1
|
Lima da Cruz RV, Leão RN, Moulin TC. Effects of psychedelics on neurogenesis and broader neuroplasticity: a systematic review. Mol Med 2024; 30:244. [PMID: 39701927 DOI: 10.1186/s10020-024-01013-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 11/26/2024] [Indexed: 12/21/2024] Open
Abstract
In the mammalian brain, new neurons continue to be generated throughout life in a process known as adult neurogenesis. The role of adult-generated neurons has been broadly studied across laboratories, and mounting evidence suggests a strong link to the HPA axis and concomitant dysregulations in patients diagnosed with mood disorders. Psychedelic compounds, such as phenethylamines, tryptamines, cannabinoids, and a variety of ever-growing chemical categories, have emerged as therapeutic options for neuropsychiatric disorders, while numerous reports link their effects to increased adult neurogenesis. In this systematic review, we examine studies assessing neurogenesis or other neurogenesis-associated brain plasticity after psychedelic interventions and aim to provide a comprehensive picture of how this vast category of compounds regulates the generation of new neurons. We conducted a literature search on PubMed and Science Direct databases, considering all articles published until January 31, 2023, and selected articles containing both the words "neurogenesis" and "psychedelics". We analyzed experimental studies using either in vivo or in vitro models, employing classical or atypical psychedelics at all ontogenetic windows, as well as human studies referring to neurogenesis-associated plasticity. Our findings were divided into five main categories of psychedelics: CB1 agonists, NMDA antagonists, harmala alkaloids, tryptamines, and entactogens. We described the outcomes of neurogenesis assessments and investigated related results on the effects of psychedelics on brain plasticity and behavior within our sample. In summary, this review presents an extensive study into how different psychedelics may affect the birth of new neurons and other brain-related processes. Such knowledge may be valuable for future research on novel therapeutic strategies for neuropsychiatric disorders.
Collapse
Affiliation(s)
- Rafael V Lima da Cruz
- Neurodynamics Lab, Brain Institute (ICe), Universidade Federal do Rio Grande do Norte, Natal, Brazil.
| | - Richardson N Leão
- Neurodynamics Lab, Brain Institute (ICe), Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | - Thiago C Moulin
- Department of Experimental Medical Science, Lund University, Lund, Sweden.
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
2
|
Raja SM, Guptill JT, Mack M, Peterson M, Byard S, Twieg R, Jordan L, Rich N, Castledine R, Bourne S, Wilmshurst M, Oxendine S, Avula SG, Zuleta H, Quigley P, Lawson S, McQuaker SJ, Ahmadkhaniha R, Appelbaum LG, Kowalski K, Barksdale CT, Gufford BT, Awan A, Sancho AR, Moore MC, Berrada K, Cogan GB, DeLaRosa J, Radcliffe J, Pao M, Kennedy M, Lawrence Q, Goldfeder L, Amanfo L, Zanos P, Gilbert JR, Morris PJ, Moaddel R, Gould TD, Zarate CA, Thomas CJ. A Phase 1 Assessment of the Safety, Tolerability, Pharmacokinetics and Pharmacodynamics of (2R,6R)-Hydroxynorketamine in Healthy Volunteers. Clin Pharmacol Ther 2024; 116:1314-1324. [PMID: 39054770 PMCID: PMC11479831 DOI: 10.1002/cpt.3391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 07/03/2024] [Indexed: 07/27/2024]
Abstract
(R,S)-Ketamine (ketamine) is a dissociative anesthetic that also possesses analgesic and antidepressant activity. Undesirable dissociative side effects and misuse potential limit expanded use of ketamine in several mental health disorders despite promising clinical activity and intensifying medical need. (2R,6R)-Hydroxynorketamine (RR-HNK) is a metabolite of ketamine that lacks anesthetic and dissociative activity but maintains antidepressant and analgesic activity in multiple preclinical models. To enable future assessments in selected human indications, we report the safety, tolerability, pharmacokinetics (PK), and pharmacodynamics (PD) of RR-HNK in a Phase 1 study in healthy volunteers (NCT04711005). A six-level single-ascending dose (SAD) (0.1-4 mg/kg) and a two-level multiple ascending dose (MAD) (1 and 2 mg/kg) study was performed using a 40-minute IV administration emulating the common practice for ketamine administration for depression. Safety assessments showed RR-HNK possessed a minimal adverse event profile and no serious adverse events at all doses examined. Evaluations of dissociation and sedation demonstrated that RR-HNK did not possess anesthetic or dissociative characteristics in the doses examined. RR-HNK PK parameters were measured in both the SAD and MAD studies and exhibited dose-proportional increases in exposure. Quantitative electroencephalography (EEG) measurements collected as a PD parameter based on preclinical findings and ketamine's established effect on gamma-power oscillations demonstrated increases of gamma power in some participants at the lower/mid-range doses examined. Cerebrospinal fluid examination confirmed RR-HNK exposure within the central nervous system (CNS). Collectively, these data demonstrate RR-HNK is well tolerated with an acceptable PK profile and promising PD outcomes to support the progression into Phase 2.
Collapse
Affiliation(s)
- Shruti M. Raja
- Duke Early Phase Research Unit, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Jeffrey T. Guptill
- Duke Early Phase Research Unit, Duke University School of Medicine, Durham, NC, 27710, USA
- Argenx BV, 9052 Gent, Belgium
| | - Michelle Mack
- Duke Early Phase Research Unit, Duke University School of Medicine, Durham, NC, 27710, USA
| | | | - Stephen Byard
- Quotient Sciences, Alnwick, Northumberland, NE66 2DH, England
| | - Robert Twieg
- Labcorp Bioanalytical Services, Indianapolis, IN, 46214, USA
| | - Lynn Jordan
- Duke Early Phase Research Unit, Duke University School of Medicine, Durham, NC, 27710, USA
| | | | | | - Samuel Bourne
- Quotient Sciences, Alnwick, Northumberland, NE66 2DH, England
| | | | - Sarah Oxendine
- Duke Early Phase Research Unit, Duke University School of Medicine, Durham, NC, 27710, USA
| | | | - Helen Zuleta
- Duke Early Phase Research Unit, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Paul Quigley
- Quotient Sciences, Alnwick, Northumberland, NE66 2DH, England
| | - Sheila Lawson
- Quotient Sciences, Alnwick, Northumberland, NE66 2DH, England
| | | | - Reza Ahmadkhaniha
- National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD, 22124, USA
| | - Lawrence G. Appelbaum
- Duke Early Phase Research Unit, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Kevin Kowalski
- Labcorp Bioanalytical Services, Indianapolis, IN, 46214, USA
| | | | - Brandon T. Gufford
- Division of Clinical Pharmacology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Asaad Awan
- Office of the Director, Intramural Research Program, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Alfredo R. Sancho
- Office of the Director, Intramural Research Program, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Max C. Moore
- Drug Discovery and Development Program, Frederick National Laboratory, Fredrick, MD, 21701, USA
| | - Karim Berrada
- Drug Discovery and Development Program, Frederick National Laboratory, Fredrick, MD, 21701, USA
| | - Gregory B. Cogan
- Duke Early Phase Research Unit, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Jesse DeLaRosa
- Duke Early Phase Research Unit, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Jeanne Radcliffe
- Office of the Clinical Director, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Maryland Pao
- Office of the Clinical Director, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, 20892, USA
| | | | | | - Lisa Goldfeder
- Office of the Director, Intramural Research Program, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Leslie Amanfo
- Office of the Director, Intramural Research Program, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Panos Zanos
- Department of Psychology, University of Cyprus, Nicosia, 2109, Cyprus
| | - Jessica R Gilbert
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Patrick J. Morris
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville MD, 20850, USA
| | - Ruin Moaddel
- National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD, 22124, USA
| | - Todd D. Gould
- Departments of Psychiatry, Pharmacology, and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Baltimore Veterans Affairs Medical Center, Veterans Affairs Maryland Health Care System, Baltimore, MD, 21201, USA
| | - Carlos A. Zarate
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Craig J. Thomas
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville MD, 20850, USA
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
3
|
Loan Nguyen TM, Guilloux JP, Defaix C, Mendez-David I, Etting I, Alvarez JC, McGowan JC, Highland JN, Zanos P, Lovett J, Moaddel R, Corruble E, David DJ, Gould TD, Denny CA, Gardier AM. Ketamine metabolism via hepatic CYP450 isoforms contributes to its sustained antidepressant actions. Neuropharmacology 2024; 258:110065. [PMID: 39004413 PMCID: PMC11492263 DOI: 10.1016/j.neuropharm.2024.110065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/03/2024] [Accepted: 07/06/2024] [Indexed: 07/16/2024]
Abstract
(R,S)-ketamine (ketamine) has rapid and sustained antidepressant (AD) efficacy at sub-anesthetic doses in depressed patients. A metabolite of ketamine, including (2R,6R)-hydroxynorketamine ((6)-HNKs) has been reported to exert antidepressant actions in rodent model of anxiety/depression. To further understand the specific role of ketamine's metabolism in the AD actions of the drug, we evaluated the effects of inhibiting hepatic cytochrome P450 enzymes on AD responses. We assessed whether pre-treatment with fluconazole (10 and 20 mg/kg, i. p.) 1 h prior to ketamine or HNKs (10 mg/kg, i. p.) administration would alter behavioral and neurochemical actions of the drugs in male BALB/cJ mice with a highly anxious phenotype. Extracellular microdialysate levels of glutamate and GABA (Gluext, GABAext) were also measured in the medial prefrontal cortex (mPFC). Pre-treatment with fluconazole altered the pharmacokinetic profile of ketamine, by increasing both plasma and brain levels of ketamine and (R,S)-norketamine, while robustly reducing those of (6)-HNKs. At 24 h post-injection (t24 h), fluconazole prevented the sustained AD-like response of ketamine responses in the forced swim test and splash test, as well as the enhanced cortical GABA levels produced by ketamine. A single (2R,6R)-HNK administration resulted in prevention of the effects of fluconazole on the antidepressant-like activity of ketamine in mice. Overall, these findings are consistent with an essential contribution of (6)-HNK to the sustained antidepressant-like effects of ketamine and suggest potential interactions between pharmacological CYPIs and ketamine during antidepressant treatment in patients.
Collapse
Affiliation(s)
- Thi Mai Loan Nguyen
- Université Paris-Saclay, Faculté de Pharmacie, Inserm UMR 1018, CESP, MOODS Team, 91400 Orsay, France
| | - Jean-Philippe Guilloux
- Université Paris-Saclay, Faculté de Pharmacie, Inserm UMR 1018, CESP, MOODS Team, 91400 Orsay, France
| | - Céline Defaix
- Université Paris-Saclay, Faculté de Pharmacie, Inserm UMR 1018, CESP, MOODS Team, 91400 Orsay, France
| | - Indira Mendez-David
- Université Paris-Saclay, Faculté de Pharmacie, Inserm UMR 1018, CESP, MOODS Team, 91400 Orsay, France
| | - Isabelle Etting
- Service de Pharmacologie-Toxicologie, Hôpital Raymond Poincaré, Groupe Hospitalier Universitaires AP-HP, Université Paris-Saclay, Inserm U-1018, CESP, MOODS Team, 92380 Garches, France
| | - Jean-Claude Alvarez
- Service de Pharmacologie-Toxicologie, Hôpital Raymond Poincaré, Groupe Hospitalier Universitaires AP-HP, Université Paris-Saclay, Inserm U-1018, CESP, MOODS Team, 92380 Garches, France
| | - Josephine C McGowan
- Department of Psychiatry, Columbia University, New York, NY, 10032, USA; Division of Systems Neuroscience, Research Foundation for Mental Hygiene, Inc. (RFMH) /New York State Psychiatric Institute (NYSPI), New York, NY, 10032, USA; Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA, 02478, USA
| | - Jaclyn N Highland
- Departments of Psychiatry, Baltimore, MD, USA; Departments of Program in Toxicology, University of Maryland School of Medicine, Baltimore, MD, USA; Veterans Affairs Maryland Health Care System, Baltimore, MD, 21201, USA
| | - Panos Zanos
- Departments of Psychiatry, Baltimore, MD, USA; Departments of Pharmacology, Baltimore, MD, USA; Departments of Physiology, Baltimore, MD, USA; Biomedical Research Center, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA; Department of Psychology, University of Cyprus, Nicosia, 2109, Cyprus
| | - Jacqueline Lovett
- Biomedical Research Center, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Ruin Moaddel
- Biomedical Research Center, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Emmanuelle Corruble
- Université Paris-Saclay, Faculté de Médecine, Inserm UMR 1018, CESP, MOODS Team, 94270 Bicêtre Hospital, 94270 Le Kremin-Bicêtre, France; Service Hospitalo-Universitaire de Psychiatrie de Bicêtre, Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Paris-Saclay, Hôpital de Bicêtre, 94270 Le Kremlin Bicêtre, France
| | - Denis J David
- Université Paris-Saclay, Faculté de Pharmacie, Inserm UMR 1018, CESP, MOODS Team, 91400 Orsay, France
| | - Todd D Gould
- Departments of Psychiatry, Baltimore, MD, USA; Departments of Pharmacology, Baltimore, MD, USA; Departments of Physiology, Baltimore, MD, USA; Departments of Neurobiology, Baltimore, MD, USA; Departments of Program in Toxicology, University of Maryland School of Medicine, Baltimore, MD, USA; Veterans Affairs Maryland Health Care System, Baltimore, MD, 21201, USA; Biomedical Research Center, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Christine A Denny
- Department of Psychiatry, Columbia University, New York, NY, 10032, USA; Division of Systems Neuroscience, Research Foundation for Mental Hygiene, Inc. (RFMH) /New York State Psychiatric Institute (NYSPI), New York, NY, 10032, USA
| | - Alain M Gardier
- Université Paris-Saclay, Faculté de Pharmacie, Inserm UMR 1018, CESP, MOODS Team, 91400 Orsay, France.
| |
Collapse
|
4
|
Anna O, Michael A, Apostolakis M, Mammadov E, Mitka A, Kalatta MA, Koumas M, Georgiou A, Chatzittofis A, Panayiotou G, Gergiou P, Zarate CA, Zanos P. Ketamine and hydroxynorketamine as novel pharmacotherapies for the treatment of Opioid-Use Disorders. Biol Psychiatry 2024:S0006-3223(24)01591-9. [PMID: 39293647 DOI: 10.1016/j.biopsych.2024.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/30/2024] [Accepted: 09/11/2024] [Indexed: 09/20/2024]
Abstract
Opioid use disorder (OUD) has reached epidemic proportions, with many countries facing high opioid use and related fatalities. Although currently-prescribed medications for OUD (MOUD) are considered life-saving, they inadequately address negative affect and cognitive impairment, resulting in high relapse rates to non-medical opioid use, even years after drug cessation (protracted abstinence). Evidence supports the notion that ketamine, an anesthetic and rapid-acting antidepressant drug, holds promise as a candidate for OUD treatment, including the management of acute withdrawal somatic symptoms, negative affect during protracted opioid abstinence and prevention of re-taking non-medical opioids. In this review, we comprehensively discuss preclinical and clinical research evaluating ketamine and its metabolites as potential novel therapeutic strategies for treating OUDs. We further examine evidence supporting the relevance of the molecular targets of ketamine and its metabolites in relation to their potential effects and therapeutic outcomes in OUDs. Overall, existing evidence demonstrates that ketamine and its metabolites can effectively modulate pathophysiological processes affected in OUD, suggesting their promising therapeutic role in the treatment of OUD and the prevention of return to opioid use during abstinence.
Collapse
Affiliation(s)
- Onisiforou Anna
- Department of Psychology, University of Cyprus, Nicosia, 2109, Cyprus
| | - Andria Michael
- Department of Psychology, University of Cyprus, Nicosia, 2109, Cyprus
| | - Markos Apostolakis
- Department of Psychology, University of Cyprus, Nicosia, 2109, Cyprus; Center for Applied Neuroscience, University of Cyprus, Nicosia, Cyprus
| | - Elmar Mammadov
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21201 USA
| | - Angeliki Mitka
- Department of Psychology, University of Cyprus, Nicosia, 2109, Cyprus
| | - Maria A Kalatta
- Department of Psychology, University of Cyprus, Nicosia, 2109, Cyprus
| | - Morfeas Koumas
- Department of Biological Sciences, University of Cyprus, Nicosia, 2109, Cyprus
| | - Andrea Georgiou
- Department of Psychology, University of Cyprus, Nicosia, 2109, Cyprus
| | - Andreas Chatzittofis
- Department of Clinical Sciences/Psychiatry, Umeå University, Umeå, Sweden; Medical School, University of Cyprus, Nicosia, Cyprus
| | - Georgia Panayiotou
- Department of Psychology, University of Cyprus, Nicosia, 2109, Cyprus; Center for Applied Neuroscience, University of Cyprus, Nicosia, Cyprus
| | - Polymnia Gergiou
- Department of Psychology, University of Wisconsin-Milwaukee, Wisconsin, 53211, USA
| | - Carlos A Zarate
- Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| | - Panos Zanos
- Department of Psychology, University of Cyprus, Nicosia, 2109, Cyprus; Center for Applied Neuroscience, University of Cyprus, Nicosia, Cyprus; Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21201 USA.
| |
Collapse
|
5
|
Ruan Y, Yuan R, He J, Jiang Y, Chu S, Chen N. New perspective on sustained antidepressant effect: focus on neurexins regulating synaptic plasticity. Cell Death Discov 2024; 10:205. [PMID: 38693106 PMCID: PMC11063156 DOI: 10.1038/s41420-024-01974-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 05/03/2024] Open
Abstract
Depression is highly prevalent globally, however, currently available medications face challenges such as low response rates and short duration of efficacy. Additionally, depression mostly accompany other psychiatric disorders, further progressing to major depressive disorder without long-term effective management. Thus, sustained antidepressant strategies are urgently needed. Recently, ketamine and psilocybin gained attention as potential sustained antidepressants. Review of recent studies highlights that synaptic plasticity changes as key events of downstream long-lasting changes in sustained antidepressant effect. This underscores the significance of synaptic plasticity in sustained antidepressant effect. Moreover, neurexins, key molecules involved in the regulation of synaptic plasticity, act as critical links between synaptic plasticity and sustained antidepressant effects, involving mechanisms including protein level, selective splicing, epigenetics, astrocytes, positional redistribution and protein structure. Based on the regulation of synaptic plasticity by neurexins, several drugs with potential for sustained antidepressant effect are also discussed. Focusing on neurexins in regulating synaptic plasticity promises much for further understanding underlying mechanisms of sustained antidepressant and the next step in new drug development. This research represents a highly promising future research direction.
Collapse
Affiliation(s)
- Yuan Ruan
- Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Ruolan Yuan
- Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Jiaqi He
- Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Yutong Jiang
- Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Shifeng Chu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China.
| | - Naihong Chen
- Tianjin University of Traditional Chinese Medicine, Tianjin, PR China.
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China.
| |
Collapse
|
6
|
Wen G, Zhan X, Xu X, Xia X, Jiang S, Ren X, Ren W, Lou H, Lu L, Hermenean A, Yao J, Gao L, Li B, Lu Y, Wu X. Ketamine Improves the Glymphatic Pathway by Reducing the Pyroptosis of Hippocampal Astrocytes in the Chronic Unpredictable Mild Stress Model. Mol Neurobiol 2024; 61:2049-2062. [PMID: 37840071 DOI: 10.1007/s12035-023-03669-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 09/20/2023] [Indexed: 10/17/2023]
Abstract
Ketamine as a glutamate receptor antagonist has a rapid, potent, and long-lasting antidepressant effect, but its specific mechanism is still not fully understood. Depression is associated with elevated levels of glutamate and astrocyte loss in the brain; the exploration of the relationships between ketamine's antidepressant effect and astrocytes has drawn great attention. Astrocytes and aquaporin 4 (AQP4) are essential components of the glymphatic system, which is a brain-wide perivascular pathway to help transport nutrients to the parenchyma and remove metabolic wastes. In this study, we investigated pyroptosis-associated protein Nlrp3/Caspase-1/Gsdmd-N expression in the hippocampus of mice and the toxic effect of high levels of glutamate on primary astrocytes. On this basis, the protective mechanism of ketamine is explored. A single administration of ketamine (10 mg/kg) remarkably relieved anxious and depressive behaviors in the sucrose preference test, elevated plus maze test, and forced swim test. Meanwhile, ketamine reduced the level of hippocampus Nlrp3 and the expression of its downstream molecules in chronic unpredictable mild stress (CUMS) mice model by western blot and reduced the colocalization of Gfap and Gsdmd by nearly 25% via immunofluorescent staining. Ketamine also increased the Gfap-positive cells and AQP4 expression in the hippocampus of the CUMS mice. More important, ketamine increased the distribution of the fluorescent tracer of CUMS mice. Treatment with 128 mM glutamate in cortical and hippocampus astrocytes increased the level of Nlrp3, and Gsdmd-N, and ketamine alleviated high glutamate-induced pyroptosis-associated proteins. In summary, these results suggest that high glutamate-induced astrocyte pyroptosis through the Nlrp3/Caspase-1/Gsdmd-N pathway which was inhibited by ketamine and ketamine can improve the damaged glymphatic function of the CUMS mice. The present study indicates that inhibiting astrocyte pyroptosis and promoting the glymphatic circulation function are a new mechanism of ketamine's antidepressant effect, and astrocyte pyroptosis may be a new target for other antidepressant medicines.
Collapse
Affiliation(s)
- Gehua Wen
- China Medical University School of Forensic Medicine, No.77 Puhe Road, Shenyang, China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, China
- China Medical University Center of Forensic Investigation, Shenyang, China
| | - Xiaoni Zhan
- China Medical University School of Forensic Medicine, No.77 Puhe Road, Shenyang, China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, China
- China Medical University Center of Forensic Investigation, Shenyang, China
| | - Xiaoming Xu
- China Medical University School of Forensic Medicine, No.77 Puhe Road, Shenyang, China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, China
- China Medical University Center of Forensic Investigation, Shenyang, China
| | - Xi Xia
- China Medical University School of Forensic Medicine, No.77 Puhe Road, Shenyang, China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, China
- China Medical University Center of Forensic Investigation, Shenyang, China
| | - Shukun Jiang
- China Medical University School of Forensic Medicine, No.77 Puhe Road, Shenyang, China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, China
- China Medical University Center of Forensic Investigation, Shenyang, China
| | - Xinghua Ren
- China Medical University School of Forensic Medicine, No.77 Puhe Road, Shenyang, China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, China
- China Medical University Center of Forensic Investigation, Shenyang, China
| | - Weishu Ren
- China Medical University School of Forensic Medicine, No.77 Puhe Road, Shenyang, China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, China
- China Medical University Center of Forensic Investigation, Shenyang, China
| | - Haoyang Lou
- China Medical University School of Forensic Medicine, No.77 Puhe Road, Shenyang, China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, China
- China Medical University Center of Forensic Investigation, Shenyang, China
| | - Lei Lu
- Department of pediatrics Neonatology, University of Chicago, Chicago, IL 60615, U.S., Chicago, USA, IL
| | - Anca Hermenean
- Faculty of Medicine, Vasile Goldis Western University of Arad, Arad, Romania
| | - Jun Yao
- China Medical University School of Forensic Medicine, No.77 Puhe Road, Shenyang, China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, China
- China Medical University Center of Forensic Investigation, Shenyang, China
| | - Lina Gao
- China Medical University School of Forensic Medicine, No.77 Puhe Road, Shenyang, China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, China
- China Medical University Center of Forensic Investigation, Shenyang, China
| | - Baoman Li
- China Medical University School of Forensic Medicine, No.77 Puhe Road, Shenyang, China.
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, China.
- China Medical University Center of Forensic Investigation, Shenyang, China.
| | - Yan Lu
- Key Laboratory of Health Ministry in Congenital Malformation, Affiliated Shengjing Hospital of China Medical University, Shenyang, China, Shenyang, Liaoning, China.
| | - Xu Wu
- China Medical University School of Forensic Medicine, No.77 Puhe Road, Shenyang, China.
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, China.
- China Medical University Center of Forensic Investigation, Shenyang, China.
| |
Collapse
|
7
|
Brown KA, Gould TD. Targeting metaplasticity mechanisms to promote sustained antidepressant actions. Mol Psychiatry 2024; 29:1114-1127. [PMID: 38177353 PMCID: PMC11176041 DOI: 10.1038/s41380-023-02397-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/06/2024]
Abstract
The discovery that subanesthetic doses of (R, S)-ketamine (ketamine) and (S)-ketamine (esketamine) rapidly induce antidepressant effects and promote sustained actions following drug clearance in depressed patients who are treatment-resistant to other therapies has resulted in a paradigm shift in the conceptualization of how rapidly and effectively depression can be treated. Consequently, the mechanism(s) that next generation antidepressants may engage to improve pathophysiology and resultant symptomology are being reconceptualized. Impaired excitatory glutamatergic synapses in mood-regulating circuits are likely a substantial contributor to the pathophysiology of depression. Metaplasticity is the process of regulating future capacity for plasticity by priming neurons with a stimulation that alters later neuronal plasticity responses. Accordingly, the development of treatment modalities that specifically modulate the duration, direction, or magnitude of glutamatergic synaptic plasticity events such as long-term potentiation (LTP), defined here as metaplastogens, may be an effective approach to reverse the pathophysiology underlying depression and improve depression symptoms. We review evidence that the initiating mechanisms of pharmacologically diverse rapid-acting antidepressants (i.e., ketamine mimetics) converge on consistent downstream molecular mediators that facilitate the expression/maintenance of increased synaptic strength and resultant persisting antidepressant effects. Specifically, while the initiating mechanisms of these therapies may differ (e.g., cell type-specificity, N-methyl-D-aspartate receptor (NMDAR) subtype-selective inhibition vs activation, metabotropic glutamate receptor 2/3 antagonism, AMPA receptor potentiation, 5-HT receptor-activating psychedelics, etc.), the sustained therapeutic mechanisms of putative rapid-acting antidepressants will be mediated, in part, by metaplastic effects that converge on consistent molecular mediators to enhance excitatory neurotransmission and altered capacity for synaptic plasticity. We conclude that the convergence of these therapeutic mechanisms provides the opportunity for metaplasticity processes to be harnessed as a druggable plasticity mechanism by next-generation therapeutics. Further, targeting metaplastic mechanisms presents therapeutic advantages including decreased dosing frequency and associated diminished adverse responses by eliminating the requirement for the drug to be continuously present.
Collapse
Affiliation(s)
- Kyle A Brown
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Todd D Gould
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
- Veterans Affairs Maryland Health Care System, Baltimore, MD, 21201, USA.
| |
Collapse
|
8
|
Yao H, Wang X, Chi J, Chen H, Liu Y, Yang J, Yu J, Ruan Y, Xiang X, Pi J, Xu JF. Exploring Novel Antidepressants Targeting G Protein-Coupled Receptors and Key Membrane Receptors Based on Molecular Structures. Molecules 2024; 29:964. [PMID: 38474476 DOI: 10.3390/molecules29050964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/29/2024] [Accepted: 02/09/2024] [Indexed: 03/14/2024] Open
Abstract
Major Depressive Disorder (MDD) is a complex mental disorder that involves alterations in signal transmission across multiple scales and structural abnormalities. The development of effective antidepressants (ADs) has been hindered by the dominance of monoamine hypothesis, resulting in slow progress. Traditional ADs have undesirable traits like delayed onset of action, limited efficacy, and severe side effects. Recently, two categories of fast-acting antidepressant compounds have surfaced, dissociative anesthetics S-ketamine and its metabolites, as well as psychedelics such as lysergic acid diethylamide (LSD). This has led to structural research and drug development of the receptors that they target. This review provides breakthroughs and achievements in the structure of depression-related receptors and novel ADs based on these. Cryo-electron microscopy (cryo-EM) has enabled researchers to identify the structures of membrane receptors, including the N-methyl-D-aspartate receptor (NMDAR) and the 5-hydroxytryptamine 2A (5-HT2A) receptor. These high-resolution structures can be used for the development of novel ADs using virtual drug screening (VDS). Moreover, the unique antidepressant effects of 5-HT1A receptors in various brain regions, and the pivotal roles of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) and tyrosine kinase receptor 2 (TrkB) in regulating synaptic plasticity, emphasize their potential as therapeutic targets. Using structural information, a series of highly selective ADs were designed based on the different role of receptors in MDD. These molecules have the favorable characteristics of rapid onset and low adverse drug reactions. This review offers researchers guidance and a methodological framework for the structure-based design of ADs.
Collapse
Affiliation(s)
- Hanbo Yao
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Xiaodong Wang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Jiaxin Chi
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Haorong Chen
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Yilin Liu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Jiayi Yang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Jiaqi Yu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Yongdui Ruan
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
| | - Xufu Xiang
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics and Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jiang Pi
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Jun-Fa Xu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| |
Collapse
|
9
|
Elmeseiny OSA, Müller HK. A molecular perspective on mGluR5 regulation in the antidepressant effect of ketamine. Pharmacol Res 2024; 200:107081. [PMID: 38278430 DOI: 10.1016/j.phrs.2024.107081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/16/2024] [Accepted: 01/23/2024] [Indexed: 01/28/2024]
Abstract
Ketamine, a non-competitive N-methyl-D-aspartate receptor (NMDAR) antagonist, has received much attention for its rapid antidepressant effects. A single administration of ketamine elicits rapid and sustained antidepressant effects in both humans and animals. Current efforts are focused on uncovering molecular mechanisms responsible for ketamine's antidepressant activity. Ketamine primarily acts via the glutamatergic pathway, and increasing evidence suggests that ketamine induces synaptic and structural plasticity through increased translation and release of neurotrophic factors, activation of mammalian target of rapamycin (mTOR), and α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor (AMPAR)-mediated synaptic potentiation. However, the initial events triggering activation of intracellular signaling cascades and the mechanisms responsible for the sustained antidepressant effects of ketamine remain poorly understood. Over the last few years, it has become apparent that in addition to the fast actions of the ligand-gated AMPARs and NMDARs, metabotropic glutamate receptors (mGluRs), and particularly mGluR5, may also play a role in the antidepressant action of ketamine. Although research on mGluR5 in relation to the beneficial actions of ketamine is still in its infancy, a careful evaluation of the existing literature can identify converging trends and provide new interpretations. Here, we review the current literature on mGluR5 regulation in response to ketamine from a molecular perspective and propose a possible mechanism linking NMDAR inhibition to mGluR5 modulation.
Collapse
Affiliation(s)
- Ola Sobhy A Elmeseiny
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Heidi Kaastrup Müller
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
10
|
Drinkuth CR, Lehane MJ, Sartor GC. The effects of (2R,6R)-hydroxynorketamine on oxycodone withdrawal and reinstatement. Drug Alcohol Depend 2023; 253:110987. [PMID: 37864957 PMCID: PMC10842506 DOI: 10.1016/j.drugalcdep.2023.110987] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/13/2023] [Accepted: 09/30/2023] [Indexed: 10/23/2023]
Abstract
Despite the thousands of lives lost during the ongoing opioid crisis, a scarcity of new and effective clinical treatments for opioid use disorder (OUD) remains. To address this unmet need, some researchers have turned to dissociative and psychedelic drugs to treat multiple psychiatric conditions. In particular, low doses of ketamine have been shown to attenuate opioid withdrawal and drug use in clinical and preclinical studies. However, ketamine has misuse liability and dissociative side effects that may limit its widespread application as a treatment for OUD. More recently, (2R,6R)-hydroxynorketamine (HNK), a ketamine metabolite that lacks misuse potential, has gained attention for its effectiveness in depression and stress models. To uncover its role in OUD, we tested the time-dependent effects of (2R,6R)-HNK on oxycodone withdrawal and reinstatement of oxycodone conditioned place preference (CPP). In male and female oxycodone-dependent mice, we found that 24h pretreatment with (2R,6R)-HNK (10 or 30mg/kg, s.c.) reduced the frequency of withdrawal-like behaviors and global withdrawal scores during naloxone-precipitated withdrawal, whereas 1h pretreatment with (2R,6R)-HNK only reduced paw tremors and the sum of global withdrawal scores but not GWS Z-scores. In other experiments, both 1h and 24h pretreatment with (2R,6R)-HNK (30mg/kg, s.c.) blocked drug-induced reinstatement of oxycodone CPP. Finally, we found (2R,6R)-HNK (30mg/kg, sc) had no effect on locomotor activity and thigmotaxis. Together, these results indicate that acute (2R,6R)-HNK has efficacy in some preclinical models of OUD without producing locomotor or anxiety-like side effects.
Collapse
Affiliation(s)
- Caryssa R Drinkuth
- Department of Pharmaceutical Sciences, Connecticut Institute for the Brain and Cognitive Sciences (IBACS), University of Connecticut, Storrs, CT 06269, United States
| | - Michael J Lehane
- Department of Pharmaceutical Sciences, Connecticut Institute for the Brain and Cognitive Sciences (IBACS), University of Connecticut, Storrs, CT 06269, United States
| | - Gregory C Sartor
- Department of Pharmaceutical Sciences, Connecticut Institute for the Brain and Cognitive Sciences (IBACS), University of Connecticut, Storrs, CT 06269, United States.
| |
Collapse
|
11
|
Hilal F, Jeanblanc J, Naassila M. [Interest and mechanisms of action of ketamine in alcohol addiction- A review of clinical and preclinical studies]. Biol Aujourdhui 2023; 217:161-182. [PMID: 38018944 DOI: 10.1051/jbio/2023028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Indexed: 11/30/2023]
Abstract
Alcohol Use Disorder (AUD) is a psychiatric condition characterized by chronic and excessive drinking despite negative consequences on overall health and social or occupational functioning. There are currently limited treatment options available for AUD, and the effects size and the response rates to these treatments are often low to moderate. The World Health Organization has identified the development of medications to treat AUD as one of its 24 priorities. This past decade was marked by a renewed interest in psychedelic use in psychiatry. At the centre of this renaissance, ketamine, an atypical psychedelic already used in the treatment of major depression, is an NMDA receptor antagonist that exists as a racemic compound made of two enantiomers, S-ketamine, and R-ketamine. Each form can be metabolized into different metabolites, some of which having antidepressant properties. In this article, we review both clinical and preclinical studies on ketamine and its metabolites in the treatment of AUD. Preclinical as well as clinical studies have revealed that ketamine is effective in reducing withdrawal symptoms and alcohol craving. Convergent data showed that antidepressant properties of ketamine largely contribute to the decreased likelihood of alcohol relapse, especially in patients undergoing ketamine-assisted psychotherapies. Its effectiveness is believed to be linked with its ability to regulate the glutamatergic pathway, enhance neuroplasticity, rewire brain resting state network functional connectivity and decrease depressive-like states. However, it remains to further investigate (i) why strong differences exist between male and female responses in preclinical studies and (ii) the respective roles of each of the metabolites in the ketamine effects in both genders. Interestingly, current studies are also focusing on ketamine addiction and the comorbidity between alcohol addiction and depression occurring more frequently in females.
Collapse
Affiliation(s)
- Fahd Hilal
- Groupe de recherche sur l'alcool et les pharmacodépendances, INSERM U1247, CURS, Amiens, France
| | - Jérôme Jeanblanc
- Groupe de recherche sur l'alcool et les pharmacodépendances, INSERM U1247, CURS, Amiens, France
| | - Mickaël Naassila
- Groupe de recherche sur l'alcool et les pharmacodépendances, INSERM U1247, CURS, Amiens, France
| |
Collapse
|
12
|
Guo L, Wang S, Tian H, Shang M, Xu J, Wang C. Novel synergistic treatment for depression: involvement of GSK3β-regulated AMPA receptors in the prefrontal cortex of mice. Cereb Cortex 2023; 33:10504-10513. [PMID: 37566915 DOI: 10.1093/cercor/bhad299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
Previous evidence has suggested a vital role of glycogen synthase kinase 3β-mediated α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors trafficking in depression. Considering the antidepressant effect of α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors activation in the prefrontal cortex, we hypothesized that glycogen synthase kinase 3β-induced alterations in α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors function in the prefrontal cortex participate in depression. Herein, we confirmed that the levels of phosphorylated glycogen synthase kinase 3β and GluA1, the latter being a subunit of α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors, were decreased in the prefrontal cortex of the chronic social defeat stress model mice presenting with depressive-like behaviors. We then found that a glycogen synthase kinase 3β (p.S9A) point mutation downregulated GluA1 and induced depressive-like behaviors in mice, whereas an agonist of α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors, PF-4778574 (2 mg/kg) did not reversed the molecular changes. On the other hand, the antidepressant effect of PF-4778574 was dose dependent, and the single administration of PF-4778574 at a lower dose (0.5 mg/kg) or of the glycogen synthase kinase 3β inhibitor SB216763 (5 and 10 mg/kg) did not evoke an antidepressant effect. In contrast, co-treatment with PF-4778574 (0.5 mg/kg) and SB216763 (10 mg/kg) led to antidepressant effects similar to those of PF-4778574 (2 mg/kg). Our results suggest that glycogen synthase kinase 3β-induced α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors dysfunction in the prefrontal cortex is one of the key mechanisms of depression, and the combination of a lower dose of PF-4778574 with SB216763 shows potential as a novel synergistic treatment for depression.
Collapse
Affiliation(s)
- Lei Guo
- Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, PR China
- School of Basic Medical Science, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, PR China
| | - Shuzhuo Wang
- Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, PR China
- School of Basic Medical Science, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, PR China
| | - Haihua Tian
- Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, PR China
- School of Basic Medical Science, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, PR China
- Department of Psychiatry, Ningbo Kangning Hospital, Ningbo, Zhejiang 315201, PR China
| | - Mengyuan Shang
- Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, PR China
- School of Basic Medical Science, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, PR China
| | - Jia Xu
- Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, PR China
- School of Basic Medical Science, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, PR China
| | - Chuang Wang
- Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, PR China
- School of Basic Medical Science, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, PR China
| |
Collapse
|
13
|
Chen Y, Yan P, Wei S, Zhu Y, Lai J, Zhou Q. Ketamine metabolite alleviates morphine withdrawal-induced anxiety via modulating nucleus accumbens parvalbumin neurons in male mice. Neurobiol Dis 2023; 186:106279. [PMID: 37661023 DOI: 10.1016/j.nbd.2023.106279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/20/2023] [Accepted: 08/31/2023] [Indexed: 09/05/2023] Open
Abstract
Opioid withdrawal generates extremely unpleasant physical symptoms and negative affective states. A rapid relief of opioid withdrawal-induced anxiety has obvious clinical relevance but has been rarely reported. We have shown that injection of ketamine metabolite (2R,6R)-hydroxynorketamine (HNK) leads to a rapid alleviation of anxiety-like behaviors in male mice undergoing chronic morphine withdrawal. Here we investigated the contribution of nucleus accumbens shell (sNAc) parvalbumin (PV)-neurons to this process. Chronic morphine withdrawal was associated with higher intrinsic excitability of sNAc PV-neurons via reduced voltage-dependent potassium currents. Chemogenetic inhibition of sNAc PV-neurons reversed the enhanced excitability of PV-neurons and anxiety-like behaviors in these morphine withdrawal male mice, while activation of sNAc PV-neurons induced anxiety-like behaviors in naive male mice. (2R,6R)-HNK reversed the altered potassium currents and intrinsic excitability of sNAc PV-neurons. Our findings demonstrate an important contribution of sNAc PV-neurons to modulating morphine withdrawal-induced anxiety-like behaviors and rapid relief of anxiety-like behaviors by (2R,6R)-HNK, this newly identified target may have therapeutic potentials in treating opioid addiction and anxiety disorders.
Collapse
Affiliation(s)
- Yuanyuan Chen
- College of Forensic Science, Xi'an Jiaotong University, Xi'an, China; School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Peng Yan
- College of Forensic Science, Xi'an Jiaotong University, Xi'an, China
| | - Shuguang Wei
- College of Forensic Science, Xi'an Jiaotong University, Xi'an, China
| | - Yongsheng Zhu
- College of Forensic Science, Xi'an Jiaotong University, Xi'an, China
| | - Jianghua Lai
- College of Forensic Science, Xi'an Jiaotong University, Xi'an, China.
| | - Qiang Zhou
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China.
| |
Collapse
|
14
|
Zaytseva A, Bouckova E, Wiles MJ, Wustrau MH, Schmidt IG, Mendez-Vazquez H, Khatri L, Kim S. Ketamine's rapid antidepressant effects are mediated by Ca 2+-permeable AMPA receptors. eLife 2023; 12:e86022. [PMID: 37358072 PMCID: PMC10319435 DOI: 10.7554/elife.86022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 06/23/2023] [Indexed: 06/27/2023] Open
Abstract
Ketamine is shown to enhance excitatory synaptic drive in multiple brain areas, which is presumed to underlie its rapid antidepressant effects. Moreover, ketamine's therapeutic actions are likely mediated by enhancing neuronal Ca2+ signaling. However, ketamine is a noncompetitive NMDA receptor (NMDAR) antagonist that reduces excitatory synaptic transmission and postsynaptic Ca2+ signaling. Thus, it is a puzzling question how ketamine enhances glutamatergic and Ca2+ activity in neurons to induce rapid antidepressant effects while blocking NMDARs in the hippocampus. Here, we find that ketamine treatment in cultured mouse hippocampal neurons significantly reduces Ca2+ and calcineurin activity to elevate AMPA receptor (AMPAR) subunit GluA1 phosphorylation. This phosphorylation ultimately leads to the expression of Ca2+-Permeable, GluA2-lacking, and GluA1-containing AMPARs (CP-AMPARs). The ketamine-induced expression of CP-AMPARs enhances glutamatergic activity and glutamate receptor plasticity in cultured hippocampal neurons. Moreover, when a sub-anesthetic dose of ketamine is given to mice, it increases synaptic GluA1 levels, but not GluA2, and GluA1 phosphorylation in the hippocampus within 1 hr after treatment. These changes are likely mediated by ketamine-induced reduction of calcineurin activity in the hippocampus. Using the open field and tail suspension tests, we demonstrate that a low dose of ketamine rapidly reduces anxiety-like and depression-like behaviors in both male and female mice. However, when in vivo treatment of a CP-AMPAR antagonist abolishes the ketamine's effects on animals' behaviors. We thus discover that ketamine at the low dose promotes the expression of CP-AMPARs via reduction of calcineurin activity, which in turn enhances synaptic strength to induce rapid antidepressant actions.
Collapse
Affiliation(s)
- Anastasiya Zaytseva
- Molecular, Cellular and Integrative Neurosciences Program, Colorado State UniversityFort CollinsUnited States
| | - Evelina Bouckova
- Molecular, Cellular and Integrative Neurosciences Program, Colorado State UniversityFort CollinsUnited States
| | - McKennon J Wiles
- Molecular, Cellular and Integrative Neurosciences Program, Colorado State UniversityFort CollinsUnited States
| | - Madison H Wustrau
- Department of Biomedical Sciences, Colorado State University,Fort CollinsUnited States
| | - Isabella G Schmidt
- Molecular, Cellular and Integrative Neurosciences Program, Colorado State UniversityFort CollinsUnited States
| | | | - Latika Khatri
- Department of Cell Biology, New York University Grossman School of MedicineNew YorkUnited States
| | - Seonil Kim
- Molecular, Cellular and Integrative Neurosciences Program, Colorado State UniversityFort CollinsUnited States
- Department of Biomedical Sciences, Colorado State University,Fort CollinsUnited States
| |
Collapse
|
15
|
Chu Z, Yuan L, He M, Cheng Y, Lu Y, Xu X, Shen Z. Atrophy of bilateral nucleus accumbens in melancholic depression. Neuroreport 2023; 34:493-500. [PMID: 37270840 DOI: 10.1097/wnr.0000000000001915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Evidence from previous literature suggests that the nucleus accumbens (NAc), hippocampus, and amygdala play critical roles in the reward circuit. Meanwhile, it was also suggested that abnormalities in the reward circuit might be closely associated with the symptom of anhedonia of depression. However, few studies have investigated the structural alterations of the NAc, hippocampus, and amygdala in depression with anhedonia as the main clinical manifestation. Thus, the current study aimed to explore the structural changes of the subcortical regions among melancholic depression (MD) patients, especially in the NAc, hippocampus, and amygdala, to provide a theoretical basis for understanding the pathological mechanisms of MD. Seventy-two MD patients, 74 nonmelancholic depression (NMD) patients, and 81 healthy controls (HCs) matched for sex, age, and years of education were included in the study. All participants underwent T1-weighted MRI scans. Subcortical structure segmentation was performed using the FreeSurfer software. MD and NMD patients had reduced left hippocampal volume compared with HCs. Meanwhile, only MD patients had reduced bilateral NAc volumes. Moreover, correlation analyses showed correlations between left NAc volume and late insomnia and lassitude in MD patients. The reduced hippocampal volume may be related to the pathogenesis of major depressive disorder (MDD), and the reduced volume of the NAc may be the unique neural mechanism of MD. The findings of the current study suggest that future studies should investigate the different pathogenic mechanisms of different subtypes of MDD further to contribute to the development of individualized diagnostic and treatment protocols.
Collapse
Affiliation(s)
- Zhaosong Chu
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University
- Yunnan Clinical Research Center for Mental Disorders
| | - Lijin Yuan
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University
- Yunnan Clinical Research Center for Mental Disorders
| | - Mengxin He
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University
- Yunnan Clinical Research Center for Mental Disorders
| | - Yuqi Cheng
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University
- Yunnan Clinical Research Center for Mental Disorders
| | - Yi Lu
- Department of Medical Imaging, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xiufeng Xu
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University
- Yunnan Clinical Research Center for Mental Disorders
| | - Zonglin Shen
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University
- Yunnan Clinical Research Center for Mental Disorders
| |
Collapse
|
16
|
Chronic oral ketamine prevents anhedonia and alters neuronal activation in the lateral habenula and nucleus accumbens in rats under chronic unpredictable mild stress. Neuropharmacology 2023; 228:109468. [PMID: 36813161 DOI: 10.1016/j.neuropharm.2023.109468] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 02/13/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023]
Abstract
Acute injections of ketamine lead to rapid but transient antidepressant effects. Chronic oral treatment at low doses, a promising non-invasive alternative, may prolong this therapeutic effect. Here, we examine the antidepressant effects of chronic oral ketamine in rats under chronic unpredictable mild stress (CUMS), and reveal their neuronal correlates. Male Wistar rats were divided into control, ketamine, CUMS, and CUMS-ketamine groups. The CUMS protocol was applied to the latter two groups for 9 weeks, and ketamine (0.013 mg/ml) was provided ad libitum to the ketamine and CUMS-ketamine groups for 5 weeks. The sucrose consumption test, forced swim test, open field test, elevated plus maze, and Morris water maze were respectively used to assess anhedonia, behavioral despair, general locomotor activity, anxiety-like behavior and spatial reference memory. CUMS caused a reduction of sucrose consumption and impaired spatial memory, accompanied by increased neuronal activation in the lateral habenula (LHb) and paraventricular thalamic nucleus (PVT). Oral ketamine prevented behavioral despair and CUMS-induced anhedonia. Reward-triggered c-Fos immunoreactivity was decreased in the LHb and increased in the nucleus accumbens shell (NAcSh) in the CUMS-ketamine group compared to the CUMS group. Ketamine did not produce a differential effect in the OFT, EPM and MWM. These results show that chronic oral ketamine at low doses prevents anhedonia without impairing spatial reference memory. The observed neuronal activation changes in the LHb and NAcSh may be involved in the preventive effects of ketamine on anhedonia. This article is part of the Special Issue on "Ketamine and its Metabolites".
Collapse
|
17
|
Skiteva O, Yao N, Mantas I, Zhang X, Perlmann T, Svenningsson P, Chergui K. Aberrant somatic calcium channel function in cNurr1 and LRRK2-G2019S mice. NPJ Parkinsons Dis 2023; 9:56. [PMID: 37029193 PMCID: PMC10082048 DOI: 10.1038/s41531-023-00500-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 03/23/2023] [Indexed: 04/09/2023] Open
Abstract
In Parkinson's disease (PD), axons of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNc) degenerate before their cell bodies. Calcium influx during pacemaker firing might contribute to neuronal loss, but it is not known if dysfunctions of voltage-gated calcium channels (VGCCs) occur in DA neurons somata and axon terminals. We investigated T-type and L-type VGCCs in SNc-DA neurons of two mouse models of PD: mice with a deletion of the Nurr1 gene in DA neurons from an adult age (cNurr1 mice), and mice bearing the G2019S mutation in the gene coding for LRRK2 (G2019S mice). Adult cNurr1 mice displayed motor and DA deficits, while middle-aged G2019S mice did not. The number and morphology of SNc-DA neurons, most of their intrinsic membrane properties and pacemaker firing were unaltered in cNurr1 and G2019S mice compared to their control and wild-type littermates. L-type VGCCs contributed to the pacemaker firing of SNc-DA neurons in G2019S mice, but not in control, wild-type, and cNurr1 mice. In cNurr1 mice, but not G2019S mice, the contribution of T-type VGCCs to the pacemaker firing of SNc-DA neurons was reduced, and somatic dopamine-D2 autoreceptors desensitized more. Altered contribution of L-type and T-type VGCCs to the pacemaker firing was not observed in the presence of a LRRK2 kinase inhibitor in G2019S mice, and in the presence of a flavonoid with antioxidant activity in G2019S and cNurr1 mice. The role of L-type and T-type VGCCs in controlling dopamine release from axon terminals in the striatum was unaltered in cNurr1 and G2019S mice. Our findings uncover opposite changes, linked to oxidative stress, in the function of two VGCCs in DA neurons somata, but not axon terminals, in two different experimental PD models.
Collapse
Affiliation(s)
- Olga Skiteva
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Ning Yao
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Ioannis Mantas
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Xiaoqun Zhang
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Thomas Perlmann
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Per Svenningsson
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Karima Chergui
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
18
|
Wood CM, Alexander L, Alsiö J, Santangelo AM, McIver L, Cockcroft GJ, Roberts AC. Chemogenetics identifies separate area 25 brain circuits involved in anhedonia and anxiety in marmosets. Sci Transl Med 2023; 15:eade1779. [PMID: 37018416 PMCID: PMC7614473 DOI: 10.1126/scitranslmed.ade1779] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 03/17/2023] [Indexed: 04/07/2023]
Abstract
Poor outcomes are common in individuals with anxiety and depression, and the brain circuits underlying symptoms and treatment responses remain elusive. To elucidate these neural circuits, experimental studies must specifically manipulate them, which is only possible in animals. Here, we used a chemogenetics strategy involving engineered designer receptors exclusively activated by designer drugs (DREADDs) to activate a region of the marmoset brain that is dysfunctional in human patients with major depressive disorder, called the subcallosal anterior cingulate cortex area 25 (scACC-25). Using this DREADDs system, we identified separate scACC-25 neural circuits that underlie specific components of anhedonia and anxiety in marmosets. Activation of the neural pathway connecting the scACC-25 to the nucleus accumbens (NAc) caused blunting of anticipatory arousal (a form of anhedonia) in marmosets in response to a reward-associated conditioned stimulus in an appetitive Pavlovian discrimination test. Separately, activation of the circuit between the scACC-25 and the amygdala increased a measure of anxiety (the threat response score) when marmosets were presented with an uncertain threat (human intruder test). Using the anhedonia data, we then showed that the fast-acting antidepressant ketamine when infused into the NAc of marmosets prevented anhedonia after scACC-25 activation for more than 1 week. These neurobiological findings provide targets that could contribute to the development of new treatment strategies.
Collapse
Affiliation(s)
- Christian M. Wood
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
- Behavioural and Clinical Neurosciences Institute, University of Cambridge, Cambridge, United Kingdom
| | - Laith Alexander
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
- Behavioural and Clinical Neurosciences Institute, University of Cambridge, Cambridge, United Kingdom
| | - Johan Alsiö
- Behavioural and Clinical Neurosciences Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Psychology, University of Cambridge; Cambridge, United Kingdom
| | - Andrea M. Santangelo
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
- Behavioural and Clinical Neurosciences Institute, University of Cambridge, Cambridge, United Kingdom
| | - Lauren McIver
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
- Behavioural and Clinical Neurosciences Institute, University of Cambridge, Cambridge, United Kingdom
| | - Gemma J. Cockcroft
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
- Behavioural and Clinical Neurosciences Institute, University of Cambridge, Cambridge, United Kingdom
| | - Angela C. Roberts
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
- Behavioural and Clinical Neurosciences Institute, University of Cambridge, Cambridge, United Kingdom
- Professorial Fellow, Girton College, University of Cambridge, Huntington Road, Girton, Cambridge, CB3 0JG
| |
Collapse
|
19
|
Markov DD, Dolotov OV, Grivennikov IA. The Melanocortin System: A Promising Target for the Development of New Antidepressant Drugs. Int J Mol Sci 2023; 24:ijms24076664. [PMID: 37047638 PMCID: PMC10094937 DOI: 10.3390/ijms24076664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/27/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023] Open
Abstract
Major depression is one of the most prevalent mental disorders, causing significant human suffering and socioeconomic loss. Since conventional antidepressants are not sufficiently effective, there is an urgent need to develop new antidepressant medications. Despite marked advances in the neurobiology of depression, the etiology and pathophysiology of this disease remain poorly understood. Classical and newer hypotheses of depression suggest that an imbalance of brain monoamines, dysregulation of the hypothalamic-pituitary-adrenal axis (HPAA) and immune system, or impaired hippocampal neurogenesis and neurotrophic factors pathways are cause of depression. It is assumed that conventional antidepressants improve these closely related disturbances. The purpose of this review was to discuss the possibility of affecting these disturbances by targeting the melanocortin system, which includes adrenocorticotropic hormone-activated receptors and their peptide ligands (melanocortins). The melanocortin system is involved in the regulation of various processes in the brain and periphery. Melanocortins, including peripherally administered non-corticotropic agonists, regulate HPAA activity, exhibit anti-inflammatory effects, stimulate the levels of neurotrophic factors, and enhance hippocampal neurogenesis and neurotransmission. Therefore, endogenous melanocortins and their analogs are able to complexly affect the functioning of those body’s systems that are closely related to depression and the effects of antidepressants, thereby demonstrating a promising antidepressant potential.
Collapse
Affiliation(s)
- Dmitrii D. Markov
- National Research Center “Kurchatov Institute”, Kurchatov Sq. 2, 123182 Moscow, Russia
| | - Oleg V. Dolotov
- National Research Center “Kurchatov Institute”, Kurchatov Sq. 2, 123182 Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory, 119234 Moscow, Russia
| | - Igor A. Grivennikov
- National Research Center “Kurchatov Institute”, Kurchatov Sq. 2, 123182 Moscow, Russia
| |
Collapse
|
20
|
Garcia GP, Perez GM, Gasperi RD, Sosa MAG, Otero-Pagan A, Abutarboush R, Kawoos U, Statz JK, Patterson J, Zhu CW, Hof PR, Cook DG, Ahlers ST, Elder GA. (2R,6R)-Hydroxynorketamine Treatment of Rats Exposed to Repetitive Low-Level Blast Injury. Neurotrauma Rep 2023; 4:197-217. [PMID: 37020715 PMCID: PMC10068674 DOI: 10.1089/neur.2022.0088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023] Open
Abstract
Many military veterans who experienced blast-related traumatic brain injuries (TBIs) in the conflicts in Iraq and Afghanistan suffer from chronic cognitive and mental health problems, including post-traumatic stress disorder (PTSD). Male rats subjected to repetitive low-level blast exposure develop chronic cognitive and PTSD-related traits that develop in a delayed manner. Ketamine has received attention as a treatment for refractory depression and PTSD. (2R,6R)-hydroxynorketamine [(2R,6R)-HNK] is a ketamine metabolite that exerts rapid antidepressant actions. (2R,6R)-HNK has become of clinical interest because of its favorable side-effect profile, low abuse potential, and oral route of administration. We treated three cohorts of blast-exposed rats with (2R,6R)-HNK, beginning 7-11 months after blast exposure, a time when the behavioral phenotype is established. Each cohort consisted of groups (n = 10-13/group) as follows: 1) Sham-exposed treated with saline, 2) blast-exposed treated with saline, and 3) blast-exposed treated with a single dose of 20 mg/kg of (2R,6R)-HNK. (2R,6R)-HNK rescued blast-induced deficits in novel object recognition (NOR) and anxiety-related features in the elevated zero maze (EZM) in all three cohorts. Exaggerated acoustic startle was reversed in cohort 1, but not in cohort 3. (2R,6R)-HNK effects were still present in the EZM 12 days after administration in cohort 1 and 27 days after administration in NOR testing of cohorts 2 and 3. (2R,6R)-HNK may be beneficial for the neurobehavioral syndromes that follow blast exposure in military veterans. Additional studies will be needed to determine whether higher doses or more extended treatment regimens may be more effective.
Collapse
Affiliation(s)
- Georgina Perez Garcia
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, New York, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Gissel M. Perez
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, New York, USA
| | - Rita De Gasperi
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, New York, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Miguel A. Gama Sosa
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- General Medical Research Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, New York, USA
| | - Alena Otero-Pagan
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, New York, USA
| | - Rania Abutarboush
- Department of Neurotrauma, Naval Medical Research Center, Silver Spring, Maryland, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
| | - Usmah Kawoos
- Department of Neurotrauma, Naval Medical Research Center, Silver Spring, Maryland, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
| | - Jonathan K. Statz
- Department of Neurotrauma, Naval Medical Research Center, Silver Spring, Maryland, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
| | - Jacob Patterson
- Department of Neurotrauma, Naval Medical Research Center, Silver Spring, Maryland, USA
| | - Carolyn W. Zhu
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, New York, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Mount Sinai Alzheimer's Disease Research Center and Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Geriatrics and Palliative Care, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Patrick R. Hof
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Geriatrics and Palliative Care, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Mount Sinai Alzheimer's Disease Research Center and Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - David G. Cook
- Geriatric Research Education and Clinical Center, VA Puget Sound Health Care System, Seattle, Washington, USA
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Stephen T. Ahlers
- Department of Neurotrauma, Naval Medical Research Center, Silver Spring, Maryland, USA
| | - Gregory A. Elder
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Mount Sinai Alzheimer's Disease Research Center and Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Neurology Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, New York, USA
| |
Collapse
|
21
|
Johnston JN, Kadriu B, Allen J, Gilbert JR, Henter ID, Zarate CA. Ketamine and serotonergic psychedelics: An update on the mechanisms and biosignatures underlying rapid-acting antidepressant treatment. Neuropharmacology 2023; 226:109422. [PMID: 36646310 PMCID: PMC9983360 DOI: 10.1016/j.neuropharm.2023.109422] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/09/2023] [Accepted: 01/12/2023] [Indexed: 01/15/2023]
Abstract
The discovery of ketamine as a rapid-acting antidepressant spurred significant research to understand its underlying mechanisms of action and to identify other novel compounds that may act similarly. Serotonergic psychedelics (SPs) have shown initial promise in treating depression, though the challenge of conducting randomized controlled trials with SPs and the necessity of long-term clinical observation are important limitations. This review summarizes the similarities and differences between the psychoactive effects associated with both ketamine and SPs and the mechanisms of action of these compounds, with a focus on the monoaminergic, glutamatergic, gamma-aminobutyric acid (GABA)-ergic, opioid, and inflammatory systems. Both molecular and neuroimaging aspects are considered. While their main mechanisms of action differ-SPs increase serotonergic signaling while ketamine is a glutamatergic modulator-evidence suggests that the downstream mechanisms of action of both ketamine and SPs include mechanistic target of rapamycin complex 1 (mTORC1) signaling and downstream GABAA receptor activity. The similarities in downstream mechanisms may explain why ketamine, and potentially SPs, exert rapid-acting antidepressant effects. However, research on SPs is still in its infancy compared to the ongoing research that has been conducted with ketamine. For both therapeutics, issues with regulation and proper controls should be addressed before more widespread implementation. This article is part of the Special Issue on "Ketamine and its Metabolites".
Collapse
Affiliation(s)
- Jenessa N Johnston
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA.
| | - Bashkim Kadriu
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA.
| | - Josh Allen
- The Alfred Centre, Department of Neuroscience, Monash University, Melbourne, Victoria, Australia.
| | - Jessica R Gilbert
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA.
| | - Ioline D Henter
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA.
| | - Carlos A Zarate
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
22
|
Onisiforou A, Georgiou P, Zanos P. Role of group II metabotropic glutamate receptors in ketamine's antidepressant actions. Pharmacol Biochem Behav 2023; 223:173531. [PMID: 36841543 DOI: 10.1016/j.pbb.2023.173531] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/08/2023] [Accepted: 02/15/2023] [Indexed: 02/26/2023]
Abstract
Major Depressive Disorder (MDD) is a serious neuropsychiatric disorder afflicting around 16-17 % of the global population and is accompanied by recurrent episodes of low mood, hopelessness and suicidal thoughts. Current pharmacological interventions take several weeks to even months for an improvement in depressive symptoms to emerge, with a significant percentage of individuals not responding to these medications at all, thus highlighting the need for rapid and effective next-generation treatments for MDD. Pre-clinical studies in animals have demonstrated that antagonists of the metabotropic glutamate receptor subtype 2/3 (mGlu2/3 receptor) exert rapid antidepressant-like effects, comparable to the actions of ketamine. Therefore, it is possible that mGlu2 or mGlu3 receptors to have a regulatory role on the unique antidepressant properties of ketamine, or that convergent intracellular mechanisms exist between mGlu2/3 receptor signaling and ketamine's effects. Here, we provide a comprehensive and critical evaluation of the literature on these convergent processes underlying the antidepressant action of mGlu2/3 receptor inhibitors and ketamine. Importantly, combining sub-threshold doses of mGlu2/3 receptor inhibitors with sub-antidepressant ketamine doses induce synergistic antidepressant-relevant behavioral effects. We review the evidence supporting these combinatorial effects since sub-effective dosages of mGlu2/3 receptor antagonists and ketamine could reduce the risk for the emergence of significant adverse events compared with taking normal dosages. Overall, deconvolution of ketamine's pharmacological targets will give critical insights to influence the development of next-generation antidepressant treatments with rapid actions.
Collapse
Affiliation(s)
- Anna Onisiforou
- Department of Psychology, University of Cyprus, Nicosia 2109, Cyprus
| | - Polymnia Georgiou
- Department of Biological Sciences, University of Cyprus, Nicosia 2109, Cyprus; Department of Psychology, University of Wisconsin Milwaukee, WI 53211, USA
| | - Panos Zanos
- Department of Psychology, University of Cyprus, Nicosia 2109, Cyprus.
| |
Collapse
|
23
|
Carreon RL, Rivas-Grajales AM, Murphy N, Mathew SJ, Jha MK. Biomarkers in Psychiatric Drug Development: From Precision Medicine to Novel Therapeutics. ADVANCES IN NEUROBIOLOGY 2023; 30:287-297. [PMID: 36928855 DOI: 10.1007/978-3-031-21054-9_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Burden of psychiatric disorders is compounded by their wide prevalence as well as the limited efficacy of currently available treatments and the current approaches for prescribing these treatments. The selection of treatments continues to be subjective and often results in a trial-and-error approach. Emerging research suggests that biological markers (or biomarkers) can be used to develop precision medicine approaches for psychiatric disorders. Furthermore, the biomarkers also promise to elucidate the underlying pathophysiological mechanisms which in turn can be used to develop novel therapeutic treatments. In this chapter we have focused on mood disorders and reviewed studies on electroencephalography (EEG), magnetic resonance imaging (MRI), and blood-based biomarkers that can guide selection of one treatment versus another (treatment-selection biomarker) as well as biomarkers that can guide the development of novel therapeutics. These studies suggest that the use of objective physiological data is poised to alter the landscape of psychiatric diagnosis and treatment. However, practical and economic barriers remain as major hurdles. The key to finding such translational diagnostic and therapeutic biomarkers is a better understanding of the underlying pathophysiology, and despite the tremendous advances in neuroscience, it is clear there remains much left to be elucidated.
Collapse
Affiliation(s)
- Rudy Lozano Carreon
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
- Michael E. Debakey VA Medical Center, Houston, TX, USA
| | - Ana Maria Rivas-Grajales
- Department of Psychiatry, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Nicholas Murphy
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
- The Menninger Clinic, Houston, TX, USA
| | - Sanjay J Mathew
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
- Michael E. Debakey VA Medical Center, Houston, TX, USA
- The Menninger Clinic, Houston, TX, USA
| | - Manish K Jha
- Center for Depression Research and Clinical Care, O'Donnell Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
24
|
Luo Y, Yu Y, Zhang M, Fan N. GluN1 antibody causes behavioral deficits in prepulse inhibition and memory through CaMKIIβ signaling. J Neuroimmunol 2022; 373:577998. [PMID: 36417808 DOI: 10.1016/j.jneuroim.2022.577998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/17/2022] [Accepted: 10/30/2022] [Indexed: 11/18/2022]
Abstract
Accumulating evidence suggests that some patients with schizophrenia have high production of autoantibodies against the N-methyl-d-aspartate receptor (NMDAR) subunit GluN1 and that these antibodies lead to cognitive impairment. However, the molecular mechanisms of the deficits seen in these patients are largely unknown. In the present study, we found that passive infusion of GluN1 antibody into the hippocampus of mice for 7 days led to decreased expression of GluN1, phosphor-Ser897-GluN1, and EphrinB2 receptor (EphB2R); deficits in long-term potentiation (LTP) and synaptic transmission in the hippocampal CA1 area; impairment in prepulse inhibition (PPI); and deterioration of recognition memory in novel object recognition test. We also found decreased expression of CaMKIIβ, ERK1/2, CREB, and NF-κB after 7 days of GluN1 antibody exposure, as was the phosphorylation of these signaling molecules. The decrease in GluN1 and phosphor-Ser897-GluN1 expression and the deficits in LTP, PPI, and recognition memory were ameliorated by CaMKIIβ overexpression. These results suggest that downregulation of CaMKIIβ-ERK1/2-CREB-NF-κB signaling is responsiable for GluN1 antibody-associated impairment in PPI and memory and that GluN1 antibody-induced NMDAR hypofunction is the underlying mechanism of this impairment. Our findings indicate possible strategies to ameliorate NMDAR antibody-associated cognitive impairment in neuropsychiatric disease. They also provide evidence that NMDAR hypofunction is an underlying mechanism for cognitive impairment in schizophrenia.
Collapse
Affiliation(s)
- Yayan Luo
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), 36 Mingxin Road, Liwan District, Guangzhou, Guangdong Province 510370, China
| | - Yang Yu
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), 36 Mingxin Road, Liwan District, Guangzhou, Guangdong Province 510370, China
| | - Minling Zhang
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), 36 Mingxin Road, Liwan District, Guangzhou, Guangdong Province 510370, China
| | - Ni Fan
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), 36 Mingxin Road, Liwan District, Guangzhou, Guangdong Province 510370, China.
| |
Collapse
|
25
|
Neuronal Firing and Glutamatergic Synapses in the Substantia Nigra Pars Reticulata of LRRK2-G2019S Mice. Biomolecules 2022; 12:biom12111635. [DOI: 10.3390/biom12111635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/26/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
Pathogenic mutations in the leucine-rich repeat kinase 2 (LRRK2) gene are frequent causes of familial Parkinson’s Disease (PD), an increasingly prevalent neurodegenerative disease that affects basal ganglia circuitry. The cellular effects of the G2019S mutation in the LRRK2 gene, the most common pathological mutation, have not been thoroughly investigated. In this study we used middle-aged mice carrying the LRRK2-G2019S mutation (G2019S mice) to identify potential alterations in the neurophysiological properties and characteristics of glutamatergic synaptic transmission in basal ganglia output neurons, i.e., substantia nigra pars reticulata (SNr) GABAergic neurons. We found that the intrinsic membrane properties and action potential properties were unaltered in G2019S mice compared to wild-type (WT) mice. The spontaneous firing frequency was similar, but we observed an increased regularity in the firing of SNr neurons recorded from G2019S mice. We examined the short-term plasticity of glutamatergic synaptic transmission, and we found an increased paired-pulse depression in G2019S mice compared to WT mice, indicating an increased probability of glutamate release in SNr neurons from G2019S mice. We measured synaptic transmission mediated by NMDA receptors and we found that the kinetics of synaptic responses mediated by these receptors were unaltered, as well as the contribution of the GluN2B subunit to these responses, in SNr neurons of G2019S mice compared to WT mice. These results demonstrate an overall maintenance of basic neurophysiological and synaptic characteristics, and subtle changes in the firing pattern and in glutamatergic synaptic transmission in basal ganglia output neurons that precede neurodegeneration of dopaminergic neurons in the LRRK2-G2019S mouse model of late-onset PD.
Collapse
|
26
|
Li Y, Du Y, Wang C, Lu G, Sun H, Kong Y, Wang W, Lian B, Li C, Wang L, Zhang X, Sun L. (2R,6R)-hydroxynorketamine acts through GluA1-induced synaptic plasticity to alleviate PTSD-like effects in rat models. Neurobiol Stress 2022; 21:100503. [PMID: 36532380 PMCID: PMC9755068 DOI: 10.1016/j.ynstr.2022.100503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 11/30/2022] Open
Abstract
Post-traumatic stress disorder (PTSD) is a debilitating mental disorder with high morbidity and great social and economic relevance. However, extant pharmacotherapies of PTSD require long-term use to maintain effectiveness and have enormous side effects. The glutamatergic system, especially the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR), is an important target of current research on the mechanism of PTSD. Postsynaptic AMPAR function and expression are known to be increased by (2R, 6R)-hydronorketamine (HNK), the primary metabolite of ketamine. However, whether (2R,6R)-HNK alleviates PTSD-like effects via AMPAR upregulation is yet to be known. In the present study, rats were exposed to single prolonged stress and electric foot shock (SPS&S). Afterwards, gradient concentrations of (2R,6R)-HNK (20, 50, and 100 μM) were administered by intracerebroventricular (i.c.v.) injection. Open field, elevated plus maze, freezing behavior, and forced swimming tests were used to examine PTSD-like symptoms. In addition, the protein levels of GluA1, BDNF and PSD-95 were analyzed using western blotting and immunofluorescence, and the synaptic ultrastructure of the prefrontal cortex (PFC) was observed by transmission electron microscopy. We found that (2R,6R)-HNK changed SPS&S-induced behavioral expression, such as increasing autonomous activity and residence time in the open arm and decreasing immobility time. Likewise, (2R,6R)-HNK (50 μM) increased GluA1, BDNF, and PSD-95 protein expression in the PFC. Changes in synaptic ultrastructure induced by SPS&S were reversed by administration of (2R,6R)-HNK. Overall, we find that (2R,6R)-HNK can ameliorate SPS&S-induced fear avoidance in rats, as well as rat cognates of anxiety and depression. This may be related to GluA1-mediated synaptic plasticity in the PFC.
Collapse
Affiliation(s)
- Yu Li
- School of Psychology, Weifang Medical University, 7166# Baotong West Street, Weifang, Shandong, 261053, PR China
| | - YaLin Du
- School of Clinical Medicine, Weifang Medical University, 7166# Baotong West Street, Weifang, Shandong, 261053, PR China
| | - Chen Wang
- School of Psychology, Weifang Medical University, 7166# Baotong West Street, Weifang, Shandong, 261053, PR China
| | - GuoHua Lu
- School of Psychology, Weifang Medical University, 7166# Baotong West Street, Weifang, Shandong, 261053, PR China
| | - HongWei Sun
- School of Psychology, Weifang Medical University, 7166# Baotong West Street, Weifang, Shandong, 261053, PR China
| | - YuJia Kong
- School of Public Health, Weifang Medical University, 7166# Baotong West Street, Weifang, Shandong, 261053, PR China
| | - WeiWen Wang
- Institute of Psychology of the Chinese Academy of Sciences, PR China
| | - Bo Lian
- Department of Bioscience and Technology, Weifang Medical University, 7166# Baotong West Street, Weifang, Shandong, 261053, PR China
| | - ChangJiang Li
- School of Psychology, Weifang Medical University, 7166# Baotong West Street, Weifang, Shandong, 261053, PR China
| | - Ling Wang
- Weifang Medical University, Clinical Competency Training Center Medical Experiment and Training Center, PR China
| | - XianQiang Zhang
- Peking University Sixth Hospital/Institute of Mental Health and the Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, China
| | - Lin Sun
- School of Psychology, Weifang Medical University, 7166# Baotong West Street, Weifang, Shandong, 261053, PR China
| |
Collapse
|
27
|
Bonaventura J, Gomez JL, Carlton ML, Lam S, Sanchez-Soto M, Morris PJ, Moaddel R, Kang HJ, Zanos P, Gould TD, Thomas CJ, Sibley DR, Zarate CA, Michaelides M. Target deconvolution studies of (2R,6R)-hydroxynorketamine: an elusive search. Mol Psychiatry 2022; 27:4144-4156. [PMID: 35768639 PMCID: PMC10013843 DOI: 10.1038/s41380-022-01673-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 02/07/2023]
Abstract
The off-label use of racemic ketamine and the FDA approval of (S)-ketamine are promising developments for the treatment of depression. Nevertheless, racemic ketamine and (S)-ketamine are controlled substances with known abuse potential and their use is associated with undesirable side effects. For these reasons, research efforts have focused on identifying alternatives. One candidate is (2R,6R)-hydroxynorketamine ((2R,6R)-HNK), a ketamine metabolite that in preclinical models lacks the dissociative and abuse properties of ketamine while retaining its antidepressant-like behavioral efficacy. (2R,6R)-HNK's mechanism of action however is unclear. The main goals of this study were to perform an in-depth pharmacological characterization of (2R,6R)-HNK at known ketamine targets, to use target deconvolution approaches to discover novel proteins that bind to (2R,6R)-HNK, and to characterize the biodistribution and behavioral effects of (2R,6R)-HNK across several procedures related to substance use disorder liability. We found that unlike (S)- or (R)-ketamine, (2R,6R)-HNK did not directly bind to any known or proposed ketamine targets. Extensive screening and target deconvolution experiments at thousands of human proteins did not identify any other direct (2R,6R)-HNK-protein interactions. Biodistribution studies using radiolabeled (2R,6R)-HNK revealed non-selective brain regional enrichment, and no specific binding in any organ other than the liver. (2R,6R)-HNK was inactive in conditioned place preference, open-field locomotor activity, and intravenous self-administration procedures. Despite these negative findings, (2R,6R)-HNK produced a reduction in immobility time in the forced swim test and a small but significant increase in metabolic activity across a network of brain regions, and this metabolic signature differed from the brain metabolic profile induced by ketamine enantiomers. In sum, our results indicate that (2R,6R)-HNK does not share pharmacological or behavioral profile similarities with ketamine or its enantiomers. However, it could still be possible that both ketamine and (2R,6R)-HNK exert antidepressant-like efficacy through a common and previously unidentified mechanism. Given its pharmacological profile, we predict that (2R,6R)-HNK will exhibit a favorable safety profile in clinical trials, and we must wait for clinical studies to determine its antidepressant efficacy.
Collapse
Affiliation(s)
- Jordi Bonaventura
- Biobehavioral Imaging and Molecular Neuropsychopharmacology Unit, National Institute on Drug Abuse Intramural Research Program, Baltimore, 21224, MD, USA
- Departament de Patologia i Terapèutica Experimental, Institut de Neurociències, Universitat de Barcelona, L'Hospitalet de Llobregat, 08907, Catalonia, Spain
| | - Juan L Gomez
- Biobehavioral Imaging and Molecular Neuropsychopharmacology Unit, National Institute on Drug Abuse Intramural Research Program, Baltimore, 21224, MD, USA
| | - Meghan L Carlton
- Biobehavioral Imaging and Molecular Neuropsychopharmacology Unit, National Institute on Drug Abuse Intramural Research Program, Baltimore, 21224, MD, USA
| | - Sherry Lam
- Biobehavioral Imaging and Molecular Neuropsychopharmacology Unit, National Institute on Drug Abuse Intramural Research Program, Baltimore, 21224, MD, USA
| | - Marta Sanchez-Soto
- Molecular Neuropharmacology Section, National Institute of Neurological Disorders and Stroke Intramural Research Program, Bethesda, 20892, MD, USA
| | - Patrick J Morris
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, Rockville, 20850, MD, USA
| | - Ruin Moaddel
- Biomedical Research Center, National Institute on Aging, National Institutes of Health, Baltimore, 21224, MD, USA
| | - Hye Jin Kang
- National Institute of Mental Health Psychoactive Drug Screening Program, Department of Pharmacology, University of North Carolina Chapel Hill Medical School, Chapel Hill, 27599, NC, USA
| | - Panos Zanos
- Department of Psychology, University of Cyprus, Nicosia, 2109, Cyprus
| | - Todd D Gould
- Veterans Affairs Maryland Health Care System, Baltimore, MD, 21201, USA
- Departments of Psychiatry, Pharmacology, and Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, 21201, MD, USA
| | - Craig J Thomas
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, Rockville, 20850, MD, USA
| | - David R Sibley
- Molecular Neuropharmacology Section, National Institute of Neurological Disorders and Stroke Intramural Research Program, Bethesda, 20892, MD, USA
| | - Carlos A Zarate
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, Intramural Research Program, Bethesda, 20892, MD, USA
| | - Michael Michaelides
- Biobehavioral Imaging and Molecular Neuropsychopharmacology Unit, National Institute on Drug Abuse Intramural Research Program, Baltimore, 21224, MD, USA.
- Department of Psychiatry & Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, 21205, MD, USA.
| |
Collapse
|
28
|
Hua H, Huang C, Liu H, Xu X, Xu X, Wu Z, Liu C, Wang Y, Yang C. Depression and antidepressant effects of ketamine and its metabolites: The pivotal role of gut microbiota. Neuropharmacology 2022; 220:109272. [PMID: 36170927 DOI: 10.1016/j.neuropharm.2022.109272] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 02/07/2023]
Abstract
The discovery of the robust antidepressant actions of ketamine is regarded as one of the greatest advancements in depression treatment in the past 60 years. Recent findings have provided strong evidence for the presence of bidirectional communication networks between the gastrointestinal tract and the brain in depression. Moreover, increasing evidence supports the antidepressant role of ketamine in regulating the gut microbiome and microbiota-derived molecules; however, the mechanisms underpinning such effects are still ambiguous. This review summarizes the current understanding of the anti-depressant mechanisms of ketamine and its metabolites regarding the bidirectional regulation by microbiota-gut-brain axis. We review the relationship between gut microbiota and the antidepressant mechanisms of ketamine, and discuss the role of stress response, brain-derived neurotrophic factor (BDNF)-mediated neurogenesis, anti-inflammatory effect and neurotransmitters.
Collapse
Affiliation(s)
- Hao Hua
- Department of Anesthesiology, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, 214062, China
| | - Chaoli Huang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Hanyu Liu
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Xiangyang Xu
- Nhwa Institute of Pharmaceutical Research, Jiangsu Nhwa Pharmaceutical Co., Ltd & Jiangsu Key Laboratory of Central Nervous System Drug Research and Development, Xuzhou, 221116, China
| | - Xiangqing Xu
- Nhwa Institute of Pharmaceutical Research, Jiangsu Nhwa Pharmaceutical Co., Ltd & Jiangsu Key Laboratory of Central Nervous System Drug Research and Development, Xuzhou, 221116, China
| | - Zifeng Wu
- Department of Anesthesiology, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, 214062, China
| | - Cunming Liu
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Yuanyuan Wang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| | - Chun Yang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
29
|
Tian H, Hu Z, Xu J, Wang C. The molecular pathophysiology of depression and the new therapeutics. MedComm (Beijing) 2022; 3:e156. [PMID: 35875370 PMCID: PMC9301929 DOI: 10.1002/mco2.156] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 06/06/2022] [Accepted: 06/06/2022] [Indexed: 12/21/2022] Open
Abstract
Major depressive disorder (MDD) is a highly prevalent and disabling disorder. Despite the many hypotheses proposed to understand the molecular pathophysiology of depression, it is still unclear. Current treatments for depression are inadequate for many individuals, because of limited effectiveness, delayed efficacy (usually two weeks), and side effects. Consequently, novel drugs with increased speed of action and effectiveness are required. Ketamine has shown to have rapid, reliable, and long-lasting antidepressant effects in treatment-resistant MDD patients and represent a breakthrough therapy for patients with MDD; however, concerns regarding its efficacy, potential misuse, and side effects remain. In this review, we aimed to summarize molecular mechanisms and pharmacological treatments for depression. We focused on the fast antidepressant treatment and clarified the safety, tolerability, and efficacy of ketamine and its metabolites for the MDD treatment, along with a review of the potential pharmacological mechanisms, research challenges, and future clinical prospects.
Collapse
Affiliation(s)
- Haihua Tian
- Ningbo Key Laboratory of Behavioral NeuroscienceNingbo University School of MedicineNingboZhejiangChina
- Zhejiang Provincial Key Laboratory of PathophysiologySchool of MedicineNingbo UniversityNingboZhejiangChina
- Department of Physiology and PharmacologyNingbo University School of MedicineNingboZhejiangChina
- Department of Laboratory MedicineNingbo Kangning HospitalNingboZhejiangChina
| | - Zhenyu Hu
- Department of Child PsychiatryNingbo Kanning HospitalNingboZhejiangChina
| | - Jia Xu
- Ningbo Key Laboratory of Behavioral NeuroscienceNingbo University School of MedicineNingboZhejiangChina
- Zhejiang Provincial Key Laboratory of PathophysiologySchool of MedicineNingbo UniversityNingboZhejiangChina
- Department of Physiology and PharmacologyNingbo University School of MedicineNingboZhejiangChina
| | - Chuang Wang
- Ningbo Key Laboratory of Behavioral NeuroscienceNingbo University School of MedicineNingboZhejiangChina
- Zhejiang Provincial Key Laboratory of PathophysiologySchool of MedicineNingbo UniversityNingboZhejiangChina
- Department of Physiology and PharmacologyNingbo University School of MedicineNingboZhejiangChina
| |
Collapse
|
30
|
Georgiou P, Zanos P, Mou TCM, An X, Gerhard DM, Dryanovski DI, Potter LE, Highland JN, Jenne CE, Stewart BW, Pultorak KJ, Yuan P, Powels CF, Lovett J, Pereira EFR, Clark SM, Tonelli LH, Moaddel R, Zarate CA, Duman RS, Thompson SM, Gould TD. Experimenters' sex modulates mouse behaviors and neural responses to ketamine via corticotropin releasing factor. Nat Neurosci 2022; 25:1191-1200. [PMID: 36042309 PMCID: PMC10186684 DOI: 10.1038/s41593-022-01146-x] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 07/14/2022] [Indexed: 11/09/2022]
Abstract
We show that the sex of human experimenters affects mouse behaviors and responses following administration of the rapid-acting antidepressant ketamine and its bioactive metabolite (2R,6R)-hydroxynorketamine. Mice showed aversion to the scent of male experimenters, preference for the scent of female experimenters and increased stress susceptibility when handled by male experimenters. This human-male-scent-induced aversion and stress susceptibility was mediated by the activation of corticotropin-releasing factor (CRF) neurons in the entorhinal cortex that project to hippocampal area CA1. Exposure to the scent of male experimenters before ketamine administration activated CA1-projecting entorhinal cortex CRF neurons, and activation of this CRF pathway modulated in vivo and in vitro antidepressant-like effects of ketamine. A better understanding of the specific and quantitative contributions of the sex of human experimenters to study outcomes in rodents may improve replicability between studies and, as we have shown, reveal biological and pharmacological mechanisms.
Collapse
Affiliation(s)
- Polymnia Georgiou
- Veterans Affairs Maryland Health Care System, Baltimore, MD, USA.,Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, MD, USA.,Department of Biology, University of Cyprus, Nicosia, Cyprus
| | - Panos Zanos
- Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, MD, USA.,Department of Psychology, University of Cyprus, Nicosia, Cyprus
| | - Ta-Chung M Mou
- Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Xiaoxian An
- Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Danielle M Gerhard
- Department of Psychiatry, Yale University, New Haven, CT, USA.,Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA
| | - Dilyan I Dryanovski
- Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Liam E Potter
- Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, MD, USA.,Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA
| | - Jaclyn N Highland
- Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, MD, USA.,The Graduate Program in Toxicology, University of Maryland, Baltimore, MD, USA
| | - Carleigh E Jenne
- Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Brent W Stewart
- Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, MD, USA.,The Graduate Program in Neuroscience, University of Maryland, Baltimore, MD, USA
| | - Katherine J Pultorak
- The Graduate Program in Neuroscience, University of Maryland, Baltimore, MD, USA
| | - Peixiong Yuan
- Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Chris F Powels
- Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Jacqueline Lovett
- Biomedical Research Center, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Edna F R Pereira
- Department of Epidemiology and Public Health, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Sarah M Clark
- Veterans Affairs Maryland Health Care System, Baltimore, MD, USA.,Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Leonardo H Tonelli
- Veterans Affairs Maryland Health Care System, Baltimore, MD, USA.,Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Ruin Moaddel
- Biomedical Research Center, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Carlos A Zarate
- Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Ronald S Duman
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | - Scott M Thompson
- Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, MD, USA.,Department of Physiology, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Todd D Gould
- Veterans Affairs Maryland Health Care System, Baltimore, MD, USA. .,Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, MD, USA. .,Department of Pharmacology, School of Medicine, University of Maryland, Baltimore, MD, USA. .,Department of Anatomy and Neurobiology, School of Medicine, University of Maryland, Baltimore, MD, USA.
| |
Collapse
|
31
|
Riggs LM, Thompson SM, Gould TD. (2R,6R)-hydroxynorketamine rapidly potentiates optically-evoked Schaffer collateral synaptic activity. Neuropharmacology 2022; 214:109153. [PMID: 35661657 PMCID: PMC9904284 DOI: 10.1016/j.neuropharm.2022.109153] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/25/2022] [Accepted: 05/27/2022] [Indexed: 12/31/2022]
Abstract
(2R,6R)-hydroxynorketamine (HNK) is a metabolite of ketamine that exerts rapid and sustained antidepressant-like effects in preclinical studies. We hypothesize that the rapid antidepressant actions of (2R,6R)-HNK involve an acute increase in glutamate release at Schaffer collateral synapses. Here, we used an optogenetic approach to assess whether (2R,6R)-HNK promotes glutamate release at CA1-projecting Schaffer collateral terminals in response to select optical excitation of CA3 afferents. The red-shifted channelrhodopsin, ChrimsonR, was expressed in dorsal CA3 neurons of adult male Sprague Dawley rats. Transverse slices were collected four weeks later to determine ChrimsonR expression and to assess the acute synaptic effects of an antidepressant-relevant concentration of (2R,6R)-HNK (10 μM). (2R,6R)-HNK led to a rapid potentiation of CA1 field excitatory postsynaptic potentials evoked by recurrent optical stimulation of ChrimsonR-expressing CA3 afferents. This potentiation is mediated in part by an increase in glutamate release probability, as (2R,6R)-HNK suppressed paired-pulse facilitation at CA3 projections, an effect that correlated with the magnitude of the (2R,6R)-HNK-induced potentiation of CA1 activity. These results demonstrate that (2R,6R)-HNK increases the probability of glutamate release at CA1-projecting Schaffer collateral afferents, which may be involved in the antidepressant-relevant behavioral adaptations conferred by (2R,6R)-HNK in vivo. The current study also establishes proof-of-principle that genetically-encoded light-sensitive proteins can be used to investigate the synaptic plasticity induced by novel antidepressant compounds in neuronal subcircuits.
Collapse
Affiliation(s)
- Lace M Riggs
- Program in Neuroscience and Training Program in Integrative Membrane Biology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA; Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Scott M Thompson
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, 21201, USA; Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Todd D Gould
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, 21201, USA; Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA; Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA; Veterans Affairs Maryland Health Care System, Baltimore, MD, 21201, USA.
| |
Collapse
|
32
|
Langmia IM, Just KS, Yamoune S, Müller JP, Stingl JC. Pharmacogenetic and drug interaction aspects on ketamine safety in its use as antidepressant - implications for precision dosing in a global perspective. Br J Clin Pharmacol 2022; 88:5149-5165. [PMID: 35863300 DOI: 10.1111/bcp.15467] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 06/23/2022] [Accepted: 07/12/2022] [Indexed: 12/01/2022] Open
Abstract
Ketamine and its enantiomer S-ketamine (esketamine) are known to produce rapid-onset antidepressant effects in major depression. Intranasal esketamine has recently come into the market as an antidepressant. Besides experience from short-term use in anesthesia and analgesia, the experience with ketamine as long-term medication is rather low. The use of ketamine and esketamine is limited due to potential neurotoxicity, psychocomimetic side effects, potential abuse and interindividual variability in treatment response including cessation of therapy. Therefore, taking a look at individual patient risks and potential underlying variability in pharmacokinetics may improve safety and dosing of these new antidepressant drugs in clinical practice. Differential drug metabolism due to polymorphic cytochrome P450 (CYP) enzymes and gene-drug interactions are known to influence the efficacy and safety of many drugs. Ketamine and esketamine are metabolized by polymorphic CYP enzymes including CYP2B6, CYP3A4, CYP2C9 and CYP2A6. In antidepressant drug therapy, usually multiple drugs are administered which are substrates of CYP enzymes, increasing the risk for drug-drug interactions (DDIs). We reviewed the potential impact of polymorphic CYP variants and common DDIs in antidepressant drug therapy affecting ketamine pharmacokinetics, and the role for dose optimization. The use of ketamine or intranasal esketamine as antidepressants demands a better understanding of the factors that may impact its metabolism and efficacy in long-term use. In addition to other clinical and environmental confounders, prior information on the pharmacodynamic and pharmacokinetic determinants of response variability to ketamine and esketamine may inform on dose optimization and identification of individuals at risk of adverse drug reactions.
Collapse
Affiliation(s)
- Immaculate M Langmia
- Institute of Clinical Pharmacology, University Hospital of RWTH Aachen, Aachen, Germany
| | - Katja S Just
- Institute of Clinical Pharmacology, University Hospital of RWTH Aachen, Aachen, Germany
| | - Sabrina Yamoune
- Institute of Clinical Pharmacology, University Hospital of RWTH Aachen, Aachen, Germany.,Federal Institute for Drugs and Medical Devices, BfArM, Bonn, Germany
| | - Julian Peter Müller
- Institute of Clinical Pharmacology, University Hospital of RWTH Aachen, Aachen, Germany
| | - Julia C Stingl
- Institute of Clinical Pharmacology, University Hospital of RWTH Aachen, Aachen, Germany
| |
Collapse
|
33
|
Xu S, Yao X, Li B, Cui R, Zhu C, Wang Y, Yang W. Uncovering the Underlying Mechanisms of Ketamine as a Novel Antidepressant. Front Pharmacol 2022; 12:740996. [PMID: 35872836 PMCID: PMC9301111 DOI: 10.3389/fphar.2021.740996] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/20/2021] [Indexed: 12/26/2022] Open
Abstract
Major depressive disorder (MDD) is a devastating psychiatric disorder which exacts enormous personal and social-economic burdens. Ketamine, an N-methyl-D-aspartate receptor (NMDAR) antagonist, has been discovered to exert rapid and sustained antidepressant-like actions on MDD patients and animal models. However, the dissociation and psychotomimetic propensities of ketamine have limited its use for psychiatric indications. Here, we review recently proposed mechanistic hypotheses regarding how ketamine exerts antidepressant-like actions. Ketamine may potentiate α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid receptor (AMPAR)-mediated transmission in pyramidal neurons by disinhibition and/or blockade of spontaneous NMDAR-mediated neurotransmission. Ketamine may also activate neuroplasticity- and synaptogenesis-relevant signaling pathways, which may converge on key components like brain-derived neurotrophic factor (BDNF)/tropomyosin receptor kinase B (TrkB) and mechanistic target of rapamycin (mTOR). These processes may subsequently rebalance the excitatory/inhibitory transmission and restore neural network integrity that is compromised in depression. Understanding the mechanisms underpinning ketamine’s antidepressant-like actions at cellular and neural circuit level will drive the development of safe and effective pharmacological interventions for the treatment of MDD.
Collapse
Affiliation(s)
- Songbai Xu
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, China
| | - Xiaoxiao Yao
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Bingjin Li
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Ranji Cui
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Cuilin Zhu
- Department of Cardiovascular Surgery, The Second Hospital of Jilin University, Changchun, China
- *Correspondence: Cuilin Zhu, ; Yao Wang, ; Wei Yang,
| | - Yao Wang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
- *Correspondence: Cuilin Zhu, ; Yao Wang, ; Wei Yang,
| | - Wei Yang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
- *Correspondence: Cuilin Zhu, ; Yao Wang, ; Wei Yang,
| |
Collapse
|
34
|
Kim JJ, Sapio MR, Vazquez FA, Maric D, Loydpierson AJ, Ma W, Zarate CA, Iadarola MJ, Mannes AJ. Transcriptional Activation, Deactivation and Rebound Patterns in Cortex, Hippocampus and Amygdala in Response to Ketamine Infusion in Rats. Front Mol Neurosci 2022; 15:892345. [PMID: 35706427 PMCID: PMC9190438 DOI: 10.3389/fnmol.2022.892345] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/06/2022] [Indexed: 11/13/2022] Open
Abstract
Ketamine, an N-methyl-D-aspartate (NMDA)-receptor antagonist, is a recently revitalized treatment for pain and depression, yet its actions at the molecular level remain incompletely defined. In this molecular-pharmacological investigation in the rat, we used short- and longer-term infusions of high dose ketamine to stimulate neuronal transcription processes. We hypothesized that a progressively stronger modulation of neuronal gene networks would occur over time in cortical and limbic pathways. A continuous intravenous administration paradigm for ketamine was developed in rat consisting of short (1 h) and long duration (10 h, and 10 h + 24 h recovery) infusions of anesthetic concentrations to activate or inhibit gene transcription in a pharmacokinetically controlled fashion. Transcription was measured by RNA-Seq in three brain regions: frontal cortex, hippocampus, and amygdala. Cellular level gene localization was performed with multiplex fluorescent in situ hybridization. Induction of a shared transcriptional regulatory network occurred within 1 h in all three brain regions consisting of (a) genes involved in stimulus-transcription factor coupling that are induced during altered synaptic activity (immediate early genes, IEGs, such as c-Fos, 9–12 significant genes per brain region, p < 0.01 per gene) and (b) the Nrf2 oxidative stress-antioxidant response pathway downstream from glutamate signaling (Nuclear Factor Erythroid-Derived 2-Like 2) containing 12–25 increasing genes (p < 0.01) per brain region. By 10 h of infusion, the acute results were further reinforced and consisted of more and stronger gene alterations reflecting a sustained and accentuated ketamine modulation of regional excitation and plasticity. At the cellular level, in situ hybridization localized up-regulation of the plasticity-associated gene Bdnf, and the transcription factors Nr4a1 and Fos, in cortical layers III and V. After 24 h recovery, we observed overshoot of transcriptional processes rather than a smooth return to homeostasis suggesting an oscillation of plasticity occurs during the transition to a new phase of neuronal regulation. These data elucidate critical molecular regulatory actions during and downstream of ketamine administration that may contribute to the unique drug actions of this anesthetic agent. These molecular investigations point to pathways linked to therapeutically useful attributes of ketamine.
Collapse
Affiliation(s)
- Jenny J. Kim
- Department of Perioperative Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Matthew R. Sapio
- Department of Perioperative Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Fernando A. Vazquez
- Department of Perioperative Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Dragan Maric
- Flow and Imaging Cytometry Core Facility, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Amelia J. Loydpierson
- Department of Perioperative Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Wenting Ma
- Department of Perioperative Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Carlos A. Zarate
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Michael J. Iadarola
- Department of Perioperative Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, United States
- *Correspondence: Michael J. Iadarola, ,
| | - Andrew J. Mannes
- Department of Perioperative Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
35
|
Robison R, Lafrance A, Brendle M, Smith M, Moore C, Ahuja S, Richards S, Hawkins N, Strahan E. A case series of group-based ketamine-assisted psychotherapy for patients in residential treatment for eating disorders with comorbid depression and anxiety disorders. J Eat Disord 2022; 10:65. [PMID: 35524316 PMCID: PMC9077943 DOI: 10.1186/s40337-022-00588-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/29/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Depression and anxiety outcome measures, safety/tolerability, patient satisfaction, and ease of implementation of group-based ketamine-assisted psychotherapy (G-KAP) delivered to patients in intensive residential eating disorder (ED) treatment were assessed. CASE PRESENTATION This study reports on five participants with a diagnosis of an ED and comorbid mood and anxiety disorders who received weekly intramuscular ketamine injections in a group setting over 4 weeks. Measures of anxiety (GAD-7) and depression (PHQ-9) were administered pre-dose, 4-h post-dose, and 24-h post dose. Four of the 5 participants experienced clinically significant improvements on the PHQ-9 score (i.e., change greater than 5) while 2 of the 5 participants experienced clinically significant improvements on the GAD-7 score (i.e., change greater than 4) from pre-dose to 24-h post-dose after the last ketamine session. Dosing sessions were well tolerated, and no serious adverse events were reported. Clinical observations and participant reports corroborated improvements in depression and anxiety symptoms, good tolerability of ketamine treatment, and practical implementation of the G-KAP protocol in a residential ED treatment center. CONCLUSIONS This study suggests the potential utility of G-KAP as an adjunct to intensive, specialized ED treatment. Overall, this novel, cross-diagnostic intervention warrants future research to further explore its appropriateness in a treatment setting.
Collapse
Affiliation(s)
- Reid Robison
- Center for Change, Orem, UT, USA. .,Novamind Inc., Draper, UT, USA. .,Department of Psychiatry, University of Utah School of Medicine, Salt Lake City, UT, USA.
| | | | - Madeline Brendle
- Novamind Inc., Draper, UT, USA.,Department of Pharmacotherapy, University of Utah College of Pharmacy, Salt Lake City, UT, USA
| | | | | | | | | | | | - Erin Strahan
- Wilfrid Laurier University, Brantford, ON, Canada
| |
Collapse
|
36
|
Chen Y, Shen M, Liu X, Xu J, Wang C. The Regulation of Glutamate Transporter 1 in the Rapid Antidepressant-Like Effect of Ketamine in Mice. Front Behav Neurosci 2022; 16:789524. [PMID: 35309681 PMCID: PMC8926310 DOI: 10.3389/fnbeh.2022.789524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 01/17/2022] [Indexed: 11/13/2022] Open
Abstract
Accumulating evidence suggests that glutamate clearance plays a critical role in the pathophysiology and treatment of depression. Preclinical and clinical studies have demonstrated that ketamine provides an immediate and sustained antidepressant effect. However, the precise mechanism of its action remains to be elucidated. Glutamate transporter 1 (GLT1) participates in glutamate clearance; therefore, we hypothesized that GLT1 may play an important role in the antidepressant effect of ketamine. In this study, we determined that GLT1 inhibition blocks the antidepressant-like properties of ketamine and alters the phosphorylation of the mammalian target of rapamycin (mTOR) in the prefrontal cortex (PFC). Our results show that pretreatment with dihydrokainic acid (DHK), a GLT1 inhibitor, alleviated the antidepressant-like effect of ketamine, and decreased the level of phosphorylated mTOR (pmTOR) in mice (which is normally upregulated by ketamine). In addition, inhibition of α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) receptor and L-type voltage-dependent calcium channel (L-VDCC) significantly abolished the antidepressant-like effect of ketamine. Moreover, inhibition of L-VDCC significantly blocked the upregulation of GLT1 and BDNF in the PFC of mice. The inhibition of the AMPA receptor only significantly alleviated BDNF. Our results provide insight into the role of GLT1 as the critical presynaptic molecule participating in the pathophysiological mechanism of depression and contributing to the antidepressant-like effect of ketamine. In addition, our study confirms that both AMPA receptor and L-VDCC are crucial factors in the immediate antidepressant-like effect of ketamine.
Collapse
Affiliation(s)
- Yaping Chen
- Zhejiang Provincial Key Laboratory of Pathophysiology, Ningbo University School of Medicine, Ningbo, China
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Mengxin Shen
- Zhejiang Provincial Key Laboratory of Pathophysiology, Ningbo University School of Medicine, Ningbo, China
| | - Xu Liu
- Department of Pharmacy, General Hospital of Chinese People’s Armed Police Forces, Beijing, China
| | - Jiangping Xu
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
- *Correspondence: Jiangping Xu, , orcid.org/0000-0002-0447-9229
| | - Chuang Wang
- Zhejiang Provincial Key Laboratory of Pathophysiology, Ningbo University School of Medicine, Ningbo, China
- Chuang Wang, , , orcid.org/0000-0002-3816-230X
| |
Collapse
|
37
|
Skiteva O, Yao N, Sitzia G, Chergui K. LRRK2‐G2019S mice display alterations in glutamatergic synaptic transmission in midbrain dopamine neurons. J Neurochem 2022; 161:158-172. [PMID: 35152441 PMCID: PMC9305867 DOI: 10.1111/jnc.15588] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 02/07/2022] [Accepted: 02/07/2022] [Indexed: 11/28/2022]
Abstract
The progressive degeneration of dopamine (DA) neurons in the substantia nigra compacta (SNc) leads to the emergence of motor symptoms in patients with Parkinson's disease (PD). To propose neuroprotective therapies able to slow or halt the progression of the disease, it is necessary to identify cellular alterations that occur before DA neurons degenerate and before the onset of the motor symptoms that characterize PD. Using electrophysiological, histochemical, and biochemical approaches, we have examined if glutamatergic synaptic transmission in DA neurons in the SNc and in the adjacent ventral tegmental area (VTA) was altered in middle‐aged (10–12 months old) mice with the hG2019S point mutation (G2019S) in the leucine‐rich repeat kinase 2 (LRRK2) gene. G2019S mice showed increased locomotion and exploratory behavior compared with wildtype (WT) littermates, and intact DA neuron integrity. The intrinsic membrane properties and action potential characteristics of DA neurons recorded in brain slices were similar in WT and G2019S mice. Initial glutamate release probability onto SNc‐DA neurons, but not VTA‐DA neurons, was reduced in G2019S mice. We also found reduced protein amounts of the presynaptic marker of glutamatergic terminals, VGLUT1, and of the GluA1 and GluN1 subunits of AMPA and NMDA receptors, respectively, in the ventral midbrain of G2019S mice. These results identify alterations in glutamatergic synaptic transmission in DA neurons of the SNc and VTA before the onset of motor impairments in the LRRK2‐G2019S mouse model of PD.
Collapse
Affiliation(s)
- Olga Skiteva
- Molecular Neurophysiology Laboratory, Department of Physiology and Pharmacology, Karolinska Institutet Stockholm Sweden
| | - Ning Yao
- Molecular Neurophysiology Laboratory, Department of Physiology and Pharmacology, Karolinska Institutet Stockholm Sweden
| | - Giacomo Sitzia
- Molecular Neurophysiology Laboratory, Department of Physiology and Pharmacology, Karolinska Institutet Stockholm Sweden
- Current address: Laboratory for Integrative Neuroscience National Institute on Alcohol Abuse and Alcoholism US Rockville USA
| | - Karima Chergui
- Molecular Neurophysiology Laboratory, Department of Physiology and Pharmacology, Karolinska Institutet Stockholm Sweden
| |
Collapse
|
38
|
CYP 450 enzymes influence (R,S)-ketamine brain delivery and its antidepressant activity. Neuropharmacology 2021; 206:108936. [PMID: 34965407 DOI: 10.1016/j.neuropharm.2021.108936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 12/07/2021] [Accepted: 12/21/2021] [Indexed: 11/23/2022]
Abstract
Esketamine, the S-stereoisomer of (R,S)-ketamine was recently approved by drug agencies (FDA, EMA), as an antidepressant drug with a new mechanism of action. (R,S)-ketamine is a N-methyl-d-aspartate receptor (NMDA-R) antagonist putatively acting on GABAergic inhibitory synapses to increase excitatory synaptic glutamatergic neurotransmission. Unlike monoamine-based antidepressants, (R,S)-ketamine exhibits rapid and persistent antidepressant activity at subanesthetic doses in preclinical rodent models and in treatment-resistant depressed patients. Its major brain metabolite, (2R,6R)-hydroxynorketamine (HNK) is formed following (R,S)-ketamine metabolism by various cytochrome P450 enzymes (CYP) mainly activated in the liver depending on routes of administration [e.g., intravenous (largely used for a better bioavailability), intranasal spray, intracerebral, subcutaneous, intramuscular or oral]. Experimental or clinical studies suggest that (2R,6R)-HNK could be an antidepressant drug candidate. However, questions still remain regarding its molecular and cellular targets in the brain and its role in (R,S)-ketamine's fast-acting antidepressant effects. The purpose of the present review is: 1) to review (R,S)-ketamine pharmacokinetic properties in humans and rodents and its metabolism by CYP enzymes to form norketamine and HNK metabolites; 2) to provide a summary of preclinical strategies challenging the role of these metabolites by modifying (R,S)-ketamine metabolism, e.g., by administering a pre-treatment CYP inducers or inhibitors; 3) to analyze the influence of sex and age on CYP expression and (R,S)-ketamine metabolism. Importantly, this review describes (R,S)-ketamine pharmacodynamics and pharmacokinetics to alert clinicians about possible drug-drug interactions during a concomitant administration of (R,S)-ketamine and CYP inducers/inhibitors that could enhance or blunt, respectively, (R,S)-ketamine's therapeutic antidepressant efficacy in patients.
Collapse
|
39
|
Xie Y, Song A, Zhu Y, Jiang A, Peng W, Zhang C, Meng X. Effects and mechanisms of probucol on aging-related hippocampus-dependent cognitive impairment. Biomed Pharmacother 2021; 144:112266. [PMID: 34634555 DOI: 10.1016/j.biopha.2021.112266] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/26/2021] [Accepted: 09/27/2021] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND In the present study, we aimed to investigate the effects of probucol on aging-related hippocampus-dependent cognitive impairment and explore the potential mechanisms. METHODS D-galactose (100 mg/kg, once daily for 6 weeks) was subcutaneously injected to induce aging in mice. Then the mice were administered with probucol or vehicle once a day for 2 weeks. The hippocampus-related cognition was evaluated with Morris water maze test, novel object recognition test, and contextual fear conditioning test. Moreover, synaptic plasticity was assessed, and RNA-sequencing was applied to further explore the molecular mechanisms. RESULTS Aging mice induced by D-galactose showed conspicuous learning and memory impairment, which was significantly ameliorated by probucol. Meanwhile, probucol enhanced the spine density and dendritic branches, improved long-term potentiation, and increased the expression of PSD95 of aging mice. Probucol regulated 70 differentially expressed genes compared to D-galactose group, of which 38 genes were upregulated and 32 genes were downregulated. At last, RNA-sequencing results were verified by quantitative reverse transcription-polymerase chain reaction. CONCLUSIONS Probucol improved learning and memory in aging mice through enhancing synaptic plasticity and regulating gene expression, indicating the potential application of probucol to prevent and treat aging-related disorders.
Collapse
Affiliation(s)
- Yaru Xie
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Department of Neurobiology, Institute of Brain Research, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Anni Song
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yuting Zhu
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Anni Jiang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wenpeng Peng
- Department of cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chun Zhang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xianfang Meng
- Department of Neurobiology, Institute of Brain Research, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
40
|
Skiteva O, Yao N, Chergui K. Ketamine induces opposite changes in AMPA receptor calcium permeability in the ventral tegmental area and nucleus accumbens. Transl Psychiatry 2021; 11:530. [PMID: 34650029 PMCID: PMC8516914 DOI: 10.1038/s41398-021-01658-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/28/2021] [Accepted: 10/01/2021] [Indexed: 01/12/2023] Open
Abstract
Ketamine elicits rapid and durable antidepressant actions in treatment-resistant patients with mood disorders such as major depressive disorder and bipolar depression. The mechanisms might involve the induction of metaplasticity in brain regions associated with reward-related behaviors, mood, and hedonic drive, particularly the ventral tegmental area (VTA) and the nucleus accumbens (NAc). We have examined if ketamine alters the insertion of the GluA2 subunit of AMPA receptors (AMPAR), which determines calcium permeability of the channel, at glutamatergic synapses onto dopamine (DA) neurons in the VTA and spiny projection neurons (SPNs) in the Core region of the NAc. Mice received one injection of either saline or a low dose of ketamine 24 h before electrophysiological recordings were performed. We found that GluA2-lacking calcium-permeable (CP) AMPARs were present in DA neurons in the VTA of mice treated with saline, and that ketamine-induced the removal of a fraction of these receptors. In NAc SPNs, ketamine induced the opposite change, i.e., GluA2-lacking CP-AMPARs were inserted at glutamatergic synapses. Ketamine-induced metaplasticity was independent of group I metabotropic glutamate receptors (mGluRs) because an agonist of these receptors had similar effects on glutamatergic transmission in mice treated with saline and in mice treated with ketamine in both VTA DA neurons and in the NAc. Thus, ketamine reduces the insertion of CP-AMPARs in VTA DA neurons and induces their insertion in the NAc. The mechanism by which ketamine elicits antidepressant actions might thus involve an alteration in the contribution of GluA2 to AMPARs thereby modulating synaptic plasticity in the mesolimbic circuit.
Collapse
Affiliation(s)
- Olga Skiteva
- grid.4714.60000 0004 1937 0626Molecular Neurophysiology Laboratory, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Ning Yao
- grid.4714.60000 0004 1937 0626Molecular Neurophysiology Laboratory, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Karima Chergui
- Molecular Neurophysiology Laboratory, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
41
|
Parise EM, Parise LF, Sial OK, Cardona-Acosta AM, Gyles TM, Juarez B, Chaudhury D, Han MH, Nestler EJ, Bolaños-Guzmán CA. The Resilient Phenotype Induced by Prophylactic Ketamine Exposure During Adolescence Is Mediated by the Ventral Tegmental Area-Nucleus Accumbens Pathway. Biol Psychiatry 2021; 90:482-493. [PMID: 34247781 PMCID: PMC8761260 DOI: 10.1016/j.biopsych.2021.05.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 04/12/2021] [Accepted: 05/01/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND Major depressive disorder is prevalent in children and adolescents and is associated with a high degree of morbidity throughout life, with potentially devastating personal consequences and public health impact. The efficacy of ketamine (KET) as an antidepressant has been demonstrated in adolescent rodents; however, the neurobiological mechanisms underlying these effects are unknown. Recent evidence showed that KET reverses stress-induced (i.e., depressive-like) deficits within major mesocorticolimbic regions, such as the prefrontal cortex, nucleus accumbens (NAc), and hippocampus, in adult rodents. However, little is known about KET's effect in the ventral tegmental area (VTA), which provides the majority of dopaminergic input to these brain regions. METHODS We characterized behavioral, biochemical, and electrophysiological effects produced by KET treatment in C57BL/6J male mice during adolescence (n = 7-10 per condition) within the VTA and its major projection regions, namely, the NAc and prefrontal cortex. Subsequently, molecular targets within the VTA-NAc projection were identified for viral gene transfer manipulations to recapitulate the effects of stress or KET treatment. RESULTS Repeated KET treatment produced a robust proresilient response to chronic social defeat stress. This effect was largely driven by Akt signaling activity within the VTA and NAc, and it could be blocked or recapitulated through direct Akt-viral-mediated manipulation. Additionally, we found that the KET-induced resilient phenotype is dependent on VTA-NAc, but not VTA-prefrontal cortex, pathway activity. CONCLUSIONS These findings indicate that KET exposure during adolescence produces a proresilient phenotype mediated by changes in Akt intracellular signaling and altered neuronal activity within the VTA-NAc pathway.
Collapse
Affiliation(s)
- Eric M Parise
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Lyonna F Parise
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Omar K Sial
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, Texas; Institute for Neuroscience, Texas A&M University, College Station, Texas
| | - Astrid M Cardona-Acosta
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, Texas
| | - Trevonn M Gyles
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Barbara Juarez
- Department of Pharmacological Sciences, Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Pharmacology, University of Washington, Seattle, Washington
| | - Dipesh Chaudhury
- Department of Pharmacological Sciences, Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, New York; Division of Science, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Ming-Hu Han
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York; Center for Affective Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Pharmacological Sciences, Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Eric J Nestler
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York.
| | - Carlos A Bolaños-Guzmán
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, Texas; Institute for Neuroscience, Texas A&M University, College Station, Texas.
| |
Collapse
|
42
|
Hsieh CP, Chen ST, Lee MY, Huang CM, Chen HH, Chan MH. N, N-dimethylglycine Protects Behavioral Disturbances and Synaptic Deficits Induced by Repeated Ketamine Exposure in Mice. Neuroscience 2021; 472:128-137. [PMID: 34400248 DOI: 10.1016/j.neuroscience.2021.08.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 12/31/2022]
Abstract
Ketamine, an N-methyl-d-aspartate receptor (NMDAR) blocker, is gaining ground as a treatment option for depression. The occurrence of persistent psychosis and cognitive impairment after repeated use of ketamine remains a concern. N, N-dimethylglycine (DMG) is a nutrient supplement and acts as an NMDAR glycine site partial agonist. The objective of this study was to assess whether DMG could potentially prevent the behavioral and synaptic deficits in mice after repeated ketamine exposure. Male ICR mice received ketamine (20 mg/kg) from postnatal day (PN) 33-46, twice daily, for 14 days. The locomotor activity, novel location recognition test (NLRT), novel object recognition test (NORT), social interaction test, head twitch response induced by serotonergic hallucinogen, and the basal synaptic transmission and long-term potentiation (LTP) in the hippocampal slices were monitored after repeated ketamine treatment. Furthermore, the protective effects of repeated combined administration of DMG (30 and 100 mg/kg) with ketamine on behavioral abnormalities and synaptic dysfunction were assessed. The results showed that mice exhibited memory impairments, social withdrawal, increased head twitch response, reduced excitatory synaptic transmission, and lower LTP after repeated ketamine exposure. The ketamine-induced behavioral and synaptic deficits were prevented by co-treatment with DMG. In conclusion, these findings may pave a new path forward to developing a combination formula with ketamine and DMG for the treatment of depression and other mood disorders.
Collapse
Affiliation(s)
- Chung-Pin Hsieh
- Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli, Taiwan
| | - Shao-Tsu Chen
- Department of Psychiatry, Buddhist Tzu Chi General Hospital, Hualien, Taiwan; School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Mei-Yi Lee
- Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli, Taiwan
| | - Chieh-Min Huang
- Animal Behavioral Core, National Health Research Institutes, Miaoli, Taiwan
| | - Hwei-Hsien Chen
- Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli, Taiwan; Animal Behavioral Core, National Health Research Institutes, Miaoli, Taiwan; Institute of Neuroscience, Research Center for Mind, Brain, and Learning, National Chengchi University, Taipei, Taiwan.
| | - Ming-Huan Chan
- Institute of Neuroscience, Research Center for Mind, Brain, and Learning, National Chengchi University, Taipei, Taiwan; Department of Medical Research, China Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
43
|
Chronic administration of ketamine induces cognitive deterioration by restraining synaptic signaling. Mol Psychiatry 2021; 26:4702-4718. [PMID: 32488127 DOI: 10.1038/s41380-020-0793-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 05/06/2020] [Accepted: 05/18/2020] [Indexed: 12/20/2022]
Abstract
The discovery of the rapid antidepressant effects of ketamine has arguably been the most important advance in depression treatment. Recently, it was reported that repeated long-term ketamine administration is effective in preventing relapse of depression, which may broaden the clinical use of ketamine. However, long-term treatment with ketamine produces cognitive impairments, and the underlying molecular mechanisms for these impairments are largely unknown. Here, we found that chronic in vivo exposure to ketamine for 28 days led to decreased expression of the glutamate receptor subunits GluA1, GluA2, GluN2A, and GluN2B; decreased expression of the synaptic proteins Syn and PSD-95; decreased dendrite spine density; impairments in long-term potentiation (LTP) and synaptic transmission in the hippocampal CA1 area; and deterioration of learning and memory in mice. Furthermore, the reduced glutamate receptor subunit and synaptic protein expression and the LTP deficits were still observed on day 28 after the last injection of ketamine. We found that the expression and phosphorylation of CaMKIIβ, ERK1/2, CREB, and NF-κB were inhibited by ketamine. The reductions in glutamate receptor subunit expression and dendritic spine density and the deficits in LTP, synaptic transmission, and cognition were alleviated by overexpression of CaMKIIβ. Our study indicates that inhibition of CaMKIIβ-ERK1/2-CREB/NF-κB signaling may mediate chronic ketamine use-associated cognitive impairments by restraining synaptic signaling. Hypofunction of the glutamatergic system might be the underlying mechanism accounting for chronic ketamine use-associated cognitive impairments. Our findings may suggest possible strategies to alleviate ketamine use-associated cognitive deficits and broaden the clinical use of ketamine in depression treatment.
Collapse
|
44
|
Jang G, MacIver MB. Ketamine Produces a Long-Lasting Enhancement of CA1 Neuron Excitability. Int J Mol Sci 2021; 22:ijms22158091. [PMID: 34360854 PMCID: PMC8347661 DOI: 10.3390/ijms22158091] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/19/2021] [Accepted: 07/23/2021] [Indexed: 12/24/2022] Open
Abstract
Ketamine is a clinical anesthetic and antidepressant. Although ketamine is a known NMDA receptor antagonist, the mechanisms contributing to antidepression are unclear. This present study examined the loci and duration of ketamine’s actions, and the involvement of NMDA receptors. Local field potentials were recorded from the CA1 region of mouse hippocampal slices. Ketamine was tested at antidepressant and anesthetic concentrations. Effects of NMDA receptor antagonists APV and MK-801, GABA receptor antagonist bicuculline, and a potassium channel blocker TEA were also studied. Ketamine decreased population spike amplitudes during application, but a long-lasting increase in amplitudes was seen during washout. Bicuculline reversed the acute effects of ketamine, but the washout increase was not altered. This long-term increase was statistically significant, sustained for >2 h, and involved postsynaptic mechanisms. A similar effect was produced by MK-801, but was only partially evident with APV, demonstrating the importance of the NMDA receptor ion channel block. TEA also produced a lasting excitability increase, indicating a possible involvement of potassium channel block. This is this first report of a long-lasting increase in excitability following ketamine exposure. These results support a growing literature that increased GABA inhibition contributes to ketamine anesthesia, while increased excitatory transmission contributes to its antidepressant effects.
Collapse
|
45
|
Carboni E, Carta AR, Carboni E, Novelli A. Repurposing Ketamine in Depression and Related Disorders: Can This Enigmatic Drug Achieve Success? Front Neurosci 2021; 15:657714. [PMID: 33994933 PMCID: PMC8120160 DOI: 10.3389/fnins.2021.657714] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 03/31/2021] [Indexed: 12/27/2022] Open
Abstract
Repurposing ketamine in the therapy of depression could well represent a breakthrough in understanding the etiology of depression. Ketamine was originally used as an anesthetic drug and later its use was extended to other therapeutic applications such as analgesia and the treatment of addiction. At the same time, the abuse of ketamine as a recreational drug has generated a concern for its psychotropic and potential long-term effects; nevertheless, its use as a fast acting antidepressant in treatment-resistant patients has boosted the interest in the mechanism of action both in psychiatry and in the wider area of neuroscience. This article provides a comprehensive overview of the actions of ketamine and intends to cover: (i) the evaluation of its clinical use in the treatment of depression and suicidal behavior; (ii) the potential use of ketamine in pediatrics; (iii) a description of its mechanism of action; (iv) the involvement of specific brain areas in producing antidepressant effects; (v) the potential interaction of ketamine with the hypothalamic-pituitary-adrenal axis; (vi) the effect of ketamine on neuronal transmission in the bed nucleus of stria terminalis and on its output; (vii) the evaluation of any gender-dependent effects of ketamine; (viii) the interaction of ketamine with the inflammatory processes involved in depression; (ix) the evaluation of the effects observed with single or repeated administration; (x) a description of any adverse or cognitive effects and its abuse potential. Finally, this review attempts to assess whether ketamine's use in depression can improve our knowledge of the etiopathology of depression and whether its therapeutic effect can be considered an actual cure for depression rather than a therapy merely aimed to control the symptoms of depression.
Collapse
Affiliation(s)
- Ezio Carboni
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Anna R. Carta
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Elena Carboni
- Unit of Paediatrics, ASST Cremona Maggiore Hospital, Cremona, Italy
| | - Antonello Novelli
- Department of Psychology and University Institute of Biotechnology of Asturias, University of Oviedo, Oviedo, Spain
- Sanitary Institute of the Princedom of Asturias, Oviedo, Spain
| |
Collapse
|
46
|
Highland JN, Zanos P, Riggs LM, Georgiou P, Clark SM, Morris PJ, Moaddel R, Thomas CJ, Zarate CA, Pereira EFR, Gould TD. Hydroxynorketamines: Pharmacology and Potential Therapeutic Applications. Pharmacol Rev 2021; 73:763-791. [PMID: 33674359 PMCID: PMC7938660 DOI: 10.1124/pharmrev.120.000149] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hydroxynorketamines (HNKs) are formed in vivo after (R,S)-ketamine (ketamine) administration. The 12 HNK stereoisomers are distinguished by the position of cyclohexyl ring hydroxylation (at the 4, 5, or 6 position) and their unique stereochemistry at two stereocenters. Although HNKs were initially classified as inactive metabolites because of their lack of anesthetic effects, more recent studies have begun to reveal their biologic activities. In particular, (2R,6R)- and (2S 6)-HNK exert antidepressant-relevant behavioral and physiologic effects in preclinical models, which led to a rapid increase in studies seeking to clarify the mechanisms by which HNKs exert their pharmacological effects. To date, the majority of HNK research has focused on the actions of (2R,6R)-HNK because of its robust behavioral actions in tests of antidepressant effectiveness and its limited adverse effects. This review describes HNK pharmacokinetics and pharmacodynamics, as well as the putative cellular, molecular, and synaptic mechanisms thought to underlie their behavioral effects, both following their metabolism from ketamine and after direct administration in preclinical studies. Converging preclinical evidence indicates that HNKs modulate glutamatergic neurotransmission and downstream signaling pathways in several brain regions, including the hippocampus and prefrontal cortex. Effects on other neurotransmitter systems, as well as possible effects on neurotrophic and inflammatory processes, and energy metabolism, are also discussed. Additionally, the behavioral effects of HNKs and possible therapeutic applications are described, including the treatment of unipolar and bipolar depression, post-traumatic stress disorder, chronic pain, neuroinflammation, and other anti-inflammatory and analgesic uses. SIGNIFICANCE STATEMENT: Preclinical studies indicate that hydroxynorketamines (HNKs) exert antidepressant-relevant behavioral actions and may also have analgesic, anti-inflammatory, and other physiological effects that are relevant for the treatment of a variety of human diseases. This review details the pharmacokinetics and pharmacodynamics of the HNKs, as well as their behavioral actions, putative mechanisms of action, and potential therapeutic applications.
Collapse
Affiliation(s)
- Jaclyn N Highland
- Departments of Psychiatry (J.N.H., P.Z., L.M.R., P.G., S.M.C., T.D.G.), Pharmacology (P.Z., T.D.G.), Physiology (P.Z.), Anatomy and Neurobiology (T.D.G), Epidemiology and Public Health, Division of Translational Toxicology (E.F.R.P.), Programs in Toxicology (J.N.H.) and Neuroscience (L.M.R.), and Veterans Affairs Maryland Health Care System, University of Maryland School of Medicine, Baltimore, Maryland (T.D.G.); Division of Preclinical Innovation, National Center for Advancing Translational Sciences, Intramural Research Program, National Institutes of Health, Rockville, Maryland (P.J.M., C.J.T.); Biomedical Research Center, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, Maryland (R.M.); Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.)
| | - Panos Zanos
- Departments of Psychiatry (J.N.H., P.Z., L.M.R., P.G., S.M.C., T.D.G.), Pharmacology (P.Z., T.D.G.), Physiology (P.Z.), Anatomy and Neurobiology (T.D.G), Epidemiology and Public Health, Division of Translational Toxicology (E.F.R.P.), Programs in Toxicology (J.N.H.) and Neuroscience (L.M.R.), and Veterans Affairs Maryland Health Care System, University of Maryland School of Medicine, Baltimore, Maryland (T.D.G.); Division of Preclinical Innovation, National Center for Advancing Translational Sciences, Intramural Research Program, National Institutes of Health, Rockville, Maryland (P.J.M., C.J.T.); Biomedical Research Center, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, Maryland (R.M.); Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.)
| | - Lace M Riggs
- Departments of Psychiatry (J.N.H., P.Z., L.M.R., P.G., S.M.C., T.D.G.), Pharmacology (P.Z., T.D.G.), Physiology (P.Z.), Anatomy and Neurobiology (T.D.G), Epidemiology and Public Health, Division of Translational Toxicology (E.F.R.P.), Programs in Toxicology (J.N.H.) and Neuroscience (L.M.R.), and Veterans Affairs Maryland Health Care System, University of Maryland School of Medicine, Baltimore, Maryland (T.D.G.); Division of Preclinical Innovation, National Center for Advancing Translational Sciences, Intramural Research Program, National Institutes of Health, Rockville, Maryland (P.J.M., C.J.T.); Biomedical Research Center, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, Maryland (R.M.); Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.)
| | - Polymnia Georgiou
- Departments of Psychiatry (J.N.H., P.Z., L.M.R., P.G., S.M.C., T.D.G.), Pharmacology (P.Z., T.D.G.), Physiology (P.Z.), Anatomy and Neurobiology (T.D.G), Epidemiology and Public Health, Division of Translational Toxicology (E.F.R.P.), Programs in Toxicology (J.N.H.) and Neuroscience (L.M.R.), and Veterans Affairs Maryland Health Care System, University of Maryland School of Medicine, Baltimore, Maryland (T.D.G.); Division of Preclinical Innovation, National Center for Advancing Translational Sciences, Intramural Research Program, National Institutes of Health, Rockville, Maryland (P.J.M., C.J.T.); Biomedical Research Center, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, Maryland (R.M.); Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.)
| | - Sarah M Clark
- Departments of Psychiatry (J.N.H., P.Z., L.M.R., P.G., S.M.C., T.D.G.), Pharmacology (P.Z., T.D.G.), Physiology (P.Z.), Anatomy and Neurobiology (T.D.G), Epidemiology and Public Health, Division of Translational Toxicology (E.F.R.P.), Programs in Toxicology (J.N.H.) and Neuroscience (L.M.R.), and Veterans Affairs Maryland Health Care System, University of Maryland School of Medicine, Baltimore, Maryland (T.D.G.); Division of Preclinical Innovation, National Center for Advancing Translational Sciences, Intramural Research Program, National Institutes of Health, Rockville, Maryland (P.J.M., C.J.T.); Biomedical Research Center, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, Maryland (R.M.); Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.)
| | - Patrick J Morris
- Departments of Psychiatry (J.N.H., P.Z., L.M.R., P.G., S.M.C., T.D.G.), Pharmacology (P.Z., T.D.G.), Physiology (P.Z.), Anatomy and Neurobiology (T.D.G), Epidemiology and Public Health, Division of Translational Toxicology (E.F.R.P.), Programs in Toxicology (J.N.H.) and Neuroscience (L.M.R.), and Veterans Affairs Maryland Health Care System, University of Maryland School of Medicine, Baltimore, Maryland (T.D.G.); Division of Preclinical Innovation, National Center for Advancing Translational Sciences, Intramural Research Program, National Institutes of Health, Rockville, Maryland (P.J.M., C.J.T.); Biomedical Research Center, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, Maryland (R.M.); Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.)
| | - Ruin Moaddel
- Departments of Psychiatry (J.N.H., P.Z., L.M.R., P.G., S.M.C., T.D.G.), Pharmacology (P.Z., T.D.G.), Physiology (P.Z.), Anatomy and Neurobiology (T.D.G), Epidemiology and Public Health, Division of Translational Toxicology (E.F.R.P.), Programs in Toxicology (J.N.H.) and Neuroscience (L.M.R.), and Veterans Affairs Maryland Health Care System, University of Maryland School of Medicine, Baltimore, Maryland (T.D.G.); Division of Preclinical Innovation, National Center for Advancing Translational Sciences, Intramural Research Program, National Institutes of Health, Rockville, Maryland (P.J.M., C.J.T.); Biomedical Research Center, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, Maryland (R.M.); Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.)
| | - Craig J Thomas
- Departments of Psychiatry (J.N.H., P.Z., L.M.R., P.G., S.M.C., T.D.G.), Pharmacology (P.Z., T.D.G.), Physiology (P.Z.), Anatomy and Neurobiology (T.D.G), Epidemiology and Public Health, Division of Translational Toxicology (E.F.R.P.), Programs in Toxicology (J.N.H.) and Neuroscience (L.M.R.), and Veterans Affairs Maryland Health Care System, University of Maryland School of Medicine, Baltimore, Maryland (T.D.G.); Division of Preclinical Innovation, National Center for Advancing Translational Sciences, Intramural Research Program, National Institutes of Health, Rockville, Maryland (P.J.M., C.J.T.); Biomedical Research Center, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, Maryland (R.M.); Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.)
| | - Carlos A Zarate
- Departments of Psychiatry (J.N.H., P.Z., L.M.R., P.G., S.M.C., T.D.G.), Pharmacology (P.Z., T.D.G.), Physiology (P.Z.), Anatomy and Neurobiology (T.D.G), Epidemiology and Public Health, Division of Translational Toxicology (E.F.R.P.), Programs in Toxicology (J.N.H.) and Neuroscience (L.M.R.), and Veterans Affairs Maryland Health Care System, University of Maryland School of Medicine, Baltimore, Maryland (T.D.G.); Division of Preclinical Innovation, National Center for Advancing Translational Sciences, Intramural Research Program, National Institutes of Health, Rockville, Maryland (P.J.M., C.J.T.); Biomedical Research Center, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, Maryland (R.M.); Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.)
| | - Edna F R Pereira
- Departments of Psychiatry (J.N.H., P.Z., L.M.R., P.G., S.M.C., T.D.G.), Pharmacology (P.Z., T.D.G.), Physiology (P.Z.), Anatomy and Neurobiology (T.D.G), Epidemiology and Public Health, Division of Translational Toxicology (E.F.R.P.), Programs in Toxicology (J.N.H.) and Neuroscience (L.M.R.), and Veterans Affairs Maryland Health Care System, University of Maryland School of Medicine, Baltimore, Maryland (T.D.G.); Division of Preclinical Innovation, National Center for Advancing Translational Sciences, Intramural Research Program, National Institutes of Health, Rockville, Maryland (P.J.M., C.J.T.); Biomedical Research Center, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, Maryland (R.M.); Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.)
| | - Todd D Gould
- Departments of Psychiatry (J.N.H., P.Z., L.M.R., P.G., S.M.C., T.D.G.), Pharmacology (P.Z., T.D.G.), Physiology (P.Z.), Anatomy and Neurobiology (T.D.G), Epidemiology and Public Health, Division of Translational Toxicology (E.F.R.P.), Programs in Toxicology (J.N.H.) and Neuroscience (L.M.R.), and Veterans Affairs Maryland Health Care System, University of Maryland School of Medicine, Baltimore, Maryland (T.D.G.); Division of Preclinical Innovation, National Center for Advancing Translational Sciences, Intramural Research Program, National Institutes of Health, Rockville, Maryland (P.J.M., C.J.T.); Biomedical Research Center, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, Maryland (R.M.); Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.)
| |
Collapse
|
47
|
Mkrtchian A, Evans JW, Kraus C, Yuan P, Kadriu B, Nugent AC, Roiser JP, Zarate CA. Ketamine modulates fronto-striatal circuitry in depressed and healthy individuals. Mol Psychiatry 2021; 26:3292-3301. [PMID: 32929215 PMCID: PMC8462973 DOI: 10.1038/s41380-020-00878-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 07/27/2020] [Accepted: 09/03/2020] [Indexed: 12/18/2022]
Abstract
Ketamine improves motivation-related symptoms in depression but simultaneously elicits similar symptoms in healthy individuals, suggesting that it might have different effects in health and disease. This study examined whether ketamine affects the brain's fronto-striatal system, which is known to drive motivational behavior. The study also assessed whether inflammatory mechanisms-which are known to influence neural and behavioral motivational processes-might underlie some of these changes. These questions were explored in the context of a double-blind, placebo-controlled, crossover trial of ketamine in 33 individuals with treatment-resistant major depressive disorder (TRD) and 25 healthy volunteers (HVs). Resting-state functional magnetic resonance imaging (rsfMRI) was acquired 2 days post-ketamine (final sample: TRD n = 27, HV n = 19) and post-placebo (final sample: TRD n = 25, HV n = 18) infusions and was used to probe fronto-striatal circuitry with striatal seed-based functional connectivity. Ketamine increased fronto-striatal functional connectivity in TRD participants toward levels observed in HVs while shifting the connectivity profile in HVs toward a state similar to TRD participants under placebo. Preliminary findings suggest that these effects were largely observed in the absence of inflammatory (C-reactive protein) changes and were associated with both acute and sustained improvements in symptoms in the TRD group. Ketamine thus normalized fronto-striatal connectivity in TRD participants but disrupted it in HVs independently of inflammatory processes. These findings highlight the potential importance of reward circuitry in ketamine's mechanism of action, which may be particularly relevant for understanding ketamine-induced shifts in motivational symptoms.
Collapse
Affiliation(s)
- Anahit Mkrtchian
- Section on the Neurobiology and Treatment of Mood Disorders, Experimental Therapeutics & Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA. .,Neuroscience and Mental Health Group, Institute of Cognitive Neuroscience, University College London, London, UK.
| | - Jennifer W. Evans
- grid.94365.3d0000 0001 2297 5165Section on the Neurobiology and Treatment of Mood Disorders, Experimental Therapeutics & Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD USA
| | - Christoph Kraus
- grid.94365.3d0000 0001 2297 5165Section on the Neurobiology and Treatment of Mood Disorders, Experimental Therapeutics & Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD USA
| | - Peixiong Yuan
- grid.94365.3d0000 0001 2297 5165Section on the Neurobiology and Treatment of Mood Disorders, Experimental Therapeutics & Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD USA
| | - Bashkim Kadriu
- grid.94365.3d0000 0001 2297 5165Section on the Neurobiology and Treatment of Mood Disorders, Experimental Therapeutics & Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD USA
| | - Allison C. Nugent
- grid.94365.3d0000 0001 2297 5165Section on the Neurobiology and Treatment of Mood Disorders, Experimental Therapeutics & Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD USA ,grid.94365.3d0000 0001 2297 5165Magnetoencephalography Core Facility, National Institute of Mental Health, National Institutes of Health, Bethesda, MD USA
| | - Jonathan P. Roiser
- grid.83440.3b0000000121901201Neuroscience and Mental Health Group, Institute of Cognitive Neuroscience, University College London, London, UK
| | - Carlos A. Zarate
- grid.94365.3d0000 0001 2297 5165Section on the Neurobiology and Treatment of Mood Disorders, Experimental Therapeutics & Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD USA
| |
Collapse
|
48
|
Lazarevic V, Yang Y, Flais I, Svenningsson P. Ketamine decreases neuronally released glutamate via retrograde stimulation of presynaptic adenosine A1 receptors. Mol Psychiatry 2021; 26:7425-7435. [PMID: 34376822 PMCID: PMC8872981 DOI: 10.1038/s41380-021-01246-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 07/09/2021] [Accepted: 07/21/2021] [Indexed: 12/27/2022]
Abstract
Ketamine produces a rapid antidepressant response in patients with major depressive disorder (MDD), but the underlying mechanisms appear multifaceted. One hypothesis, proposes that by antagonizing NMDA receptors on GABAergic interneurons, ketamine disinhibits afferens to glutamatergic principal neurons and increases extracellular glutamate levels. However, ketamine seems also to reduce rapid glutamate release at some synapses. Therefore, clinical studies in MDD patients have stressed the need to identify mechanisms whereby ketamine decreases presynaptic activity and glutamate release. In the present study, the effect of ketamine and its antidepressant metabolite, (2R,6R)-HNK, on neuronally derived glutamate release was examined in rodents. We used FAST methodology to measure depolarization-evoked extracellular glutamate levels in vivo in freely moving or anesthetized animals, synaptosomes to detect synaptic recycling ex vivo and primary cortical neurons to perform functional imaging and to examine intracellular signaling in vitro. In all these versatile approaches, ketamine and (2R,6R)-HNK reduced glutamate release in a manner which could be blocked by AMPA receptor antagonism. Antagonism of adenosine A1 receptors, which are almost exclusively expressed at nerve terminals, also counteracted ketamine's effect on glutamate release and presynaptic activity. Signal transduction studies in primary neuronal cultures demonstrated that ketamine reduced P-T286-CamKII and P-S9-Synapsin, which correlated with decreased synaptic vesicle recycling. Moreover, systemic administration of A1R antagonist counteracted the antidepressant-like actions of ketamine and (2R,6R)-HNK in the forced swim test. To conclude, by studying neuronally released glutamate, we identified a novel retrograde adenosinergic feedback mechanism that mediate inhibitory actions of ketamine on glutamate release that may contribute to its rapid antidepressant action.
Collapse
Affiliation(s)
- Vesna Lazarevic
- grid.4714.60000 0004 1937 0626Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Yunting Yang
- grid.4714.60000 0004 1937 0626Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Ivana Flais
- grid.4714.60000 0004 1937 0626Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Per Svenningsson
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
49
|
Ren F, Guo R. Synaptic Microenvironment in Depressive Disorder: Insights from Synaptic Plasticity. Neuropsychiatr Dis Treat 2021; 17:157-165. [PMID: 33519203 PMCID: PMC7838013 DOI: 10.2147/ndt.s268012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 12/14/2020] [Indexed: 12/14/2022] Open
Abstract
Depression is a major disease that can affect both mental and physical health, limits psychosocial functioning and diminishes the quality of life. But its complex pathogenesis remains poorly understood. The dynamic changes of synaptic structure and function, known as synaptic plasticity, occur with the changes of different cellular microenvironment and are closely related to learning and memory function. Accumulating evidence implies that synaptic plasticity is integrally involved in the pathological changes of mood disorders, especially in depressive disorder. However, the complex dynamic process of synaptic plasticity is influenced by many factors. Here, we reviewed and discussed various factors affecting synaptic plasticity in depression, and proposed a specific framework named synaptic microenvironment, which may be critical for synaptic plasticity under pathological conditions. Based on this concept, we will show how we understand the balance between the synaptic microenvironment and the synaptic plasticity network in depression. Finally, we point out the clinical significance of the synaptic microenvironment in depression.
Collapse
Affiliation(s)
- Feifei Ren
- Second Clinical Medical College, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - Rongjuan Guo
- Department of Neurology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing 100078, People's Republic of China
| |
Collapse
|
50
|
Zhou YL, Wu FC, Wang CY, Zheng W, Lan XF, Deng XR, Ning YP. Relationship between hippocampal volume and inflammatory markers following six infusions of ketamine in major depressive disorder. J Affect Disord 2020; 276:608-615. [PMID: 32871692 DOI: 10.1016/j.jad.2020.06.068] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/22/2020] [Accepted: 06/23/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Evidences suggest that inflammatory marker-mediated neuroplasticity contributes critically to brain changes following antidepressant treatment. To date, no study has examined the relationship between changes in hippocampal volume, depressive symptoms, and inflammatory markers following repeated ketamine treatment. METHODS Forty-four patients with major depressive disorder received six intravenous ketamine (0.5 mg/kg) infusions over 12 days. The Montgomery-Asberg Depression Rating Scale (MADRS) was used to assess depressive symptoms, and peripheral blood was collected to test multiple cytokines and tryptophan (TRP) metabolites at baseline, 24 h and 14 days after the sixth infusion (day 13 and day 26). Magnetic resonance imaging (MRI) scans were carried out at baseline and day13, and FreeSurfer software was used to process the T1 images and analyze hippocampal volume. RESULTS Following ketamine, a significant improvement in depressive symptoms, a small increase in right hippocampal volume and alterations in inflammatory markers was found. No significant association was found between changes in inflammatory markers and changes in hippocampal volume from baseline to day 13 (P>0.05), while a weak association was found between TRP metabolite changes and other cytokine changes from baseline to day 26 (beta=-0.357, t=-2.600, P = 0.013). LIMITATIONS The patients continued receiving previous medications during ketamine treatment, which may have impacted hippocampal volume and inflammatory markers. CONCLUSIONS Hippocampal volume increase following ketamine was an independent neurobiological effect that was not associated with changes in peripheral inflammatory markers, suggesting a likely complex neurobiological mechanism of the antidepressant effect of ketamine.
Collapse
Affiliation(s)
- Yan-Ling Zhou
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Feng-Chun Wu
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Cheng-Yu Wang
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Wei Zheng
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Xiao-Feng Lan
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Xiu-Rong Deng
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Yu-Ping Ning
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China; The First School of Clinical Medicine, Southern Medical University, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China.
| |
Collapse
|