1
|
Nagabaskaran G, Moonilal V, Skinner M, Miller N. Environmental Enrichment Increases Brain Volume in Snakes. J Comp Neurol 2025; 533:e70043. [PMID: 40116129 PMCID: PMC11926773 DOI: 10.1002/cne.70043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 02/06/2025] [Accepted: 03/05/2025] [Indexed: 03/23/2025]
Abstract
The effects of environmental enrichment have been well documented in mammals and birds, but less work has focused on reptiles. Because snakes are common in captivity, both as pets and in research/commercial facilities, it is critical to explore how they react to standard captive housing. Here, we examined the effects of environmental enrichment on brain development in a popular pet snake species, the western hognose snake (Heterodon nasicus). Hognose snakes (n = 15) were individually housed for one year in either enriched or standard environments before their brains were harvested and imaged using MRI. We found that enriched snakes had significantly larger brain volumes compared to standard snakes, most prominently in posterior brain regions. In addition, we observed sex-specific brain investments: as snakes grew larger, males displayed relatively larger cerebral hemispheres, and females displayed larger posterior brain regions. These results suggest that environmental enrichment is critical to encouraging healthy brain development in snakes and that snake brain plasticity is very similar to that observed in mammals and birds.
Collapse
Affiliation(s)
| | - Vijay Moonilal
- Department of PsychologyWilfrid Laurier UniversityWaterlooCanada
| | - Morgan Skinner
- Department of PsychologyWilfrid Laurier UniversityWaterlooCanada
| | - Noam Miller
- Department of PsychologyWilfrid Laurier UniversityWaterlooCanada
| |
Collapse
|
2
|
Rivera-Olvera A, Houwing DJ, Ellegood J, Masifi S, Martina SL, Silberfeld A, Pourquie O, Lerch JP, Francks C, Homberg JR, van Heukelum S, Grandjean J. The universe is asymmetric, the mouse brain too. Mol Psychiatry 2025; 30:489-496. [PMID: 39107583 DOI: 10.1038/s41380-024-02687-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 07/23/2024] [Accepted: 07/29/2024] [Indexed: 01/22/2025]
Abstract
Hemispheric brain asymmetry is a basic organizational principle of the human brain and has been implicated in various psychiatric conditions, including autism spectrum disorder. Brain asymmetry is not a uniquely human feature and is observed in other species such as the mouse. Yet, asymmetry patterns are generally nuanced, and substantial sample sizes are required to detect these patterns. In this pre-registered study, we use a mouse dataset from the Province of Ontario Neurodevelopmental Network, which comprises structural MRI data from over 2000 mice, including genetic models for autism spectrum disorder, to reveal the scope and magnitude of hemispheric asymmetry in the mouse. Our findings demonstrate the presence of robust hemispheric asymmetry in the mouse brain, such as larger right hemispheric volumes towards the anterior pole and larger left hemispheric volumes toward the posterior pole, opposite to what has been shown in humans. This suggests the existence of species-specific traits. Further clustering analysis identified distinct asymmetry patterns in autism spectrum disorder models, a phenomenon that is also seen in atypically developing participants. Our study shows potential for the use of mouse models to understand the biological bases of typical and atypical brain asymmetry but also warrants caution as asymmetry patterns seem to differ between humans and mice.
Collapse
Affiliation(s)
| | - Danielle J Houwing
- Donders Institute for Brain, Behaviour, and Cognition, Nijmegen, The Netherlands
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | - Jacob Ellegood
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, ON, M5T 3H7, Canada
| | - Shang Masifi
- Donders Institute for Brain, Behaviour, and Cognition, Nijmegen, The Netherlands
| | - Stephany Ll Martina
- Donders Institute for Brain, Behaviour, and Cognition, Nijmegen, The Netherlands
| | - Andrew Silberfeld
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Olivier Pourquie
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Jason P Lerch
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, ON, M5T 3H7, Canada
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, Oxfordshire, OX39DU, UK
| | - Clyde Francks
- Donders Institute for Brain, Behaviour, and Cognition, Nijmegen, The Netherlands
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Judith R Homberg
- Donders Institute for Brain, Behaviour, and Cognition, Nijmegen, The Netherlands
| | - Sabrina van Heukelum
- Donders Institute for Brain, Behaviour, and Cognition, Nijmegen, The Netherlands
| | - Joanes Grandjean
- Donders Institute for Brain, Behaviour, and Cognition, Nijmegen, The Netherlands.
- Department for Medical Imaging, Radboud University Medical Center, PO Box 9101, Nijmegen, The Netherlands.
| |
Collapse
|
3
|
Smith C, Lautarescu A, Charman T, Crosbie J, Schachar RJ, Iaboni A, Georgiades S, Nicolson R, Kelley E, Ayub M, Jones J, Arnold PD, Lerch JP, Anagnostou E, Kushki A. Harmonizing two measures of adaptive functioning using computational approaches: prediction of vineland adaptive behavior scales II (VABS-II) from the adaptive behavior assessment system II (ABAS-II) scores. Mol Autism 2024; 15:51. [PMID: 39627866 PMCID: PMC11616349 DOI: 10.1186/s13229-024-00630-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 11/04/2024] [Indexed: 12/06/2024] Open
Abstract
BACKGROUND Very large sample sizes are often needed to capture heterogeneity in autism, necessitating data sharing across multiple studies with diverse assessment instruments. In these cases, data harmonization can be a critical tool for deriving a single dataset for analysis. This can be done through computational approaches that enable the conversion of scores across various instruments. To this end, our study examined the use of analytical approaches for mapping scores on two measures of adaptive functioning, namely predicting the scores on the vineland adaptive behavior scales II (VABS) from the scores on the adaptive behavior assessment system II (ABAS). METHODS Data from the province of Ontario neurodevelopmental disorders network were used. The dataset included scores VABS and the ABAS for 720 participants (autism n = 547, 433 male, age: 11.31 ± 3.63 years; neurotypical n = 173, 95 male, age: 12.53 ± 4.05 years). Six regression approaches (ordinary least squares (OLS) linear regression, ridge regression, ElasticNet, LASSO, AdaBoost, random forest) were used to predict VABS total scores from the ABAS scores, demographic variables (age, sex), and phenotypic measures (diagnosis; core and co-occurring features; IQ; internalizing and externalizing symptoms). RESULTS The VABS scores were significantly higher than the ABAS scores in the autism group, but not the neurotypical group (median difference: 8, 95% CI = (7,9)). The difference was negatively associated with age (beta = -1.2 ± 0.12, t = -10.6, p < 0.0001). All estimators demonstrated similar performance, with no statistically significant differences in mean absolute error (MAE) values across estimators (MAE range: 4.96-6.91). The highest contributing features to the prediction model were ABAS composite score, diagnosis, and age. LIMITATIONS This study has several strengths, including the large sample. We did not examine the conversion of domain scores across the two measures of adaptive functioning and suggest this as a future area of investigation. CONCLUSION Overall, our results supported the feasibility of harmonization. Our results suggest that a linear regression model trained on the ABAS composite score, the ABAS raw domain scores, and age, sex, and diagnosis would provide an acceptable trade-off between accuracy, parsimony, and data collection and processing complexity.
Collapse
Affiliation(s)
- Corinna Smith
- Autism Research Centre, Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, 150 Kilgour Road, Toronto, ON, M4G 1R8, Canada
| | - Alexandra Lautarescu
- Department of Psychology, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Tony Charman
- Department of Psychology, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Jennifer Crosbie
- Department of Psychiatry, University of Toronto, Toronto, Canada
- Department of Psychiatry, The Hospital for Sick Children, Toronto, ON, Canada
| | - Russell J Schachar
- Department of Psychiatry, University of Toronto, Toronto, Canada
- Department of Psychiatry, The Hospital for Sick Children, Toronto, ON, Canada
| | - Alana Iaboni
- Autism Research Centre, Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, 150 Kilgour Road, Toronto, ON, M4G 1R8, Canada
| | - Stelios Georgiades
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Canada
| | - Robert Nicolson
- Department of Psychiatry, Western University, London, Canada
| | - Elizabeth Kelley
- Department of Psychology, Queen's University, Kingston, Canada
- Centre for Neuroscience Studies, Queen's University, Kingston, Canada
- Department of Psychiatry, Queen's University, Kingston, Canada
| | - Muhammad Ayub
- Department of Psychiatry, Queen's University, Kingston, Canada
| | - Jessica Jones
- Centre for Neuroscience Studies, Queen's University, Kingston, Canada
- Department of Psychiatry, Queen's University, Kingston, Canada
| | - Paul D Arnold
- The Mathison Centre for Mental Health Research & Education, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Jason P Lerch
- Program in Neurosciences & Mental Health, The Hospital for Sick Children, Toronto, Canada
- Nuffield Department of Clinical Neurosciences, Wellcome Centre for Integrative Neuroimaging, FMRIB, University of Oxford, Oxford, UK
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Evdokia Anagnostou
- Autism Research Centre, Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, 150 Kilgour Road, Toronto, ON, M4G 1R8, Canada
- Program in Neurosciences & Mental Health, The Hospital for Sick Children, Toronto, Canada
- Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Azadeh Kushki
- Autism Research Centre, Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, 150 Kilgour Road, Toronto, ON, M4G 1R8, Canada.
- Institute of Biomedical Engineering, University of Toronto, Toronto, Canada.
| |
Collapse
|
4
|
Pretzsch CM, Arenella M, Lerch JP, Lombardo MV, Beckmann C, Schaefer T, Leyhausen J, Gurr C, Bletsch A, Berg LM, Seelemeyer H, Floris DL, Oakley B, Loth E, Bourgeron T, Charman T, Buitelaar J, McAlonan G, Murphy D, Ecker C. Patterns of Brain Maturation in Autism and Their Molecular Associations. JAMA Psychiatry 2024; 81:1253-1264. [PMID: 39412777 PMCID: PMC11581727 DOI: 10.1001/jamapsychiatry.2024.3194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/30/2024] [Indexed: 11/24/2024]
Abstract
Importance In the neurotypical brain, regions develop in coordinated patterns, providing a fundamental scaffold for brain function and behavior. Whether altered patterns contribute to clinical profiles in neurodevelopmental conditions, including autism, remains unclear. Objectives To examine if, in autism, brain regions develop differently in relation to each other and how these differences are associated with molecular/genomic mechanisms and symptomatology. Design, Setting, and Participants This study was an analysis of one the largest deep-phenotyped, case-control, longitudinal (2 assessments separated by approximately 12-24 months) structural magnetic resonance imaging and cognitive-behavioral autism datasets (EU-AIMS Longitudinal European Autism Project [LEAP]; study dates, February 2014-November 2017) and an out-of-sample validation in the Brain Development Imaging Study (BrainMapASD) independent cohort. Analyses were performed during the 2022 to 2023 period. This multicenter study included autistic and neurotypical children, adolescents, and adults. Autistic participants were included if they had an existing autism diagnosis (DSM-IV/International Statistical Classification of Diseases and Related Health Problems, Tenth Revision or DSM-5 criteria). Autistic participants with co-occurring psychiatric conditions (except psychosis/bipolar disorder) and those taking regular medications were included. Exposures Neuroanatomy of neurotypical and autistic participants. Main Outcomes and Measures Intraindividual changes in surface area and cortical thickness over time, analyzed via surface-based morphometrics. Results A total of 386 individuals in the LEAP cohort (6-31 years at first visit; 214 autistic individuals, mean [SD] age, 17.3 [5.4] years; 154 male [72.0%] and 172 neurotypical individuals, mean [SD] age, 16.35 [5.7] years; 108 male [62.8%]) and 146 individuals in the BrainMapASD cohort (11-18 years at first visit; 49 autistic individuals, mean [SD] age, 14.31 [2.4] years; 42 male [85.7%] and 97 neurotypical individuals, mean [SD] age, 14.10 [2.5] years; 58 male [59.8%]). Maturational between-group differences in cortical thickness and surface area were established that were mostly driven by sensorimotor regions (eg, across features, absolute loadings for early visual cortex ranged from 0.07 to 0.11, whereas absolute loadings for dorsolateral prefrontal cortex ranged from 0.005 to 0.06). Neurodevelopmental differences were transcriptomically enriched for genes expressed in several cell types and during various neurodevelopmental stages, and autism candidate genes (eg, downregulated genes in autism, including those regulating synaptic transmission; enrichment odds ratio =3.7; P =2.6 × -10). A more neurotypical, less autismlike maturational profile was associated with fewer social difficulties and more typical sensory processing (false discovery rate P <.05; Pearson r ≥0.17). Results were replicated in the independently collected BrainMapASD cohort. Conclusions and Relevance Results of this case-control study suggest that the coordinated development of brain regions was altered in autism, involved a complex interplay of temporally sensitive molecular mechanisms, and may be associated with both lower-order (eg, sensory) and higher-order (eg, social) clinical features of autism. Thus, examining maturational patterns may provide an analytic framework to study the neurobiological origins of clinical profiles in neurodevelopmental/mental health conditions.
Collapse
Affiliation(s)
- Charlotte M. Pretzsch
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology, and Neuroscience, King’s College London, London, United Kingdom
| | - Martina Arenella
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology, and Neuroscience, King’s College London, London, United Kingdom
| | - Jason P. Lerch
- Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, United Kingdom
| | - Michael V. Lombardo
- Laboratory for Autism and Neurodevelopmental Disorders, Center for Neuroscience and Cognitive Systems, Istituto Italiano di Tecnologia, Rovereto, Italy
| | - Christian Beckmann
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Tim Schaefer
- Department of Child and Adolescent Psychiatry, University Hospital Goethe University, Frankfurt am Main, Germany
| | - Johanna Leyhausen
- Department of Child and Adolescent Psychiatry, University Hospital Goethe University, Frankfurt am Main, Germany
- Department of Biosciences, Goethe University Frankfurt, Frankfurt am Main, Germany
- Brain Imaging Center, Goethe-University, Frankfurt am Main, Germany
| | - Caroline Gurr
- Department of Child and Adolescent Psychiatry, University Hospital Goethe University, Frankfurt am Main, Germany
- Brain Imaging Center, Goethe-University, Frankfurt am Main, Germany
| | - Anke Bletsch
- Department of Child and Adolescent Psychiatry, University Hospital Goethe University, Frankfurt am Main, Germany
- Brain Imaging Center, Goethe-University, Frankfurt am Main, Germany
| | - Lisa M. Berg
- Department of Child and Adolescent Psychiatry, University Hospital Goethe University, Frankfurt am Main, Germany
- Brain Imaging Center, Goethe-University, Frankfurt am Main, Germany
| | - Hanna Seelemeyer
- Department of Child and Adolescent Psychiatry, University Hospital Goethe University, Frankfurt am Main, Germany
- Brain Imaging Center, Goethe-University, Frankfurt am Main, Germany
| | - Dorothea L. Floris
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre, Nijmegen, the Netherlands
- Methods of Plasticity Research, Department of Psychology, University of Zurich, Zurich, Switzerland
| | - Bethany Oakley
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology, and Neuroscience, King’s College London, London, United Kingdom
| | - Eva Loth
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology, and Neuroscience, King’s College London, London, United Kingdom
| | - Thomas Bourgeron
- Institut Pasteur, Human Genetics and Cognitive Functions Unit, Paris, France
| | - Tony Charman
- Department of Psychology, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Jan Buitelaar
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Grainne McAlonan
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology, and Neuroscience, King’s College London, London, United Kingdom
| | - Declan Murphy
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology, and Neuroscience, King’s College London, London, United Kingdom
| | - Christine Ecker
- Department of Child and Adolescent Psychiatry, University Hospital Goethe University, Frankfurt am Main, Germany
- Brain Imaging Center, Goethe-University, Frankfurt am Main, Germany
| |
Collapse
|
5
|
Mediane DH, Basu S, Cahill EN, Anastasiades PG. Medial prefrontal cortex circuitry and social behaviour in autism. Neuropharmacology 2024; 260:110101. [PMID: 39128583 DOI: 10.1016/j.neuropharm.2024.110101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/22/2024] [Accepted: 08/05/2024] [Indexed: 08/13/2024]
Abstract
Autism spectrum disorder (ASD) has proven to be highly enigmatic due to the diversity of its underlying genetic causes and the huge variability in symptom presentation. Uncovering common phenotypes across people with ASD and pre-clinical models allows us to better understand the influence on brain function of the many different genetic and cellular processes thought to contribute to ASD aetiology. One such feature of ASD is the convergent evidence implicating abnormal functioning of the medial prefrontal cortex (mPFC) across studies. The mPFC is a key part of the 'social brain' and may contribute to many of the changes in social behaviour observed in people with ASD. Here we review recent evidence for mPFC involvement in both ASD and social behaviours. We also highlight how pre-clinical mouse models can be used to uncover important cellular and circuit-level mechanisms that may underly atypical social behaviours in ASD. This article is part of the Special Issue on "PFC circuit function in psychiatric disease and relevant models".
Collapse
Affiliation(s)
- Diego H Mediane
- Department of Translational Health Sciences, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol, BS1 3NY, United Kingdom
| | - Shinjini Basu
- Department of Translational Health Sciences, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol, BS1 3NY, United Kingdom
| | - Emma N Cahill
- Department of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, United Kingdom
| | - Paul G Anastasiades
- Department of Translational Health Sciences, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol, BS1 3NY, United Kingdom.
| |
Collapse
|
6
|
Pham L, Guma E, Ellegood J, Lerch JP, Raznahan A. A cross-species analysis of neuroanatomical covariance sex difference in humans and mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.05.622111. [PMID: 39574642 PMCID: PMC11580902 DOI: 10.1101/2024.11.05.622111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2024]
Abstract
Structural covariance in brain anatomy is thought to reflect inter-regional sharing of developmental influences - although this hypothesis has proved hard to causally test. Here, we use neuroimaging in humans and mice to study sex-differences in anatomical covariance - asking if regions that have developed shared sex differences in volume across species also show shared sex difference in volume covariance. This study design illuminates both the biology of sex-differences and theoretical models for anatomical covariance - benefitting from tests of inter-species convergence. We find that volumetric structural covariance is stronger in adult females compared to adult males for both wild-type mice and healthy human subjects: 98% of all comparisons with statistically significant covariance sex differences in mice are female-biased, while 76% of all such comparisons are female-biased in humans (q < 0.05). In both species, a region's covariance and volumetric sex-biases have weak inverse relationships to each other: volumetrically male-biased regions contain more female-biased covariations, while volumetrically female-biased regions have more male-biased covariations (mice: r = -0.185, p = 0.002; humans: r = -0.189, p = 0.001). Our results identify a conserved tendency for females to show stronger neuroanatomical covariance than males, evident across species, which suggests that stronger structural covariance in females could be an evolutionarily conserved feature that is partially related to volumetric alterations through sex.
Collapse
Affiliation(s)
- Linh Pham
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health, Bethesda, 20892, Maryland
- Mouse Imaging Centre, Toronto, Ontario M5T 3H7, Canada
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, OX3 9DU, United Kingdom
- South Texas Medical Scientist Training Program, University of Texas Health Science Center San Antonio, San Antonio, 78229, Texas
| | - Elisa Guma
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health, Bethesda, 20892, Maryland
- Harvard Medical School, Boston, 02115, Massachusetts
- Department of Pediatrics, Lurie Center for Autism, Massachusetts General Hospital, Lexington, 02421, Massachusetts
| | - Jacob Ellegood
- Mouse Imaging Centre, Toronto, Ontario M5T 3H7, Canada
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Ontario M4G 1R8, Canada
| | - Jason P. Lerch
- Mouse Imaging Centre, Toronto, Ontario M5T 3H7, Canada
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Ontario M4G 1R8, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, OX3 9DU, United Kingdom
| | - Armin Raznahan
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health, Bethesda, 20892, Maryland
| |
Collapse
|
7
|
Sefik E, Duan K, Li Y, Sholar B, Evans L, Pincus J, Ammar Z, Murphy MM, Klaiman C, Saulnier CA, Pulver SL, Goldman-Yassen AE, Guo Y, Walker EF, Li L, Mulle JG, Shultz S. Structural deviations of the posterior fossa and the cerebellum and their cognitive links in a neurodevelopmental deletion syndrome. Mol Psychiatry 2024; 29:3395-3411. [PMID: 38744992 PMCID: PMC11541222 DOI: 10.1038/s41380-024-02584-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 04/16/2024] [Accepted: 04/23/2024] [Indexed: 05/16/2024]
Abstract
High-impact genetic variants associated with neurodevelopmental disorders provide biologically-defined entry points for mechanistic investigation. The 3q29 deletion (3q29Del) is one such variant, conferring a 40-100-fold increased risk for schizophrenia, as well as high risk for autism and intellectual disability. However, the mechanisms leading to neurodevelopmental disability remain largely unknown. Here, we report the first in vivo quantitative neuroimaging study in individuals with 3q29Del (N = 24) and neurotypical controls (N = 1608) using structural MRI. Given prior radiology reports of posterior fossa abnormalities in 3q29Del, we focused our investigation on the cerebellum and its tissue-types and lobules. Additionally, we compared the prevalence of cystic/cyst-like malformations of the posterior fossa between 3q29Del and controls and examined the association between neuroanatomical findings and quantitative traits to probe gene-brain-behavior relationships. 3q29Del participants had smaller cerebellar cortex volumes than controls, before and after correction for intracranial volume (ICV). An anterior-posterior gradient emerged in finer grained lobule-based and voxel-wise analyses. 3q29Del participants also had larger cerebellar white matter volumes than controls following ICV-correction and displayed elevated rates of posterior fossa arachnoid cysts and mega cisterna magna findings independent of cerebellar volume. Cerebellar white matter and subregional gray matter volumes were associated with visual-perception and visual-motor integration skills as well as IQ, while cystic/cyst-like malformations yielded no behavioral link. In summary, we find that abnormal development of cerebellar structures may represent neuroimaging-based biomarkers of cognitive and sensorimotor function in 3q29Del, adding to the growing evidence identifying cerebellar pathology as an intersection point between syndromic and idiopathic forms of neurodevelopmental disabilities.
Collapse
Affiliation(s)
- Esra Sefik
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
- Department of Psychology, Emory University, Atlanta, GA, USA
| | - Kuaikuai Duan
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science, Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA
| | - Yiheng Li
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Brittney Sholar
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Marcus Autism Center, Children's Healthcare of Atlanta and Emory University School of Medicine, Atlanta, GA, USA
| | - Lindsey Evans
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Marcus Autism Center, Children's Healthcare of Atlanta and Emory University School of Medicine, Atlanta, GA, USA
| | - Jordan Pincus
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Marcus Autism Center, Children's Healthcare of Atlanta and Emory University School of Medicine, Atlanta, GA, USA
| | - Zeena Ammar
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Marcus Autism Center, Children's Healthcare of Atlanta and Emory University School of Medicine, Atlanta, GA, USA
| | - Melissa M Murphy
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Cheryl Klaiman
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Marcus Autism Center, Children's Healthcare of Atlanta and Emory University School of Medicine, Atlanta, GA, USA
| | - Celine A Saulnier
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Neurodevelopmental Assessment & Consulting Services, Atlanta, GA, USA
| | - Stormi L Pulver
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Marcus Autism Center, Children's Healthcare of Atlanta and Emory University School of Medicine, Atlanta, GA, USA
| | - Adam E Goldman-Yassen
- Department of Radiology, Children's Healthcare of Atlanta, Atlanta, GA, USA
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Ying Guo
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Elaine F Walker
- Department of Psychology, Emory University, Atlanta, GA, USA
| | - Longchuan Li
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Marcus Autism Center, Children's Healthcare of Atlanta and Emory University School of Medicine, Atlanta, GA, USA
| | - Jennifer G Mulle
- Department of Psychiatry, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA.
| | - Sarah Shultz
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA.
- Marcus Autism Center, Children's Healthcare of Atlanta and Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
8
|
Wilde M, Ghanbari A, Mancienne T, Moran A, Poulsen RE, Constantin L, Lee C, Scholz LA, Arnold J, Qin W, Karle TJ, Petrou S, Favre-Bulle I, Hoffman EJ, Scott EK. Brain-wide circuitry underlying altered auditory habituation in zebrafish models of autism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.04.611137. [PMID: 39282371 PMCID: PMC11398315 DOI: 10.1101/2024.09.04.611137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Auditory processing is widely understood to occur differently in autism, though the patterns of brain activity underlying these differences are not well understood. The diversity of autism also means brain-wide networks may change in various ways to produce similar behavioral outputs. We used larval zebrafish to investigate auditory habituation in four genetic lines relevant to autism: fmr1, mecp2, scn1lab and cntnap2. In free-swimming behavioral tests, we found each line had a unique profile of auditory hypersensitivity and/or delayed habituation. Combining the optical transparency of larval zebrafish with genetically encoded calcium indicators and light-sheet microscopy, we then observed brain-wide activity at cellular resolution during auditory habituation. As with behavior, each line showed unique alterations in brain-wide spontaneous activity, auditory processing, and adaptation in response to repetitive acoustic stimuli. We also observed commonalities in activity across our genetic lines that indicate shared circuit changes underlying certain aspects of their behavioral phenotypes. These were predominantly in regions involved in sensory integration and sensorimotor gating rather than primary auditory areas. Overlapping phenotypes include differences in the activity and functional connectivity of the telencephalon, thalamus, dopaminergic regions, and the locus coeruleus, and excitatory/inhibitory imbalance in the cerebellum. Unique phenotypes include loss of activity in the habenula in scn1lab, increased activity in auditory regions in fmr1, and differences in network activity over time in mecp2 and cntnap2. Comparing these distinct but overlapping brain-wide auditory networks furthers our understanding of how diverse genetic factors can produce similar behavioral effects through a range of circuit- and network-scale mechanisms.
Collapse
Affiliation(s)
- Maya Wilde
- Queensland Brain Institute, University of Queensland, QLD, Australia
- Department of Anatomy and Physiology, University of Melbourne, VIC, Australia
| | - Anahita Ghanbari
- Department of Anatomy and Physiology, University of Melbourne, VIC, Australia
| | - Tessa Mancienne
- Department of Anatomy and Physiology, University of Melbourne, VIC, Australia
| | - Ailís Moran
- Department of Anatomy and Physiology, University of Melbourne, VIC, Australia
| | - Rebecca E. Poulsen
- Department of Linguistics, Faculty of Medicine, Health and Human Sciences, Macquarie University, NSW, Australia
| | - Lena Constantin
- Queensland Brain Institute, University of Queensland, QLD, Australia
| | - Conrad Lee
- Department of Anatomy and Physiology, University of Melbourne, VIC, Australia
| | - Leandro Aluisio Scholz
- Queensland Brain Institute, University of Queensland, QLD, Australia
- Department of Anatomy and Physiology, University of Melbourne, VIC, Australia
| | - Joshua Arnold
- Queensland Brain Institute, University of Queensland, QLD, Australia
| | - Wei Qin
- Department of Anatomy and Physiology, University of Melbourne, VIC, Australia
| | - Timothy J. Karle
- Department of Anatomy and Physiology, University of Melbourne, VIC, Australia
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, VIC, Australia
| | - Steven Petrou
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, VIC, Australia
| | - Itia Favre-Bulle
- Queensland Brain Institute, University of Queensland, QLD, Australia
| | - Ellen J. Hoffman
- Child Study Center, Yale School of Medicine, New Haven, CT, USA
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Ethan K. Scott
- Department of Anatomy and Physiology, University of Melbourne, VIC, Australia
| |
Collapse
|
9
|
Litman A, Sauerwald N, Snyder LG, Foss-Feig J, Park CY, Hao Y, Dinstein I, Theesfeld CL, Troyanskaya OG. Decomposition of phenotypic heterogeneity in autism reveals distinct and coherent genetic programs. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.08.15.24312078. [PMID: 39185525 PMCID: PMC11343255 DOI: 10.1101/2024.08.15.24312078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Unraveling the phenotypic and genetic complexity of autism is extremely challenging yet critical for understanding the biology, inheritance, trajectory, and clinical manifestations of the many forms of the condition. Here, we leveraged broad phenotypic data from a large cohort with matched genetics to characterize classes of autism and their patterns of core, associated, and co-occurring traits, ultimately demonstrating that phenotypic patterns are associated with distinct genetic and molecular programs. We used a generative mixture modeling approach to identify robust, clinically-relevant classes of autism which we validate and replicate in a large independent cohort. We link the phenotypic findings to distinct patterns of de novo and inherited variation which emerge from the deconvolution of these genetic signals, and demonstrate that class-specific common variant scores strongly align with clinical outcomes. We further provide insights into the distinct biological pathways and processes disrupted by the sets of mutations in each class. Remarkably, we discover class-specific differences in the developmental timing of genes that are dysregulated, and these temporal patterns correspond to clinical milestone and outcome differences between the classes. These analyses embrace the phenotypic complexity of children with autism, unraveling genetic and molecular programs underlying their heterogeneity and suggesting specific biological dysregulation patterns and mechanistic hypotheses.
Collapse
Affiliation(s)
- Aviya Litman
- Quantitative and Computational Biology Program, Princeton University, NJ, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Natalie Sauerwald
- Center for Computational Biology, Flatiron Institute, New York, NY, USA
| | | | - Jennifer Foss-Feig
- Simons Foundation, New York, NY, USA
- Department of Psychiatry, Mount Sinai Icahn School of Medicine, New York, NY, USA
- Seaver Autism Center for Research and Treatment, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Yun Hao
- Center for Computational Biology, Flatiron Institute, New York, NY, USA
| | - Ilan Dinstein
- Cognitive and Brain Sciences Department, Ben Gurion University of the Negev, Be’er Sheva, Israel
- Azrieli National Centre for Autism and Neurodevelopment Research, Ben Gurion University of the Negev, Be’er Sheva, Israel
- Psychology Department, Ben Gurion University of the Negev, Be’er Sheva, Israel
| | - Chandra L. Theesfeld
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Princeton Precision Health, Princeton, NJ, USA
| | - Olga G. Troyanskaya
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Center for Computational Biology, Flatiron Institute, New York, NY, USA
- Princeton Precision Health, Princeton, NJ, USA
- Department of Computer Science, Princeton University, Princeton, NJ, USA
| |
Collapse
|
10
|
Barón-Mendoza I, Martínez-Marcial M, García-Juárez M, Mejía-Hernández M, Cortés-Sánchez Y, Zamora-Sánchez CJ, García-Rebollar JO, Chavira-Ramírez R, Ordaz-Rosado D, Camacho-Arroyo I, Tecamachalzi-Silvarán MB, Montes-Narváez O, González-Flores O, García-Becerra R, González-Arenas A. Disruptions in reproductive health, sex hormonal profiles, and hypothalamic hormone receptors content in females of the C58/J mouse model of autism. Horm Behav 2024; 164:105593. [PMID: 38909429 DOI: 10.1016/j.yhbeh.2024.105593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 06/25/2024]
Abstract
Autism Spectrum Disorder (ASD) is characterized by differences in social communication and interaction, as well as areas of focused interests and/or repetitive behaviors. Recent studies have highlighted a higher prevalence of endocrine and reproductive disturbances among females on the autism spectrum, hinting at potential disruptions within the hypothalamus-pituitary-ovary (HPO) axis. This research aims to explore the reproductive health disparities in ASD using an animal model of autism, the C58/J inbred mouse strain, with a focus on reproductive performance and hormonal profiles compared to the C57BL/6J control strain. Our findings revealed that the estrous cycle in C58/J females is disrupted, as evidenced by a lower frequency of complete cycles and a lack of cyclical release of estradiol and progesterone compared to control mice. C58/J females also exhibited poor performance in several reproductive parameters, including reproductive lifespan and fertility index. Furthermore, estrogen receptor alpha content showed a marked decrease in the hypothalamus of C58/J mice. These alterations in the estrous cycle, hormonal imbalances, and reduced reproductive function imply dysregulation in the HPO axis. Additionally, our in-silico study identified a group of genes involved in infertility carrying single-nucleotide polymorphisms (SNPs) in the C58/J strain, which also have human orthologs associated with autism. These findings could offer valuable insights into the molecular underpinnings of neuroendocrine axis disruption and reproductive issues observed in ASD.
Collapse
Affiliation(s)
- Isabel Barón-Mendoza
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Mónica Martínez-Marcial
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Marcos García-Juárez
- Centro de Investigación en Reproducción Animal, Universidad Autónoma de Tlaxcala-CINVESTAV, Tlaxcala, México
| | - Montserrat Mejía-Hernández
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Yesenia Cortés-Sánchez
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Carmen J Zamora-Sánchez
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, México
| | - Jorge Omar García-Rebollar
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Roberto Chavira-Ramírez
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, 14080 Ciudad de México, México
| | - David Ordaz-Rosado
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, 14080 Ciudad de México, México
| | - Ignacio Camacho-Arroyo
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, México
| | | | - Omar Montes-Narváez
- Centro de Investigación en Reproducción Animal, Universidad Autónoma de Tlaxcala-CINVESTAV, Tlaxcala, México
| | - Oscar González-Flores
- Centro de Investigación en Reproducción Animal, Universidad Autónoma de Tlaxcala-CINVESTAV, Tlaxcala, México
| | - Rocío García-Becerra
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Aliesha González-Arenas
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México.
| |
Collapse
|
11
|
Wang L, Yang Z, Satoshi F, Prasanna X, Yan Z, Vihinen H, Chen Y, Zhao Y, He X, Bu Q, Li H, Zhao Y, Jiang L, Qin F, Dai Y, Zhang N, Qin M, Kuang W, Zhao Y, Jokitalo E, Vattulainen I, Kajander T, Zhao H, Cen X. Membrane remodeling by FAM92A1 during brain development regulates neuronal morphology, synaptic function, and cognition. Nat Commun 2024; 15:6209. [PMID: 39043703 PMCID: PMC11266426 DOI: 10.1038/s41467-024-50565-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 07/12/2024] [Indexed: 07/25/2024] Open
Abstract
The Bin/Amphiphysin/Rvs (BAR) domain protein FAM92A1 is a multifunctional protein engaged in regulating mitochondrial ultrastructure and ciliogenesis, but its physiological role in the brain remains unclear. Here, we show that FAM92A1 is expressed in neurons starting from embryonic development. FAM92A1 knockout in mice results in altered brain morphology and age-associated cognitive deficits, potentially due to neuronal degeneration and disrupted synaptic plasticity. Specifically, FAM92A1 deficiency impairs diverse neuronal membrane morphology, including the mitochondrial inner membrane, myelin sheath, and synapses, indicating its roles in membrane remodeling and maintenance. By determining the crystal structure of the FAM92A1 BAR domain, combined with atomistic molecular dynamics simulations, we uncover that FAM92A1 interacts with phosphoinositide- and cardiolipin-containing membranes to induce lipid-clustering and membrane curvature. Altogether, these findings reveal the physiological role of FAM92A1 in the brain, highlighting its impact on synaptic plasticity and neural function through the regulation of membrane remodeling and endocytic processes.
Collapse
Affiliation(s)
- Liang Wang
- Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041, China
- Faculty of Biological and Environmental Sciences, University of Helsinki, 00014, Helsinki, Finland
| | - Ziyun Yang
- Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Fudo Satoshi
- Helsinki Institute of Life Science - Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Xavier Prasanna
- Department of Physics, University of Helsinki, Helsinki, Finland
| | - Ziyi Yan
- Faculty of Biological and Environmental Sciences, University of Helsinki, 00014, Helsinki, Finland
| | - Helena Vihinen
- Helsinki Institute of Life Science (HiLIFE) - Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Yaxing Chen
- Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Yue Zhao
- Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Xiumei He
- Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041, China
- School of Life Sciences, Guangxi Normal University, Guilin, China
- Guangxi Universities Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, 541004, China
| | - Qian Bu
- Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Hongchun Li
- Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Ying Zhao
- Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Linhong Jiang
- Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Feng Qin
- Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Yanping Dai
- Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Ni Zhang
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Meng Qin
- Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Weihong Kuang
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yinglan Zhao
- Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Eija Jokitalo
- Helsinki Institute of Life Science (HiLIFE) - Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Ilpo Vattulainen
- Department of Physics, University of Helsinki, Helsinki, Finland
| | - Tommi Kajander
- Helsinki Institute of Life Science - Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Hongxia Zhao
- Faculty of Biological and Environmental Sciences, University of Helsinki, 00014, Helsinki, Finland.
- School of Life Sciences, Guangxi Normal University, Guilin, China.
- Guangxi Universities Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, 541004, China.
| | - Xiaobo Cen
- Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
12
|
Sumathipala SH, Khan S, Kozol RA, Araki Y, Syed S, Huganir RL, Dallman JE. Context-dependent hyperactivity in syngap1a and syngap1b zebrafish models of SYNGAP1-related disorder. Front Mol Neurosci 2024; 17:1401746. [PMID: 39050824 PMCID: PMC11266194 DOI: 10.3389/fnmol.2024.1401746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 06/04/2024] [Indexed: 07/27/2024] Open
Abstract
Background and aims SYNGAP1-related disorder (SYNGAP1-RD) is a prevalent genetic form of Autism Spectrum Disorder and Intellectual Disability (ASD/ID) and is caused by de novo or inherited mutations in one copy of the SYNGAP1 gene. In addition to ASD/ID, SYNGAP1 disorder is associated with comorbid symptoms including treatment-resistant-epilepsy, sleep disturbances, and gastrointestinal distress. Mechanistic links between these diverse symptoms and SYNGAP1 variants remain obscure, therefore, our goal was to generate a zebrafish model in which this range of symptoms can be studied. Methods We used CRISPR/Cas9 to introduce frameshift mutations in the syngap1a and syngap1b zebrafish duplicates (syngap1ab) and validated these stable models for Syngap1 loss-of-function. Because SYNGAP1 is extensively spliced, we mapped splice variants to the two zebrafish syngap1a and b genes and identified mammalian-like isoforms. We then quantified locomotory behaviors in zebrafish syngap1ab larvae under three conditions that normally evoke different arousal states in wild-type larvae: aversive, high-arousal acoustic, medium-arousal dark, and low-arousal light stimuli. Results We show that CRISPR/Cas9 indels in zebrafish syngap1a and syngap1b produced loss-of-function alleles at RNA and protein levels. Our analyses of zebrafish Syngap1 isoforms showed that, as in mammals, zebrafish Syngap1 N- and C-termini are extensively spliced. We identified a zebrafish syngap1 α1-like variant that maps exclusively to the syngap1b gene. Quantifying locomotor behaviors showed that syngap1ab mutant larvae are hyperactive compared to wild-type but to differing degrees depending on the stimulus. Hyperactivity was most pronounced in low arousal settings, and hyperactivity was proportional to the number of mutant syngap1 alleles. Limitations Syngap1 loss-of-function mutations produce relatively subtle phenotypes in zebrafish compared to mammals. For example, while mouse Syngap1 homozygotes die at birth, zebrafish syngap1ab-/- survive to adulthood and are fertile, thus some aspects of symptoms in people with SYNGAP1-Related Disorder are not likely to be reflected in zebrafish. Conclusion Our data support mutations in zebrafish syngap1ab as causal for hyperactivity associated with elevated arousal that is especially pronounced in low-arousal environments.
Collapse
Affiliation(s)
- Sureni H. Sumathipala
- Department of Biology, University of Miami, Coral Gables, FL, United States
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, United States
| | - Suha Khan
- Department of Biology, University of Miami, Coral Gables, FL, United States
| | - Robert A. Kozol
- Department of Biology, University of Miami, Coral Gables, FL, United States
- Department of Biological Sciences, St. John’s University, Queens, NY, United States
| | - Yoichi Araki
- Department of Neuroscience and Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Sheyum Syed
- Department of Physics, University of Miami, Coral Gables, FL, United States
| | - Richard L. Huganir
- Department of Neuroscience and Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Julia E. Dallman
- Department of Biology, University of Miami, Coral Gables, FL, United States
| |
Collapse
|
13
|
Lazari A, Tachrount M, Valverde JM, Papp D, Beauchamp A, McCarthy P, Ellegood J, Grandjean J, Johansen-Berg H, Zerbi V, Lerch JP, Mars RB. The mouse motor system contains multiple premotor areas and partially follows human organizational principles. Cell Rep 2024; 43:114191. [PMID: 38717901 DOI: 10.1016/j.celrep.2024.114191] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 12/10/2023] [Accepted: 04/17/2024] [Indexed: 06/01/2024] Open
Abstract
While humans are known to have several premotor cortical areas, secondary motor cortex (M2) is often considered to be the only higher-order motor area of the mouse brain and is thought to combine properties of various human premotor cortices. Here, we show that axonal tracer, functional connectivity, myelin mapping, gene expression, and optogenetics data contradict this notion. Our analyses reveal three premotor areas in the mouse, anterior-lateral motor cortex (ALM), anterior-lateral M2 (aM2), and posterior-medial M2 (pM2), with distinct structural, functional, and behavioral properties. By using the same techniques across mice and humans, we show that ALM has strikingly similar functional and microstructural properties to human anterior ventral premotor areas and that aM2 and pM2 amalgamate properties of human pre-SMA and cingulate cortex. These results provide evidence for the existence of multiple premotor areas in the mouse and chart a comparative map between the motor systems of humans and mice.
Collapse
Affiliation(s)
- Alberto Lazari
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.
| | - Mohamed Tachrount
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Juan Miguel Valverde
- DTU Compute, Technical University of Denmark, Kongens Lyngby, Denmark; A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70150 Kuopio, Finland
| | - Daniel Papp
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada
| | - Antoine Beauchamp
- Mouse Imaging Centre, The Hospital for Sick Children, Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Paul McCarthy
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Jacob Ellegood
- Mouse Imaging Centre, The Hospital for Sick Children, Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada; Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON, Canada
| | - Joanes Grandjean
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, Netherlands
| | - Heidi Johansen-Berg
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Valerio Zerbi
- Neuro-X Institute, School of Engineering (STI), EPFL, 1015 Lausanne, Switzerland; CIBM Center for Biomedical Imaging, 1015 Lausanne, Switzerland
| | - Jason P Lerch
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; Mouse Imaging Centre, The Hospital for Sick Children, Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Rogier B Mars
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, Netherlands
| |
Collapse
|
14
|
Suresh H, Morgan BR, Mithani K, Warsi NM, Yan H, Germann J, Boutet A, Loh A, Gouveia FV, Young J, Quon J, Morgado F, Lerch J, Lozano AM, Al-Fatly B, Kühn AA, Laughlin S, Dewan MC, Mabbott D, Gorodetsky C, Bartels U, Huang A, Tabori U, Rutka JT, Drake JM, Kulkarni AV, Dirks P, Taylor MD, Ramaswamy V, Ibrahim GM. Postoperative cerebellar mutism syndrome is an acquired autism-like network disturbance. Neuro Oncol 2024; 26:950-964. [PMID: 38079480 PMCID: PMC11066932 DOI: 10.1093/neuonc/noad230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2024] Open
Abstract
BACKGROUND Cerebellar mutism syndrome (CMS) is a common and debilitating complication of posterior fossa tumor surgery in children. Affected children exhibit communication and social impairments that overlap phenomenologically with subsets of deficits exhibited by children with Autism spectrum disorder (ASD). Although both CMS and ASD are thought to involve disrupted cerebro-cerebellar circuitry, they are considered independent conditions due to an incomplete understanding of their shared neural substrates. METHODS In this study, we analyzed postoperative cerebellar lesions from 90 children undergoing posterior fossa resection of medulloblastoma, 30 of whom developed CMS. Lesion locations were mapped to a standard atlas, and the networks functionally connected to each lesion were computed in normative adult and pediatric datasets. Generalizability to ASD was assessed using an independent cohort of children with ASD and matched controls (n = 427). RESULTS Lesions in children who developed CMS involved the vermis and inferomedial cerebellar lobules. They engaged large-scale cerebellothalamocortical circuits with a preponderance for the prefrontal and parietal cortices in the pediatric and adult connectomes, respectively. Moreover, with increasing connectomic age, CMS-associated lesions demonstrated stronger connectivity to the midbrain/red nuclei, thalami and inferior parietal lobules and weaker connectivity to the prefrontal cortex. Importantly, the CMS-associated lesion network was independently reproduced in ASD and correlated with communication and social deficits, but not repetitive behaviors. CONCLUSIONS Our findings indicate that CMS-associated lesions may result in an ASD-like network disturbance that occurs during sensitive windows of brain development. A common network disturbance between CMS and ASD may inform improved treatment strategies for affected children.
Collapse
Affiliation(s)
- Hrishikesh Suresh
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Program in Neuroscience and Mental Health, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
- Division of Neurosurgery, The Hospital for Sick Children, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Benjamin R Morgan
- Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada
| | - Karim Mithani
- Division of Neurosurgery, The Hospital for Sick Children, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Nebras M Warsi
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Program in Neuroscience and Mental Health, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
- Division of Neurosurgery, The Hospital for Sick Children, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Han Yan
- Program in Neuroscience and Mental Health, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
- Division of Neurosurgery, The Hospital for Sick Children, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Jürgen Germann
- Division of Neurosurgery, University Health Network, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Krembil Brain Institute, University Health Network, Toronto, Ontario, Canada
| | - Alexandre Boutet
- Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada
- Joint Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada
| | - Aaron Loh
- Division of Neurosurgery, The Hospital for Sick Children, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Flavia Venetucci Gouveia
- Program in Neuroscience and Mental Health, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - Julia Young
- Department of Psychology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jennifer Quon
- Division of Neurosurgery, The Hospital for Sick Children, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Felipe Morgado
- Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Jason Lerch
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | - Andres M Lozano
- Division of Neurosurgery, University Health Network, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Krembil Brain Institute, University Health Network, Toronto, Ontario, Canada
| | - Bassam Al-Fatly
- Department of Neurology and Experimental Neurology, Movement Disorders and Neuromodulation Unit, Charité, Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Andrea A Kühn
- Department of Neurology and Experimental Neurology, Movement Disorders and Neuromodulation Unit, Charité, Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
- Exzellenzcluster NeuroCure, Charité, Universitätsmedizin, Berlin, Germany
| | - Suzanne Laughlin
- Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada
| | - Michael C Dewan
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Donald Mabbott
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada
| | - Carolina Gorodetsky
- Division of Neurology, Department of Pediatrics, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Ute Bartels
- Division of Neuro-Oncology, Department of Pediatrics, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Annie Huang
- Division of Neuro-Oncology, Department of Pediatrics, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Uri Tabori
- Division of Neuro-Oncology, Department of Pediatrics, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - James T Rutka
- Division of Neurosurgery, The Hospital for Sick Children, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - James M Drake
- Division of Neurosurgery, The Hospital for Sick Children, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Abhaya V Kulkarni
- Division of Neurosurgery, The Hospital for Sick Children, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Peter Dirks
- Division of Neurosurgery, The Hospital for Sick Children, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Michael D Taylor
- Division of Neurosurgery, The Hospital for Sick Children, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Vijay Ramaswamy
- Division of Neuro-Oncology, Department of Pediatrics, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - George M Ibrahim
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Division of Neurosurgery, The Hospital for Sick Children, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
15
|
Kim J, Vanrobaeys Y, Kelvington B, Peterson Z, Baldwin E, Gaine ME, Nickl-Jockschat T, Abel T. Dissecting 16p11.2 hemi-deletion to study sex-specific striatal phenotypes of neurodevelopmental disorders. Mol Psychiatry 2024; 29:1310-1321. [PMID: 38278994 PMCID: PMC11189748 DOI: 10.1038/s41380-024-02411-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 12/21/2023] [Accepted: 01/04/2024] [Indexed: 01/28/2024]
Abstract
Neurodevelopmental disorders (NDDs) are polygenic in nature and copy number variants (CNVs) are ideal candidates to study the nature of this polygenic risk. The disruption of striatal circuits is considered a central mechanism in NDDs. The 16p11.2 hemi-deletion (16p11.2 del/+) is one of the most common CNVs associated with NDD, and 16p11.2 del/+ mice show sex-specific striatum-related behavioral phenotypes. However, the critical genes among the 27 genes in the 16p11.2 region that underlie these phenotypes remain unknown. Previously, we applied a novel strategy to identify candidate genes associated with the sex-specific phenotypes of 16p11.2 del/+ mice and highlighted three genes within the deleted region: thousand and one amino acid protein kinase 2 (Taok2), seizure-related 6 homolog-like 2 (Sez6l2), and major vault protein (Mvp). Using CRISPR/Cas9, we generated mice carrying null mutations in Taok2, Sez6l2, and Mvp (3 gene hemi-deletion (3g del/+)). Hemi-deletion of these 3 genes recapitulates sex-specific behavioral alterations in striatum-dependent behavioral tasks observed in 16p11.2 del/+ mice, specifically male-specific hyperactivity and impaired motivation for reward seeking. Moreover, RNAseq analysis revealed that 3g del/+ mice exhibit gene expression changes in the striatum similar to 16p11.2 del/+ mice exclusively in males. Subsequent analysis identified translation dysregulation and/or extracellular signal-regulated kinase signaling as plausible molecular mechanisms underlying male-specific, striatum-dependent behavioral alterations. Interestingly, ribosomal profiling supported the notion of translation dysregulation in both 3g del/+ and 16p11.2 del/+ male mice. However, mice carrying a 4-gene deletion (with an additional deletion of Mapk3) exhibited fewer phenotypic similarities with 16p11.2 del/+ mice. Together, the mutation of 3 genes within the 16p11.2 region phenocopies striatal sex-specific phenotypes of 16p11.2 del/+ mice. These results support the importance of a polygenic approach to study NDDs and underscore that the effects of the large genetic deletions result from complex interactions between multiple candidate genes.
Collapse
Affiliation(s)
- Jaekyoon Kim
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa, IA, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa, IA, USA
| | - Yann Vanrobaeys
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa, IA, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa, IA, USA
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa, IA, USA
| | - Benjamin Kelvington
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa, IA, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa, IA, USA
| | - Zeru Peterson
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa, IA, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa, IA, USA
- Department of Psychiatry, Carver College of Medicine, University of Iowa, Iowa, IA, USA
| | - Emily Baldwin
- The Iowa Medical Scientist Training Program, University of Iowa, Iowa, IA, USA
| | - Marie E Gaine
- Iowa Neuroscience Institute, University of Iowa, Iowa, IA, USA
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa, IA, USA
| | - Thomas Nickl-Jockschat
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa, IA, USA.
- Iowa Neuroscience Institute, University of Iowa, Iowa, IA, USA.
- Department of Psychiatry, Carver College of Medicine, University of Iowa, Iowa, IA, USA.
| | - Ted Abel
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa, IA, USA.
- Iowa Neuroscience Institute, University of Iowa, Iowa, IA, USA.
- Department of Psychiatry, Carver College of Medicine, University of Iowa, Iowa, IA, USA.
| |
Collapse
|
16
|
Beversdorf DQ. Understanding the Heterogeneity of Neurodevelopmental Disorders and Its Implications: An Exploration of Repetitive Behaviors. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2024; 9:370-371. [PMID: 38583929 DOI: 10.1016/j.bpsc.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 04/09/2024]
Affiliation(s)
- David Q Beversdorf
- Departments of Radiology, Neurology, and Psychological Sciences, University of Missouri, Columbia, Missouri.
| |
Collapse
|
17
|
Kebschull JM, Casoni F, Consalez GG, Goldowitz D, Hawkes R, Ruigrok TJH, Schilling K, Wingate R, Wu J, Yeung J, Uusisaari MY. Cerebellum Lecture: the Cerebellar Nuclei-Core of the Cerebellum. CEREBELLUM (LONDON, ENGLAND) 2024; 23:620-677. [PMID: 36781689 PMCID: PMC10951048 DOI: 10.1007/s12311-022-01506-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/10/2022] [Indexed: 02/15/2023]
Abstract
The cerebellum is a key player in many brain functions and a major topic of neuroscience research. However, the cerebellar nuclei (CN), the main output structures of the cerebellum, are often overlooked. This neglect is because research on the cerebellum typically focuses on the cortex and tends to treat the CN as relatively simple output nuclei conveying an inverted signal from the cerebellar cortex to the rest of the brain. In this review, by adopting a nucleocentric perspective we aim to rectify this impression. First, we describe CN anatomy and modularity and comprehensively integrate CN architecture with its highly organized but complex afferent and efferent connectivity. This is followed by a novel classification of the specific neuronal classes the CN comprise and speculate on the implications of CN structure and physiology for our understanding of adult cerebellar function. Based on this thorough review of the adult literature we provide a comprehensive overview of CN embryonic development and, by comparing cerebellar structures in various chordate clades, propose an interpretation of CN evolution. Despite their critical importance in cerebellar function, from a clinical perspective intriguingly few, if any, neurological disorders appear to primarily affect the CN. To highlight this curious anomaly, and encourage future nucleocentric interpretations, we build on our review to provide a brief overview of the various syndromes in which the CN are currently implicated. Finally, we summarize the specific perspectives that a nucleocentric view of the cerebellum brings, move major outstanding issues in CN biology to the limelight, and provide a roadmap to the key questions that need to be answered in order to create a comprehensive integrated model of CN structure, function, development, and evolution.
Collapse
Affiliation(s)
- Justus M Kebschull
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21205, USA.
| | - Filippo Casoni
- Division of Neuroscience, San Raffaele Scientific Institute, and San Raffaele University, Milan, Italy
| | - G Giacomo Consalez
- Division of Neuroscience, San Raffaele Scientific Institute, and San Raffaele University, Milan, Italy
| | - Daniel Goldowitz
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, Canada
| | - Richard Hawkes
- Department of Cell Biology & Anatomy and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
| | - Tom J H Ruigrok
- Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands
| | - Karl Schilling
- Department of Anatomy, Anatomy & Cell Biology, Rheinische Friedrich-Wilhelms-Universität, 53115, Bonn, Federal Republic of Germany
| | - Richard Wingate
- MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Joshua Wu
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, Canada
| | - Joanna Yeung
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, Canada
| | - Marylka Yoe Uusisaari
- Neuronal Rhythms in Movement Unit, Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna-Son, Kunigami-Gun, Okinawa, 904-0495, Japan.
| |
Collapse
|
18
|
Guma E, Beauchamp A, Liu S, Levitis E, Ellegood J, Pham L, Mars RB, Raznahan A, Lerch JP. Comparative neuroimaging of sex differences in human and mouse brain anatomy. eLife 2024; 13:RP92200. [PMID: 38488854 PMCID: PMC10942785 DOI: 10.7554/elife.92200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024] Open
Abstract
In vivo neuroimaging studies have established several reproducible volumetric sex differences in the human brain, but the causes of such differences are hard to parse. While mouse models are useful for understanding the cellular and mechanistic bases of sex-specific brain development, there have been no attempts to formally compare human and mouse neuroanatomical sex differences to ascertain how well they translate. Addressing this question would shed critical light on the use of the mouse as a translational model for sex differences in the human brain and provide insights into the degree to which sex differences in brain volume are conserved across mammals. Here, we use structural magnetic resonance imaging to conduct the first comparative neuroimaging study of sex-specific neuroanatomy of the human and mouse brain. In line with previous findings, we observe that in humans, males have significantly larger and more variable total brain volume; these sex differences are not mirrored in mice. After controlling for total brain volume, we observe modest cross-species congruence in the volumetric effect size of sex across 60 homologous regions (r=0.30). This cross-species congruence is greater in the cortex (r=0.33) than non-cortex (r=0.16). By incorporating regional measures of gene expression in both species, we reveal that cortical regions with greater cross-species congruence in volumetric sex differences also show greater cross-species congruence in the expression profile of 2835 homologous genes. This phenomenon differentiates primary sensory regions with high congruence of sex effects and gene expression from limbic cortices where congruence in both these features was weaker between species. These findings help identify aspects of sex-biased brain anatomy present in mice that are retained, lost, or inverted in humans. More broadly, our work provides an empirical basis for targeting mechanistic studies of sex-specific brain development in mice to brain regions that best echo sex-specific brain development in humans.
Collapse
Affiliation(s)
- Elisa Guma
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental HealthBethesdaUnited States
| | - Antoine Beauchamp
- Mouse Imaging CentreTorontoCanada
- The Hospital for Sick ChildrenTorontoCanada
- Department of Medical Biophysics, University of TorontoTorontoCanada
| | - Siyuan Liu
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental HealthBethesdaUnited States
| | - Elizabeth Levitis
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental HealthBethesdaUnited States
| | - Jacob Ellegood
- Mouse Imaging CentreTorontoCanada
- The Hospital for Sick ChildrenTorontoCanada
| | - Linh Pham
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental HealthBethesdaUnited States
- Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical 15 Neurosciences, University of OxfordOxfordUnited Kingdom
| | - Rogier B Mars
- Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical 15 Neurosciences, University of OxfordOxfordUnited Kingdom
- Donders Institute for Brain, Cognition and Behaviour, Radboud University NijmegenNijmegenNetherlands
| | - Armin Raznahan
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental HealthBethesdaUnited States
| | - Jason P Lerch
- Mouse Imaging CentreTorontoCanada
- The Hospital for Sick ChildrenTorontoCanada
- Department of Medical Biophysics, University of TorontoTorontoCanada
- Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical 15 Neurosciences, University of OxfordOxfordUnited Kingdom
| |
Collapse
|
19
|
Li S, May C, Pang TY, Churilov L, Hannan AJ, Johnson KA, Burrows EL. Mice with an autism-associated R451C mutation in neuroligin-3 show intact attention orienting but atypical responses to methylphenidate and atomoxetine in the mouse-Posner task. Psychopharmacology (Berl) 2024; 241:555-567. [PMID: 38170320 DOI: 10.1007/s00213-023-06520-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 12/18/2023] [Indexed: 01/05/2024]
Abstract
RATIONALE Atypical attention orienting has been associated with some autistic symptoms, but the neural mechanisms remain unclear. The human Posner task, a classic attention orienting paradigm, was recently adapted for use with mice, supporting the investigation of the neurobiological underpinnings of atypical attention orienting in preclinical mouse models. OBJECTIVE The current study tested mice expressing the autism-associated R451C gene mutation in neuroligin-3 (NL3) on the mouse-Posner (mPosner) task. METHODS NL3R451C and wild-type (WT) mice were trained to respond to a validly or invalidly cued target on a touchscreen. The cue was a peripheral non-predictive flash in the exogenous task and a central spatially predictive image in the endogenous task. The effects of dopaminergic- and noradrenergic-modulating drugs, methylphenidate and atomoxetine, on task performance were assessed. RESULTS In both tasks, mice were quicker and more accurate in the validly versus invalidly cued trials, consistent with results in the human Posner task. NL3R451C and WT mice showed similar response times and accuracy but responded differently when treated with methylphenidate and atomoxetine. Methylphenidate impaired exogenous attention disengagement in NL3R451C mice but did not significantly affect WT mice. Atomoxetine impaired endogenous orienting in WT mice but did not significantly affect NL3R451C mice. CONCLUSIONS NL3R451C mice demonstrated intact attention orienting but altered responses to the pharmacological manipulation of the dopaminergic and noradrenergic networks. These findings expand our understanding of the NL3R451C mutation by suggesting that this mutation may lead to selective alterations in attentional processes.
Collapse
Affiliation(s)
- Shuting Li
- Melbourne School of Psychological Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia.
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, 3052, Australia.
| | - Carlos May
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, 3052, Australia
| | - Terence Y Pang
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, 3052, Australia
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Leonid Churilov
- Melbourne Medical School, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Anthony J Hannan
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, 3052, Australia
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Katherine A Johnson
- Melbourne School of Psychological Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Emma L Burrows
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, 3052, Australia.
| |
Collapse
|
20
|
Zhuang H, Liang Z, Ma G, Qureshi A, Ran X, Feng C, Liu X, Yan X, Shen L. Autism spectrum disorder: pathogenesis, biomarker, and intervention therapy. MedComm (Beijing) 2024; 5:e497. [PMID: 38434761 PMCID: PMC10908366 DOI: 10.1002/mco2.497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 01/27/2024] [Accepted: 01/30/2024] [Indexed: 03/05/2024] Open
Abstract
Autism spectrum disorder (ASD) has become a common neurodevelopmental disorder. The heterogeneity of ASD poses great challenges for its research and clinical translation. On the basis of reviewing the heterogeneity of ASD, this review systematically summarized the current status and progress of pathogenesis, diagnostic markers, and interventions for ASD. We provided an overview of the ASD molecular mechanisms identified by multi-omics studies and convergent mechanism in different genetic backgrounds. The comorbidities, mechanisms associated with important physiological and metabolic abnormalities (i.e., inflammation, immunity, oxidative stress, and mitochondrial dysfunction), and gut microbial disorder in ASD were reviewed. The non-targeted omics and targeting studies of diagnostic markers for ASD were also reviewed. Moreover, we summarized the progress and methods of behavioral and educational interventions, intervention methods related to technological devices, and research on medical interventions and potential drug targets. This review highlighted the application of high-throughput omics methods in ASD research and emphasized the importance of seeking homogeneity from heterogeneity and exploring the convergence of disease mechanisms, biomarkers, and intervention approaches, and proposes that taking into account individuality and commonality may be the key to achieve accurate diagnosis and treatment of ASD.
Collapse
Affiliation(s)
- Hongbin Zhuang
- College of Life Science and OceanographyShenzhen UniversityShenzhenP. R. China
| | - Zhiyuan Liang
- College of Life Science and OceanographyShenzhen UniversityShenzhenP. R. China
| | - Guanwei Ma
- College of Life Science and OceanographyShenzhen UniversityShenzhenP. R. China
| | - Ayesha Qureshi
- College of Life Science and OceanographyShenzhen UniversityShenzhenP. R. China
| | - Xiaoqian Ran
- College of Life Science and OceanographyShenzhen UniversityShenzhenP. R. China
| | - Chengyun Feng
- Maternal and Child Health Hospital of BaoanShenzhenP. R. China
| | - Xukun Liu
- College of Life Science and OceanographyShenzhen UniversityShenzhenP. R. China
| | - Xi Yan
- College of Life Science and OceanographyShenzhen UniversityShenzhenP. R. China
| | - Liming Shen
- College of Life Science and OceanographyShenzhen UniversityShenzhenP. R. China
- Shenzhen‐Hong Kong Institute of Brain Science‐Shenzhen Fundamental Research InstitutionsShenzhenP. R. China
| |
Collapse
|
21
|
Luo D, Ottesen E, Lee JH, Singh R. Transcriptome- and proteome-wide effects of a circular RNA encompassing four early exons of the spinal muscular atrophy genes. RESEARCH SQUARE 2024:rs.3.rs-3818622. [PMID: 38464174 PMCID: PMC10925445 DOI: 10.21203/rs.3.rs-3818622/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Spinal muscular atrophy (SMA) genes, SMN1 and SMN2, produce multiple circular RNAs (circRNAs), including C2A-2B-3-4 that encompasses early exons 2A, 2B, 3 and 4. Here we report the transcriptome- and proteome-wide effects of overexpression of C2A-2B-3-4 in inducible HEK293 cells. Our RNA-Seq analysis revealed altered expression of ~ 15% genes (4,172 genes) by C2A-2B-3-4. About half of the affected genes by C2A-2B-3-4 remained unaffected by L2A-2B-3-4, a linear transcript encompassing exons 2A, 2B, 3 and 4 of SMN1/SMN2. These fifindings underscore the unique role of the structural context of C2A-2B-3-4 in gene regulation. A surprisingly high number of upregulated genes by C2A-2B-3-4 were located on chromosomes 4 and 7, whereas many of the downregulated genes were located on chromosomes 10 and X. Supporting a cross-regulation of SMN1/SMN2 transcripts, C2A-2B-3-4 and L2A-2B-3-4 upregulated and downregulated SMN1/SMN2 mRNAs, respectively. Proteome analysis revealed 61 upregulated and 57 downregulated proteins by C2A-2B-3-4 with very limited overlap with those affected by L2A-2B-3-4. Independent validations confirmed the effect of C2A-2B-3-4 on expression of genes associated with chromatin remodeling, transcription, spliceosome function, ribosome biogenesis, lipid metabolism, cytoskeletal formation, cell proliferation and neuromuscular junction formation. Our findings reveal a broad role of C2A-2B-3-4, a universally expressed circRNA produced by SMN1/SMN2.
Collapse
|
22
|
Haaf R, Brandi ML, Albantakis L, Lahnakoski JM, Henco L, Schilbach L. Peripheral oxytocin levels are linked to hypothalamic gray matter volume in autistic adults: a cross-sectional secondary data analysis. Sci Rep 2024; 14:1380. [PMID: 38228703 PMCID: PMC10791615 DOI: 10.1038/s41598-023-50770-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 12/25/2023] [Indexed: 01/18/2024] Open
Abstract
Oxytocin (OXT) is known to modulate social behavior and cognition and has been discussed as pathophysiological and therapeutic factor for autism spectrum disorder (ASD). An accumulating body of evidence indicates the hypothalamus to be of particular importance with regard to the underlying neurobiology. Here we used a region of interest voxel-based morphometry (VBM) approach to investigate hypothalamic gray matter volume (GMV) in autistic (n = 29, age 36.03 ± 11.0) and non-autistic adults (n = 27, age 30.96 ± 11.2). Peripheral plasma OXT levels and the autism spectrum quotient (AQ) were used for correlation analyses. Results showed no differences in hypothalamic GMV in autistic compared to non-autistic adults but suggested a differential association between hypothalamic GMV and OXT levels, such that a positive association was found for the ASD group. In addition, hypothalamic GMV showed a positive association with autistic traits in the ASD group. Bearing in mind the limitations such as a relatively small sample size, a wide age range and a high rate of psychopharmacological treatment in the ASD sample, these results provide new preliminary evidence for a potentially important role of the HTH in ASD and its relationship to the OXT system, but also point towards the importance of interindividual differences.
Collapse
Affiliation(s)
- Raoul Haaf
- Independent Max Planck Research Group for Social Neuroscience, Max Planck Institute of Psychiatry, Munich, Germany.
- Graduate School, Technical University of Munich, Munich, Germany.
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Berlin, Germany.
| | - Marie-Luise Brandi
- Independent Max Planck Research Group for Social Neuroscience, Max Planck Institute of Psychiatry, Munich, Germany
| | - Laura Albantakis
- Independent Max Planck Research Group for Social Neuroscience, Max Planck Institute of Psychiatry, Munich, Germany
- Outpatient and Day Clinic for Disorders of Social Interaction, Max Planck Institute of Psychiatry, Munich, Germany
- International Max Planck Research School for Translational Psychiatry, Munich, Germany
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Juha M Lahnakoski
- Independent Max Planck Research Group for Social Neuroscience, Max Planck Institute of Psychiatry, Munich, Germany
- Institute of Neurosciences and Medicine, Brain and Behaviour (INM-7), Research Center Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Lara Henco
- Independent Max Planck Research Group for Social Neuroscience, Max Planck Institute of Psychiatry, Munich, Germany
- Graduate School of Systemic Neurosciences, Munich, Germany
| | - Leonhard Schilbach
- Independent Max Planck Research Group for Social Neuroscience, Max Planck Institute of Psychiatry, Munich, Germany
- Outpatient and Day Clinic for Disorders of Social Interaction, Max Planck Institute of Psychiatry, Munich, Germany
- International Max Planck Research School for Translational Psychiatry, Munich, Germany
- Graduate School of Systemic Neurosciences, Munich, Germany
- Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
23
|
Evans MM, Kim J, Abel T, Nickl-Jockschat T, Stevens HE. Developmental Disruptions of the Dorsal Striatum in Autism Spectrum Disorder. Biol Psychiatry 2024; 95:102-111. [PMID: 37652130 PMCID: PMC10841118 DOI: 10.1016/j.biopsych.2023.08.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 08/10/2023] [Accepted: 08/24/2023] [Indexed: 09/02/2023]
Abstract
Autism spectrum disorder (ASD) is an increasingly prevalent neurodevelopmental condition characterized by social and communication deficits as well as patterns of restricted, repetitive behavior. Abnormal brain development has long been postulated to underlie ASD, but longitudinal studies aimed at understanding the developmental course of the disorder have been limited. More recently, abnormal development of the striatum in ASD has become an area of interest in research, partially due to overlap of striatal functions and deficit areas in ASD, as well as the critical role of the striatum in early development, when ASD is first detected. Focusing on the dorsal striatum and the associated symptom domain of restricted, repetitive behavior, we review the current literature on dorsal striatal abnormalities in ASD, including studies on functional connectivity, morphometry, and cellular and molecular substrates. We highlight that observed striatal abnormalities in ASD are often dynamic across development, displaying disrupted developmental trajectories. Important findings include an abnormal trajectory of increasing corticostriatal functional connectivity with age and increased striatal growth during childhood in ASD. We end by discussing striatal findings from animal models of ASD. In sum, the studies reviewed here demonstrate a key role for developmental disruptions of the dorsal striatum in the pathogenesis of ASD. Directing attention toward these findings will improve our understanding of ASD and of how associated deficits may be better addressed.
Collapse
Affiliation(s)
- Maya M Evans
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, Iowa; Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa
| | - Jaekyoon Kim
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, Iowa; Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa
| | - Ted Abel
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, Iowa; Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa
| | - Thomas Nickl-Jockschat
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, Iowa; Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, Iowa; Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa
| | - Hanna E Stevens
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, Iowa; Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa.
| |
Collapse
|
24
|
Levitis E, Liu S, Whitman ET, Warling A, Torres E, Clasen LS, Lalonde FM, Sarlls J, Alexander DC, Raznahan A. The Variegation of Human Brain Vulnerability to Rare Genetic Disorders and Convergence With Behaviorally Defined Disorders. Biol Psychiatry 2024; 95:136-146. [PMID: 37480975 PMCID: PMC10799187 DOI: 10.1016/j.biopsych.2023.07.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 06/16/2023] [Accepted: 07/10/2023] [Indexed: 07/24/2023]
Abstract
BACKGROUND Diverse gene dosage disorders (GDDs) increase risk for psychiatric impairment, but characterization of GDD effects on the human brain has so far been piecemeal, with few simultaneous analyses of multiple brain features across different GDDs. METHODS Here, through multimodal neuroimaging of 3 aneuploidy syndromes (XXY [total n = 191, 92 control participants], XYY [total n = 81, 47 control participants], and trisomy 21 [total n = 69, 41 control participants]), we systematically mapped the effects of supernumerary X, Y, and chromosome 21 dosage across a breadth of 15 different macrostructural, microstructural, and functional imaging-derived phenotypes (IDPs). RESULTS The results revealed considerable diversity in cortical changes across GDDs and IDPs. This variegation of IDP change underlines the limitations of studying GDD effects unimodally. Integration across all IDP change maps revealed highly distinct architectures of cortical change in each GDD along with partial coalescence onto a common spatial axis of cortical vulnerability that is evident in all 3 GDDs. This common axis shows strong alignment with shared cortical changes in behaviorally defined psychiatric disorders and is enriched for specific molecular and cellular signatures. CONCLUSIONS Use of multimodal neuroimaging data in 3 aneuploidies indicates that different GDDs impose unique fingerprints of change in the human brain that differ widely depending on the imaging modality that is being considered. Embedded in this variegation is a spatial axis of shared multimodal change that aligns with shared brain changes across psychiatric disorders and therefore represents a major high-priority target for future translational research in neuroscience.
Collapse
Affiliation(s)
- Elizabeth Levitis
- Section on Developmental Neurogenomics, National Institute of Mental Health, Bethesda, Maryland; Center for Medical Image Computing, Department of Computer Science, UCL, London, UK.
| | - Siyuan Liu
- Section on Developmental Neurogenomics, National Institute of Mental Health, Bethesda, Maryland
| | - Ethan T Whitman
- Section on Developmental Neurogenomics, National Institute of Mental Health, Bethesda, Maryland
| | - Allysa Warling
- Section on Developmental Neurogenomics, National Institute of Mental Health, Bethesda, Maryland
| | - Erin Torres
- Section on Developmental Neurogenomics, National Institute of Mental Health, Bethesda, Maryland
| | - Liv S Clasen
- Section on Developmental Neurogenomics, National Institute of Mental Health, Bethesda, Maryland
| | - François M Lalonde
- Section on Developmental Neurogenomics, National Institute of Mental Health, Bethesda, Maryland
| | - Joelle Sarlls
- National Institutes of Health MRI Research Facility, National Institute of Mental Health, Bethesda, Maryland
| | - Daniel C Alexander
- Center for Medical Image Computing, Department of Computer Science, UCL, London, UK
| | - Armin Raznahan
- Section on Developmental Neurogenomics, National Institute of Mental Health, Bethesda, Maryland.
| |
Collapse
|
25
|
Yee Y, Ellegood J, French L, Lerch JP. Organization of thalamocortical structural covariance and a corresponding 3D atlas of the mouse thalamus. Neuroimage 2024; 285:120453. [PMID: 37979895 DOI: 10.1016/j.neuroimage.2023.120453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 10/29/2023] [Accepted: 11/08/2023] [Indexed: 11/20/2023] Open
Abstract
For information from sensory organs to be processed by the brain, it is usually passed to appropriate areas of the cerebral cortex. Almost all of this information passes through the thalamus, a relay structure that reciprocally connects to the vast majority of the cortex. The thalamus facilitates this information transfer through a set of thalamocortical connections that vary in cellular structure, molecular profiles, innervation patterns, and firing rates. Additionally, corticothalamic connections allow for intracortical information transfer through the thalamus. These efferent and afferent connections between the thalamus and cortex have been the focus of many studies, and the importance of cortical connectivity in defining thalamus anatomy is demonstrated by multiple studies that parcellate the thalamus based on cortical connectivity profiles. Here, we examine correlated morphological variation between the thalamus and cortex, or thalamocortical structural covariance. For each voxel in the thalamus as a seed, we construct a cortical structural covariance map that represents correlated cortical volume variation, and examine whether high structural covariance is observed in cortical areas that are functionally relevant to the seed. Then, using these cortical structural covariance maps as features, we subdivide the thalamus into six non-overlapping regions (clusters of voxels), and assess whether cortical structural covariance is associated with cortical connectivity that specifically originates from these regions. We show that cortical structural covariance is high in areas of the cortex that are functionally related to the seed voxel, cortical structural covariance varies along cortical depth, and sharp transitions in cortical structural covariance profiles are observed when varying seed locations in the thalamus. Subdividing the thalamus based on structural covariance, we additionally demonstrate that the six thalamic clusters of voxels stratify cortical structural covariance along the dorsal-ventral, medial-lateral, and anterior-posterior axes. These cluster-associated structural covariance patterns are prominently detected in cortical regions innervated by fibers projecting out of their related thalamic subdivisions. Together, these results advance our understanding of how the thalamus and the cortex couple in their volumes. Our results indicate that these volume correlations reflect functional organization and structural connectivity, and further provides a novel segmentation of the mouse thalamus that can be used to examine thalamic structural variation and thalamocortical structural covariation in disease models.
Collapse
Affiliation(s)
- Yohan Yee
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Canada.
| | - Jacob Ellegood
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, Canada
| | - Leon French
- Department of Psychiatry, University of Toronto, Toronto, Canada
| | - Jason P Lerch
- Department of Medical Biophysics, University of Toronto, Toronto, Canada; Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
26
|
Kim JH, Hong J, Choi H, Kang HG, Yoon S, Hwang JY, Park YR, Cheon KA. Development of Deep Ensembles to Screen for Autism and Symptom Severity Using Retinal Photographs. JAMA Netw Open 2023; 6:e2347692. [PMID: 38100107 PMCID: PMC10724768 DOI: 10.1001/jamanetworkopen.2023.47692] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 10/31/2023] [Indexed: 12/18/2023] Open
Abstract
Importance Screening for autism spectrum disorder (ASD) is constrained by limited resources, particularly trained professionals to conduct evaluations. Individuals with ASD have structural retinal changes that potentially reflect brain alterations, including visual pathway abnormalities through embryonic and anatomic connections. Whether deep learning algorithms can aid in objective screening for ASD and symptom severity using retinal photographs is unknown. Objective To develop deep ensemble models to differentiate between retinal photographs of individuals with ASD vs typical development (TD) and between individuals with severe ASD vs mild to moderate ASD. Design, Setting, and Participants This diagnostic study was conducted at a single tertiary-care hospital (Severance Hospital, Yonsei University College of Medicine) in Seoul, Republic of Korea. Retinal photographs of individuals with ASD were prospectively collected between April and October 2022, and those of age- and sex-matched individuals with TD were retrospectively collected between December 2007 and February 2023. Deep ensembles of 5 models were built with 10-fold cross-validation using the pretrained ResNeXt-50 (32×4d) network. Score-weighted visual explanations for convolutional neural networks, with a progressive erasing technique, were used for model visualization and quantitative validation. Data analysis was performed between December 2022 and October 2023. Exposures Autism Diagnostic Observation Schedule-Second Edition calibrated severity scores (cutoff of 8) and Social Responsiveness Scale-Second Edition T scores (cutoff of 76) were used to assess symptom severity. Main Outcomes and Measures The main outcomes were participant-level area under the receiver operating characteristic curve (AUROC), sensitivity, and specificity. The 95% CI was estimated through the bootstrapping method with 1000 resamples. Results This study included 1890 eyes of 958 participants. The ASD and TD groups each included 479 participants (945 eyes), had a mean (SD) age of 7.8 (3.2) years, and comprised mostly boys (392 [81.8%]). For ASD screening, the models had a mean AUROC, sensitivity, and specificity of 1.00 (95% CI, 1.00-1.00) on the test set. These models retained a mean AUROC of 1.00 using only 10% of the image containing the optic disc. For symptom severity screening, the models had a mean AUROC of 0.74 (95% CI, 0.67-0.80), sensitivity of 0.58 (95% CI, 0.49-0.66), and specificity of 0.74 (95% CI, 0.67-0.82) on the test set. Conclusions and Relevance These findings suggest that retinal photographs may be a viable objective screening tool for ASD and possibly for symptom severity. Retinal photograph use may speed the ASD screening process, which may help improve accessibility to specialized child psychiatry assessments currently strained by limited resources.
Collapse
Affiliation(s)
- Jae Han Kim
- Yonsei University College of Medicine, Severance Hospital, Yonsei University Health System, Seoul, Republic of Korea
| | - JaeSeong Hong
- Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hangnyoung Choi
- Department of Child and Adolescent Psychiatry, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
- Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Yonsei University Health System, Seoul, Republic of Korea
| | - Hyun Goo Kang
- Department of Ophthalmology, Institute of Vision Research, Severance Eye Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sangchul Yoon
- Department of Medical Humanities and Social Sciences, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jung Yeon Hwang
- Yonsei University College of Medicine, Severance Hospital, Yonsei University Health System, Seoul, Republic of Korea
| | - Yu Rang Park
- Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Keun-Ah Cheon
- Department of Child and Adolescent Psychiatry, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
- Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Yonsei University Health System, Seoul, Republic of Korea
| |
Collapse
|
27
|
Goodman SJ, Luperchio TR, Ellegood J, Chater-Diehl E, Lerch JP, Bjornsson HT, Weksberg R. Peripheral blood DNA methylation and neuroanatomical responses to HDACi treatment that rescues neurological deficits in a Kabuki syndrome mouse model. Clin Epigenetics 2023; 15:172. [PMID: 37884963 PMCID: PMC10605417 DOI: 10.1186/s13148-023-01582-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 10/08/2023] [Indexed: 10/28/2023] Open
Abstract
BACKGROUND Recent findings from studies of mouse models of Mendelian disorders of epigenetic machinery strongly support the potential for postnatal therapies to improve neurobehavioral and cognitive deficits. As several of these therapies move into human clinical trials, the search for biomarkers of treatment efficacy is a priority. A potential postnatal treatment of Kabuki syndrome type 1 (KS1), caused by pathogenic variants in KMT2D encoding a histone-lysine methyltransferase, has emerged using a mouse model of KS1 (Kmt2d+/βGeo). In this mouse model, hippocampal memory deficits are ameliorated following treatment with the histone deacetylase inhibitor (HDACi), AR-42. Here, we investigate the effect of both Kmt2d+/βGeo genotype and AR-42 treatment on neuroanatomy and on DNA methylation (DNAm) in peripheral blood. While peripheral blood may not be considered a "primary tissue" with respect to understanding the pathophysiology of neurodevelopmental disorders, it has the potential to serve as an accessible biomarker of disease- and treatment-related changes in the brain. METHODS Half of the KS1 and wildtype mice were treated with 14 days of AR-42. Following treatment, fixed brain samples were imaged using MRI to calculate regional volumes. Blood was assayed for genome-wide DNAm at over 285,000 CpG sites using the Illumina Infinium Mouse Methylation array. DNAm patterns and brain volumes were analyzed in the four groups of animals: wildtype untreated, wildtype AR-42 treated, KS1 untreated and KS1 AR-42 treated. RESULTS We defined a DNAm signature in the blood of KS1 mice, that overlapped with the human KS1 DNAm signature. We also found a striking 10% decrease in total brain volume in untreated KS1 mice compared to untreated wildtype, which correlated with DNAm levels in a subset KS1 signature sites, suggesting that disease severity may be reflected in blood DNAm. Treatment with AR-42 ameliorated DNAm aberrations in KS1 mice at a small number of signature sites. CONCLUSIONS As this treatment impacts both neurological deficits and blood DNAm in mice, future KS clinical trials in humans could be used to assess blood DNAm as an early biomarker of therapeutic efficacy.
Collapse
Affiliation(s)
| | - Teresa Romeo Luperchio
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Jacob Ellegood
- Mouse Imaging Centre (MICe), Hospital for Sick Children, Toronto, Canada
| | - Eric Chater-Diehl
- Genetics and Genome Biology, Hospital for Sick Children, Toronto, Canada
| | - Jason P Lerch
- Mouse Imaging Centre (MICe), Hospital for Sick Children, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Wellcome Centre for Integrative Neuroimaging, The University of Oxford, Oxford, UK
- Nuffield Department of Clinical Neuroscience, The University of Oxford, Oxford, UK
| | - Hans Tomas Bjornsson
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, USA
- Faculty of Medicine, University of Iceland, Reykjavík, Iceland
- Landspitali University Hospital, Reykjavík, Iceland
| | - Rosanna Weksberg
- Genetics and Genome Biology, Hospital for Sick Children, Toronto, Canada.
- Division of Clinical and Metabolic Genetics, Hospital for Sick Children, Toronto, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, Canada.
- Institute of Medical Science, University of Toronto, Toronto, Canada.
- Department of Paediatrics, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
28
|
Sadat-Nejad Y, Vandewouw MM, Cardy R, Lerch J, Taylor MJ, Iaboni A, Hammill C, Syed B, Brian JA, Kelley E, Ayub M, Crosbie J, Schachar R, Georgiades S, Nicolson R, Anagnostou E, Kushki A. Investigating heterogeneity across autism, ADHD, and typical development using measures of cortical thickness, surface area, cortical/subcortical volume, and structural covariance. FRONTIERS IN CHILD AND ADOLESCENT PSYCHIATRY 2023; 2:1171337. [PMID: 39839588 PMCID: PMC11747914 DOI: 10.3389/frcha.2023.1171337] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 08/30/2023] [Indexed: 01/23/2025]
Abstract
Introduction Attention-deficit/hyperactivity disorder (ADHD) and autism are multi-faceted neurodevelopmental conditions with limited biological markers. The clinical diagnoses of autism and ADHD are based on behavioural assessments and may not predict long-term outcomes or response to interventions and supports. To address this gap, data-driven methods can be used to discover groups of individuals with shared biological patterns. Methods In this study, we investigated measures derived from cortical/subcortical volume, surface area, cortical thickness, and structural covariance investigated of 565 participants with diagnoses of autism [n = 262, median(IQR) age = 12.2(5.9), 22% female], and ADHD [n = 171, median(IQR) age = 11.1(4.0), 21% female] as well neurotypical children [n = 132, median(IQR) age = 12.1(6.7), 43% female]. We integrated cortical thickness, surface area, and cortical/subcortical volume, with a measure of single-participant structural covariance using a graph neural network approach. Results Our findings suggest two large clusters, which differed in measures of adaptive functioning (χ 2 = 7.8, P = 0.004), inattention (χ 2 = 11.169, P < 0.001), hyperactivity (χ 2 = 18.44, P < 0.001), IQ (χ 2 = 9.24, P = 0.002), age (χ 2 = 70.87, P < 0.001), and sex (χ 2 = 105.6, P < 0.001). Discussion These clusters did not align with existing diagnostic labels, suggesting that brain structure is more likely to be associated with differences in adaptive functioning, IQ, and ADHD features.
Collapse
Affiliation(s)
- Younes Sadat-Nejad
- Autism Research Centre, Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Marlee M. Vandewouw
- Autism Research Centre, Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - R. Cardy
- Autism Research Centre, Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON, Canada
| | - J. Lerch
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, ON, Canada
- Program in Neuroscience and Mental Health, Department of Medical Biophysics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
- Nuffield Department of Clinical Neurosciences, Wellcome Centre for Integrative Neuroimaging, FMRIB, University of Oxford, Oxford, United Kingdom
| | - M. J. Taylor
- Diagnostic Imaging, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
| | - A. Iaboni
- Autism Research Centre, Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON, Canada
| | - C. Hammill
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - B. Syed
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - J. A. Brian
- Autism Research Centre, Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON, Canada
- Department of Paediatrics, University of Toronto, Toronto, ON, Canada
| | - E. Kelley
- Department of Psychology, Queen's University, Kingston, ON, Canada
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
- Department of Psychiatry, Queen's University, Kingston, ON, Canada
| | - M. Ayub
- Department of Psychiatry, Queen's University, Kingston, ON, Canada
| | - J. Crosbie
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, The Hospital for Sick Children, Toronto, ON, Canada
| | - R. Schachar
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, The Hospital for Sick Children, Toronto, ON, Canada
| | - S. Georgiades
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - R. Nicolson
- Department of Psychiatry, Western University, London, ON, Canada
| | - E. Anagnostou
- Autism Research Centre, Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON, Canada
- Department of Paediatrics, University of Toronto, Toronto, ON, Canada
| | - A. Kushki
- Autism Research Centre, Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
29
|
Sumathipala SH, Khan S, Kozol RA, Araki Y, Syed S, Huganir RL, Dallman JE. Context-dependent hyperactivity in syngap1a and syngap1b zebrafish autism models. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.20.557316. [PMID: 37786701 PMCID: PMC10541574 DOI: 10.1101/2023.09.20.557316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Background and Aims SYNGAP1 disorder is a prevalent genetic form of Autism Spectrum Disorder and Intellectual Disability (ASD/ID) and is caused by de novo or inherited mutations in one copy of the SYNGAP1 gene. In addition to ASD/ID, SYNGAP1 disorder is associated with comorbid symptoms including treatment-resistant-epilepsy, sleep disturbances, and gastrointestinal distress. Mechanistic links between these diverse symptoms and SYNGAP1 variants remain obscure, therefore, our goal was to generate a zebrafish model in which this range of symptoms can be studied. Methods We used CRISPR/Cas9 to introduce frameshift mutations in the syngap1a and syngap1b zebrafish duplicates (syngap1ab) and validated these stable models for Syngap1 loss-of-function. Because SYNGAP1 is extensively spliced, we mapped splice variants to the two zebrafish syngap1a and b genes and identified mammalian-like isoforms. We then quantified locomotory behaviors in zebrafish syngap1ab larvae under three conditions that normally evoke different arousal states in wild type larvae: aversive, high-arousal acoustic, medium-arousal dark, and low-arousal light stimuli. Results We show that CRISPR/Cas9 indels in zebrafish syngap1a and syngap1b produced loss-of-function alleles at RNA and protein levels. Our analyses of zebrafish Syngap1 isoforms showed that, as in mammals, zebrafish Syngap1 N- and C-termini are extensively spliced. We identified a zebrafish syngap1 α1-like variant that maps exclusively to the syngap1b gene. Quantifying locomotor behaviors showed that syngap1ab larvae are hyperactive compared to wild type but to differing degrees depending on the stimulus. Hyperactivity was most pronounced in low arousal settings, with overall movement increasing with the number of mutant syngap1 alleles. Conclusions Our data support mutations in zebrafish syngap1ab as causal for hyperactivity associated with elevated arousal that is especially pronounced in low-arousal environments.
Collapse
Affiliation(s)
- Sureni H. Sumathipala
- Department of Biology, University of Miami, Coral Gables, FL USA
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Suha Khan
- Department of Biology, University of Miami, Coral Gables, FL USA
| | - Robert A. Kozol
- Department of Biology, University of Miami, Coral Gables, FL USA
- Jupiter Life Science Initiative, Florida Atlantic University, Jupiter FL, USA
| | - Yoichi Araki
- Department of Neuroscience and Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Sheyum Syed
- Department of Physics, University of Miami, Coral Gables, FL USA
| | - Richard L. Huganir
- Department of Neuroscience and Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Julia E. Dallman
- Department of Biology, University of Miami, Coral Gables, FL USA
| |
Collapse
|
30
|
Guma E, Beauchamp A, Liu S, Levitis E, Ellegood J, Pham L, Mars RB, Raznahan A, Lerch JP. Comparative neuroimaging of sex differences in human and mouse brain anatomy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.23.554334. [PMID: 37662398 PMCID: PMC10473765 DOI: 10.1101/2023.08.23.554334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
In vivo neuroimaging studies have established several reproducible volumetric sex differences in the human brain, but the causes of such differences are hard to parse. While mouse models are useful for understanding the cellular and mechanistic bases of sex-biased brain development in mammals, there have been no attempts to formally compare mouse and human sex differences across the whole brain to ascertain how well they translate. Addressing this question would shed critical light on use of the mouse as a translational model for sex differences in the human brain and provide insights into the degree to which sex differences in brain volume are conserved across mammals. Here, we use cross-species structural magnetic resonance imaging to carry out the first comparative neuroimaging study of sex-biased neuroanatomical organization of the human and mouse brain. In line with previous findings, we observe that in humans, males have significantly larger and more variable total brain volume; these sex differences are not mirrored in mice. After controlling for total brain volume, we observe modest cross-species congruence in the volumetric effect size of sex across 60 homologous brain regions (r=0.30; e.g.: M>F amygdala, hippocampus, bed nucleus of the stria terminalis, and hypothalamus and F>M anterior cingulate, somatosensory, and primary auditory cortices). This cross-species congruence is greater in the cortex (r=0.33) than non-cortex (r=0.16). By incorporating regional measures of gene expression in both species, we reveal that cortical regions with greater cross-species congruence in volumetric sex differences also show greater cross-species congruence in the expression profile of 2835 homologous genes. This phenomenon differentiates primary sensory regions with high congruence of sex effects and gene expression from limbic cortices where congruence in both these features was weaker between species. These findings help identify aspects of sex-biased brain anatomy present in mice that are retained, lost, or inverted in humans. More broadly, our work provides an empirical basis for targeting mechanistic studies of sex-biased brain development in mice to brain regions that best echo sex-biased brain development in humans.
Collapse
Affiliation(s)
- Elisa Guma
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - Antoine Beauchamp
- Mouse Imaging Centre, Toronto, Ontario, Canada
- The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Siyuan Liu
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - Elizabeth Levitis
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - Jacob Ellegood
- Mouse Imaging Centre, Toronto, Ontario, Canada
- The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Linh Pham
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health, Bethesda, MD, USA
- Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Rogier B Mars
- Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Armin Raznahan
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - Jason P Lerch
- Mouse Imaging Centre, Toronto, Ontario, Canada
- The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
31
|
Dawson MS, Gordon-Fleet K, Yan L, Tardos V, He H, Mui K, Nawani S, Asgarian Z, Catani M, Fernandes C, Drescher U. Sexual dimorphism in the social behaviour of Cntnap2-null mice correlates with disrupted synaptic connectivity and increased microglial activity in the anterior cingulate cortex. Commun Biol 2023; 6:846. [PMID: 37582968 PMCID: PMC10427688 DOI: 10.1038/s42003-023-05215-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 08/04/2023] [Indexed: 08/17/2023] Open
Abstract
A biological understanding of the apparent sex bias in autism is lacking. Here we have identified Cntnap2 KO mice as a model system to help better understand this dimorphism. Using this model, we observed social deficits in juvenile male KO mice only. These male-specific social deficits correlated with reduced spine densities of Layer 2/3 and Layer 5 pyramidal neurons in the Anterior Cingulate Cortex, a forebrain region prominently associated with the control of social behaviour. Furthermore, in male KO mice, microglia showed an increased activated morphology and phagocytosis of synaptic structures compared to WT mice, whereas no differences were seen in female KO and WT mice. Our data suggest that sexually dimorphic microglial activity may be involved in the aetiology of ASD, disrupting the development of neural circuits that control social behaviour by overpruning synapses at a developmentally critical period.
Collapse
Affiliation(s)
- Matt S Dawson
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, SE1 1UL, UK
| | - Kevin Gordon-Fleet
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, SE1 1UL, UK
| | - Lingxin Yan
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, SE1 1UL, UK
| | - Vera Tardos
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, SE1 1UL, UK
| | - Huanying He
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, SE1 1UL, UK
| | - Kwong Mui
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, SE1 1UL, UK
| | - Smriti Nawani
- Social, Genetic & Developmental Psychiatry Centre, IoPPN, King's College London, London, SE1 1UL, UK
| | - Zeinab Asgarian
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, SE1 1UL, UK
- Molecular Therapeutics Lab, University College London, Research Department of Targeted Intervention, London, W1W 7TY, UK
| | - Marco Catani
- NatBrainLab, Departments of Neuroimaging Sciences and Forensic and Neurodevelopmental Sciences, IoPPN, King's College London, London, SE1 1UL, UK
| | - Cathy Fernandes
- Social, Genetic & Developmental Psychiatry Centre, IoPPN, King's College London, London, SE1 1UL, UK
- MRC Centre for Neurodevelopmental Disorders, IoPPN, King's College London, London, SE1 1UL, UK
| | - Uwe Drescher
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, SE1 1UL, UK.
- MRC Centre for Neurodevelopmental Disorders, IoPPN, King's College London, London, SE1 1UL, UK.
| |
Collapse
|
32
|
Pretzsch CM, Ecker C. Structural neuroimaging phenotypes and associated molecular and genomic underpinnings in autism: a review. Front Neurosci 2023; 17:1172779. [PMID: 37457001 PMCID: PMC10347684 DOI: 10.3389/fnins.2023.1172779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 06/09/2023] [Indexed: 07/18/2023] Open
Abstract
Autism has been associated with differences in the developmental trajectories of multiple neuroanatomical features, including cortical thickness, surface area, cortical volume, measures of gyrification, and the gray-white matter tissue contrast. These neuroimaging features have been proposed as intermediate phenotypes on the gradient from genomic variation to behavioral symptoms. Hence, examining what these proxy markers represent, i.e., disentangling their associated molecular and genomic underpinnings, could provide crucial insights into the etiology and pathophysiology of autism. In line with this, an increasing number of studies are exploring the association between neuroanatomical, cellular/molecular, and (epi)genetic variation in autism, both indirectly and directly in vivo and across age. In this review, we aim to summarize the existing literature in autism (and neurotypicals) to chart a putative pathway from (i) imaging-derived neuroanatomical cortical phenotypes to (ii) underlying (neuropathological) biological processes, and (iii) associated genomic variation.
Collapse
Affiliation(s)
- Charlotte M. Pretzsch
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology, and Neuroscience, King’s College London, London, United Kingdom
| | - Christine Ecker
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| |
Collapse
|
33
|
Molloy CJ, Cooke J, Gatford NJF, Rivera-Olvera A, Avazzadeh S, Homberg JR, Grandjean J, Fernandes C, Shen S, Loth E, Srivastava DP, Gallagher L. Bridging the translational gap: what can synaptopathies tell us about autism? Front Mol Neurosci 2023; 16:1191323. [PMID: 37441676 PMCID: PMC10333541 DOI: 10.3389/fnmol.2023.1191323] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/24/2023] [Indexed: 07/15/2023] Open
Abstract
Multiple molecular pathways and cellular processes have been implicated in the neurobiology of autism and other neurodevelopmental conditions. There is a current focus on synaptic gene conditions, or synaptopathies, which refer to clinical conditions associated with rare genetic variants disrupting genes involved in synaptic biology. Synaptopathies are commonly associated with autism and developmental delay and may be associated with a range of other neuropsychiatric outcomes. Altered synaptic biology is suggested by both preclinical and clinical studies in autism based on evidence of differences in early brain structural development and altered glutamatergic and GABAergic neurotransmission potentially perturbing excitatory and inhibitory balance. This review focusses on the NRXN-NLGN-SHANK pathway, which is implicated in the synaptic assembly, trans-synaptic signalling, and synaptic functioning. We provide an overview of the insights from preclinical molecular studies of the pathway. Concentrating on NRXN1 deletion and SHANK3 mutations, we discuss emerging understanding of cellular processes and electrophysiology from induced pluripotent stem cells (iPSC) models derived from individuals with synaptopathies, neuroimaging and behavioural findings in animal models of Nrxn1 and Shank3 synaptic gene conditions, and key findings regarding autism features, brain and behavioural phenotypes from human clinical studies of synaptopathies. The identification of molecular-based biomarkers from preclinical models aims to advance the development of targeted therapeutic treatments. However, it remains challenging to translate preclinical animal models and iPSC studies to interpret human brain development and autism features. We discuss the existing challenges in preclinical and clinical synaptopathy research, and potential solutions to align methodologies across preclinical and clinical research. Bridging the translational gap between preclinical and clinical studies will be necessary to understand biological mechanisms, to identify targeted therapies, and ultimately to progress towards personalised approaches for complex neurodevelopmental conditions such as autism.
Collapse
Affiliation(s)
- Ciara J. Molloy
- Department of Psychiatry, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Jennifer Cooke
- Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Nicholas J. F. Gatford
- Kavli Institute for Nanoscience Discovery, Nuffield Department of Clinical Neurosciences, University of Oxford, Medical Sciences Division, Oxford, United Kingdom
| | - Alejandro Rivera-Olvera
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Sahar Avazzadeh
- Physiology and Cellular Physiology Research Laboratory, CÚRAM SFI Centre for Research in Medical Devices, School of Medicine, Human Biology Building, University of Galway, Galway, Ireland
| | - Judith R. Homberg
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Joanes Grandjean
- Physiology and Cellular Physiology Research Laboratory, CÚRAM SFI Centre for Research in Medical Devices, School of Medicine, Human Biology Building, University of Galway, Galway, Ireland
- Department of Medical Imaging, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Cathy Fernandes
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Sanbing Shen
- Regenerative Medicine Institute, School of Medicine, University of Galway, Galway, Ireland
- FutureNeuro, The SFI Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons, Dublin, Ireland
| | - Eva Loth
- Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Deepak P. Srivastava
- MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Louise Gallagher
- Department of Psychiatry, School of Medicine, Trinity College Dublin, Dublin, Ireland
- The Hospital for SickKids, Toronto, ON, Canada
- The Peter Gilgan Centre for Research and Learning, SickKids Research Institute, Toronto, ON, Canada
- The Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
34
|
Lin CW, Ellegood J, Tamada K, Miura I, Konda M, Takeshita K, Atarashi K, Lerch JP, Wakana S, McHugh TJ, Takumi T. An old model with new insights: endogenous retroviruses drive the evolvement toward ASD susceptibility and hijack transcription machinery during development. Mol Psychiatry 2023; 28:1932-1945. [PMID: 36882500 PMCID: PMC10575786 DOI: 10.1038/s41380-023-01999-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 03/09/2023]
Abstract
The BTBR T+Itpr3tf/J (BTBR/J) strain is one of the most valid models of idiopathic autism, serving as a potent forward genetics tool to dissect the complexity of autism. We found that a sister strain with an intact corpus callosum, BTBR TF/ArtRbrc (BTBR/R), showed more prominent autism core symptoms but moderate ultrasonic communication/normal hippocampus-dependent memory, which may mimic autism in the high functioning spectrum. Intriguingly, disturbed epigenetic silencing mechanism leads to hyperactive endogenous retrovirus (ERV), a mobile genetic element of ancient retroviral infection, which increases de novo copy number variation (CNV) formation in the two BTBR strains. This feature makes the BTBR strain a still evolving multiple-loci model toward higher ASD susceptibility. Furthermore, active ERV, analogous to virus infection, evades the integrated stress response (ISR) of host defense and hijacks the transcriptional machinery during embryonic development in the BTBR strains. These results suggest dual roles of ERV in the pathogenesis of ASD, driving host genome evolution at a long-term scale and managing cellular pathways in response to viral infection, which has immediate effects on embryonic development. The wild-type Draxin expression in BTBR/R also makes this substrain a more precise model to investigate the core etiology of autism without the interference of impaired forebrain bundles as in BTBR/J.
Collapse
Affiliation(s)
- Chia-Wen Lin
- Laboratory for Mental Biology, RIKEN Brain Science Institute, Wako, 351-0198, Saitama, Japan
- Laboratory for Circuit and Behavioral Physiology, RIKEN Center for Brain Science, Wako, 351-0198, Saitama, Japan
- Department of Physiology and Cell Biology, Kobe University School of Medicine, Chuo, 650-0017, Kobe, Japan
| | - Jacob Ellegood
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario, M5T 3H7, Canada
| | - Kota Tamada
- Laboratory for Mental Biology, RIKEN Brain Science Institute, Wako, 351-0198, Saitama, Japan
- Department of Physiology and Cell Biology, Kobe University School of Medicine, Chuo, 650-0017, Kobe, Japan
| | - Ikuo Miura
- Technology and Development Team for Mouse Phenotype Analysis, Japan Mouse Clinic, RIKEN BioResource Research Center, Tsukuba, Ibaraki, 305-0074, Japan
| | - Mikiko Konda
- Department of Microbiology and Immunology, Keio University School of Medicine, Shinjuku, 160-8582, Tokyo, Japan
| | - Kozue Takeshita
- Department of Microbiology and Immunology, Keio University School of Medicine, Shinjuku, 160-8582, Tokyo, Japan
| | - Koji Atarashi
- Department of Microbiology and Immunology, Keio University School of Medicine, Shinjuku, 160-8582, Tokyo, Japan
- RIKEN Center for Integrative Medical Sciences, Tsurumi, 230-0045, Yokohama, Japan
| | - Jason P Lerch
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario, M5T 3H7, Canada
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, Oxfordshire, OX39DU, UK
| | - Shigeharu Wakana
- Technology and Development Team for Mouse Phenotype Analysis, Japan Mouse Clinic, RIKEN BioResource Research Center, Tsukuba, Ibaraki, 305-0074, Japan
| | - Thomas J McHugh
- Laboratory for Circuit and Behavioral Physiology, RIKEN Center for Brain Science, Wako, 351-0198, Saitama, Japan
| | - Toru Takumi
- Laboratory for Mental Biology, RIKEN Brain Science Institute, Wako, 351-0198, Saitama, Japan.
- Department of Physiology and Cell Biology, Kobe University School of Medicine, Chuo, 650-0017, Kobe, Japan.
- RIKEN Center for Biosystems Dynamics Research, Chuo, 650-0047, Kobe, Japan.
| |
Collapse
|
35
|
Ren B, Burkovetskaya M, Jung Y, Bergdolt L, Totusek S, Martinez-Cerdeno V, Stauch K, Korade Z, Dunaevsky A. Dysregulated cholesterol metabolism, aberrant excitability and altered cell cycle of astrocytes in fragile X syndrome. Glia 2023; 71:1176-1196. [PMID: 36594399 PMCID: PMC10023374 DOI: 10.1002/glia.24331] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 01/04/2023]
Abstract
Fragile X syndrome (FXS), the most prevalent heritable form of intellectual disability, is caused by the transcriptional silencing of the FMR1 gene. While neuronal contribution to FXS has been extensively studied in both animal and human-based models of FXS, the roles of astrocytes, a type of glial cells in the brain, are largely unknown. Here, we generated a human-based FXS model via differentiation of astrocytes from human-induced pluripotent stem cells (hiPSCs) and human embryonic stem cells (hESCs) and characterized their development, function, and proteomic profiles. We identified shortened cell cycle, enhanced Ca2+ signaling, impaired sterol biosynthesis, and pervasive alterations in the proteome of FXS astrocytes. Our work identified astrocytic impairments that could contribute to the pathogenesis of FXS and highlight astrocytes as a novel therapeutic target for FXS treatment.
Collapse
Affiliation(s)
- Baiyan Ren
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Maria Burkovetskaya
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Yoosun Jung
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Lara Bergdolt
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Steven Totusek
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Veronica Martinez-Cerdeno
- Department of Pathology and Laboratory Medicine, MIND Institute, and Institute for Pediatric Regenerative Medicine at UC Davis School of Medicine, and Shriners Hospitals for Children of Northern California, Sacramento, California, USA
| | - Kelly Stauch
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Zeljka Korade
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Munroe-Meyer Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Department of Pediatrics, CHRI, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Anna Dunaevsky
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, USA
| |
Collapse
|
36
|
Weinschutz Mendes H, Neelakantan U, Liu Y, Fitzpatrick SE, Chen T, Wu W, Pruitt A, Jin DS, Jamadagni P, Carlson M, Lacadie CM, Enriquez KD, Li N, Zhao D, Ijaz S, Sakai C, Szi C, Rooney B, Ghosh M, Nwabudike I, Gorodezky A, Chowdhury S, Zaheer M, McLaughlin S, Fernandez JM, Wu J, Eilbott JA, Vander Wyk B, Rihel J, Papademetris X, Wang Z, Hoffman EJ. High-throughput functional analysis of autism genes in zebrafish identifies convergence in dopaminergic and neuroimmune pathways. Cell Rep 2023; 42:112243. [PMID: 36933215 PMCID: PMC10277173 DOI: 10.1016/j.celrep.2023.112243] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 11/15/2022] [Accepted: 02/23/2023] [Indexed: 03/19/2023] Open
Abstract
Advancing from gene discovery in autism spectrum disorders (ASDs) to the identification of biologically relevant mechanisms remains a central challenge. Here, we perform parallel in vivo functional analysis of 10 ASD genes at the behavioral, structural, and circuit levels in zebrafish mutants, revealing both unique and overlapping effects of gene loss of function. Whole-brain mapping identifies the forebrain and cerebellum as the most significant contributors to brain size differences, while regions involved in sensory-motor control, particularly dopaminergic regions, are associated with altered baseline brain activity. Finally, we show a global increase in microglia resulting from ASD gene loss of function in select mutants, implicating neuroimmune dysfunction as a key pathway relevant to ASD biology.
Collapse
Affiliation(s)
| | - Uma Neelakantan
- Child Study Center, Yale School of Medicine, New Haven, CT 06510, USA
| | - Yunqing Liu
- Department of Biostatistics, Yale School of Public Health, New Haven, CT 06510, USA
| | - Sarah E Fitzpatrick
- Child Study Center, Yale School of Medicine, New Haven, CT 06510, USA; Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA; Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06510, USA; MD-PhD Program, Yale School of Medicine, New Haven, CT 06510, USA
| | - Tianying Chen
- Child Study Center, Yale School of Medicine, New Haven, CT 06510, USA
| | - Weimiao Wu
- Department of Biostatistics, Yale School of Public Health, New Haven, CT 06510, USA
| | - April Pruitt
- Child Study Center, Yale School of Medicine, New Haven, CT 06510, USA; Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA; Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06510, USA
| | - David S Jin
- Child Study Center, Yale School of Medicine, New Haven, CT 06510, USA; Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA; Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06510, USA; Department of Neurology, Yale School of Medicine, New Haven, CT 06510, USA
| | | | - Marina Carlson
- Child Study Center, Yale School of Medicine, New Haven, CT 06510, USA; Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA; Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06510, USA
| | - Cheryl M Lacadie
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT 06510, USA
| | | | - Ningshan Li
- Department of Biostatistics, Yale School of Public Health, New Haven, CT 06510, USA; SJTU-Yale Joint Center for Biostatistics and Data Science, Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Dejian Zhao
- Department of Genetics, Yale Center for Genome Analysis, Yale School of Medicine, New Haven, CT 06510, USA
| | - Sundas Ijaz
- Child Study Center, Yale School of Medicine, New Haven, CT 06510, USA
| | - Catalina Sakai
- Child Study Center, Yale School of Medicine, New Haven, CT 06510, USA
| | - Christina Szi
- Child Study Center, Yale School of Medicine, New Haven, CT 06510, USA
| | - Brendan Rooney
- Child Study Center, Yale School of Medicine, New Haven, CT 06510, USA
| | - Marcus Ghosh
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Ijeoma Nwabudike
- Child Study Center, Yale School of Medicine, New Haven, CT 06510, USA; Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06510, USA; MD-PhD Program, Yale School of Medicine, New Haven, CT 06510, USA; Department of Psychiatry, Yale School of Medicine, New Haven, CT 06510, USA
| | - Andrea Gorodezky
- Child Study Center, Yale School of Medicine, New Haven, CT 06510, USA
| | - Sumedha Chowdhury
- Child Study Center, Yale School of Medicine, New Haven, CT 06510, USA
| | - Meeraal Zaheer
- Child Study Center, Yale School of Medicine, New Haven, CT 06510, USA
| | - Sarah McLaughlin
- Child Study Center, Yale School of Medicine, New Haven, CT 06510, USA
| | | | - Jia Wu
- Child Study Center, Yale School of Medicine, New Haven, CT 06510, USA
| | - Jeffrey A Eilbott
- Child Study Center, Yale School of Medicine, New Haven, CT 06510, USA
| | - Brent Vander Wyk
- Department of Internal Medicine, Section of Geriatrics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Jason Rihel
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Xenophon Papademetris
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT 06510, USA; Department of Biomedical Engineering, Yale University, New Haven, CT 06510, USA
| | - Zuoheng Wang
- Department of Biostatistics, Yale School of Public Health, New Haven, CT 06510, USA
| | - Ellen J Hoffman
- Child Study Center, Yale School of Medicine, New Haven, CT 06510, USA; Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
37
|
Abel T, Kim J, Vanrobaeys Y, Peterson Z, Kelvington B, Gaine M, Nickl-Jockschat T. Dissecting 16p11.2 hemi-deletion to study sex-specific striatal phenotypes of neurodevelopmental disorders. RESEARCH SQUARE 2023:rs.3.rs-2565823. [PMID: 36824977 PMCID: PMC9949238 DOI: 10.21203/rs.3.rs-2565823/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
Neurodevelopmental disorders (NDDs) are polygenic in nature and copy number variants (CNVs) are ideal candidates to study the nature of this polygenic risk. The disruption of striatal circuits is considered a central mechanism in NDDs. The 16p11.2 hemi-deletion (16p11.2 del) is one of the most common CNVs associated with NDD, and 16p11.2 del/+ mice show sex-specific striatum-related behavioral phenotypes. However, the critical genes among the 27 genes in the 16p11.2 region that underlie these phenotypes remain unknown. Previously, we applied a novel strategy to identify candidate genes associated with the sex-specific phenotypes of 16p11.2 del/+ mice and identified 3 genes of particular importance within the deleted region: thousand and one amino acid protein kinase 2 (Taok2), seizure-related 6 homolog-like 2 (Sez6l2), and major vault protein (Mvp). Using the CRISPR/Cas9 technique, we generated 3 gene hemi-deletion (3g del/+) mice carrying null mutations in Taok2, Sez6l2, and Mvp. We assessed striatum-dependent phenotypes of these 3g del/+ mice in behavioral, molecular, and imaging studies. Hemi-deletion of Taok2, Sez6l2, and Mvp induces sex-specific behavioral alterations in striatum-dependent behavioral tasks, specifically male-specific hyperactivity and impaired motivation for reward seeking, resembling behavioral phenotypes of 16p11.2 del/+ mice. Moreover, RNAseq analysis revealed that 3g del/+ mice exhibit gene expression changes in the striatum similar to 16p11.2 del/+ mice, but only in males. Pathway analysis identified ribosomal dysfunction and translation dysregulation as molecular mechanisms underlying male-specific, striatum-dependent behavioral alterations. Together, the mutation of 3 genes within the 16p11.2 region phenocopies striatal sex-specific phenotypes of 16p11.2 del/+ mice, unlike single gene mutation studies. These results support the importance of a polygenic approach to study NDDs and our novel strategy to identify genes of interest using gene expression patterns in brain regions, such as the striatum, which are impacted in these disorders.
Collapse
|
38
|
Kim J, Vanrobaeys Y, Peterson Z, Kelvington B, Gaine ME, Nickl-Jockschat T, Abel T. Dissecting 16p11.2 hemi-deletion to study sex-specific striatal phenotypes of neurodevelopmental disorders. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.09.527866. [PMID: 36798381 PMCID: PMC9934710 DOI: 10.1101/2023.02.09.527866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Neurodevelopmental disorders (NDDs) are polygenic in nature and copy number variants (CNVs) are ideal candidates to study the nature of this polygenic risk. The disruption of striatal circuits is considered a central mechanism in NDDs. The 16p11.2 hemi-deletion (16p11.2 del) is one of the most common CNVs associated with NDD, and 16p11.2 del/+ mice show sex-specific striatum-related behavioral phenotypes. However, the critical genes among the 27 genes in the 16p11.2 region that underlie these phenotypes remain unknown. Previously, we applied a novel strategy to identify candidate genes associated with the sex-specific phenotypes of 16p11.2 del/+ mice and identified 3 genes of particular importance within the deleted region: thousand and one amino acid protein kinase 2 ( Taok2 ), seizure-related 6 homolog-like 2 ( Sez6l2 ), and major vault protein ( Mvp ). Using the CRISPR/Cas9 technique, we generated 3 gene hemi-deletion (3g del/+) mice carrying null mutations in Taok2, Sez6l2 , and Mvp . We assessed striatum-dependent phenotypes of these 3g del/+ mice in behavioral, molecular, and imaging studies. Hemi-deletion of Taok2, Sez6l2 , and Mvp induces sex-specific behavioral alterations in striatum-dependent behavioral tasks, specifically male-specific hyperactivity and impaired motivation for reward seeking, resembling behavioral phenotypes of 16p11.2 del/+ mice. Moreover, RNAseq analysis revealed that 3g del/+ mice exhibit gene expression changes in the striatum similar to 16p11.2 del/+ mice, but only in males. Pathway analysis identified ribosomal dysfunction and translation dysregulation as molecular mechanisms underlying male-specific, striatum-dependent behavioral alterations. Together, the mutation of 3 genes within the 16p11.2 region phenocopies striatal sex-specific phenotypes of 16p11.2 del/+ mice, unlike single gene mutation studies. These results support the importance of a polygenic approach to study NDDs and our novel strategy to identify genes of interest using gene expression patterns in brain regions, such as the striatum, which are impacted in these disorders.
Collapse
|
39
|
Chen S, Liu G, Li A, Liu Z, Long B, Yang X, Gong H, Li X. Three-dimensional mapping in multi-samples with large-scale imaging and multiplexed post staining. Commun Biol 2023; 6:148. [PMID: 36737476 PMCID: PMC9898531 DOI: 10.1038/s42003-023-04456-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 01/10/2023] [Indexed: 02/05/2023] Open
Abstract
Dissection of the anatomical information at the single-cell level is crucial for understanding the organization rule and pathological mechanism of biological tissues. Mapping the whole organ in numerous groups with multiple conditions brings the challenges in imaging and analysis. Here, we describe an approach, named array fluorescent micro-optical sectioning tomography (array-fMOST), to identify the three-dimensional information at single-cell resolution from multi-samples. The pipeline contains array embedding, large-scale imaging, post-imaging staining and data analysis, which could image over 24 mouse brains simultaneously and collect the slices for further analysis. With transgenic mice, we acquired the distribution information of neuropeptide somatostatin neurons during natural aging and compared the changes in the microenvironments by multi-component labeling of serial sections with precise co-registration of serial datasets quantitatively. With viral labeling, we also analyzed the input circuits of the medial prefrontal cortex in the whole brain of Alzheimer's disease and autism model mice. This pipeline is highly scalable to be applied to anatomical alterations screening and identification. It provides new opportunities for combining multi-sample whole-organ imaging and molecular phenotypes identification analysis together. Such integrated high-dimensional information acquisition method may accelerate our understanding of pathogenesis and progression of disease in situ at multiple levels.
Collapse
Affiliation(s)
- Siqi Chen
- grid.33199.310000 0004 0368 7223Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074 China
| | - Guangcai Liu
- grid.33199.310000 0004 0368 7223Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074 China
| | - Anan Li
- grid.33199.310000 0004 0368 7223Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074 China ,grid.495419.4Research Unit of Multimodal Cross Scale Neural Signal Detection and Imaging, Chinese Academy of Medical Sciences, HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou, 215125 China
| | - Zhixiang Liu
- grid.33199.310000 0004 0368 7223Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074 China
| | - Ben Long
- grid.428986.90000 0001 0373 6302Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou, 570228 China
| | - Xiaoquan Yang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China. .,Research Unit of Multimodal Cross Scale Neural Signal Detection and Imaging, Chinese Academy of Medical Sciences, HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou, 215125, China.
| | - Hui Gong
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China. .,Research Unit of Multimodal Cross Scale Neural Signal Detection and Imaging, Chinese Academy of Medical Sciences, HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou, 215125, China.
| | - Xiangning Li
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China. .,Research Unit of Multimodal Cross Scale Neural Signal Detection and Imaging, Chinese Academy of Medical Sciences, HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou, 215125, China. .,Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou, 570228, China.
| |
Collapse
|
40
|
Singh AP, Jain VS, Yu JPJ. Diffusion radiomics for subtyping and clustering in autism spectrum disorder: A preclinical study. Magn Reson Imaging 2023; 96:116-125. [PMID: 36496097 PMCID: PMC9815912 DOI: 10.1016/j.mri.2022.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/24/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
Autism spectrum disorder (ASD) is a highly prevalent, heterogenous neurodevelopmental disorder. Neuroimaging methods such as functional, structural, and diffusion MRI have been used to identify candidate imaging biomarkers for ASD, but current findings remain non-specific and likely arise from the heterogeneity present in ASD. To account for this, efforts to subtype ASD have emerged as a potential strategy for both the study of ASD and advancement of tailored behavioral therapies and therapeutics. Towards these ends, to improve upon current neuroimaging methods, we propose combining biologically sensitive neurite orientation dispersion and density index (NODDI) diffusion MR imaging with radiomics image processing to create a new methodological approach that, we hypothesize, can sensitively and specifically capture neurobiology. We demonstrate this method can sensitively distinguish differences between four genetically distinct rat models of ASD (Fmr1, Pten, Nrxn1, Disc1). Further, we demonstrate diffusion radiomic analyses hold promise for subtyping in ASD as we show unsupervised clustering of NODDI radiomic data generates clusters specific to the underlying genetic differences between the animal models. Taken together, our findings suggest the unique application of radiomic analysis on NODDI diffusion MRI may have the capacity to sensitively and specifically disambiguate the neurobiological heterogeneity present in the ASD population.
Collapse
Affiliation(s)
- Ajay P Singh
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA.; Medical Scientist Training Program, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; Graduate Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Vansh S Jain
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - John-Paul J Yu
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA.; Graduate Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53706, USA; Neuroscience Training Program, Wisconsin Institutes for Medical Research, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Psychiatry, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA.
| |
Collapse
|
41
|
Cntnap2-dependent molecular networks in autism spectrum disorder revealed through an integrative multi-omics analysis. Mol Psychiatry 2023; 28:810-821. [PMID: 36253443 PMCID: PMC9908544 DOI: 10.1038/s41380-022-01822-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 09/15/2022] [Accepted: 09/26/2022] [Indexed: 12/28/2022]
Abstract
Autism spectrum disorder (ASD) is a major neurodevelopmental disorder in which patients present with core symptoms of social communication impairment, restricted interest, and repetitive behaviors. Although various studies have been performed to identify ASD-related mechanisms, ASD pathology is still poorly understood. CNTNAP2 genetic variants have been found that represent ASD genetic risk factors, and disruption of Cntnap2 expression has been associated with ASD phenotypes in mice. In this study, we performed an integrative multi-omics analysis by combining quantitative proteometabolomic data obtained with Cntnap2 knockout (KO) mice with multi-omics data obtained from ASD patients and forebrain organoids to elucidate Cntnap2-dependent molecular networks in ASD. To this end, a mass spectrometry-based proteometabolomic analysis of the medial prefrontal cortex in Cntnap2 KO mice led to the identification of Cntnap2-associated molecular features, and these features were assessed in combination with multi-omics data obtained on the prefrontal cortex in ASD patients to identify bona fide ASD cellular processes. Furthermore, a reanalysis of single-cell RNA sequencing data obtained from forebrain organoids derived from patients with CNTNAP2-associated ASD revealed that the aforementioned identified ASD processes were mainly linked to excitatory neurons. On the basis of these data, we constructed Cntnap2-associated ASD network models showing mitochondrial dysfunction, axonal impairment, and synaptic activity. Our results may shed light on the Cntnap2-dependent molecular networks in ASD.
Collapse
|
42
|
Deficits in Cerebellum-Dependent Learning and Cerebellar Morphology in Male and Female BTBR Autism Model Mice. NEUROSCI 2022. [DOI: 10.3390/neurosci3040045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Recently, there has been increased interest in the role of the cerebellum in autism spectrum disorder (ASD). To better understand the pathophysiological role of the cerebellum in ASD, it is necessary to have a variety of mouse models that have face validity for cerebellar disruption in humans. Here, we add to the literature on the cerebellum in mouse models of autism with the characterization of the cerebellum in the idiopathic BTBR T + Itpr3tf/J (BTBR) inbred mouse strain, which has behavioral phenotypes that are reminiscent of ASD in patients. When we examined both male and female BTBR mice in comparison to C57BL/6J (C57) controls, we noted that both sexes of BTBR mice showed motor coordination deficits characteristic of cerebellar dysfunction, but only the male mice showed differences in delay eyeblink conditioning, a cerebellum-dependent learning task that is known to be disrupted in ASD patients. Both male and female BTBR mice showed considerable expansion of, and abnormal foliation in, the cerebellum vermis—including a significant expansion of specific lobules in the anterior cerebellum. In addition, we found a slight but significant decrease in Purkinje cell density in both male and female BTBR mice, irrespective of the lobule. Finally, there was a marked reduction of Purkinje cell dendritic spine density in both male and female BTBR mice. These findings suggest that, for the most part, the BTBR mouse model phenocopies many of the characteristics of the subpopulation of ASD patients that have a hypertrophic cerebellum. We discuss the significance of strain differences in the cerebellum as well as the importance of this first effort to identify both similarities and differences between male and female BTBR mice with regard to the cerebellum.
Collapse
|
43
|
Yang D, Zhao Y, Nie B, An L, Wan X, Wang Y, Wang W, Cai G, Wu S. Progress in magnetic resonance imaging of autism model mice brain. WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2022; 13:e1616. [PMID: 35930672 DOI: 10.1002/wcs.1616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/11/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disease characterized by social disorder and stereotypical behaviors with an increasing incidence. ASD patients are suffering from varying degrees of mental retardation and language development abnormalities. Magnetic resonance imaging (MRI) is a noninvasive imaging technology to detect brain structural and functional dysfunction in vivo, playing an important role in the early diagnosisbasic research of ASD. High-field, small-animal MRI in basic research of autism model mice has provided a new approach to research the pathogenesis, characteristics, and intervention efficacy in autism. This article reviews MRI studies of mouse models of autism over the past 20 years. Reduced gray matter, abnormal connections of brain networks, and abnormal development of white matter fibers have been demonstrated in these studies, which are present in different proportions in the various mouse models. This provides a more macroscopic view for subsequent research on autism model mice. This article is categorized under: Cognitive Biology > Genes and Environment Neuroscience > Computation Neuroscience > Genes, Molecules, and Cells Neuroscience > Development.
Collapse
Affiliation(s)
- Dingding Yang
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Yan Zhao
- Department of Gastroenterology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Binbin Nie
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
| | - Leiting An
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Xiangdong Wan
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Yazhou Wang
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Wenting Wang
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Guohong Cai
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Shengxi Wu
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
44
|
Clapcote SJ. How can we obtain truly translational mouse models to improve clinical outcomes in schizophrenia? Dis Model Mech 2022; 15:dmm049970. [PMID: 36441105 PMCID: PMC10655820 DOI: 10.1242/dmm.049970] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023] Open
Abstract
Schizophrenia is a serious mental illness affecting 0.7% of the world's population. Despite over 50 years of schizophrenia drug identification and development, there have been no fundamental advances in the treatment of schizophrenia since the 1980s. Complex genetic aetiology and elusive pathomechanisms have made it difficult for researchers to develop models that sufficiently reflect pathophysiology to support effective drug discovery. However, recent large-scale, well-powered genomic studies have identified risk genes that represent tractable entry points to decipher disease mechanisms in heterogeneous patient populations and develop targeted treatments. Replicating schizophrenia-associated gene variants in mouse models is an important strategy to start understanding their pathogenicity and role in disease biology. Furthermore, longitudinal studies in a wide range of genetic mouse models from early postnatal life are required to assess the progression of this disease through developmental stages to improve early diagnostic strategies and enable preventative measures. By expanding and refining our approach to schizophrenia research, we can improve prevention strategies and treatment of this debilitating disease.
Collapse
|
45
|
Zhao F, Zhang H, Wang P, Cui W, Xu K, Chen D, Hu M, Li Z, Geng X, Wei S. Oxytocin and serotonin in the modulation of neural function: Neurobiological underpinnings of autism-related behavior. Front Neurosci 2022; 16:919890. [PMID: 35937893 PMCID: PMC9354980 DOI: 10.3389/fnins.2022.919890] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/27/2022] [Indexed: 12/12/2022] Open
Abstract
Autism spectrum disorders (ASD) is a group of generalized neurodevelopmental disorders. Its main clinical features are social communication disorder and repetitive stereotyped behavioral interest. The abnormal structure and function of brain network is the basis of social dysfunction and stereotyped performance in patients with autism spectrum disorder. The number of patients diagnosed with ASD has increased year by year, but there is a lack of effective intervention and treatment. Oxytocin has been revealed to effectively improve social cognitive function and significantly improve the social information processing ability, empathy ability and social communication ability of ASD patients. The change of serotonin level also been reported affecting the development of brain and causes ASD-like behavioral abnormalities, such as anxiety, depression like behavior, stereotyped behavior. Present review will focus on the research progress of serotonin and oxytocin in the pathogenesis, brain circuit changes and treatment of autism. Revealing the regulatory effect and neural mechanism of serotonin and oxytocin on patients with ASD is not only conducive to a deeper comprehension of the pathogenesis of ASD, but also has vital clinical significance.
Collapse
Affiliation(s)
- Feng Zhao
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China
- TAIYUE Postdoctoral Innovation and Practice Base, Jinan, China
- Chinese Medicine and Brain Science Core Facility, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hao Zhang
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China
- TAIYUE Postdoctoral Innovation and Practice Base, Jinan, China
- Chinese Medicine and Brain Science Core Facility, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Peng Wang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Wenjie Cui
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Kaiyong Xu
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
- Chinese Medicine and Brain Science Core Facility, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Dan Chen
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
- Chinese Medicine and Brain Science Core Facility, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Minghui Hu
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
- TAIYUE Postdoctoral Innovation and Practice Base, Jinan, China
- Chinese Medicine and Brain Science Core Facility, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zifa Li
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China
- TAIYUE Postdoctoral Innovation and Practice Base, Jinan, China
- Chinese Medicine and Brain Science Core Facility, Shandong University of Traditional Chinese Medicine, Jinan, China
- Zifa Li,
| | - Xiwen Geng
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China
- TAIYUE Postdoctoral Innovation and Practice Base, Jinan, China
- Chinese Medicine and Brain Science Core Facility, Shandong University of Traditional Chinese Medicine, Jinan, China
- Xiwen Geng,
| | - Sheng Wei
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China
- TAIYUE Postdoctoral Innovation and Practice Base, Jinan, China
- Chinese Medicine and Brain Science Core Facility, Shandong University of Traditional Chinese Medicine, Jinan, China
- *Correspondence: Sheng Wei,
| |
Collapse
|
46
|
Shan X, Uddin LQ, Xiao J, He C, Ling Z, Li L, Huang X, Chen H, Duan X. Mapping the Heterogeneous Brain Structural Phenotype of Autism Spectrum Disorder Using the Normative Model. Biol Psychiatry 2022; 91:967-976. [PMID: 35367047 DOI: 10.1016/j.biopsych.2022.01.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 12/28/2021] [Accepted: 01/14/2022] [Indexed: 12/27/2022]
Abstract
BACKGROUND Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder characterized by substantial clinical and biological heterogeneity. Quantitative and individualized metrics for delineating the heterogeneity of brain structure in ASD are still lacking. Likewise, the extent to which brain structural metrics of ASD deviate from typical development (TD) and whether deviations can be used for parsing brain structural phenotypes of ASD is unclear. METHODS T1-weighted magnetic resonance imaging data from the Autism Brain Imaging Data Exchange (ABIDE) II (nTD = 564) were used to generate a normative model to map brain structure deviations of ABIDE I subjects (nTD = 560, nASD = 496). Voxel-based morphometry was used to compute gray matter volume. Non-negative matrix factorization was employed to decompose the gray matter matrix into 6 factors and weights. These weights were used for normative modeling to estimate the factor deviations. Then, clustering analysis was used to identify ASD subtypes. RESULTS Compared with TD, ASD showed increased weights and deviations in 5 factors. Three subtypes with distinct neuroanatomical deviation patterns were identified. ASD subtype 1 and subtype 3 showed positive deviations, whereas ASD subtype 2 showed negative deviations. Distinct clinical manifestations in social communication deficits were identified among the three subtypes. CONCLUSIONS Our findings suggest that individuals with ASD have heterogeneous deviation patterns in brain structure. The results highlight the need to test for subtypes in neuroimaging studies of ASD. This study also presents a framework for understanding neuroanatomical heterogeneity in this increasingly prevalent neurodevelopmental disorder.
Collapse
Affiliation(s)
- Xiaolong Shan
- Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China; High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Ministry of Education Key Laboratory for NeuroInformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Lucina Q Uddin
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, California
| | - Jinming Xiao
- Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China; High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Ministry of Education Key Laboratory for NeuroInformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Changchun He
- Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China; High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Ministry of Education Key Laboratory for NeuroInformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Zihan Ling
- Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China; High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Ministry of Education Key Laboratory for NeuroInformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Lei Li
- Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China; High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Ministry of Education Key Laboratory for NeuroInformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Xinyue Huang
- Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China; High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Ministry of Education Key Laboratory for NeuroInformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Huafu Chen
- Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China; High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Ministry of Education Key Laboratory for NeuroInformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Xujun Duan
- Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China; High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Ministry of Education Key Laboratory for NeuroInformation, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
47
|
Ballardin D, Cruz-Gamero JM, Bienvenu T, Rebholz H. Comparing Two Neurodevelopmental Disorders Linked to CK2: Okur-Chung Neurodevelopmental Syndrome and Poirier-Bienvenu Neurodevelopmental Syndrome—Two Sides of the Same Coin? Front Mol Biosci 2022; 9:850559. [PMID: 35693553 PMCID: PMC9182197 DOI: 10.3389/fmolb.2022.850559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/01/2022] [Indexed: 12/27/2022] Open
Abstract
In recent years, variants in the catalytic and regulatory subunits of the kinase CK2 have been found to underlie two different, yet symptomatically overlapping neurodevelopmental disorders, termed Okur-Chung neurodevelopmental syndrome (OCNDS) and Poirier-Bienvenu neurodevelopmental syndrome (POBINDS). Both conditions are predominantly caused by de novo missense or nonsense mono-allelic variants. They are characterized by a generalized developmental delay, intellectual disability, behavioral problems (hyperactivity, repetitive movements and social interaction deficits), hypotonia, motricity and verbalization deficits. One of the main features of POBINDS is epilepsies, which are present with much lower prevalence in patients with OCNDS. While a role for CK2 in brain functioning and development is well acknowledged, these findings for the first time clearly link CK2 to defined brain disorders. Our review will bring together patient data for both syndromes, aiming to link symptoms with genotypes, and to rationalize the symptoms through known cellular functions of CK2 that have been identified in preclinical and biochemical contexts. We will also compare the symptomatology and elaborate the specificities that distinguish the two syndromes.
Collapse
Affiliation(s)
- Demetra Ballardin
- INSERM U1266, Institute of Psychiatry and Neuroscience of Paris, Université de Paris, Paris, France
- GHU-Paris Psychiatrie et Neurosciences, Hôpital Sainte Anne, Paris, France
| | - Jose M. Cruz-Gamero
- INSERM U1266, Institute of Psychiatry and Neuroscience of Paris, Université de Paris, Paris, France
| | - Thierry Bienvenu
- INSERM U1266, Institute of Psychiatry and Neuroscience of Paris, Université de Paris, Paris, France
- Service de Médecine Génomique des Maladies de Système et d’organe, Hôpital Cochin, APHP, Centre Université de Paris, Paris, France
| | - Heike Rebholz
- INSERM U1266, Institute of Psychiatry and Neuroscience of Paris, Université de Paris, Paris, France
- GHU-Paris Psychiatrie et Neurosciences, Hôpital Sainte Anne, Paris, France
- Center of Neurodegeneration, Faculty of Medicine, Danube Private University, Krems, Austria
- *Correspondence: Heike Rebholz,
| |
Collapse
|
48
|
Tsurugizawa T. Translational Magnetic Resonance Imaging in Autism Spectrum Disorder From the Mouse Model to Human. Front Neurosci 2022; 16:872036. [PMID: 35585926 PMCID: PMC9108701 DOI: 10.3389/fnins.2022.872036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/30/2022] [Indexed: 11/26/2022] Open
Abstract
Autism spectrum disorder (ASD) is a heterogeneous syndrome characterized by behavioral features such as impaired social communication, repetitive behavior patterns, and a lack of interest in novel objects. A multimodal neuroimaging using magnetic resonance imaging (MRI) in patients with ASD shows highly heterogeneous abnormalities in function and structure in the brain associated with specific behavioral features. To elucidate the mechanism of ASD, several ASD mouse models have been generated, by focusing on some of the ASD risk genes. A specific behavioral feature of an ASD mouse model is caused by an altered gene expression or a modification of a gene product. Using these mouse models, a high field preclinical MRI enables us to non-invasively investigate the neuronal mechanism of the altered brain function associated with the behavior and ASD risk genes. Thus, MRI is a promising translational approach to bridge the gap between mice and humans. This review presents the evidence for multimodal MRI, including functional MRI (fMRI), diffusion tensor imaging (DTI), and volumetric analysis, in ASD mouse models and in patients with ASD and discusses the future directions for the translational study of ASD.
Collapse
Affiliation(s)
- Tomokazu Tsurugizawa
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
- Faculty of Engineering, University of Tsukuba, Tsukuba, Japan
- *Correspondence: Tomokazu Tsurugizawa,
| |
Collapse
|
49
|
Lindenmaier Z, Ellegood J, Stuive M, Easson K, Yee Y, Fernandes D, Foster J, Anagnostou E, Lerch JP. Examining the effect of chronic intranasal oxytocin administration on the neuroanatomy and behavior of three autism-related mouse models. Neuroimage 2022; 257:119243. [PMID: 35508216 DOI: 10.1016/j.neuroimage.2022.119243] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/14/2022] [Accepted: 04/21/2022] [Indexed: 11/28/2022] Open
Abstract
Although initially showing great potential, oxytocin treatment has encountered a translational hurdle in its promise of treating the social deficits of autism. Some debate surrounds the ability of oxytocin to successfully enter the brain, and therefore modify neuroanatomy. Moreover, given the heterogeneous nature of autism, treatment will only amerliorate symptoms in a subset of patients. Therefore, to determine whether oxytocin changes brain circuitry, and whether it does so variably, depending on genotype, we implemented a large randomized, blinded, placebo-controlled, preclinical study on chronic intranasal oxytocin treatment in three different mouse models related to autism with a focus on using neuroanatomical phenotypes to assess and subset treatment response. Intranasal oxytocin (0.6IU) was administered daily, for 28 days, starting at 5 weeks of age to the 16p11.2 deletion, Shank3 (exon 4-9) knockout, and Fmr1 knockout mouse models. Given the sensitivity of structural magnetic resonance imaging (MRI) to the neurological effects of interventions like drugs, along with many other advantages, the mice underwent in vivo longitudinal and high-resolution ex vivo imaging with MRI. The scans included three in vivo T1weighted, 90um isotropic resolution scans and a T2-weighted, 3D fast spin echo with 40um isotropic resolution ex vivo scan to assess the changes in neuroanatomy using established automated image registration and deformation based morphometry approaches in response to oxytocin treatment. The behavior of the mice was assessed in multiple domains, including social behaviours and repetitive behaviours, among others. Treatment effect on the neuroanatomy did not reach significance, although the pattern of trending effects was promising. No significant effect of treatment was found on social behavior in any of the strains, although a significant effect of treatment was found in the Fmr1 mouse, with treatment normalizing a grooming deficit. No other treatment effect on behavior was observed that survived multiple comparisons correction. Overall, chronic treatment with oxytocin had limited effects on the three mouse models related to autism, and no promising pattern of response susceptibility emerged.
Collapse
Affiliation(s)
- Zsuzsa Lindenmaier
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
| | - Jacob Ellegood
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Monique Stuive
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Kaitlyn Easson
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Yohan Yee
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Darren Fernandes
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Jane Foster
- Department of Psychiatry and Behavioral Neurosciences, McMaster University, St.Joseph's Healthcare, Hamilton, Ontario, Canada
| | - Evdokia Anagnostou
- Autism Research Center, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Canada
| | - Jason P Lerch
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada; Wellcome Centre for Integrative NeuroImaging, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
50
|
Adhikari A, Buchanan FKB, Fenton TA, Cameron DL, Halmai JANM, Copping NA, Fink KD, Silverman JL. Touchscreen Cognitive Deficits, Hyperexcitability, and Hyperactivity in Males and Females Using Two Models of Cdkl5 Deficiency. Hum Mol Genet 2022; 31:3032-3050. [PMID: 35445702 PMCID: PMC9476626 DOI: 10.1093/hmg/ddac091] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 11/17/2022] Open
Abstract
Many neurodevelopmental disorders (NDDs) are the result of mutations on the X chromosome. One severe NDD resulting from mutations on the X chromosome is CDKL5 deficiency disorder (CDD). CDD is an epigenetic, X-linked NDD characterized by intellectual disability (ID), pervasive seizures and severe sleep disruption, including recurring hospitalizations. CDD occurs at a 4:1 ratio, with a female bias. CDD is driven by the loss of cyclin-dependent kinase-like 5 (CDKL5), a serine/threonine kinase that is essential for typical brain development, synapse formation and signal transmission. Previous studies focused on male subjects from animal models, likely to avoid the complexity of X mosaicism. For the first time, we report translationally relevant behavioral phenotypes in young adult (8–20 weeks) females and males with robust signal size, including impairments in learning and memory, substantial hyperactivity and increased susceptibility to seizures/reduced seizure thresholds, in both sexes, and in two models of CDD preclinical mice, one with a general loss-of-function mutation and one that is a patient-derived mutation.
Collapse
Affiliation(s)
- Anna Adhikari
- MIND Institute, University of California Davis School of Medicine, Sacramento, CA.,Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA
| | - Fiona K B Buchanan
- Department of Neurology, University of California Davis School of Medicine, Sacramento, CA.,Stem Cell Program and Gene Therapy Center, University of California Davis School of Medicine, Sacramento, CA
| | - Timothy A Fenton
- MIND Institute, University of California Davis School of Medicine, Sacramento, CA.,Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA
| | - David L Cameron
- Department of Neurology, University of California Davis School of Medicine, Sacramento, CA.,Stem Cell Program and Gene Therapy Center, University of California Davis School of Medicine, Sacramento, CA
| | - Julian A N M Halmai
- Department of Neurology, University of California Davis School of Medicine, Sacramento, CA.,Stem Cell Program and Gene Therapy Center, University of California Davis School of Medicine, Sacramento, CA
| | - Nycole A Copping
- MIND Institute, University of California Davis School of Medicine, Sacramento, CA.,Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA
| | - Kyle D Fink
- MIND Institute, University of California Davis School of Medicine, Sacramento, CA.,Department of Neurology, University of California Davis School of Medicine, Sacramento, CA.,Stem Cell Program and Gene Therapy Center, University of California Davis School of Medicine, Sacramento, CA
| | - Jill L Silverman
- MIND Institute, University of California Davis School of Medicine, Sacramento, CA.,Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA
| |
Collapse
|