1
|
Lu Y, Hatzipantelis CJ, Langmead CJ, Stewart GD. Molecular insights into orphan G protein-coupled receptors relevant to schizophrenia. Br J Pharmacol 2024; 181:2095-2113. [PMID: 37605621 DOI: 10.1111/bph.16221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 06/25/2023] [Accepted: 07/23/2023] [Indexed: 08/23/2023] Open
Abstract
Schizophrenia remains a sizable socio-economic burden that continues to be treated with therapeutics based on 70-year old science. All currently approved therapeutics primarily target the dopamine D2 receptor to achieve their efficacy. Whilst dopaminergic dysregulation is a key feature in this disorder, the targeting of dopaminergic machinery has yielded limited efficacy and an appreciable side effect burden. Over the recent decades, numerous drugs that engage non-dopaminergic G protein-coupled receptors (GPCRs) have yielded a promise of efficacy without the deleterious side effect profile, yet none have successfully completed clinical studies and progressed to the market. More recently, there has been increased attention around non-dopaminergic GPCR-targeting drugs, which demonstrated efficacy in some schizophrenia symptom domains. This provides renewed hope that effective schizophrenia treatment may lie outside of the dopaminergic space. Despite the potential for muscarinic receptor- (and other well-characterised GPCR families) targeting drugs to treat schizophrenia, they are often plagued with complications such as lack of receptor subtype selectivity and peripheral on-target side effects. Orphan GPCR studies have opened a new avenue of exploration with many demonstrating schizophrenia-relevant mechanisms and a favourable expression profile, thus offering potential for novel drug development. This review discusses centrally expressed orphan GPCRs: GPR3, GPR6, GPR12, GPR52, GPR85, GPR88 and GPR139 and their relationship to schizophrenia. We review their expression, signalling mechanisms and cellular function, in conjunction with small molecule development and structural insights. We seek to provide a snapshot of the growing evidence and development potential of new classes of schizophrenia therapeutics. LINKED ARTICLES: This article is part of a themed issue Therapeutic Targeting of G Protein-Coupled Receptors: hot topics from the Australasian Society of Clinical and Experimental Pharmacologists and Toxicologists 2021 Virtual Annual Scientific Meeting. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.14/issuetoc.
Collapse
Affiliation(s)
- Yao Lu
- Drug Discovery Biology and Neuroscience & Mental Health Therapeutic Program Area, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | | | - Christopher J Langmead
- Drug Discovery Biology and Neuroscience & Mental Health Therapeutic Program Area, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- Neuromedicines Discovery Centre, Monash University, Parkville, Australia
- Phrenix Therapeutics, Parkville, Australia
| | - Gregory D Stewart
- Drug Discovery Biology and Neuroscience & Mental Health Therapeutic Program Area, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- Neuromedicines Discovery Centre, Monash University, Parkville, Australia
- Phrenix Therapeutics, Parkville, Australia
| |
Collapse
|
2
|
Rahman MT, Guan D, Chaminda Lakmal HH, Decker AM, Imler GH, Kerr AT, Harris DL, Jin C. Design, Synthesis, and Structure-Activity Relationship Studies of Novel GPR88 Agonists (4-Substituted-phenyl)acetamides Based on the Reversed Amide Scaffold. ACS Chem Neurosci 2024; 15:169-192. [PMID: 38086012 PMCID: PMC10843732 DOI: 10.1021/acschemneuro.3c00684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024] Open
Abstract
The development of synthetic agonists for the orphan receptor GPR88 has recently attracted significant interest, given the promise of GPR88 as a novel drug target for psychiatric and neurodegenerative disorders. Examination of structure-activity relationships of two known agonist scaffolds 2-PCCA and 2-AMPP, as well as the recently resolved cryo-EM structure of 2-PCCA-bound GPR88, led to the design of a new scaffold based on the "reversed amide" strategy of 2-AMPP. A series of novel (4-substituted-phenyl)acetamides were synthesized and assessed in cAMP accumulation assays as GPR88 agonists, which led to the discovery of several compounds with better or comparable potencies to 2-AMPP. Computational docking studies suggest that these novel GPR88 agonists bind to the same allosteric site of GPR88 that 2-PCCA occupies. Collectively, our findings provide structural insight and SAR requirement at the allosteric site of GPR88 and a new scaffold for further development of GPR88 allosteric agonists.
Collapse
Affiliation(s)
- Md Toufiqur Rahman
- Center for Drug Discovery, Research Triangle Institute, Research Triangle Park, North Carolina 27709, United States
| | - Dongliang Guan
- Center for Drug Discovery, Research Triangle Institute, Research Triangle Park, North Carolina 27709, United States
| | - Hetti Handi Chaminda Lakmal
- Center for Drug Discovery, Research Triangle Institute, Research Triangle Park, North Carolina 27709, United States
| | - Ann M Decker
- Center for Drug Discovery, Research Triangle Institute, Research Triangle Park, North Carolina 27709, United States
| | - Gregory H Imler
- Center for Biomolecular Science and Engineering, Naval Research Laboratory, Code 6920, Washington, District of Columbia 20375, United States
| | - Andrew T Kerr
- Center for Biomolecular Science and Engineering, Naval Research Laboratory, Code 6920, Washington, District of Columbia 20375, United States
| | - Danni L Harris
- Center for Drug Discovery, Research Triangle Institute, Research Triangle Park, North Carolina 27709, United States
| | - Chunyang Jin
- Center for Drug Discovery, Research Triangle Institute, Research Triangle Park, North Carolina 27709, United States
| |
Collapse
|
3
|
Rebeillard F, De Gois S, Pietrancosta N, Mai TH, Lai-Kuen R, Kieffer BL, Giros B, Massart R, Darmon M, Diaz J. The Orphan GPCR Receptor, GPR88, Interacts with Nuclear Protein Partners in the Cerebral Cortex. Cereb Cortex 2021; 32:479-489. [PMID: 34247243 DOI: 10.1093/cercor/bhab224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
GPR88 is an orphan G-protein-coupled receptor (GPCR) highly expressed in striatal medium spiny neurons (MSN), also found in cortical neurons at low level. In MSN, GPR88 has a canonical GPCR plasma membrane/cytoplasmic expression, whereas in cortical neurons, we previously reported an atypical intranuclear localization. Molecular size analysis suggests that GPR88, expressed in plasma membrane of MSN or in nuclear compartment of cortical neurons, corresponds to the full-length protein. By transfection of cortical neurons, we showed that GPR88 fluorescent chimeras exhibit a nuclear localization. This localization is contingent on the third intracytoplasmic loop and C-terminus domains, even though these domains do not contain any known nuclear localization signals (NLS). Using yeast two-hybrid screening with these domains, we identified the nuclear proteins ATRX, TOP2B, and BAZ2B, all involved in chromatin remodeling, as potential protein partners of GPR88. We also validated the interaction of GPR88 with these nuclear proteins by proximity ligation assay on cortical neurons in culture and coimmunoprecipitation experiments on cortical extracts from GPR88 wild-type (WT) and knockout (KO) mice. The identification of GPR88 subcellular partners may provide novel functional insights for nonclassical modes of GPCR action that could be relevant in the maturating process of neocortical neurons.
Collapse
Affiliation(s)
- Florian Rebeillard
- Cellular Biology and Molecular Pharmacology of Central Receptors, Institut de Psychiatrie et de Neurosciences de Paris, Inserm U1266, Paris 75014, France.,Université de Paris, Sorbonne Paris Cité, Paris 75005, France
| | | | - Nicolas Pietrancosta
- Laboratoire des Biomolécules, LBM, Département de chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, Paris 75005, France.,Neuroscience Paris Seine-Institut de Biologie Paris Seine (NPS-IBPS) INSERM, CNRS, Sorbonne Université, Paris 75005, France
| | - Thi Hue Mai
- Cellular Biology and Molecular Pharmacology of Central Receptors, Institut de Psychiatrie et de Neurosciences de Paris, Inserm U1266, Paris 75014, France
| | - René Lai-Kuen
- Cellular and Molecular Imaging Facility, US25 Inserm-3612 CNRS, Faculté de Pharmacie de Paris, Université de Paris, Paris, France
| | | | - Bruno Giros
- Université de Paris, INCC UMR 8002, CNRS, Paris F-75006, France.,Department of Psychiatry, Douglas Hospital, Mc Gill University, Montreal, Quebec H4H 1R3, Canada
| | - Renaud Massart
- Inserm U955 Interventional NeuroPsychology Team, Ecole Normale Supérieure, Paris 75005, France
| | - Michèle Darmon
- Cellular Biology and Molecular Pharmacology of Central Receptors, Institut de Psychiatrie et de Neurosciences de Paris, Inserm U1266, Paris 75014, France
| | - Jorge Diaz
- Cellular Biology and Molecular Pharmacology of Central Receptors, Institut de Psychiatrie et de Neurosciences de Paris, Inserm U1266, Paris 75014, France.,Université de Paris, INCC UMR 8002, CNRS, Paris F-75006, France
| |
Collapse
|
4
|
Galet B, Ingallinesi M, Pegon J, Do Thi A, Ravassard P, Faucon Biguet N, Meloni R. G-protein coupled receptor 88 knockdown in the associative striatum reduces psychiatric symptoms in a translational male rat model of Parkinson disease. J Psychiatry Neurosci 2021; 46:E44-E55. [PMID: 32667145 PMCID: PMC7955842 DOI: 10.1503/jpn.190171] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND In addition to motor disability, another characteristic feature of Parkinson disease is the early appearance of psychiatric symptoms, including apathy, depression, anxiety and cognitive deficits; treatments for these symptoms are limited by the development of adverse effects such as impulse-control disorders. In this context, we investigated the orphan G protein-coupled receptor 88 (GPR88) as a novel therapeutic target. METHODS We used lentiviral-mediated expression of specifically designed microRNA to knock down Gpr88 in a translational male rat model of early Parkinson disease obtained by dopamine loss in the dorsolateral striatum as a result of 6-hydroxydopamine lesions. We evaluated the impact of Gpr88 knockdown on the Parkinson disease model using behavioural, immunohistochemical and in situ hybridization studies. RESULTS Knockdown of Gpr88 in associative territories of the dorsal striatum efficiently reduced alterations in mood, motivation and cognition through modulation of the regulator of the G-protein signalling 4 and of the truncated splice variant of the FosB transcription factor. Knockdown of Gpr88 also reduced allostatic changes in striatal activity markers that may be related to patterns observed in patients and that provide support for an "overload" hypothesis for the etiology of the psychiatric symptoms of Parkinson disease. LIMITATIONS Behavioural tests assessing specific cognitive and motivational parameters are needed to further characterize the effects of the lesion and of Gpr88 knockdown in early-stage and advanced Parkinson disease models, presenting more extensive dopamine loss. Additional studies focusing on the direct and indirect striatal output pathways are also required, because little is known about the signalling pathways regulated by GPR88 in different striatal cell types. CONCLUSION GPR88 may constitute a highly relevant target for the treatment of the psychiatric symptoms of Parkinson disease.
Collapse
Affiliation(s)
- Benjamin Galet
- Biotechnology and Biotherapy team, ICM Brain and Spine Institute, Sorbonne University/INSERM U 1127/CNRS UMR 7225, CHU Pitié-Salpêtrière, Paris, France (Galet, Ingallinesi, Pegon, Do Thi, Ravassard, Faucon Biguet, Meloni)
| | - Manuela Ingallinesi
- Biotechnology and Biotherapy team, ICM Brain and Spine Institute, Sorbonne University/INSERM U 1127/CNRS UMR 7225, CHU Pitié-Salpêtrière, Paris, France (Galet, Ingallinesi, Pegon, Do Thi, Ravassard, Faucon Biguet, Meloni)
| | - Jonathan Pegon
- Biotechnology and Biotherapy team, ICM Brain and Spine Institute, Sorbonne University/INSERM U 1127/CNRS UMR 7225, CHU Pitié-Salpêtrière, Paris, France (Galet, Ingallinesi, Pegon, Do Thi, Ravassard, Faucon Biguet, Meloni)
| | - Anh Do Thi
- Biotechnology and Biotherapy team, ICM Brain and Spine Institute, Sorbonne University/INSERM U 1127/CNRS UMR 7225, CHU Pitié-Salpêtrière, Paris, France (Galet, Ingallinesi, Pegon, Do Thi, Ravassard, Faucon Biguet, Meloni)
| | - Philippe Ravassard
- Biotechnology and Biotherapy team, ICM Brain and Spine Institute, Sorbonne University/INSERM U 1127/CNRS UMR 7225, CHU Pitié-Salpêtrière, Paris, France (Galet, Ingallinesi, Pegon, Do Thi, Ravassard, Faucon Biguet, Meloni)
| | - Nicole Faucon Biguet
- Biotechnology and Biotherapy team, ICM Brain and Spine Institute, Sorbonne University/INSERM U 1127/CNRS UMR 7225, CHU Pitié-Salpêtrière, Paris, France (Galet, Ingallinesi, Pegon, Do Thi, Ravassard, Faucon Biguet, Meloni)
| | - Rolando Meloni
- Biotechnology and Biotherapy team, ICM Brain and Spine Institute, Sorbonne University/INSERM U 1127/CNRS UMR 7225, CHU Pitié-Salpêtrière, Paris, France (Galet, Ingallinesi, Pegon, Do Thi, Ravassard, Faucon Biguet, Meloni)
| |
Collapse
|
5
|
Thomson DM, Openshaw RL, Mitchell EJ, Kouskou M, Millan MJ, Mannoury la Cour C, Morris BJ, Pratt JA. Impaired working memory, cognitive flexibility and reward processing in mice genetically lacking Gpr88: Evidence for a key role for Gpr88 in multiple cortico-striatal-thalamic circuits. GENES BRAIN AND BEHAVIOR 2020; 20:e12710. [PMID: 33078498 DOI: 10.1111/gbb.12710] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/08/2020] [Accepted: 10/19/2020] [Indexed: 12/22/2022]
Abstract
The GPR88 orphan G protein-coupled receptor is expressed throughout the striatum, being preferentially localised in medium spiny neurons. It is also present in lower densities in frontal cortex and thalamus. Rare mutations in humans suggest a role in cognition and motor function, while common variants are associated with psychosis. Here we evaluate the influence of genetic deletion of GPR88 upon performance in translational tasks interrogating motivation, reward evaluation and cognitive function. In an automated radial arm maze 'N-back' working memory task, Gpr88 KO mice showed impaired correct responding, suggesting a role for GPR88 receptors in working memory circuitry. Associative learning performance was similar to wild-type controls in a touchscreen task but performance was impaired at the reversal learning stage, suggesting cognitive inflexibility. Gpr88 KO mice showed higher breakpoints, reduced latencies and lengthened session time in a progressive ratio task consistent with enhanced motivation. Simultaneously, locomotor hyperactivity was apparent in this task, supporting previous findings of actions of GPR88 in a cortico-striatal-thalamic motor loop. Evidence for a role of GPR88 in reward processing was demonstrated in a touchscreen-based equivalent of the Iowa gambling task. Although both Gpr88 KO and wild-type mice showed a preference for an optimum contingency choice, Gpr88 KO mice selected more risky choices at the expense of more advantageous lower risk options. Together these novel data suggest that striatal GPR88 receptors influence activity in a range of procedures integrated by prefrontal, orbitofrontal and anterior cingulate cortico-striatal-thalamic loops leading to altered cognitive, motivational and reward evaluation processes.
Collapse
Affiliation(s)
- David M Thomson
- Strathclyde Institute of Pharmacy and Biomedical Science, University of Strathclyde, Glasgow, G4 0RE, United Kingdom
| | - Rebecca L Openshaw
- Strathclyde Institute of Pharmacy and Biomedical Science, University of Strathclyde, Glasgow, G4 0RE, United Kingdom
| | - Emma J Mitchell
- Strathclyde Institute of Pharmacy and Biomedical Science, University of Strathclyde, Glasgow, G4 0RE, United Kingdom
| | - Marianna Kouskou
- Strathclyde Institute of Pharmacy and Biomedical Science, University of Strathclyde, Glasgow, G4 0RE, United Kingdom
| | - Mark J Millan
- Centre for Therapeutic Innovation-CNS, Institute de Recherche Servier, Croissy-sur-Seine, France
| | | | - Brian J Morris
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Judith A Pratt
- Strathclyde Institute of Pharmacy and Biomedical Science, University of Strathclyde, Glasgow, G4 0RE, United Kingdom
| |
Collapse
|
6
|
Ingallinesi M, Galet B, Pegon J, Faucon Biguet N, Do Thi A, Millan MJ, Mannoury la Cour C, Meloni R. Knock-Down of GPR88 in the Dorsal Striatum Alters the Response of Medium Spiny Neurons to the Loss of Dopamine Input and L-3-4-Dyhydroxyphenylalanine. Front Pharmacol 2019; 10:1233. [PMID: 31708775 PMCID: PMC6823866 DOI: 10.3389/fphar.2019.01233] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 09/27/2019] [Indexed: 11/14/2022] Open
Abstract
The effects of L-3-4-dyhydroxyphenylalanine (L-DOPA) treatment for replacing the dopamine (DA) loss in Parkinson’s disease (PD) progressively wear off and are hindered by the development of dyskinesia, prompting the search for new treatments. The orphan G protein-coupled receptor 88 (Gpr88) represents a potential new target, as it is highly and almost exclusively expressed in the projecting gamma-Aminobutyric Acid-ergic (GABAergic) medium spiny neurons of the striatum, is implicated in motor activity, and is downregulated by 6-hydroxydopamine (6-OHDA) lesions, an effect that is reversed by L-DOPA. Thus, to evaluate Gpr88 as a potential target for the management of PD and L-DOPA–induced dyskinesia (LID), we inactivated Gpr88 by lentiviral-mediated knock-down with a specifically designed microRNA (miR) (KD-Gpr88) in a 6-OHDA rat model of hemiparkinsonism. Then, we investigated the effects of the KD-Gpr88 in the DA-deprived dorsal striatum on circling behavior and LID as well as on specific markers of striatal neuron activity. The KD-Gpr88 reduced the acute amphetamine-induced and increased L-DOPA–induced turning behavior. Moreover, it normalized the upregulated expression of striatal Gad67 and proenkephalin provoked by the 6-OHDA lesion. Finally, despite promoting ΔFosB accumulation, the KD-Gpr88 was associated neither with the upregulation of prodynorphin, which is causally linked to the severity of LID, nor with the aggravation of LID following chronic L-DOPA treatment in 6-OHDA–lesioned rats. These results thus justify further evaluation of Gpr88 as a potentially novel target for the management of PD as an alternative to L-DOPA therapy.
Collapse
Affiliation(s)
- Manuela Ingallinesi
- Department of Biotechnology and Biotherapy, Institut du Cerveau et de la Moelle épinière (ICM) UPMC/INSERM U 1127/ CNRS UMR 7225, CHU Pitié-Salpêtrière, Paris, France
| | - Benjamin Galet
- Department of Biotechnology and Biotherapy, Institut du Cerveau et de la Moelle épinière (ICM) UPMC/INSERM U 1127/ CNRS UMR 7225, CHU Pitié-Salpêtrière, Paris, France
| | - Jonathan Pegon
- Department of Biotechnology and Biotherapy, Institut du Cerveau et de la Moelle épinière (ICM) UPMC/INSERM U 1127/ CNRS UMR 7225, CHU Pitié-Salpêtrière, Paris, France
| | - Nicole Faucon Biguet
- Department of Biotechnology and Biotherapy, Institut du Cerveau et de la Moelle épinière (ICM) UPMC/INSERM U 1127/ CNRS UMR 7225, CHU Pitié-Salpêtrière, Paris, France
| | - Anh Do Thi
- Department of Biotechnology and Biotherapy, Institut du Cerveau et de la Moelle épinière (ICM) UPMC/INSERM U 1127/ CNRS UMR 7225, CHU Pitié-Salpêtrière, Paris, France
| | - Mark J Millan
- Center for Innovation in Neuropsychiatry, Institut de Recherches Servier, Croissy sur Seine, France
| | | | - Rolando Meloni
- Department of Biotechnology and Biotherapy, Institut du Cerveau et de la Moelle épinière (ICM) UPMC/INSERM U 1127/ CNRS UMR 7225, CHU Pitié-Salpêtrière, Paris, France
| |
Collapse
|
7
|
Ye N, Li B, Mao Q, Wold EA, Tian S, Allen JA, Zhou J. Orphan Receptor GPR88 as an Emerging Neurotherapeutic Target. ACS Chem Neurosci 2019; 10:190-200. [PMID: 30540906 DOI: 10.1021/acschemneuro.8b00572] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Although G protein-coupled receptors (GPCRs) are recognized as pivotal drug targets involved in multiple physiological and pathological processes, the majority of GPCRs including orphan GPCRs (oGPCRs) are unexploited. GPR88, a brain-specific oGPCR with particularly robust expression in the striatum, regulates diverse brain and behavioral functions, including cognition, mood, movement control, and reward-based learning, and is thus emerging as a novel drug target for central nervous system disorders including schizophrenia, Parkinson's disease, anxiety, and addiction. Nevertheless, no effective GPR88 synthetic ligands have yet entered into clinical trials, and GPR88 endogenous ligands remain unknown. Despite the recent discovery and early stage study of several GPR88 agonists, such as 2-PCCA, RTI-13951-33, and phenylglycinol derivatives, further research into GPR88 pharmacology, medicinal chemistry, and chemical biology is urgently needed to yield structurally diversified GPR88-specific ligands. Drug-like pharmacological tool function and relevant signaling elucidation will also accelerate the evaluation of this receptor as a viable neurotherapeutic target.
Collapse
Affiliation(s)
- Na Ye
- Department of Medicinal Chemistry, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
- Department of Pharmacology and Toxicology, Center for Addiction Research, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Bang Li
- Department of Medicinal Chemistry, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Qi Mao
- Department of Medicinal Chemistry, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Eric A. Wold
- Department of Pharmacology and Toxicology, Center for Addiction Research, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Sheng Tian
- Department of Medicinal Chemistry, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - John A. Allen
- Department of Pharmacology and Toxicology, Center for Addiction Research, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Jia Zhou
- Department of Pharmacology and Toxicology, Center for Addiction Research, University of Texas Medical Branch, Galveston, Texas 77555, United States
| |
Collapse
|
8
|
Scheggia D, Mastrogiacomo R, Mereu M, Sannino S, Straub RE, Armando M, Managò F, Guadagna S, Piras F, Zhang F, Kleinman JE, Hyde TM, Kaalund SS, Pontillo M, Orso G, Caltagirone C, Borrelli E, De Luca MA, Vicari S, Weinberger DR, Spalletta G, Papaleo F. Variations in Dysbindin-1 are associated with cognitive response to antipsychotic drug treatment. Nat Commun 2018; 9:2265. [PMID: 29891954 PMCID: PMC5995960 DOI: 10.1038/s41467-018-04711-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 05/15/2018] [Indexed: 01/25/2023] Open
Abstract
Antipsychotics are the most widely used medications for the treatment of schizophrenia spectrum disorders. While such drugs generally ameliorate positive symptoms, clinical responses are highly variable in terms of negative symptoms and cognitive impairments. However, predictors of individual responses have been elusive. Here, we report a pharmacogenetic interaction related to a core cognitive dysfunction in patients with schizophrenia. We show that genetic variations reducing dysbindin-1 expression can identify individuals whose executive functions respond better to antipsychotic drugs, both in humans and in mice. Multilevel ex vivo and in vivo analyses in postmortem human brains and genetically modified mice demonstrate that such interaction between antipsychotics and dysbindin-1 is mediated by an imbalance between the short and long isoforms of dopamine D2 receptors, leading to enhanced presynaptic D2 function within the prefrontal cortex. These findings reveal one of the pharmacodynamic mechanisms underlying individual cognitive response to treatment in patients with schizophrenia, suggesting a potential approach for improving the use of antipsychotic drugs.
Collapse
Affiliation(s)
- Diego Scheggia
- Department of Neuroscience and Brain Technologies, Genetics of Cognition laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163, Genova, Italy
- Center for Psychiatric Neuroscience, Department of Psychiatry, University Hospital Center Lausanne, Prilly-Lausanne, CH-1008, Switzerland
| | - Rosa Mastrogiacomo
- Department of Neuroscience and Brain Technologies, Genetics of Cognition laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163, Genova, Italy
| | - Maddalena Mereu
- Department of Neuroscience and Brain Technologies, Genetics of Cognition laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163, Genova, Italy
- Dipartimento di Scienze del Farmaco, Universita' degli Studi di Padova, Largo Meneghetti 2, 35131, Padova, Italy
| | - Sara Sannino
- Department of Neuroscience and Brain Technologies, Genetics of Cognition laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163, Genova, Italy
| | - Richard E Straub
- Lieber Institute for Brain Development, Johns Hopkins University Medical Campus, Baltimore, MD, 21205, USA
| | - Marco Armando
- Department of Neuroscience, Bambino Gesù Children's Hospital, Piazza Sant'Onofrio 4, 00100, Rome, Italy
| | - Francesca Managò
- Department of Neuroscience and Brain Technologies, Genetics of Cognition laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163, Genova, Italy
| | - Simone Guadagna
- Department of Neuroscience and Brain Technologies, Genetics of Cognition laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163, Genova, Italy
| | - Fabrizio Piras
- IRCCS Santa Lucia Foundation, Neuropsychiatry Laboratory, 00179, Rome, Italy
| | - Fengyu Zhang
- Lieber Institute for Brain Development, Johns Hopkins University Medical Campus, Baltimore, MD, 21205, USA
| | - Joel E Kleinman
- Lieber Institute for Brain Development, Johns Hopkins University Medical Campus, Baltimore, MD, 21205, USA
| | - Thomas M Hyde
- Lieber Institute for Brain Development, Johns Hopkins University Medical Campus, Baltimore, MD, 21205, USA
| | - Sanne S Kaalund
- Research Laboratory for Stereology and Neuroscience, Bispebjerg University Hospital, 2400, Copenhagen, NV, Denmark
| | - Maria Pontillo
- Department of Neuroscience, Bambino Gesù Children's Hospital, Piazza Sant'Onofrio 4, 00100, Rome, Italy
| | - Genny Orso
- IRCCS E. Medea Scientific Institute, 23842, Bosisio Parini, Italy
| | - Carlo Caltagirone
- IRCCS Santa Lucia Foundation, Neuropsychiatry Laboratory, 00179, Rome, Italy
| | | | - Maria A De Luca
- Department of Biomedical Sciences, Università di Cagliari, 09124, Cagliari, Italy
| | - Stefano Vicari
- Department of Neuroscience, Bambino Gesù Children's Hospital, Piazza Sant'Onofrio 4, 00100, Rome, Italy
| | - Daniel R Weinberger
- Lieber Institute for Brain Development, Johns Hopkins University Medical Campus, Baltimore, MD, 21205, USA
- Departments of Psychiatry, Neurology, Neuroscience and the McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Gianfranco Spalletta
- IRCCS Santa Lucia Foundation, Neuropsychiatry Laboratory, 00179, Rome, Italy
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Francesco Papaleo
- Department of Neuroscience and Brain Technologies, Genetics of Cognition laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163, Genova, Italy.
| |
Collapse
|
9
|
Ehrlich AT, Semache M, Bailly J, Wojcik S, Arefin TM, Colley C, Le Gouill C, Gross F, Lukasheva V, Hogue M, Darcq E, Harsan LA, Bouvier M, Kieffer BL. Mapping GPR88-Venus illuminates a novel role for GPR88 in sensory processing. Brain Struct Funct 2018; 223:1275-1296. [PMID: 29110094 PMCID: PMC5871604 DOI: 10.1007/s00429-017-1547-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 10/17/2017] [Indexed: 01/20/2023]
Abstract
GPR88 is an orphan G-protein coupled receptor originally characterized as a striatal-enriched transcript and is a potential target for neuropsychiatric disorders. At present, gene knockout studies in the mouse have essentially focused on striatal-related functions and a comprehensive knowledge of GPR88 protein distribution and function in the brain is still lacking. Here, we first created Gpr88-Venus knock-in mice expressing a functional fluorescent receptor to fine-map GPR88 localization in the brain. The receptor protein was detected in neuronal soma, fibers and primary cilia depending on the brain region, and remarkably, whole-brain mapping revealed a yet unreported layer-4 cortical lamination pattern specifically in sensory processing areas. The unique GPR88 barrel pattern in L4 of the somatosensory cortex appeared 3 days after birth and persisted into adulthood, suggesting a potential function for GPR88 in sensory integration. We next examined Gpr88 knockout mice for cortical structure and behavioral responses in sensory tasks. Magnetic resonance imaging of live mice revealed abnormally high fractional anisotropy, predominant in somatosensory cortex and caudate putamen, indicating significant microstructural alterations in these GPR88-enriched areas. Further, behavioral analysis showed delayed responses in somatosensory-, visual- and olfactory-dependent tasks, demonstrating a role for GPR88 in the integration rather than perception of sensory stimuli. In conclusion, our data show for the first time a prominent role for GPR88 in multisensory processing. Because sensory integration is disrupted in many psychiatric diseases, our study definitely positions GPR88 as a target to treat mental disorders perhaps via activity on cortical sensory networks.
Collapse
Affiliation(s)
- Aliza T Ehrlich
- Department of Psychiatry, McGill University, Douglas Hospital Research Center, Perry Pavilion Room E-3317.1, 6875 boulevard LaSalle, Montreal, QC, H4H 1R3, Canada
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch-Graffenstaden, France
| | - Meriem Semache
- Department of Biochemistry, Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | - Julie Bailly
- Department of Psychiatry, McGill University, Douglas Hospital Research Center, Perry Pavilion Room E-3317.1, 6875 boulevard LaSalle, Montreal, QC, H4H 1R3, Canada
| | - Stefan Wojcik
- Department of Psychiatry, McGill University, Douglas Hospital Research Center, Perry Pavilion Room E-3317.1, 6875 boulevard LaSalle, Montreal, QC, H4H 1R3, Canada
- Department of Biochemical Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, UK
| | - Tanzil M Arefin
- Department of Radiology, Medical Physics, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Bernard and Irene Schwartz Center for Biomedical Imaging, New York University School of Medicine, New York, USA
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch-Graffenstaden, France
| | - Christine Colley
- Department of Psychiatry, McGill University, Douglas Hospital Research Center, Perry Pavilion Room E-3317.1, 6875 boulevard LaSalle, Montreal, QC, H4H 1R3, Canada
- Department of Biochemical Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, UK
| | - Christian Le Gouill
- Department of Biochemistry, Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | - Florence Gross
- Department of Psychiatry, McGill University, Douglas Hospital Research Center, Perry Pavilion Room E-3317.1, 6875 boulevard LaSalle, Montreal, QC, H4H 1R3, Canada
- Department of Biochemistry, Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | - Viktoriya Lukasheva
- Department of Biochemistry, Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | - Mireille Hogue
- Department of Biochemistry, Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | - Emmanuel Darcq
- Department of Psychiatry, McGill University, Douglas Hospital Research Center, Perry Pavilion Room E-3317.1, 6875 boulevard LaSalle, Montreal, QC, H4H 1R3, Canada
| | - Laura-Adela Harsan
- Department of Radiology, Medical Physics, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Engineering Science, Computer Science and Imaging Laboratory (ICube), Integrative Multimodal Imaging in Healthcare, University of Strasbourg, CNRS, Strasbourg, France
- Department of Biophysics and Nuclear Medicine, Faculty of Medicine, University Hospital Strasbourg, Strasbourg, France
| | - Michel Bouvier
- Department of Biochemistry, Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | - Brigitte L Kieffer
- Department of Psychiatry, McGill University, Douglas Hospital Research Center, Perry Pavilion Room E-3317.1, 6875 boulevard LaSalle, Montreal, QC, H4H 1R3, Canada.
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch-Graffenstaden, France.
| |
Collapse
|
10
|
Alavi MS, Shamsizadeh A, Azhdari-Zarmehri H, Roohbakhsh A. Orphan G protein-coupled receptors: The role in CNS disorders. Biomed Pharmacother 2017; 98:222-232. [PMID: 29268243 DOI: 10.1016/j.biopha.2017.12.056] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 12/12/2017] [Accepted: 12/14/2017] [Indexed: 12/20/2022] Open
Abstract
There are various types of receptors in the central nervous system (CNS). G protein-coupled receptors (GPCRs) have the highest expression with a wide range of physiological functions. A newer sub group of these receptors namely orphan GPCRs have been discovered. GPR3, GPR6, GPR17, GPR26, GPR37, GPR39, GPR40, GPR50, GPR52, GPR54, GPR55, GPR85, GPR88, GPR103, and GPR139 are the selected orphan GPCRs for this article. Their roles in the central nervous system have not been understood well so far. However, recent studies show that they may have very important functions in the CNS. Hence, in the present study, we reviewed most recent findings regarding the physiological roles of the selected orphan GPCRs in the CNS. After a brief presentation of each receptor, considering the results from genetic and pharmacological manipulation of the receptors, their roles in the pathophysiology of different diseases and disorders including anxiety, depression, schizophrenia, epilepsy, Alzheimer's disease, Parkinson's disease, and substance abuse will be discussed. At present, our knowledge regarding the role of GPCRs in the brain is very limited. However, previous limited studies show that orphan GPCRs have an important place in psychopharmacology and these receptors are potential new targets for the treatment of major CNS diseases.
Collapse
Affiliation(s)
- Mohaddeseh Sadat Alavi
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Shamsizadeh
- Physiology-Pharmacology Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Hassan Azhdari-Zarmehri
- Department of Basic Medical Sciences and Neuroscience Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Ali Roohbakhsh
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
11
|
Asif-Malik A, Dautan D, Young AMJ, Gerdjikov TV. Altered cortico-striatal crosstalk underlies object recognition memory deficits in the sub-chronic phencyclidine model of schizophrenia. Brain Struct Funct 2017; 222:3179-3190. [PMID: 28293729 PMCID: PMC5585296 DOI: 10.1007/s00429-017-1393-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 02/22/2017] [Indexed: 11/29/2022]
Abstract
The neural mechanisms underlying cognitive deficits in schizophrenia are poorly understood. Sub-chronic treatment with the NMDA antagonist phencyclidine (PCP) produces cognitive abnormalities in rodents that reliably model aspects of the neurocognitive alterations observed in schizophrenia. Given that network activity across regions encompassing medial prefrontal cortex (mPFC) and nucleus accumbens (NAc) plays a significant role in motivational and cognitive tasks, we measured activity across cortico-striatal pathways in PCP-treated rats to characterize neural enabling and encoding of task performance in a novel object recognition task. We found that PCP treatment impaired task performance and concurrently (1) reduced tonic NAc neuronal activity, (2) desynchronized cross-activation of mPFC and NAc neurons, and (3) prevented the increase in mPFC and NAc neural activity associated with the exploration of a novel object in relation to a familiar object. Taken together, these observations reveal key neuronal and network-level adaptations underlying PCP-induced cognitive deficits, which may contribute to the emergence of cognitive abnormalities in schizophrenia.
Collapse
Affiliation(s)
- Aman Asif-Malik
- Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, LE1 9HN, UK
| | - Daniel Dautan
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ, USA
| | - Andrew M J Young
- Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, LE1 9HN, UK
| | - Todor V Gerdjikov
- Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, LE1 9HN, UK.
| |
Collapse
|
12
|
GPR88 is a critical regulator of feeding and body composition in mice. Sci Rep 2017; 7:9912. [PMID: 28855710 PMCID: PMC5577241 DOI: 10.1038/s41598-017-10058-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 07/20/2017] [Indexed: 12/21/2022] Open
Abstract
GPR88 is an orphan G-protein-coupled receptor with predominant expression in reward-related areas in the brain. While the lack of GPR88 has been demonstrated to induce behavioral deficits, the potential function of the receptor in the control of food intake and energy balance remains unexplored. In this work, the role of GPR88 in energy homeostasis was investigated in Gpr88−/− mice fed either standard chow or high fat diet (HFD). Gpr88−/− mice showed significantly reduced adiposity accompanied with suppressed spontaneous food intake, particularly pronounced under HFD treatment. While energy expenditure was likewise lower in Gpr88−/− mice, body weight gain remained unchanged. Furthermore, deregulation in glucose tolerance and insulin responsiveness in response to HFD was attenuated in Gpr88−/− mice. On the molecular level, distinct changes in the hypothalamic mRNA levels of cocaine-and amphetamine-regulated transcript (Cartpt), a neuropeptide involved in the control of feeding and reward, were observed in Gpr88−/− mice. In addition, GPR88 deficiency was associated with altered expressions of the anorectic Pomc and the orexigenic Npy in the arcuate nucleus, especially under HFD condition. Together, our results indicate that GPR88 signalling is not only important for reward processes, but also plays a role in the central regulatory circuits for energy homeostasis.
Collapse
|
13
|
Meirsman AC, de Kerchove d'Exaerde A, Kieffer BL, Ouagazzal AM. GPR88 in A 2A receptor-expressing neurons modulates locomotor response to dopamine agonists but not sensorimotor gating. Eur J Neurosci 2017; 46:2026-2034. [PMID: 28700108 DOI: 10.1111/ejn.13646] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 07/04/2017] [Accepted: 07/05/2017] [Indexed: 11/29/2022]
Abstract
The orphan receptor, GPR88, is emerging as a key player in the pathophysiology of several neuropsychiatric diseases, including psychotic disorders. Knockout (KO) mice lacking GPR88 throughout the brain exhibit many abnormalities relevant to schizophrenia including locomotor hyperactivity, behavioural hypersensitivity to dopaminergic psychostimulants and deficient sensorimotor gating. Here, we used conditional knockout (cKO) mice lacking GPR88 selectively in striatal medium spiny neurons expressing A2A receptor to determine neuronal circuits underlying these phenotypes. We first studied locomotor responses of A2A R-Gpr88 KO mice and their control littermates to psychotomimetic, amphetamine, and to selective D1 and D2 receptor agonists, SKF-81297 and quinpirole, respectively. To assess sensorimotor gating performance, mice were submitted to acoustic and visual prepulse inhibition (PPI) paradigms. Total knockout GPR88 mice were also studied for comparison. Like total GPR88 KO mice, A2A R-Gpr88 KO mice displayed a heightened sensitivity to locomotor stimulant effects of amphetamine and SKF-81297. They also exhibited enhanced locomotor activity to quinpirole, which tended to suppress locomotion in control mice. By contrast, they had normal acoustic and visual PPI, unlike total GPR88 KO mice that show impairments across different sensory modalities. Finally, none of the genetic manipulations altered central auditory temporal processing assessed by gap-PPI. Together, these findings support the role of GPR88 in the pathophysiology of schizophrenia and show that GPR88 in A2A receptor-expressing neurons modulates psychomotor behaviour but not sensorimotor gating.
Collapse
Affiliation(s)
- A C Meirsman
- Département de Médecine Translationnelle et Neurogénétique, Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM U-964, CNRS UMR-7104, Université de Strasbourg, Illkirch, France.,Neuroscience Paris Seine, Institut de Biologie Paris Seine, CNRS UMR 8246/INSERM U1130/Université Pierre et Marie Currie, Paris, France
| | - A de Kerchove d'Exaerde
- Laboratory of Neurophysiology, ULB Neuroscience Institute, Université Libre de Bruxelles, Bruxelles, Belgium
| | - B L Kieffer
- Département de Médecine Translationnelle et Neurogénétique, Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM U-964, CNRS UMR-7104, Université de Strasbourg, Illkirch, France.,Department of Psychiatry, Faculty of Medicine, Douglas Research Center, McGill University, Montréal, QC, Canada
| | - A-M Ouagazzal
- Département de Médecine Translationnelle et Neurogénétique, Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM U-964, CNRS UMR-7104, Université de Strasbourg, Illkirch, France.,Laboratoire de Neurosciences Cognitives, AMU-CNRS UMR-7291, Aix-Marseille Université, Marseille, France
| |
Collapse
|
14
|
Striatal GPR88 Modulates Foraging Efficiency. J Neurosci 2017; 37:7939-7947. [PMID: 28729439 DOI: 10.1523/jneurosci.2439-16.2017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 06/08/2017] [Accepted: 06/14/2017] [Indexed: 11/21/2022] Open
Abstract
The striatum is anatomically and behaviorally implicated in behaviors that promote efficient foraging. To investigate this function, we studied instrumental choice behavior in mice lacking GPR88, a striatum-enriched orphan G-protein-coupled receptor that modulates striatal medium spiny neuron excitability. Our results reveal that hungry mice lacking GPR88 (KO mice) were slow to acquire food-reinforced lever press but could lever press similar to controls on a progressive ratio schedule. Both WT and KO mice discriminated between reward and no-reward levers; however, KO mice failed to discriminate based on relative quantity-reward (1 vs 3 food pellets) or effort (3 vs 9 lever presses). We also demonstrate preference for the high-reward (3 pellet) lever was selectively reestablished when GPR88 expression was restored to the striatum. We propose that GPR88 expression within the striatum is integral to efficient action-selection during foraging.SIGNIFICANCE STATEMENT Evolutionary pressure driving energy homeostasis favored detection and comparison of caloric value. In wild and laboratory settings, neural systems involved in energy homeostasis bias foraging to maximize energy efficiency. This is observed when foraging behaviors are guided by superior nutritional density or minimized caloric expenditure. The striatum is anatomically and functionally well placed to perform the sensory and motor integration necessary for efficient action selection during foraging. However, few studies have examined this behavioral phenomenon or elucidated underlying molecular mechanisms. Both humans and mice with nonfunctional GPR88 have been shown to present striatal dysfunctions and impaired learning. We demonstrate that GPR88 expression is necessary to efficiently integrate effort and energy density information guiding instrumental choice.
Collapse
|
15
|
Khan MZ, He L. Neuro-psychopharmacological perspective of Orphan receptors of Rhodopsin (class A) family of G protein-coupled receptors. Psychopharmacology (Berl) 2017; 234:1181-1207. [PMID: 28289782 DOI: 10.1007/s00213-017-4586-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 02/27/2017] [Indexed: 12/28/2022]
Abstract
BACKGROUND In the central nervous system (CNS), G protein-coupled receptors (GPCRs) are the most fruitful targets for neuropsychopharmacological drug development. Rhodopsin (class A) is the most studied class of GPCR and includes orphan receptors for which the endogenous ligand is not known or is unclear. Characterization of orphan GPCRs has proven to be challenging, and the production pace of GPCR-based drugs has been incredibly slow. OBJECTIVE Determination of the functions of these receptors may provide unexpected insight into physiological and neuropathological processes. Advances in various methods and techniques to investigate orphan receptors including in situ hybridization and knockdown/knockout (KD/KO) showed extensive expression of these receptors in the mammalian brain and unmasked their physiological and neuropathological roles. Due to these rapid progress and development, orphan GPCRs are rising as a new and promising class of drug targets for neurodegenerative diseases and psychiatric disorders. CONCLUSION This review presents a neuropsychopharmacological perspective of 26 orphan receptors of rhodopsin (class A) family, namely GPR3, GPR6, GPR12, GPR17, GPR26, GPR35, GPR39, GPR48, GPR49, GPR50, GPR52, GPR55, GPR61, GPR62, GPR63, GPR68, GPR75, GPR78, GPR83, GPR84, GPR85, GPR88, GPR153, GPR162, GPR171, and TAAR6. We discussed the expression of these receptors in mammalian brain and their physiological roles. Furthermore, we have briefly highlighted their roles in neurodegenerative diseases and psychiatric disorders including Alzheimer's disease, Parkinson's disease, neuroinflammation, inflammatory pain, bipolar and schizophrenic disorders, epilepsy, anxiety, and depression.
Collapse
Affiliation(s)
- Muhammad Zahid Khan
- Department of Pharmacology, China Pharmaceutical University, No. 24 Tong Jia Xiang, Nanjing, Jiangsu Province, 210009, China.
| | - Ling He
- Department of Pharmacology, China Pharmaceutical University, No. 24 Tong Jia Xiang, Nanjing, Jiangsu Province, 210009, China
| |
Collapse
|
16
|
Huang Y, Todd N, Thathiah A. The role of GPCRs in neurodegenerative diseases: avenues for therapeutic intervention. Curr Opin Pharmacol 2017; 32:96-110. [DOI: 10.1016/j.coph.2017.02.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 02/08/2017] [Accepted: 02/09/2017] [Indexed: 12/20/2022]
|
17
|
Abstract
GPR88 is an orphan G-protein-coupled receptor highly expressed in striatal dopamine D1 (receptor) R- and D2R-expressing medium spiny neurons. This receptor is involved in activity and motor responses, and we previously showed that this receptor also regulates anxiety-like behaviors. To determine whether GPR88 in D2R-expressing neurons contributes to this emotional phenotype, we generated conditional Gpr88 knock-out mice using adenosine A2AR (A2AR)-Cre-driven recombination, and compared anxiety-related responses in both total and A2AR-Gpr88 KO mice. A2AR-Gpr88 KO mice showed a selective reduction of Gpr88 mRNA in D2R-expressing, but not D1R-expressing, neurons. These mutant mice showed increased locomotor activity and decreased anxiety-like behaviors in light/dark and elevated plus maze tests. These phenotypes were superimposable on those observed in total Gpr88 KO mice, demonstrating that the previously reported anxiogenic activity of GPR88 operates at the level of A2AR-expressing neurons. Further, A2AR-Gpr88 KO mice showed no change in novelty preference and novelty-suppressed feeding, while these responses were increased and decreased, respectively, in the total Gpr88 KO mice. Also, A2AR-Gpr88 KO mice showed intact fear conditioning, while the fear responses were decreased in total Gpr88 KO. We therefore also show for the first time that GPR88 activity regulates approach behaviors and conditional fear; however, these behaviors do not seem mediated by receptors in A2AR neurons. We conclude that Gpr88 expressed in A2AR neurons enhances ethological anxiety-like behaviors without affecting conflict anxiety and fear responses.
Collapse
|
18
|
Meirsman A, Le Merrer J, Pellissier L, Diaz J, Clesse D, Kieffer B, Becker J. Mice Lacking GPR88 Show Motor Deficit, Improved Spatial Learning, and Low Anxiety Reversed by Delta Opioid Antagonist. Biol Psychiatry 2016; 79:917-27. [PMID: 26188600 PMCID: PMC4670823 DOI: 10.1016/j.biopsych.2015.05.020] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 04/22/2015] [Accepted: 05/24/2015] [Indexed: 12/31/2022]
Abstract
BACKGROUND GPR88 is an orphan G protein coupled receptor highly enriched in the striatum, and previous studies have focused on GPR88 function in striatal physiology. The receptor is also expressed in other brain areas, and here we examined whether GPR88 function extends beyond striatal-mediated responses. METHODS We created Gpr88 knockout mice and examined both striatal and extrastriatal regions at molecular and cellular levels. We also tested striatum-, hippocampus-, and amygdala-dependent behaviors in Gpr88(-/-) mice using extensive behavioral testing. RESULTS We found increased G protein coupling for delta opioid receptor (DOR) and mu opioid, but not other Gi/o coupled receptors, in the striatum of Gpr88 knockout mice. We also found modifications in gene transcription, dopamine and serotonin contents, and dendritic morphology inside and outside the striatum. Behavioral testing confirmed striatal deficits (hyperactivity, stereotypies, motor impairment in rotarod). In addition, mutant mice performed better in spatial tasks dependent on hippocampus (Y-maze, novel object recognition, dual solution cross-maze) and also showed markedly reduced levels of anxiety (elevated plus maze, marble burying, novelty suppressed feeding). Strikingly, chronic blockade of DOR using naltrindole partially improved motor coordination and normalized spatial navigation and anxiety of Gpr88(-/-) mice. CONCLUSIONS We demonstrate that GPR88 is implicated in a large repertoire of behavioral responses that engage motor activity, spatial learning, and emotional processing. Our data also reveal functional antagonism between GPR88 and DOR activities in vivo. The therapeutic potential of GPR88 therefore extends to cognitive and anxiety disorders, possibly in interaction with other receptor systems.
Collapse
Affiliation(s)
- A.C. Meirsman
- Département de Médecine Translationnelle et Neurogénétique, Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM U-964, CNRS UMR-7104, Université de Strasbourg, Illkirch, France
| | - J. Le Merrer
- Département de Médecine Translationnelle et Neurogénétique, Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM U-964, CNRS UMR-7104, Université de Strasbourg, Illkirch, France, Physiologie de la Reproduction et des Comportements, INRA UMR-0085, CNRS UMR-7247, Université François Rabelais de Tours, Nouzilly, France
| | - L.P. Pellissier
- Physiologie de la Reproduction et des Comportements, INRA UMR-0085, CNRS UMR-7247, Université François Rabelais de Tours, Nouzilly, France
| | - J. Diaz
- Centre de Psychiatrie et Neurosciences, INSERM UMR-894 - Université Paris Descartes, Paris, France
| | - D. Clesse
- Département de Neurobiologie des rythmes, Institut des Neurosciences Cellulaires et Intégratives, CNRS UPR-3212, Université de Strasbourg, Strasbourg, France
| | - B.L. Kieffer
- Département de Médecine Translationnelle et Neurogénétique, Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM U-964, CNRS UMR-7104, Université de Strasbourg, Illkirch, France
| | - J.A.J. Becker
- Département de Médecine Translationnelle et Neurogénétique, Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM U-964, CNRS UMR-7104, Université de Strasbourg, Illkirch, France, Physiologie de la Reproduction et des Comportements, INRA UMR-0085, CNRS UMR-7247, Université François Rabelais de Tours, Nouzilly, France
| |
Collapse
|
19
|
Massart R, Mignon V, Stanic J, Munoz-Tello P, Becker JAJ, Kieffer BL, Darmon M, Sokoloff P, Diaz J. Developmental and adult expression patterns of the G-protein-coupled receptor GPR88 in the rat: Establishment of a dual nuclear-cytoplasmic localization. J Comp Neurol 2016; 524:2776-802. [PMID: 26918661 DOI: 10.1002/cne.23991] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Revised: 02/22/2016] [Accepted: 02/23/2016] [Indexed: 01/31/2023]
Abstract
GPR88 is a neuronal cerebral orphan G-protein-coupled receptor (GPCR) that has been linked to various psychiatric disorders. However, no extensive description of its localization has been provided so far. Here, we investigate the spatiotemporal expression of the GPR88 in prenatal and postnatal rat tissues by using in situ hybridization and immunohistochemistry. GPR88 protein was initially detected at embryonic day 16 (E16) in the striatal primordium. From E16-E20 to adulthood, the highest expression levels of both protein and mRNA were observed in striatum, olfactory tubercle, nucleus accumbens, amygdala, and neocortex, whereas in spinal cord, pons, and medulla GPR88 expression remains discrete. We observed an intracellular redistribution of GPR88 during cortical lamination. In the cortical plate of the developing cortex, GPR88 presents a classical GPCR plasma membrane/cytoplasmic localization that shifts, on the day of birth, to nuclei of neurons progressively settling in layers V to II. This intranuclear localization remains throughout adulthood and was also detected in monkey and human cortex as well as in the amygdala and hypothalamus of rats. Apart from the central nervous system, GPR88 was transiently expressed at high levels in peripheral tissues, including adrenal cortex (E16-E21) and cochlear ganglia (E19-P3), and also at moderate levels in retina (E18-E19) and spleen (E21-P7). The description of the GPR88 anatomical expression pattern may provide precious functional insights into this novel receptor. Furthermore, the GRP88 nuclear localization suggests nonclassical GPCR modes of action of the protein that could be relevant for cortical development and psychiatric disorders. J. Comp. Neurol. 524:2776-2802, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Renaud Massart
- INSERM UMR894, Centre de Psychiatrie et Neurosciences, Université Paris Descartes, 75014, Paris, France.,Neurology-Psychiatry Department, Pierre Fabre Research Institute, 81100, Castres, France
| | - Virginie Mignon
- INSERM UMR894, Centre de Psychiatrie et Neurosciences, Université Paris Descartes, 75014, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, 75006, Paris, France
| | - Jennifer Stanic
- INSERM UMR894, Centre de Psychiatrie et Neurosciences, Université Paris Descartes, 75014, Paris, France
| | - Paola Munoz-Tello
- INSERM UMR894, Centre de Psychiatrie et Neurosciences, Université Paris Descartes, 75014, Paris, France
| | - Jerôme A J Becker
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Université de Strasbourg, CNRS, INSERM, 67400, Illkirch-Graffenstaden, France
| | - Brigitte L Kieffer
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Université de Strasbourg, CNRS, INSERM, 67400, Illkirch-Graffenstaden, France
| | - Michèle Darmon
- INSERM UMR894, Centre de Psychiatrie et Neurosciences, Université Paris Descartes, 75014, Paris, France
| | - Pierre Sokoloff
- Neurology-Psychiatry Department, Pierre Fabre Research Institute, 81100, Castres, France
| | - Jorge Diaz
- INSERM UMR894, Centre de Psychiatrie et Neurosciences, Université Paris Descartes, 75014, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, 75006, Paris, France
| |
Collapse
|
20
|
Watson DJG, King MV, Gyertyán I, Kiss B, Adham N, Fone KCF. The dopamine D₃-preferring D₂/D₃ dopamine receptor partial agonist, cariprazine, reverses behavioural changes in a rat neurodevelopmental model for schizophrenia. Eur Neuropsychopharmacol 2016; 26:208-224. [PMID: 26723167 DOI: 10.1016/j.euroneuro.2015.12.020] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 11/19/2015] [Accepted: 12/04/2015] [Indexed: 02/07/2023]
Abstract
Current antipsychotic medication is largely ineffective against the negative and cognitive symptoms of schizophrenia. One promising therapeutic development is to design new molecules that balance actions on dopamine D2 and D3 receptors to maximise benefits and limit adverse effects. This study used two rodent paradigms to investigate the action of the dopamine D3-preferring D3/D2 receptor partial agonist cariprazine. In adult male rats, cariprazine (0.03-0.3 mg/kg i.p.), and the atypical antipsychotic aripiprazole (1-3 mg/kg i.p.) caused dose-dependent reversal of a delay-induced impairment in novel object recognition (NOR). Treating neonatal rat pups with phencyclidine (PCP) and subsequent social isolation produced a syndrome of behavioural alterations in adulthood including hyperactivity in a novel arena, deficits in NOR and fear motivated learning and memory, and a reduction and change in pattern of social interaction accompanied by increased ultrasonic vocalisations (USVs). Acute administration of cariprazine (0.1 and 0.3 mg/kg) and aripiprazole (3 mg/kg) to resultant adult rats reduced neonatal PCP-social isolation induced locomotor hyperactivity and reversed NOR deficits. Cariprazine (0.3 mg/kg) caused a limited reversal of the social interaction deficit but neither drug affected the change in USVs or the deficit in fear motivated learning and memory. Results suggest that in the behavioural tests investigated cariprazine is at least as effective as aripiprazole and in some paradigms it showed additional beneficial features further supporting the advantage of combined dopamine D3/D2 receptor targeting. These findings support recent clinical studies demonstrating the efficacy of cariprazine in treatment of negative symptoms and functional impairment in schizophrenia patients.
Collapse
Affiliation(s)
- David J G Watson
- School of Life Sciences, Queen׳s Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK
| | - Madeleine V King
- School of Life Sciences, Queen׳s Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK
| | - Istvan Gyertyán
- Pharmacological and Safety Research, Gedeon Richter Plc, Gyömrői út 19-21, Budapest H-1103 Hungary
| | - Béla Kiss
- Pharmacological and Safety Research, Gedeon Richter Plc, Gyömrői út 19-21, Budapest H-1103 Hungary
| | - Nika Adham
- Forest Research Institute, Inc., Harborside Financial Center, Plaza V, Jersey City, NJ 07311, USA
| | - Kevin C F Fone
- School of Life Sciences, Queen׳s Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK.
| |
Collapse
|
21
|
Novel Therapeutic GPCRs for Psychiatric Disorders. Int J Mol Sci 2015; 16:14109-21. [PMID: 26101869 PMCID: PMC4490542 DOI: 10.3390/ijms160614109] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Revised: 05/25/2015] [Accepted: 06/09/2015] [Indexed: 02/04/2023] Open
Abstract
G protein-coupled receptors (GPCRs) are the most common targets of the neuropharmacological drugs in the central nervous system (CNS). GPCRs are activated by manifold neurotransmitters, and their activation in turn evokes slow synaptic transmission. They are deeply involved in multiple neurological and psychiatric disorders such as Parkinson’s disease and schizophrenia. In the brain, the striatum is strongly innervated by the ventral tegmental area (VTA) and plays a central role in manifestation of psychiatric disorders. Recently, anatomical and comprehensive transcriptome analysis of the non-odorant GPCR superfamily revealed that the orphan GPCRs GPR88, GPR6, and GPR52, as well as dopamine D1 and D2 receptors and the adenosine A2a receptor, are the most highly enriched in the rodent striatum. Genetically engineered animal models and molecular biological studies have suggested that these striatally enriched GPCRs have a potential to be therapeutic psychiatric receptors. This review summarizes the current understanding of the therapeutic GPCR candidates for psychiatric disorders.
Collapse
|