1
|
Bayonés L, Guerra-Fernández MJ, Figueroa-Cares C, Gallo LI, Alfonso-Bueno S, Caspe O, Canal MP, Báez-Matus X, González-Jamett A, Cárdenas AM, Marengo FD. Dynamin-2 mutations linked to neonatal-onset centronuclear myopathy impair exocytosis and endocytosis in adrenal chromaffin cells. J Neurochem 2024; 168:3268-3283. [PMID: 39126680 DOI: 10.1111/jnc.16194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/28/2024] [Accepted: 07/17/2024] [Indexed: 08/12/2024]
Abstract
Dynamins are large GTPases whose primary function is not only to catalyze membrane scission during endocytosis but also to modulate other cellular processes, such as actin polymerization and vesicle trafficking. Recently, we reported that centronuclear myopathy associated dynamin-2 mutations, p.A618T, and p.S619L, impair Ca2+-induced exocytosis of the glucose transporter GLUT4 containing vesicles in immortalized human myoblasts. As exocytosis and endocytosis occur within rapid timescales, here we applied high-temporal resolution techniques, such as patch-clamp capacitance measurements and carbon-fiber amperometry to assess the effects of these mutations on these two cellular processes, using bovine chromaffin cells as a study model. We found that the expression of any of these dynamin-2 mutants inhibits a dynamin and F-actin-dependent form of fast endocytosis triggered by single action potential stimulus, as well as inhibits a slow compensatory endocytosis induced by 500 ms square depolarization. Both dynamin-2 mutants further reduced the exocytosis induced by 500 ms depolarizations, and the frequency of release events and the recruitment of neuropeptide Y (NPY)-labeled vesicles to the cell cortex after stimulation of nicotinic acetylcholine receptors with 1,1-dimethyl-4-phenyl piperazine iodide (DMPP). They also provoked a significant decrease in the Ca2+-induced formation of new actin filaments in permeabilized chromaffin cells. In summary, our results indicate that the centronuclear myopathy (CNM)-linked p.A618T and p.S619L mutations in dynamin-2 affect exocytosis and endocytosis, being the disruption of F-actin dynamics a possible explanation for these results. These impaired cellular processes might underlie the pathogenic mechanisms associated with these mutations.
Collapse
Affiliation(s)
- Lucas Bayonés
- Instituto de Fisiología, Biología Molecular y Neurociencias. CONICET. Departamento de Fisiología y Biología Molecular y Celular. Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires, Buenos Aires, Argentina
| | - María José Guerra-Fernández
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Cindel Figueroa-Cares
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Luciana I Gallo
- Instituto de Fisiología, Biología Molecular y Neurociencias. CONICET. Departamento de Fisiología y Biología Molecular y Celular. Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Samuel Alfonso-Bueno
- Instituto de Fisiología, Biología Molecular y Neurociencias. CONICET. Departamento de Fisiología y Biología Molecular y Celular. Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Octavio Caspe
- Instituto de Fisiología, Biología Molecular y Neurociencias. CONICET. Departamento de Fisiología y Biología Molecular y Celular. Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires, Buenos Aires, Argentina
| | - María Pilar Canal
- Instituto de Fisiología, Biología Molecular y Neurociencias. CONICET. Departamento de Fisiología y Biología Molecular y Celular. Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ximena Báez-Matus
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Arlek González-Jamett
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
- Escuela de Química y Farmacia, Facultad de Farmacia, Universidad de Valparaíso, Valparaíso, Chile
- Centro para la Investigación Traslacional en Neurofarmacología, CitNe, Universidad de Valparaíso, Valparaiso, Chile
| | - Ana M Cárdenas
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Fernando D Marengo
- Instituto de Fisiología, Biología Molecular y Neurociencias. CONICET. Departamento de Fisiología y Biología Molecular y Celular. Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
2
|
Tomagra G, Re A, Varzi V, Aprà P, Britel A, Franchino C, Sturari S, Amine NH, Westerink RHS, Carabelli V, Picollo F. Enhancing the Study of Quantal Exocytotic Events: Combining Diamond Multi-Electrode Arrays with Amperometric PEak Analysis (APE) an Automated Analysis Code. BIOSENSORS 2023; 13:1033. [PMID: 38131793 PMCID: PMC10741388 DOI: 10.3390/bios13121033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/11/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
MicroGraphited-Diamond-Multi Electrode Arrays (μG-D-MEAs) can be successfully used to reveal, in real time, quantal exocytotic events occurring from many individual neurosecretory cells and/or from many neurons within a network. As μG-D-MEAs arrays are patterned with up to 16 sensing microelectrodes, each of them recording large amounts of data revealing the exocytotic activity, the aim of this work was to support an adequate analysis code to speed up the signal detection. The cutting-edge technology of microGraphited-Diamond-Multi Electrode Arrays (μG-D-MEAs) has been implemented with an automated analysis code (APE, Amperometric Peak Analysis) developed using Matlab R2022a software to provide easy and accurate detection of amperometric spike parameters, including the analysis of the pre-spike foot that sometimes precedes the complete fusion pore dilatation. Data have been acquired from cultured PC12 cells, either collecting events during spontaneous exocytosis or after L-DOPA incubation. Validation of the APE code was performed by comparing the acquired spike parameters with those obtained using Quanta Analysis (Igor macro) by Mosharov et al.
Collapse
Affiliation(s)
- Giulia Tomagra
- Department of Drug and Science Technology, NIS Interdepartmental Centre, University of Torino, Corso Raffaello 30, 10125 Torino, Italy; (G.T.); (C.F.); (V.C.)
| | - Alice Re
- Department of Physics, NIS Interdepartmental Centre, University of Torino and Italian Institute of Nuclear Physics, Via Giuria 1, 10125 Torino, Italy (P.A.); (A.B.); (S.S.); (N.-H.A.); (F.P.)
| | - Veronica Varzi
- Department of Physics, NIS Interdepartmental Centre, University of Torino and Italian Institute of Nuclear Physics, Via Giuria 1, 10125 Torino, Italy (P.A.); (A.B.); (S.S.); (N.-H.A.); (F.P.)
| | - Pietro Aprà
- Department of Physics, NIS Interdepartmental Centre, University of Torino and Italian Institute of Nuclear Physics, Via Giuria 1, 10125 Torino, Italy (P.A.); (A.B.); (S.S.); (N.-H.A.); (F.P.)
| | - Adam Britel
- Department of Physics, NIS Interdepartmental Centre, University of Torino and Italian Institute of Nuclear Physics, Via Giuria 1, 10125 Torino, Italy (P.A.); (A.B.); (S.S.); (N.-H.A.); (F.P.)
| | - Claudio Franchino
- Department of Drug and Science Technology, NIS Interdepartmental Centre, University of Torino, Corso Raffaello 30, 10125 Torino, Italy; (G.T.); (C.F.); (V.C.)
| | - Sofia Sturari
- Department of Physics, NIS Interdepartmental Centre, University of Torino and Italian Institute of Nuclear Physics, Via Giuria 1, 10125 Torino, Italy (P.A.); (A.B.); (S.S.); (N.-H.A.); (F.P.)
| | - Nour-Hanne Amine
- Department of Physics, NIS Interdepartmental Centre, University of Torino and Italian Institute of Nuclear Physics, Via Giuria 1, 10125 Torino, Italy (P.A.); (A.B.); (S.S.); (N.-H.A.); (F.P.)
| | - Remco H. S. Westerink
- Neurotoxicology Research Group, Division of Toxicology, Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, P.O. Box 80.177, NL-3508 TD Utrecht, The Netherlands;
| | - Valentina Carabelli
- Department of Drug and Science Technology, NIS Interdepartmental Centre, University of Torino, Corso Raffaello 30, 10125 Torino, Italy; (G.T.); (C.F.); (V.C.)
| | - Federico Picollo
- Department of Physics, NIS Interdepartmental Centre, University of Torino and Italian Institute of Nuclear Physics, Via Giuria 1, 10125 Torino, Italy (P.A.); (A.B.); (S.S.); (N.-H.A.); (F.P.)
| |
Collapse
|
3
|
Morales A, Mohan R, Chen X, Coffman BL, Bendahmane M, Watch L, West JL, Bakshi S, Traynor JR, Giovannucci DR, Kammermeier PJ, Axelrod D, Currie KP, Smrcka AV, Anantharam A. PACAP and acetylcholine cause distinct Ca2+ signals and secretory responses in chromaffin cells. J Gen Physiol 2023; 155:e202213180. [PMID: 36538657 PMCID: PMC9770323 DOI: 10.1085/jgp.202213180] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 09/22/2022] [Accepted: 11/18/2022] [Indexed: 12/24/2022] Open
Abstract
The adrenomedullary chromaffin cell transduces chemical messages into outputs that regulate end organ function throughout the periphery. At least two important neurotransmitters are released by innervating preganglionic neurons to stimulate exocytosis in the chromaffin cell-acetylcholine (ACh) and pituitary adenylate cyclase activating polypeptide (PACAP). Although PACAP is widely acknowledged as an important secretagogue in this system, the pathway coupling PACAP stimulation to chromaffin cell secretion is poorly understood. The goal of this study is to address this knowledge gap. Here, it is shown that PACAP activates a Gαs-coupled pathway that must signal through phospholipase C ε (PLCε) to drive Ca2+ entry and exocytosis. PACAP stimulation causes a complex pattern of Ca2+ signals in chromaffin cells, leading to a sustained secretory response that is kinetically distinct from the form stimulated by ACh. Exocytosis caused by PACAP is associated with slower release of peptide cargo than exocytosis stimulated by ACh. Importantly, only the secretory response to PACAP, not ACh, is eliminated in cells lacking PLCε expression. The data show that ACh and PACAP, acting through distinct signaling pathways, enable nuanced and variable secretory outputs from chromaffin cells.
Collapse
Affiliation(s)
- Alina Morales
- Department of Neurosciences, University of Toledo, Toledo, OH, USA
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA
| | - Ramkumar Mohan
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA
| | - Xiaohuan Chen
- Department of Neurosciences, University of Toledo, Toledo, OH, USA
| | | | | | - Lester Watch
- Department of Obstetrics and Gynecology, Duke University School of Medicine, Durham, NC, USA
| | - Joshua L. West
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA
| | - Shreeya Bakshi
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA
| | - John R. Traynor
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA
| | | | - Paul J. Kammermeier
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY, USA
| | - Daniel Axelrod
- Department of Physics and LSA Biophysics, University of Michigan, Ann Arbor, MI, USA
| | - Kevin P.M. Currie
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, USA
| | - Alan V. Smrcka
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA
| | - Arun Anantharam
- Department of Neurosciences, University of Toledo, Toledo, OH, USA
| |
Collapse
|
4
|
Cossar PJ, Cardoso D, Mathwin D, Russell CC, Chiew B, Hamilton MP, Baker JR, Young KA, Chau N, Robinson PJ, McCluskey A. Wiskostatin and other carbazole scaffolds as off target inhibitors of dynamin I GTPase activity and endocytosis. Eur J Med Chem 2023; 247:115001. [PMID: 36577213 DOI: 10.1016/j.ejmech.2022.115001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/30/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022]
Abstract
Wiskostatin (1-(3,6-dibromo-9H-carbazol-9-yl)-3-(dimethylamino)propan-2-ol) (1) is a carbazole-based compound reported as a specific and relatively potent inhibitor of the N-WASP actin remodelling complex (S-isomer EC50 = 4.35 μM; R-isomer EC50 = 3.44 μM). An NMR solution structure showed that wiskostatin interacts with a cleft in the regulatory GTPase binding domain of N-WASP. However, numerous studies have reported wiskostatin's actions on membrane transport and cytokinesis that are independent of the N-WASP-Arp2/3 complex pathway, but offer limited alternative explanation. The large GTPase, dynamin has established functional roles in these pathways. This study reveals that wiskostatin and its analogues, as well as other carbazole-based compounds, are inhibitors of helical dynamin GTPase activity and endocytosis. We characterise the effects of wiskostatin on in vitro dynamin GTPase activity, in-cell endocytosis, and determine the importance of wiskostatin functional groups on these activities through design and synthesis of libraries of wiskostatin analogues. We also examine whether other carbazole-based scaffolds frequently used in research or the clinic also modulate dynamin and endocytosis. Understanding off-targets for compounds used as research tools is important to be able to confidently interpret their action on biological systems, particularly when the target and off-targets affect overlapping mechanisms (e.g. cytokinesis and endocytosis). Herein we demonstrate that wiskostatin is a dynamin inhibitor (IC50 20.7 ± 1.2 μM) and a potent inhibitor of clathrin mediated endocytosis (IC50 = 6.9 ± 0.3 μM). Synthesis of wiskostatin analogues gave rise to 1-(9H-carbazol-9-yl)-3-((4-methylbenzyl)amino)propan-2-ol (35) and 1-(9H-carbazol-9-yl)-3-((4-chlorobenzyl)amino)propan-2-ol (43) as potent dynamin inhibitors (IC50 = 1.0 ± 0.2 μM), and (S)-1-(3,6-dibromo-9H-carbazol-9-yl)-3-(dimethylamino)propan-2-ol (8a) and (R)-1-(3,6-dibromo-9H-carbazol-9-yl)-3-(dimethylamino)propan-2-ol (8b) that are amongst the most potent inhibitors of clathrin mediated endocytosis yet reported (IC50 = 2.3 ± 3.3 and 2.1 ± 1.7 μM, respectively).
Collapse
Affiliation(s)
- Peter J Cossar
- Chemistry, School of Environmental & Life Sciences, The University of Newcastle, University Drive, Callaghan NSW, 2308, Australia
| | - David Cardoso
- Cell Signalling Unit, Children's Medical Research Institute, The University of Sydney, Sydney, NSW, 2145, Australia
| | - Daniel Mathwin
- Chemistry, School of Environmental & Life Sciences, The University of Newcastle, University Drive, Callaghan NSW, 2308, Australia
| | - Cecilia C Russell
- Chemistry, School of Environmental & Life Sciences, The University of Newcastle, University Drive, Callaghan NSW, 2308, Australia
| | - Beatrice Chiew
- Chemistry, School of Environmental & Life Sciences, The University of Newcastle, University Drive, Callaghan NSW, 2308, Australia
| | - Michael P Hamilton
- Chemistry, School of Environmental & Life Sciences, The University of Newcastle, University Drive, Callaghan NSW, 2308, Australia
| | - Jennifer R Baker
- Chemistry, School of Environmental & Life Sciences, The University of Newcastle, University Drive, Callaghan NSW, 2308, Australia
| | - Kelly A Young
- Chemistry, School of Environmental & Life Sciences, The University of Newcastle, University Drive, Callaghan NSW, 2308, Australia
| | - Ngoc Chau
- Cell Signalling Unit, Children's Medical Research Institute, The University of Sydney, Sydney, NSW, 2145, Australia
| | - Phillip J Robinson
- Cell Signalling Unit, Children's Medical Research Institute, The University of Sydney, Sydney, NSW, 2145, Australia
| | - Adam McCluskey
- Chemistry, School of Environmental & Life Sciences, The University of Newcastle, University Drive, Callaghan NSW, 2308, Australia.
| |
Collapse
|
5
|
Lukasz D, Beirl A, Kindt K. Chronic neurotransmission increases the susceptibility of lateral-line hair cells to ototoxic insults. eLife 2022; 11:77775. [PMID: 36047587 PMCID: PMC9473691 DOI: 10.7554/elife.77775] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 08/30/2022] [Indexed: 11/27/2022] Open
Abstract
Sensory hair cells receive near constant stimulation by omnipresent auditory and vestibular stimuli. To detect and encode these stimuli, hair cells require steady ATP production, which can be accompanied by a buildup of mitochondrial byproducts called reactive oxygen species (ROS). ROS buildup is thought to sensitize hair cells to ototoxic insults, including the antibiotic neomycin. Work in neurons has shown that neurotransmission is a major driver of ATP production and ROS buildup. Therefore, we tested whether neurotransmission is a significant contributor to ROS buildup in hair cells. Using genetics and pharmacology, we disrupted two key aspects of neurotransmission in zebrafish hair cells: presynaptic calcium influx and the fusion of synaptic vesicles. We find that chronic block of neurotransmission enhances hair-cell survival when challenged with the ototoxin neomycin. This reduction in ototoxin susceptibility is accompanied by reduced mitochondrial activity, likely due to a reduced ATP demand. In addition, we show that mitochondrial oxidation and ROS buildup are reduced when neurotransmission is blocked. Mechanistically, we find that it is the synaptic vesicle cycle rather than presynaptic- or mitochondrial-calcium influx that contributes most significantly to this metabolic stress. Our results comprehensively indicate that, over time, neurotransmission causes ROS buildup that increases the susceptibility of hair cells to ototoxins.
Collapse
Affiliation(s)
- Daria Lukasz
- Section on Sensory Cell Development and Function, National Institutes of Health, Bethesda, United States
| | - Alisha Beirl
- Section on Sensory Cell Development and Function, National Institutes of Health, Bethesda, United States
| | - Katie Kindt
- Section on Sensory Cell Development and Function, National Institutes of Health, Bethesda, United States
| |
Collapse
|
6
|
WEI YS, LIN WZ, WANG TE, LEE WY, LI SH, LIN FJ, NIXON B, SIPILÄ P, TSAI PS. Polarized epithelium-sperm co-culture system reveals stimulatory factors for the secretion of mouse epididymal quiescin sulfhydryl oxidase 1. J Reprod Dev 2022; 68:198-208. [PMID: 35228412 PMCID: PMC9184822 DOI: 10.1262/jrd.2021-128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Spermatozoa acquire fertilization ability through post-translational modifications. These membrane surface alterations occur in various segments of the epididymis. Quiescin sulfhydryl
oxidases, which catalyze thiol-oxidation reactions, are involved in disulfide bond formation, which is essential for sperm maturation, upon transition and migration in the epididymis. Using
castration and azoospermia transgenic mouse models, in the present study, we showed that quiescin sulfhydryl oxidase 1 (QSOX1) protein expression and secretion are positively correlated with
the presence of testosterone and sperm cells. A two-dimensional in vitro epithelium-sperm co-culture system provided further evidence in support of the notion that both
testosterone and its dominant metabolite, 5α-dihydrotestosterone, promote epididymal QSOX1 secretion. We also demonstrated that immature caput spermatozoa, but not mature cauda sperm cells,
exhibited great potential to stimulate QSOX1 secretion in vitro, suggesting that sperm maturation is a key regulatory factor for mouse epididymal QSOX1 secretion. Proteomic
analysis identified 582 secretory proteins from the co-culture supernatant, of which 258 were sperm-specific and 154 were of epididymal epithelium-origin. Gene Ontology analysis indicated
that these secreted proteins exhibit functions known to facilitate sperm membrane organization, cellular activity, and sperm-egg recognition. Taken together, our data demonstrated that
testosterone and sperm maturation status are key regulators of mouse epididymal QSOX1 protein expression and secretion.
Collapse
Affiliation(s)
- Yu-Syuan WEI
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan
| | - Wan-Zhen LIN
- Graduate Institute of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan
| | - Tse-En WANG
- Graduate Institute of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan
| | - Wei-Yun LEE
- Graduate Institute of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan
| | - Sheng-Hsiang LI
- Department of Medical Research, Mackay Memorial Hospital, Tamshui 25160, Taiwan
| | - Fu-Jung LIN
- Department of Biochemical Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Brett NIXON
- Priority Research Centre for Reproduction, School of Environmental and Life Sciences, Discipline of Biological Sciences, University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Petra SIPILÄ
- Department of Physiology, Institute of Biomedicine, University of Turku, Turku 20520, Finland
| | - Pei-Shiue TSAI
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
7
|
Baker JR, O'Brien NS, Prichard KL, Robinson PJ, McCluskey A, Russell CC. Dynole 34-2 and Acrylo-Dyn 2-30, Novel Dynamin GTPase Chemical Biology Probes. Methods Mol Biol 2022; 2417:221-238. [PMID: 35099803 DOI: 10.1007/978-1-0716-1916-2_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
This protocol describes the chemical synthesis of the dynamin inhibitors Dynole 34-2 and Acrylo-Dyn 2-30, and their chemical scaffold matched partner inactive compounds. The chosen active and inactive paired compounds represent potent dynamin inhibitors and very closely related dynamin-inactive compounds, with the synthesis of three of the four compounds readily possible via a common intermediate. Combined with the assay data provided, this allows the interrogation of dynamin in vitro and potentially in vivo.
Collapse
Affiliation(s)
- Jennifer R Baker
- Chemistry, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia
| | - Nicholas S O'Brien
- Chemistry, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia
| | - Kate L Prichard
- Chemistry, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia
| | - Phillip J Robinson
- Cell Signaling Unit, Children's Medical Research Institute, The University of Sydney, Sydney, NSW, Australia
| | - Adam McCluskey
- Chemistry, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia
| | - Cecilia C Russell
- Chemistry, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia.
| |
Collapse
|
8
|
Tung CT, Lin HJ, Lin CW, Mersmann HJ, Ding ST. The role of dynamin in absorbing lipids into endodermal epithelial cells of yolk sac membranes during embryonic development in Japanese quail. Poult Sci 2021; 100:101470. [PMID: 34624771 PMCID: PMC8503669 DOI: 10.1016/j.psj.2021.101470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 05/10/2021] [Accepted: 08/31/2021] [Indexed: 11/28/2022] Open
Abstract
Endodermal epithelial cells (EECs) within the yolk sac membrane (YSM) of avian embryos are responsible for the absorption and utilization of lipids. The lipids in the yolk are mostly composed of very low density lipoprotein (VLDL), uptake mainly depends on clathrin-mediated endocytosis (CME). The CME relies on vesicle formation through the regulation of dynamin (DNM). However, it is still unclear whether DNMs participate in avian embryonic development. We examined mRNA expression levels of several genes involved in lipid transportation and utilization in YSM during Japanese quail embryonic development using qPCR. The mRNA levels of DNM1 and DNM3 were elevated at incubation d 8 and 10 before the increase of SOAT1, CIDEA, CIDEC, and APOB mRNA's. The elevated gene expression suggested the increased demand for DNM activity might be prior to cholesteryl ester production, lipid storage, and VLDL transport. Hinted by the result, we further investigated the role of DNMs in the embryonic development of Japanese quail. A DNM inhibitor, dynasore, was injected into fertilized eggs at incubation d 3. At incubation d 10, the dynasore-injected embryo showed increased embryonic lethality compared to control groups. Thus, the activity of DNMs was essential for the embryonic development of Japanese quail. The activities of DNMs were also verified by the absorptions of fluorescent VLDL (DiI-yVLDL) in EECs. Fluorescent signals in EECs were decreased significantly after treatment with dynasore. Finally, EECs were pretreated with S-Nitroso-L-glutathione (GSNO), a DNM activator, for 30 min; this increased the uptake of DiI-yVLDL. In conclusion, DNMs serve a critical role in mediating lipid absorption in YSM. The activity of DNMs was an integral part of development in Japanese quail. Our results suggest enhancing lipid transportation through an increase of DNM activity may improve avian embryonic development.
Collapse
Affiliation(s)
- Cheng-Ting Tung
- Department of Animal Science and Technology, National Taiwan University, Taipei City 106, Taiwan, R.O.C
| | - Han-Jen Lin
- Department of Animal Science and Technology, National Taiwan University, Taipei City 106, Taiwan, R.O.C
| | - Chiao-Wei Lin
- Department of Animal Science and Technology, National Taiwan University, Taipei City 106, Taiwan, R.O.C
| | - Harry John Mersmann
- Department of Animal Science and Technology, National Taiwan University, Taipei City 106, Taiwan, R.O.C
| | - Shih-Torng Ding
- Department of Animal Science and Technology, National Taiwan University, Taipei City 106, Taiwan, R.O.C.; Institute of Biotechnology, National Taiwan University, Taipei City 106, Taiwan, R.O.C..
| |
Collapse
|
9
|
Sun EW, Matusica D, Wattchow DA, McCluskey A, Robinson PJ, Keating DJ. Dynamin regulates L cell secretion in human gut. Mol Cell Endocrinol 2021; 535:111398. [PMID: 34274446 DOI: 10.1016/j.mce.2021.111398] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 06/01/2021] [Accepted: 07/13/2021] [Indexed: 11/16/2022]
Abstract
BACKGROUND The mechanochemical enzyme dynamin mediates endocytosis and regulates neuroendocrine cell exocytosis. Enteroendocrine L cells co-secrete the anorectic gut hormones glucagon-like peptide 1 (GLP-1) and peptide YY (PYY) postprandially and is a potential therapeutic target for metabolic diseases. In the present study, we aimed to determine if dynamin is implicated in human L cell secretion. METHODS Western blot was performed on the murine L cell line GLUTag. Static incubation of human colonic mucosae with activators and inhibitors of dynamin was carried out. GLP-1 and PYY contents of the secretion supernatants were assayed using ELISA. RESULTS AND CONCLUSION s: Both dynamin I and II are expressed in GLUTag cells. The dynamin activator Ryngo 1-23 evoked significant GLP-1 and PYY release from human colonic mucosae while the dynamin inhibitor Dynole 3-42 significantly inhibited release triggered by known L cell secretagogues. Thus, the cell signaling regulator dynamin is able to bi-directionally regulate L cell hormone secretion in the human gut and may represent a novel target for gastrointestinal-targeted metabolic drug development.
Collapse
Affiliation(s)
- Emily Wl Sun
- Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA, Australia
| | - Dusan Matusica
- Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA, Australia
| | | | - Adam McCluskey
- Chemistry, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia
| | - Philip J Robinson
- Cell Signalling Unit, Children's Medical Research Institute, The University of Sydney, Westmead, NSW, Australia
| | - Damien J Keating
- Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA, Australia.
| |
Collapse
|
10
|
Moro A, van Nifterick A, Toonen RF, Verhage M. Dynamin controls neuropeptide secretion by organizing dense-core vesicle fusion sites. SCIENCE ADVANCES 2021; 7:eabf0659. [PMID: 34020952 PMCID: PMC8139595 DOI: 10.1126/sciadv.abf0659] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 04/02/2021] [Indexed: 05/13/2023]
Abstract
Synaptic vesicles (SVs) release neurotransmitters at specialized active zones, but release sites and organizing principles for the other major secretory pathway, neuropeptide/neuromodulator release from dense-core vesicles (DCVs), remain elusive. We identify dynamins, yeast Vps1 orthologs, as DCV fusion site organizers in mammalian neurons. Genetic or pharmacological inactivation of all three dynamins strongly impaired DCV exocytosis, while SV exocytosis remained unaffected. Wild-type dynamin restored normal exocytosis but not guanosine triphosphatase-deficient or membrane-binding mutants that cause neurodevelopmental syndromes. During prolonged stimulation, repeated use of the same DCV fusion location was impaired in dynamin 1-3 triple knockout neurons. The syntaxin-1 staining efficiency, but not its expression level, was reduced. αSNAP (α-soluble N-ethylmaleimide-sensitive factor attachment protein) expression restored this. We conclude that mammalian dynamins organize DCV fusion sites, downstream of αSNAP, by regulating the equilibrium between fusogenic and non-fusogenic syntaxin-1 promoting its availability for SNARE (SNAP receptor) complex formation and DCV exocytosis.
Collapse
Affiliation(s)
- Alessandro Moro
- Department of Clinical Genetics, Center for Neurogenomics and Cognitive Research (CNCR), Amsterdam Neuroscience, VU University Medical Center, Amsterdam, Netherlands
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit (VU) Amsterdam, de Boelelaan 1087, 1081 HV Amsterdam, Netherlands
| | - Anne van Nifterick
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit (VU) Amsterdam, de Boelelaan 1087, 1081 HV Amsterdam, Netherlands
| | - Ruud F Toonen
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit (VU) Amsterdam, de Boelelaan 1087, 1081 HV Amsterdam, Netherlands.
| | - Matthijs Verhage
- Department of Clinical Genetics, Center for Neurogenomics and Cognitive Research (CNCR), Amsterdam Neuroscience, VU University Medical Center, Amsterdam, Netherlands.
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit (VU) Amsterdam, de Boelelaan 1087, 1081 HV Amsterdam, Netherlands
| |
Collapse
|
11
|
Abstract
The release from cells of signaling molecules through the controlled process of exocytosis involves multiple coordinated steps and is essential for the proper control of a multitude of biological pathways across the endocrine and nervous systems. However, these events are minute both temporally and in terms of the minute amounts of neurotransmitters, hormones, growth factors, and peptides released from single vesicles during exocytosis. It is therefore difficult to measure the kinetics of single exocytosis events in real time. One noninvasive method of measuring the release of molecules from cells is carbon-fiber amperometry. In this chapter, we will describe how we undertake such measurements from both single cells and in live tissue, how the subsequent data are analyzed, and how we interpret these results in terms of their relevant physiology.
Collapse
|
12
|
Tremblay CS, Chiu SK, Saw J, McCalmont H, Litalien V, Boyle J, Sonderegger SE, Chau N, Evans K, Cerruti L, Salmon JM, McCluskey A, Lock RB, Robinson PJ, Jane SM, Curtis DJ. Small molecule inhibition of Dynamin-dependent endocytosis targets multiple niche signals and impairs leukemia stem cells. Nat Commun 2020; 11:6211. [PMID: 33277497 PMCID: PMC7719179 DOI: 10.1038/s41467-020-20091-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 11/09/2020] [Indexed: 02/07/2023] Open
Abstract
Intensive chemotherapy for acute leukemia can usually induce complete remission, but fails in many patients to eradicate the leukemia stem cells responsible for relapse. There is accumulating evidence that these relapse-inducing cells are maintained and protected by signals provided by the microenvironment. Thus, inhibition of niche signals is a proposed strategy to target leukemia stem cells but this requires knowledge of the critical signals and may be subject to compensatory mechanisms. Signals from the niche require receptor-mediated endocytosis, a generic process dependent on the Dynamin family of large GTPases. Here, we show that Dynole 34-2, a potent inhibitor of Dynamin GTPase activity, can block transduction of key signalling pathways and overcome chemoresistance of leukemia stem cells. Our results provide a significant conceptual advance in therapeutic strategies for acute leukemia that may be applicable to other malignancies in which signals from the niche are involved in disease progression and chemoresistance. The tumour microenvironment provides signals to support leukaemic stem cells (LSC) maintenance and chemoresistance. Here, the authors show that disrupting niche-associated signalling by inhibiting receptor-mediated endocytosis with a dynamin GTPase inhibitor overcomes chemoresistance of LSC.
Collapse
Affiliation(s)
- Cedric S Tremblay
- Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, VIC, Australia.
| | - Sung Kai Chiu
- Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, VIC, Australia.,Department of Clinical Haematology, Alfred Health, Melbourne, VIC, Australia
| | - Jesslyn Saw
- Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Hannah McCalmont
- Lowy Cancer Research Centre, Children's Cancer Institute, University of New South Wales, Sydney, NSW, Australia
| | - Veronique Litalien
- Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Jacqueline Boyle
- Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Stefan E Sonderegger
- Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Ngoc Chau
- Cell Signalling Unit, Children's Medical Research Institute, Sydney, NSW, Australia
| | - Kathryn Evans
- Lowy Cancer Research Centre, Children's Cancer Institute, University of New South Wales, Sydney, NSW, Australia
| | - Loretta Cerruti
- Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Jessica M Salmon
- Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Adam McCluskey
- Chemistry, Centre for Chemical Biology, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, Australia
| | - Richard B Lock
- Lowy Cancer Research Centre, Children's Cancer Institute, University of New South Wales, Sydney, NSW, Australia
| | - Phillip J Robinson
- Cell Signalling Unit, Children's Medical Research Institute, Sydney, NSW, Australia
| | - Stephen M Jane
- Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, VIC, Australia.,Department of Clinical Haematology, Alfred Health, Melbourne, VIC, Australia
| | - David J Curtis
- Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, VIC, Australia.,Department of Clinical Haematology, Alfred Health, Melbourne, VIC, Australia
| |
Collapse
|
13
|
Urbina FL, Gupton SL. SNARE-Mediated Exocytosis in Neuronal Development. Front Mol Neurosci 2020; 13:133. [PMID: 32848598 PMCID: PMC7427632 DOI: 10.3389/fnmol.2020.00133] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/02/2020] [Indexed: 12/15/2022] Open
Abstract
The formation of the nervous system involves establishing complex networks of synaptic connections between proper partners. This developmental undertaking requires the rapid expansion of the plasma membrane surface area as neurons grow and polarize, extending axons through the extracellular environment. Critical to the expansion of the plasma membrane and addition of plasma membrane material is exocytic vesicle fusion, a regulated mechanism driven by soluble N-ethylmaleimide-sensitive factor attachment proteins receptors (SNAREs). Since their discovery, SNAREs have been implicated in several critical neuronal functions involving exocytic fusion in addition to synaptic transmission, including neurite initiation and outgrowth, axon specification, axon extension, and synaptogenesis. Decades of research have uncovered a rich variety of SNARE expression and function. The basis of SNARE-mediated fusion, the opening of a fusion pore, remains an enigmatic event, despite an incredible amount of research, as fusion is not only heterogeneous but also spatially small and temporally fast. Multiple modes of exocytosis have been proposed, with full-vesicle fusion (FFV) and kiss-and-run (KNR) being the best described. Whereas most in vitro work has reconstituted fusion using VAMP-2, SNAP-25, and syntaxin-1; there is much to learn regarding the behaviors of distinct SNARE complexes. In the past few years, robust heterogeneity in the kinetics and fate of the fusion pore that varies by cell type have been uncovered, suggesting a paradigm shift in how the modes of exocytosis are viewed is warranted. Here, we explore both classic and recent work uncovering the variety of SNAREs and their importance in the development of neurons, as well as historical and newly proposed modes of exocytosis, their regulation, and proteins involved in the regulation of fusion kinetics.
Collapse
Affiliation(s)
- Fabio L. Urbina
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Stephanie L. Gupton
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- UNC Neuroscience Center, Chapel Hill, NC, United States
- UNC Lineberger Comprehensive Cancer Center, Chapel Hill, NC, United States
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
14
|
Lasič E, Trkov Bobnar S, Wilhelmsson U, Pablo Y, Pekny M, Zorec R, Stenovec M. Nestin affects fusion pore dynamics in mouse astrocytes. Acta Physiol (Oxf) 2020; 228:e13399. [PMID: 31597221 DOI: 10.1111/apha.13399] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 09/17/2019] [Accepted: 09/30/2019] [Indexed: 12/15/2022]
Abstract
AIM Astrocytes play a homeostatic role in the central nervous system and influence numerous aspects of neurophysiology via intracellular trafficking of vesicles. Intermediate filaments (IFs), also known as nanofilaments, regulate a number of cellular processes including organelle trafficking and adult hippocampal neurogenesis. We have recently demonstrated that the IF protein nestin, a marker of neural stem cells and immature and reactive astrocytes, is also expressed in some astrocytes in the unchallenged hippocampus and regulates neurogenesis through Notch signalling from astrocytes to neural stem cells, possibly via altered trafficking of vesicles containing the Notch ligand Jagged-1. METHODS We thus investigated whether nestin affects vesicle dynamics in astrocytes by examining single vesicle interactions with the plasmalemma and vesicle trafficking with high-resolution cell-attached membrane capacitance measurements and confocal microscopy. We used cell cultures of astrocytes from nestin-deficient (Nes-/- ) and wild-type (wt) mice, and fluorescent dextran and Fluo-2 to examine vesicle mobility and intracellular Ca2+ concentration respectively. RESULTS Nes-/- astrocytes exhibited altered sizes of vesicles undergoing full fission and transient fusion, altered vesicle fusion pore geometry and kinetics, decreased spontaneous vesicle mobility and altered ATP-evoked mobility. Purinergic stimulation evoked Ca2+ signalling that was slightly attenuated in Nes-/- astrocytes, which exhibited more oscillatory Ca2+ responses than wt astrocytes. CONCLUSION These results demonstrate at the single vesicle level that nestin regulates vesicle interactions with the plasmalemma and vesicle trafficking, indicating its potential role in astrocyte vesicle-based communication.
Collapse
Affiliation(s)
- Eva Lasič
- Laboratory of Neuroendocrinology‐Molecular Cell Physiology Institute of Pathophysiology Faculty of Medicine University of Ljubljana Ljubljana Slovenia
| | - Saša Trkov Bobnar
- Laboratory of Neuroendocrinology‐Molecular Cell Physiology Institute of Pathophysiology Faculty of Medicine University of Ljubljana Ljubljana Slovenia
- Celica Biomedical Ljubljana Slovenia
| | - Ulrika Wilhelmsson
- Laboratory of Astrocyte Biology and CNS Regeneration Center for Brain Repair Department of Clinical Neuroscience Institute of Neuroscience and Physiology Sahlgrenska Academy at the University of Gothenburg Gothenburg Sweden
| | - Yolanda Pablo
- Laboratory of Astrocyte Biology and CNS Regeneration Center for Brain Repair Department of Clinical Neuroscience Institute of Neuroscience and Physiology Sahlgrenska Academy at the University of Gothenburg Gothenburg Sweden
| | - Milos Pekny
- Laboratory of Astrocyte Biology and CNS Regeneration Center for Brain Repair Department of Clinical Neuroscience Institute of Neuroscience and Physiology Sahlgrenska Academy at the University of Gothenburg Gothenburg Sweden
- Florey Institute of Neuroscience and Mental Health Parkville Vic. Australia
- University of Newcastle Newcastle NSW Australia
| | - Robert Zorec
- Laboratory of Neuroendocrinology‐Molecular Cell Physiology Institute of Pathophysiology Faculty of Medicine University of Ljubljana Ljubljana Slovenia
- Celica Biomedical Ljubljana Slovenia
| | - Matjaž Stenovec
- Laboratory of Neuroendocrinology‐Molecular Cell Physiology Institute of Pathophysiology Faculty of Medicine University of Ljubljana Ljubljana Slovenia
- Celica Biomedical Ljubljana Slovenia
| |
Collapse
|
15
|
Kitajima Y, Ishii T, Kohda T, Ishizuka M, Yamazaki K, Nishimura Y, Tanaka T, Dan S, Nakajima M. Mechanistic study of PpIX accumulation using the JFCR39 cell panel revealed a role for dynamin 2-mediated exocytosis. Sci Rep 2019; 9:8666. [PMID: 31209282 PMCID: PMC6572817 DOI: 10.1038/s41598-019-44981-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 05/29/2019] [Indexed: 12/21/2022] Open
Abstract
5-aminolevulinic acid (5-ALA) has recently been employed for photodynamic diagnosis (ALA-PDD) and photodynamic therapy (ALA-PDT) of various types of cancer because hyperproliferating tumor cells do not utilize oxidative phosphorylation and do not efficiently produce heme; instead, they accumulate protoporphyrin IX (PpIX), which is a precursor of heme that is activated by violet light irradiation that results in the production of red fluorescence and singlet oxygen. The efficiencies of ALA-PDD and ALA-PDT depend on the efficient cellular uptake of 5-ALA and the inefficient excretion of PpIX. We employed the JFCR39 cell panel to determine whether tumor cells originating from different tissues can produce and accumulate PpIX. We also investigated cellular factors/molecules involved in PpIX excretion by tumor cells with the JFCR39 cell panel. Unexpectedly, the expression levels of ABCG2, which has been considered to play a major role in PpIX extracellular transport, did not show a strong correlation with PpIX excretion levels in the JFCR39 cell panel, although an ABCG2 inhibitor significantly increased intracellular PpIX accumulation in several tumor cell lines. In contrast, the expression levels of dynamin 2, which is a cell membrane-associated molecule involved in exocytosis, were correlated with the PpIX excretion levels. Moreover, inhibitors of dynamin significantly suppressed PpIX excretion and increased the intracellular levels of PpIX. This is the first report demonstrating the causal relationship between dynamin 2 expression and PpIX excretion in tumor cells.
Collapse
Affiliation(s)
| | | | | | | | - Kanami Yamazaki
- Division of Molecular Pharmacology, Cancer Chemotherapy Center, Japan Foundation for Cancer Research, Tokyo, Japan
| | - Yumiko Nishimura
- Division of Molecular Pharmacology, Cancer Chemotherapy Center, Japan Foundation for Cancer Research, Tokyo, Japan
| | | | - Shingo Dan
- Division of Molecular Pharmacology, Cancer Chemotherapy Center, Japan Foundation for Cancer Research, Tokyo, Japan.
| | | |
Collapse
|
16
|
Guček A, Gandasi NR, Omar-Hmeadi M, Bakke M, Døskeland SO, Tengholm A, Barg S. Fusion pore regulation by cAMP/Epac2 controls cargo release during insulin exocytosis. eLife 2019; 8:41711. [PMID: 31099751 PMCID: PMC6557626 DOI: 10.7554/elife.41711] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 04/28/2019] [Indexed: 12/20/2022] Open
Abstract
Regulated exocytosis establishes a narrow fusion pore as initial aqueous connection to the extracellular space, through which small transmitter molecules such as ATP can exit. Co-release of polypeptides and hormones like insulin requires further expansion of the pore. There is evidence that pore expansion is regulated and can fail in diabetes and neurodegenerative disease. Here, we report that the cAMP-sensor Epac2 (Rap-GEF4) controls fusion pore behavior by acutely recruiting two pore-restricting proteins, amisyn and dynamin-1, to the exocytosis site in insulin-secreting beta-cells. cAMP elevation restricts and slows fusion pore expansion and peptide release, but not when Epac2 is inactivated pharmacologically or in Epac2-/- (Rapgef4-/-) mice. Consistently, overexpression of Epac2 impedes pore expansion. Widely used antidiabetic drugs (GLP-1 receptor agonists and sulfonylureas) activate this pathway and thereby paradoxically restrict hormone release. We conclude that Epac2/cAMP controls fusion pore expansion and thus the balance of hormone and transmitter release during insulin granule exocytosis. Insulin is the hormone that signals to the body to take up sugar from the blood. Specialized cells in the pancreas – known as β-cells – release insulin after a meal. Before that, insulin molecules are stored in tiny granules inside the β-cells; these granules must fuse with the cells’ surface membranes to release their contents. The first step in this process creates a narrow pore that allows small molecules, but not the larger insulin molecules, to seep out. The pore then widens to release the insulin. Since the small molecules are known to act locally in the pancreas, it is possible that this “molecular sieve” is biologically important. Yet it is not clear how the pore widens. One of the problems for people with type 2 diabetes is that they release less insulin into the bloodstream. Two kinds of drugs used to treat these patients work by stimulating β-cells to release their insulin. One way to achieve this is by raising the levels of a small molecule called cAMP, which is well known to help prepare insulin granules for release. The cAMP molecule also seems to slow the widening of the pore, and Gucek et al. have now investigated how this happens at a molecular level. By observing individual granules of human β-cells using a special microscope, Gucek et al. could watch how different drugs affect pore widening and content release. They also saw that cAMP activated a protein called Epac2, which then recruited two other proteins – amisyn and dynamin – to the small pores. These two proteins together then closed the pore, rather than expanding it to let insulin out. Type 2 diabetes patients sometimes have high levels of amisyn in their β-cells, which could explain why they do not release enough insulin. The microscopy experiments also revealed that two common anti-diabetic drugs activate Epac2 and prevent the pores from widening, thereby counteracting their positive effect on insulin release. The combined effect is likely a shift in the balance between insulin and the locally acting small molecules. These findings suggest that two common anti-diabetic drugs activate a common mechanism that may lead to unexpected outcomes, possibly even reducing how much insulin the β-cells can release. Future studies in mice and humans will have to investigate these effects in whole organisms.
Collapse
Affiliation(s)
- Alenka Guček
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Nikhil R Gandasi
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | | | - Marit Bakke
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | | | - Anders Tengholm
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Sebastian Barg
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
17
|
Jiang ZJ, Delaney TL, Zanin MP, Haberberger RV, Pitson SM, Huang J, Alford S, Cologna SM, Keating DJ, Gong LW. Extracellular and intracellular sphingosine-1-phosphate distinctly regulates exocytosis in chromaffin cells. J Neurochem 2019; 149:729-746. [PMID: 30963576 DOI: 10.1111/jnc.14703] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 12/28/2018] [Accepted: 03/27/2019] [Indexed: 01/18/2023]
Abstract
Sphingosine-1-phosphate (S1P) is an essential bioactive sphingosine lipid involved in many neurological disorders. Sphingosine kinase 1 (SphK1), a key enzyme for S1P production, is concentrated in presynaptic terminals. However, the role of S1P/SphK1 signaling in exocytosis remains elusive. By detecting catecholamine release from single vesicles in chromaffin cells, we show that a dominant negative SphK1 (SphK1DN ) reduces the number of amperometric spikes and increases the duration of foot, which reflects release through a fusion pore, implying critical roles for S1P in regulating the rate of exocytosis and fusion pore expansion. Similar phenotypes were observed in chromaffin cells obtained from SphK1 knockout mice compared to those from wild-type mice. In addition, extracellular S1P treatment increased the number of amperometric spikes, and this increase, in turn, was inhibited by a selective S1P3 receptor blocker, suggesting extracellular S1P may regulate the rate of exocytosis via activation of S1P3. Furthermore, intracellular S1P application induced a decrease in foot duration of amperometric spikes in control cells, indicating intracellular S1P may regulate fusion pore expansion during exocytosis. Taken together, our study represents the first demonstration that S1P regulates exocytosis through distinct mechanisms: extracellular S1P may modulate the rate of exocytosis via activation of S1P receptors while intracellular S1P may directly control fusion pore expansion during exocytosis. OPEN SCIENCE BADGES: This article has received a badge for *Open Materials* because it provided all relevant information to reproduce the study in the manuscript. The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/.
Collapse
Affiliation(s)
- Zhong-Jiao Jiang
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Taylor L Delaney
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Mark P Zanin
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, Guangdong, P.R. China
| | - Rainer V Haberberger
- College of Medicine and Public Health and Centre for Neuroscience, Flinders University, Adelaide, Australia
| | - Stuart M Pitson
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, Australia
| | - Jian Huang
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Simon Alford
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Stephanie M Cologna
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Damien J Keating
- College of Medicine and Public Health and Centre for Neuroscience, Flinders University, Adelaide, Australia
| | - Liang-Wei Gong
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
18
|
Liu X, Tong Y, Fang PP. Recent development in amperometric measurements of vesicular exocytosis. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.01.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
19
|
Sugar Responses of Human Enterochromaffin Cells Depend on Gut Region, Sex, and Body Mass. Nutrients 2019; 11:nu11020234. [PMID: 30678223 PMCID: PMC6412251 DOI: 10.3390/nu11020234] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 12/15/2018] [Accepted: 01/14/2019] [Indexed: 12/12/2022] Open
Abstract
Gut-derived serotonin (5-HT) is released from enterochromaffin (EC) cells in response to nutrient cues, and acts to slow gastric emptying and modulate gastric motility. Rodent studies also evidence a role for gut-derived 5-HT in the control of hepatic glucose production, lipolysis and thermogenesis, and in mediating diet-induced obesity. EC cell number and 5-HT content is increased in the small intestine of obese rodents and human, however, it is unknown whether EC cells respond directly to glucose in humans, and whether their capacity to release 5-HT is perturbed in obesity. We therefore investigated 5-HT release from human duodenal and colonic EC cells in response to glucose, sucrose, fructose and α-glucoside (αMG) in relation to body mass index (BMI). EC cells released 5-HT only in response to 100 and 300 mM glucose (duodenum) and 300 mM glucose (colon), independently of osmolarity. Duodenal, but not colonic, EC cells also released 5-HT in response to sucrose and αMG, but did not respond to fructose. 5-HT content was similar in all EC cells in males, and colonic EC cells in females, but 3 to 4-fold higher in duodenal EC cells from overweight females (p < 0.05 compared to lean, obese). Glucose-evoked 5-HT release was 3-fold higher in the duodenum of overweight females (p < 0.05, compared to obese), but absent here in overweight males. Our data demonstrate that primary human EC cells respond directly to dietary glucose cues, with regional differences in selectivity for other sugars. Augmented glucose-evoked 5-HT release from duodenal EC is a feature of overweight females, and may be an early determinant of obesity.
Collapse
|
20
|
Eschenburg S, Reubold TF. Modulation of dynamin function by small molecules. Biol Chem 2018; 399:1421-1432. [PMID: 30067507 DOI: 10.1515/hsz-2018-0257] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 07/17/2018] [Indexed: 02/05/2023]
Abstract
Dynamins are essential as membrane remodelers in various cellular processes, like receptor-mediated endocytosis, synaptic vesicle recycling and spermatogenesis. Moreover, dynamin is involved in the internalization of numerous viruses and in the motility of several cancer cell lines. As tools for dissecting the underlying mechanisms of these important biological processes and as potential future therapeutics, small molecules have been developed in the last two decades that modulate the functions of dynamin. In this review we give an overview of the compound classes that are currently in use and describe how they affect dynamin function.
Collapse
Affiliation(s)
- Susanne Eschenburg
- Medizinische Hochschule Hannover, Institut für Biophysikalische Chemie, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany
| | - Thomas F Reubold
- Medizinische Hochschule Hannover, Institut für Biophysikalische Chemie, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany
| |
Collapse
|
21
|
Dynamin 1 Restrains Vesicular Release to a Subquantal Mode In Mammalian Adrenal Chromaffin Cells. J Neurosci 2018; 39:199-211. [PMID: 30381405 DOI: 10.1523/jneurosci.1255-18.2018] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 10/14/2018] [Accepted: 10/15/2018] [Indexed: 12/22/2022] Open
Abstract
Dynamin 1 (dyn1) is required for clathrin-mediated endocytosis in most secretory (neuronal and neuroendocrine) cells. There are two modes of Ca2+-dependent catecholamine release from single dense-core vesicles: full-quantal (quantal) and subquantal in adrenal chromaffin cells, but their relative occurrences and impacts on total secretion remain unclear. To address this fundamental question in neurotransmission area using both sexes of animals, here we report the following: (1) dyn1-KO increased quantal size (QS, but not vesicle size/content) by ≥250% in dyn1-KO mice; (2) the KO-increased QS was rescued by dyn1 (but not its deficient mutant or dyn2); (3) the ratio of quantal versus subquantal events was increased by KO; (4) following a release event, more protein contents were retained in WT versus KO vesicles; and (5) the fusion pore size (d p) was increased from ≤9 to ≥9 nm by KO. Therefore, Ca2+-induced exocytosis is generally a subquantal release in sympathetic adrenal chromaffin cells, implying that neurotransmitter release is generally regulated by dynamin in neuronal cells.SIGNIFICANCE STATEMENT Ca2+-dependent neurotransmitter release from a single vesicle is the primary event in all neurotransmission, including synaptic/neuroendocrine forms. To determine whether Ca2+-dependent vesicular neurotransmitter release is "all-or-none" (quantal), we provide compelling evidence that most Ca2+-induced secretory events occur via the subquantal mode in native adrenal chromaffin cells. This subquantal release mode is promoted by dynamin 1, which is universally required for most secretory cells, including neurons and neuroendocrine cells. The present work with dyn1-KO mice further confirms that Ca2+-dependent transmitter release is mainly via subquantal mode, suggesting that subquantal release could be also important in other types of cells.
Collapse
|
22
|
Actin Remodeling in Regulated Exocytosis: Toward a Mesoscopic View. Trends Cell Biol 2018; 28:685-697. [DOI: 10.1016/j.tcb.2018.04.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 04/05/2018] [Accepted: 04/13/2018] [Indexed: 01/10/2023]
|
23
|
Ghosh D, Nieves-Cintrón M, Tajada S, Brust-Mascher I, Horne MC, Hell JW, Dixon RE, Santana LF, Navedo MF. Dynamic L-type Ca V1.2 channel trafficking facilitates Ca V1.2 clustering and cooperative gating. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:1341-1355. [PMID: 29959960 PMCID: PMC6407617 DOI: 10.1016/j.bbamcr.2018.06.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 06/22/2018] [Accepted: 06/26/2018] [Indexed: 11/21/2022]
Abstract
L-type CaV1.2 channels are key regulators of gene expression, cell excitability and muscle contraction. CaV1.2 channels organize in clusters throughout the plasma membrane. This channel organization has been suggested to contribute to the concerted activation of adjacent CaV1.2 channels (e.g. cooperative gating). Here, we tested the hypothesis that dynamic intracellular and perimembrane trafficking of CaV1.2 channels is critical for formation and dissolution of functional channel clusters mediating cooperative gating. We found that CaV1.2 moves in vesicular structures of circular and tubular shape with diverse intracellular and submembrane trafficking patterns. Both microtubules and actin filaments are required for dynamic movement of CaV1.2 vesicles. These vesicles undergo constitutive homotypic fusion and fission events that sustain CaV1.2 clustering, channel activity and cooperative gating. Our study suggests that CaV1.2 clusters and activity can be modulated by diverse and unique intracellular and perimembrane vesicular dynamics to fine-tune Ca2+ signals.
Collapse
Affiliation(s)
- Debapriya Ghosh
- Department of Pharmacology, School of Medicine, One Shields Avenue, University of California, Davis, CA 95616, USA
| | - Madeline Nieves-Cintrón
- Department of Pharmacology, School of Medicine, One Shields Avenue, University of California, Davis, CA 95616, USA
| | - Sendoa Tajada
- Department of Physiology & Membrane Biology, School of Medicine, One Shields Avenue, University of California, Davis, CA 95616, USA
| | - Ingrid Brust-Mascher
- Advanced Imaging Facility, School of Veterinary Medicine, One Shields Avenue, University of California, Davis, CA 95616, USA
| | - Mary C Horne
- Department of Pharmacology, School of Medicine, One Shields Avenue, University of California, Davis, CA 95616, USA
| | - Johannes W Hell
- Department of Pharmacology, School of Medicine, One Shields Avenue, University of California, Davis, CA 95616, USA
| | - Rose E Dixon
- Department of Physiology & Membrane Biology, School of Medicine, One Shields Avenue, University of California, Davis, CA 95616, USA
| | - Luis F Santana
- Department of Physiology & Membrane Biology, School of Medicine, One Shields Avenue, University of California, Davis, CA 95616, USA
| | - Manuel F Navedo
- Department of Pharmacology, School of Medicine, One Shields Avenue, University of California, Davis, CA 95616, USA.
| |
Collapse
|
24
|
The putative role of oxidative stress and inflammation in the pathophysiology of sleep dysfunction across neuropsychiatric disorders: Focus on chronic fatigue syndrome, bipolar disorder and multiple sclerosis. Sleep Med Rev 2018; 41:255-265. [PMID: 29759891 DOI: 10.1016/j.smrv.2018.03.007] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 02/20/2018] [Accepted: 03/27/2018] [Indexed: 12/29/2022]
Abstract
Sleep and circadian abnormalities are prevalent and burdensome manifestations of diverse neuro-immune diseases, and may aggravate the course of several neuropsychiatric disorders. The underlying pathophysiology of sleep abnormalities across neuropsychiatric disorders remains unclear, and may involve the inter-play of several clinical variables and mechanistic pathways. In this review, we propose a heuristic framework in which reciprocal interactions of immune, oxidative and nitrosative stress, and mitochondrial pathways may drive sleep abnormalities across potentially neuroprogressive disorders. Specifically, it is proposed that systemic inflammation may activate microglial cells and astrocytes in brain regions involved in sleep and circadian regulation. Activated glial cells may secrete pro-inflammatory cytokines (for example, interleukin-1 beta and tumour necrosis factor alpha), nitric oxide and gliotransmitters, which may influence the expression of key circadian regulators (e.g., the Circadian Locomotor Output Cycles Kaput (CLOCK) gene). Furthermore, sleep disruption may further aggravate oxidative and nitrosative, peripheral immune activation, and (neuro) inflammation across these disorders in a vicious pathophysiological loop. This review will focus on chronic fatigue syndrome, bipolar disorder, and multiple sclerosis as exemplars of neuro-immune disorders. We conclude that novel therapeutic targets exploring immune and oxidative & nitrosative pathways (p.e. melatonin and molecular hydrogen) hold promise in alleviating sleep and circadian dysfunction in these disorders.
Collapse
|
25
|
Ye D, Ewing A. On the Action of General Anesthetics on Cellular Function: Barbiturate Alters the Exocytosis of Catecholamines in a Model Cell System. Chemphyschem 2018; 19:1173-1179. [PMID: 29356266 DOI: 10.1002/cphc.201701255] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 01/18/2018] [Indexed: 11/08/2022]
Abstract
General anesthetics are essential in many areas, however, the cellular mechanisms of anesthetic-induced amnesia and unconsciousness are incompletely understood. Exocytosis is the main mechanism of signal transduction and neuronal communication through the release of chemical transmitters from vesicles to the extracellular environment. Here, we use disk electrodes placed on top of PC12 cells to show that treatment with barbiturate induces fewer molecules released during exocytosis and changes the event dynamics perhaps by inducing a less stable fusion pore that is prone to close faster during partial exocytosis. Larger events are essentially abolished. However, use of intracellular vesicle impact electrochemical cytometry using a nano-tip electrode inserted into a cell shows that the distribution of vesicle transmitter content does not change after barbiturate treatment. This indicates that barbiturate selectively alters the pore size of larger events or perhaps differentially between types of vesicles. Alteration of exocytosis in this manner could be linked to the effects of general anesthetics on memory loss.
Collapse
Affiliation(s)
- Daixin Ye
- Department of Chemistry and Molecular Biology, University of Gothenburg, Kemivägen 10, 41296, Gothenburg, Sweden
| | - Andrew Ewing
- Department of Chemistry and Molecular Biology, University of Gothenburg, Kemivägen 10, 41296, Gothenburg, Sweden.,Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemivägen 10, 41296, Gothenburg, Sweden
| |
Collapse
|
26
|
Zhou W, De Iuliis GN, Dun MD, Nixon B. Characteristics of the Epididymal Luminal Environment Responsible for Sperm Maturation and Storage. Front Endocrinol (Lausanne) 2018; 9:59. [PMID: 29541061 PMCID: PMC5835514 DOI: 10.3389/fendo.2018.00059] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The testicular spermatozoa of all mammalian species are considered functionally immature owing to their inability to swim in a progressive manner and engage in productive interactions with the cumulus-oocyte complex. The ability to express these key functional attributes develops progressively during the cells' descent through the epididymis, a highly specialized ductal system that forms an integral part of the male reproductive tract. The functional maturation of the spermatozoon is achieved via continuous interactions with the epididymal luminal microenvironment and remarkably, occurs in the complete absence of de novo gene transcription or protein translation. Compositional analysis of the luminal fluids collected from the epididymis of a variety of species has revealed the complexity of this milieu, with a diversity of inorganic ions, proteins, and small non-coding RNA transcripts having been identified to date. Notably, both the quantitative and qualitative profile of each of these different luminal elements display substantial segment-to-segment variation, which in turn contribute to the regionalized functionality of this long tubule. Thus, spermatozoa acquire functional maturity in the proximal segments before being stored in a quiescent state in the distal segment in preparation for ejaculation. Such marked division of labor is achieved via the combined secretory and absorptive activity of the epithelial cells lining each segment. Here, we review our current understanding of the molecular mechanisms that exert influence over the unique intraluminal environment of the epididymis, with a particular focus on vesicle-dependent mechanisms that facilitate intercellular communication between the epididymal soma and maturing sperm cell population.
Collapse
Affiliation(s)
- Wei Zhou
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, Australia
| | - Geoffry N. De Iuliis
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, Australia
| | - Matthew D. Dun
- Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia
- Cancer Research Program, School of Biomedical Sciences and Pharmacy, Hunter Medical Research Institute, University of Newcastle, New Lambton Heights, NSW, Australia
| | - Brett Nixon
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, Australia
- *Correspondence: Brett Nixon,
| |
Collapse
|
27
|
Peiris H, Keating DJ. The neuronal and endocrine roles of RCAN1 in health and disease. Clin Exp Pharmacol Physiol 2017; 45:377-383. [PMID: 29094385 DOI: 10.1111/1440-1681.12884] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 10/18/2017] [Accepted: 10/24/2017] [Indexed: 01/15/2023]
Abstract
The regulator of calcineurin 1 (RCAN1) was first discovered as a gene located on human chromosome 21, expressed in neurons and overexpressed in the brains of Down syndrome individuals. Increased expression of RCAN1 has been linked with not only Down syndrome-associated pathology but also an associated neurological disorder, Alzheimer's Disease, in which neuronal RCAN1 expression is also increased. RCAN1 has additionally been demonstrated to affect other cell types including endocrine cells, with links to the pathogenesis of β-cell dysfunction in type 2 diabetes. The primary functions of RCAN1 relate to the inhibition of the phosphatase calcineurin, and to the regulation of mitochondrial function. Various forms of cellular stress such as reactive oxygen species and hyperglycaemia cause transient increases in RCAN1 expression. The short term (hours to days) induction of RCAN1 expression is generally thought to have a protective effect by regulating the expression of pro-survival genes in multiple cell types, many of which are mediated via the calcineurin/NFAT transcriptional pathway. However, strong evidence also supports the notion that chronic (weeks-years) overexpression of RCAN1 has a detrimental effect on cells and that this may drive pathophysiological changes in neurons and endocrine cells linked to Down syndrome, Alzheimer's Disease and type 2 diabetes. Here we review the evidence related to these roles of RCAN1 in neurons and endocrine cells and their relationship to these human health disorders.
Collapse
Affiliation(s)
- Heshan Peiris
- College of Medicine and Public Health and Centre for Neuroscience, Flinders University, Adelaide, SA, Australia
| | - Damien J Keating
- College of Medicine and Public Health and Centre for Neuroscience, Flinders University, Adelaide, SA, Australia
| |
Collapse
|
28
|
Zhou W, Anderson AL, Turner AP, De Iuliis GN, McCluskey A, McLaughlin EA, Nixon B. Characterization of a novel role for the dynamin mechanoenzymes in the regulation of human sperm acrosomal exocytosis. Mol Hum Reprod 2017; 23:657-673. [DOI: 10.1093/molehr/gax044] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 07/27/2017] [Indexed: 12/16/2022] Open
|
29
|
How does the stimulus define exocytosis in adrenal chromaffin cells? Pflugers Arch 2017; 470:155-167. [DOI: 10.1007/s00424-017-2052-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 07/28/2017] [Accepted: 08/01/2017] [Indexed: 12/28/2022]
|
30
|
Eich ML, Dembla E, Wahl S, Dembla M, Schwarz K, Schmitz F. The Calcineurin-Binding, Activity-Dependent Splice Variant Dynamin1xb Is Highly Enriched in Synapses in Various Regions of the Central Nervous System. Front Mol Neurosci 2017; 10:230. [PMID: 28790889 PMCID: PMC5524891 DOI: 10.3389/fnmol.2017.00230] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Accepted: 07/06/2017] [Indexed: 12/22/2022] Open
Abstract
In the present study, we generated and characterized a splice site-specific monoclonal antibody that selectively detects the calcineurin-binding dynamin1 splice variant dynamin1xb. Calcineurin is a Ca2+-regulated phosphatase that enhances dynamin1 activity and is an important Ca2+-sensing mediator of homeostatic synaptic plasticity in neurons. Using this dynamin1xb-specific antibody, we found dynamin1xb highly enriched in synapses of all analyzed brain regions. In photoreceptor ribbon synapses, dynamin1xb was enriched in close vicinity to the synaptic ribbon in a manner indicative of a peri-active zone immunolabeling. Interestingly, in dark-adapted mice we observed an enhanced and selective enrichment of dynamin1xb in both synaptic layers of the retina in comparison to light-adapted mice. This could be due to an illumination-dependent recruitment of dynamin1xb to retinal synapses and/or due to a darkness-induced increase of dynamin1xb biosynthesis. These latter findings indicate that dynamin1xb is part of a versatile and highly adjustable, activity-regulated endocytic synaptic machinery.
Collapse
Affiliation(s)
- Marie-Lisa Eich
- Department of Neuroanatomy, Medical School Homburg/Saar, Institute for Anatomy and Cell Biology, Saarland UniversityHomburg/Saar, Germany
| | - Ekta Dembla
- Department of Neuroanatomy, Medical School Homburg/Saar, Institute for Anatomy and Cell Biology, Saarland UniversityHomburg/Saar, Germany
| | - Silke Wahl
- Department of Neuroanatomy, Medical School Homburg/Saar, Institute for Anatomy and Cell Biology, Saarland UniversityHomburg/Saar, Germany
| | - Mayur Dembla
- Department of Neuroanatomy, Medical School Homburg/Saar, Institute for Anatomy and Cell Biology, Saarland UniversityHomburg/Saar, Germany
| | - Karin Schwarz
- Department of Neuroanatomy, Medical School Homburg/Saar, Institute for Anatomy and Cell Biology, Saarland UniversityHomburg/Saar, Germany
| | - Frank Schmitz
- Department of Neuroanatomy, Medical School Homburg/Saar, Institute for Anatomy and Cell Biology, Saarland UniversityHomburg/Saar, Germany
| |
Collapse
|
31
|
Lasič E, Stenovec M, Kreft M, Robinson PJ, Zorec R. Dynamin regulates the fusion pore of endo- and exocytotic vesicles as revealed by membrane capacitance measurements. Biochim Biophys Acta Gen Subj 2017; 1861:2293-2303. [PMID: 28669852 DOI: 10.1016/j.bbagen.2017.06.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 05/24/2017] [Accepted: 06/27/2017] [Indexed: 02/06/2023]
Abstract
BACKGROUND Dynamin is a multidomain GTPase exhibiting mechanochemical and catalytic properties involved in vesicle scission from the plasmalemma during endocytosis. New evidence indicates that dynamin is also involved in exocytotic release of catecholamines, suggesting the existence of a dynamin-regulated structure that couples endo- to exocytosis. METHODS Thus we here employed high-resolution cell-attached capacitance measurements and super-resolution structured illumination microscopy to directly examine single vesicle interactions with the plasmalemma in cultured rat astrocytes treated with distinct pharmacological modulators of dynamin activity. Fluorescent dextrans and the lipophilic plasmalemmal marker DiD were utilized to monitor uptake and distribution of vesicles in the peri-plasmalemmal space and in the cell cytosol. RESULTS Dynamin inhibition with Dynole™-34-2 and Dyngo™-4a prevented vesicle internalization into the cytosol and decreased fusion pore conductance of vesicles that remained attached to the plasmalemma via a narrow fusion pore that lapsed into a state of repetitive opening and closing - flickering. In contrast, the dynamin activator Ryngo™-1-23 promoted vesicle internalization and favored fusion pore closure by prolonging closed and shortening open fusion pore dwell times. Immunocytochemical staining revealed dextran uptake into dynamin-positive vesicles and increased dextran uptake into Syt4- and VAMP2-positive vesicles after dynamin inhibition, indicating prolonged retention of these vesicles at the plasmalemma. CONCLUSIONS Our results have provided direct evidence for a role of dynamin in regulation of fusion pore geometry and kinetics of endo- and exocytotic vesicles, indicating that both share a common dynamin-regulated structural intermediate, the fusion pore.
Collapse
Affiliation(s)
- Eva Lasič
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia
| | - Matjaž Stenovec
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia; Celica Biomedical, Tehnološki Park 24, 1000 Ljubljana, Slovenia.
| | - Marko Kreft
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia; Celica Biomedical, Tehnološki Park 24, 1000 Ljubljana, Slovenia; University of Ljubljana, Biotechnical Faculty, Department of Biology, CPAE, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Phillip J Robinson
- Children's Medical Research Institute, The University of Sydney, Australia
| | - Robert Zorec
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia; Celica Biomedical, Tehnološki Park 24, 1000 Ljubljana, Slovenia.
| |
Collapse
|
32
|
Martin AM, Lumsden AL, Young RL, Jessup CF, Spencer NJ, Keating DJ. The nutrient-sensing repertoires of mouse enterochromaffin cells differ between duodenum and colon. Neurogastroenterol Motil 2017; 29. [PMID: 28251760 DOI: 10.1111/nmo.13046] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 01/11/2017] [Accepted: 01/12/2017] [Indexed: 01/30/2023]
Abstract
BACKGROUND Enterochromaffin (EC) cells within the gastrointestinal (GI) tract provide almost all body serotonin (5-hydroxytryptamine [5-HT]). Peripheral 5-HT, released from EC cells lining the gut wall, serves diverse physiological roles. These include modulating GI motility, bone formation, hepatic gluconeogenesis, thermogenesis, insulin resistance, and regulation of fat mass. Enterochromaffin cells are nutrient sensors, but which nutrients they are responsive to and how this changes in different parts of the GI tract are poorly understood. METHODS To accurately undertake such an examination, we undertook the first isolation and purification of primary mouse EC cells from both the duodenum and colon in the same animal. This allowed us to compare, in an internally controlled manner, regional differences in the expression of nutrient sensors in EC cells using real-time PCR. KEY RESULTS Both colonic and duodenal EC cells expressed G protein-coupled receptors and facilitative transporters for sugars, free fatty acids, amino acids, and lipid amides. We find differential expression of nutrient receptor and transporters in EC cells obtained from duodenal and colonic EC cells. Duodenal EC cells have higher expression of tryptophan hydroxylase-1, sugar transporters GLUT2, GLUT5, and free fatty acid receptors 1 and 3 (FFAR1 and FFAR3). Colonic EC cells express higher levels of GLUT1, FFAR2, and FFAR4. CONCLUSIONS & INFERENCES We highlight the diversity of EC cell physiology and identify differences in the regional sensing repertoire of EC cells to an assortment of nutrients. These data indicate that not all EC cells are similar and that differences in their physiological responses are likely dependent on their location within the GI tract.
Collapse
Affiliation(s)
- A M Martin
- Department of Human Physiology and Centre for Neuroscience, Flinders University, Adelaide, SA, Australia
| | - A L Lumsden
- Department of Human Physiology and Centre for Neuroscience, Flinders University, Adelaide, SA, Australia
| | - R L Young
- South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia.,Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - C F Jessup
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia.,Department of Anatomy and Histology and Centre for Neuroscience, Flinders University, Adelaide, SA, Australia
| | - N J Spencer
- Department of Human Physiology and Centre for Neuroscience, Flinders University, Adelaide, SA, Australia
| | - D J Keating
- Department of Human Physiology and Centre for Neuroscience, Flinders University, Adelaide, SA, Australia.,South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia
| |
Collapse
|
33
|
Xu Y, Toomre DK, Bogan JS, Hao M. Excess cholesterol inhibits glucose-stimulated fusion pore dynamics in insulin exocytosis. J Cell Mol Med 2017; 21:2950-2962. [PMID: 28544529 PMCID: PMC5661106 DOI: 10.1111/jcmm.13207] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 03/28/2017] [Indexed: 01/06/2023] Open
Abstract
Type 2 diabetes is caused by defects in both insulin sensitivity and insulin secretion. Glucose triggers insulin secretion by causing exocytosis of insulin granules from pancreatic β-cells. High circulating cholesterol levels and a diminished capacity of serum to remove cholesterol from β-cells are observed in diabetic individuals. Both of these effects can lead to cholesterol accumulation in β-cells and contribute to β-cell dysfunction. However, the molecular mechanisms by which cholesterol accumulation impairs β-cell function remain largely unknown. Here, we used total internal reflection fluorescence microscopy to address, at the single-granule level, the role of cholesterol in regulating fusion pore dynamics during insulin exocytosis. We focused particularly on the effects of cholesterol overload, which is relevant to type 2 diabetes. We show that excess cholesterol reduced the number of glucose-stimulated fusion events, and modulated the proportion of full fusion and kiss-and-run fusion events. Analysis of single exocytic events revealed distinct fusion kinetics, with more clustered and compound exocytosis observed in cholesterol-overloaded β-cells. We provide evidence for the involvement of the GTPase dynamin, which is regulated in part by cholesterol-induced phosphatidylinositol 4,5-bisphosphate enrichment in the plasma membrane, in the switch between full fusion and kiss-and-run fusion. Characterization of insulin exocytosis offers insights into the role that elevated cholesterol may play in the development of type 2 diabetes.
Collapse
Affiliation(s)
- Yingke Xu
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA.,Department of Bioengineering, Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, China
| | - Derek K Toomre
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Jonathan S Bogan
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA.,Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Mingming Hao
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA.,Department of Biochemistry, Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
34
|
Papadopulos A. Membrane shaping by actin and myosin during regulated exocytosis. Mol Cell Neurosci 2017; 84:93-99. [PMID: 28536001 DOI: 10.1016/j.mcn.2017.05.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 04/21/2017] [Accepted: 05/19/2017] [Indexed: 12/01/2022] Open
Abstract
The cortical actin network in neurosecretory cells is a dense mesh of actin filaments underlying the plasma membrane. Interaction of actomyosin with vesicular membranes or the plasma membrane is vital for tethering, retention, transport as well as fusion and fission of exo- and endocytic membrane structures. During regulated exocytosis the cortical actin network undergoes dramatic changes in morphology to accommodate vesicle docking, fusion and replenishment. Most of these processes involve plasma membrane Phosphoinositides (PIP) and investigating the interactions between the actin cortex and secretory structures has become a hotbed for research in recent years. Actin remodelling leads to filopodia outgrowth and the creation of new fusion sites in neurosecretory cells and actin, myosin and dynamin actively shape and maintain the fusion pore of secretory vesicles. Changes in viscoelastic properties of the actin cortex can facilitate vesicular transport and lead to docking and priming of vesicle at the plasma membrane. Small GTPase actin mediators control the state of the cortical actin network and influence vesicular access to their docking and fusion sites. These changes potentially affect membrane properties such as tension and fluidity as well as the mobility of embedded proteins and could influence the processes leading to both exo- and endocytosis. Here we discuss the multitudes of actin and membrane interactions that control successive steps underpinning regulated exocytosis.
Collapse
Affiliation(s)
- Andreas Papadopulos
- The Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
35
|
Brindley RL, Bauer MB, Blakely RD, Currie KP. Serotonin and Serotonin Transporters in the Adrenal Medulla: A Potential Hub for Modulation of the Sympathetic Stress Response. ACS Chem Neurosci 2017; 8:943-954. [PMID: 28406285 PMCID: PMC5541362 DOI: 10.1021/acschemneuro.7b00026] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Serotonin (5-HT) is an important neurotransmitter in the central nervous system where it modulates circuits involved in mood, cognition, movement, arousal, and autonomic function. The 5-HT transporter (SERT; SLC6A4) is a key regulator of 5-HT signaling, and genetic variations in SERT are associated with various disorders including depression, anxiety, and autism. This review focuses on the role of SERT in the sympathetic nervous system. Autonomic/sympathetic dysfunction is evident in patients with depression, anxiety, and other diseases linked to serotonergic signaling. Experimentally, loss of SERT function (SERT knockout mice or chronic pharmacological block) has been reported to augment the sympathetic stress response. Alterations to serotonergic signaling in the CNS and thus central drive to the peripheral sympathetic nervous system are presumed to underlie this augmentation. Although less widely recognized, SERT is robustly expressed in chromaffin cells of the adrenal medulla, the neuroendocrine arm of the sympathetic nervous system. Adrenal chromaffin cells do not synthesize 5-HT but accumulate small amounts by SERT-mediated uptake. Recent evidence demonstrated that 5-HT1A receptors inhibit catecholamine secretion from adrenal chromaffin cells via an atypical mechanism that does not involve modulation of cellular excitability or voltage-gated Ca2+ channels. This raises the possibility that the adrenal medulla is a previously unrecognized peripheral hub for serotonergic control of the sympathetic stress response. As a framework for future investigation, a model is proposed in which stress-evoked adrenal catecholamine secretion is fine-tuned by SERT-modulated autocrine 5-HT signaling.
Collapse
Affiliation(s)
- Rebecca L. Brindley
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Mary Beth Bauer
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Randy D. Blakely
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, and Florida Atlantic University Brain Institute, Jupiter, FL, USA
| | - Kevin P.M. Currie
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
36
|
Martin AM, Young RL, Leong L, Rogers GB, Spencer NJ, Jessup CF, Keating DJ. The Diverse Metabolic Roles of Peripheral Serotonin. Endocrinology 2017; 158:1049-1063. [PMID: 28323941 DOI: 10.1210/en.2016-1839] [Citation(s) in RCA: 157] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Accepted: 02/23/2017] [Indexed: 02/07/2023]
Abstract
Serotonin (5-hydroxytryptamine or 5-HT) is a multifunctional bioamine with important signaling roles in a range of physiological pathways. Almost all of the 5-HT in our bodies is synthesized in specialized enteroendocrine cells within the gastrointestinal (GI) mucosa called enterochromaffin (EC) cells. These cells provide all of our circulating 5-HT. We have long appreciated the important contributions of 5-HT within the gut, including its role in modulating GI motility. However, evidence of the physiological and clinical significance of gut-derived 5-HT outside of the gut has recently emerged, implicating 5-HT in regulation of glucose homeostasis, lipid metabolism, bone density, and diseases associated with metabolic syndrome, such as obesity and type 2 diabetes. Although a new picture has developed in the last decade regarding the various metabolic roles of peripheral serotonin, so too has our understanding of the physiology of EC cells. Given that they are scattered throughout the lining of the GI tract within the epithelial cell layer, these cells are typically difficult to study. Advances in isolation procedures now allow the study of pure EC-cell cultures and single cells, enabling studies of EC-cell physiology to occur. EC cells are sensory cells that are capable of integrating cues from ingested nutrients, the enteric nervous system, and the gut microbiome. Thus, levels of peripheral 5-HT can be modulated by a multitude of factors, resulting in both local and systemic effects for the regulation of a raft of physiological pathways related to metabolism and obesity.
Collapse
Affiliation(s)
- Alyce M Martin
- Discipline of Human Physiology and Centre for Neuroscience, Flinders University of South Australia, Adelaide 5042, Australia
| | - Richard L Young
- Nutrition and Metabolism, South Australian Health and Medical Research Institute (SAHMRI), Adelaide 5001, Australia
- Adelaide Medical School, University of Adelaide, Adelaide 5005, Australia
| | - Lex Leong
- Infection and Immunity, SAHMRI, Adelaide 5001, Australia
- SAHMRI Microbiome Research Laboratory, School of Medicine, Flinders University of South Australia, Adelaide 5042, Australia
| | - Geraint B Rogers
- Infection and Immunity, SAHMRI, Adelaide 5001, Australia
- SAHMRI Microbiome Research Laboratory, School of Medicine, Flinders University of South Australia, Adelaide 5042, Australia
| | - Nick J Spencer
- Discipline of Human Physiology and Centre for Neuroscience, Flinders University of South Australia, Adelaide 5042, Australia
| | - Claire F Jessup
- Adelaide Medical School, University of Adelaide, Adelaide 5005, Australia
- Discipline of Anatomy and Histology, Flinders University of South Australia, Adelaide 5042, Australia
| | - Damien J Keating
- Discipline of Human Physiology and Centre for Neuroscience, Flinders University of South Australia, Adelaide 5042, Australia
- Nutrition and Metabolism, South Australian Health and Medical Research Institute (SAHMRI), Adelaide 5001, Australia
| |
Collapse
|
37
|
Liang K, Wei L, Chen L. Exocytosis, Endocytosis, and Their Coupling in Excitable Cells. Front Mol Neurosci 2017; 10:109. [PMID: 28469555 PMCID: PMC5395637 DOI: 10.3389/fnmol.2017.00109] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 03/31/2017] [Indexed: 11/13/2022] Open
Abstract
Evoked exocytosis in excitable cells is fast and spatially confined and must be followed by coupled endocytosis to enable sustained exocytosis while maintaining the balance of the vesicle pool and the plasma membrane. Various types of exocytosis and endocytosis exist in these excitable cells, as those has been found from different types of experiments conducted in different cell types. Correlating these diversified types of exocytosis and endocytosis is problematic. By providing an outline of different exocytosis and endocytosis processes and possible coupling mechanisms here, we emphasize that the endocytic pathway may be pre-determined at the time the vesicle chooses to fuse with the plasma membrane in one specific mode. Therefore, understanding the early intermediate stages of vesicle exocytosis may be instrumental in exploring the mechanism of tailing endocytosis.
Collapse
Affiliation(s)
- Kuo Liang
- Department of General Surgery, XuanWu Hospital, Capital Medical UniversityBeijing, China
| | - Lisi Wei
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking UniversityBeijing, China
| | - Liangyi Chen
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking UniversityBeijing, China
| |
Collapse
|
38
|
Aggarwal A, Hitchen TL, Ootes L, McAllery S, Wong A, Nguyen K, McCluskey A, Robinson PJ, Turville SG. HIV infection is influenced by dynamin at 3 independent points in the viral life cycle. Traffic 2017; 18:392-410. [PMID: 28321960 DOI: 10.1111/tra.12481] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 03/16/2017] [Accepted: 03/16/2017] [Indexed: 12/19/2022]
Abstract
CD4 T cells are important cellular targets for HIV-1, yet the primary site of HIV fusion remains unresolved. Candidate fusion sites are either the plasma membrane or from within endosomes. One area of investigation compounding the controversy of this field, is the role of the protein dynamin in the HIV life cycle. To understand the role of dynamin in primary CD4 T cells we combined dynamin inhibition with a series of complementary assays based on single particle tracking, HIV fusion, detection of HIV DNA products and active viral transcription. We identify 3 levels of dynamin influence on the HIV life cycle. Firstly, dynamin influences productive infection by preventing cell cycle progression. Secondly, dynamin influences endocytosis rates and increases the probability of endosomal fusion. Finally, we provide evidence in resting CD4 T cells that dynamin directly regulates the HIV fusion reaction at the plasma membrane. We confirm this latter observation using 2 divergent dynamin modulating compounds, one that enhances dynamin conformations associated with dynamin ring formation (ryngo-1-23) and the other that preferentially targets dynamin conformations that appear in helices (dyngo-4a). This in-depth understanding of dynamin's roles in HIV infection clarifies recent controversies and furthermore provides evidence for dynamin regulation specifically in the HIV fusion reaction.
Collapse
Affiliation(s)
- Anupriya Aggarwal
- The Kirby Institute, University of New South Wales, New South Wales, Australia
| | - Tina L Hitchen
- The Kirby Institute, University of New South Wales, New South Wales, Australia
| | - Lars Ootes
- The Kirby Institute, University of New South Wales, New South Wales, Australia
| | - Samantha McAllery
- The Kirby Institute, University of New South Wales, New South Wales, Australia
| | - Andrew Wong
- The Kirby Institute, University of New South Wales, New South Wales, Australia
| | - Khanh Nguyen
- The Kirby Institute, University of New South Wales, New South Wales, Australia
| | - Adam McCluskey
- Centre for Chemical Biology, Chemistry, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, Australia
| | - Phillip J Robinson
- Children's Medical Research Institute, The University of Sydney, New South Wales, Australia
| | - Stuart G Turville
- The Kirby Institute, University of New South Wales, New South Wales, Australia
| |
Collapse
|
39
|
Meunier FA, Gutiérrez LM. Captivating New Roles of F-Actin Cortex in Exocytosis and Bulk Endocytosis in Neurosecretory Cells. Trends Neurosci 2016; 39:605-613. [DOI: 10.1016/j.tins.2016.07.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 07/01/2016] [Accepted: 07/06/2016] [Indexed: 12/01/2022]
|
40
|
Lasič E, Rituper B, Jorgačevski J, Kreft M, Stenovec M, Zorec R. Subanesthetic doses of ketamine stabilize the fusion pore in a narrow flickering state in astrocytes. J Neurochem 2016; 138:909-17. [DOI: 10.1111/jnc.13715] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 06/08/2016] [Accepted: 06/17/2016] [Indexed: 12/27/2022]
Affiliation(s)
- Eva Lasič
- Laboratory of Neuroendocrinology-Molecular Cell Physiology; Institute of Pathophysiology; Faculty of Medicine; University of Ljubljana; Ljubljana Slovenia
| | - Boštjan Rituper
- Laboratory of Neuroendocrinology-Molecular Cell Physiology; Institute of Pathophysiology; Faculty of Medicine; University of Ljubljana; Ljubljana Slovenia
| | - Jernej Jorgačevski
- Laboratory of Neuroendocrinology-Molecular Cell Physiology; Institute of Pathophysiology; Faculty of Medicine; University of Ljubljana; Ljubljana Slovenia
- Celica BIOMEDICAL; Ljubljana Slovenia
| | - Marko Kreft
- Laboratory of Neuroendocrinology-Molecular Cell Physiology; Institute of Pathophysiology; Faculty of Medicine; University of Ljubljana; Ljubljana Slovenia
- Celica BIOMEDICAL; Ljubljana Slovenia
- Biotechnical Faculty; University of Ljubljana; Ljubljana Slovenia
| | - Matjaž Stenovec
- Laboratory of Neuroendocrinology-Molecular Cell Physiology; Institute of Pathophysiology; Faculty of Medicine; University of Ljubljana; Ljubljana Slovenia
- Celica BIOMEDICAL; Ljubljana Slovenia
| | - Robert Zorec
- Laboratory of Neuroendocrinology-Molecular Cell Physiology; Institute of Pathophysiology; Faculty of Medicine; University of Ljubljana; Ljubljana Slovenia
- Celica BIOMEDICAL; Ljubljana Slovenia
| |
Collapse
|
41
|
Picollo F, Battiato A, Bernardi E, Marcantoni A, Pasquarelli A, Carbone E, Olivero P, Carabelli V. Microelectrode Arrays of Diamond-Insulated Graphitic Channels for Real-Time Detection of Exocytotic Events from Cultured Chromaffin Cells and Slices of Adrenal Glands. Anal Chem 2016; 88:7493-9. [DOI: 10.1021/acs.analchem.5b04449] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Federico Picollo
- Istituto Nazionale di Fisica Nucleare (INFN), 10125 Torino, Italy
- Physics
Department, University of Torino, 10125 Torino, Italy
- “Nanostructured
Interfaces and Surfaces” Inter-departmental Centre, University of Torino, 10125 Torino, Italy
- Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia (CNISM), Torino Unit, 10125 Torino, Italy
| | - Alfio Battiato
- Istituto Nazionale di Fisica Nucleare (INFN), 10125 Torino, Italy
- Physics
Department, University of Torino, 10125 Torino, Italy
- “Nanostructured
Interfaces and Surfaces” Inter-departmental Centre, University of Torino, 10125 Torino, Italy
- Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia (CNISM), Torino Unit, 10125 Torino, Italy
| | - Ettore Bernardi
- Istituto Nazionale di Fisica Nucleare (INFN), 10125 Torino, Italy
- Physics
Department, University of Torino, 10125 Torino, Italy
- “Nanostructured
Interfaces and Surfaces” Inter-departmental Centre, University of Torino, 10125 Torino, Italy
- Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia (CNISM), Torino Unit, 10125 Torino, Italy
| | - Andrea Marcantoni
- “Nanostructured
Interfaces and Surfaces” Inter-departmental Centre, University of Torino, 10125 Torino, Italy
- Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia (CNISM), Torino Unit, 10125 Torino, Italy
- Department
of Drug Science and Technology, University of Torino, 10125 Torino, Italy
| | - Alberto Pasquarelli
- Institute
of Electron Devices and Circuits, Ulm University, 89081 Ulm, Germany
| | - Emilio Carbone
- “Nanostructured
Interfaces and Surfaces” Inter-departmental Centre, University of Torino, 10125 Torino, Italy
- Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia (CNISM), Torino Unit, 10125 Torino, Italy
- Department
of Drug Science and Technology, University of Torino, 10125 Torino, Italy
| | - Paolo Olivero
- Istituto Nazionale di Fisica Nucleare (INFN), 10125 Torino, Italy
- Physics
Department, University of Torino, 10125 Torino, Italy
- “Nanostructured
Interfaces and Surfaces” Inter-departmental Centre, University of Torino, 10125 Torino, Italy
- Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia (CNISM), Torino Unit, 10125 Torino, Italy
| | - Valentina Carabelli
- “Nanostructured
Interfaces and Surfaces” Inter-departmental Centre, University of Torino, 10125 Torino, Italy
- Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia (CNISM), Torino Unit, 10125 Torino, Italy
- Department
of Drug Science and Technology, University of Torino, 10125 Torino, Italy
| |
Collapse
|
42
|
Cárdenas AM, Marengo FD. How the stimulus defines the dynamics of vesicle pool recruitment, fusion mode, and vesicle recycling in neuroendocrine cells. J Neurochem 2016; 137:867-79. [DOI: 10.1111/jnc.13565] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Revised: 01/05/2016] [Accepted: 01/25/2016] [Indexed: 01/08/2023]
Affiliation(s)
- Ana María Cárdenas
- Centro Interdisciplinario de Neurociencia de Valparaíso; Universidad de Valparaíso; Valparaíso Chile
| | - Fernando D. Marengo
- Laboratorio de Fisiología y Biología Molecular; Instituto de Fisiología; Biología Molecular y Neurociencias (CONICET); Departamento de Fisiología y Biología Molecular y Celular; Facultad de Ciencias Exactas y Naturales; Universidad de Buenos Aires; Buenos Aires Argentina
| |
Collapse
|
43
|
Kreft M, Jorgačevski J, Vardjan N, Zorec R. Unproductive exocytosis. J Neurochem 2016; 137:880-9. [DOI: 10.1111/jnc.13561] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 01/21/2016] [Accepted: 01/25/2016] [Indexed: 01/04/2023]
Affiliation(s)
- Marko Kreft
- Laboratory of Neuroendocrinology-Molecular Cell Physiology; Faculty of Medicine; University of Ljubljana; Ljubljana Slovenia
- Celica BIOMEDICAL; Ljubljana Slovenia
- Department of Biology; Biotechnical Faculty; University of Ljubljana; Ljubljana Slovenia
| | - Jernej Jorgačevski
- Laboratory of Neuroendocrinology-Molecular Cell Physiology; Faculty of Medicine; University of Ljubljana; Ljubljana Slovenia
- Celica BIOMEDICAL; Ljubljana Slovenia
| | - Nina Vardjan
- Laboratory of Neuroendocrinology-Molecular Cell Physiology; Faculty of Medicine; University of Ljubljana; Ljubljana Slovenia
- Celica BIOMEDICAL; Ljubljana Slovenia
| | - Robert Zorec
- Laboratory of Neuroendocrinology-Molecular Cell Physiology; Faculty of Medicine; University of Ljubljana; Ljubljana Slovenia
- Celica BIOMEDICAL; Ljubljana Slovenia
| |
Collapse
|
44
|
Zelkas L, Raghupathi R, Lumsden AL, Martin AM, Sun E, Spencer NJ, Young RL, Keating DJ. Serotonin-secreting enteroendocrine cells respond via diverse mechanisms to acute and chronic changes in glucose availability. Nutr Metab (Lond) 2015; 12:55. [PMID: 26673561 PMCID: PMC4678665 DOI: 10.1186/s12986-015-0051-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 12/09/2015] [Indexed: 01/11/2023] Open
Abstract
Background Enteroendocrine cells collectively constitute our largest endocrine tissue, with serotonin (5-HT) secreting enterochromaffin (EC) cells being the largest component (~50 %). This gut-derived 5-HT has multiple paracrine and endocrine roles. EC cells are thought to act as nutrient sensors and luminal glucose is the major absorbed form of carbohydrate in the gut and activates secretion in an array of cell types. It is unknown whether EC cells release 5-HT in response to glucose in primary EC cells. Furthermore, fasting augments 5-HT synthesis and release into the circulation. However, which nutrients cause fasting-induced synthesis of EC cell 5-HT is unknown. Here we examine the effects of acute and chronic changes in glucose availability on 5-HT release from intact tissue and single EC cells. Methods We utilised established approaches in our laboratories measuring 5-HT release in intact mouse colon with amperometry. We then examined single EC cells function using our published protocol in guinea-pig colon. Single cell Ca2+ imaging and amperometry were used with these cells. Real-time PCR was used along with amperometry, on primary EC cells cultured for 24 h in 5 or 25 mM glucose. Results We demonstrate that acute increases in glucose, at levels found in the gut lumen rather than in plasma, trigger 5-HT release from intact colon, and cause Ca2+ entry and 5-HT release in primary EC cells. Single cell amperometry demonstrates that high glucose increases the amount of 5-HT released from individual vesicles as they undergo exocytosis. Finally, 24 h incubation of EC cells in low glucose causes an increase in the transcription of the 5-HT synthesising enzyme Tph1 as well as increasing in 5-HT secretion in EC cells. Conclusions We demonstrate that primary EC cells respond to acute changes in glucose availability through increases in intracellular Ca2+ the activation of 5-HT secretion, but respond to chronic changes in glucose levels through the transcriptional regulation of Tph1 to alter 5-HT synthesis.
Collapse
Affiliation(s)
- Leah Zelkas
- Department of Human Physiology and Centre for Neuroscience, Flinders University, Sturt Rd, Adelaide, SA 5042 Australia
| | - Ravi Raghupathi
- Department of Human Physiology and Centre for Neuroscience, Flinders University, Sturt Rd, Adelaide, SA 5042 Australia ; South Australian Health and Medical Research Institute (SAHMRI), Adelaide, 5001 Australia
| | - Amanda L Lumsden
- Department of Human Physiology and Centre for Neuroscience, Flinders University, Sturt Rd, Adelaide, SA 5042 Australia ; South Australian Health and Medical Research Institute (SAHMRI), Adelaide, 5001 Australia
| | - Alyce M Martin
- Department of Human Physiology and Centre for Neuroscience, Flinders University, Sturt Rd, Adelaide, SA 5042 Australia ; South Australian Health and Medical Research Institute (SAHMRI), Adelaide, 5001 Australia
| | - Emily Sun
- Department of Human Physiology and Centre for Neuroscience, Flinders University, Sturt Rd, Adelaide, SA 5042 Australia ; South Australian Health and Medical Research Institute (SAHMRI), Adelaide, 5001 Australia
| | - Nick J Spencer
- Department of Human Physiology and Centre for Neuroscience, Flinders University, Sturt Rd, Adelaide, SA 5042 Australia
| | - Richard L Young
- South Australian Health and Medical Research Institute (SAHMRI), Adelaide, 5001 Australia ; Discipline of Medicine, University of Adelaide, Adelaide, SA 5001 Australia
| | - Damien J Keating
- Department of Human Physiology and Centre for Neuroscience, Flinders University, Sturt Rd, Adelaide, SA 5042 Australia ; South Australian Health and Medical Research Institute (SAHMRI), Adelaide, 5001 Australia
| |
Collapse
|
45
|
Raghupathi R, Jessup CF, Lumsden AL, Keating DJ. Fusion Pore Size Limits 5-HT Release From Single Enterochromaffin Cell Vesicles. J Cell Physiol 2015; 231:1593-600. [PMID: 26574734 DOI: 10.1002/jcp.25256] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 11/13/2015] [Indexed: 12/15/2022]
Abstract
Enterochromaffin cells are the major site of serotonin (5-HT) synthesis and secretion providing ∼95% of the body's total 5-HT. 5-HT can act as a neurotransmitter or hormone and has several important endocrine and paracrine roles. We have previously demonstrated that EC cells release small amounts of 5-HT per exocytosis event compared to other endocrine cells. We utilized a recently developed method to purify EC cells to demonstrate the mechanisms underlying 5-HT packaging and release. Using the fluorescent probe FFN511, we demonstrate that EC cells express VMAT and that VMAT plays a functional role in 5-HT loading into vesicles. Carbon fiber amperometry studies illustrate that the amount of 5-HT released per exocytosis event from EC cells is dependent on both VMAT and the H(+)-ATPase pump, as demonstrated with reserpine or bafilomycin, respectively. We also demonstrate that increasing the amount of 5-HT loaded into EC cell vesicles does not result in an increase in quantal release. As this indicates that fusion pore size may be a limiting factor involved, we compared pore diameter in EC and chromaffin cells by assessing the vesicle capture of different-sized fluorescent probes to measure the extent of fusion pore dilation. This identified that EC cells have a reduced fusion pore expansion that does not exceed 9 nm in diameter. These results demonstrate that the small amounts of 5-HT released per fusion event in EC cells can be explained by a smaller fusion pore that limits 5-HT release capacity from individual vesicles.
Collapse
Affiliation(s)
- Ravinarayan Raghupathi
- Department of Human Physiology and Centre for Neuroscience, Flinders University, Adelaide, Australia
| | - Claire F Jessup
- Department of Anatomy and Histology and Centre for Neuroscience, Flinders University, Adelaide, Australia.,Discipline of Medicine, University of Adelaide, Adelaide, Australia
| | - Amanda L Lumsden
- Department of Human Physiology and Centre for Neuroscience, Flinders University, Adelaide, Australia
| | - Damien J Keating
- Department of Human Physiology and Centre for Neuroscience, Flinders University, Adelaide, Australia.,South Australian Health and Medical Research Institute, Adelaide, Australia
| |
Collapse
|