1
|
Korhonen PK, Wang T, Young ND, Byrne JJ, Campos TL, Chang BC, Taki AC, Gasser RB. Analysis of Haemonchus embryos at single cell resolution identifies two eukaryotic elongation factors as intervention target candidates. Comput Struct Biotechnol J 2024; 23:1026-1035. [PMID: 38435301 PMCID: PMC10907403 DOI: 10.1016/j.csbj.2024.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 01/14/2024] [Accepted: 01/15/2024] [Indexed: 03/05/2024] Open
Abstract
Advances in single cell technologies are allowing investigations of a wide range of biological processes and pathways in animals, such as the multicellular model organism Caenorhabditis elegans - a free-living nematode. However, there has been limited application of such technology to related parasitic nematodes which cause major diseases of humans and animals worldwide. With no vaccines against the vast majority of parasitic nematodes and treatment failures due to drug resistance or inefficacy, new intervention targets are urgently needed, preferably informed by a deep understanding of these nematodes' cellular and molecular biology - which is presently lacking for most worms. Here, we created the first single cell atlas for an early developmental stage of Haemonchus contortus - a highly pathogenic, C. elegans-related parasitic nematode. We obtained and curated RNA sequence (snRNA-seq) data from single nuclei from embryonating eggs of H. contortus (150,000 droplets), and selected high-quality transcriptomic data for > 14,000 single nuclei for analysis, and identified 19 distinct clusters of cells. Guided by comparative analyses with C. elegans, we were able to reproducibly assign seven cell clusters to body wall muscle, hypodermis, neuronal, intestinal or seam cells, and identified eight genes that were transcribed in all cell clusters/types, three of which were inferred to be essential in H. contortus. Two of these genes (i.e. Hc-eef-1A and Hc-eef1G), coding for eukaryotic elongation factors (called Hc-eEF1A and Hc-eEF1G), were also demonstrated to be transcribed and expressed in all key developmental stages of H. contortus. Together with these findings, sequence- and structure-based comparative analyses indicated the potential of Hc-eEF1A and/or Hc-eEF1G as intervention targets within the protein biosynthesis machinery of H. contortus. Future work will focus on single cell studies of all key developmental stages and tissues of H. contortus, and on evaluating the suitability of the two elongation factor proteins as drug targets in H. contortus and related nematodes, with a view to finding new nematocidal drug candidates.
Collapse
Affiliation(s)
- Pasi K. Korhonen
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Tao Wang
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Neil D. Young
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Joseph J. Byrne
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Tulio L. Campos
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Bill C.H. Chang
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Aya C. Taki
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Robin B. Gasser
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
2
|
Li Y, Zhao Y, He Y, Liu F, Xia L, Liu K, Zhang M, Chen K. New targets and designed inhibitors of ASAP Arf-GAPs derived from structural characterization of the ASAP1/440-kD ankyrin-B interaction. J Biol Chem 2024; 300:107762. [PMID: 39265663 PMCID: PMC11490884 DOI: 10.1016/j.jbc.2024.107762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/15/2024] [Accepted: 08/27/2024] [Indexed: 09/14/2024] Open
Abstract
ASAP1 and its paralog ASAP2 belong to a PI4,5P2-dependent Arf GTPase-activating protein (Arf-GAP) family capable of modulating membrane and cytoskeletal dynamics. ASAPs regulate cell adhesive structures such as invadosomes and focal adhesions during cell attachment and migration. Malfunctioning of ASAP1 has been implicated in the malignant phenotypes of various cancers. Here, we discovered that the SH3 domain of ASAP1 or ASAP2 specifically binds to a 12-residue, positively charged peptide fragment from the 440 kDa giant ankyrin-B, a neuronal axon specific scaffold protein. The high-resolution structure of the ASAP1-SH3 domain in complex with the gAnkB peptide revealed a noncanonical SH3-ligand binding mode with high affinity and specificity. Structural analysis of the complex readily uncovered a consensus ASAP1-SH3 binding motif, which allowed the discovery of a number of previously unknown binding partners of ASAP1-SH3 including Clasp1/Clasp2, ALS2, β-Pix, DAPK3, PHIP, and Limk1. Fittingly, these newly identified ASAP1 binding partners are primarily key modulators of the cytoskeletons. Finally, we designed a cell-penetrating, highly potent ASAP1 SH3 domain binding peptide with a Kd ∼7 nM as a tool for studying the roles of ASAPs in different cellular processes.
Collapse
Affiliation(s)
- Yubing Li
- Greater Bay Biomedical Innocenter, Shenzhen Bay Laboratory, Shenzhen, China; Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Yipeng Zhao
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Yaojun He
- Greater Bay Biomedical Innocenter, Shenzhen Bay Laboratory, Shenzhen, China
| | - Fang Liu
- Greater Bay Biomedical Innocenter, Shenzhen Bay Laboratory, Shenzhen, China
| | - Lu Xia
- Greater Bay Biomedical Innocenter, Shenzhen Bay Laboratory, Shenzhen, China
| | - Kai Liu
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Mingjie Zhang
- Greater Bay Biomedical Innocenter, Shenzhen Bay Laboratory, Shenzhen, China; School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Keyu Chen
- Greater Bay Biomedical Innocenter, Shenzhen Bay Laboratory, Shenzhen, China.
| |
Collapse
|
3
|
Jones CM, Rohwedder A, Suen KM, Mohajerani SZ, Calabrese AN, Knipp S, Bedford MT, Ladbury JE. Affinity purification mass spectrometry characterisation of the interactome of receptor tyrosine kinase proline-rich motifs in cancer. Heliyon 2024; 10:e35480. [PMID: 39165974 PMCID: PMC11334840 DOI: 10.1016/j.heliyon.2024.e35480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/25/2024] [Accepted: 07/29/2024] [Indexed: 08/22/2024] Open
Abstract
Receptor tyrosine kinase (RTK) overexpression is linked to the development and progression of multiple cancers. RTKs are classically considered to initiate cytoplasmic signalling pathways via ligand-induced tyrosine phosphorylation, however recent evidence points to a second tier of signalling contingent on interactions mediated by the proline-rich motif (PRM) regions of non-activated RTKs. The presence of PRMs on the C-termini of >40 % of all RTKs and the abundance of PRM-binding proteins encoded by the human genome suggests that there is likely to be a large number of previously unexplored interactions which add to the RTK intracellular interactome. Here, we explore the RTK PRM interactome and its potential significance using affinity purification mass spectrometry and in silico enrichment analyses. Peptides comprising PRM-containing C-terminal tail regions of EGFR, FGFR2 and HER2 were used as bait to affinity purify bound proteins from different cancer cell line lysates. 490 unique interactors were identified, amongst which proteins with metabolic, homeostatic and migratory functions were overrepresented. This suggests that PRMs from RTKs may sustain a diverse interactome in cancer cells. Since RTK overexpression is common in cancer, RTK PRM-derived signalling may be an important, but as yet underexplored, contributor to negative cancer outcomes including resistance to kinase inhibitors.
Collapse
Affiliation(s)
- Christopher M. Jones
- Department of Oncology, University of Cambridge, Cambridge, CB2 0XZ, UK
- Faculty of Biological Sciences, University of Leeds, Leeds, LJ2 9JT, UK
| | - Arndt Rohwedder
- Faculty of Biological Sciences, University of Leeds, Leeds, LJ2 9JT, UK
- Centre for Medical Research (ZMF), Johannes Kepler University, 4020 Linz, Austria
| | - Kin Man Suen
- Faculty of Biological Sciences, University of Leeds, Leeds, LJ2 9JT, UK
| | | | | | - Sabine Knipp
- Faculty of Biological Sciences, University of Leeds, Leeds, LJ2 9JT, UK
| | - Mark T. Bedford
- Department of Epigenetics & Molecular Carcinogenesis, University of Texas MD Anderson Cancer Centre, Houston, TX. TX 77230, USA
| | - John E. Ladbury
- Faculty of Biological Sciences, University of Leeds, Leeds, LJ2 9JT, UK
| |
Collapse
|
4
|
Pollet L, Xia Y. Structure-guided Evolutionary Analysis of Interactome Network Rewiring at Single Residue Resolution in Yeasts. J Mol Biol 2024; 436:168641. [PMID: 38844045 DOI: 10.1016/j.jmb.2024.168641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 04/30/2024] [Accepted: 06/01/2024] [Indexed: 06/16/2024]
Abstract
Protein-protein interactions (PPIs) are known to rewire extensively during evolution leading to lineage-specific and species-specific changes in molecular processes. However, the detailed molecular evolutionary mechanisms underlying interactome network rewiring are not well-understood. Here, we combine high-confidence PPI data, high-resolution three-dimensional structures of protein complexes, and homology-based structural annotation transfer to construct structurally-resolved interactome networks for the two yeasts S. cerevisiae and S. pombe. We then classify PPIs according to whether they are preserved or different between the two yeast species and compare site-specific evolutionary rates of interfacial versus non-interfacial residues for these different categories of PPIs. We find that residues in PPI interfaces evolve significantly more slowly than non-interfacial residues when using lineage-specific measures of evolutionary rate, but not when using non-lineage-specific measures. Furthermore, both lineage-specific and non-lineage-specific evolutionary rate measures can distinguish interfacial residues from non-interfacial residues for preserved PPIs between the two yeasts, but only the lineage-specific measure is appropriate for rewired PPIs. Finally, both lineage-specific and non-lineage-specific evolutionary rate measures are appropriate for elucidating structural determinants of protein evolution for residues outside of PPI interfaces. Overall, our results demonstrate that unlike tertiary structures of single proteins, PPIs and PPI interfaces can be highly volatile in their evolution, thus requiring the use of lineage-specific measures when studying their evolution. These results yield insight into the evolutionary design principles of PPIs and the mechanisms by which interactions are preserved or rewired between species, improving our understanding of the molecular evolution of PPIs and PPI interfaces at the residue level.
Collapse
Affiliation(s)
- Léah Pollet
- Department of Bioengineering, Faculty of Engineering, McGill University, Montreal, QC, Canada
| | - Yu Xia
- Department of Bioengineering, Faculty of Engineering, McGill University, Montreal, QC, Canada.
| |
Collapse
|
5
|
Gnyliukh N, Johnson A, Nagel MK, Monzer A, Babić D, Hlavata A, Alotaibi SS, Isono E, Loose M, Friml J. Role of the dynamin-related protein 2 family and SH3P2 in clathrin-mediated endocytosis in Arabidopsis thaliana. J Cell Sci 2024; 137:jcs261720. [PMID: 38506228 PMCID: PMC11112126 DOI: 10.1242/jcs.261720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 03/12/2024] [Indexed: 03/21/2024] Open
Abstract
Clathrin-mediated endocytosis (CME) is vital for the regulation of plant growth and development through controlling plasma membrane protein composition and cargo uptake. CME relies on the precise recruitment of regulators for vesicle maturation and release. Homologues of components of mammalian vesicle scission are strong candidates to be part of the scission machinery in plants, but the precise roles of these proteins in this process are not fully understood. Here, we characterised the roles of the plant dynamin-related protein 2 (DRP2) family (hereafter DRP2s) and SH3-domain containing protein 2 (SH3P2), the plant homologue to recruiters of dynamins, such as endophilin and amphiphysin, in CME by combining high-resolution imaging of endocytic events in vivo and characterisation of the purified proteins in vitro. Although DRP2s and SH3P2 arrive similarly late during CME and physically interact, genetic analysis of the sh3p123 triple mutant and complementation assays with non-SH3P2-interacting DRP2 variants suggest that SH3P2 does not directly recruit DRP2s to the site of endocytosis. These observations imply that, despite the presence of many well-conserved endocytic components, plants have acquired a distinct mechanism for CME.
Collapse
Affiliation(s)
- Nataliia Gnyliukh
- Institute of Science and Technology Austria (ISTA), 3400 Klosterneuburg, Austria
| | - Alexander Johnson
- Division of Anatomy, Centre for Anatomy & Cell Biology, Medical University of Vienna, 1090 Vienna, Austria
| | | | - Aline Monzer
- Institute of Science and Technology Austria (ISTA), 3400 Klosterneuburg, Austria
| | - David Babić
- Institute of Science and Technology Austria (ISTA), 3400 Klosterneuburg, Austria
| | - Annamaria Hlavata
- Institute of Science and Technology Austria (ISTA), 3400 Klosterneuburg, Austria
| | - Saqer S. Alotaibi
- Department of Biotechnology, College of Science, Taif University, Taif 21944, Saudi Arabia
| | - Erika Isono
- Department of Biology, University of Konstanz, 78464 Konstanz, Germany
| | - Martin Loose
- Institute of Science and Technology Austria (ISTA), 3400 Klosterneuburg, Austria
| | - Jiří Friml
- Institute of Science and Technology Austria (ISTA), 3400 Klosterneuburg, Austria
| |
Collapse
|
6
|
Binti S, Linder AG, Edeen PT, Fay DS. A conserved protein tyrosine phosphatase, PTPN-22, functions in diverse developmental processes in C. elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.12.584557. [PMID: 38559252 PMCID: PMC10980042 DOI: 10.1101/2024.03.12.584557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Protein tyrosine phosphatases non-receptor type (PTPNs) have been studied extensively in the context of the adaptive immune system; however, their roles beyond immunoregulation are less well explored. Here we identify novel functions for the conserved C. elegans phosphatase PTPN-22, establishing its role in nematode molting, cell adhesion, and cytoskeletal regulation. Through a non-biased genetic screen, we found that loss of PTPN-22 phosphatase activity suppressed molting defects caused by loss-of-function mutations in the conserved NIMA-related kinases NEKL-2 (human NEK8/NEK9) and NEKL-3 (human NEK6/NEK7), which act at the interface of membrane trafficking and actin regulation. To better understand the functions of PTPN-22, we carried out proximity labeling studies to identify candidate interactors of PTPN-22 during development. Through this approach we identified the CDC42 guanine-nucleotide exchange factor DNBP-1 (human DNMBP) as an in vivo partner of PTPN-22. Consistent with this interaction, loss of DNBP-1 also suppressed nekl-associated molting defects. Genetic analysis, co-localization studies, and proximity labeling revealed roles for PTPN-22 in several epidermal adhesion complexes, including C. elegans hemidesmosomes, suggesting that PTPN-22 plays a broad role in maintaining the structural integrity of tissues. Localization and proximity labeling also implicated PTPN-22 in functions connected to nucleocytoplasmic transport and mRNA regulation, particularly within the germline, as nearly one-third of proteins identified by PTPN-22 proximity labeling are known P granule components. Collectively, these studies highlight the utility of combined genetic and proteomic approaches for identifying novel gene functions.
Collapse
Affiliation(s)
- Shaonil Binti
- Department of Molecular Biology, College of Agriculture, Life Sciences and Natural Resources, University of Wyoming, 1000 E. University Ave., Laramie, Wyoming
| | - Adison G Linder
- Department of Molecular Biology, College of Agriculture, Life Sciences and Natural Resources, University of Wyoming, 1000 E. University Ave., Laramie, Wyoming
| | - Philip T Edeen
- Department of Molecular Biology, College of Agriculture, Life Sciences and Natural Resources, University of Wyoming, 1000 E. University Ave., Laramie, Wyoming
| | - David S Fay
- Department of Molecular Biology, College of Agriculture, Life Sciences and Natural Resources, University of Wyoming, 1000 E. University Ave., Laramie, Wyoming
| |
Collapse
|
7
|
Lemieux P, Bradley D, Dubé AK, Dionne U, Landry CR. Dissection of the role of a Src homology 3 domain in the evolution of binding preference of paralogous proteins. Genetics 2024; 226:iyad175. [PMID: 37793087 PMCID: PMC10763533 DOI: 10.1093/genetics/iyad175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/07/2023] [Accepted: 08/07/2023] [Indexed: 10/06/2023] Open
Abstract
Protein-protein interactions (PPIs) drive many cellular processes. Some interactions are directed by Src homology 3 (SH3) domains that bind proline-rich motifs on other proteins. The evolution of the binding specificity of SH3 domains is not completely understood, particularly following gene duplication. Paralogous genes accumulate mutations that can modify protein functions and, for SH3 domains, their binding preferences. Here, we examined how the binding of the SH3 domains of 2 paralogous yeast type I myosins, Myo3 and Myo5, evolved following duplication. We found that the paralogs have subtly different SH3-dependent interaction profiles. However, by swapping SH3 domains between the paralogs and characterizing the SH3 domains freed from their protein context, we find that very few of the differences in interactions, if any, depend on the SH3 domains themselves. We used ancestral sequence reconstruction to resurrect the preduplication SH3 domains and examined, moving back in time, how the binding preference changed. Although the most recent ancestor of the 2 domains had a very similar binding preference as the extant ones, older ancestral domains displayed a gradual loss of interaction with the modern interaction partners when inserted in the extant paralogs. Molecular docking and experimental characterization of the free ancestral domains showed that their affinity with the proline motifs is likely not the cause for this loss of binding. Taken together, our results suggest that a SH3 and its host protein could create intramolecular or allosteric interactions essential for the SH3-dependent PPIs, making domains not functionally equivalent even when they have the same binding specificity.
Collapse
Affiliation(s)
- Pascale Lemieux
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, 1030, Avenue de la Médecine, Québec, QC, Canada G1V 0A6
- Regroupement Québécois de Recherche sur la Fonction, l’Ingénierie et les Applications des Protéines, (PROTEO), Université Laval, 1045 Avenue de la Médecine, Québec, QC, Canada G1V 0A6
- Centre de recherche en données massives (CRDM), Université Laval, 1065, Avenue de la Médecine, Québec, QC, Canada G1V 0A6
- Département de biochimie, microbiologie et bio-informatique, Université Laval, 1045 Avenue de la Médecine, Québec, QC, Canada G1V 0A6
| | - David Bradley
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, 1030, Avenue de la Médecine, Québec, QC, Canada G1V 0A6
- Regroupement Québécois de Recherche sur la Fonction, l’Ingénierie et les Applications des Protéines, (PROTEO), Université Laval, 1045 Avenue de la Médecine, Québec, QC, Canada G1V 0A6
- Centre de recherche en données massives (CRDM), Université Laval, 1065, Avenue de la Médecine, Québec, QC, Canada G1V 0A6
- Département de biochimie, microbiologie et bio-informatique, Université Laval, 1045 Avenue de la Médecine, Québec, QC, Canada G1V 0A6
- Département de biologie, Université Laval, 1045 Avenue de la Médecine, Québec, QC, Canada G1V 0A6
| | - Alexandre K Dubé
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, 1030, Avenue de la Médecine, Québec, QC, Canada G1V 0A6
- Regroupement Québécois de Recherche sur la Fonction, l’Ingénierie et les Applications des Protéines, (PROTEO), Université Laval, 1045 Avenue de la Médecine, Québec, QC, Canada G1V 0A6
- Centre de recherche en données massives (CRDM), Université Laval, 1065, Avenue de la Médecine, Québec, QC, Canada G1V 0A6
- Département de biochimie, microbiologie et bio-informatique, Université Laval, 1045 Avenue de la Médecine, Québec, QC, Canada G1V 0A6
- Département de biologie, Université Laval, 1045 Avenue de la Médecine, Québec, QC, Canada G1V 0A6
| | - Ugo Dionne
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, 1030, Avenue de la Médecine, Québec, QC, Canada G1V 0A6
- Regroupement Québécois de Recherche sur la Fonction, l’Ingénierie et les Applications des Protéines, (PROTEO), Université Laval, 1045 Avenue de la Médecine, Québec, QC, Canada G1V 0A6
- Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec, Université Laval, Québec, QC, Canada G1R 2J6
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, Canada M5G 1X5
| | - Christian R Landry
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, 1030, Avenue de la Médecine, Québec, QC, Canada G1V 0A6
- Regroupement Québécois de Recherche sur la Fonction, l’Ingénierie et les Applications des Protéines, (PROTEO), Université Laval, 1045 Avenue de la Médecine, Québec, QC, Canada G1V 0A6
- Centre de recherche en données massives (CRDM), Université Laval, 1065, Avenue de la Médecine, Québec, QC, Canada G1V 0A6
- Département de biochimie, microbiologie et bio-informatique, Université Laval, 1045 Avenue de la Médecine, Québec, QC, Canada G1V 0A6
- Département de biologie, Université Laval, 1045 Avenue de la Médecine, Québec, QC, Canada G1V 0A6
| |
Collapse
|
8
|
Sim PF, Chek MF, Nguyen NTH, Nishimura T, Inaba T, Hakoshima T, Suetsugu S. The SH3 binding site in front of the WH1 domain contributes to the membrane binding of the BAR domain protein endophilin A2. J Biochem 2023; 175:57-67. [PMID: 37812440 DOI: 10.1093/jb/mvad065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/22/2023] [Accepted: 08/31/2023] [Indexed: 10/10/2023] Open
Abstract
The Bin-Amphiphysin-Rvs (BAR) domain of endophilin binds to the cell membrane and shapes it into a tubular shape for endocytosis. Endophilin has a Src-homology 3 (SH3) domain at their C-terminal. The SH3 domain interacts with the proline-rich motif (PRM) that is found in proteins such as neural Wiskott-Aldrich syndrome protein (N-WASP). Here, we re-examined the binding sites of the SH3 domain of endophilin in N-WASP by machine learning-based prediction and identified the previously unrecognized binding site. In addition to the well-recognized PRM at the central proline-rich region, we found a PRM in front of the N-terminal WASP homology 1 (WH1) domain of N-WASP (NtPRM) as a binding site of the endophilin SH3 domain. Furthermore, the diameter of the membrane tubules in the presence of NtPRM mutant was narrower and wider than that in the presence of N-WASP and in its absence, respectively. Importantly, the NtPRM of N-WASP was involved in the membrane localization of endophilin A2 in cells. Therefore, the NtPRM contributes to the binding of endophilin to N-WASP in membrane remodeling.
Collapse
Affiliation(s)
- Pei Fang Sim
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Min Fey Chek
- Institute for Research Initiatives, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Nhung Thi Hong Nguyen
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Tamako Nishimura
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Takehiko Inaba
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Toshio Hakoshima
- Institute for Research Initiatives, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Shiro Suetsugu
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
- Data Science Center, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
- Center for Digital Green-innovation, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| |
Collapse
|
9
|
Rodriguez-Polanco WR, Norris A, Velasco AB, Gleason AM, Grant BD. Syndapin and GTPase RAP-1 control endocytic recycling via RHO-1 and non-muscle myosin II. Curr Biol 2023; 33:4844-4856.e5. [PMID: 37832552 PMCID: PMC10841897 DOI: 10.1016/j.cub.2023.09.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 08/07/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023]
Abstract
After endocytosis, many plasma membrane components are recycled via membrane tubules that emerge from early endosomes to form recycling endosomes, eventually leading to their return to the plasma membrane. We previously showed that Syndapin/PACSIN-family protein SDPN-1 is required in vivo for basolateral endocytic recycling in the C. elegans intestine. Here, we document an interaction between the SDPN-1 SH3 domain and a target sequence in PXF-1/PDZ-GEF1/RAPGEF2, a known exchange factor for Rap-GTPases. We found that endogenous mutations engineered into the SDPN-1 SH3 domain, or its binding site in the PXF-1 protein, interfere with recycling in vivo, as does the loss of the PXF-1 target RAP-1. In some contexts, Rap-GTPases negatively regulate RhoA activity, suggesting a potential for Syndapin to regulate RhoA. Our results indicate that in the C. elegans intestine, RHO-1/RhoA is enriched on SDPN-1- and RAP-1-positive endosomes, and the loss of SDPN-1 or RAP-1 elevates RHO-1(GTP) levels on intestinal endosomes. Furthermore, we found that depletion of RHO-1 suppressed sdpn-1 mutant recycling defects, indicating that control of RHO-1 activity is a key mechanism by which SDPN-1 acts to promote endocytic recycling. RHO-1/RhoA is well known for controlling actomyosin contraction cycles, although little is known about the effects of non-muscle myosin II on endosomes. Our analysis found that non-muscle myosin II is enriched on SDPN-1-positive endosomes, with two non-muscle myosin II heavy-chain isoforms acting in apparent opposition. Depletion of nmy-2 inhibited recycling like sdpn-1 mutants, whereas depletion of nmy-1 suppressed sdpn-1 mutant recycling defects, indicating that actomyosin contractility controls recycling endosome function.
Collapse
Affiliation(s)
| | - Anne Norris
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08854, USA
| | - Agustin B Velasco
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08854, USA
| | - Adenrele M Gleason
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08854, USA; Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Barth D Grant
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08854, USA; Rutgers Center for Lipid Research, Rutgers, the State University of New Jersey, New Brunswick, NJ 08901-8521, USA.
| |
Collapse
|
10
|
Sanfeliu-Cerdán N, Català-Castro F, Mateos B, Garcia-Cabau C, Ribera M, Ruider I, Porta-de-la-Riva M, Canals-Calderón A, Wieser S, Salvatella X, Krieg M. A MEC-2/stomatin condensate liquid-to-solid phase transition controls neuronal mechanotransduction during touch sensing. Nat Cell Biol 2023; 25:1590-1599. [PMID: 37857834 PMCID: PMC10635833 DOI: 10.1038/s41556-023-01247-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/01/2023] [Indexed: 10/21/2023]
Abstract
A growing body of work suggests that the material properties of biomolecular condensates ensuing from liquid-liquid phase separation change with time. How this aging process is controlled and whether the condensates with distinct material properties can have different biological functions is currently unknown. Using Caenorhabditis elegans as a model, we show that MEC-2/stomatin undergoes a rigidity phase transition from fluid-like to solid-like condensates that facilitate transport and mechanotransduction, respectively. This switch is triggered by the interaction between the SH3 domain of UNC-89 (titin/obscurin) and MEC-2. We suggest that this rigidity phase transition has a physiological role in frequency-dependent force transmission in mechanosensitive neurons during body wall touch. Our data demonstrate a function for the liquid and solid phases of MEC-2/stomatin condensates in facilitating transport or mechanotransduction, and a previously unidentified role for titin homologues in neurons.
Collapse
Affiliation(s)
- Neus Sanfeliu-Cerdán
- ICFO - Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels (Barcelona), Spain
| | - Frederic Català-Castro
- ICFO - Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels (Barcelona), Spain
| | - Borja Mateos
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Carla Garcia-Cabau
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Maria Ribera
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Iris Ruider
- ICFO - Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels (Barcelona), Spain
| | - Montserrat Porta-de-la-Riva
- ICFO - Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels (Barcelona), Spain
| | - Adrià Canals-Calderón
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Stefan Wieser
- ICFO - Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels (Barcelona), Spain
| | - Xavier Salvatella
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Barcelona, Spain.
- ICREA, Barcelona, Spain.
| | - Michael Krieg
- ICFO - Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels (Barcelona), Spain.
| |
Collapse
|
11
|
Rodriguez-Polanco WR, Norris A, Velasco AB, Gleason AM, Grant BD. Syndapin Regulates the RAP-1 GTPase to Control Endocytic Recycling via RHO-1 and Non-Muscle Myosin II. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.27.530328. [PMID: 36909525 PMCID: PMC10002613 DOI: 10.1101/2023.02.27.530328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
After endocytosis, many plasma membrane components are recycled via narrow-diameter membrane tubules that emerge from early endosomes to form recycling endosomes, eventually leading to their return to the plasma membrane. We previously showed that the F-BAR and SH3 domain Syndapin/PACSIN-family protein SDPN-1 is required in vivo for basolateral endocytic recycling in the C. elegans intestine. Here we sought to determine the significance of a predicted interaction between the SDPN-1 SH3 domain and a target sequence in PXF-1/PDZ-GEF1/RAPGEF2, a known exchange factor for Rap-GTPases. We found that endogenous mutations we engineered into the SDPN-1 SH3 domain, or its binding site in the PXF-1 protein, interfere with recycling in vivo , as does loss of the PXF-1 target RAP-1. Rap-GTPases have been shown in several contexts to negatively regulate RhoA activity. Our results show that RHO-1/RhoA is enriched on SDPN-1 and RAP-1 positive endosomes in the C. elegans intestine, and loss of SDPN-1 or RAP-1 elevates RHO-1(GTP) levels on intestinal endosomes. Furthermore, we found that depletion of RHO-1 suppressed sdpn-1 mutant recycling defects, indicating that control of RHO-1 activity is a key mechanism by which SDPN-1 acts to promote endocytic recycling. RHO-1/RhoA is well-known for controlling actomyosin contraction cycles, although little is known of non-muscle myosin II on endosomes. Our analysis found that non-muscle myosin II is enriched on SDPN-1 positive endosomes, with two non-muscle myosin II heavy chain isoforms acting in apparent opposition. Depletion of nmy-2 inhibited recycling like sdpn-1 mutants, while depletion of nmy-1 suppressed sdpn-1 mutant recycling defects, indicating actomyosin contractility in controlling recycling endosome function.
Collapse
|
12
|
Salokas K, Liu X, Öhman T, Chowdhury I, Gawriyski L, Keskitalo S, Varjosalo M. Physical and functional interactome atlas of human receptor tyrosine kinases. EMBO Rep 2022; 23:e54041. [PMID: 35384245 PMCID: PMC9171411 DOI: 10.15252/embr.202154041] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 03/03/2022] [Accepted: 03/09/2022] [Indexed: 12/03/2022] Open
Abstract
Much cell-to-cell communication is facilitated by cell surface receptor tyrosine kinases (RTKs). These proteins phosphorylate their downstream cytoplasmic substrates in response to stimuli such as growth factors. Despite their central roles, the functions of many RTKs are still poorly understood. To resolve the lack of systematic knowledge, we apply three complementary methods to map the molecular context and substrate profiles of RTKs. We use affinity purification coupled to mass spectrometry (AP-MS) to characterize stable binding partners and RTK-protein complexes, proximity-dependent biotin identification (BioID) to identify transient and proximal interactions, and an in vitro kinase assay to identify RTK substrates. To identify how kinase interactions depend on kinase activity, we also use kinase-deficient mutants. Our data represent a comprehensive, systemic mapping of RTK interactions and substrates. This resource adds information regarding well-studied RTKs, offers insights into the functions of less well-studied RTKs, and highlights RTK-RTK interactions and shared signaling pathways.
Collapse
Affiliation(s)
- Kari Salokas
- Institute of BiotechnologyHiLIFEUniversity of HelsinkiHelsinkiFinland
| | - Xiaonan Liu
- Institute of BiotechnologyHiLIFEUniversity of HelsinkiHelsinkiFinland
| | - Tiina Öhman
- Institute of BiotechnologyHiLIFEUniversity of HelsinkiHelsinkiFinland
| | | | - Lisa Gawriyski
- Institute of BiotechnologyHiLIFEUniversity of HelsinkiHelsinkiFinland
| | - Salla Keskitalo
- Institute of BiotechnologyHiLIFEUniversity of HelsinkiHelsinkiFinland
| | - Markku Varjosalo
- Institute of BiotechnologyHiLIFEUniversity of HelsinkiHelsinkiFinland
| |
Collapse
|
13
|
Dionne U, Percival LJ, Chartier FJM, Landry CR, Bisson N. SRC homology 3 domains: multifaceted binding modules. Trends Biochem Sci 2022; 47:772-784. [PMID: 35562294 DOI: 10.1016/j.tibs.2022.04.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/30/2022] [Accepted: 04/11/2022] [Indexed: 12/15/2022]
Abstract
The assembly of complexes following the detection of extracellular signals is often controlled by signaling proteins comprising multiple peptide binding modules. The SRC homology (SH)3 family represents the archetypical modular protein interaction module, with ~300 annotated SH3 domains in humans that regulate an impressive array of signaling processes. We review recent findings regarding the allosteric contributions of SH3 domains host protein context, their phosphoregulation, and their roles in phase separation that challenge the simple model in which SH3s are considered to be portable domains binding to specific proline-rich peptide motifs.
Collapse
Affiliation(s)
- Ugo Dionne
- Centre de recherche sur le cancer et Centre de recherche du CHU de Québec - Université Laval, QC, Canada; Quebec Network for Research on Protein Function, Engineering, and Applications (PROTEO), QC, Canada
| | - Lily J Percival
- Centre de recherche sur le cancer et Centre de recherche du CHU de Québec - Université Laval, QC, Canada; Quebec Network for Research on Protein Function, Engineering, and Applications (PROTEO), QC, Canada; School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, The Michael Smith Building, Manchester, UK
| | - François J M Chartier
- Centre de recherche sur le cancer et Centre de recherche du CHU de Québec - Université Laval, QC, Canada; Quebec Network for Research on Protein Function, Engineering, and Applications (PROTEO), QC, Canada
| | - Christian R Landry
- Quebec Network for Research on Protein Function, Engineering, and Applications (PROTEO), QC, Canada; Institute of Integrative and Systems Biology, Université Laval, Quebec, QC, Canada; Department of Biochemistry, Microbiology and Bioinformatics, Université Laval, Quebec, QC, Canada; Department of Biology, Université Laval, Quebec, QC, Canada.
| | - Nicolas Bisson
- Centre de recherche sur le cancer et Centre de recherche du CHU de Québec - Université Laval, QC, Canada; Quebec Network for Research on Protein Function, Engineering, and Applications (PROTEO), QC, Canada; Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Quebec, QC, Canada.
| |
Collapse
|
14
|
Wadie B, Kleshchevnikov V, Sandaltzopoulou E, Benz C, Petsalaki E. Use of viral motif mimicry improves the proteome-wide discovery of human linear motifs. Cell Rep 2022; 39:110764. [PMID: 35508127 DOI: 10.1016/j.celrep.2022.110764] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 02/09/2022] [Accepted: 04/08/2022] [Indexed: 12/16/2022] Open
Abstract
Linear motifs have an integral role in dynamic cell functions, including cell signaling. However, due to their small size, low complexity, and frequent mutations, identifying novel functional motifs poses a challenge. Viruses rely extensively on the molecular mimicry of cellular linear motifs. In this study, we apply systematic motif prediction combined with functional filters to identify human linear motifs convergently evolved also in viral proteins. We observe an increase in the sensitivity of motif prediction and improved enrichment in known instances. We identify >7,300 non-redundant motif instances at various confidence levels, 99 of which are supported by all functional and structural filters. Overall, we provide a pipeline to improve the identification of functional linear motifs from interactomics datasets and a comprehensive catalog of putative human motifs that can contribute to our understanding of the human domain-linear motif code and the associated mechanisms of viral interference.
Collapse
Affiliation(s)
- Bishoy Wadie
- European Molecular Biology Laboratory - European Bioinformatics Institute, Wellcome Genome Campus, Hinxton CB10 1SD, UK
| | - Vitalii Kleshchevnikov
- European Molecular Biology Laboratory - European Bioinformatics Institute, Wellcome Genome Campus, Hinxton CB10 1SD, UK
| | - Elissavet Sandaltzopoulou
- European Molecular Biology Laboratory - European Bioinformatics Institute, Wellcome Genome Campus, Hinxton CB10 1SD, UK
| | - Caroline Benz
- Department of Chemistry - BMC, Uppsala University, Uppsala, Sweden
| | - Evangelia Petsalaki
- European Molecular Biology Laboratory - European Bioinformatics Institute, Wellcome Genome Campus, Hinxton CB10 1SD, UK.
| |
Collapse
|
15
|
Duan D, Hanson M, Holland DO, Johnson ME. Integrating protein copy numbers with interaction networks to quantify stoichiometry in clathrin-mediated endocytosis. Sci Rep 2022; 12:5413. [PMID: 35354856 PMCID: PMC8967901 DOI: 10.1038/s41598-022-09259-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 03/21/2022] [Indexed: 11/25/2022] Open
Abstract
Proteins that drive processes like clathrin-mediated endocytosis (CME) are expressed at copy numbers within a cell and across cell types varying from hundreds (e.g. auxilin) to millions (e.g. clathrin). These variations contain important information about function, but without integration with the interaction network, they cannot capture how supply and demand for each protein depends on binding to shared and distinct partners. Here we construct the interface-resolved network of 82 proteins involved in CME and establish a metric, a stoichiometric balance ratio (SBR), that quantifies whether each protein in the network has an abundance that is sub- or super-stoichiometric dependent on the global competition for binding. We find that highly abundant proteins (like clathrin) are super-stoichiometric, but that not all super-stoichiometric proteins are highly abundant, across three cell populations (HeLa, fibroblast, and neuronal synaptosomes). Most strikingly, within all cells there is significant competition to bind shared sites on clathrin and the central AP-2 adaptor by other adaptor proteins, resulting in most being in excess supply. Our network and systematic analysis, including response to perturbations of network components, show how competition for shared binding sites results in functionally similar proteins having widely varying stoichiometries, due to variations in both abundance and their unique network of binding partners.
Collapse
Affiliation(s)
- Daisy Duan
- TC Jenkins Department of Biophysics, Johns Hopkins University, 3400 N Charles St, Baltimore, MD, 21218, USA
| | - Meretta Hanson
- TC Jenkins Department of Biophysics, Johns Hopkins University, 3400 N Charles St, Baltimore, MD, 21218, USA
| | | | - Margaret E Johnson
- TC Jenkins Department of Biophysics, Johns Hopkins University, 3400 N Charles St, Baltimore, MD, 21218, USA.
| |
Collapse
|
16
|
Gorbushin AM. Identification of peptidoglycan recognition proteins in hemocytes and kidney of common periwinkle Littorinalittorea. FISH & SHELLFISH IMMUNOLOGY 2022; 120:11-14. [PMID: 34774730 DOI: 10.1016/j.fsi.2021.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/11/2021] [Accepted: 11/08/2021] [Indexed: 06/13/2023]
Abstract
Peptidoglycan Recognition Proteins (PGRPs) are a diverse group of proteins involved in innate immunity. In particular, PGRPs have been shown to participate in immune pattern recognition in various mollusks. However, they have not been described in Caenogastropoda, a large molluscan group comprising sea, freshwater and land snails. In this study, four short PGRPs with molecular weights ranging from 21 to 34 kDa and their isoforms were identified and structurally characterized in the kidney and hemocytic transcriptomes of a caenogastropod mollusk Littorina littorea. All of them (LlPGRP1-4) are secretory, possess a signal peptide and a characteristic N-terminal N-acetylmuramoyl-l-alanine amidase (Ami) domain with conserved Zn2+ binding- and amidase catalytic sites. The shortest proteins, LlPGRP1 and LlPGRP2, have no additional conserved motifs on the N-terminus. In longer and most abundantly expressed LlPGRP3 and LlPGRP4 the Ami-domain is combined with an N-terminal SH3-domain and a cysteine-rich motif, respectively. Expression analysis showed that LlPGRPs of the common periwinkle were uninvolved in the immune response to infection with trematode Himasthla elongata though they might act in antibacterial defense.
Collapse
Affiliation(s)
- Alexander M Gorbushin
- Sechenov Institute of Evolutionary Physiology and Biochemistry (IEPhB RAS), St Petersburg, Russia.
| |
Collapse
|
17
|
Hwang T, Parker SS, Hill SM, Ilunga MW, Grant RA, Mouneimne G, Keating AE. A distributed residue network permits conformational binding specificity in a conserved family of actin remodelers. eLife 2021; 10:e70601. [PMID: 34854809 PMCID: PMC8639148 DOI: 10.7554/elife.70601] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 11/08/2021] [Indexed: 11/23/2022] Open
Abstract
Metazoan proteomes contain many paralogous proteins that have evolved distinct functions. The Ena/VASP family of actin regulators consists of three members that share an EVH1 interaction domain with a 100 % conserved binding site. A proteome-wide screen revealed photoreceptor cilium actin regulator (PCARE) as a high-affinity ligand for ENAH EVH1. Here, we report the surprising observation that PCARE is ~100-fold specific for ENAH over paralogs VASP and EVL and can selectively bind ENAH and inhibit ENAH-dependent adhesion in cells. Specificity arises from a mechanism whereby PCARE stabilizes a conformation of the ENAH EVH1 domain that is inaccessible to family members VASP and EVL. Structure-based modeling rapidly identified seven residues distributed throughout EVL that are sufficient to differentiate binding by ENAH vs. EVL. By exploiting the ENAH-specific conformation, we rationally designed the tightest and most selective ENAH binder to date. Our work uncovers a conformational mechanism of interaction specificity that distinguishes highly similar paralogs and establishes tools for dissecting specific Ena/VASP functions in processes including cancer cell invasion.
Collapse
Affiliation(s)
- Theresa Hwang
- Department of Biology, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Sara S Parker
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, University of ArizonaTucsonUnited States
| | - Samantha M Hill
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, University of ArizonaTucsonUnited States
| | - Meucci W Ilunga
- Department of Biology, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Robert A Grant
- Department of Biology, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Ghassan Mouneimne
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, University of ArizonaTucsonUnited States
| | - Amy E Keating
- Department of Biology, Massachusetts Institute of TechnologyCambridgeUnited States
- Department of Biological Engineering and Koch Institue for Integrative Cancer Research, Massachusetts Institute of TechnologyCambridgeUnited States
| |
Collapse
|
18
|
Protein context shapes the specificity of SH3 domain-mediated interactions in vivo. Nat Commun 2021; 12:1597. [PMID: 33712617 PMCID: PMC7954794 DOI: 10.1038/s41467-021-21873-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 02/17/2021] [Indexed: 02/07/2023] Open
Abstract
Protein–protein interactions (PPIs) between modular binding domains and their target peptide motifs are thought to largely depend on the intrinsic binding specificities of the domains. The large family of SRC Homology 3 (SH3) domains contribute to cellular processes via their ability to support such PPIs. While the intrinsic binding specificities of SH3 domains have been studied in vitro, whether each domain is necessary and sufficient to define PPI specificity in vivo is largely unknown. Here, by combining deletion, mutation, swapping and shuffling of SH3 domains and measurements of their impact on protein interactions in yeast, we find that most SH3s do not dictate PPI specificity independently from their host protein in vivo. We show that the identity of the host protein and the position of the SH3 domains within their host are critical for PPI specificity, for cellular functions and for key biophysical processes such as phase separation. Our work demonstrates the importance of the interplay between a modular PPI domain such as SH3 and its host protein in establishing specificity to wire PPI networks. These findings will aid understanding how protein networks are rewired during evolution and in the context of mutation-driven diseases such as cancer. The SRC Homology 3 (SH3) domains mediate protein–protein interactions (PPIs). Here, the authors assess the SH3-mediated PPIs in yeast, and show that the identity of the protein itself and the position of the SH3 both affect the interaction specificity and thus the PPI-dependent cellular functions.
Collapse
|
19
|
Lucken-Ardjomande Häsler S, Vallis Y, Pasche M, McMahon HT. GRAF2, WDR44, and MICAL1 mediate Rab8/10/11-dependent export of E-cadherin, MMP14, and CFTR ΔF508. J Cell Biol 2021; 219:151714. [PMID: 32344433 PMCID: PMC7199855 DOI: 10.1083/jcb.201811014] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 11/07/2019] [Accepted: 02/26/2020] [Indexed: 02/07/2023] Open
Abstract
In addition to the classical pathway of secretion, some transmembrane proteins reach the plasma membrane through alternative routes. Several proteins transit through endosomes and are exported in a Rab8-, Rab10-, and/or Rab11-dependent manner. GRAFs are membrane-binding proteins associated with tubules and vesicles. We found extensive colocalization of GRAF1b/2 with Rab8a/b and partial with Rab10. We identified MICAL1 and WDR44 as direct GRAF-binding partners. MICAL1 links GRAF1b/2 to Rab8a/b and Rab10, and WDR44 binds Rab11. Endogenous WDR44 labels a subset of tubular endosomes, which are closely aligned with the ER via binding to VAPA/B. With its BAR domain, GRAF2 can tubulate membranes, and in its absence WDR44 tubules are not observed. We show that GRAF2 and WDR44 are essential for the export of neosynthesized E-cadherin, MMP14, and CFTR ΔF508, three proteins whose exocytosis is sensitive to ER stress. Overexpression of dominant negative mutants of GRAF1/2, WDR44, and MICAL1 also interferes with it, facilitating future studies of Rab8/10/11-dependent exocytic pathways of central importance in biology.
Collapse
Affiliation(s)
| | - Yvonne Vallis
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Mathias Pasche
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Harvey T McMahon
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| |
Collapse
|
20
|
Teyra J, Kelil A, Jain S, Helmy M, Jajodia R, Hooda Y, Gu J, D’Cruz AA, Nicholson SE, Min J, Sudol M, Kim PM, Bader GD, Sidhu SS. Large-scale survey and database of high affinity ligands for peptide recognition modules. Mol Syst Biol 2020; 16:e9310. [PMID: 33438817 PMCID: PMC7724964 DOI: 10.15252/msb.20199310] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/03/2020] [Accepted: 11/04/2020] [Indexed: 12/13/2022] Open
Abstract
Many proteins involved in signal transduction contain peptide recognition modules (PRMs) that recognize short linear motifs (SLiMs) within their interaction partners. Here, we used large-scale peptide-phage display methods to derive optimal ligands for 163 unique PRMs representing 79 distinct structural families. We combined the new data with previous data that we collected for the large SH3, PDZ, and WW domain families to assemble a database containing 7,984 unique peptide ligands for 500 PRMs representing 82 structural families. For 74 PRMs, we acquired enough new data to map the specificity profiles in detail and derived position weight matrices and binding specificity logos based on multiple peptide ligands. These analyses showed that optimal peptide ligands resembled peptides observed in existing structures of PRM-ligand complexes, indicating that a large majority of the phage-derived peptides are likely to target natural peptide-binding sites and could thus act as inhibitors of natural protein-protein interactions. The complete dataset has been assembled in an online database (http://www.prm-db.org) that will enable many structural, functional, and biological studies of PRMs and SLiMs.
Collapse
Affiliation(s)
- Joan Teyra
- The Donnelly CentreUniversity of TorontoTorontoONCanada
| | | | - Shobhit Jain
- The Donnelly CentreUniversity of TorontoTorontoONCanada
- Department of Computer ScienceUniversity of TorontoTorontoONCanada
| | - Mohamed Helmy
- The Donnelly CentreUniversity of TorontoTorontoONCanada
- Present address:
Singapore Institute of Food and Biotechnology Innovation (SIFBI)Agency for ScienceTechnology and Research (A*STAR)Singapore CitySingapore
| | - Raghav Jajodia
- Indian Institute of Engineering Science and TechnologyShibpurIndia
| | - Yogesh Hooda
- The Donnelly CentreUniversity of TorontoTorontoONCanada
- Present address:
MRC Laboratory of Molecular BiologyCambridgeUK
| | - Jun Gu
- The Donnelly CentreUniversity of TorontoTorontoONCanada
| | - Akshay A D’Cruz
- The Walter and Eliza Hall Institute of Medical ResearchParkvilleVic.Australia
| | - Sandra E Nicholson
- The Walter and Eliza Hall Institute of Medical ResearchParkvilleVic.Australia
| | - Jinrong Min
- Structural Genomics ConsortiumUniversity of TorontoTorontoONCanada
- Department of PhysiologyUniversity of TorontoTorontoONCanada
| | - Marius Sudol
- Department of MedicineIcahn School of Medicine at Mount SinaiNew YorkNYUSA
| | - Philip M Kim
- The Donnelly CentreUniversity of TorontoTorontoONCanada
- Department of Computer ScienceUniversity of TorontoTorontoONCanada
- Department of Molecular GeneticsUniversity of TorontoTorontoONCanada
| | - Gary D Bader
- The Donnelly CentreUniversity of TorontoTorontoONCanada
- Department of Computer ScienceUniversity of TorontoTorontoONCanada
- Department of Molecular GeneticsUniversity of TorontoTorontoONCanada
| | - Sachdev S Sidhu
- The Donnelly CentreUniversity of TorontoTorontoONCanada
- Department of Molecular GeneticsUniversity of TorontoTorontoONCanada
| |
Collapse
|
21
|
Roy J, Cyert MS. Identifying New Substrates and Functions for an Old Enzyme: Calcineurin. Cold Spring Harb Perspect Biol 2020; 12:a035436. [PMID: 31308145 PMCID: PMC7050593 DOI: 10.1101/cshperspect.a035436] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Biological processes are dynamically regulated by signaling networks composed of protein kinases and phosphatases. Calcineurin, or PP3, is a conserved phosphoserine/phosphothreonine-specific protein phosphatase and member of the PPP family of phosphatases. Calcineurin is unique, however, in its activation by Ca2+ and calmodulin. This ubiquitously expressed phosphatase controls Ca2+-dependent processes in all human tissues, but is best known for driving the adaptive immune response by dephosphorylating the nuclear factor of the activated T-cells (NFAT) family of transcription factors. Therefore, calcineurin inhibitors, FK506 (tacrolimus), and cyclosporin A serve as immunosuppressants. We describe some of the adverse effects associated with calcineurin inhibitors that result from inhibition of calcineurin in nonimmune tissues, illustrating the many functions of this enzyme that have yet to be elucidated. In fact, calcineurin has essential roles beyond the immune system, from yeast to humans, but since its discovery more than 30 years ago, only a small number of direct calcineurin substrates have been shown (∼75 proteins). This is because of limitations in current methods for identification of phosphatase substrates. Here we discuss recent insights into mechanisms of calcineurin activation and substrate recognition that have been critical in the development of novel approaches for identifying its targets systematically. Rather than comprehensively reviewing known functions of calcineurin, we highlight new approaches to substrate identification for this critical regulator that may reveal molecular mechanisms underlying toxicities caused by calcineurin inhibitor-based immunosuppression.
Collapse
Affiliation(s)
- Jagoree Roy
- Department of Biology, Stanford University, Stanford, California 94305-5020
| | - Martha S Cyert
- Department of Biology, Stanford University, Stanford, California 94305-5020
| |
Collapse
|
22
|
Dubreuil B, Matalon O, Levy ED. Protein Abundance Biases the Amino Acid Composition of Disordered Regions to Minimize Non-functional Interactions. J Mol Biol 2019; 431:4978-4992. [PMID: 31442477 PMCID: PMC6941228 DOI: 10.1016/j.jmb.2019.08.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 08/07/2019] [Accepted: 08/10/2019] [Indexed: 02/07/2023]
Abstract
In eukaryotes, disordered regions cover up to 50% of proteomes and mediate fundamental cellular processes. In contrast to globular domains, where about half of the amino acids are buried in the protein interior, disordered regions show higher solvent accessibility, which makes them prone to engage in non-functional interactions. Such interactions are exacerbated by the law of mass action, prompting the question of how they are minimized in abundant proteins. We find that interaction propensity or "stickiness" of disordered regions negatively correlates with their cellular abundance, both in yeast and human. Strikingly, considering yeast proteins where a large fraction of the sequence is disordered, the correlation between stickiness and abundance reaches R=-0.55. Beyond this global amino-acid composition bias, we identify three rules by which amino-acid composition of disordered regions adjusts with high abundance. First, lysines are preferred over arginines, consistent with the latter amino acid being stickier than the former. Second, compensatory effects exist, whereby a sticky region can be tolerated if it is compensated by a distal non-sticky region. Third, such compensation requires a lower average stickiness at the same abundance when compared to a scenario where stickiness is homogeneous throughout the sequence. We validate these rules experimentally, employing them as different strategies to rescue an otherwise sticky protein fragment from aggregation. Our results highlight that non-functional interactions represent a significant constraint in cellular systems and reveal simple rules by which protein sequences adapt to that constraint. Data from this work are deposited in Figshare, at https://doi.org/10.6084/m9.figshare.8068937.v3.
Collapse
Affiliation(s)
- Benjamin Dubreuil
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Or Matalon
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Emmanuel D Levy
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel.
| |
Collapse
|
23
|
Baquero Forero A, Cvrčková F. SH3Ps-Evolution and Diversity of a Family of Proteins Engaged in Plant Cytokinesis. Int J Mol Sci 2019; 20:ijms20225623. [PMID: 31717902 PMCID: PMC6888108 DOI: 10.3390/ijms20225623] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/04/2019] [Accepted: 11/06/2019] [Indexed: 01/02/2023] Open
Abstract
SH3P2 (At4g34660), an Arabidopsis thaliana SH3 and Bin/amphiphysin/Rvs (BAR) domain-containing protein, was reported to have a specific role in cell plate assembly, unlike its paralogs SH3P1 (At1g31440) and SH3P3 (At4g18060). SH3P family members were also predicted to interact with formins—evolutionarily conserved actin nucleators that participate in microtubule organization and in membrane–cytoskeleton interactions. To trace the origin of functional specialization of plant SH3Ps, we performed phylogenetic analysis of SH3P sequences from selected plant lineages. SH3Ps are present in charophytes, liverworts, mosses, lycophytes, gymnosperms, and angiosperms, but not in volvocal algae, suggesting association of these proteins with phragmoplast-, but not phycoplast-based cell division. Separation of three SH3P clades, represented by SH3P1, SH3P2, and SH3P3 of A. thaliana, appears to be a seed plant synapomorphy. In the yeast two hybrid system, Arabidopsis SH3P3, but not SH3P2, binds the FH1 and FH2 domains of the formin FH5 (At5g54650), known to participate in cytokinesis, while an opposite binding specificity was found for the dynamin homolog DRP1A (At5g42080), confirming earlier findings. This suggests that the cytokinetic role of SH3P2 is not due to its interaction with FH5. Possible determinants of interaction specificity of SH3P2 and SH3P3 were identified bioinformatically.
Collapse
|
24
|
Engineering selective competitors for the discrimination of highly conserved protein-protein interaction modules. Nat Commun 2019; 10:4521. [PMID: 31586061 PMCID: PMC6778148 DOI: 10.1038/s41467-019-12528-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 09/14/2019] [Indexed: 12/13/2022] Open
Abstract
Designing highly specific modulators of protein-protein interactions (PPIs) is especially challenging in the context of multiple paralogs and conserved interaction surfaces. In this case, direct generation of selective and competitive inhibitors is hindered by high similarity within the evolutionary-related protein interfaces. We report here a strategy that uses a semi-rational approach to separate the modulator design into two functional parts. We first achieve specificity toward a region outside of the interface by using phage display selection coupled with molecular and cellular validation. Highly selective competition is then generated by appending the more degenerate interaction peptide to contact the target interface. We apply this approach to specifically bind a single PDZ domain within the postsynaptic protein PSD-95 over highly similar PDZ domains in PSD-93, SAP-97 and SAP-102. Our work provides a paralog-selective and domain specific inhibitor of PSD-95, and describes a method to efficiently target other conserved PPI modules. Developing inhibitors that target specific protein-protein interactions (PPIs) is challenging. Here, the authors show that target selectivity and PPI blocking can be achieved simultaneously with PPI inhibitors that contain two functional modules, and create a paralog-selective PSD-95 inhibitor as proof-of-concept.
Collapse
|
25
|
Lee LYH, Loscalzo J. Network Medicine in Pathobiology. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:1311-1326. [PMID: 31014954 DOI: 10.1016/j.ajpath.2019.03.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 03/05/2019] [Indexed: 12/11/2022]
Abstract
The past decade has witnessed exponential growth in the generation of high-throughput human data across almost all known dimensions of biological systems. The discipline of network medicine has rapidly evolved in parallel, providing an unbiased, comprehensive biological framework through which to interrogate and integrate systematically these large-scale, multi-omic data to enhance our understanding of disease mechanisms and to design drugs that reflect a deep knowledge of molecular pathobiology. In this review, we discuss the key principles of network medicine and the human disease network and explore the latest applications of network medicine in this multi-omic era. We also highlight the current conceptual and technological challenges, which serve as exciting opportunities by which to improve and expand the network-based applications beyond the artificial boundaries of the current state of human pathobiology.
Collapse
Affiliation(s)
| | - Joseph Loscalzo
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
26
|
Remmelzwaal S, Boxem M. Protein interactome mapping in Caenorhabditis elegans. CURRENT OPINION IN SYSTEMS BIOLOGY 2019; 13:1-9. [PMID: 32984658 PMCID: PMC7493430 DOI: 10.1016/j.coisb.2018.08.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The systematic identification of all protein-protein interactions that take place in an organism (the 'interactome') is an important goal in modern biology. The nematode Caenorhabditis elegans was one of the first multicellular models for which a proteome-wide interactome mapping project was initiated. Most Caenorhabditis elegans interactome mapping efforts have utilized the yeast two-hybrid system, yielding an extensive binary interactome, while recent developments in mass spectrometry-based approaches hold great potential for further improving our understanding of protein interactome networks in a multicellular context. For example, methods like co-fractionation, proximity labeling, and tissue-specific protein purification not only identify protein-protein interactions, but have the potential to provide crucial insight into when and where interactions take place. Here we review current standards and recent improvements in protein interaction mapping in C. elegans.
Collapse
Affiliation(s)
- Sanne Remmelzwaal
- Developmental Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, the Netherlands
| | - Mike Boxem
- Developmental Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, the Netherlands
| |
Collapse
|
27
|
Miao Y, Tipakornsaowapak T, Zheng L, Mu Y, Lewellyn E. Phospho-regulation of intrinsically disordered proteins for actin assembly and endocytosis. FEBS J 2018; 285:2762-2784. [PMID: 29722136 DOI: 10.1111/febs.14493] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 04/04/2018] [Accepted: 04/26/2018] [Indexed: 12/13/2022]
Abstract
Actin filament assembly contributes to the endocytic pathway pleiotropically, with active roles in clathrin-dependent and clathrin-independent endocytosis as well as subsequent endosomal trafficking. Endocytosis comprises a series of dynamic events, including the initiation of membrane curvature, bud invagination, vesicle abscission and subsequent vesicular transport. The ultimate success of endocytosis requires the coordinated activities of proteins that trigger actin polymerization, recruit actin-binding proteins (ABPs) and organize endocytic proteins (EPs) that promote membrane curvature through molecular crowding or scaffolding mechanisms. A particularly interesting phenomenon is that multiple EPs and ABPs contain a substantial percentage of intrinsically disordered regions (IDRs), which can contribute to protein coacervation and phase separation. In addition, intrinsically disordered proteins (IDPs) frequently contain sites for post-translational modifications (PTMs) such as phosphorylation, and these modifications exhibit a high preference for IDR residues [Groban ES et al. (2006) PLoS Comput Biol 2, e32]. PTMs are implicated in regulating protein function by modulating the protein conformation, protein-protein interactions and the transition between order and disorder states of IDPs. The molecular mechanisms by which IDRs of ABPs and EPs fine-tune actin assembly and endocytosis remain mostly unexplored and elusive. In this review, we analyze protein sequences of budding yeast EPs and ABPs, and discuss the potential underlying mechanisms for regulating endocytosis and actin assembly through the emerging concept of IDR-mediated protein multivalency, coacervation, and phase transition, with an emphasis on the phospho-regulation of IDRs. Finally, we summarize the current understanding of how these mechanisms coordinate actin cytoskeleton assembly and membrane curvature formation during endocytosis in budding yeast.
Collapse
Affiliation(s)
- Yansong Miao
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.,School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
| | | | - Liangzhen Zheng
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Yuguang Mu
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Eric Lewellyn
- Department of Biology, Division of Natural Sciences, St Norbert College, De Pere, WI, USA
| |
Collapse
|
28
|
Comprehensive Analysis of the Human SH3 Domain Family Reveals a Wide Variety of Non-canonical Specificities. Structure 2017; 25:1598-1610.e3. [DOI: 10.1016/j.str.2017.07.017] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 06/20/2017] [Accepted: 07/28/2017] [Indexed: 01/31/2023]
|
29
|
Sun Y, Leong NT, Jiang T, Tangara A, Darzacq X, Drubin DG. Switch-like Arp2/3 activation upon WASP and WIP recruitment to an apparent threshold level by multivalent linker proteins in vivo. eLife 2017; 6. [PMID: 28813247 PMCID: PMC5559269 DOI: 10.7554/elife.29140] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 07/14/2017] [Indexed: 01/09/2023] Open
Abstract
Actin-related protein 2/3 (Arp2/3) complex activation by nucleation promoting factors (NPFs) such as WASP, plays an important role in many actin-mediated cellular processes. In yeast, Arp2/3-mediated actin filament assembly drives endocytic membrane invagination and vesicle scission. Here we used genetics and quantitative live-cell imaging to probe the mechanisms that concentrate NPFs at endocytic sites, and to investigate how NPFs regulate actin assembly onset. Our results demonstrate that SH3 (Src homology 3) domain-PRM (proline-rich motif) interactions involving multivalent linker proteins play central roles in concentrating NPFs at endocytic sites. Quantitative imaging suggested that productive actin assembly initiation is tightly coupled to accumulation of threshold levels of WASP and WIP, but not to recruitment kinetics or release of autoinhibition. These studies provide evidence that WASP and WIP play central roles in establishment of a robust multivalent SH3 domain-PRM network in vivo, giving actin assembly onset at endocytic sites a switch-like behavior. DOI:http://dx.doi.org/10.7554/eLife.29140.001 Actin is one of the most abundant proteins in yeast, mammalian and other eukaryotic cells. It assembles into long chains known as filaments that the cell uses to generate forces for various purposes. For example, actin filaments are needed to pull part of the membrane surrounding the cell inwards to bring molecules from the external environment into the cell by a process called endocytosis. In yeast, a member of the WASP family of proteins promotes the assembly of actin filaments around the site where endocytosis will occur. To achieve this, WASP interacts with several other proteins including WIP and myosin, a motor protein that moves along actin filaments to generate mechanical forces. However, it was not clear how these proteins work together to trigger actin filaments to assemble at the right place and time. Sun et al. addressed this question by studying yeast cells with genetic mutations affecting one or more of these proteins. The experiments show that WASP, myosin and WIP are recruited to sites where endocytosis is about to occur through specific interactions with other proteins. For example, a region of WASP known as the proline-rich domain can bind to proteins that contain an “SH3” domain. WASP and WIP arrive first, stimulating actin to assemble in an “all and nothing” manner and attracting myosin to the actin. Further experiments indicate that WASP and WIP need to reach a threshold level before actin starts to assemble. The findings of Sun et al. suggest that WASP and WIP play key roles in establishing the network of proteins needed for actin filaments to assemble during endocytosis. These proteins are needed for many other processes in yeast and other cells, including mammalian cells. Therefore, the next steps will be to investigate whether WASP and WIP use the same mechanism to operate in other situations. DOI:http://dx.doi.org/10.7554/eLife.29140.002
Collapse
Affiliation(s)
- Yidi Sun
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Nicole T Leong
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Tommy Jiang
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Astou Tangara
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Xavier Darzacq
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - David G Drubin
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| |
Collapse
|
30
|
Holland DO, Shapiro BH, Xue P, Johnson ME. Protein-protein binding selectivity and network topology constrain global and local properties of interface binding networks. Sci Rep 2017; 7:5631. [PMID: 28717235 PMCID: PMC5514078 DOI: 10.1038/s41598-017-05686-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 06/01/2017] [Indexed: 01/30/2023] Open
Abstract
Protein-protein interactions networks (PPINs) are known to share a highly conserved structure across all organisms. What is poorly understood, however, is the structure of the child interface interaction networks (IINs), which map the binding sites proteins use for each interaction. In this study we analyze four independently constructed IINs from yeast and humans and find a conserved structure of these networks with a unique topology distinct from the parent PPIN. Using an IIN sampling algorithm and a fitness function trained on the manually curated PPINs, we show that IIN topology can be mostly explained as a balance between limits on interface diversity and a need for physico-chemical binding complementarity. This complementarity must be optimized both for functional interactions and against mis-interactions, and this selectivity is encoded in the IIN motifs. To test whether the parent PPIN shapes IINs, we compared optimal IINs in biological PPINs versus random PPINs. We found that the hubs in biological networks allow for selective binding with minimal interfaces, suggesting that binding specificity is an additional pressure for a scale-free-like PPIN. We confirm through phylogenetic analysis that hub interfaces are strongly conserved and rewiring of interactions between proteins involved in endocytosis preserves interface binding selectivity.
Collapse
Affiliation(s)
- David O Holland
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Benjamin H Shapiro
- Department of Biophysics, Johns Hopkins University, Baltimore, Maryland, USA
| | - Pei Xue
- Department of Biophysics, Johns Hopkins University, Baltimore, Maryland, USA
| | - Margaret E Johnson
- Department of Biophysics, Johns Hopkins University, Baltimore, Maryland, USA.
| |
Collapse
|
31
|
Law F, Seo JH, Wang Z, DeLeon JL, Bolis Y, Brown A, Zong WX, Du G, Rocheleau CE. The VPS34 PI3K negatively regulates RAB-5 during endosome maturation. J Cell Sci 2017; 130:2007-2017. [PMID: 28455411 DOI: 10.1242/jcs.194746] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 04/25/2017] [Indexed: 12/20/2022] Open
Abstract
The GTPase Rab5 and phosphatidylinositol-3 phosphate [PI(3)P] coordinately regulate endosome trafficking. Rab5 recruits Vps34, the class III phosphoinositide 3-kinase (PI3K), to generate PI(3)P and recruit PI(3)P-binding proteins. Loss of Rab5 and loss of Vps34 have opposite effects on endosome size, suggesting that our understanding of how Rab5 and PI(3)P cooperate is incomplete. Here, we report a novel regulatory loop whereby Caenorhabditis elegans VPS-34 inactivates RAB-5 via recruitment of the TBC-2 Rab GTPase-activating protein. We found that loss of VPS-34 caused a phenotype with large late endosomes, as with loss of TBC-2, and that Rab5 activity (mice have two Rab5 isoforms, Rab5a and Rab5b) is increased in Vps34-knockout mouse embryonic fibroblasts (Vps34 is also known as PIK3C3 in mammals). We found that VPS-34 is required for TBC-2 endosome localization and that the pleckstrin homology (PH) domain of TBC-2 bound PI(3)P. Deletion of the PH domain enhanced TBC-2 localization to endosomes in a VPS-34-dependent manner. Thus, PI(3)P binding of the PH domain might be permissive for another PI(3)P-regulated interaction that recruits TBC-2 to endosomes. Therefore, VPS-34 recruits TBC-2 to endosomes to inactivate RAB-5 to ensure the directionality of endosome maturation.
Collapse
Affiliation(s)
- Fiona Law
- Division of Endocrinology and Metabolism, Departments of Medicine, and Anatomy and Cell Biology, McGill University, and the Program in Metabolic Disorders and Complications, Centre for Translational Biology, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada H4A 3J1
| | - Jung Hwa Seo
- Division of Endocrinology and Metabolism, Departments of Medicine, and Anatomy and Cell Biology, McGill University, and the Program in Metabolic Disorders and Complications, Centre for Translational Biology, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada H4A 3J1
| | - Ziqing Wang
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Jennifer L DeLeon
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Yousstina Bolis
- Division of Endocrinology and Metabolism, Departments of Medicine, and Anatomy and Cell Biology, McGill University, and the Program in Metabolic Disorders and Complications, Centre for Translational Biology, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada H4A 3J1
| | - Ashley Brown
- Division of Endocrinology and Metabolism, Departments of Medicine, and Anatomy and Cell Biology, McGill University, and the Program in Metabolic Disorders and Complications, Centre for Translational Biology, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada H4A 3J1
| | - Wei-Xing Zong
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11794, USA.,Department of Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Guangwei Du
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Christian E Rocheleau
- Division of Endocrinology and Metabolism, Departments of Medicine, and Anatomy and Cell Biology, McGill University, and the Program in Metabolic Disorders and Complications, Centre for Translational Biology, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada H4A 3J1
| |
Collapse
|
32
|
Teuliere J, Garriga G. Size Matters: How C. elegans Asymmetric Divisions Regulate Apoptosis. Results Probl Cell Differ 2017; 61:141-163. [PMID: 28409303 DOI: 10.1007/978-3-319-53150-2_6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Abstract
Apoptosis is a form of programmed cell death used by metazoans to eliminate abnormal cells, control cell number, and shape the development of organs. The use of the nematode Caenorhabditis elegans as a model for the study of apoptosis has led to important insights into how cells die and how their corpses are removed. Eighty percent of these apoptotic cell deaths occur during nervous system development and in daughters of neuroblasts that divide asymmetrically. Pioneering work defined a conserved apoptosis pathway that is initiated in C. elegans by the BH3-only protein EGL-1 and that leads to the activation of the caspase CED-3. While the execution of the apoptotic fate is well understood, much less is known about the mechanisms that specify the apoptotic fate of particular cells. In some cells fated to die, this regulation occurs at the level of the egl-1 gene transcription, and investigators have identified several lineage-specific transcription factors that both positively and negatively regulate egl-1. In this review, we focus on a second set of molecules that appear to influence apoptosis by controlling the position of the cleavage plane in divisions that produce apoptotic cells.
Collapse
Affiliation(s)
- Jerome Teuliere
- Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA
| | - Gian Garriga
- Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA.
| |
Collapse
|
33
|
Hwang J, Kim YL, Kang S, Kim S, Kim SO, Lee JH, Han DH. Genetic analysis of hereditary gingival fibromatosis using whole exome sequencing and bioinformatics. Oral Dis 2016; 23:102-109. [DOI: 10.1111/odi.12583] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 07/14/2016] [Accepted: 08/30/2016] [Indexed: 12/22/2022]
Affiliation(s)
- J Hwang
- Department of IT Convergence and Engineering; Pohang University of Science and Technology; Pohang Korea
| | - Y-L Kim
- Department of Prosthodontics; College of Dentistry; Yonsei University; Seoul Korea
| | - S Kang
- Department of Prosthodontics; College of Dentistry; Yonsei University; Seoul Korea
| | - S Kim
- Department of Life Sciences; Pohang University of Science and Technology; Pohang Korea
| | - S-O Kim
- Department of Pediatric Dentistry; College of Dentistry; Yonsei University; Seoul Korea
| | - JH Lee
- Department of Prosthodontics; College of Dentistry; Yonsei University; Seoul Korea
| | - D-H Han
- Department of Prosthodontics; College of Dentistry; Yonsei University; Seoul Korea
| |
Collapse
|
34
|
Kazlauskas A, Schmotz C, Kesti T, Hepojoki J, Kleino I, Kaneko T, Li SSC, Saksela K. Large-Scale Screening of Preferred Interactions of Human Src Homology-3 (SH3) Domains Using Native Target Proteins as Affinity Ligands. Mol Cell Proteomics 2016; 15:3270-3281. [PMID: 27440912 DOI: 10.1074/mcp.m116.060483] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Indexed: 12/17/2022] Open
Abstract
The Src Homology-3 (SH3) domains are ubiquitous protein modules that mediate important intracellular protein interactions via binding to short proline-rich consensus motifs in their target proteins. The affinity and specificity of such core SH3 - ligand contacts are typically modest, but additional binding interfaces can give rise to stronger and more specific SH3-mediated interactions. To understand how commonly such robust SH3 interactions occur in the human protein interactome, and to identify these in an unbiased manner we have expressed 324 predicted human SH3 ligands as full-length proteins in mammalian cells, and screened for their preferred SH3 partners using a phage display-based approach. This discovery platform contains an essentially complete repertoire of the ∼300 human SH3 domains, and involves an inherent binding threshold that ensures selective identification of only SH3 interactions with relatively high affinity. Such strong and selective SH3 partners could be identified for only 19 of these 324 predicted ligand proteins, suggesting that the majority of human SH3 interactions are relatively weak, and thereby have capacity for only modest inherent selectivity. The panel of exceptionally robust SH3 interactions identified here provides a rich source of leads and hypotheses for further studies. However, a truly comprehensive characterization of the human SH3 interactome will require novel high-throughput methods based on function instead of absolute binding affinity.
Collapse
Affiliation(s)
- Arunas Kazlauskas
- From the ‡Department of Virology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Constanze Schmotz
- From the ‡Department of Virology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Tapio Kesti
- From the ‡Department of Virology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Jussi Hepojoki
- From the ‡Department of Virology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Iivari Kleino
- From the ‡Department of Virology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Tomonori Kaneko
- §Department of Biochemistry and the Siebens-Drake Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Shawn S C Li
- §Department of Biochemistry and the Siebens-Drake Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Kalle Saksela
- From the ‡Department of Virology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland;
| |
Collapse
|
35
|
Jain S, Bader GD. Predicting physiologically relevant SH3 domain mediated protein-protein interactions in yeast. Bioinformatics 2016; 32:1865-72. [PMID: 26861823 PMCID: PMC4908317 DOI: 10.1093/bioinformatics/btw045] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 12/05/2015] [Accepted: 01/20/2016] [Indexed: 12/02/2022] Open
Abstract
MOTIVATION Many intracellular signaling processes are mediated by interactions involving peptide recognition modules such as SH3 domains. These domains bind to small, linear protein sequence motifs which can be identified using high-throughput experimental screens such as phage display. Binding motif patterns can then be used to computationally predict protein interactions mediated by these domains. While many protein-protein interaction prediction methods exist, most do not work with peptide recognition module mediated interactions or do not consider many of the known constraints governing physiologically relevant interactions between two proteins. RESULTS A novel method for predicting physiologically relevant SH3 domain-peptide mediated protein-protein interactions in S. cerevisae using phage display data is presented. Like some previous similar methods, this method uses position weight matrix models of protein linear motif preference for individual SH3 domains to scan the proteome for potential hits and then filters these hits using a range of evidence sources related to sequence-based and cellular constraints on protein interactions. The novelty of this approach is the large number of evidence sources used and the method of combination of sequence based and protein pair based evidence sources. By combining different peptide and protein features using multiple Bayesian models we are able to predict high confidence interactions with an overall accuracy of 0.97. AVAILABILITY AND IMPLEMENTATION Domain-Motif Mediated Interaction Prediction (DoMo-Pred) command line tool and all relevant datasets are available under GNU LGPL license for download from http://www.baderlab.org/Software/DoMo-Pred The DoMo-Pred command line tool is implemented using Python 2.7 and C ++. CONTACT gary.bader@utoronto.ca SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Shobhit Jain
- Department of Computer Science and The Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - Gary D Bader
- Department of Computer Science and The Donnelly Centre, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
36
|
Van Roey K, Davey NE. Motif co-regulation and co-operativity are common mechanisms in transcriptional, post-transcriptional and post-translational regulation. Cell Commun Signal 2015; 13:45. [PMID: 26626130 PMCID: PMC4666095 DOI: 10.1186/s12964-015-0123-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 11/24/2015] [Indexed: 01/01/2023] Open
Abstract
A substantial portion of the regulatory interactions in the higher eukaryotic cell are mediated by simple sequence motifs in the regulatory segments of genes and (pre-)mRNAs, and in the intrinsically disordered regions of proteins. Although these regulatory modules are physicochemically distinct, they share an evolutionary plasticity that has facilitated a rapid growth of their use and resulted in their ubiquity in complex organisms. The ease of motif acquisition simplifies access to basal housekeeping functions, facilitates the co-regulation of multiple biomolecules allowing them to respond in a coordinated manner to changes in the cell state, and supports the integration of multiple signals for combinatorial decision-making. Consequently, motifs are indispensable for temporal, spatial, conditional and basal regulation at the transcriptional, post-transcriptional and post-translational level. In this review, we highlight that many of the key regulatory pathways of the cell are recruited by motifs and that the ease of motif acquisition has resulted in large networks of co-regulated biomolecules. We discuss how co-operativity allows simple static motifs to perform the conditional regulation that underlies decision-making in higher eukaryotic biological systems. We observe that each gene and its products have a unique set of DNA, RNA or protein motifs that encode a regulatory program to define the logical circuitry that guides the life cycle of these biomolecules, from transcription to degradation. Finally, we contrast the regulatory properties of protein motifs and the regulatory elements of DNA and (pre-)mRNAs, advocating that co-regulation, co-operativity, and motif-driven regulatory programs are common mechanisms that emerge from the use of simple, evolutionarily plastic regulatory modules.
Collapse
Affiliation(s)
- Kim Van Roey
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), 69117, Heidelberg, Germany.
- Health Services Research Unit, Operational Direction Public Health and Surveillance, Scientific Institute of Public Health (WIV-ISP), 1050, Brussels, Belgium.
| | - Norman E Davey
- Conway Institute of Biomolecular and Biomedical Sciences, University College Dublin, Dublin 4, Ireland.
| |
Collapse
|
37
|
Davey NE, Cyert MS, Moses AM. Short linear motifs - ex nihilo evolution of protein regulation. Cell Commun Signal 2015; 13:43. [PMID: 26589632 PMCID: PMC4654906 DOI: 10.1186/s12964-015-0120-z] [Citation(s) in RCA: 150] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Accepted: 11/13/2015] [Indexed: 12/12/2022] Open
Abstract
Short sequence motifs are ubiquitous across the three major types of biomolecules: hundreds of classes and thousands of instances of DNA regulatory elements, RNA motifs and protein short linear motifs (SLiMs) have been characterised. The increase in complexity of transcriptional, post-transcriptional and post-translational regulation in higher Eukaryotes has coincided with a significant expansion of motif use. But how did the eukaryotic cell acquire such a vast repertoire of motifs? In this review, we curate the available literature on protein motif evolution and discuss the evidence that suggests SLiMs can be acquired by mutations, insertions and deletions in disordered regions. We propose a mechanism of ex nihilo SLiM evolution – the evolution of a novel SLiM from “nothing” – adding a functional module to a previously non-functional region of protein sequence. In our model, hundreds of motif-binding domains in higher eukaryotic proteins connect simple motif specificities with useful functions to create a large functional motif space. Accessible peptides that match the specificity of these motif-binding domains are continuously created and destroyed by mutations in rapidly evolving disordered regions, creating a dynamic supply of new interactions that may have advantageous phenotypic novelty. This provides a reservoir of diversity to modify existing interaction networks. Evolutionary pressures will act on these motifs to retain beneficial instances. However, most will be lost on an evolutionary timescale as negative selection and genetic drift act on deleterious and neutral motifs respectively. In light of the parallels between the presented model and the evolution of motifs in the regulatory segments of genes and (pre-)mRNAs, we suggest our understanding of regulatory networks would benefit from the creation of a shared model describing the evolution of transcriptional, post-transcriptional and post-translational regulation.
Collapse
Affiliation(s)
- Norman E Davey
- Conway Institute of Biomolecular and Biomedical Sciences, University College Dublin, Dublin 4, Ireland.
| | - Martha S Cyert
- Department of Biology, Stanford University, Stanford, CA, 94305, USA.
| | - Alan M Moses
- Department of Cell & Systems Biology, University of Toronto, Toronto, Canada. .,Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Canada.
| |
Collapse
|
38
|
Basolateral Endocytic Recycling Requires RAB-10 and AMPH-1 Mediated Recruitment of RAB-5 GAP TBC-2 to Endosomes. PLoS Genet 2015; 11:e1005514. [PMID: 26393361 PMCID: PMC4578947 DOI: 10.1371/journal.pgen.1005514] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Accepted: 08/18/2015] [Indexed: 11/27/2022] Open
Abstract
The small GTPase RAB-5/Rab5 is a master regulator of the early endosome, required for a myriad of coordinated activities, including the degradation and recycling of internalized cargo. Here we focused on the recycling function of the early endosome and the regulation of RAB-5 by GAP protein TBC-2 in the basolateral C. elegans intestine. We demonstrate that downstream basolateral recycling regulators, GTPase RAB-10/Rab10 and BAR domain protein AMPH-1/Amphiphysin, bind to TBC-2 and help to recruit it to endosomes. In the absence of RAB-10 or AMPH-1 binding to TBC-2, RAB-5 membrane association is abnormally high and recycling cargo is trapped in early endosomes. Furthermore, the loss of TBC-2 or AMPH-1 leads to abnormally high spatial overlap of RAB-5 and RAB-10. Taken together our results indicate that RAB-10 and AMPH-1 mediated down-regulation of RAB-5 is an important step in recycling, required for cargo exit from early endosomes and regulation of early endosome–recycling endosome interactions. When cargo is internalized from the cell surface by endocytosis, it enters a series of intracellular organelles called endosomes. Endosomes sort cargo, such that some cargos are sent to the lysosome for degradation, while others are recycled to the plasma membrane. Small GTPase proteins of the Rabs family are master regulators of endosomes, functioning by acting as molecular switches. As cargo moves through the endosomal system, it must pass from the domain controlled by one Rab-GTPase to the domain controlled by another. Little is known about how transitions along the recycling pathway are controlled. Here we analyze a group of protein interactions that act along the early-to-recycling pathway. Our work shows that RAB-5 deactivation mediated by TBC-2 and its recruiters RAB-10 and AMPH-1 is important for cargo recycling. This work provides mechanistic insight into how Rab proteins controlling different steps of trafficking interact during endocytic recycling.
Collapse
|
39
|
Domain function dissection and catalytic properties of Listeria monocytogenes p60 protein with bacteriolytic activity. Appl Microbiol Biotechnol 2015; 99:10527-37. [PMID: 26363556 DOI: 10.1007/s00253-015-6967-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 08/12/2015] [Accepted: 08/23/2015] [Indexed: 02/07/2023]
Abstract
The major extracellular protein p60 of Listeria monocytogenes (Lm-p60) is an autolysin that can hydrolyze the peptidoglycan of bacterial cell wall and has been shown to be required for L. monocytogenes virulence. The predicted three-dimensional structure of Lm-p60 showed that Lm-p60 could be split into two independent structural domains at the amino acid residue 270. Conserved motif analysis showed that V30, D207, S395, and H444 are the key amino acid residues of the corresponding motifs. However, not only the actual functions of these two domains but also the catalytic properties of Lm-p60 are unclear. We try to express recombinant Lm-p60 and identify the functions of two domains by residue substitution (V30A, D207A, S395A, and H444A) and peptide truncation. The C-terminal domain was identified as catalytic element and N-terminal domain as substrate recognition and binding element. Either N-terminal domain truncation or C-terminal domain truncation presents corresponding biological activity. The catalytic activity of Lm-p60 with a malfunctioned substrate-binding domain was decreased, while the substrate binding was not affected by a mulfunctioned catalytic domain. With turbidimetric method, we determined the optimal conditions for the bacteriolytic activity of Lm-p60 against Micrococcus lysodeikficus. The assay for the effect of Lm-p60 on the bacteriolytic activity of lysozyme revealed that the combined use of Lm-p60 protein with lysozyme showed a strong synergistic effect on the bacteriolytic activity.
Collapse
|
40
|
Blikstad C, Ivarsson Y. High-throughput methods for identification of protein-protein interactions involving short linear motifs. Cell Commun Signal 2015; 13:38. [PMID: 26297553 PMCID: PMC4546347 DOI: 10.1186/s12964-015-0116-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 08/11/2015] [Indexed: 02/07/2023] Open
Abstract
Interactions between modular domains and short linear motifs (3–10 amino acids peptide stretches) are crucial for cell signaling. The motifs typically reside in the disordered regions of the proteome and the interactions are often transient, allowing for rapid changes in response to changing stimuli. The properties that make domain-motif interactions suitable for cell signaling also make them difficult to capture experimentally and they are therefore largely underrepresented in the known protein-protein interaction networks. Most of the knowledge on domain-motif interactions is derived from low-throughput studies, although there exist dedicated high-throughput methods for the identification of domain-motif interactions. The methods include arrays of peptides or proteins, display of peptides on phage or yeast, and yeast-two-hybrid experiments. We here provide a survey of scalable methods for domain-motif interaction profiling. These methods have frequently been applied to a limited number of ubiquitous domain families. It is now time to apply them to a broader set of peptide binding proteins, to provide a comprehensive picture of the linear motifs in the human proteome and to link them to their potential binding partners. Despite the plethora of methods, it is still a challenge for most approaches to identify interactions that rely on post-translational modification or context dependent or conditional interactions, suggesting directions for further method development.
Collapse
Affiliation(s)
- Cecilia Blikstad
- Department of Chemistry - BMC, Husargatan 3, 751 23, Uppsala, Sweden
| | - Ylva Ivarsson
- Department of Chemistry - BMC, Husargatan 3, 751 23, Uppsala, Sweden.
| |
Collapse
|
41
|
All-or-(N)One - an epistemological characterization of the human tumorigenic neuronal paralogous FAM72 gene loci. Genomics 2015. [PMID: 26206078 DOI: 10.1016/j.ygeno.2015.07.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
FAM72 is a novel neuronal progenitor cell (NPC) self-renewal supporting protein expressed under physiological conditions at low levels in other tissues. Accumulating data indicate the potential pivotal tumourigenic effects of FAM72. Our in silico human genome-wide analysis (GWA) revealed that the FAM72 gene family consists of four human-specific paralogous members, all of which are located on chromosome (chr) 1. Unique asymmetric FAM72 segmental gene duplications are most likely to have occurred in conjunction with the paired genomic neighbour SRGAP2 (SLIT-ROBO Rho GTPase activating protein), as both genes have four paralogues in humans but only one vertebra-emerging orthologue in all other species. No species with two or three FAM72/SRGAP2 gene pairs could be identified, and the four exclusively human-defining ohnologues, with different mutation patterns in Homo neanderthalensis and Denisova hominin, may remain under epigenetic control through long non-coding (lnc) RNAs.
Collapse
|
42
|
GreedyPlus: An Algorithm for the Alignment of Interface Interaction Networks. Sci Rep 2015; 5:12074. [PMID: 26165520 PMCID: PMC4499810 DOI: 10.1038/srep12074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 06/15/2015] [Indexed: 11/08/2022] Open
Abstract
The increasing ease and accuracy of protein-protein interaction detection has resulted in the ability to map the interactomes of multiple species. We now have an opportunity to compare species to better understand how interactomes evolve. As DNA and protein sequence alignment algorithms were required for comparative genomics, network alignment algorithms are required for comparative interactomics. A number of network alignment methods have been developed for protein-protein interaction networks, where proteins are represented as vertices linked by edges if they interact. Recently, protein interactions have been mapped at the level of amino acid positions, which can be represented as an interface-interaction network (IIN), where vertices represent binding sites, such as protein domains and short sequence motifs. However, current algorithms are not designed to align these networks and generally fail to do so in practice. We present a greedy algorithm, GreedyPlus, for IIN alignment, combining data from diverse sources, including network, protein and binding site properties, to identify putative orthologous relationships between interfaces in available worm and yeast data. GreedyPlus is fast and simple, allowing for easy customization of behaviour, yet still capable of generating biologically meaningful network alignments.
Collapse
|
43
|
Verschueren E, Spiess M, Gkourtsa A, Avula T, Landgraf C, Mancilla VT, Huber A, Volkmer R, Winsor B, Serrano L, Hochstenbach F, Distel B. Evolution of the SH3 Domain Specificity Landscape in Yeasts. PLoS One 2015; 10:e0129229. [PMID: 26068101 PMCID: PMC4466140 DOI: 10.1371/journal.pone.0129229] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 05/06/2015] [Indexed: 11/18/2022] Open
Abstract
To explore the conservation of Src homology 3 (SH3) domain-mediated networks in evolution, we compared the specificity landscape of these domains among four yeast species, Saccharomyces cerevisiae, Ashbya gossypii, Candida albicans, and Schizosaccharomyces pombe, encompassing 400 million years of evolution. We first aligned and catalogued the families of SH3-containing proteins in these four species to determine the relationships between homologous domains. Then, we tagged and purified all soluble SH3 domains (82 in total) to perform a quantitative peptide assay (SPOT) for each SH3 domain. All SPOT readouts were hierarchically clustered and we observed that the organization of the SH3 specificity landscape in three distinct profile classes remains conserved across these four yeast species. We also produced a specificity profile for each SH3 domain from manually aligned top SPOT hits and compared the within-family binding motif consensus. This analysis revealed a striking example of binding motif divergence in a C. albicans Rvs167 paralog, which cannot be explained by overall SH3 sequence or interface residue divergence, and we validated this specificity change with a yeast two-hybrid (Y2H) assay. In addition, we show that position-weighted matrices (PWM) compiled from SPOT assays can be used for binding motif screening in potential binding partners and present cases where motifs are either conserved or lost among homologous SH3 interacting proteins. Finally, by comparing pairwise SH3 sequence identity to binding profile correlation we show that for ~75% of all analyzed families the SH3 specificity profile was remarkably conserved over a large evolutionary distance. Thus, a high sequence identity within an SH3 domain family predicts conserved binding specificity, whereas divergence in sequence identity often coincided with a change in binding specificity within this family. As such, our results are important for future studies aimed at unraveling complex specificity networks of peptide recognition domains in higher eukaryotes, including mammals.
Collapse
Affiliation(s)
- Erik Verschueren
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation-CRG, Barcelona, Spain
| | - Matthias Spiess
- Department of Molecular and Cellular Genetics, UMR7156, Université de Strasbourg and CNRS, Strasbourg, France
| | - Areti Gkourtsa
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Teja Avula
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Christiane Landgraf
- Institut für Medizinische Immunologie, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Victor Tapia Mancilla
- Department of Molecular and Cellular Genetics, UMR7156, Université de Strasbourg and CNRS, Strasbourg, France
- Institut für Medizinische Immunologie, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Aline Huber
- Department of Molecular and Cellular Genetics, UMR7156, Université de Strasbourg and CNRS, Strasbourg, France
| | - Rudolf Volkmer
- Institut für Medizinische Immunologie, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Barbara Winsor
- Department of Molecular and Cellular Genetics, UMR7156, Université de Strasbourg and CNRS, Strasbourg, France
| | - Luis Serrano
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation-CRG, Barcelona, Spain
| | - Frans Hochstenbach
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Ben Distel
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- * E-mail:
| |
Collapse
|
44
|
Palacios-Moreno J, Foltz L, Guo A, Stokes MP, Kuehn ED, George L, Comb M, Grimes ML. Neuroblastoma tyrosine kinase signaling networks involve FYN and LYN in endosomes and lipid rafts. PLoS Comput Biol 2015; 11:e1004130. [PMID: 25884760 PMCID: PMC4401789 DOI: 10.1371/journal.pcbi.1004130] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 01/14/2015] [Indexed: 12/16/2022] Open
Abstract
Protein phosphorylation plays a central role in creating a highly dynamic network of interacting proteins that reads and responds to signals from growth factors in the cellular microenvironment. Cells of the neural crest employ multiple signaling mechanisms to control migration and differentiation during development. It is known that defects in these mechanisms cause neuroblastoma, but how multiple signaling pathways interact to govern cell behavior is unknown. In a phosphoproteomic study of neuroblastoma cell lines and cell fractions, including endosomes and detergent-resistant membranes, 1622 phosphorylated proteins were detected, including more than half of the receptor tyrosine kinases in the human genome. Data were analyzed using a combination of graph theory and pattern recognition techniques that resolve data structure into networks that incorporate statistical relationships and protein-protein interaction data. Clusters of proteins in these networks are indicative of functional signaling pathways. The analysis indicates that receptor tyrosine kinases are functionally compartmentalized into distinct collaborative groups distinguished by activation and intracellular localization of SRC-family kinases, especially FYN and LYN. Changes in intracellular localization of activated FYN and LYN were observed in response to stimulation of the receptor tyrosine kinases, ALK and KIT. The results suggest a mechanism to distinguish signaling responses to activation of different receptors, or combinations of receptors, that govern the behavior of the neural crest, which gives rise to neuroblastoma. Neuroblastoma is a childhood cancer for which therapeutic progress has been slow. We analyzed a large number phosphorylated proteins in neuroblastoma cells to discern patterns that indicate functional signal transduction pathways. To analyze the data, we developed novel techniques that resolve data structure and visualize that structure as networks that represent both protein interactions and statistical relationships. We also fractionated neuroblastoma cells to examine the location of signaling proteins in different membrane fractions and organelles. The analysis revealed that signaling pathways are functionally and physically compartmentalized into distinct collaborative groups distinguished by phosphorylation patterns and intracellular localization. We found that two related proteins (FYN and LYN) act like central hubs in the tyrosine kinase signaling network that change intracellular localization and activity in response to activation of different receptors.
Collapse
Affiliation(s)
- Juan Palacios-Moreno
- Division of Biological Sciences, Center for Structural and Functional Neuroscience, University of Montana, Missoula, Montana, United States of America
| | - Lauren Foltz
- Division of Biological Sciences, Center for Structural and Functional Neuroscience, University of Montana, Missoula, Montana, United States of America
| | - Ailan Guo
- Cell Signaling Technology, Inc., Danvers, Massachusetts, United States of America
| | - Matthew P. Stokes
- Cell Signaling Technology, Inc., Danvers, Massachusetts, United States of America
| | - Emily D. Kuehn
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Lynn George
- Department of Cell Biology and Neuroscience, Montana State University, Bozeman, Montana, United States of America
| | - Michael Comb
- Cell Signaling Technology, Inc., Danvers, Massachusetts, United States of America
| | - Mark L. Grimes
- Division of Biological Sciences, Center for Structural and Functional Neuroscience, University of Montana, Missoula, Montana, United States of America
- * E-mail:
| |
Collapse
|
45
|
Chen G, Gorelik L, Simon KJ, Pavlenco A, Cheung A, Brickelmaier M, Chen LL, Jin P, Weinreb PH, Sidhu SS. Synthetic antibodies and peptides recognizing progressive multifocal leukoencephalopathy-specific point mutations in polyomavirus JC capsid viral protein 1. MAbs 2015; 7:681-92. [PMID: 25879139 PMCID: PMC4623438 DOI: 10.1080/19420862.2015.1038447] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 03/18/2015] [Accepted: 04/01/2015] [Indexed: 10/23/2022] Open
Abstract
Polyomavirus JC (JCV) is the causative agent of progressive multifocal leukoencephalopathy (PML), a rare and frequently fatal brain disease that afflicts a small fraction of the immune-compromised population, including those affected by AIDS and transplantation recipients on immunosuppressive drug therapy. Currently there is no specific therapy for PML. The major capsid viral protein 1 (VP1) involved in binding to sialic acid cell receptors is believed to be a key player in pathogenesis. PML-specific mutations in JCV VP1 sequences present at the binding pocket of sialic acid cell receptors, such as L55F and S269F, abolish sialic acid recognition and might favor PML onset. Early diagnosis of these PML-specific mutations may help identify patients at high risk of PML, thus reducing the risks associated with immunosuppressive therapy. As a first step in the development of such early diagnostic tools, we report identification and characterization of affinity reagents that specifically recognize PML-specific mutations in VP1 variants using phage display technology. We first identified 2 peptides targeting wild type VP1 with moderate specificity. Fine-tuning via selection of biased libraries designed based on 2 parental peptides yielded peptides with different, yet still moderate, bindinspecificities. In contrast, we had great success in identifying synthetic antibodies that recognize one of the PML-specific mutations (L55F) with high specificity from the phage-displayed libraries. These peptides and synthetic antibodies represent potential candidates for developing tailored immune-based assays for PML risk stratification in addition to complementing affinity reagents currently available for the study of PML and JCV.
Collapse
Key Words
- BSA, bovine serum albumin
- CDR, complementarity determining region
- CSF, cerebrospinal fluid
- D66H, Asp to His mutation at position 66
- DHFR, dihydrofolate reductase
- ELISA, enzyme linked immunosorbent assay
- HRP, horseradish peroxidase
- IPTG, isopropyl β-D-1-thiogalactopyranoside
- JC virus
- JCV, polyomavirus JC
- L55F, Leu to Phe mutation at position 55
- P8, M13 major coat protein
- PBS, phosphate-buffered saline
- PCR, polymerase chain reaction
- PML, progressive multifocal leukoencephalopathy
- S269F, Ser to Phe mutation at position 269
- TMB, 3,3',5,5'-tetramethylbenzidine
- VLP, virus-like particle
- VP1, major capsid viral protein 1
- WT: type 3 wild type JCV VP1
- phage display
- protein engineering
- synthetic antibody
- virus-like particle
Collapse
Affiliation(s)
- Gang Chen
- Banting and Best Department of Medical Research; Terrence Donnelly Centre for Cellular and Biomolecular Research; University of Toronto; Toronto, Ontario, Canada
| | | | | | - Alevtina Pavlenco
- Banting and Best Department of Medical Research; Terrence Donnelly Centre for Cellular and Biomolecular Research; University of Toronto; Toronto, Ontario, Canada
| | | | | | | | | | | | - Sachdev S Sidhu
- Banting and Best Department of Medical Research; Terrence Donnelly Centre for Cellular and Biomolecular Research; University of Toronto; Toronto, Ontario, Canada
| |
Collapse
|
46
|
Bai Z, Grant BD. A TOCA/CDC-42/PAR/WAVE functional module required for retrograde endocytic recycling. Proc Natl Acad Sci U S A 2015; 112:E1443-52. [PMID: 25775511 PMCID: PMC4378436 DOI: 10.1073/pnas.1418651112] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Endosome-to-Golgi transport is required for the function of many key membrane proteins and lipids, including signaling receptors, small-molecule transporters, and adhesion proteins. The retromer complex is well-known for its role in cargo sorting and vesicle budding from early endosomes, in most cases leading to cargo fusion with the trans-Golgi network (TGN). Transport from recycling endosomes to the TGN has also been reported, but much less is understood about the molecules that mediate this transport step. Here we provide evidence that the F-BAR domain proteins TOCA-1 and TOCA-2 (Transducer of Cdc42 dependent actin assembly), the small GTPase CDC-42 (Cell division control protein 42), associated polarity proteins PAR-6 (Partitioning defective 6) and PKC-3/atypical protein kinase C, and the WAVE actin nucleation complex mediate the transport of MIG-14/Wls and TGN-38/TGN38 cargo proteins from the recycling endosome to the TGN in Caenorhabditis elegans. Our results indicate that CDC-42, the TOCA proteins, and the WAVE component WVE-1 are enriched on RME-1-positive recycling endosomes in the intestine, unlike retromer components that act on early endosomes. Furthermore, we find that retrograde cargo TGN-38 is trapped in early endosomes after depletion of SNX-3 (a retromer component) but is mainly trapped in recycling endosomes after depletion of CDC-42, indicating that the CDC-42-associated complex functions after retromer in a distinct organelle. Thus, we identify a group of interacting proteins that mediate retrograde recycling, and link these proteins to a poorly understood trafficking step, recycling endosome-to-Golgi transport. We also provide evidence for the physiological importance of this pathway in WNT signaling.
Collapse
Affiliation(s)
- Zhiyong Bai
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08854
| | - Barth D Grant
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08854
| |
Collapse
|
47
|
Guiney EL, Goldman AR, Elias JE, Cyert MS. Calcineurin regulates the yeast synaptojanin Inp53/Sjl3 during membrane stress. Mol Biol Cell 2015; 26:769-85. [PMID: 25518934 PMCID: PMC4325846 DOI: 10.1091/mbc.e14-05-1019] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 12/04/2014] [Accepted: 12/11/2014] [Indexed: 11/12/2022] Open
Abstract
During hyperosmotic shock, Saccharomyces cerevisiae adjusts to physiological challenges, including large plasma membrane invaginations generated by rapid cell shrinkage. Calcineurin, the Ca(2+)/calmodulin-dependent phosphatase, is normally cytosolic but concentrates in puncta and at sites of polarized growth during intense osmotic stress; inhibition of calcineurin-activated gene expression suggests that restricting its access to substrates tunes calcineurin signaling specificity. Hyperosmotic shock promotes calcineurin binding to and dephosphorylation of the PI(4,5)P2 phosphatase synaptojanin/Inp53/Sjl3 and causes dramatic calcineurin-dependent reorganization of PI(4,5)P2-enriched membrane domains. Inp53 normally promotes sorting at the trans-Golgi network but localizes to cortical actin patches in osmotically stressed cells. By activating Inp53, calcineurin repolarizes the actin cytoskeleton and maintains normal plasma membrane morphology in synaptojanin-limited cells. In response to hyperosmotic shock and calcineurin-dependent regulation, Inp53 shifts from associating predominantly with clathrin to interacting with endocytic proteins Sla1, Bzz1, and Bsp1, suggesting that Inp53 mediates stress-specific endocytic events. This response has physiological and molecular similarities to calcineurin-regulated activity-dependent bulk endocytosis in neurons, which retrieves a bolus of plasma membrane deposited by synaptic vesicle fusion. We propose that activation of Ca(2+)/calcineurin and PI(4,5)P2 signaling to regulate endocytosis is a fundamental and conserved response to excess membrane in eukaryotic cells.
Collapse
Affiliation(s)
- Evan L Guiney
- Department of Biology, Stanford University, Stanford, CA 94305
| | - Aaron R Goldman
- Department of Biology, Stanford University, Stanford, CA 94305
| | - Joshua E Elias
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305
| | - Martha S Cyert
- Department of Biology, Stanford University, Stanford, CA 94305
| |
Collapse
|
48
|
Gurling M, Garriga G. The two faces of TOE-2. WORM 2015; 4:e979697. [PMID: 26430558 DOI: 10.4161/21624054.2014.979697] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 10/07/2014] [Accepted: 10/20/2014] [Indexed: 11/19/2022]
Abstract
The C. elegans Q lineage provides a unique context for studying how cells divide asymmetrically to generate cells fated to die. The Q cell divides to form the Q.a and Q.p neuroblasts, each of which divides to produce neurons and a cell that dies by apoptosis; however, these neuroblasts employ different mechanisms to divide asymmetrically.(1) We discovered 2 distinct roles for TOE-2, a protein previously shown to be a target of the C. elegans ERK ortholog MPK-1, in promoting apoptosis in each of these neuroblast divisions. In this commentary, we discuss possible molecular mechanisms by which TOE-2 promotes apoptosis. Specifically, we will discuss potential roles for TOE-2 interacting proteins, a possible nuclear function for TOE-2, and a potential link to the Wnt pathway.
Collapse
Affiliation(s)
- Mark Gurling
- Molecular and Cell Biology; University of California ; Berkeley, CA USA ; Present address: Department of Biochemistry; University of Utah ; Salt Lake City, UT USA
| | - Gian Garriga
- Molecular and Cell Biology; University of California ; Berkeley, CA USA
| |
Collapse
|
49
|
A New Test of Computational Protein Design: Predicting Posttranslational Modification Specificity for the Enzyme SMYD2. Structure 2015; 23:11-12. [DOI: 10.1016/j.str.2014.12.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
50
|
Interaction analysis through proteomic phage display. BIOMED RESEARCH INTERNATIONAL 2014; 2014:176172. [PMID: 25295249 PMCID: PMC4177731 DOI: 10.1155/2014/176172] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 08/11/2014] [Accepted: 08/19/2014] [Indexed: 11/29/2022]
Abstract
Phage display is a powerful technique for profiling specificities of peptide binding domains. The method is suited for the identification of high-affinity ligands with inhibitor potential when using highly diverse combinatorial peptide phage libraries. Such experiments further provide consensus motifs for genome-wide scanning of ligands of potential biological relevance. A complementary but considerably less explored approach is to display expression products of genomic DNA, cDNA, open reading frames (ORFs), or oligonucleotide libraries designed to encode defined regions of a target proteome on phage particles. One of the main applications of such proteomic libraries has been the elucidation of antibody epitopes. This review is focused on the use of proteomic phage display to uncover protein-protein interactions of potential relevance for cellular function. The method is particularly suited for the discovery of interactions between peptide binding domains and their targets. We discuss the largely unexplored potential of this method in the discovery of domain-motif interactions of potential biological relevance.
Collapse
|