1
|
Hamidovic A, Mumford S, Schisterman E, Davis J, Soumare F. Neuroactive steroid hormone trajectories across the menstrual cycle in premenstrual dysphoric disorder (PMDD): the PHASE study. Mol Psychiatry 2024; 29:3056-3063. [PMID: 38664491 DOI: 10.1038/s41380-024-02566-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 04/15/2024] [Indexed: 08/22/2024]
Abstract
It is presently not known whether endogenous neuroactive steroid hormone trajectories across the menstrual cycle are distinguishable in women with premenstrual dysphoric disorder (PMDD). To improve the rigor in this area of research, we implemented a validated study methodology, involving blood sample collection at 8 key menstrual cycle timepoints, following which the study data is realigned so that all women are compared at the same biological window (i.e., menstrual cycle subphase). Using liquid chromatography-mass spectrometry (LC-MS), we analyzed serum levels of nine steroid hormones previously implicated in the etiology of PMDD, including allopregnanolone. Other than progesterone (p ≤ 0.001), none of the steroid hormones displayed significant changes across menstrual cycle subphases when comparing participants with PMDD to the healthy controls. A thorough investigation of the progesterone trajectory showed that its left shift in the luteal phase (e.g., earlier rise in progesterone) exposes women with PMDD to a higher periovulatory progesterone and a more acute withdrawal in the late luteal subphase. Results of the present study indicate that the largely overlooked brief periovulatory subphase should be thoroughly examined in PMDD and agree with prior conclusions that rapid progesterone withdrawal associates with the development of negative affect.
Collapse
Affiliation(s)
- Ajna Hamidovic
- College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA.
| | - Sunni Mumford
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Enrique Schisterman
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - John Davis
- College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Fatimata Soumare
- College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
2
|
Morgenstern E, Molthof C, Schwartz U, Graf J, Bruckmann A, Hombach S, Kretz M. lncRNA LINC00941 modulates MTA2/NuRD occupancy to suppress premature human epidermal differentiation. Life Sci Alliance 2024; 7:e202302475. [PMID: 38649186 PMCID: PMC11035861 DOI: 10.26508/lsa.202302475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/25/2024] Open
Abstract
Numerous long non-coding RNAs (lncRNAs) were shown to have a functional impact on cellular processes such as human epidermal homeostasis. However, the mechanism of action for many lncRNAs remains unclear to date. Here, we report that lncRNA LINC00941 regulates keratinocyte differentiation on an epigenetic level through association with the NuRD complex, one of the major chromatin remodelers in cells. We find that LINC00941 interacts with NuRD-associated MTA2 and CHD4 in human primary keratinocytes. LINC00941 perturbation changes MTA2/NuRD occupancy at bivalent chromatin domains in close proximity to transcriptional regulator genes, including the EGR3 gene coding for a transcription factor regulating epidermal differentiation. Notably, LINC00941 depletion resulted in reduced NuRD occupancy at the EGR3 gene locus, increased EGR3 expression in human primary keratinocytes, and increased abundance of EGR3-regulated epidermal differentiation genes in cells and human organotypic epidermal tissues. Our results therefore indicate a role of LINC00941/NuRD in repressing EGR3 expression in non-differentiated keratinocytes, consequentially preventing premature differentiation of human epidermal tissues.
Collapse
Affiliation(s)
- Eva Morgenstern
- Regensburg Center for Biochemistry (RCB), University of Regensburg, Regensburg, Germany
| | - Carolin Molthof
- Regensburg Center for Biochemistry (RCB), University of Regensburg, Regensburg, Germany
| | - Uwe Schwartz
- NGS Analysis Center Biology and Pre-Clinical Medicine, University of Regensburg, Regensburg, Germany
| | - Johannes Graf
- Regensburg Center for Biochemistry (RCB), University of Regensburg, Regensburg, Germany
| | - Astrid Bruckmann
- Regensburg Center for Biochemistry (RCB), University of Regensburg, Regensburg, Germany
| | - Sonja Hombach
- Regensburg Center for Biochemistry (RCB), University of Regensburg, Regensburg, Germany
- Institute for Molecular Medicine, MSH Medical School Hamburg, Hamburg, Germany
| | - Markus Kretz
- Regensburg Center for Biochemistry (RCB), University of Regensburg, Regensburg, Germany
- Institute for Molecular Medicine, MSH Medical School Hamburg, Hamburg, Germany
| |
Collapse
|
3
|
Vidafar P, McGlashan EM, Burns AC, Anderson C, Shechter A, Lockley SW, Phillips AJK, Cain SW. Greater sensitivity of the circadian system of women to bright light, but not dim-to-moderate light. J Pineal Res 2024; 76:e12936. [PMID: 39041348 PMCID: PMC10909465 DOI: 10.1111/jpi.12936] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 12/04/2023] [Accepted: 12/26/2023] [Indexed: 07/24/2024]
Abstract
Women typically sleep and wake earlier than men and have been shown to have earlier circadian timing relative to the light/dark cycle that synchronizes the clock. A potential mechanism for earlier timing in women is an altered response of the circadian system to evening light. We characterized individual-level dose-response curves for light-induced melatonin suppression using a within-subjects protocol. Fifty-six participants (29 women, 27 men; aged 18-30 years) were exposed to a range of light illuminances (10, 30, 50, 100, 200, 400, and 2000 lux) using melatonin suppression relative to a dim control (<1 lux) as a marker of light sensitivity. Women were free from hormonal contraception. To examine the potential influence of sex hormones, estradiol and progesterone was examined in women and testosterone was examined in a subset of men. Menstrual phase was monitored using self-reports and estradiol and progesterone levels. Women exhibited significantly greater melatonin suppression than men under the 400-lux and 2000-lux conditions, but not under lower light conditions (10-200 lux). Light sensitivity did not differ by menstrual phase, nor was it associated with levels of estradiol, progesterone, or testosterone, suggesting the sex differences in light sensitivity were not acutely driven by circulating levels of sex hormones. These results suggest that sex differences in circadian timing are not due to differences in the response to dim/moderate light exposures typically experienced in the evening. The finding of increased bright light sensitivity in women suggests that sex differences in circadian timing could plausibly instead be driven by a greater sensitivity to phase-advancing effects of bright morning light.
Collapse
Affiliation(s)
- Parisa Vidafar
- School of Psychological Sciences and Turner Institute for Brain and Mental HealthMonash UniversityClaytonVictoriaAustralia
- Faculty of Medicine and Health, Central Clinical SchoolThe University of SydneySydneyNew South WalesAustralia
- Australian Research Council Centre of Excellence for Children and Families over the Life CourseCanberraAustralian Capital TerritoryAustralia
| | - Elise M. McGlashan
- School of Psychological Sciences and Turner Institute for Brain and Mental HealthMonash UniversityClaytonVictoriaAustralia
- Melbourne School of Psychological SciencesUniversity of MelbourneParkvilleVictoriaAustralia
| | - Angus C. Burns
- School of Psychological Sciences and Turner Institute for Brain and Mental HealthMonash UniversityClaytonVictoriaAustralia
| | - Clare Anderson
- School of Psychological Sciences and Turner Institute for Brain and Mental HealthMonash UniversityClaytonVictoriaAustralia
| | - Ari Shechter
- Department of MedicineColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | - Steven W. Lockley
- School of Psychological Sciences and Turner Institute for Brain and Mental HealthMonash UniversityClaytonVictoriaAustralia
- Departments of Medicine and Neurology, Division of Sleep and Circadian DisordersBrigham and Women's HospitalBostonMassachusettsUSA
- Division of Sleep MedicineHarvard Medical SchoolBostonMassachusettsUSA
- Department of Clinical and Experimental Medicine, Faculty of Health and Medical SciencesSurrey Sleep Research Centre, University of SurreyGuildfordSurreyUK
| | - Andrew J. K. Phillips
- School of Psychological Sciences and Turner Institute for Brain and Mental HealthMonash UniversityClaytonVictoriaAustralia
| | - Sean W. Cain
- School of Psychological Sciences and Turner Institute for Brain and Mental HealthMonash UniversityClaytonVictoriaAustralia
| |
Collapse
|
4
|
Haußmann J, Goeckenjan M, Haußmann R, Wimberger P. [Premenstrual syndrome and premenstrual dysphoric disorder-Overview on pathophysiology, diagnostics and treatment]. DER NERVENARZT 2024; 95:268-274. [PMID: 38393358 PMCID: PMC10914875 DOI: 10.1007/s00115-024-01625-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/30/2024] [Indexed: 02/25/2024]
Abstract
Premenstrual syndrome and premenstrual dysphoric disorder become episodically manifest during the second half of the female menstrual cycle and are characterized by psychological and physical symptoms causing relevant functional and social impairments. Mood swings, depression and dysphoria are associated depressive symptoms. Therefore, affective disorders should be considered as a differential diagnosis. Of women in reproductive age 3-8% suffer from premenstrual syndrome and 2% of women are affected by premenstrual dysphoric disorder. Genetic and sociobiographical risk factors are discussed. Furthermore, genetic polymorphisms of specific hormone receptors are considered to be genetic risk factors. From a pathophysiological perspective premenstrual syndrome and premenstrual dysphoric disorder are caused by a complex interaction between cyclic changes of ovarian steroids and central neurotransmitters. An imbalance of estrogen and progesterone in the luteal phase is believed to cause the symptoms. Therefore, the first treatment approach consists of regulation of the menstrual cycle or luteal support with progesterone or synthetic progestins even if their effectiveness has not yet been proven in randomized controlled studies and meta-analyses. The administration of combined oral contraceptives is also an option. Especially treatment with selective serotonin reuptake inhibitors (SSRI) represent an evidence-based approach. In severe cases the administration of gonadotropin releasing hormone (GnRH) agonists with add back treatment can also be considered. In the field of affective disorders premenstrual syndromes represent clinically relevant differential diagnoses and comorbidities, which confront the treating physician with particular clinical challenges. Therefore, this literature review gives the readership a clinical orientation for dealing with these disorders.
Collapse
Affiliation(s)
- Jana Haußmann
- Klinik und Poliklinik für Gynäkologie und Geburtshilfe, Universitätsklinikum Carl Gustav Carus an der Technischen Universität Dresden, Fetscherstr. 74, 01307, Dresden, Deutschland.
| | - M Goeckenjan
- Klinik und Poliklinik für Gynäkologie und Geburtshilfe, Universitätsklinikum Carl Gustav Carus an der Technischen Universität Dresden, Fetscherstr. 74, 01307, Dresden, Deutschland
| | - R Haußmann
- Klinik und Poliklinik für Psychiatrie und Psychotherapie, Universitätsklinikum Carl Gustav Carus an der Technischen Universität Dresden, Fetscherstr. 74, 01307, Dresden, Deutschland
| | - P Wimberger
- Klinik und Poliklinik für Gynäkologie und Geburtshilfe, Universitätsklinikum Carl Gustav Carus an der Technischen Universität Dresden, Fetscherstr. 74, 01307, Dresden, Deutschland
| |
Collapse
|
5
|
Ru Y, Ma M, Zhou X, Kriti D, Cohen N, D’Souza S, Schaniel C, Motch Perrine SM, Kuo S, Pinto D, Housman G, Wu M, Holmes G, Schadt E, van Bakel H, Zhang B, Jabs EW. Transcriptomic landscape of human induced pluripotent stem cell-derived osteogenic differentiation identifies a regulatory role of KLF16. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.11.579844. [PMID: 38405902 PMCID: PMC10888757 DOI: 10.1101/2024.02.11.579844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Osteogenic differentiation is essential for bone development and metabolism, but the underlying gene regulatory networks have not been well investigated. We differentiated mesenchymal stem cells, derived from 20 human induced pluripotent stem cell lines, into preosteoblasts and osteoblasts, and performed systematic RNA-seq analyses of 60 samples for differential gene expression. We noted a highly significant correlation in expression patterns and genomic proximity among transcription factor (TF) and long noncoding RNA (lncRNA) genes. We identified TF-TF regulatory networks, regulatory roles of lncRNAs on their neighboring coding genes for TFs and splicing factors, and differential splicing of TF, lncRNA, and splicing factor genes. TF-TF regulatory and gene co-expression network analyses suggested an inhibitory role of TF KLF16 in osteogenic differentiation. We demonstrate that in vitro overexpression of human KLF16 inhibits osteogenic differentiation and mineralization, and in vivo Klf16+/- mice exhibit increased bone mineral density, trabecular number, and cortical bone area. Thus, our model system highlights the regulatory complexity of osteogenic differentiation and identifies novel osteogenic genes.
Collapse
Affiliation(s)
- Ying Ru
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Meng Ma
- Mount Sinai Genomics, Sema4, Stamford, CT, 06902, USA
| | - Xianxiao Zhou
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Divya Kriti
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Ninette Cohen
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Present address: Division of Cytogenetics and Molecular Pathology, Zucker School of Medicine at Hofstra/Northwell, Northwell Health Laboratories, Lake Success, NY, 11030, USA
| | - Sunita D’Souza
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Present address: St Jude Children’s Research Hospital, Memphis, TN, 38105, USA
| | - Christoph Schaniel
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Medicine, Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Mount Sinai Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Susan M. Motch Perrine
- Department of Anthropology, Pennsylvania State University, University Park, PA, 16802, USA
| | - Sharon Kuo
- Department of Anthropology, Pennsylvania State University, University Park, PA, 16802, USA
- Department of Biomedical Sciences, University of Minnesota, Duluth, MN, 55812, USA
| | - Dalila Pinto
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Genevieve Housman
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL, 60637, USA
- Department of Primate Behavior and Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, 04103, Germany
| | - Meng Wu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, 55905
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, 55905
| | - Greg Holmes
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Eric Schadt
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Harm van Bakel
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Ethylin Wang Jabs
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, 55905
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, 55905
| |
Collapse
|
6
|
Sikes-Keilp C, Rubinow DR. GABA-ergic Modulators: New Therapeutic Approaches to Premenstrual Dysphoric Disorder. CNS Drugs 2023; 37:679-693. [PMID: 37542704 DOI: 10.1007/s40263-023-01030-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/20/2023] [Indexed: 08/07/2023]
Abstract
Premenstrual dysphoric disorder (PMDD) is characterized by the predictable onset of mood and physical symptoms secondary to gonadal steroid fluctuation during the luteal phase of the menstrual cycle. Although menstrual-related affective dysfunction is responsible for considerable functional impairment and reduction in quality of life worldwide, currently approved treatments for PMDD are suboptimal in their effectiveness. Research over the past two decades has suggested that the interaction between allopregnanolone, a neurosteroid derivative of progesterone, and the gamma-aminobutyric acid (GABA) system represents an important relationship underlying symptom genesis in reproductive-related mood disorders, including PMDD. The objective of this narrative review is to discuss the plausible link between changes in GABAergic transmission secondary to the fluctuation of allopregnanolone during the luteal phase and mood impairment in susceptible individuals. As part of this discussion, we explore promising findings from early clinical trials of several compounds that stabilize allopregnanolone signaling during the luteal phase, including dutasteride, a 5-alpha reductase inhibitor; isoallopregnanolone, a GABA-A modulating steroid antagonist; and ulipristal acetate, a selective progesterone receptor modulator. We then reflect on the implications of these therapeutic advances, including how they may promote our knowledge of affective regulation more generally. We conclude that these and other studies of PMDD may yield critical insight into the etiopathogenesis of affective disorders, considering that (1) symptoms in PMDD have a predictable onset and offset, allowing for examination of affective state kinetics, and (2) GABAergic interventions in PMDD can be used to better understand the relationship between mood states, network regulation, and the balance between excitatory and inhibitory signaling in the brain.
Collapse
Affiliation(s)
- Christopher Sikes-Keilp
- Department of Psychiatry, University of North Carolina Hospitals, 101 Manning Drive, Chapel Hill, NC, 27514, USA.
| | - David R Rubinow
- Department of Psychiatry, University of North Carolina Hospitals, 101 Manning Drive, Chapel Hill, NC, 27514, USA
| |
Collapse
|
7
|
Islas-Preciado D, López-Rubalcava C, Estrada-Camarena E, de Gortari P, Castro-García M. Effect of chronic unpredictable stress in female Wistar-Kyoto rats subjected to progesterone withdrawal: Relevance for Premenstrual Dysphoric Disorder neurobiology. Psychoneuroendocrinology 2023; 155:106331. [PMID: 37437420 DOI: 10.1016/j.psyneuen.2023.106331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 06/30/2023] [Accepted: 07/04/2023] [Indexed: 07/14/2023]
Abstract
Premenstrual Dysphoric Disorder (PMDD) is related to an abrupt drop in progesterone and impairments in the HPA axis that cause anxiety. Suffering persons report higher daily-life stress and anxiety proneness that may contribute to developing PMDD, considered a chronic stress-related disorder. Here, we explored the effect of chronic unpredictable stress (CUS) in rats subjected to progesterone withdrawal (PW) and evaluated gene expression of HPA axis activation in the stress-vulnerable Wistar-Kyoto (WKY) rat strain that is prone to anxiety. Ovariectomized WKY rats were randomly assigned to CUS or Standard-housed conditions (SHC) for 30 days. To induce PW, animals received 2 mg/kg of progesterone on day 25th for 5 days; 24 h later, they were tested using the anxiety-like burying behavior test (BBT). After behavioral completion, rats were euthanized, and brains were extracted to measure Crh (PVN) and Nr3c1 (hippocampus) mRNA. Blood corticosterone and vasopressin levels were determined. Results showed that PW exacerbated anxiety-like behaviors through passive coping in CUS-WKY. PW decreased Crh-PVN mRNA and the Nr3c1-hippocampal mRNA expression in SHC. CUS decreased Crh-PVN mRNA compared to SHC, and no further changes were observed by PW or BBT exposure. CUS reduced Nr3c1-hippocampal gene expression compared to SHC animals, and lower Nr3c1 mRNA was detected due to BBT. The PW increased corticosterone in SHC and CUS rats; however, CUS blunted corticosterone when combined with PW+BBT and similarly occurred in vasopressin concentrations. Chronic stress blunts the response of components of the HPA axis regulation when PW and BBT (systemic and psychogenic stressors, respectively) are presented. This response may facilitate less adaptive behaviors through passive coping in stress-vulnerable subjects in a preclinical model of premenstrual anxiety.
Collapse
Affiliation(s)
- D Islas-Preciado
- Lab. de Neuropsicofarmacología, Dirección de Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico
| | - C López-Rubalcava
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados IPN (Cinvestav-IPN), Mexico
| | - E Estrada-Camarena
- Lab. de Neuropsicofarmacología, Dirección de Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico.
| | - P de Gortari
- Lab. de Neurofisiología Molecular, Dirección de Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico
| | - M Castro-García
- Lab de Etología, Dirección de Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico
| |
Collapse
|
8
|
Rudzinskas SA, Goff AC, Mazzu MA, Schiller CE, Meltzer-Brody S, Rubinow DR, Schmidt PJ, Goldman D. Intrinsically dysregulated cellular stress signaling genes and gene networks in postpartum depression. Mol Psychiatry 2023; 28:3023-3032. [PMID: 36782063 PMCID: PMC10507674 DOI: 10.1038/s41380-023-01985-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 01/18/2023] [Accepted: 01/25/2023] [Indexed: 02/15/2023]
Abstract
Postpartum depression (PPD) is a leading cause of morbidity and mortality among women. Clinically, the administration and withdrawal of supraphysiologic estradiol and progesterone (E2 + P) can cause affective symptom reoccurrence in women with a history of PPD, but not matched controls. To investigate the cellular basis underlying this differential affective response, lymphoblastoid cell lines (LCLs) were derived from women with and without past PPD and compared transcriptomically in hormone conditions mimicking pregnancy and parturition: supraphysiologic E2 + P-addback; supraphysiologic E2 + P-withdrawal; and no added E2 + P (Baseline). RNA-sequencing identified unique differentially expressed genes (DEGs) in all hormone conditions, but the majority tended to be downregulated in PPD and observed in E2 + P-addback. Two of these DEGs were evolutionarily conserved cellular stress regulators: IMPACT, an integrative response protein maintaining translational homeostasis, and WWTR1, a transcriptional coactivator in the 'Hippo' pathway mediating cell proliferation and survival. Correspondingly, significant gene network modules were linked to cell cycle progression, estrogen response, and immune dysregulation, suggesting innate differences in intracellular signaling in PPD. In certain hormone conditions, PPD LCLs displayed increased GATA3 expression (an upstream regulator of IMPACT and WWTR1) and differentially phosphorylated eiF2α (the ultimate downstream target of IMPACT). Taken together, these transcriptomic data primarily implicate innately dysregulated cellular responses as potentially influencing mood and/or escalating PPD risk. Furthermore, the intrinsic downregulation of IMPACT's translation and WWTR1's transcription networks may suggest a novel link between PPD and a compromised ability to maintain homeostasis in the context of cellular stress occurring during pregnancy and parturition.
Collapse
Affiliation(s)
- Sarah A Rudzinskas
- Behavioral Endocrinology Branch, NIMH, Bldg. 10CRC, Room 25330, 10 Center Drive MSC 1277, Bethesda, 20892-1277, MD, USA
- Laboratory of Neurogenetics, NIAAA, Bethesda, MD, USA
| | - Allison C Goff
- Behavioral Endocrinology Branch, NIMH, Bldg. 10CRC, Room 25330, 10 Center Drive MSC 1277, Bethesda, 20892-1277, MD, USA
- Laboratory of Neurogenetics, NIAAA, Bethesda, MD, USA
| | - Maria A Mazzu
- Behavioral Endocrinology Branch, NIMH, Bldg. 10CRC, Room 25330, 10 Center Drive MSC 1277, Bethesda, 20892-1277, MD, USA
- Laboratory of Neurogenetics, NIAAA, Bethesda, MD, USA
| | | | | | - David R Rubinow
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA
| | - Peter J Schmidt
- Behavioral Endocrinology Branch, NIMH, Bldg. 10CRC, Room 25330, 10 Center Drive MSC 1277, Bethesda, 20892-1277, MD, USA.
| | - David Goldman
- Laboratory of Neurogenetics, NIAAA, Bethesda, MD, USA
| |
Collapse
|
9
|
Rudzinskas SA, Mazzu MA, Schiller CE, Meltzer-Brody S, Rubinow DR, Schmidt PJ, Goldman D. Divergent Transcriptomic Effects of Allopregnanolone in Postpartum Depression. Genes (Basel) 2023; 14:1234. [PMID: 37372414 PMCID: PMC10298697 DOI: 10.3390/genes14061234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
Brexanolone, a formulation of the neurosteroid allopregnanolone (ALLO), is approved for treating postpartum depression (PPD) and is being investigated for therapeutic efficacy across numerous neuropsychiatric disorders. Given ALLO's beneficial effects on mood in women with PPD compared to healthy control women, we sought to characterize and compare the cellular response to ALLO in women with (n = 9) or without (n = 10, i.e., Controls) past PPD, utilizing our previously established patient-derived lymphoblastoid cell lines (LCLs). To mimic in vivo PPD ALLO-treatment, LCLs were exposed to ALLO or DMSO vehicle for 60 h and RNA-sequenced to detect differentially expressed genes (DEGs, pnominal < 0.05). Between ALLO-treated Control and PPD LCLs, 269 DEGs were identified, including Glutamate Decarboxylase 1 (GAD1), which was decreased 2-fold in PPD. Network analysis of PPD:ALLO DEGs revealed enriched terms related to synaptic activity and cholesterol biosynthesis. Within-diagnosis analyses (i.e., DMSO vs. ALLO) detected 265 ALLO-induced DEGs in Control LCLs compared to only 98 within PPD LCLs, with just 11 DEGs overlapping. Likewise, the gene ontologies underlying ALLO-induced DEGs in PPD and Control LCLs were divergent. These data suggest that ALLO may activate unique and opposing molecular pathways in women with PPD, which may be tied to its antidepressant mechanism.
Collapse
Affiliation(s)
- Sarah A. Rudzinskas
- Behavioral Endocrinology Branch, National Institute of Mental Health (NIMH), NIH, 10 Center Drive MSC 1277, Bethesda, MD 20892, USA; (S.A.R.)
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism (NIAAA), NIH, Rockville, MD 20855, USA
| | - Maria A. Mazzu
- Behavioral Endocrinology Branch, National Institute of Mental Health (NIMH), NIH, 10 Center Drive MSC 1277, Bethesda, MD 20892, USA; (S.A.R.)
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism (NIAAA), NIH, Rockville, MD 20855, USA
| | | | | | - David R. Rubinow
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Peter J. Schmidt
- Behavioral Endocrinology Branch, National Institute of Mental Health (NIMH), NIH, 10 Center Drive MSC 1277, Bethesda, MD 20892, USA; (S.A.R.)
| | - David Goldman
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism (NIAAA), NIH, Rockville, MD 20855, USA
| |
Collapse
|
10
|
Hantsoo L, Payne JL. Towards understanding the biology of premenstrual dysphoric disorder: From genes to GABA. Neurosci Biobehav Rev 2023; 149:105168. [PMID: 37059403 PMCID: PMC10176022 DOI: 10.1016/j.neubiorev.2023.105168] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 03/10/2023] [Accepted: 04/10/2023] [Indexed: 04/16/2023]
Abstract
Premenstrual dysphoric disorder (PMDD) is a severe mood disorder, with affective symptoms that rise and fall in concert with the hormonal fluctuations of the menstrual cycle. PMDD's pathophysiology is poorly understood. This review describes recent research on potential biological contributors to PMDD, with a focus on neuroactive steroids, genetics, neuroimaging and cellular studies. Studies suggest that a key contributor is abnormal central nervous system (CNS) response to fluctuations in neuroactive steroid hormones. Imaging studies are limited but support alterations in serotonergic and GABA transmission. Genetic studies suggest heritability, yet specific genetic contributors have not been characterized. Finally, recent cutting-edge cellular studies indicate an underlying vulnerability to the effect of sex hormones at a cellular level. Overall the findings across studies do not yet fit together into a complete description of the underlying biology of PMDD. It is possible that PMDD consists of biological subtypes, and future research may benefit from a subtyping approach.
Collapse
Affiliation(s)
- Liisa Hantsoo
- Department of Psychiatry & Behavioral Sciences, The Johns Hopkins University School of Medicine, 550 N. Broadway Street, Baltimore, MD 21205, USA.
| | - Jennifer L Payne
- Department of Psychiatry and Neurobehavioral Sciences, University of Virginia, PO Box 800548, Charlottesville, VA 22908, USA
| |
Collapse
|
11
|
Li X, He Y, Wu S, Zhang P, Gan M, Chen L, Zhao Y, Niu L, Zhang S, Jiang Y, Guo Z, Wang J, Shen L, Zhu L. Regulation of SIRT1 in Ovarian Function: PCOS Treatment. Curr Issues Mol Biol 2023; 45:2073-2089. [PMID: 36975503 PMCID: PMC10047008 DOI: 10.3390/cimb45030133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
The sirtuin family, a group of NAD+-dependent class 3 histone deacetylases (HDACs), was extensively studied initially as a group of longevity genes that are activated in caloric restriction and act in concert with nicotinamide adenine dinucleotides to extend the lifespan. Subsequent studies have found that sirtuins are involved in various physiological processes, including cell proliferation, apoptosis, cell cycle progression, and insulin signaling, and they have been extensively studied as cancer genes. In recent years, it has been found that caloric restriction increases ovarian reserves, suggesting that sirtuins may play a regulatory role in reproductive capacity, and interest in the sirtuin family has continued to increase. The purpose of this paper is to summarize the existing studies and analyze the role and mechanism of SIRT1, a member of the sirtuin family, in regulating ovarian function. Research and review on the positive regulation of SIRT1 in ovarian function and its therapeutic effect on PCOS syndrome.
Collapse
Affiliation(s)
- Xinrong Li
- Department of Animal Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuxu He
- Department of Animal Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Shuang Wu
- Department of Animal Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Peiwen Zhang
- Department of Animal Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Mailin Gan
- Department of Animal Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Lei Chen
- Department of Animal Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Ye Zhao
- Department of Animal Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Lili Niu
- Department of Animal Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Shunhua Zhang
- Department of Animal Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Yanzhi Jiang
- College of Life Science, Sichuan Agricultural University, Chengdu 611130, China
| | - Zongyi Guo
- Chongqing Academy of Animal Science, Rongchang, Chongqing 402460, China
| | - Jinyong Wang
- Chongqing Academy of Animal Science, Rongchang, Chongqing 402460, China
| | - Linyuan Shen
- Department of Animal Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
- Correspondence: (L.S.); (L.Z.)
| | - Li Zhu
- Department of Animal Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
- Correspondence: (L.S.); (L.Z.)
| |
Collapse
|
12
|
Hamidovic A, Soumare F, Naveed A, Davis J. Mid-Luteal Progesterone Is Inversely Associated with Premenstrual Food Cravings. Nutrients 2023; 15:nu15051097. [PMID: 36904096 PMCID: PMC10005553 DOI: 10.3390/nu15051097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/17/2023] [Accepted: 02/19/2023] [Indexed: 02/25/2023] Open
Abstract
It is not clear whether progesterone and estradiol associate with premenstrual food cravings, which significantly contribute to cardiometabolic adverse effects associated with obesity. We sought to investigate this question in the present study based on the prior literature showing a protective effect of progesterone on drug craving and extensive neurobiological overlaps between food and drug cravings. We enrolled 37 non-illicit drug- or medication-using women in the study to provide daily ratings of premenstrual food cravings and other symptoms across two-three menstrual cycles, based on which we classified them as premenstrual dysphoric disorder (PMDD) or control participants. In addition, the participants provided blood samples at eight clinic visits across the menstrual cycle. We aligned their mid-luteal progesterone and estradiol using a validated method which relies upon the peak serum luteinizing hormone and analyzed estradiol and progesterone using ultraperformance liquid chromatography tandem mass spectrometry. Hierarchical modeling, adjusted for BMI, showed a significant inverse effect of progesterone (p = 0.038) but no effect of estradiol on premenstrual food cravings. The association was not unique to PMDD or control participants. Results of research to date in humans and rodents showing that progesterone has dampening effects on the salience of the reinforcer translate to premenstrual food cravings.
Collapse
Affiliation(s)
- Ajna Hamidovic
- Department of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA
- Correspondence:
| | - Fatimata Soumare
- Department of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA
| | - Aamina Naveed
- Department of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA
| | - John Davis
- Department of Psychiatry, University of Illinois at Chicago, 1601 W. Taylor St., Chicago, IL 60612, USA
| |
Collapse
|
13
|
Hamidovic A, Davis J, Soumare F, Naveed A, Ghani Y, Semiz S, Khalil D, Wardle M. Allopregnanolone Is Associated with a Stress-Induced Reduction of Heart Rate Variability in Premenstrual Dysphoric Disorder. J Clin Med 2023; 12:jcm12041553. [PMID: 36836088 PMCID: PMC9967763 DOI: 10.3390/jcm12041553] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/09/2023] [Accepted: 02/12/2023] [Indexed: 02/18/2023] Open
Abstract
Human survival and wellbeing require appropriate responses to stress, including a highly coordinated and efficient nervous system control of the heart rhythm. During stress, a greater disinhibition of the vagal nerve is reflective of poor stress adaptability, which may be relevant in premenstrual dysphoric disorder (PMDD)-a debilitating affective condition thought to be marked by dysregulated stress processing and sensitivity to allopregnanolone. In the present study, women with PMDD (n = 17) and healthy controls (n = 18), who did not take medication, smoke, or consume illicit drugs, and who were free of other psychiatric conditions, participated in the Trier Social Stress Test, during which we measured the high frequency of the heart rate (HF-HRV) and allopregnanolone using ultra-performance liquid chromatography tandem mass spectrometry. Relative to their baseline, women who have PMDD, but not the healthy controls, experienced a reduction in HF-HRV during stress anticipation (p ≤ 0.05) and stress (p ≤ 0.01). Their recovery from stress was significantly delayed (p ≤ 0.05). Absolute peak HF-HRV change from baseline was significantly predicted by baseline allopregnanolone only in the PMDD group (p ≤ 0.01). The present study shows how an interaction between stress and allopregnanolone-which have both been separately implicated in PMDD-underlies PMDD expression.
Collapse
Affiliation(s)
- Ajna Hamidovic
- Department of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA
- Correspondence:
| | - John Davis
- Department of Psychiatry, University of Illinois at Chicago, 1601 W. Taylor St., Chicago, IL 60612, USA
| | - Fatimata Soumare
- Department of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA
| | - Aamina Naveed
- Department of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA
| | - Yaseen Ghani
- Shirley Ryan Ability Lab, 355 East Erie Street, Chicago, IL 60611, USA
| | - Selma Semiz
- Department of Psychology, Leiden University, Rapenburg 70, 2311 EZ Leiden, The Netherlands
| | - Dina Khalil
- Education Development Center, 300 Fifth Avenue, Suite 2010, Waltham, MA 02451, USA
| | - Margaret Wardle
- Department of Psychology, University of Illinois at Chicago, 1007 W. Harrison St., 1009 BSB, Chicago, IL 60607, USA
| |
Collapse
|
14
|
Altered visual cortex excitability in premenstrual dysphoric disorder: Evidence from magnetoencephalographic gamma oscillations and perceptual suppression. PLoS One 2022; 17:e0279868. [PMID: 36584199 PMCID: PMC9803314 DOI: 10.1371/journal.pone.0279868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 12/15/2022] [Indexed: 12/31/2022] Open
Abstract
Premenstrual dysphoric disorder (PMDD) is a psychiatric condition characterized by extreme mood shifts during the luteal phase of the menstrual cycle (MC) due to abnormal sensitivity to neurosteroids and unbalanced neural excitation/inhibition (E/I) ratio. We hypothesized that in women with PMDD in the luteal phase, these factors would alter the frequency of magnetoencephalographic visual gamma oscillations, affect modulation of their power by excitatory drive, and decrease perceptual spatial suppression. Women with PMDD and control women were examined twice-during the follicular and luteal phases of their MC. We recorded visual gamma response (GR) while modulating the excitatory drive by increasing the drift rate of the high-contrast grating (static, 'slow', 'medium', and 'fast'). Contrary to our expectations, GR frequency was not affected in women with PMDD in either phase of the MC. GR power suppression, which is normally associated with a switch from the 'optimal' for GR slow drift rate to the medium drift rate, was reduced in women with PMDD and was the only GR parameter that distinguished them from control participants specifically in the luteal phase and predicted severity of their premenstrual symptoms. Over and above the atypical luteal GR suppression, in both phases of the MC women with PMDD had abnormally strong GR facilitation caused by a switch from the 'suboptimal' static to the 'optimal' slow drift rate. Perceptual spatial suppression did not differ between the groups but decreased from the follicular to the luteal phase only in PMDD women. The atypical modulation of GR power suggests that neuronal excitability in the visual cortex is constitutively elevated in PMDD and that this E/I imbalance is further exacerbated during the luteal phase. However, the unaltered GR frequency does not support the hypothesis of inhibitory neuron dysfunction in PMDD.
Collapse
|
15
|
Pestana JE, Islam N, Van der Eyk NL, Graham BM. What Pre-clinical Rat Models Can Tell Us About Anxiety Across the Menstrual Cycle in Healthy and Clinically Anxious Humans. Curr Psychiatry Rep 2022; 24:697-707. [PMID: 36255558 PMCID: PMC9633475 DOI: 10.1007/s11920-022-01376-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/19/2022] [Indexed: 01/29/2023]
Abstract
PURPOSE OF REVIEW Anxiety symptoms increase during the peri-menstrual phase of the menstrual cycle in people with anxiety disorders. Whether this reflects a heightened variant of normal menstrual-related changes in psychological states experienced by healthy (i.e. non-anxious) people is unknown. Moreover, menstrual-related change in anxiety symptoms is a poorly understood phenomenon, highlighting a need for pre-clinical models to aid mechanistic discovery. Here, we review recent evidence for menstrual effects on anxiety-like features in healthy humans as a counterpart to recent reviews that have focused on clinically anxious populations. We appraise the utility of rodent models to identify mechanisms of menstrual effects on anxiety and offer suggestions to harmonise methodological practices across species to advance knowledge in this field. RECENT FINDINGS Consistent with reports in clinical populations, some evidence indicates anxiety symptoms increase during the peri-menstrual period in healthy people, although null results have been reported, and these effects are heterogeneous across studies and individuals. Studies in rats show robust increases in anxiety during analogous phases of the oestrous cycle. Studies in female rats are useful to identify the evolutionarily conserved biological mechanisms of menstrual-related changes in anxiety. Future experimental approaches in rats should model the heterogeneity observed in human studies to increase alignment across species and advance understanding of the individual factors that increase the propensity to experience menstrual-related changes in anxiety.
Collapse
Affiliation(s)
- Jodie E Pestana
- School of Psychology, The University of New South Wales Australia, Sydney, NSW, Australia
| | - Nusaibah Islam
- School of Psychology, The University of New South Wales Australia, Sydney, NSW, Australia
| | - Natasha L Van der Eyk
- School of Psychology, The University of New South Wales Australia, Sydney, NSW, Australia
| | - Bronwyn M Graham
- School of Psychology, The University of New South Wales Australia, Sydney, NSW, Australia.
| |
Collapse
|
16
|
Griksiene R, Monciunskaite R, Ruksenas O. What is there to know about the effects of progestins on the human brain and cognition? Front Neuroendocrinol 2022; 67:101032. [PMID: 36029852 DOI: 10.1016/j.yfrne.2022.101032] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/24/2022] [Accepted: 08/19/2022] [Indexed: 12/27/2022]
Abstract
Progestins are an important component of hormonal contraceptives (HCs) and hormone replacement therapies (HRTs). Despite an increasing number of studies elucidating the effects of HCs and HRTs, little is known about the effects of different types of progestins included in these medications on the brain. Animal studies suggest that various progestins interact differently with sex steroid, mineralocorticoid and glucocorticoid receptors and have specific modulatory effects on neurotransmitter systems and on the expression of neuropeptides, suggesting differential impacts on cognition and behavior. This review focuses on the currently available knowledge from human behavioral and neuroimaging studies pooled with evidence from animal research regarding the effects of progestins on the brain. The reviewed information is highly relevant for improving women's mental health and making informed choices regarding specific types of contraception or treatment.
Collapse
Affiliation(s)
- Ramune Griksiene
- Department of Neurobiology and Biophysics, Life Sciences Center, Vilnius University, Lithuania
| | - Rasa Monciunskaite
- Department of Neurobiology and Biophysics, Life Sciences Center, Vilnius University, Lithuania
| | - Osvaldas Ruksenas
- Department of Neurobiology and Biophysics, Life Sciences Center, Vilnius University, Lithuania
| |
Collapse
|
17
|
Graham BM. The impact of hormonal contraceptives on anxiety treatments: From preclinical models to clinical settings. Front Neuroendocrinol 2022; 67:101030. [PMID: 35995079 DOI: 10.1016/j.yfrne.2022.101030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/10/2022] [Accepted: 08/15/2022] [Indexed: 11/17/2022]
Abstract
Exposure therapy is a central component of the first-line treatment for anxiety disorders, a common mental health condition that is twice as prevalent in women relative to men. A key underlying mechanism of exposure therapy is fear extinction, which is an active learning process supported by a neural circuitry that is highly regulated by ovarian hormones. This review synthesises research examining the impact of hormonal contraceptives on laboratory fear extinction tasks in female rats and women, and on exposure therapy in women with anxiety disorders. The evidence indicates that hormonal contraceptives have a detrimental impact on fear extinction and exposure therapy that is consistent across species, and from laboratory to clinical settings. Candidate pathways by which hormonal contraceptives impede fear extinction and exposure therapy include suppression of endogenous ovarian hormones and glucocorticoids, and downregulation of signalling pathways that support extinction learning. Key areas of focus for future research are discussed.
Collapse
Affiliation(s)
- Bronwyn M Graham
- School of Psychology, The University of New South Wales Australia, Sydney, New South Wales, Australia.
| |
Collapse
|
18
|
Can animal models resemble a premenstrual dysphoric condition? Front Neuroendocrinol 2022; 66:101007. [PMID: 35623450 DOI: 10.1016/j.yfrne.2022.101007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 04/22/2022] [Accepted: 05/19/2022] [Indexed: 11/23/2022]
Abstract
Around 80% of women worldwide suffer mild Premenstrual Disorders (PMD) during their reproductive life. Up to a quarter are affected by moderate to severe symptoms, and between 3% and 8% experience a severe form. It is classified as premenstrual syndrome (PMS) with predominantly physical symptoms and premenstrual dysphoric disorder (PMDD) with psychiatric symptoms. The present review analyzes the factors associated with PMD and the Hypothalamus-Pituitary-Ovarian or Hypothalamus-Pituitary-adrenal axis and discusses the main animal models used to study PMDD. Evidence shows that the ovarian hormones participate in PMDD symptoms, and several points of regulation of their synthesis, metabolism, and target sites could be altered. PMDD is complex and implies several factors that require consideration when this condition is modeled in animals. Of particular interest are those points related to areas that may represent opportunities to develop new approximations to understand the mechanisms involved in PMDD and possible treatments.
Collapse
|
19
|
Wakefield JC. Klerman's "credo" reconsidered: neo-Kraepelinianism, Spitzer's views, and what we can learn from the past. World Psychiatry 2022; 21:4-25. [PMID: 35015356 PMCID: PMC8751581 DOI: 10.1002/wps.20942] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
In 1978, G. Klerman published an essay in which he named the then-nascent "neo-Kraepelinian" movement and formulated a "credo" of nine propositions expressing the movement's essential claims and aspirations. Klerman's essay appeared on the eve of the triumph of neo-Kraepelinian ideas in the DSM-III. However, this diagnostic system has subsequently come under attack, opening the way for competing proposals for the future of psychiatric nosology. To better understand what is at stake, in this paper I provide a close reading and consideration of Klerman's credo in light of the past forty years of research and reflection. The credo is placed in the context of two equally seminal publications in the same year, one by S. Guze, the leading neo-Kraepelinian theorist, and the other by R. Spitzer and J. Endicott, defining mental disorder. The divergences between Spitzer and standard neo-Kraepelinianism are highlighted and argued to be much more important than is generally realized. The analysis of Klerman's credo is also argued to have implications for how to satisfactorily resolve the current nosological ferment in psychiatry. In addition to issues such as creating descriptive syndromal diagnostic criteria, overthrowing psychoanalytic dominance of psychiatry, and making psychiatry more scientific, neo-Kraepelinians were deeply concerned with the conceptual issue of the nature of mental disorder and the defense of psychiatry's medical legitimacy in response to antipsychiatric criticisms. These issues cannot be ignored, and I argue that proposals currently on offer to replace the neo-Kraepelinian system, especially popular proposals to replace it with dimensional measures, fail to adequately address them.
Collapse
Affiliation(s)
- Jerome C Wakefield
- Center for Bioethics, School of Global Public Health, and Silver School of Social Work, New York University, New York, NY, USA
| |
Collapse
|
20
|
Yin W, Zhang J, Guo Y, Wu Z, Diao C, Sun J. Melatonin for premenstrual syndrome: A potential remedy but not ready. Front Endocrinol (Lausanne) 2022; 13:1084249. [PMID: 36699021 PMCID: PMC9868742 DOI: 10.3389/fendo.2022.1084249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 12/12/2022] [Indexed: 01/11/2023] Open
Abstract
Premenstrual syndrome (PMS), a recurrent and moderate disorder that occurs during the luteal phase of the menstrual cycle and quickly resolves after menstruation, is characterized by somatic and emotional discomfort that can be severe enough to impair daily activities. Current therapeutic drugs for PMS such as selective serotonin reuptake inhibitors are not very satisfying. As a critical pineal hormone, melatonin has increasingly been suggested to modulate PMS symptoms. In this review, we update the latest progress on PMS-induced sleep disturbance, mood changes, and cognitive impairment and provide possible pathways by which melatonin attenuates these symptoms. Moreover, we focus on the role of melatonin in PMS molecular mechanisms. Herein, we show that melatonin can regulate ovarian estrogen and progesterone, of which cyclic fluctuations contribute to PMS pathogenesis. Melatonin also modulates gamma-aminobutyric acid and the brain-derived neurotrophic factor system in PMS. Interpreting the role of melatonin in PMS is not only informative to clarify PMS etiology but also instructive to melatonin and its receptor agonist application to promote female health. As a safe interaction, melatonin treatment can be effective in alleviating symptoms of PMS. However, symptoms such as sleep disturbance, depressive mood, cognitive impairment are not specific and can be easily misdiagnosed. Connections between melatonin receptor, ovarian steroid dysfunction, and PMS are not consistent among past studies. Before final conclusions are drawn, more well-organized and rigorous studies are recommended.
Collapse
Affiliation(s)
- Wei Yin
- Shandong Key Laboratory of Mental Disorders, Department of Anatomy and Neurobiology, Shandong University, Jinan, Shandong, China
| | - Jie Zhang
- Department of Neurosurgery, Laizhou City People’s Hospital, Laizhou, Shandong, China
| | - Yao Guo
- Department of Psychiatry, Shandong Provincial Mental Health Center, Jinan, Shandong, China
| | - Zhibing Wu
- Department of Anatomy, Changzhi Medical College, Changzhi, Shanxi, China
| | - Can Diao
- School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Jinhao Sun
- Shandong Key Laboratory of Mental Disorders, Department of Anatomy and Neurobiology, Shandong University, Jinan, Shandong, China
- *Correspondence: Jinhao Sun,
| |
Collapse
|
21
|
Sikes-Keilp C, Rubinow DR. In search of sex-related mediators of affective illness. Biol Sex Differ 2021; 12:55. [PMID: 34663459 PMCID: PMC8524875 DOI: 10.1186/s13293-021-00400-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/08/2021] [Indexed: 12/25/2022] Open
Abstract
Sex differences in the rates of affective disorders have been recognized for decades. Studies of physiologic sex-related differences in animals and humans, however, have generally yielded little in terms of explaining these differences. Furthermore, the significance of these findings is difficult to interpret given the dynamic, integrative, and highly context-dependent nature of human physiology. In this article, we provide an overview of the current literature on sex differences as they relate to mood disorders, organizing existing findings into five levels at which sex differences conceivably influence physiology relevant to affective states. These levels include the following: brain structure, network connectivity, signal transduction, transcription/translation, and epigenesis. We then evaluate the importance and limitations of this body of work, as well as offer perspectives on the future of research into sex differences. In creating this overview, we attempt to bring perspective to a body of research that is complex, poorly synthesized, and far from complete, as well as provide a theoretical framework for thinking about the role that sex differences ultimately play in affective regulation. Despite the overall gaps regarding both the underlying pathogenesis of affective illness and the role of sex-related factors in the development of affective disorders, it is evident that sex should be considered as an important contributor to alterations in neural function giving rise to susceptibility to and expression of depression.
Collapse
Affiliation(s)
| | - David R Rubinow
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
22
|
Xue H, Wu Z, Long X, Ullah A, Chen S, Mat WK, Sun P, Gao MZ, Wang JQ, Wang HJ, Li X, Sun WJ, Qiao MQ. Copy number variation profile-based genomic typing of premenstrual dysphoric disorder in Chinese. J Genet Genomics 2021; 48:1070-1080. [PMID: 34530168 DOI: 10.1016/j.jgg.2021.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 08/13/2021] [Accepted: 08/13/2021] [Indexed: 11/16/2022]
Abstract
Premenstrual dysphoric disorder (PMDD) affects nearly 5% women of reproductive age. Symptomatic heterogeneity, together with largely unknown genetics, have greatly hindered its effective treatment. In the present study, analysis of genomic sequencing-based copy-number-variations (CNVs) called from 100-kb white blood cell DNA sequence windows by means of semi-supervised clustering led to the segregation of patient genomes into the D and V groups, which correlated with the depression and invasion clinical types respectively with 89.0% consistency. Application of diagnostic CNV features selected using the correlation-based machine-learning method enabled the classification of the CNVs obtained into the D group, V group, total-patient group and control group with an average accuracy of 83.0%. The power of the diagnostic CNV features was 0.98 on average, suggesting that these CNV features could be employed for the molecular diagnosis of the major clinical types of PMDD. This demonstrated concordnce between the CNV profiles and clinical types of PMDD supported the validity of symptom-based diagnosis of PMDD for differentiating between its two major clinical types, as well as the predominanly genetic nature of PMDD with a host of overlaps between multiple susceptibility genes/pathways and the diagnostic CNV features as indicators of involvement in PMDD etiology.
Collapse
Affiliation(s)
- Hong Xue
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250355, China; Division of Life Science and Applied Genomics Center, Hong Kong University of Science and Technology, Hong Kong, China; School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 210009, China; HKUST Shenzhen Research Institute, 9 Yuexing First Road, Nanshan, Shenzhen, China; Guangzhou HKUST Fok Ying Tung Research Institute, Science and Technology Building, Nansha Information Technology Park, Nansha, Guangzhou, 511458, China.
| | - Zhenggang Wu
- Division of Life Science and Applied Genomics Center, Hong Kong University of Science and Technology, Hong Kong, China; School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 210009, China; HKUST Shenzhen Research Institute, 9 Yuexing First Road, Nanshan, Shenzhen, China; Guangzhou HKUST Fok Ying Tung Research Institute, Science and Technology Building, Nansha Information Technology Park, Nansha, Guangzhou, 511458, China
| | - Xi Long
- Division of Life Science and Applied Genomics Center, Hong Kong University of Science and Technology, Hong Kong, China; School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 210009, China; HKUST Shenzhen Research Institute, 9 Yuexing First Road, Nanshan, Shenzhen, China; Guangzhou HKUST Fok Ying Tung Research Institute, Science and Technology Building, Nansha Information Technology Park, Nansha, Guangzhou, 511458, China
| | - Ata Ullah
- Division of Life Science and Applied Genomics Center, Hong Kong University of Science and Technology, Hong Kong, China
| | - Si Chen
- Division of Life Science and Applied Genomics Center, Hong Kong University of Science and Technology, Hong Kong, China
| | - Wai-Kin Mat
- Division of Life Science and Applied Genomics Center, Hong Kong University of Science and Technology, Hong Kong, China
| | - Peng Sun
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250355, China
| | - Ming-Zhou Gao
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250355, China
| | - Jie-Qiong Wang
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250355, China
| | - Hai-Jun Wang
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250355, China
| | - Xia Li
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250355, China
| | - Wen-Jun Sun
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250355, China
| | - Ming-Qi Qiao
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250355, China.
| |
Collapse
|
23
|
Keane JT, Afrasiabi A, Schibeci SD, Fewings N, Parnell GP, Swaminathan S, Booth DR. Gender and the Sex Hormone Estradiol Affect Multiple Sclerosis Risk Gene Expression in Epstein-Barr Virus-Infected B Cells. Front Immunol 2021; 12:732694. [PMID: 34566997 PMCID: PMC8455923 DOI: 10.3389/fimmu.2021.732694] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/23/2021] [Indexed: 12/04/2022] Open
Abstract
Multiple Sclerosis (MS) is a complex immune-mediated disease of the central nervous system. Treatment is based on immunomodulation, including specifically targeting B cells. B cells are the main host for the Epstein-Barr Virus (EBV), which has been described as necessary for MS development. Over 200 genetic loci have been identified as increasing susceptibility to MS. Many MS risk genes have altered expression in EBV infected B cells, dependent on the risk genotype, and are themselves regulated by the EBV transcription factor EBNA2. Females are 2-3 times more likely to develop MS than males. We investigated if MS risk loci might mediate the gender imbalance in MS. From a large public dataset, we identified gender-specific associations with EBV traits, and MS risk SNP/gene pairs with gender differences in their associations with gene expression. Some of these genes also showed gender differences in correlation of gene expression level with Estrogen Receptor 2. To test if estrogens may drive these gender specific differences, we cultured EBV infected B cells (lymphoblastoid cell lines, LCLs), in medium depleted of serum to remove the effects of sex hormones as well as the estrogenic effect of phenol red, and then supplemented with estrogen (100 nM estradiol). Estradiol treatment altered MS risk gene expression, LCL proliferation rate, EBV DNA copy number and EBNA2 expression in a sex-dependent manner. Together, these data indicate that there are estrogen-mediated gender-specific differences in MS risk gene expression and EBV functions. This may in turn contribute to gender differences in host response to EBV and to MS susceptibility.
Collapse
Affiliation(s)
- Jeremy T. Keane
- Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, University of Sydney, Sydney, NSW, Australia
| | - Ali Afrasiabi
- Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, University of Sydney, Sydney, NSW, Australia
- BioMedical Machine Learning Lab (BML), The Graduate School of Biomedical Engineering, UNSW SYDNEY, Sydney, NSW, Australia
| | - Stephen D. Schibeci
- Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, University of Sydney, Sydney, NSW, Australia
| | - Nicole Fewings
- Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, University of Sydney, Sydney, NSW, Australia
| | - Grant P. Parnell
- Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, University of Sydney, Sydney, NSW, Australia
| | - Sanjay Swaminathan
- Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, University of Sydney, Sydney, NSW, Australia
- Department of Medicine, Western Sydney University, Sydney, NSW, Australia
| | - David R. Booth
- Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
24
|
Rudzinskas S, Hoffman JF, Martinez P, Rubinow DR, Schmidt PJ, Goldman D. In vitro model of perimenopausal depression implicates steroid metabolic and proinflammatory genes. Mol Psychiatry 2021; 26:3266-3276. [PMID: 32788687 PMCID: PMC7878574 DOI: 10.1038/s41380-020-00860-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 07/28/2020] [Accepted: 07/29/2020] [Indexed: 11/09/2022]
Abstract
The estimated 20-30% of women who develop perimenopausal depression (PMD) are at an increased risk of cardiovascular and all-cause mortality. The therapeutic benefits of estradiol (E2) and symptom-provoking effects of E2-withdrawal (E2-WD) suggest that a greater sensitivity to changes in E2 at the cellular level contribute to PMD. We developed an in vitro model of PMD with lymphoblastoid cell lines (LCLs) derived from participants of a prior E2-WD clinical study. LCLs from women with past PMD (n = 8) or control women (n = 9) were cultured in three experimental conditions: at vehicle baseline, during E2 treatment, and following E2-WD. Transcriptome analysis revealed significant differences in transcript expression in PMD in all experimental conditions, and significant overlap in genes that were changed in PMD regardless of experimental condition. Of these, chemokine CXCL10, previously linked to cardiovascular disease, was upregulated in women with PMD, but most so after E2-WD (p < 1.55 × 10-5). CYP7B1, an enzyme intrinsic to DHEA metabolism, was upregulated in PMD across experimental conditions (F(1,45) = 19.93, p < 0.0001). These transcripts were further validated via qRT-PCR. Gene networks dysregulated in PMD included inflammatory response, early/late E2-response, and cholesterol homeostasis. Our results provide evidence that differential behavioral responsivity to E2-WD in PMD reflects intrinsic differences in cellular gene expression. Genes such as CXCL10, CYP7B1, and corresponding proinflammatory and steroid biosynthetic gene networks, may represent biomarkers and molecular targets for intervention in PMD. Finally, this in vitro model allows for future investigations into the mechanisms of genes and gene networks involved in the vulnerability to, and consequences of, PMD.
Collapse
Affiliation(s)
- Sarah Rudzinskas
- Behavioral Endocrinology Branch, NIMH, Bethesda, MD, USA
- Laboratory of Neurogenetics, NIAAA, Rockville, MD, USA
| | - Jessica F Hoffman
- Behavioral Endocrinology Branch, NIMH, Bethesda, MD, USA
- Laboratory of Neurogenetics, NIAAA, Rockville, MD, USA
| | - Pedro Martinez
- Behavioral Endocrinology Branch, NIMH, Bethesda, MD, USA
| | - David R Rubinow
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA
| | | | - David Goldman
- Laboratory of Neurogenetics, NIAAA, Rockville, MD, USA
| |
Collapse
|
25
|
Dilbaz B, Aksan A. Premenstrual syndrome, a common but underrated entity: review of the clinical literature. J Turk Ger Gynecol Assoc 2021; 22:139-148. [PMID: 33663193 PMCID: PMC8187976 DOI: 10.4274/jtgga.galenos.2021.2020.0133] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 01/06/2021] [Indexed: 02/06/2023] Open
Abstract
Premenstrual syndrome (PMS) and premenstrual dysphoric disorder (PMDD) are characterized by somatic and psychologic symptoms that arise at the luteal phase of the menstrual cycle and subside with menstruation. For definitive diagnosis prospectively self-reported symptoms should demonstrate a cyclic pattern and other psychological pathologies and thyroid dysfunction, that may present with similar symptoms, should be excluded. Both entities affect millions of women at reproductive age as the prevalence of PMS is given as 10-98% while PMDD affects 2-8%. Sex steroids and neurotransmitters have a central role in the etiology. The role of vitamins and minerals in the etiology and treatment of PMS and PMDD is open to discussion. Drugs that suppress ovarian sex steroid production, such as combined oral contraceptives or selective serotonin re-uptake inhibitors enhancing central serotonin delivery are used for treatment. Life-style changes and regular exercise also have a positive effect in milder cases. Tricyclic antidepressants and gonadotropin-releasing hormone analogues can be used in selected cases.
Collapse
Affiliation(s)
- Berna Dilbaz
- Department of Obstetrics and Gynecology, University of Health Sciences Turkey, Etlik Zübeyde Hanım Women’s Health and Research Center, Ankara, Turkey
| | - Alperen Aksan
- Department of Obstetrics and Gynecology, University of Health Sciences Turkey, Etlik Zübeyde Hanım Women’s Health and Research Center, Ankara, Turkey
| |
Collapse
|
26
|
Wei SM, Baller EB, Martinez PE, Goff AC, Li HJ, Kohn PD, Kippenhan JS, Soldin SJ, Rubinow DR, Goldman D, Schmidt PJ, Berman KF. Subgenual cingulate resting regional cerebral blood flow in premenstrual dysphoric disorder: differential regulation by ovarian steroids and preliminary evidence for an association with expression of ESC/E(Z) complex genes. Transl Psychiatry 2021; 11:206. [PMID: 33833224 PMCID: PMC8032707 DOI: 10.1038/s41398-021-01328-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 02/18/2021] [Accepted: 02/26/2021] [Indexed: 12/19/2022] Open
Abstract
Substantial evidence suggests that circulating ovarian steroids modulate behavior differently in women with PMDD than in those without this condition. However, hormonal state-related abnormalities of neural functioning in PMDD remain to be better characterized. In addition, while altered neural function in PMDD likely co-exists with alterations in intrinsic cellular function, such a relationship has not been explored. Here, we investigated the effects of ovarian steroids on basal, resting regional cerebral blood flow (rCBF) in PMDD, and, in an exploratory analysis, we tested whether the rCBF findings were linked to the expression of ESC/E(Z) genes, which form an essential ovarian steroid-regulated gene-silencing complex. Resting rCBF was measured with oxygen-15 water PET (189 PET sessions in 43 healthy women and 20 women with PMDD) during three self-as-own-control conditions: GnRH agonist (Lupron)-induced ovarian suppression, estradiol add-back, and progesterone add-back. ESC/E(Z) gene expression data were obtained from RNA-sequencing of lymphoblastoid cell lines performed in a previous study and were examined in relation to hormone-induced changes in rCBF. In the rCBF PET data, there was a significant diagnosis-by-hormone interaction in the subgenual cingulate (PFDR = 0.05), an important neuroanatomical hub for regulating affective state. Whereas control women showed no hormonally-related changes in resting rCBF, those with PMDD showed decreased resting rCBF during both estradiol (P = 0.02) and progesterone (P = 0.0002) add-back conditions. In addition, in PMDD, ESC/E(Z) gene expression correlated with the change in resting rCBF between Lupron-alone and progesterone conditions (Pearson r = -0.807, P = 0.016). This work offers a formulation of PMDD that integrates behavioral, neural circuit, and cellular mechanisms, and may provide new targets for future therapeutic interventions.
Collapse
Affiliation(s)
- Shau-Ming Wei
- grid.420086.80000 0001 2237 2479Section on Integrative Neuroimaging, Clinical and Translational Neuroscience Branch, NIMH IRP, NIH, Bethesda, MD USA ,grid.420086.80000 0001 2237 2479Behavioral Endocrinology Branch; NIMH IRP, NIH, Bethesda, MD USA
| | - Erica B. Baller
- grid.420086.80000 0001 2237 2479Section on Integrative Neuroimaging, Clinical and Translational Neuroscience Branch, NIMH IRP, NIH, Bethesda, MD USA
| | - Pedro E. Martinez
- grid.420086.80000 0001 2237 2479Behavioral Endocrinology Branch; NIMH IRP, NIH, Bethesda, MD USA
| | - Allison C. Goff
- grid.420085.b0000 0004 0481 4802Laboratory of Neurogenetics, NIAAA, Bethesda, MD USA
| | - Howard J. Li
- grid.420085.b0000 0004 0481 4802Laboratory of Neurogenetics, NIAAA, Bethesda, MD USA
| | - Philip D. Kohn
- grid.420086.80000 0001 2237 2479Section on Integrative Neuroimaging, Clinical and Translational Neuroscience Branch, NIMH IRP, NIH, Bethesda, MD USA
| | - J. Shane Kippenhan
- grid.420086.80000 0001 2237 2479Section on Integrative Neuroimaging, Clinical and Translational Neuroscience Branch, NIMH IRP, NIH, Bethesda, MD USA
| | - Steven J. Soldin
- grid.410305.30000 0001 2194 5650Department of Laboratory Medicine, NIH Clinical Center, Bethesda, MD USA
| | - David R. Rubinow
- grid.410711.20000 0001 1034 1720Department of Psychiatry, University of North Carolina, Chapel Hill, NC USA
| | - David Goldman
- grid.420085.b0000 0004 0481 4802Laboratory of Neurogenetics, NIAAA, Bethesda, MD USA
| | - Peter J. Schmidt
- grid.420086.80000 0001 2237 2479Behavioral Endocrinology Branch; NIMH IRP, NIH, Bethesda, MD USA
| | - Karen F. Berman
- grid.420086.80000 0001 2237 2479Section on Integrative Neuroimaging, Clinical and Translational Neuroscience Branch, NIMH IRP, NIH, Bethesda, MD USA
| |
Collapse
|
27
|
Weber MT, Rubin LH, Schroeder R, Steffenella T, Maki PM. Cognitive profiles in perimenopause: hormonal and menopausal symptom correlates. Climacteric 2021; 24:401-407. [PMID: 33759672 DOI: 10.1080/13697137.2021.1892626] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
OBJECTIVE Perimenopause is associated with declines in attention, working memory and verbal memory; however, there are significant individual differences. Further, the contributions of hormones and menopausal symptoms to domain-specific cognitive functions remain unknown. This longitudinal study aimed to determine whether there were distinct cognitive profiles in perimenopause and to identify factors associated with each profile. DESIGN In a sample of 85 women evaluated over 400 bi-annual visits, we administered a comprehensive neuropsychological battery, assessed menopausal symptoms and measured 17β-estradiol and follicle stimulating hormone. Multilevel latent profile analysis was used to identify cognitive profiles. Regressions were conducted to determine differences in hormones and symptoms by profile after adjusting for Stages of Reproductive Aging Workshop + 10 (STRAW + 10) stage and demographic factors. RESULTS Perimenopausal cognitive profiles consisted of cognitively normal (Profile 1; n = 162), weaknesses in verbal learning and memory (Profile 2; n = 94), strengths in verbal learning and memory (Profile 3; n = 98) and strengths in attention and executive function (Profile 4; n = 61). Profile 2 was differentiated by less hormonal variability and more sleep disturbance than Profile 1 (p < 0.05). CONCLUSIONS There is significant heterogeneity in cognition during perimenopause. While most women do not develop impairments, a significant minority experience weaknesses in verbal learning and memory. Profile analysis may identify at-risk populations and inform interventions.
Collapse
Affiliation(s)
- M T Weber
- Department of Neurology, University of Rochester Medical Center, Rochester, NY, USA.,Department of Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, NY, USA
| | - L H Rubin
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Epidemiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - R Schroeder
- Department of Psychology, University of Illinois at Chicago, Chicago, IL, USA
| | - T Steffenella
- School of Nursing, University of Rochester Medical Center, Rochester, NY, USA
| | - P M Maki
- Department of Psychology, University of Illinois at Chicago, Chicago, IL, USA.,Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA.,Department of Obstetrics and Gynecology, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
28
|
Cao Y, Li L, Fan Z. The role and mechanisms of polycomb repressive complex 2 on the regulation of osteogenic and neurogenic differentiation of stem cells. Cell Prolif 2021; 54:e13032. [PMID: 33759287 PMCID: PMC8088470 DOI: 10.1111/cpr.13032] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/25/2021] [Accepted: 03/11/2021] [Indexed: 12/25/2022] Open
Abstract
The stem cells differentiate into osteoblasts or neurocytes is the key process for treatment of bone‐ or neural tissue‐related diseases which is caused by ageing, fracture, injury, inflammation, etc Polycomb group complexes (PcGs), especially the polycomb repressive complex 2 (PRC2), act as pivotal epigenetic regulators by modifying key developmental regulatory genes during stem cells differentiation. In this review, we summarize the core subunits, the variants and the potential functions of PRC2. We also highlight the underlying mechanisms of PRC2 associated with the osteogenic and neurogenic differentiation of stem cells, including its interaction with non‐coding RNAs, histone acetyltransferases, histone demethylase, DNA methyltransferase and polycomb repressive complex 1. This review provided a substantial information of epigenetic regulation mediated by PRC2 which leads to the osteogenic and neurogenic differentiation of stem cells.
Collapse
Affiliation(s)
- Yangyang Cao
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China
| | - Le Li
- Tsinghua University Hospital, Stomatological Disease Prevention and Control Center, Tsinghua University, Beijing, China
| | - Zhipeng Fan
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China.,Research Unit of Tooth Development and Regeneration, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
29
|
Demin KA, Smagin DA, Kovalenko IL, Strekalova T, Galstyan DS, Kolesnikova TO, De Abreu MS, Galyamina AG, Bashirzade A, Kalueff AV. CNS genomic profiling in the mouse chronic social stress model implicates a novel category of candidate genes integrating affective pathogenesis. Prog Neuropsychopharmacol Biol Psychiatry 2021; 105:110086. [PMID: 32889031 DOI: 10.1016/j.pnpbp.2020.110086] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/17/2020] [Accepted: 08/26/2020] [Indexed: 01/23/2023]
Abstract
Despite high prevalence, medical impact and societal burden, anxiety, depression and other affective disorders remain poorly understood and treated. Clinical complexity and polygenic nature complicate their analyses, often revealing genetic overlap and cross-disorder heritability. However, the interplay or overlaps between disordered phenotypes can also be based on shared molecular pathways and 'crosstalk' mechanisms, which themselves may be genetically determined. We have earlier predicted (Kalueff et al., 2014) a new class of 'interlinking' brain genes that do not affect the disordered phenotypes per se, but can instead specifically determine their interrelatedness. To test this hypothesis experimentally, here we applied a well-established rodent chronic social defeat stress model, known to progress in C57BL/6J mice from the Anxiety-like stage on Day 10 to Depression-like stage on Day 20. The present study analyzed mouse whole-genome expression in the prefrontal cortex and hippocampus during the Day 10, the Transitional (Day 15) and Day 20 stages in this model. Our main question here was whether a putative the Transitional stage (Day 15) would reveal distinct characteristic genomic responses from Days 10 and 20 of the model, thus reflecting unique molecular events underlining the transformation or switch from anxiety to depression pathogenesis. Overall, while in the Day 10 (Anxiety) group both brain regions showed major genomic alterations in various neurotransmitter signaling pathways, the Day 15 (Transitional) group revealed uniquely downregulated astrocyte-related genes, and the Day 20 (Depression) group demonstrated multiple downregulated genes of cell adhesion, inflammation and ion transport pathways. Together, these results reveal a complex temporal dynamics of mouse affective phenotypes as they develop. Our genomic profiling findings provide first experimental support to the idea that novel brain genes (activated here only during the Transitional stage) may uniquely integrate anxiety and depression pathogenesis and, hence, determine the progression from one pathological state to another. This concept can potentially be extended to other brain conditions as well. This preclinical study also further implicates cilial and astrocytal mechanisms in the pathogenesis of affective disorders.
Collapse
Affiliation(s)
- Konstantin A Demin
- Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia; Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Dmitry A Smagin
- Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
| | | | - Tatyana Strekalova
- I.M. Sechenov First Moscow State Medical University, Moscow, Russia; Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands; Research Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - David S Galstyan
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia; Granov Russian Scientific Center of Radiology and Surgical Technologies, Ministry of Healthcare, St. Petersburg, Russia
| | - Tatyana O Kolesnikova
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia; Laboratory of Cell and Molecular Biology and Neurobiology, School of Biological and Medical Physics, Moscow Institute of Physics and Technology, Moscow, Russia
| | | | | | - Alim Bashirzade
- Scientific Research Institute of Physiology and Basic Medicine, Novosibirsk, Russia; Institute of Medicine and Psychology, Novosibirsk State University, Novosibirsk, Russia
| | - Allan V Kalueff
- School of Pharmacy, Southwest University, Chongqing, China; Ural Federal University, Ekaterinburg, Russia; Laboratory of Cell and Molecular Biology and Neurobiology, School of Biological and Medical Physics, Moscow Institute of Physics and Technology, Moscow, Russia.
| |
Collapse
|
30
|
Affiliation(s)
- David R Rubinow
- Departments of Psychiatry and Medicine, School of Medicine, University of North Carolina at Chapel Hill
| |
Collapse
|
31
|
Schweizer-Schubert S, Gordon JL, Eisenlohr-Moul TA, Meltzer-Brody S, Schmalenberger KM, Slopien R, Zietlow AL, Ehlert U, Ditzen B. Steroid Hormone Sensitivity in Reproductive Mood Disorders: On the Role of the GABA A Receptor Complex and Stress During Hormonal Transitions. Front Med (Lausanne) 2021; 7:479646. [PMID: 33585496 PMCID: PMC7873927 DOI: 10.3389/fmed.2020.479646] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 08/20/2020] [Indexed: 12/16/2022] Open
Abstract
Women worldwide are two to three times more likely to suffer from depression in their lifetime than are men. Female risk for depressive symptoms is particularly high during the reproductive years between menarche and menopause. The term “Reproductive Mood Disorders” refers to depressive disorders triggered by hormonal fluctuations during reproductive transitions including the perimenarchal phase, the pre-menstrual phase, pregnancy, the peripartum period and the perimenopausal transition. Here we focus on reproductive mood disorders manifesting in adult life. We propose a research agenda that draws together several reproductive mood disorders and investigates which genetic, endocrinological, neural, and psychosocial factors can explain depressive symptoms during phases of hormonal transitions in women. Based on current research it is assumed that some women experience an increased sensitivity to not only fluctuations in reproductive steroids (estrogen and progesterone), but also stress-related steroids. We integrate both dynamics into the concept of “steroid hormone sensitivity,” expanding on the concept of “reproductive hormone sensitivity.” We suggest that a differential response of the stress steroid system including corticosteroids, neurosteroids, like allopregnanolone and the GABA-A Receptor complex, as well as a differential (epi)genetic risk in serotonergic and GABAergic signaling, are moderators or mediators between changes in the reproductive steroid system and the physiological, affective, and cognitive outcomes manifesting in reproductive mood disorders. We point to the lack of research on the role of psychosocial factors in increasing a woman's stress level and at some point also the sensitivity of her stress steroid system within the etiology of Reproductive Mood Disorders. Drawing together the evidence on various reproductive mood disorders we seek to present a basis for the development of more effective pharmacological, social, and psychological treatment interventions and prevention strategies for women susceptible to these disorders. This could pave the way for new research as well as medical and psychological teaching and practice- such as a new type of Practice for Gynecological Psychoneuroendocrinology- with the aim of working on and ultimately offering more integrative forms of support not yet available to women suffering from depression during hormonal transitions. In medical history women have been left alone with this integrative challenge.
Collapse
Affiliation(s)
- Sophie Schweizer-Schubert
- Center for Psychosocial Medicine, Institute of Medical Psychology, University Hospital Heidelberg, Heidelberg, Germany.,Practice for Psychoendocrinology and Psychotherapy, Heilbronn, Germany
| | | | - Tory A Eisenlohr-Moul
- Women's Mental Health Research Program, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, United States
| | | | - Katja M Schmalenberger
- Center for Psychosocial Medicine, Institute of Medical Psychology, University Hospital Heidelberg, Heidelberg, Germany
| | - Radoslaw Slopien
- Department of Gynecological Endocrinology, Poznan University of Medical Sciences, Poznan, Poland
| | - Anna-Lena Zietlow
- Center for Psychosocial Medicine, Institute of Medical Psychology, University Hospital Heidelberg, Heidelberg, Germany
| | - Ulrike Ehlert
- Department of Psychology, University of Zurich, Zurich, Switzerland
| | - Beate Ditzen
- Center for Psychosocial Medicine, Institute of Medical Psychology, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
32
|
Li HJ, Goff A, Rudzinskas SA, Jung Y, Dubey N, Hoffman J, Hipolito D, Mazzu M, Rubinow DR, Schmidt PJ, Goldman D. Altered estradiol-dependent cellular Ca 2+ homeostasis and endoplasmic reticulum stress response in Premenstrual Dysphoric Disorder. Mol Psychiatry 2021; 26:6963-6974. [PMID: 34035477 PMCID: PMC8613306 DOI: 10.1038/s41380-021-01144-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 04/11/2021] [Accepted: 04/21/2021] [Indexed: 02/04/2023]
Abstract
Premenstrual Dysphoric Disorder (PMDD) is characterized by debilitating mood symptoms in the luteal phase of the menstrual cycle. Prior studies of affected women have implicated a differential response to ovarian steroids. However, the molecular basis of these patients' differential response to hormone remains poorly understood. We performed transcriptomic analyses of lymphoblastoid cell lines (LCLs) derived from women with PMDD and asymptomatic controls cultured under untreated (steroid-free), estradiol-treated (E2), and progesterone-treated (P4) conditions. Weighted gene correlation network analysis (WGCNA) of transcriptomes identified four gene modules with significant diagnosis x hormone interactions, including one enriched for neuronal functions. Next, in a gene-level analysis comparing transcriptional response to hormone across diagnoses, a generalized linear model identified 1522 genes differentially responsive to E2 (E2-DRGs). Among the top 10 E2-DRGs was a physically interacting network (NUCB1, DST, GCC2, GOLGB1) involved in endoplasmic reticulum (ER)-Golgi function. qRT-PCR validation reproduced a diagnosis x E2 interaction (F(1,24)=7.01, p = 0.014) for NUCB1, a regulator of cellular Ca2+ and ER stress. Finally, we used a thapsigargin (Tg) challenge assay to test whether E2 induces differences in Ca2+ homeostasis and ER stress response in PMDD. PMDD LCLs had a 1.36-fold decrease in Tg-induced XBP1 splicing response compared to controls, and a 1.62-fold decreased response (p = 0.005), with a diagnosis x treatment interaction (F(3,33)=3.51, p = 0.026) in the E2-exposed condition. Altered hormone-dependent in cellular Ca2+ dynamics and ER stress may contribute to the pathophysiology of PMDD.
Collapse
Affiliation(s)
- Howard J. Li
- grid.47100.320000000419368710Dept. of Obstetrics, Gynecology & Reproductive Sciences, Yale School of Medicine, New Haven, CT USA ,grid.416868.50000 0004 0464 0574Section on Behavioral Endocrinology, National Institute of Mental Health, NIH, Bethesda, MD USA
| | - Allison Goff
- grid.420085.b0000 0004 0481 4802Laboratory of Neurogenetics, National Institute of Alcohol Abuse and Alcoholism, NIH, Bethesda, MD USA
| | - Sarah A. Rudzinskas
- grid.416868.50000 0004 0464 0574Section on Behavioral Endocrinology, National Institute of Mental Health, NIH, Bethesda, MD USA
| | - Yonwoo Jung
- grid.420085.b0000 0004 0481 4802Laboratory of Neurogenetics, National Institute of Alcohol Abuse and Alcoholism, NIH, Bethesda, MD USA
| | - Neelima Dubey
- grid.416868.50000 0004 0464 0574Section on Behavioral Endocrinology, National Institute of Mental Health, NIH, Bethesda, MD USA
| | - Jessica Hoffman
- grid.416868.50000 0004 0464 0574Section on Behavioral Endocrinology, National Institute of Mental Health, NIH, Bethesda, MD USA
| | - Dion Hipolito
- grid.420085.b0000 0004 0481 4802Laboratory of Neurogenetics, National Institute of Alcohol Abuse and Alcoholism, NIH, Bethesda, MD USA
| | - Maria Mazzu
- grid.416868.50000 0004 0464 0574Section on Behavioral Endocrinology, National Institute of Mental Health, NIH, Bethesda, MD USA
| | - David R. Rubinow
- grid.410711.20000 0001 1034 1720Dept. of Psychiatry, University of North Carolina, Chapel Hill, NC USA
| | - Peter J. Schmidt
- grid.416868.50000 0004 0464 0574Section on Behavioral Endocrinology, National Institute of Mental Health, NIH, Bethesda, MD USA
| | - David Goldman
- grid.420085.b0000 0004 0481 4802Laboratory of Neurogenetics, National Institute of Alcohol Abuse and Alcoholism, NIH, Bethesda, MD USA
| |
Collapse
|
33
|
Slyepchenko A, Minuzzi L, Frey BN. Comorbid Premenstrual Dysphoric Disorder and Bipolar Disorder: A Review. Front Psychiatry 2021; 12:719241. [PMID: 34512419 PMCID: PMC8423998 DOI: 10.3389/fpsyt.2021.719241] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/03/2021] [Indexed: 12/20/2022] Open
Abstract
Bipolar disorder (BD) differs in its clinical presentation in females compared to males. A number of clinical characteristics have been associated with BD in females: more rapid cycling and mixed features; higher number of depressive episodes; and a higher prevalence of BD type II. There is a strong link between BD and risk for postpartum mood episodes, and a substantial percentage of females with BD experience premenstrual mood worsening of varying degrees of severity. Females with premenstrual dysphoric disorder (PMDD)-the most severe form of premenstrual disturbances-comorbid with BD appear to have a more complex course of illness, including increased psychiatric comorbidities, earlier onset of BD, and greater number of mood episodes. Importantly, there may be a link between puberty and the onset of BD in females with comorbid PMDD and BD, marked by a shortened gap between the onset of BD and menarche. In terms of neurobiology, comorbid BD and PMDD may have unique structural and functional neural correlates. Treatment of BD comorbid with PMDD poses challenges, as the first line treatment of PMDD in the general population is selective serotonin reuptake inhibitors, which produce risk of treatment-emergent manic symptoms. Here, we review current literature concerning the clinical presentation, illness burden, and unique neurobiology of BD comorbid with PMDD. We additionally discuss obstacles faced in symptom tracking, and management of these comorbid disorders.
Collapse
Affiliation(s)
- Anastasiya Slyepchenko
- Women's Health Concerns Clinic and Mood Disorders Treatment and Research Centre, St Joseph's Healthcare Hamilton, Hamilton, ON, Canada.,Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Luciano Minuzzi
- Women's Health Concerns Clinic and Mood Disorders Treatment and Research Centre, St Joseph's Healthcare Hamilton, Hamilton, ON, Canada.,Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Benicio N Frey
- Women's Health Concerns Clinic and Mood Disorders Treatment and Research Centre, St Joseph's Healthcare Hamilton, Hamilton, ON, Canada.,Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
34
|
Simchovitz-Gesher A, Soreq H. Pharmaceutical Implications of Sex-Related RNA Divergence in Psychiatric Disorders. Trends Pharmacol Sci 2020; 41:840-850. [DOI: 10.1016/j.tips.2020.09.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 08/29/2020] [Accepted: 09/10/2020] [Indexed: 02/08/2023]
|
35
|
Osborn E, Wittkowski A, Brooks J, Briggs PE, O'Brien PMS. Women's experiences of receiving a diagnosis of premenstrual dysphoric disorder: a qualitative investigation. BMC WOMENS HEALTH 2020; 20:242. [PMID: 33115437 PMCID: PMC7594422 DOI: 10.1186/s12905-020-01100-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 10/09/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Premenstrual dysphoric disorder (PMDD) is a complex and disabling condition that affects women of reproductive age, characterised by severe physical and psychological symptoms that occur cyclically and remit following the onset of menses. As the psychological nature and consequences of PMDD often seem indistinguishable from symptoms of other mental health difficulties, this condition presents distinct diagnostic challenges for healthcare professionals. Therefore, this study aimed to explore women's experiences of both having PMDD and of receiving this diagnosis. METHODS Participant recruitment took place in the United Kingdom during 2018. Seventeen women who had been diagnosed with PMDD by a medical specialist and met the clinical criteria for PMDD on the premenstrual symptoms screening tool were interviewed. The data from these semi-structured interviews were audio-recorded, transcribed and inductively analysed using reflexive thematic analysis. RESULTS Twelve subthemes were identified and organised around four main themes: (1) A broken woman, (2) Misdiagnosis and the lost decades, (3) A life transformed and (4) Negotiating the aftermath. CONCLUSIONS The findings of this study highlight the critical importance of the accurate and timely detection of PMDD, with the aim of preventing women from experiencing severe and prolonged psychological distress. In order to achieve this, there needs to be a greater understanding and awareness of PMDD within both the medical and lay communities, alongside training for healthcare practitioners in PMDD assessment.
Collapse
Affiliation(s)
- Elizabeth Osborn
- Division of Psychology and Mental Health, School of Health Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, 2nd Floor Zochonis Building, Brunswick Street, Manchester, M13 9PL, UK.,Greater Manchester Mental Health NHS Foundation Trust, Manchester, UK
| | - Anja Wittkowski
- Division of Psychology and Mental Health, School of Health Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, 2nd Floor Zochonis Building, Brunswick Street, Manchester, M13 9PL, UK. .,Greater Manchester Mental Health NHS Foundation Trust, Manchester, UK.
| | - Joanna Brooks
- Division of Psychology and Mental Health, School of Health Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, 2nd Floor Zochonis Building, Brunswick Street, Manchester, M13 9PL, UK
| | | | | |
Collapse
|
36
|
Marrocco J, Einhorn NR, McEwen BS. Environmental epigenetics of sex differences in the brain. HANDBOOK OF CLINICAL NEUROLOGY 2020; 175:209-220. [PMID: 33008526 DOI: 10.1016/b978-0-444-64123-6.00015-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Experiences throughout the life course lead to unique phenotypes even among those with the same genotype. Genotype sets the substrate on which physiologic processes, which communicate with the brain, mediate the effects of life experiences via epigenetics. Epigenetics modify the expression of genes in the brain and body in response to circulating hormones and other mediators, which are activated to facilitate survival responses through a process called allostasis. Epigenetic signatures can even be inherited, resulting in transgenerational effects. This chapter addresses epigenetics in the context of sex differences, discussing the intersection between genetics and gonadal hormones and their effect in the brain at discrete developmental periods.
Collapse
Affiliation(s)
- Jordan Marrocco
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, Rockefeller University, New York, NY, United States.
| | - Nathan R Einhorn
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, Rockefeller University, New York, NY, United States
| | - Bruce S McEwen
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, Rockefeller University, New York, NY, United States
| |
Collapse
|
37
|
Dan R, Reuveni I, Canetti L, Weinstock M, Segman R, Goelman G, Bonne O. Trait-related changes in brain network topology in premenstrual dysphoric disorder. Horm Behav 2020; 124:104782. [PMID: 32470339 DOI: 10.1016/j.yhbeh.2020.104782] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 04/26/2020] [Accepted: 05/22/2020] [Indexed: 11/19/2022]
Abstract
The female predominance in the prevalence of depression is partially accounted by reactivity to hormonal fluctuations. Premenstrual dysphoric disorder (PMDD) is a reproductive subtype of depression characterized by cyclic emotional and somatic symptoms that recur before menstruation. Despite the growing understanding that most psychiatric disorders arise from dysfunctions in distributed brain circuits, the brain's functional connectome and its network properties of segregation and integration were not investigated in PMDD. To this end, we examined the brain's functional network organization in PMDD using graph theoretical analysis. 24 drug naïve women with PMDD and 27 controls without premenstrual symptoms underwent 2 resting-state fMRI scans, during the mid-follicular and late-luteal menstrual cycle phases. Functional connectivity MRI, graph theory metrics, and levels of sex hormones were computed during each menstrual phase. Altered network topology was found in PMDD across symptomatic and remitted stages in major graph metrics (characteristic path length, clustering coefficient, transitivity, local and global efficiency, centrality), indicating decreased functional network segregation and increased functional network integration. In addition, PMDD patients exhibited hypoconnectivity of the anterior temporal lobe and hyperconnectivity of the basal ganglia and thalamus, across menstrual phases. Furthermore, the relationship between difficulties in emotion regulation and PMDD was mediated by specific patterns of functional connectivity, including connections of the striatum, thalamus, and prefrontal cortex. The shifts in the functional connectome and its topology in PMDD may suggest trait vulnerability markers of the disorder.
Collapse
Affiliation(s)
- Rotem Dan
- Edmond and Lily Safra Center for Brain Sciences (ELSC), The Hebrew University of Jerusalem, Jerusalem, Israel; Department of Neurology, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Inbal Reuveni
- Department of Psychiatry, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Laura Canetti
- Department of Psychiatry, Hadassah Hebrew University Medical Center, Jerusalem, Israel; Department of Psychology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Marta Weinstock
- Institute of Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ronen Segman
- Department of Psychiatry, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Gadi Goelman
- Department of Neurology, Hadassah Hebrew University Medical Center, Jerusalem, Israel.
| | - Omer Bonne
- Department of Psychiatry, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
38
|
Ullah A, Long X, Mat WK, Hu T, Khan MI, Hui L, Zhang X, Sun P, Gao M, Wang J, Wang H, Li X, Sun W, Qiao M, Xue H. Highly Recurrent Copy Number Variations in GABRB2 Associated With Schizophrenia and Premenstrual Dysphoric Disorder. Front Psychiatry 2020; 11:572. [PMID: 32695026 PMCID: PMC7338560 DOI: 10.3389/fpsyt.2020.00572] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 06/03/2020] [Indexed: 01/03/2023] Open
Abstract
OBJECTIVE Although single-nucleotide polymorphisms in GABRB2, the gene encoding for GABAA receptors β2 subunit, have been associated with schizophrenia (SCZ), it is unknown whether there is any association of copy number variations (CNVs) in this gene with either SCZ or premenstrual dysphoric disorder (PMDD). METHODS In this study, the occurrences of the recurrent CNVs esv2730987 in Intron 6 and nsv1177513 in Exon 11 of GABRB2 in Chinese and German SCZ, and Chinese PMDD patients were compared to controls of same ethnicity and gender by quantitative PCR (qPCR). RESULTS The results demonstrated that copy-number-gains were enriched in both SCZ and PMDD patients with significant odds ratios (OR). For combined-gender SCZ patients versus controls, about two-fold increases were observed in both ethnic groups at both esv2730987 (OR = 2.15, p = 5.32E-4 in Chinese group; OR = 2.79, p = 8.84E-3 in German group) and nsv1177513 (OR = 3.29, p = 1.28E-11 in Chinese group; OR = 2.44, p = 6.17E-5 in German group). The most significant copy-number-gains were observed in Chinese females at nsv1177513 (OR = 3.41), and German females at esv2730987 (OR=3.96). Copy-number-gains were also enriched in Chinese PMDD patients versus controls at esv2730987 (OR = 10.53, p = 4.34E-26) and nsv1177513 (OR = 2.39, p = 3.19E-5). CONCLUSION These findings established for the first time the association of highly recurrent CNVs with SCZ and PMDD, suggesting the presence of an overlapping genetic basis with shared biomarkers for these two common psychiatric disorders.
Collapse
Affiliation(s)
- Ata Ullah
- Applied Genomics Center and State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Division of Life Science, Hong Kong, Hong Kong
| | - Xi Long
- Applied Genomics Center and State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Division of Life Science, Hong Kong, Hong Kong
| | - Wai-Kin Mat
- Applied Genomics Center and State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Division of Life Science, Hong Kong, Hong Kong
| | - Taobo Hu
- Applied Genomics Center and State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Division of Life Science, Hong Kong, Hong Kong
| | - Muhammad Ismail Khan
- Applied Genomics Center and State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Division of Life Science, Hong Kong, Hong Kong
| | - Li Hui
- Suzhou Guangji Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, China
| | - Xiangyang Zhang
- Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Peng Sun
- School of Basic Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Mingzhou Gao
- School of Basic Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jieqiong Wang
- School of Basic Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Haijun Wang
- School of Basic Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xia Li
- School of Basic Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wenjun Sun
- School of Basic Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Mingqi Qiao
- School of Basic Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hong Xue
- Applied Genomics Center and State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Division of Life Science, Hong Kong, Hong Kong
- School of Basic Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
39
|
Kiesner J, Eisenlohr-Moul T, Mendle J. Evolution, the Menstrual Cycle, and Theoretical Overreach. PERSPECTIVES ON PSYCHOLOGICAL SCIENCE 2020; 15:1113-1130. [PMID: 32539582 DOI: 10.1177/1745691620906440] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A considerable amount of recent psychological research has attributed a variety of menstrual-cycle-related changes in social behavior to evolutionarily adaptive functions. Although these studies often draw interesting and unusual conclusions about female emotion and behavior within evolutionary theory, their significant limitations have not yet been addressed. In this article, we outline several methodological and conceptual issues related to the menstrual cycle that constitute threats to the internal validity and theoretical integrity of these studies. We recommend specific guidelines to address these issues and emphasize the need to apply more comprehensive and sophisticated theoretical structures when considering menstrual-cycle-related changes in emotion and behavior.
Collapse
Affiliation(s)
- Jeff Kiesner
- Department of Social and Developmental Psychology, University of Padua
| | | | - Jane Mendle
- Department of Human Development, Cornell University
| |
Collapse
|
40
|
Eisenlohr-Moul TA, Kaiser G, Weise C, Schmalenberger KM, Kiesner J, Ditzen B, Kleinstäuber M. Are there temporal subtypes of premenstrual dysphoric disorder?: using group-based trajectory modeling to identify individual differences in symptom change. Psychol Med 2020; 50:964-972. [PMID: 31010447 PMCID: PMC8168625 DOI: 10.1017/s0033291719000849] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Premenstrual dysphoric disorder (PMDD) is a new Diagnostic and Statistical Manual of Mental Disorders (DSM)-5 diagnosis characterized by the cyclical emergence of emotional and physical symptoms in the luteal phase of the menstrual cycle, with symptom remission in the follicular phase. Converging evidence highlights the possibility of distinct subtypes of PMDD with unique pathophysiologies, but temporal subgroups have yet to be explored in a systematic way. METHODS In the current work, we use group-based trajectory modeling to identify unique trajectory subgroups of core emotional and total PMDD symptoms across the perimenstrual frame (days -14 to +9, where day 0 is menstrual onset) in a sample of 74 individuals prospectively diagnosed with DSM-5 PMDD. RESULTS For the total daily symptom score, the best-fitting model was comprised of three groups: a group demonstrating moderate symptoms only in the premenstrual week (65%), a group demonstrating severe symptoms across the full 2 weeks of the luteal phase (17.5%), and a group demonstrating severe symptoms in the premenstrual week that were slow to resolve in the follicular phase (17.5%). CONCLUSIONS These trajectory groups are discussed in the context of the latest work on the pathophysiology of PMDD. Experimental work is needed to test for the presence of possible pathophysiologic differences in trajectory groups, and whether unique treatment approaches are needed.
Collapse
|
41
|
Hantsoo L, Epperson CN. Allopregnanolone in premenstrual dysphoric disorder (PMDD): Evidence for dysregulated sensitivity to GABA-A receptor modulating neuroactive steroids across the menstrual cycle. Neurobiol Stress 2020; 12:100213. [PMID: 32435664 PMCID: PMC7231988 DOI: 10.1016/j.ynstr.2020.100213] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/24/2020] [Accepted: 01/31/2020] [Indexed: 01/01/2023] Open
Abstract
Premenstrual dysphoric disorder (PMDD) is a severe mood disorder with core symptoms (affective lability, irritability, depressed mood, anxiety) and increased sensitivity to stress occurring in the luteal phase of the menstrual cycle. PMDD can be conceptualized as a disorder of suboptimal sensitivity to neuroactive steroid hormones (NASs). In this review, we describe the role of the NAS allopregnanolone (ALLO), a positive allosteric modulator of the GABAA receptor (GABAA-R), in PMDD's pathophysiology. We review evidence of impaired interaction between ALLO and GABAA-Rs in terms of affective symptom expression, with evidence from rodent and human studies. We discuss evidence of increased luteal phase stress sensitivity as a result of poor ALLO-GABA control of the HPA axis. Finally, we describe how treatments such as selective serotonin reuptake inhibitors (SSRIs) and new drugs targeting GABAA-Rs provide evidence for impaired ALLO-GABA function in PMDD. In sum, the literature supports the hypothesis that PMDD pathophysiology is rooted in impaired GABAA-R response to dynamic ALLO fluctuations across the menstrual cycle, manifesting in affective symptoms and poor regulation of physiologic stress response.
Collapse
Affiliation(s)
- Liisa Hantsoo
- Department of Psychiatry & Behavioral Sciences, The Johns Hopkins University School of Medicine, 550 N, Broadway Street Baltimore, MD, 21205, USA
| | - C Neill Epperson
- Department of Psychiatry, University of Colorado School of Medicine Anschutz Medical Campus, 13001 E 17th Place, MS F546, Aurora, CO, 80045, USA
| |
Collapse
|
42
|
Marrocco J, Einhorn NR, Petty GH, Li H, Dubey N, Hoffman J, Berman KF, Goldman D, Lee FS, Schmidt PJ, McEwen BS. Epigenetic intersection of BDNF Val66Met genotype with premenstrual dysphoric disorder transcriptome in a cross-species model of estradiol add-back. Mol Psychiatry 2020; 25:572-583. [PMID: 30356121 PMCID: PMC7042769 DOI: 10.1038/s41380-018-0274-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 09/11/2018] [Indexed: 02/08/2023]
Abstract
Premenstrual dysphoric disorder (PMDD) affects over 5% of women, with symptoms similar to anxiety and major depression, and is associated with differential sensitivity to circulating ovarian hormones. Little is known about the genetic and epigenetic factors that increase the risk to develop PMDD. We report that 17β-estradiol (E2) affects the behavior and the epigenome in a mouse model carrying a single-nucleotide polymorphism of the brain-derived neurotrophic factor gene (BDNF Val66Met), in a way that recapitulates the hallmarks of PMDD. Ovariectomized mice heterozygous for the BDNF Met allele (Het-Met) and their matched wild-type (WT) mice were administered estradiol or vehicle in drinking water for 6 weeks. Using the open field and the splash test, we show that E2 add-back induces anxiety-like and depression-like behavior in Het-Met mice, but not in WT mice. RNA-seq of the ventral hippocampus (vHpc) highlights that E2-dependent gene expression is markedly different between WT mice and Het-Met mice. Through a comparative whole-genome RNA-seq analysis between mouse vHpc and lymphoblastoid cell line cultures from control women and women with PMDD, we discovered common epigenetic biomarkers that transcend species and cell types. Those genes include epigenetic modifiers of the ESC/E(Z) complex, an effector of response to ovarian steroids. Although the BDNF Met genotype intersects the behavioral and transcriptional traits of women with PMDD, we suggest that these similarities speak to the epigenetic factors by which ovarian steroids produce negative behavioral effects.
Collapse
Affiliation(s)
- Jordan Marrocco
- 0000 0001 2166 1519grid.134907.8Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY USA
| | - Nathan R. Einhorn
- 0000 0001 2166 1519grid.134907.8Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY USA
| | - Gordon H. Petty
- 0000 0001 2166 1519grid.134907.8Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY USA
| | - Howard Li
- 0000 0004 0464 0574grid.416868.5Behavioral Endocrinology Branch, National Institute of Mental Health, Bethesda, MD USA
| | - Neelima Dubey
- grid.440681.fDr. D. Y. Patil Biotechnology & Bioinformatics Institute, Pune, India
| | - Jessica Hoffman
- 0000 0001 0421 5525grid.265436.0Uniformed Services University of the Health Sciences, Bethesda, MD USA
| | - Karen F. Berman
- 0000 0004 0464 0574grid.416868.5Section on Integrative Neuroimaging, National Institute of Mental Health, Bethesda, MD USA
| | - David Goldman
- 0000 0004 0481 4802grid.420085.bLaboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD USA
| | - Francis S. Lee
- 000000041936877Xgrid.5386.8Department of Psychiatry, Sackler Institute for Developmental Psychobiology, Weill Cornell Medical College, New York, NY USA
| | - Peter J. Schmidt
- 0000 0004 0464 0574grid.416868.5Behavioral Endocrinology Branch, National Institute of Mental Health, Bethesda, MD USA
| | - Bruce S. McEwen
- 0000 0001 2166 1519grid.134907.8Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY USA
| |
Collapse
|
43
|
Schmalenberger KM, Eisenlohr-Moul TA, Würth L, Schneider E, Thayer JF, Ditzen B, Jarczok MN. A Systematic Review and Meta-Analysis of Within-Person Changes in Cardiac Vagal Activity across the Menstrual Cycle: Implications for Female Health and Future Studies. J Clin Med 2019; 8:jcm8111946. [PMID: 31726666 PMCID: PMC6912442 DOI: 10.3390/jcm8111946] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/01/2019] [Accepted: 11/04/2019] [Indexed: 12/11/2022] Open
Abstract
Interest in cardiac vagal activity (CVA; e.g., parasympathetically-mediated heart rate variability) as a biomarker of physical and mental health has increased exponentially in recent years. However, the understanding of sources of within-person change (i.e., intra-individual variance) in CVA is lagging behind. This systematic review and meta-analysis summarizes and quantifies current empirical evidence of within-person changes in measures of CVA across the menstrual cycle in naturally-cycling premenopausal females. We conducted an extensive literature search following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement in five databases to identify observational studies with repeated measures of CVA in at least two menstrual cycle phases. A broad meta-analysis (nstudies = 37; nindividuals = 1,004) revealed a significant CVA decrease from the follicular to luteal phase (d = −0.39, 95% CI (−0.67, −0.11)). Furthermore, 21 studies allowed for finer-grained comparisons between each of two cycle phases (menstrual, mid-to-late follicular, ovulatory, early-to-mid luteal, and premenstrual). Significant decreases in CVA were observed from the menstrual to premenstrual (nstudies = 5; nindividuals = 200; d = −1.17, 95% CI (−2.18, −0.17)) and from the mid-to-late follicular to premenstrual phases (nstudies = 8; nindividuals = 280; d = −1.32, 95% CI (−2.35, −0.29)). In conclusion, meta-analyses indicate the presence of CVA fluctuations across the menstrual cycle. Future studies involving CVA should control for cycle phase. Recommendations for covarying or selecting cycle phase are provided.
Collapse
Affiliation(s)
- Katja M. Schmalenberger
- Institute of Medical Psychology, Center for Psychosocial Medicine, University Hospital Heidelberg, 69115 Heidelberg, Germany; (L.W.); (E.S.); (B.D.)
- Correspondence: (K.M.S.); (M.N.J.); Tel.: +49-6221-56-8148 (K.M.S.); +49-731-500-61810 (M.N.J.)
| | - Tory A. Eisenlohr-Moul
- Women’s Mental Health Research Program, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL 60612, USA;
| | - Lena Würth
- Institute of Medical Psychology, Center for Psychosocial Medicine, University Hospital Heidelberg, 69115 Heidelberg, Germany; (L.W.); (E.S.); (B.D.)
| | - Ekaterina Schneider
- Institute of Medical Psychology, Center for Psychosocial Medicine, University Hospital Heidelberg, 69115 Heidelberg, Germany; (L.W.); (E.S.); (B.D.)
| | - Julian F. Thayer
- Department of Psychological Science, School of Social Ecology, University of California Irvine, Irvine, CA 92697-7085, USA
| | - Beate Ditzen
- Institute of Medical Psychology, Center for Psychosocial Medicine, University Hospital Heidelberg, 69115 Heidelberg, Germany; (L.W.); (E.S.); (B.D.)
| | - Marc N. Jarczok
- Clinic for Psychosomatic Medicine and Psychotherapy, Ulm University Medical Center, 89081 Ulm, Germany
- Correspondence: (K.M.S.); (M.N.J.); Tel.: +49-6221-56-8148 (K.M.S.); +49-731-500-61810 (M.N.J.)
| |
Collapse
|
44
|
Baller EB, Ross DA. Premenstrual Dysphoric Disorder: From Plato to Petri Dishes. Biol Psychiatry 2019; 85:e63-e65. [PMID: 31171113 PMCID: PMC6696911 DOI: 10.1016/j.biopsych.2019.04.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 04/17/2019] [Indexed: 12/18/2022]
|
45
|
Robakis T, Williams KE, Nutkiewicz L, Rasgon NL. Hormonal Contraceptives and Mood: Review of the Literature and Implications for Future Research. Curr Psychiatry Rep 2019; 21:57. [PMID: 31172309 DOI: 10.1007/s11920-019-1034-z] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PURPOSE OF REVIEW We examine recent studies that investigate the effects of hormonal contraception on mood in different populations of women, including women in the general population and women with diagnosed psychiatric and gynecologic disorders. We address the mechanisms of several types of hormonal contraceptives and assess how these may affect mood and gynecologic disorders. RECENT FINDINGS The effects of hormonal contraceptives seem to be most relevant in selected subsets of women, as they may promote improved mental health in particular psychiatric disorders such as PMDD. Currently, there is no consistent evidence for negative effects of most hormonal contraceptives in the general population. Even though some studies reveal that certain individuals appear susceptible to negative mood effects from some forms of hormonal contraceptives, more research is needed to better identify these susceptible individuals.
Collapse
Affiliation(s)
- Thalia Robakis
- Psychiatry & Behavioral Sciences, Stanford University, 401 Quarry Road, Stanford, CA, 94304, USA.
| | - Katherine E Williams
- Psychiatry & Behavioral Sciences, Stanford University, 401 Quarry Road, Stanford, CA, 94304, USA
| | - Lexi Nutkiewicz
- Psychiatry & Behavioral Sciences, Stanford University, 401 Quarry Road, Stanford, CA, 94304, USA
| | - Natalie L Rasgon
- Psychiatry & Behavioral Sciences, Stanford University, 401 Quarry Road, Stanford, CA, 94304, USA
| |
Collapse
|
46
|
Abstract
Perinatal depression is a common disorder that has been associated with serious risks to mother and child. Recently, screening for depression in pregnant and postpartum women has increased, as has the development of new psychotherapy and non-drug treatment modalities. Matching patients to treatments can be challenging, and although research into personalized treatment of major depression in the general population has increased, no published guidelines focus on personalized treatment approaches to perinatal depression. In particular, guidelines on non-drug treatments are lacking. This review summarizes the evidence on personalized non-drug treatment of perinatal depression, how to incorporate patients' preferences, novel treatments under investigation, and the potential role of biomarkers in matching patients to treatment. The review provides recommendations for future research in personalized care of perinatal depression.
Collapse
Affiliation(s)
- Sara L Johansen
- Stanford University School of Medicine, Stanford, CA 94305-5119, USA
| | - Thalia K Robakis
- Stanford University School of Medicine, Stanford, CA 94305-5119, USA
| | | | - Natalie L Rasgon
- Stanford University School of Medicine, Stanford, CA 94305-5119, USA
| |
Collapse
|
47
|
Eisenlohr-Moul T. Premenstrual Disorders: A Primer and Research Agenda for Psychologists. THE CLINICAL PSYCHOLOGIST 2019; 72:5-17. [PMID: 32362679 PMCID: PMC7193982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Affiliation(s)
- Tory Eisenlohr-Moul
- Department of Psychiatry, University of Illinois at Chicago
- Department of Psychology, University of Illinois at Chicago
- International Association for Premenstrual Disorders Clinical Advisory Board
| |
Collapse
|
48
|
Sex differences and the neurobiology of affective disorders. Neuropsychopharmacology 2019; 44:111-128. [PMID: 30061743 PMCID: PMC6235863 DOI: 10.1038/s41386-018-0148-z] [Citation(s) in RCA: 159] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 05/14/2018] [Accepted: 06/25/2018] [Indexed: 12/11/2022]
Abstract
Observations of the disproportionate incidence of depression in women compared with men have long preceded the recent explosion of interest in sex differences. Nonetheless, the source and implications of this epidemiologic sex difference remain unclear, as does the practical significance of the multitude of sex differences that have been reported in brain structure and function. In this article, we attempt to provide a framework for thinking about how sex and reproductive hormones (particularly estradiol as an example) might contribute to affective illness. After briefly reviewing some observed sex differences in depression, we discuss how sex might alter brain function through hormonal effects (both organizational (programmed) and activational (acute)), sex chromosome effects, and the interaction of sex with the environment. We next review sex differences in the brain at the structural, cellular, and network levels. We then focus on how sex and reproductive hormones regulate systems implicated in the pathophysiology of depression, including neuroplasticity, genetic and neural networks, the stress axis, and immune function. Finally, we suggest several models that might explain a sex-dependent differential regulation of affect and susceptibility to affective illness. As a disclaimer, the studies cited in this review are not intended to be comprehensive but rather serve as examples of the multitude of levels at which sex and reproductive hormones regulate brain structure and function. As such and despite our current ignorance regarding both the ontogeny of affective illness and the impact of sex on that ontogeny, sex differences may provide a lens through which we may better view the mechanisms underlying affective regulation and dysfunction.
Collapse
|
49
|
Rubinow DR, Schmidt PJ. Is there a role for reproductive steroids in the etiology and treatment of affective disorders? DIALOGUES IN CLINICAL NEUROSCIENCE 2018. [PMID: 30581288 PMCID: PMC6296393 DOI: 10.31887/dcns.2018.20.3/drubinow] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A variety of hormones have been shown to play a role in affective disorders. Reproductive steroids are particularly informative in our efforts to understand the pathophysiology of affective dysregulation for several reasons: i) Reproductive endocrine-related mood disorders (premenstrual dysphoric disorder, perinatal depression, perimenopausal depression) are wonderful clinical models for investigating the mechanisms by which affective state changes occur; ii) Reproductive steroids regulate virtually every system that has been implicated as disturbed in the ontogeny of affective disorders; iii) Despite the absence of a reproductive endocrinopathy a triggering role in the affective disturbance of reproductive mood disorders has been shown clearly for changes in reproductive steroids. The existing data, therefore, support a differential sensitivity to reproductive steroids in reproductive mood disorders such that an abnormal affective state is precipitated by normal changes in reproductive steroids. The therapeutic implications of these findings for affective illness are discussed.
Collapse
Affiliation(s)
- David R Rubinow
- Author affiliations: Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Peter J Schmidt
- Behavioral Endocrinology Branch, National Institute of Mental Health, Magnuson Clinical Center, Bethesda, Maryland, USA
| |
Collapse
|
50
|
Di Florio A, Alexander D, Schmidt PJ, Rubinow DR. Progesterone and plasma metabolites in women with and in those without premenstrual dysphoric disorder. Depress Anxiety 2018; 35:1168-1177. [PMID: 30184299 PMCID: PMC7440927 DOI: 10.1002/da.22827] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 06/06/2018] [Accepted: 06/13/2018] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND The molecular mechanisms underpinning the progesterone-triggering mood symptoms in women with premenstrual dysphoric disorder (PMDD) are unknown. Cell metabolism is a potential source of variability. Very little is known about the effect of progesterone sensitivity on the metabolome. In this study, we aimed to characterize the effects of progesterone on the global metabolic profile and explore the differences between women with PMDD and controls. METHODS Plasma was obtained from 12 women with prospectively confirmed PMDD and 25 controls under two hormone conditions: (1) gonadal suppression induced by leuprolide acetate (3.75 mg IM monthly) and (2) add-back phase with leuprolide and progesterone (200 mg twice daily by vaginal suppository). The global metabolic profile was obtained using liquid and gas chromatography followed by mass spectrometry. Differences between groups and time points were tested using repeated measures analysis of variance. The false discovery rate was calculated to account for multiple testing. RESULTS Amino acids and their derivatives represented 78% (28/36) of the known compounds that were found in significantly lower plasma concentrations after progesterone administration than during gonadal suppression. The concentration of tyrosine was nominally significantly decreased after progesterone add-back in controls, but not in cases (P = 0.02). CONCLUSION Plasma levels of some amino acids are decreased in response to progesterone. Albeit preliminary, evidence further suggests that progesterone has a different effect on the metabolic profiles of women with PMDD compared to controls. Further research is needed to replicate our findings in a larger sample and to identify the unknown compounds, especially those differentially expressed.
Collapse
Affiliation(s)
- Arianna Di Florio
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.,Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | | | - Peter J Schmidt
- Department of Health and Human Services, Section on Behavioral Endocrinology, NIMH, Bethesda, Maryland
| | - David R Rubinow
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|