently affect brain and behavior and have also recently emerged as potentially promising agents in pharmacotherapy. Complementing laboratory rodents, the zebrafish (Danio rerio) is a powerful animal model organism for screening neuroactive drugs, including hallucinogens. Here, we test a battery of ten novel N-benzyl-2-phenylethylamine (NBPEA) derivatives with the 2,4- and 3,4-dimethoxy substitutions in the phenethylamine moiety and the -OCH3, -OCF3, -F, -Cl, and -Br substitutions in the ortho position of the phenyl ring of the N-benzyl moiety, assessing their acute behavioral and neurochemical effects in the adult zebrafish. Overall, substitutions in the Overall, substitutions in the N-benzyl moiety modulate locomotion, and substitutions in the phenethylamine moiety alter zebrafish anxiety-like behavior, also affecting the brain serotonin and/or dopamine turnover. The 24H-NBOMe(F) and 34H-NBOMe(F) treatment also reduced zebrafish despair-like behavior. Computational analyses of zebrafish behavioral data by artificial intelligence identified several distinct clusters for these agents, including anxiogenic/hypolocomotor (24H-NBF, 24H-NBOMe, and 34H-NBF), behaviorally inert (34H-NBBr, 34H-NBCl, and 34H-NBOMe), anxiogenic/hallucinogenic-like (24H-NBBr, 24H-NBCl, and 24H-NBOMe(F)), and anxiolytic/hallucinogenic-like (34H-NBOMe(F)) drugs. Our computational analyses also revealed phenotypic similarity of the behavioral activity of some NBPEAs to that of selected conventional serotonergic and antiglutamatergic hallucinogens. In silico functional molecular activity modeling further supported the overlap of the drug targets for NBPEAs tested here and the conventional serotonergic and antiglutamatergic hallucinogens. Overall, these findings suggest potent neuroactive properties of several novel synthetic NBPEAs, detected in a sensitive in vivo vertebrate model system, the zebrafish, raising the possibility of their potential clinical use and abuse.
Collapse
Affiliation(s)
- Konstantin A Demin
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia.,Almazov National Medical Research Centre, St. Petersburg 197341, Russia
| | - Olga V Kupriyanova
- Institute of Fundamental Medicine and Biology, Kazan Volga Region Federal University, Kazan 420008, Russia.,Kazan State Medical University, Kazan 420012, Russia
| | - Vadim A Shevyrin
- Institute of Chemistry and Technology, Ural Federal University, 19 Mira Str., Ekaterinburg 620002, Russia
| | - Ksenia A Derzhavina
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia.,Almazov National Medical Research Centre, St. Petersburg 197341, Russia
| | - Nataliya A Krotova
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia.,Almazov National Medical Research Centre, St. Petersburg 197341, Russia
| | - Nikita P Ilyin
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia.,Almazov National Medical Research Centre, St. Petersburg 197341, Russia
| | - Tatiana O Kolesnikova
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia.,Neurobiology Program, Sirius University of Science and Technology, Sochi 354340, Russia
| | - David S Galstyan
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia.,Laboratory of Preclinical Bioscreening, Granov Russian Research Center of Radiology and Surgical Technologies, Ministry of Healthcare of Russian Federation, Pesochny 197758, Russia
| | - Yurii M Kositsyn
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
| | | | - Maria V Seredinskaya
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
| | - Yaroslav Dubrovskii
- Almazov National Medical Research Centre, St. Petersburg 197341, Russia.,Institute of Chemistry, St. Petersburg State University, St. Petersburg 199034, Russia.,St. Petersburg State Chemical Pharmaceutical University, St. Petersburg 197022, Russia
| | | | - Maria O Nerush
- Almazov National Medical Research Centre, St. Petersburg 197341, Russia
| | - Mikael S Mor
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
| | - Elena V Petersen
- Moscow Institute of Physics and Technology, Moscow 141701, Russia
| | | | - Evgeniya V Efimova
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
| | - Savelii R Kuvarzin
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
| | - Konstantin B Yenkoyan
- Neuroscience Laboratory, COBRAIN Center, M. Heratsi Yerevan State Medical University, Yerevan AM 0025, Armenia.,COBRAIN Scientific Educational Center for Fundamental Brain Research, Yerevan AM 0025, Armenia
| | | | | | | | | | | | - Allan V Kalueff
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia.,Almazov National Medical Research Centre, St. Petersburg 197341, Russia.,Ural Federal University, Ekaterinburg 620075, Russia.,Granov Russian Research Center of Radiology and Surgical Technologies, Ministry of Healthcare of Russian Federation, Pesochny 197758, Russia.,Moscow Institute of Physics and Technology, Moscow 141701, Russia.,COBRAIN Scientific Educational Center for Fundamental Brain Research, Yerevan AM 0025, Armenia.,Scientific Research Institute of Neuroscience and Medicine, Novosibirsk, 630117, Russia
| |
Collapse
|
5
|
Scotti-Muzzi E, Chile T, Vallada H, Otaduy MCG, Soeiro-de-Souza MG. Association between CACNA1C gene rs100737 polymorphism and glutamatergic neurometabolites in bipolar disorder. Eur Neuropsychopharmacol 2022; 59:26-35. [PMID: 35544990 DOI: 10.1016/j.euroneuro.2022.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 03/30/2022] [Accepted: 04/02/2022] [Indexed: 11/25/2022]
Abstract
Abnormalities in Ca2+ homeostasis in Bipolar Disorders (BD) have been associated with impairments in glutamatergic receptors and voltage-gated calcium channels. Increased anterior cingulate cortex (ACC) glutamatergic neurometabolites have been consistently disclosed in BD by proton magnetic resonance spectroscopy (1H-MRS). A single nucleotide polymorphism (SNP) in the CACNA1C gene (rs1006737), which encodes the alpha 1-C subunit of the L-type calcium channel, has been associated with BD and is reported to modulate intra-cellular Ca2+. Thus, this study aimed to explore the association of the CACNA1C genotype with ACC glutamatergic metabolites measured by 1H-MRS in both BD and HC subjects. A total of 194 subjects (121 euthymic BD type I patients and 73 healthy controls (HC) were genotyped for CACNA1C rs1006737, underwent a 3-Tesla 1H-MRS imaging examination and ACC glutamatergic metabolite were assessed. We found overall increased glutamatergic metabolites in AA carriers in BD. Specifically, higher Glx/Cr was observed in subjects with the AA genotype compared to both AG and GG in the overall sample (BD + HC). Also, female individuals in the BD group with AA genotype were found to have higher Glx/Cr compared to those with other genotypes. CACNA1C AA carriers in use of anticonvulsant medication had higher estimated Glutamine (Glx-Glu) than the other genotypes. Thus, this study suggest an association between calcium channel genetics and increased glutamatergic metabolites in BD, possibly playing a synergic role in intracellular Ca2+ overload and excitotoxicity.
Collapse
Affiliation(s)
- Estêvão Scotti-Muzzi
- Department of Psychiatry, University of São Paulo (FMUSP), Institute of Psychiatry, CEAPESQ, PROGRUDA, School of Medicine, Dr. Ovidio Pires de Campos s / n. Clinic Hospital, São Paulo 05403-010, Brazil.
| | - Thais Chile
- Genetics and Pharmacogenetics Unit (PROGENE), Institute of Psychiatry, School of Medicine, University of São Paulo (IPq-FMUSP), Brazil
| | - Homero Vallada
- Genetics and Pharmacogenetics Unit (PROGENE), Institute of Psychiatry, School of Medicine, University of São Paulo (IPq-FMUSP), Brazil
| | - Maria Concepción Garcia Otaduy
- Laboratory of Magnetic Resonance LIM44, Department and Institute of Radiology, University of São Paulo (InRad-FMUSP), Brazil
| | - Márcio Gerhardt Soeiro-de-Souza
- Department of Psychiatry, University of São Paulo (FMUSP), Institute of Psychiatry, CEAPESQ, PROGRUDA, School of Medicine, Dr. Ovidio Pires de Campos s / n. Clinic Hospital, São Paulo 05403-010, Brazil
| |
Collapse
|
6
|
Furlong LS, Rossell SL, Caruana GF, Cropley VL, Hughes M, Van Rheenen TE. The activity and connectivity of the facial emotion processing neural circuitry in bipolar disorder: a systematic review. J Affect Disord 2021; 279:518-548. [PMID: 33142156 DOI: 10.1016/j.jad.2020.10.038] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 10/15/2020] [Accepted: 10/20/2020] [Indexed: 12/27/2022]
Abstract
BACKGROUND Facial emotion processing abnormalities may be a trait feature of bipolar disorder (BD). These social cognitive impairments may be due to alterations in the neural processing of facial affective information in visual ("core"), and limbic and prefrontal ("extended") networks, however, the precise neurobiological mechanism(s) underlying these symptoms are unclear. METHODS We conducted a systematic review to appraise the literature on the activity and connectivity of the facial emotion processing neural circuitry in BD. Two reviewers undertook a search of the electronic databases PubMed, Scopus and PsycINFO, to identify relevant literature published since inception up until September 2019. Study eligibility criteria included; BD participants, neuroimaging, and facial emotion processing tasks. RESULTS Out of an initial yield of 6121 articles, 66 were eligible for inclusion in this review. We identified differences in neural activity and connectivity within and between occipitotemporal, limbic, and prefrontal regions, in response to facial affective stimuli, in BD compared to healthy controls. LIMITATIONS The methodologies used across studies varied considerably. CONCLUSIONS The findings from this review suggest abnormalities in both the activity and connectivity of facial emotion processing neural circuitry in BD. It is recommended that future research aims to further define the connectivity and spatiotemporal course of neural events within and between occipitotemporal, limbic, and prefrontal regions.
Collapse
Affiliation(s)
- Lisa S Furlong
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne and Melbourne Health, Melbourne, Australia
| | - Susan L Rossell
- Centre for Mental Health, Faculty of Health, Arts and Design, School of Health Sciences, Swinburne University, Melbourne, Australia; St Vincent's Mental Health, St Vincent's Hospital, VIC, Australia
| | - Georgia F Caruana
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne and Melbourne Health, Melbourne, Australia
| | - Vanessa L Cropley
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne and Melbourne Health, Melbourne, Australia; Centre for Mental Health, Faculty of Health, Arts and Design, School of Health Sciences, Swinburne University, Melbourne, Australia
| | - Matthew Hughes
- Centre for Mental Health, Faculty of Health, Arts and Design, School of Health Sciences, Swinburne University, Melbourne, Australia
| | - Tamsyn E Van Rheenen
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne and Melbourne Health, Melbourne, Australia; Centre for Mental Health, Faculty of Health, Arts and Design, School of Health Sciences, Swinburne University, Melbourne, Australia.
| |
Collapse
|
7
|
Lubeiro A, Fatjó-Vilas M, Guardiola M, Almodóvar C, Gomez-Pilar J, Cea-Cañas B, Poza J, Palomino A, Gómez-García M, Zugasti J, Molina V. Analysis of KCNH2 and CACNA1C schizophrenia risk genes on EEG functional network modulation during an auditory odd-ball task. Eur Arch Psychiatry Clin Neurosci 2020; 270:433-442. [PMID: 30607529 DOI: 10.1007/s00406-018-0977-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 12/19/2018] [Indexed: 01/05/2023]
Abstract
A deficit in task-related functional connectivity modulation from electroencephalogram (EEG) has been described in schizophrenia. The use of measures of neuronal connectivity as an intermediate phenotype may allow identifying genetic factors involved in these deficits, and therefore, establishing underlying pathophysiological mechanisms. Genes involved in neuronal excitability and previously associated with the risk for schizophrenia may be adequate candidates in relation to functional connectivity alterations in schizophrenia. The objective was to study the association of two genes of voltage-gated ion channels (CACNA1C and KCNH2) with the functional modulation of the cortical networks measured with EEG and graph-theory parameter during a cognitive task, both in individuals with schizophrenia and healthy controls. Both CACNA1C (rs1006737) and KCNH2 (rs3800779) were genotyped in 101 controls and 50 schizophrenia patients. Small-world index (SW) was calculated from EEG recorded during an odd-ball task in two different temporal windows (pre-stimulus and response). Modulation was defined as the difference in SW between both windows. Genetic, group and their interaction effects on SW in the pre-stimulus window and in modulation were evaluated using ANOVA. The CACNA1C genotype was not associated with SW properties. KCNH2 was significantly associated with SW modulation. Healthy subjects showed a positive SW modulation irrespective of the KCNH2 genotype, whereas within patients allele-related differences were observed. Patients carrying the KCNH2 risk allele (A) presented a negative SW modulation and non-carriers showed SW modulation similar to the healthy subjects. Our data suggest that KCNH2 genotype contributes to the efficient modulation of brain electrophysiological activity during a cognitive task in schizophrenia patients.
Collapse
Affiliation(s)
- Alba Lubeiro
- Psychiatry Department, School of Medicine, University of Valladolid, Av. Ramón y Cajal, 7, 47005, Valladolid, Spain.
| | - Mar Fatjó-Vilas
- FIDMAG Germanes Hospitalàries Research Foundation, Carrer Del Dr. Antoni Pujadas, 38 Sant Boi De Llobregat, 08830, Barcelona, Spain. .,Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Spain. .,CIBERSAM (Biomedical Research Network in Mental Health; Instituto de Salud Carlos III), Madrid, Spain.
| | - Maria Guardiola
- FIDMAG Germanes Hospitalàries Research Foundation, Carrer Del Dr. Antoni Pujadas, 38 Sant Boi De Llobregat, 08830, Barcelona, Spain.,Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Spain.,CIBERSAM (Biomedical Research Network in Mental Health; Instituto de Salud Carlos III), Madrid, Spain
| | - Carmen Almodóvar
- FIDMAG Germanes Hospitalàries Research Foundation, Carrer Del Dr. Antoni Pujadas, 38 Sant Boi De Llobregat, 08830, Barcelona, Spain
| | - Javier Gomez-Pilar
- Biomedical Engineering Group, Department TSCIT, ETS Ingenieros de Telecomunicación, University of Valladolid, Valladolid, Spain
| | - Benjamin Cea-Cañas
- Neurophysiology service, University Hospital of Valladolid, Valladolid, Spain
| | - Jesús Poza
- Biomedical Engineering Group, Department TSCIT, ETS Ingenieros de Telecomunicación, University of Valladolid, Valladolid, Spain.,Neurosciences Institute of Castilla y León (INCYL), University of Salamanca, Pintor Fernando Gallego, 1, 37007, Salamanca, Spain.,IMUVA, Mathematics Research Institute, University of Valladolid, Valladolid, Spain
| | - Aitor Palomino
- Achucarro Basque Center for Neurosciences, CIBERNED and Departamento de Neurociencias, Universidad del País Vasco, Leioa, Spain
| | - Marta Gómez-García
- Psychiatry service, University Hospital of Valladolid, Valladolid, Spain
| | - Jone Zugasti
- Psychiatry Department, University Hospital of Álava, Álava, Spain
| | - Vicente Molina
- Psychiatry Department, School of Medicine, University of Valladolid, Av. Ramón y Cajal, 7, 47005, Valladolid, Spain.,CIBERSAM (Biomedical Research Network in Mental Health; Instituto de Salud Carlos III), Madrid, Spain.,Neurosciences Institute of Castilla y León (INCYL), University of Salamanca, Pintor Fernando Gallego, 1, 37007, Salamanca, Spain.,Psychiatry service, University Hospital of Valladolid, Valladolid, Spain
| |
Collapse
|
8
|
Redecker TM, Kisko TM, Wöhr M, Schwarting RKW. Cacna1c haploinsufficiency lacks effects on adult hippocampal neurogenesis and volumetric properties of prefrontal cortex and hippocampus in female rats. Physiol Behav 2020; 223:112974. [PMID: 32473156 DOI: 10.1016/j.physbeh.2020.112974] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/30/2020] [Accepted: 05/20/2020] [Indexed: 02/06/2023]
Abstract
The cross-disorder risk gene CACNA1C is strongly involved in the etiology of all major neuropsychiatric disorders, with women often being more affected by CACNA1C mutations than men. Human neuroimaging studies provided evidence that CACNA1C variants are associated with anatomical and functional brain alterations, such as decreased prefrontal volumes, microstructural changes in the hippocampus, and reduced hippocampal activity during memory tasks. In mouse models, Cacna1c alterations were repeatedly linked to disorder-like behavioral phenotypes and reduced adult hippocampal neurogenesis, which has been implicated in the pathology of neuropsychiatric disorders. Here, we applied a recently developed rat model and conducted two studies to investigate the effects of partial Cacna1c depletion on adult hippocampal neurogenesis and volumetric properties of the hippocampus and the prefrontal cortex in adult female constitutive heterozygous (Cacna1c+/-) rats and wildtype (Cacna1c+/+) littermate controls. In study 1, we analyzed proliferation versus survival of adult-born hippocampal cells based on a 5-bromodeoxyuridine assay ensuring neuronal cell-type specificity through applying an immunofluorescent multiple staining approach. In study 2, we performed a detailed volumetric analysis with high structural resolution of the dorsal hippocampus and the medial prefrontal cortex, including their major substructures. Our results indicate comparable levels of cell proliferation and neuronal survival in Cacna1c+/- rats and Cacna1c+/+ controls. Additionally, we found similar volumes of the dorsal hippocampus and the medial prefrontal cortex across major substructures irrespective of genotype, indicating that Cacna1c haploinsufficiency has no prominent effects on these brain features in female rats.
Collapse
Affiliation(s)
- Tobias M Redecker
- Behavioral Neuroscience, Experimental and Biological Psychology, Department of Psychology, Philipps-Universität Marburg, Gutenbergstr. 18, D-35037 Marburg, Germany
| | - Theresa M Kisko
- Behavioral Neuroscience, Experimental and Biological Psychology, Department of Psychology, Philipps-Universität Marburg, Gutenbergstr. 18, D-35037 Marburg, Germany
| | - Markus Wöhr
- Behavioral Neuroscience, Experimental and Biological Psychology, Department of Psychology, Philipps-Universität Marburg, Gutenbergstr. 18, D-35037 Marburg, Germany; Center for Mind, Brain, and Behavior (CMBB), Hans-Meerwein-Str. 6, D-35032 Marburg, Germany; Laboratory for Behavioral Neuroscience, Department of Biology, Faculty of Science, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Rainer K W Schwarting
- Behavioral Neuroscience, Experimental and Biological Psychology, Department of Psychology, Philipps-Universität Marburg, Gutenbergstr. 18, D-35037 Marburg, Germany; Center for Mind, Brain, and Behavior (CMBB), Hans-Meerwein-Str. 6, D-35032 Marburg, Germany.
| |
Collapse
|
9
|
Dezhina Z, Ranlund S, Kyriakopoulos M, Williams SCR, Dima D. A systematic review of associations between functional MRI activity and polygenic risk for schizophrenia and bipolar disorder. Brain Imaging Behav 2019; 13:862-877. [PMID: 29748770 PMCID: PMC6538577 DOI: 10.1007/s11682-018-9879-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Genetic factors account for up to 80% of the liability for schizophrenia (SCZ) and bipolar disorder (BD). Genome-wide association studies have successfully identified several genes associated with increased risk for both disorders. This has allowed researchers to model the aggregate effect of genes associated with disease status and create a polygenic risk score (PGRS) for each individual. The interest in imaging genetics using PGRS has grown in recent years, with several studies now published. We have conducted a systematic review to examine the effects of PGRS of SCZ, BD and cross psychiatric disorders on brain function and connectivity using fMRI data. Results indicate that the effect of genetic load for SCZ and BD on brain function affects task-related recruitment, with frontal areas having a more prominent role, independent of task. Additionally, the results suggest that the polygenic architecture of psychotic disorders is not regionally confined but impacts on the task-dependent recruitment of multiple brain regions. Future imaging genetics studies with large samples, especially population studies, would be uniquely informative in mapping the spatial distribution of the genetic risk to psychiatric disorders on brain processes during various cognitive tasks and may lead to the discovery of biological pathways that could be crucial in mediating the link between genetic factors and alterations in brain networks.
Collapse
Affiliation(s)
- Zalina Dezhina
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Siri Ranlund
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Marinos Kyriakopoulos
- National and Specialist Acorn Lodge Inpatient Children Unit, South London and Maudsley NHS Foundation Trust, London, UK
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Steve C R Williams
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Danai Dima
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
- Department of Psychology, School of Arts and Social Sciences, City, University of London, 10 Northampton Square, London, EC1V 0HB, UK.
| |
Collapse
|
10
|
Kisko TM, Braun MD, Michels S, Witt SH, Rietschel M, Culmsee C, Schwarting RKW, Wöhr M. Sex‐dependent effects of
Cacna1c
haploinsufficiency on juvenile social play behavior and pro‐social 50‐kHz ultrasonic communication in rats. GENES BRAIN AND BEHAVIOR 2019; 19:e12552. [DOI: 10.1111/gbb.12552] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 12/22/2018] [Accepted: 12/26/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Theresa M. Kisko
- Behavioral Neuroscience, Experimental and Biological Psychology, Department of PsychologyPhilipps‐Universität Marburg Marburg Germany
| | - Moria D. Braun
- Behavioral Neuroscience, Experimental and Biological Psychology, Department of PsychologyPhilipps‐Universität Marburg Marburg Germany
| | - Susanne Michels
- Institute of Pharmacology and Clinical PharmacyPhilipps‐Universität Marburg Marburg Germany
| | - Stephanie H. Witt
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Faculty of Medicine MannheimRuprecht‐Karls‐Universität Heidelberg Mannheim Germany
| | - Marcella Rietschel
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Faculty of Medicine MannheimRuprecht‐Karls‐Universität Heidelberg Mannheim Germany
| | - Carsten Culmsee
- Institute of Pharmacology and Clinical PharmacyPhilipps‐Universität Marburg Marburg Germany
- Center for Mind, Brain, and Behavior (CMBB)Philipps‐Universität Marburg Marburg Germany
| | - Rainer K. W. Schwarting
- Behavioral Neuroscience, Experimental and Biological Psychology, Department of PsychologyPhilipps‐Universität Marburg Marburg Germany
- Center for Mind, Brain, and Behavior (CMBB)Philipps‐Universität Marburg Marburg Germany
| | - Markus Wöhr
- Behavioral Neuroscience, Experimental and Biological Psychology, Department of PsychologyPhilipps‐Universität Marburg Marburg Germany
- Center for Mind, Brain, and Behavior (CMBB)Philipps‐Universität Marburg Marburg Germany
| |
Collapse
|
11
|
Li M, Yue W. VRK2, a Candidate Gene for Psychiatric and Neurological Disorders. MOLECULAR NEUROPSYCHIATRY 2018; 4:119-133. [PMID: 30643786 PMCID: PMC6323383 DOI: 10.1159/000493941] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 09/20/2018] [Indexed: 12/20/2022]
Abstract
Recent large-scale genetic approaches, such as genome-wide association studies, have identified multiple genetic variations that contribute to the risk of mental illnesses, among which single nucleotide polymorphisms (SNPs) within or near the vaccinia related kinase 2 (VRK2) gene have gained consistent support for their correlations with multiple psychiatric and neurological disorders including schizophrenia (SCZ), major depressive disorder (MDD), and genetic generalized epilepsy. For instance, the genetic variant rs1518395 in VRK2 showed genome-wide significant associations with SCZ (35,476 cases and 46,839 controls, p = 3.43 × 10-8) and MDD (130,620 cases and 347,620 controls, p = 4.32 × 10-12) in European populations. This SNP was also genome-wide significantly associated with SCZ in Han Chinese population (12,083 cases and 24,097 controls, p = 3.78 × 10-13), and all associations were in the same direction of allelic effects. These studies highlight the potential roles of VRK2 in the central nervous system, and this gene therefore might be a good candidate to investigate the shared genetic and molecular basis between SCZ and MDD, as it is one of the few genes known to show genome-wide significant associations with both illnesses. Furthermore, the VRK2 gene was found to be involved in multiple other congenital deficits related to the malfunction of neurodevelopment, adding further support for the involvement of this gene in the pathogenesis of these neurological and psychiatric illnesses. While the precise function of VRK2 in these conditions remains unclear, preliminary evidence suggests that it may affect neuronal proliferation and migration via interacting with multiple essential signaling pathways involving other susceptibility genes/proteins for psychiatric disorders. Here, we have reviewed the recent progress of genetic and molecular studies of VRK2, with an emphasis on its role in psychiatric illnesses and neurological functions. We believe that attention to this important gene is necessary, and further investigations of VRK2 may provide hints into the underlying mechanisms of SCZ and MDD.
Collapse
Affiliation(s)
- Ming Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, China
- CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Weihua Yue
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, China
- Key Laboratory of Mental Health, Ministry of Health (Peking University) and National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| |
Collapse
|
12
|
Pereira LP, Köhler CA, de Sousa RT, Solmi M, de Freitas BP, Fornaro M, Machado-Vieira R, Miskowiak KW, Vieta E, Veronese N, Stubbs B, Carvalho AF. The relationship between genetic risk variants with brain structure and function in bipolar disorder: A systematic review of genetic-neuroimaging studies. Neurosci Biobehav Rev 2017; 79:87-109. [DOI: 10.1016/j.neubiorev.2017.05.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 04/27/2017] [Accepted: 05/01/2017] [Indexed: 12/21/2022]
|
13
|
Mallas E, Carletti F, Chaddock CA, Shergill S, Woolley J, Picchioni MM, McDonald C, Toulopoulou T, Kravariti E, Kalidindi S, Bramon E, Murray R, Barker GJ, Prata DP. The impact of CACNA1C gene, and its epistasis with ZNF804A, on white matter microstructure in health, schizophrenia and bipolar disorder1. GENES BRAIN AND BEHAVIOR 2016; 16:479-488. [DOI: 10.1111/gbb.12355] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 10/24/2016] [Accepted: 10/25/2016] [Indexed: 12/16/2022]
Affiliation(s)
- E. Mallas
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience; King's College London
- Computational, Cognitive and Clinical Neuroimaging Laboratory, Division of Brain Sciences, Department of Medicine; Imperial College London; London
| | - F. Carletti
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience; King's College London
- Department of Neuroradiology, John Radcliffe Hospital; Oxford University Hospitals NHS Trust; Oxford
| | - C. A. Chaddock
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience; King's College London
| | - S. Shergill
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience; King's College London
| | - J. Woolley
- Psychological Medicine; Royal Brompton & Harefield NHS Trust; London
| | - M. M. Picchioni
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience; King's College London
- St. Andrew's Academic Department; St Andrew's Healthcare; Northampton UK
| | - C. McDonald
- Neuroimaging, Cognition & Genomics Centre (NICOG) & NCBES Galway Neuroscience Centre, College of Medicine, Nursing and Health Sciences; National University of Ireland Galway; Galway Ireland
| | - T. Toulopoulou
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience; King's College London
- Department of Psychology; The University of Hong Kong; Hong Kong Special Administrative Region
| | - E. Kravariti
- Department of Psychology, Institute of Psychiatry; Psychology & Neuroscience King's College London
| | - S. Kalidindi
- Department of Psychology, Institute of Psychiatry; Psychology & Neuroscience King's College London
| | - E. Bramon
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience; King's College London
- Mental Health Neurosciences Research Department, Division of Psychiatry; University College London
| | - R. Murray
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience; King's College London
| | - G. J. Barker
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience; King's College London; London UK
| | - D. P. Prata
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience; King's College London; London UK
- Instituto de Medicina Molecular; Faculdade de Medicina da Universidade de Lisboa; Lisbon Portugal
| |
Collapse
|
14
|
Kabir ZD, Lee AS, Rajadhyaksha AM. L-type Ca 2+ channels in mood, cognition and addiction: integrating human and rodent studies with a focus on behavioural endophenotypes. J Physiol 2016; 594:5823-5837. [PMID: 26913808 PMCID: PMC5063939 DOI: 10.1113/jp270673] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 11/28/2015] [Indexed: 01/07/2023] Open
Abstract
Brain Cav 1.2 and Cav 1.3 L-type Ca2+ channels play key physiological roles in various neuronal processes that contribute to brain function. Genetic studies have recently identified CACNA1C as a candidate risk gene for bipolar disorder (BD), schizophrenia (SCZ), major depressive disorder (MDD) and autism spectrum disorder (ASD), and CACNA1D for BD and ASD, suggesting a contribution of Cav 1.2 and Cav 1.3 Ca2+ signalling to the pathophysiology of neuropsychiatric disorders. Once considered sole clinical entities, it is now clear that BD, SCZ, MDD and ASD share common phenotypic features, most likely due to overlapping neurocircuitry and common molecular mechanisms. A major future challenge lies in translating the human genetic findings to pathological mechanisms that are translatable back to the patient. One approach for tackling such a daunting scientific endeavour for complex behaviour-based neuropsychiatric disorders is to examine intermediate biological phenotypes in the context of endophenotypes within distinct behavioural domains. This will better allow us to integrate findings from genes to behaviour across species, and improve the chances of translating preclinical findings to clinical practice.
Collapse
Affiliation(s)
- Z D Kabir
- Division of Pediatric Neurology, Department of Pediatrics, Weill Cornell Medical College, New York, NY, USA
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY, USA
- Weill Cornell Autism Research Program, Weill Cornell Medical College, New York, NY, USA
| | - A S Lee
- Division of Pediatric Neurology, Department of Pediatrics, Weill Cornell Medical College, New York, NY, USA
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY, USA
- Weill Cornell Autism Research Program, Weill Cornell Medical College, New York, NY, USA
| | - A M Rajadhyaksha
- Division of Pediatric Neurology, Department of Pediatrics, Weill Cornell Medical College, New York, NY, USA.
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY, USA.
- Weill Cornell Autism Research Program, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
15
|
Cipriani A, Saunders K, Attenburrow MJ, Stefaniak J, Panchal P, Stockton S, Lane TA, Tunbridge EM, Geddes JR, Harrison PJ. A systematic review of calcium channel antagonists in bipolar disorder and some considerations for their future development. Mol Psychiatry 2016; 21:1324-32. [PMID: 27240535 PMCID: PMC5030455 DOI: 10.1038/mp.2016.86] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 03/01/2016] [Accepted: 04/15/2016] [Indexed: 12/17/2022]
Abstract
l-type calcium channel (LTCC) antagonists have been used in bipolar disorder for over 30 years, without becoming an established therapeutic approach. Interest in this class of drugs has been rekindled by the discovery that LTCC genes are part of the genetic aetiology of bipolar disorder and related phenotypes. We have therefore conducted a systematic review of LTCC antagonists in the treatment and prophylaxis of bipolar disorder. We identified 23 eligible studies, with six randomised, double-blind, controlled clinical trials, all of which investigated verapamil in acute mania, and finding no evidence that it is effective. Data for other LTCC antagonists (diltiazem, nimodipine, nifedipine, methyoxyverapamil and isradipine) and for other phases of the illness are limited to observational studies, and therefore no robust conclusions can be drawn. Given the increasingly strong evidence for calcium signalling dysfunction in bipolar disorder, the therapeutic candidacy of this class of drugs has become stronger, and hence we also discuss issues relevant to their future development and evaluation. In particular, we consider how genetic, molecular and pharmacological data can be used to improve the selectivity, efficacy and tolerability of LTCC antagonists. We suggest that a renewed focus on LTCCs as targets, and the development of 'brain-selective' LTCC ligands, could be one fruitful approach to innovative pharmacotherapy for bipolar disorder and related phenotypes.
Collapse
Affiliation(s)
- A Cipriani
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK
- Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, UK
| | - K Saunders
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK
- Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, UK
| | - M-J Attenburrow
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK
- Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, UK
| | - J Stefaniak
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK
| | - P Panchal
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK
- Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, UK
| | - S Stockton
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK
- Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, UK
| | - T A Lane
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK
| | - E M Tunbridge
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK
- Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, UK
| | - J R Geddes
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK
- Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, UK
| | - P J Harrison
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK
- Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, UK
| |
Collapse
|
16
|
Friston K, Brown HR, Siemerkus J, Stephan KE. The dysconnection hypothesis (2016). Schizophr Res 2016; 176:83-94. [PMID: 27450778 PMCID: PMC5147460 DOI: 10.1016/j.schres.2016.07.014] [Citation(s) in RCA: 373] [Impact Index Per Article: 46.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 07/06/2016] [Accepted: 07/15/2016] [Indexed: 02/06/2023]
Abstract
Twenty years have passed since the dysconnection hypothesis was first proposed (Friston and Frith, 1995; Weinberger, 1993). In that time, neuroscience has witnessed tremendous advances: we now live in a world of non-invasive neuroanatomy, computational neuroimaging and the Bayesian brain. The genomics era has come and gone. Connectomics and large-scale neuroinformatics initiatives are emerging everywhere. So where is the dysconnection hypothesis now? This article considers how the notion of schizophrenia as a dysconnection syndrome has developed - and how it has been enriched by recent advances in clinical neuroscience. In particular, we examine the dysconnection hypothesis in the context of (i) theoretical neurobiology and computational psychiatry; (ii) the empirical insights afforded by neuroimaging and associated connectomics - and (iii) how bottom-up (molecular biology and genetics) and top-down (systems biology) perspectives are converging on the mechanisms and nature of dysconnections in schizophrenia.
Collapse
Affiliation(s)
- Karl Friston
- Wellcome Trust Centre for Neuroimaging, Institute of Neurology, University College London, UK.
| | - Harriet R. Brown
- Wellcome Trust Centre for Neuroimaging, Institute of Neurology, University College London, UK,Oxford Centre for Human Brain Activity, University of Oxford, UK
| | - Jakob Siemerkus
- Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Switzerland,Department of Psychiatry, Psychotherapy and Psychosomatics, Zurich, Switzerland
| | - Klaas E. Stephan
- Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Switzerland
| |
Collapse
|
17
|
Jawinski P, Sander C, Mauche N, Spada J, Huang J, Schmidt A, Häntzsch M, Burkhardt R, Scholz M, Hegerl U, Hensch T. Brain Arousal Regulation in Carriers of Bipolar Disorder Risk Alleles. Neuropsychobiology 2016; 72:65-73. [PMID: 26509803 DOI: 10.1159/000437438] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 07/06/2015] [Indexed: 11/19/2022]
Abstract
OBJECTIVES Recent genome-wide association studies identified a number of chromosomal risk loci for bipolar disorder (BD, 'manic-depressive illness'). According to the vigilance regulation model, the regulation of brain arousal (referred to as 'vigilance') when assessed via EEG is an emerging biomarker linked to the pathogenesis of manic and depressive episodes. On this basis, the present study aimed to assess whether carriers of BD risk alleles differ in brain arousal regulation. METHODS Healthy participants of the population-based Leipzig Health Care Study (LIFE) underwent a 20-min eyes-closed resting EEG paradigm. Brain arousal was assessed applying the computer-based Vigilance Algorithm Leipzig (VIGALL). The primary sample (n = 540) was genotyped for ten of the most reliable BD risk variants, of which two qualified for replication (n = 509). RESULTS Primary sample analyses revealed Bonferroni-adjusted significance for rs1006737 in CACNA1C (encoding a calcium channel subunit), with risk allele carriers exhibiting relatively steep brain arousal declines. Further, carriers of two risk alleles of rs472913 at 1p32.1 showed generally lower brain arousal levels for the duration of the resting paradigm. However, both associations failed replication. CONCLUSION Although our initial findings are in line with the vigilance regulation model and convincing in view of the previously reported notable role of ion channelopathies in BD, our results do not provide consistent evidence for a link between BD risk variants and brain arousal regulation. Several between-sample differences may account for this inconsistency. The molecular genetics of brain arousal regulation remain to be clarified.
Collapse
Affiliation(s)
- Philippe Jawinski
- LIFE - Leipzig Research Centre for Civilization Diseases, Leipzig, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
CACNA1C risk variant affects facial emotion recognition in healthy individuals. Sci Rep 2015; 5:17349. [PMID: 26611642 PMCID: PMC4661469 DOI: 10.1038/srep17349] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 10/26/2015] [Indexed: 12/15/2022] Open
Abstract
Recognition and correct interpretation of facial emotion is essential for social interaction and communication. Previous studies have shown that impairments in this cognitive domain are common features of several psychiatric disorders. Recent association studies identified CACNA1C as one of the most promising genetic risk factors for psychiatric disorders and previous evidence suggests that the most replicated risk variant in CACNA1C (rs1006737) is affecting emotion recognition and processing. However, studies investigating the influence of rs1006737 on this intermediate phenotype in healthy subjects at the behavioral level are largely missing to date. Here, we applied the “Reading the Mind in the Eyes” test, a facial emotion recognition paradigm in a cohort of 92 healthy individuals to address this question. Whereas accuracy was not affected by genotype, CACNA1C rs1006737 risk-allele carries (AA/AG) showed significantly slower mean response times compared to individuals homozygous for the G-allele, indicating that healthy risk-allele carriers require more information to correctly identify a facial emotion. Our study is the first to provide evidence for an impairing behavioral effect of the CACNA1C risk variant rs1006737 on facial emotion recognition in healthy individuals and adds to the growing number of studies pointing towards CACNA1C as affecting intermediate phenotypes of psychiatric disorders.
Collapse
|
19
|
Sumner JA, Sheridan MA, Drury SS, Esteves KC, Walsh K, Koenen KC, McLaughlin KA. Variation in CACNA1C is Associated with Amygdala Structure and Function in Adolescents. J Child Adolesc Psychopharmacol 2015; 25:701-10. [PMID: 26401721 PMCID: PMC4653820 DOI: 10.1089/cap.2015.0047] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Genome-wide association studies have identified allelic variation in CACNA1C as a risk factor for multiple psychiatric disorders associated with limbic system dysfunction, including bipolar disorder, schizophrenia, and depression. The CACNA1C gene codes for a subunit of L-type voltage-gated calcium channels, which modulate amygdala function. Although CACNA1C genotype appears to be associated with amygdala morphology and function in adults with and without psychopathology, whether genetic variation influences amygdala structure and function earlier in development has not been examined. METHODS In this first investigation of the neural correlates of CACNA1C in young individuals, we examined associations between two single nucleotide polymorphisms in CACNA1C (rs1006737 and rs4765914) with amygdala volume and activation during an emotional processing task in 58 adolescents and young adults 13-20 years of age. RESULTS Minor (T) allele carriers of rs4765914 exhibited smaller amygdala volume than major (C) allele homozygotes (β=-0.33, p=0.006). Furthermore, minor (A) allele homozygotes of rs1006737 exhibited increased blood-oxygen-level-dependent (BOLD) signal in the amygdala when viewing negative (vs. neutral) stimuli (β=0.29, p=0.040) and decreased BOLD signal in the amygdala when instructed to downregulate their emotional response to negative stimuli (β=-0.38, p=0.009). Follow-up analyses indicated that childhood trauma did not moderate the associations of CACNA1C variation with amygdala structure and function (ps>0.170). CONCLUSIONS Findings indicate that CACNA1C-related differences in amygdala structure and function are present by adolescence. However, population stratification is a concern, given the racial/ethnic heterogeneity of our sample, and our findings do not have direct clinical implications currently. Nevertheless, these results suggest that developmentally informed research can begin to shed light on the time course by which genetic liability may translate into neural differences associated with vulnerability to psychopathology.
Collapse
Affiliation(s)
- Jennifer A. Sumner
- Department of Epidemiology, Columbia University Mailman School of Public Health, New York, New York
| | - Margaret A. Sheridan
- Developmental Medicine Center, Boston Children's Hospital, Boston, Massachusetts.,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
| | - Stacy S. Drury
- Department of Psychiatry and Behavioral Sciences, Tulane University School of Medicine, New Orleans, Louisiana
| | - Kyle C. Esteves
- Department of Psychiatry and Behavioral Sciences, Tulane University School of Medicine, New Orleans, Louisiana
| | - Kate Walsh
- Department of Epidemiology, Columbia University Mailman School of Public Health, New York, New York
| | - Karestan C. Koenen
- Department of Epidemiology, Columbia University Mailman School of Public Health, New York, New York
| | | |
Collapse
|
20
|
Forde NJ, O'Donoghue S, Scanlon C, Emsell L, Chaddock C, Leemans A, Jeurissen B, Barker GJ, Cannon DM, Murray RM, McDonald C. Structural brain network analysis in families multiply affected with bipolar I disorder. Psychiatry Res 2015; 234:44-51. [PMID: 26382105 DOI: 10.1016/j.pscychresns.2015.08.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 07/17/2015] [Accepted: 08/19/2015] [Indexed: 01/06/2023]
Abstract
Disrupted structural connectivity is associated with psychiatric illnesses including bipolar disorder (BP). Here we use structural brain network analysis to investigate connectivity abnormalities in multiply affected BP type I families, to assess the utility of dysconnectivity as a biomarker and its endophenotypic potential. Magnetic resonance diffusion images for 19 BP type I patients in remission, 21 of their first degree unaffected relatives, and 18 unrelated healthy controls underwent tractography. With the automated anatomical labelling atlas being used to define nodes, a connectivity matrix was generated for each subject. Network metrics were extracted with the Brain Connectivity Toolbox and then analysed for group differences, accounting for potential confounding effects of age, gender and familial association. Whole brain analysis revealed no differences between groups. Analysis of specific mainly frontal regions, previously implicated as potentially endophenotypic by functional magnetic resonance imaging analysis of the same cohort, revealed a significant effect of group in the right medial superior frontal gyrus and left middle frontal gyrus driven by reduced organisation in patients compared with controls. The organisation of whole brain networks of those affected with BP I does not differ from their unaffected relatives or healthy controls. In discreet frontal regions, however, anatomical connectivity is disrupted in patients but not in their unaffected relatives.
Collapse
Affiliation(s)
- Natalie J Forde
- Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland; Department of Psychiatry, University Medical Centre Groningen, The Netherlands.
| | - Stefani O'Donoghue
- Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Cathy Scanlon
- Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland; Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| | - Louise Emsell
- Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland; Translational MRI, Department of Imaging & Pathology, KU Leuven & Radiology, University Hospitals Leuven, Belgium
| | - Chris Chaddock
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| | - Alexander Leemans
- Image Sciences Institute, University Medical Center Utrecht, The Netherlands
| | | | - Gareth J Barker
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| | - Dara M Cannon
- Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Robin M Murray
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| | - Colm McDonald
- Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
21
|
Ou X, Crane DE, MacIntosh BJ, Young LT, Arnold P, Ameis S, Goldstein BI. CACNA1C rs1006737 genotype and bipolar disorder: Focus on intermediate phenotypes and cardiovascular comorbidity. Neurosci Biobehav Rev 2015; 55:198-210. [DOI: 10.1016/j.neubiorev.2015.04.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 04/28/2015] [Accepted: 04/30/2015] [Indexed: 01/18/2023]
|
22
|
Abstract
Genetic factors account for up to 80% of the liability for schizophrenia and bipolar disorder. Genome-wide association studies (GWAS) have successfully identified several single nucleotide polymorphisms (SNPs) and genes associated with increased risk for both disorders. Single SNP analyses alone do not address the overall genomic or polygenic architecture of psychiatric disorders as the amount of phenotypic variation explained by each GWAS-supported SNP is small whereas the number of SNPs/regions underlying risk for illness is thought to be very large. The polygenic risk score models the aggregate effect of alleles associated with disease status present in each individual and allows us to utilise the power of large GWAS to be applied robustly in small samples. Here we make the case that risk prediction, intervention and personalised medicine can only benefit with the inclusion of polygenic risk scores in imaging genetics research.
Collapse
Affiliation(s)
- Danai Dima
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Gerome Breen
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK National Institute of Health Research (NIHR) Biomedical Research Centre for Mental Health, South London and Maudsley National Health Service (NHS) Trust, London, UK
| |
Collapse
|
23
|
Roussos P, Mitchell AC, Voloudakis G, Fullard JF, Pothula VM, Tsang J, Stahl EA, Georgakopoulos A, Ruderfer DM, Charney A, Okada Y, Siminovitch KA, Worthington J, Padyukov L, Klareskog L, Gregersen PK, Plenge RM, Raychaudhuri S, Fromer M, Purcell SM, Brennand KJ, Robakis NK, Schadt EE, Akbarian S, Sklar P. A role for noncoding variation in schizophrenia. Cell Rep 2014; 9:1417-29. [PMID: 25453756 PMCID: PMC4255904 DOI: 10.1016/j.celrep.2014.10.015] [Citation(s) in RCA: 185] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2014] [Revised: 07/31/2014] [Accepted: 10/03/2014] [Indexed: 01/20/2023] Open
Abstract
A large portion of common variant loci associated with genetic risk for schizophrenia reside within noncoding sequence of unknown function. Here, we demonstrate promoter and enhancer enrichment in schizophrenia variants associated with expression quantitative trait loci (eQTL). The enrichment is greater when functional annotations derived from the human brain are used relative to peripheral tissues. Regulatory trait concordance analysis ranked genes within schizophrenia genome-wide significant loci for a potential functional role, based on colocalization of a risk SNP, eQTL, and regulatory element sequence. We identified potential physical interactions of noncontiguous proximal and distal regulatory elements. This was verified in prefrontal cortex and -induced pluripotent stem cell-derived neurons for the L-type calcium channel (CACNA1C) risk locus. Our findings point to a functional link between schizophrenia-associated noncoding SNPs and 3D genome architecture associated with chromosomal loopings and transcriptional regulation in the brain.
Collapse
Affiliation(s)
- Panos Roussos
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; James J. Peters VA Medical Center, Mental Illness Research Education and Clinical Center (MIRECC), 130 West Kingsbridge Road, Bronx, NY 10468, USA.
| | - Amanda C Mitchell
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Georgios Voloudakis
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - John F Fullard
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Venu M Pothula
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jonathan Tsang
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Eli A Stahl
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | - Douglas M Ruderfer
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Alexander Charney
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yukinori Okada
- Department of Human Genetics and Disease Diversity, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 230-0045, Japan; Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
| | - Katherine A Siminovitch
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada; Toronto General Research Institute, Toronto, ON M5G 2M9, Canada; Department of Medicine, University of Toronto, Toronto, ON M5S 2J7, Canada
| | - Jane Worthington
- Arthritis Research UK Centre for Genetics and Genomics, Musculoskeletal Research Centre, Institute for Inflammation and Repair, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9NT, UK; National Institute for Health Research, Manchester Musculoskeletal Biomedical Research Unit, Central Manchester University Hospitals National Health Service Foundation Trust, Manchester Academic Health Sciences Centre, Manchester M13 9NT, UK
| | - Leonid Padyukov
- Rheumatology Unit, Department of Medicine (Solna), Karolinska Institutet, Stockholm 171 76, Sweden
| | - Lars Klareskog
- Rheumatology Unit, Department of Medicine (Solna), Karolinska Institutet, Stockholm 171 76, Sweden
| | - Peter K Gregersen
- The Feinstein Institute for Medical Research, North Shore-Long Island Jewish Health System, Manhasset, NY 11030, USA
| | - Robert M Plenge
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Program in Medical and Population Genetics, Broad Institute, Cambridge, MA 02142, USA
| | - Soumya Raychaudhuri
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Program in Medical and Population Genetics, Broad Institute, Cambridge, MA 02142, USA; NIHR Manchester Musculoskeletal Biomedical Research Unit, Central Manchester NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester M13 9NT, UK
| | - Menachem Fromer
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Shaun M Purcell
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kristen J Brennand
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Nikolaos K Robakis
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Eric E Schadt
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Schahram Akbarian
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Pamela Sklar
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
24
|
Abstract
The last several years have been breakthrough ones in bipolar disorder (BPD) genetics, as the field has identified robust risk variants for the first time. Leading the way have been genome-wide association studies (GWAS) that have assessed common genetic markers across very large groups of patients and controls. These have resulted in findings in genes including ANK3, CACNA1C, SYNE1, ODZ4, and TRANK1. Additional studies have begun to examine the biology of these genes and how risk variants influence aspects of brain and behavior that underlie BPD. For example, carriers of the CACNA1C risk variant have been found to exhibit hippocampal and anterior cingulate dysfunction during episodic memory recall. This work has shed additional light on the relationship of bipolar susceptibility variants to other disorders, particularly schizophrenia. Even larger BPD GWAS are expected with samples now amassed of 21,035 cases and 28,758 controls. Studies have examined the pharmacogenomics of BPD with studies of lithium response, yielding high profile results that remain to be confirmed. The next frontier in the field is the identification of rare bipolar susceptibility variants through large-scale DNA sequencing. While only a couple of papers have been published to date, many studies are underway. The Bipolar Sequencing Consortium has been formed to bring together all of the groups working in this area, and to perform meta-analyses of the data generated. The consortium, with 13 member groups, now has exome data on ~3,500 cases and ~5,000 controls, and on ~162 families. The focus will likely shift within several years from exome data to whole genome data as costs of obtaining such data continue to drop. Gene-mapping studies are now providing clear results that provide insights into the pathophysiology of the disorder. Sequencing studies should extend this process further. Findings could eventually set the stage for rational therapeutic development.
Collapse
Affiliation(s)
- Gen Shinozaki
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | | |
Collapse
|
25
|
McIntyre RS, Cha DS, Jerrell JM, Swardfager W, Kim RD, Costa LG, Baskaran A, Soczynska JK, Woldeyohannes HO, Mansur RB, Brietzke E, Powell AM, Gallaugher A, Kudlow P, Kaidanovich-Beilin O, Alsuwaidan M. Advancing biomarker research: utilizing 'Big Data' approaches for the characterization and prevention of bipolar disorder. Bipolar Disord 2014; 16:531-47. [PMID: 24330342 DOI: 10.1111/bdi.12162] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 10/22/2013] [Indexed: 01/01/2023]
Abstract
OBJECTIVE To provide a strategic framework for the prevention of bipolar disorder (BD) that incorporates a 'Big Data' approach to risk assessment for BD. METHODS Computerized databases (e.g., Pubmed, PsychInfo, and MedlinePlus) were used to access English-language articles published between 1966 and 2012 with the search terms bipolar disorder, prodrome, 'Big Data', and biomarkers cross-referenced with genomics/genetics, transcriptomics, proteomics, metabolomics, inflammation, oxidative stress, neurotrophic factors, cytokines, cognition, neurocognition, and neuroimaging. Papers were selected from the initial search if the primary outcome(s) of interest was (were) categorized in any of the following domains: (i) 'omics' (e.g., genomics), (ii) molecular, (iii) neuroimaging, and (iv) neurocognitive. RESULTS The current strategic approach to identifying individuals at risk for BD, with an emphasis on phenotypic information and family history, has insufficient predictive validity and is clinically inadequate. The heterogeneous clinical presentation of BD, as well as its pathoetiological complexity, suggests that it is unlikely that a single biomarker (or an exclusive biomarker approach) will sufficiently augment currently inadequate phenotypic-centric prediction models. We propose a 'Big Data'- bioinformatics approach that integrates vast and complex phenotypic, anamnestic, behavioral, family, and personal 'omics' profiling. Bioinformatic processing approaches, utilizing cloud- and grid-enabled computing, are now capable of analyzing data on the order of tera-, peta-, and exabytes, providing hitherto unheard of opportunities to fundamentally revolutionize how psychiatric disorders are predicted, prevented, and treated. High-throughput networks dedicated to research on, and the treatment of, BD, integrating both adult and younger populations, will be essential to sufficiently enroll adequate samples of individuals across the neurodevelopmental trajectory in studies to enable the characterization and prevention of this heterogeneous disorder. CONCLUSIONS Advances in bioinformatics using a 'Big Data' approach provide an opportunity for novel insights regarding the pathoetiology of BD. The coordinated integration of research centers, inclusive of mixed-age populations, is a promising strategic direction for advancing this line of neuropsychiatric research.
Collapse
Affiliation(s)
- Roger S McIntyre
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Department of Pharmacology, University of Toronto, Toronto, ON, Canada; Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Backes H, Dietsche B, Nagels A, Konrad C, Witt SH, Rietschel M, Kircher T, Krug A. Genetic variation in CACNA1C affects neural processing in major depression. J Psychiatr Res 2014; 53:38-46. [PMID: 24612926 DOI: 10.1016/j.jpsychires.2014.02.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 02/06/2014] [Accepted: 02/06/2014] [Indexed: 11/28/2022]
Abstract
Genetic studies found the A allele of the single nucleotide polymorphism rs1006737 in the CACNA1C gene, which encodes for the alpha 1C subunit of the voltage-dependent, L-type calcium ion channel Cav1.2, to be overrepresented in patients with major depressive disorder (MDD). Altered prefrontal brain functioning and impaired semantic verbal fluency (SVF) are robust findings in these patients. A recent functional magnetic resonance imaging (fMRI) study found the A allele to be associated with poorer performance and increased left inferior frontal gyrus (IFG) activation during SVF tasks in healthy subjects. In the present study, we investigated the effects of rs1006737 on neural processing during SVF in MDD. In response to semantic category cues, 40 patients with MDD and 40 matched controls overtly generated words while brain activity was measured with fMRI. As revealed by whole brain analyses, genotype significantly affected brain activity in patients. Compared to patients with GG genotype, patients with A allele demonstrated increased task-related activation in the left middle/inferior frontal gyrus and the bilateral cerebellum. Patients with A allele also showed enhanced functional coupling between left middle/inferior and right superior/middle frontal gyri. No differential effects of genotype on SVF performance or brain activation were found between diagnostic groups. The current data provide further evidence for an impact of rs1006737 on the left IFG and demonstrate that genetic variation in CACNA1C modulates neural responses in patients with MDD. The observed functional alterations in prefrontal and cerebellar areas might represent a mechanism by which rs1006737 influences susceptibility to MDD.
Collapse
Affiliation(s)
- Heidelore Backes
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Rudolf-Bultmann-Str. 8, 35039 Marburg, Germany.
| | - Bruno Dietsche
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Rudolf-Bultmann-Str. 8, 35039 Marburg, Germany
| | - Arne Nagels
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Rudolf-Bultmann-Str. 8, 35039 Marburg, Germany
| | - Carsten Konrad
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Rudolf-Bultmann-Str. 8, 35039 Marburg, Germany
| | - Stephanie H Witt
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, J 5, 68159 Mannheim, Germany
| | - Marcella Rietschel
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, J 5, 68159 Mannheim, Germany
| | - Tilo Kircher
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Rudolf-Bultmann-Str. 8, 35039 Marburg, Germany
| | - Axel Krug
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Rudolf-Bultmann-Str. 8, 35039 Marburg, Germany
| |
Collapse
|
27
|
Frazier TW, Youngstrom EA, Frankel BA, Zunta-Soares GB, Sanches M, Escamilla M, Nielsen DA, Soares JC. Candidate gene associations with mood disorder, cognitive vulnerability, and fronto-limbic volumes. Brain Behav 2014; 4:418-30. [PMID: 24944871 PMCID: PMC4055192 DOI: 10.1002/brb3.226] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 02/03/2014] [Accepted: 02/13/2014] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Four of the most consistently replicated variants associated with mood disorder occur in genes important for synaptic function: ANK3 (rs10994336), BDNF (rs6265), CACNA1C (rs1006737), and DGKH (rs1170191). AIMS The present study examined associations between these candidates, mood disorder diagnoses, cognition, and fronto-limbic regions implicated in affect regulation. METHODS AND MATERIALS Participants included 128 individuals with bipolar disorder (33% male, Mean age = 38.5), 48 with major depressive disorder (29% male, Mean age = 40.4), and 149 healthy controls (35% male, Mean age = 36.5). Genotypes were determined by 5'-fluorogenic exonuclease assays (TaqMan®). Fronto-limbic volumes were obtained from high resolution brain images using Freesurfer. Chi-square analyses, bivariate correlations, and mediational models examined relationships between genetic variants, mood diagnoses, cognitive measures, and brain volumes. RESULTS Carriers of the minor BDNF and ANK3 alleles showed nonsignificant trends toward protective association in controls relative to mood disorder patients (P = 0.047). CACNA1C minor allele carriers had larger bilateral caudate, insula, globus pallidus, frontal pole, and nucleus accumbens volumes (smallest r = 0.13, P = 0.043), and increased IQ (r = 0.18, P < 0.001). CACNA1C associations with brain volumes and IQ were independent; larger fronto-limbic volumes did not mediate increased IQ. Other candidate variants were not significantly associated with diagnoses, cognition, or fronto-limbic volumes. DISCUSSION AND CONCLUSIONS CACNA1C may be associated with biological systems altered in mood disorder. Increases in fronto-limbic volumes and cognitive ability associated with CACNA1C minor allele genotypes are congruent with findings in healthy samples and may be a marker for increased risk for neuropsychiatric phenotypes. Even larger multimodal studies are needed to quantify the magnitude and specificity of genetic-imaging-cognition-symptom relationships.
Collapse
Affiliation(s)
- Thomas W Frazier
- Centers for Autism and Pediatric Behavioral Health, Cleveland Clinic Cleveland, Ohio
| | - Eric A Youngstrom
- Departments of Psychology and Psychiatry, University of North Carolina at Chapel Hill Chapel Hill, North Carolina
| | - Brian A Frankel
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine and Michael E. DeBakey VA Medical Center Houston, Texas
| | - Giovana B Zunta-Soares
- Department of Psychiatry and Behavioral Sciences, UT Center of Excellence on Mood Disorders, University of Texas Medical School at Houston Houston, Texas
| | - Marsal Sanches
- Department of Psychiatry and Behavioral Sciences, UT Center of Excellence on Mood Disorders, University of Texas Medical School at Houston Houston, Texas
| | - Michael Escamilla
- Center of Excellence in Neurosciences, Texas Tech University Health Science Center El Paso, Texas
| | - David A Nielsen
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine and Michael E. DeBakey VA Medical Center Houston, Texas
| | - Jair C Soares
- Department of Psychiatry and Behavioral Sciences, UT Center of Excellence on Mood Disorders, University of Texas Medical School at Houston Houston, Texas
| |
Collapse
|
28
|
Radua J, Rubia K, Canales-Rodríguez EJ, Pomarol-Clotet E, Fusar-Poli P, Mataix-Cols D. Anisotropic kernels for coordinate-based meta-analyses of neuroimaging studies. Front Psychiatry 2014; 5:13. [PMID: 24575054 PMCID: PMC3919071 DOI: 10.3389/fpsyt.2014.00013] [Citation(s) in RCA: 255] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 01/27/2014] [Indexed: 11/13/2022] Open
Abstract
Peak-based meta-analyses of neuroimaging studies create, for each study, a brain map of effect size or peak likelihood by convolving a kernel with each reported peak. A kernel is a small matrix applied in order that voxels surrounding the peak have a value similar to, but slightly lower than that of the peak. Current kernels are isotropic, i.e., the value of a voxel close to a peak only depends on the Euclidean distance between the voxel and the peak. However, such perfect spheres of effect size or likelihood around the peak are rather implausible: a voxel that correlates with the peak across individuals is more likely to be part of the cluster of significant activation or difference than voxels uncorrelated with the peak. This paper introduces anisotropic kernels, which assign different values to the different neighboring voxels based on the spatial correlation between them. They are specifically developed for effect-size signed differential mapping (ES-SDM), though might be easily implemented in other meta-analysis packages such as activation likelihood estimation (ALE). The paper also describes the creation of the required correlation templates for gray matter/BOLD response, white matter, cerebrospinal fluid, and fractional anisotropy. Finally, the new method is validated by quantifying the accuracy of the recreation of effect size maps from peak information. This empirical validation showed that the optimal degree of anisotropy and full-width at half-maximum (FWHM) might vary largely depending on the specific data meta-analyzed. However, it also showed that the recreation substantially improved and did not depend on the FWHM when full anisotropy was used. Based on these results, we recommend the use of fully anisotropic kernels in ES-SDM and ALE, unless optimal meta-analysis-specific parameters can be estimated based on the recreation of available statistical maps. The new method and templates are freely available at http://www.sdmproject.com/.
Collapse
Affiliation(s)
- Joaquim Radua
- Department of Psychosis Studies, Institute of Psychiatry, King's College London , London , UK ; Research Unit, FIDMAG Germanes Hospitalàries - CIBERSAM , Barcelona , Spain
| | - Katya Rubia
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, King's College London , London , UK
| | | | | | - Paolo Fusar-Poli
- Department of Psychosis Studies, Institute of Psychiatry, King's College London , London , UK
| | - David Mataix-Cols
- Department of Psychosis Studies, Institute of Psychiatry, King's College London , London , UK ; Department of Clinical Neuroscience, Karolinska Institutet , Stockholm , Sweden
| |
Collapse
|
29
|
Zheng F, Zhang Y, Xie W, Li W, Jin C, Mi W, Wang F, Ma W, Ma C, Yang Y, Du B, Li K, Liu C, Wang L, Lu T, Zhang H, Wang Y, Lu L, Lv L, Zhang D, Yue W. Further evidence for genetic association of CACNA1C and schizophrenia: new risk loci in a Han Chinese population and a meta-analysis. Schizophr Res 2014; 152:105-10. [PMID: 24355530 DOI: 10.1016/j.schres.2013.12.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 12/02/2013] [Accepted: 12/03/2013] [Indexed: 01/08/2023]
Abstract
CACNA1C (12p13.3) has been implicated as a susceptibility gene for schizophrenia by several replicated genome wide association studies. While these results have been consistent among studies in European populations, the findings in East Asian populations have varied. To test whether CACNA1C is a risk gene for schizophrenia, we conducted a case-control study in 5897 schizophrenic patients and 6323 healthy control subjects selected from Han Chinese population. Our study replicated the positive associations of rs1006737 (P=0.0108, OR=1.16, 95% CI: 1.03-1.29) and rs1024582 (P=0.0062, OR=1.18, 95% CI: 1.05-1.33), and identified a novel risk locus, rs2007044 (P=0.0053, OR=1.08, 95% CI: 1.02-1.14). A meta-analysis of rs1006737 combining our study and previous studies was conducted in a total of 8222 schizophrenia cases and 24,661 healthy controls. In the meta-analysis, the association between rs1006737 and schizophrenia remained significant (OR=1.14, 95% CI: 1.07-1.22, P=0.0001). Stratified analysis showed no heterogeneity between East Asian and European ancestries (χ(2)[1]=0.07, P=0.795), and the difference in pooled ORs between ancestries was not significant (Z=0.25, P=0.801). Our results provide further support for associations of rs1006737 and rs1024582 with schizophrenia, identify a new risk locus rs2007044 in a Han Chinese population, and further establish CACNA1C as an important susceptibility gene for the disease across world populations.
Collapse
Affiliation(s)
- Fanfan Zheng
- Institute of Mental Health, Peking University, Beijing 100191, China; Key Laboratory of Mental Health, Ministry of Health, Peking University, Beijing 100191, China
| | - Yanling Zhang
- Institute of Mental Health, Peking University, Beijing 100191, China; Key Laboratory of Mental Health, Ministry of Health, Peking University, Beijing 100191, China; Department of Nephrology, Beijing Aerospace General Hospital, Beijing 100076, China
| | - Wuxiang Xie
- Department of Epidemiology, Capital Medical University Affiliated Beijing Anzhen Hospital, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China
| | - Wenqiang Li
- Department of Psychiatry of the Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453002, China; Henan Mental Hospital, Henan Key Lab of Biological Psychiatry, Xinxiang, Henan 453002, China
| | - Chao Jin
- Jinzhou Kangning Hospital, Jinzhou, Liaoning 121013, China
| | - Weifeng Mi
- Institute of Mental Health, Peking University, Beijing 100191, China; Key Laboratory of Mental Health, Ministry of Health, Peking University, Beijing 100191, China
| | - Fang Wang
- Institute of Mental Health, Peking University, Beijing 100191, China; Key Laboratory of Mental Health, Ministry of Health, Peking University, Beijing 100191, China
| | - Wenbin Ma
- Jinzhou Kangning Hospital, Jinzhou, Liaoning 121013, China
| | - Cuicui Ma
- Jinzhou Kangning Hospital, Jinzhou, Liaoning 121013, China
| | - Yongfeng Yang
- Department of Psychiatry of the Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453002, China; Henan Mental Hospital, Henan Key Lab of Biological Psychiatry, Xinxiang, Henan 453002, China
| | - Bo Du
- Hebei Mental Health Center, Baoding, Hebei 071000, China
| | - Keqing Li
- Hebei Mental Health Center, Baoding, Hebei 071000, China
| | - Chenxing Liu
- Institute of Mental Health, Peking University, Beijing 100191, China; Key Laboratory of Mental Health, Ministry of Health, Peking University, Beijing 100191, China
| | - Lifang Wang
- Institute of Mental Health, Peking University, Beijing 100191, China; Key Laboratory of Mental Health, Ministry of Health, Peking University, Beijing 100191, China
| | - Tianlan Lu
- Institute of Mental Health, Peking University, Beijing 100191, China; Key Laboratory of Mental Health, Ministry of Health, Peking University, Beijing 100191, China
| | - Hongyan Zhang
- Institute of Mental Health, Peking University, Beijing 100191, China; Key Laboratory of Mental Health, Ministry of Health, Peking University, Beijing 100191, China
| | - Yun Wang
- Neuroscience Research Institute and Department of Neurobiology, The Key Laboratory for Neuroscience of the Ministry of Education and Health, Peking University Health Science Center, Beijing 100191, China
| | - Lin Lu
- National Institute on Drug Dependence, Peking University, Beijing 100191, China
| | - Luxian Lv
- Department of Psychiatry of the Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453002, China; Henan Mental Hospital, Henan Key Lab of Biological Psychiatry, Xinxiang, Henan 453002, China
| | - Dai Zhang
- Institute of Mental Health, Peking University, Beijing 100191, China; Key Laboratory of Mental Health, Ministry of Health, Peking University, Beijing 100191, China; Peking-Tsinghua Center for Life Sciences, Beijing 100871, China; PKU-IDG/McGoven Institute for Brain Research, Peking University, Beijing 100871, China
| | - Weihua Yue
- Institute of Mental Health, Peking University, Beijing 100191, China; Key Laboratory of Mental Health, Ministry of Health, Peking University, Beijing 100191, China.
| |
Collapse
|
30
|
The impact of a CACNA1C gene polymorphism on learning and hippocampal formation in healthy individuals: a diffusion tensor imaging study. Neuroimage 2013; 89:256-61. [PMID: 24269271 DOI: 10.1016/j.neuroimage.2013.11.030] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 11/09/2013] [Accepted: 11/14/2013] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Genome-wide association studies have identified the CACNA1C single nucleotide polymorphism (SNP) rs1006737 as one of the most consistent genetic findings as susceptibility locus for major psychiatric disorders. Furthermore, animal and genetic imaging studies have reported strong functional evidence for the association of CACNA1C with learning, memory, neural plasticity, and its association with the hippocampal formation. In the present study we investigated the impact of the CACNA1C SNP rs1006737 on the fractional anisotropy (FA) in the hippocampal formation as well as on verbal learning and memory in healthy individuals. METHODS 118 healthy individuals (72 males, 46 females, age 18-56years) initially underwent diffusion tensor imaging (DTI), 100 of them were included in the final analysis. We used Tract-Based Spatial Statistics (TBSS) to examine the impact of the CACNA1C SNP rs1006737 on the hippocampal formation as predefined region of interest (ROI). Furthermore, all participants completed the Verbal Learning and Memory Test (VLMT). RESULTS In the VLMT genotype was significantly associated with learning performance. Bonferroni corrected post-hoc tests indicated a diminished performance at the beginning of the learning curve in risk allele carriers compared to non-risk allele carriers. The TBSS ROI analysis revealed one cluster of reduced FA in risk allele carriers compared to non-risk allele carriers located in the right hippocampal formation. Moreover, an association between the initial learning performance and FA values was found. DISCUSSION These findings demonstrate that genetic variation in the CACNA1C SNP rs1006737 is associated with FA reduction in the hippocampal formation as well as with differences in learning performance in healthy individuals.
Collapse
|
31
|
Smoller JW. Disorders and borders: psychiatric genetics and nosology. Am J Med Genet B Neuropsychiatr Genet 2013; 162B:559-78. [PMID: 24132891 DOI: 10.1002/ajmg.b.32174] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 05/07/2013] [Indexed: 01/10/2023]
Abstract
Over the past century, the definition and classification of psychiatric disorders has evolved through a combination of historical trends, clinical observations, and empirical research. The current nosology, instantiated in the DSM-5 and ICD-10, rests on descriptive criteria agreed upon by a consensus of experts. While the development of explicit criteria has enhanced the reliability of diagnosis, the validity of the current diagnostic categories has been the subject of debate and controversy. Genetic studies have long been regarded as a key resource for validating the boundaries among diagnostic categories. Genetic epidemiologic studies have documented the familiality and heritability of clinically defined psychiatric disorders and molecular genetic studies have begun to identify specific susceptibility variants. At the same time, there is growing evidence from family, twin and genomic studies that genetic influences on psychiatric disorders transcend clinical boundaries. Here I review this evidence for cross-disorder genetic effects and discuss the implications of these findings for psychiatric nosology. Psychiatric genetic research can inform a bottom-up reappraisal of psychopathology that may help the field move beyond a purely descriptive classification and toward an etiology-based nosology.
Collapse
Affiliation(s)
- Jordan W Smoller
- Psychiatric and Neurodevelopmental Genetics Unit and Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts
| |
Collapse
|
32
|
Bhat S, Dao DT, Terrillion CE, Arad M, Smith RJ, Soldatov NM, Gould TD. CACNA1C (Cav1.2) in the pathophysiology of psychiatric disease. Prog Neurobiol 2012; 99:1-14. [PMID: 22705413 PMCID: PMC3459072 DOI: 10.1016/j.pneurobio.2012.06.001] [Citation(s) in RCA: 203] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 05/27/2012] [Accepted: 06/06/2012] [Indexed: 10/28/2022]
Abstract
One of the most consistent genetic findings to have emerged from bipolar disorder genome wide association studies (GWAS) is with CACNA1C, a gene that codes for the α(1C) subunit of the Ca(v)1.2 voltage-dependent L-type calcium channel (LTCC). Genetic variation in CACNA1C have also been associated with depression, schizophrenia, autism spectrum disorders, as well as changes in brain function and structure in control subjects who have no diagnosable psychiatric illness. These data are consistent with a continuum of shared neurobiological vulnerability between diverse-Diagnostic and Statistical Manual (DSM) defined-neuropsychiatric diseases. While involved in numerous cellular functions, Ca(v)1.2 is most frequently implicated in coupling of cell membrane depolarization to transient increase of the membrane permeability for calcium, leading to activation and, potentially, changes in intracellular signaling pathway activity, gene transcription, and synaptic plasticity. Ca(v)1.2 is involved in the proper function of numerous neurological circuits including those involving the hippocampus, amygdala, and mesolimbic reward system, which are strongly implicated in psychiatric disease pathophysiology. A number of behavioral effects of LTCC inhibitors have been described including antidepressant-like behavioral actions in rodent models. Clinical studies suggest possible treatment effects in a subset of patients with mood disorders. We review the genetic structure and variation of CACNA1C, discussing relevant human genetic and clinical findings, as well as the biological actions of Ca(v)1.2 that are most relevant to psychiatric illness.
Collapse
Affiliation(s)
- Shambhu Bhat
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, United States
| | - David T. Dao
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, United States
| | | | - Michal Arad
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Robert J. Smith
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, United States
| | | | - Todd D. Gould
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, United States
- Program in Neuroscience, University of Maryland, Baltimore, MD, United States
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|