1
|
Liu H, Zhang J, Rao Y, Jin S, Zhang C, Bai D. Intratumoral microbiota: an emerging force in diagnosing and treating hepatocellular carcinoma. Med Oncol 2024; 41:300. [PMID: 39453562 DOI: 10.1007/s12032-024-02545-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 10/17/2024] [Indexed: 10/26/2024]
Abstract
Hepatocellular carcinoma (HCC) ranks among the most prevalent types of cancer in the world and its incidence and mortality are increasing year by year, frequently diagnosed at an advanced stage. Traditional treatments such as surgery, chemotherapy, and radiotherapy have limited efficacy, so new diagnostic and treatment strategies are urgently needed. Recent research has discovered that intratumoral microbiota significantly influences the development, progression, and metastasis of HCC by modulating inflammation, immune responses, and cellular signaling pathways. Intratumoral microbiota contributes to the pathologic process of HCC by influencing the tumor microenvironment and altering the function of immune system. This article reviews the mechanism of intratumoral microbiota in HCC and anticipates the future possibilities of intratumoral microbiota-based therapeutic strategies for HCC management. This emerging field provides fresh insights into early diagnosis and personalized approaches for HCC while holding substantial clinical application potential to improve patient outcomes and tailor interventions to individual tumor profiles.
Collapse
Affiliation(s)
- Huanxiang Liu
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, 225001, China
| | - Jiahao Zhang
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, 225001, China
| | - Yuye Rao
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, 225001, China
| | - Shengjie Jin
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, 225001, China
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital, Yangzhou, 225001, China
| | - Chi Zhang
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, 225001, China
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital, Yangzhou, 225001, China
| | - Dousheng Bai
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, 225001, China.
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital, Yangzhou, 225001, China.
| |
Collapse
|
2
|
Rechberger JS, Toll SA, Vanbilloen WJF, Daniels DJ, Khatua S. Exploring the Molecular Complexity of Medulloblastoma: Implications for Diagnosis and Treatment. Diagnostics (Basel) 2023; 13:2398. [PMID: 37510143 PMCID: PMC10378552 DOI: 10.3390/diagnostics13142398] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/07/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Medulloblastoma is the most common malignant brain tumor in children. Over the last few decades, significant progress has been made in revealing the key molecular underpinnings of this disease, leading to the identification of distinct molecular subgroups with different clinical outcomes. In this review, we provide an update on the molecular landscape of medulloblastoma and treatment strategies. We discuss the four main molecular subgroups (WNT-activated, SHH-activated, and non-WNT/non-SHH groups 3 and 4), highlighting the key genetic alterations and signaling pathways associated with each entity. Furthermore, we explore the emerging role of epigenetic regulation in medulloblastoma and the mechanism of resistance to therapy. We also delve into the latest developments in targeted therapies and immunotherapies. Continuing collaborative efforts are needed to further unravel the complex molecular mechanisms and profile optimal treatment for this devastating disease.
Collapse
Affiliation(s)
- Julian S Rechberger
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Stephanie A Toll
- Department of Pediatrics, Division of Hematology/Oncology, Children's Hospital of Michigan, Detroit, MI 48201, USA
| | - Wouter J F Vanbilloen
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA
- Department of Neurology, Elisabeth-Tweesteden Hospital, 5022 Tilburg, The Netherlands
| | - David J Daniels
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Soumen Khatua
- Department of Pediatric Hematology/Oncology, Section of Neuro-Oncology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
3
|
Letafati A, Ardekani OS, Naderisemiromi M, Fazeli MM, Jemezghani NA, Yavarian J. Oncolytic viruses against cancer, promising or delusion? Med Oncol 2023; 40:246. [PMID: 37458862 DOI: 10.1007/s12032-023-02106-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 06/23/2023] [Indexed: 07/20/2023]
Abstract
Cancer treatment is one of the most challenging topics in medical sciences. Different methods such as chemotherapy, tumor surgery, and immune checkpoint inhibitors therapy (ICIs) are potential approaches to treating cancer and killing tumor cells, but clinical studies have shown that they have been successful for a limited group of patients. Using viruses as a treatment can be considered as an effective treatment in the field of medicine. This is considered as a potential treatment, especially in comparison to chemotherapy, which has severe side effects related to the immune system. Most oncolytic viruses (OVs) have the potential to multiply in cancer cells, which are more than normal cells in malignant tissue and can induce immune responses. Therefore, tons of efforts and research have been started on the utilization of OVs as a treatment for cancer and have shown promising in treating cancers with less side effects. In this article, we have gathered studies about oncolytic viruses and their effectiveness in cancer treatment.Please confirm if the author names are presented accurately and in the correct sequence (given name, middle name/initial, family name). Author 1 Given name: [Omid Salahi] Last name [Ardekani], Author 2 Given name: [Mohammad Mehdi] Last name [Fazeli], Author 3 Given name: [Nillofar Asadi] Last name [Jemezghani]. Also, kindly confirm the details in the metadata are correct.Confirmed.
Collapse
Affiliation(s)
- Arash Letafati
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Omid Salahi Ardekani
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran
| | - Mina Naderisemiromi
- Department of Immunology, Faculty of Medicine and Health, The University of Manchester, Manchester, UK
| | - Mohammad Mehdi Fazeli
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran
| | | | - Jila Yavarian
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Heo J, Liang JD, Kim CW, Woo HY, Shih IL, Su TH, Lin ZZ, Yoo SY, Chang S, Urata Y, Chen PJ. Safety and dose escalation of the targeted oncolytic adenovirus OBP-301 for refractory advanced liver cancer: Phase I clinical trial. Mol Ther 2023; 31:2077-2088. [PMID: 37060176 PMCID: PMC10362399 DOI: 10.1016/j.ymthe.2023.04.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/29/2023] [Accepted: 04/10/2023] [Indexed: 04/16/2023] Open
Abstract
OBP-301 is an oncolytic adenovirus modified to replicate within cancer cells and lyse them. This open-label, non-comparative, phase I dose-escalation trial aimed to assess its safety and optimal dosage in 20 patients with advanced hepatocellular carcinoma. Good tolerance was shown with a maximum tolerated dose of 6 × 1012 viral particles. The most common treatment-emergent adverse events were influenza-like illness, pyrexia, fatigue, decreased platelet count, abdominal distension, and anemia. Cohorts 4 and 5 had approximately 50% higher levels of CD8+ T cells in the peripheral blood after injection. The best target response occurred in 14 patients, 4 of whom had progressive disease. Multiple intratumoral injections of OBP-301 were well tolerated in patients with advanced hepatocellular carcinoma. The stable disease rate for the injected tumors was greater than the overall response rate, even with no obvious tumor response. OBP-301 might have a greater impact on local response as histological examination revealed that the presence of OBP-301 was consistent with the necrotic area at the injection site. Increased infiltration of CD8+ T cells and <1% PD-L1 expression were observed in tumors after injection. Improved antitumor efficacy might be achieved in future studies via viral injection with volume adjustment and in combination with other immuno-therapeutics.
Collapse
Affiliation(s)
- Jeong Heo
- Department of Internal Medicine, College of Medicine, Pusan National University and Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea.
| | - Ja-Der Liang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Chang Won Kim
- Department of Radiology, College of Medicine, Pusan National University, Busan, Republic of Korea
| | - Hyun Young Woo
- Department of Internal Medicine, College of Medicine, Pusan National University and Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
| | - I-Lun Shih
- Department of Medical Imaging, National Taiwan University Hospital, Taipei, Taiwan
| | - Tung-Hung Su
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Zhong-Zhe Lin
- Department of Medical Oncology, National Taiwan University Cancer Center, Taipei, Taiwan
| | - So Young Yoo
- BIO-IT Foundry Technology Institute, Pusan National University, Busan, Republic of Korea
| | | | | | - Pei-Jer Chen
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
5
|
Zhu L, Lei Y, Huang J, An Y, Ren Y, Chen L, Zhao H, Zheng C. Recent advances in oncolytic virus therapy for hepatocellular carcinoma. Front Oncol 2023; 13:1172292. [PMID: 37182136 PMCID: PMC10169724 DOI: 10.3389/fonc.2023.1172292] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 04/07/2023] [Indexed: 05/16/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a highly refractory cancer and the fourth leading cause of cancer-related mortality worldwide. Despite the development of a detailed treatment strategy for HCC, the survival rate remains unsatisfactory. Oncolytic virus has been extensively researched as a new cancer therapeutic agent in the treatment of HCC. Researchers have designed a variety of recombinant viruses based on natural oncolytic diseases, which can increase the targeting of oncolytic viruses to HCC and their survival in tumors, as well as kill tumor cells and inhibit the growth of HCC through a variety of mechanisms. The overall efficacy of oncolytic virus therapy is known to be influenced by anti-tumor immunity, toxic killing effect and inhibition of tumor angiogenesis, etc. Therefore, a comprehensive review of the multiple oncolytic mechanisms of oncolytic viruses in HCC has been conducted. So far, a large number of relevant clinical trials are under way or have been completed, and some encouraging results have been obtained. Studies have shown that oncolytic virus combined with other HCC therapies may be a feasible method, including local therapy, chemotherapy, molecular targeted therapy and immunotherapy. In addition, different delivery routes for oncolytic viruses have been studied so far. These studies make oncolytic virus a new and attractive drug for the treatment of HCC.
Collapse
Affiliation(s)
- Licheng Zhu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Interventional Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Lei
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Interventional Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jia Huang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Interventional Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yahang An
- The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Yanqiao Ren
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Interventional Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Chen
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Interventional Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huangxuan Zhao
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Interventional Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chuansheng Zheng
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Interventional Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
6
|
Xue C, Chu Q, Zheng Q, Yuan X, Su Y, Bao Z, Lu J, Li L. Current understanding of the intratumoral microbiome in various tumors. Cell Rep Med 2023; 4:100884. [PMID: 36652905 PMCID: PMC9873978 DOI: 10.1016/j.xcrm.2022.100884] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 09/18/2022] [Accepted: 12/13/2022] [Indexed: 01/19/2023]
Abstract
It is estimated that in the future, the number of new cancer cases worldwide will exceed the 19.3 million recorded in 2020, and the number of deaths will exceed 10 million. Cancer remains the leading cause of human mortality and lagging socioeconomic development. Intratumoral microbes have been revealed to exist in many cancer types, including pancreatic, colorectal, liver, esophageal, breast, and lung cancers. Intratumoral microorganisms affect not only the host immune system, but also the effectiveness of tumor chemotherapy. This review concentrates on the characteristics and roles of intratumoral microbes in various tumors. In addition, the potential of therapies targeting intratumoral microbes, as well as the main challenges currently delaying these therapies, are explored. Furthermore, we briefly summarize existing technical methods used to characterize intratumoral microbes. We hope to provide ideas for exploring intratumoral microbes as potential biomarkers and targets for tumor diagnosis, treatment, and prognostication.
Collapse
Affiliation(s)
- Chen Xue
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Qingfei Chu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Qiuxian Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Xin Yuan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Yuanshuai Su
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Zhengyi Bao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Juan Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
| |
Collapse
|
7
|
Bo L, Tianming L, Fengliang F, Wenping L, Jinzuo H, Dongbo X, Biao M, Haijun S. Global trends of Vaccinia oncolytic virus therapy over the past two decades: Bibliometric and visual analysis. Front Immunol 2023; 14:1063548. [PMID: 36817418 PMCID: PMC9932265 DOI: 10.3389/fimmu.2023.1063548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/25/2023] [Indexed: 02/05/2023] Open
Abstract
Background In recent years, the vaccinia oncolytic virus has entered the clinical trial stage of examination and shown good progress. It has many advantages, such as good safety, high oncolytic efficiency, and the regulation ability of the tumor microenvironment, and is expected to be successfully used in the clinical treatment of tumors in the future. However, no bibliometric analysis has so far been performed that generalizes horizontally across this field. Therefore, this study aims to assess the research status and trends in this field from a global perspective to help guide future research priorities. Methods In this study, the literature related to vaccinia oncolytic virus published in English on Web of Science from 2002 to 2022 was retrieved, and the bibliometric indicators were analyzed using the Histcite. Pro 2.0 tool, while VOSviewer was used to visualize the research trends and hotspots in this field. Results In total, 408 related studies were included. In the past 20 years, the number of related publications in this field has increased year by year, and breakthroughs were made in this field in 2008 and 2013. The research has grown rapidly since 2008, and will likely continue to expand in the years to come. The United States plays a leading role in this area. "MOLECULAR THERAPY-ONCOLYTICS", "MOLECULAR THERAPY" and "JOURNAL OF TRANSLATIONAL MEDICINE" are core journals that publish high-quality literature on the latest advances in the field. Some authors with numerous high-quality publications include Bell JC and Szalay AA. At present, the research hotspot in this field focus on the clinical application of vaccinia oncolytic virus. Conclusion Overall, the number of vaccinia oncolytic virus-related studies is growing rapidly, in relation to which the United States is the most influential country. The clinical application of vaccinia oncolytic virus will affect the crucial development of future research.
Collapse
Affiliation(s)
- Liu Bo
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Liu Tianming
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Fan Fengliang
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Liang Wenping
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Han Jinzuo
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Xue Dongbo
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Ma Biao
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Sun Haijun
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
8
|
Chintala NK, Choe JK, McGee E, Bellis R, Saini JK, Banerjee S, Moreira AL, Zauderer MG, Adusumilli PS, Rusch VW. Correlative analysis from a phase I clinical trial of intrapleural administration of oncolytic vaccinia virus (Olvi-vec) in patients with malignant pleural mesothelioma. Front Immunol 2023; 14:1112960. [PMID: 36875061 PMCID: PMC9977791 DOI: 10.3389/fimmu.2023.1112960] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/06/2023] [Indexed: 02/18/2023] Open
Abstract
Background The attenuated, genetically engineered vaccinia virus has been shown to be a promising oncolytic virus for the treatment of patients with solid tumors, through both direct cytotoxic and immune-activating effects. Whereas systemically administered oncolytic viruses can be neutralized by pre-existing antibodies, locoregionally administered viruses can infect tumor cells and generate immune responses. We conducted a phase I clinical trial to investigate the safety, feasibility and immune activating effects of intrapleural administration of oncolytic vaccinia virus (NCT01766739). Methods Eighteen patients with malignant pleural effusion due to either malignant pleural mesothelioma or metastatic disease (non-small cell lung cancer or breast cancer) underwent intrapleural administration of the oncolytic vaccinia virus using a dose-escalating method, following drainage of malignant pleural effusion. The primary objective of this trial was to determine a recommended dose of attenuated vaccinia virus. The secondary objectives were to assess feasibility, safety and tolerability; evaluate viral presence in the tumor and serum as well as viral shedding in pleural fluid, sputum, and urine; and evaluate anti-vaccinia virus immune response. Correlative analyses were performed on body fluids, peripheral blood, and tumor specimens obtained from pre- and post-treatment timepoints. Results Treatment with attenuated vaccinia virus at the dose of 1.00E+07 plaque-forming units (PFU) to 6.00E+09 PFU was feasible and safe, with no treatment-associated mortalities or dose-limiting toxicities. Vaccinia virus was detectable in tumor cells 2-5 days post-treatment, and treatment was associated with a decrease in tumor cell density and an increase in immune cell density as assessed by a pathologist blinded to the clinical observations. An increase in both effector (CD8+, NK, cytotoxic cells) and suppressor (Tregs) immune cell populations was observed following treatment. Dendritic cell and neutrophil populations were also increased, and immune effector and immune checkpoint proteins (granzyme B, perforin, PD-1, PD-L1, and PD-L2) and cytokines (IFN-γ, TNF-α, TGFβ1 and RANTES) were upregulated. Conclusion The intrapleural administration of oncolytic vaccinia viral therapy is safe and feasible and generates regional immune response without overt systemic symptoms. Clinical trial registration https://clinicaltrials.gov/ct2/show/NCT01766739, identifier NCT01766739.
Collapse
Affiliation(s)
- Navin K Chintala
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Jennie K Choe
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Erin McGee
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Rebecca Bellis
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Jasmeen K Saini
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Srijita Banerjee
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Andre L Moreira
- Department of Pathology, New York University (NYU) Grossman School of Medicine, New York, NY, United States
| | - Marjorie G Zauderer
- Thoracic Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Prasad S Adusumilli
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, United States.,Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Valerie W Rusch
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| |
Collapse
|
9
|
Design Strategies and Precautions for Using Vaccinia Virus in Tumor Virotherapy. Vaccines (Basel) 2022; 10:vaccines10091552. [PMID: 36146629 PMCID: PMC9504998 DOI: 10.3390/vaccines10091552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/27/2022] [Accepted: 09/10/2022] [Indexed: 11/17/2022] Open
Abstract
Oncolytic virotherapy has emerged as a novel form of cancer immunotherapy. Oncolytic viruses (OVs) can directly infect and lyse the tumor cells, and modulate the beneficial immune microenvironment. Vaccinia virus (VACV) is a promising oncolytic vector because of its high safety, easy gene editing, and tumor intrinsic selectivity. To further improve the safety, tumor-targeting ability, and OV-induced cancer-specific immune activation, various approaches have been used to modify OVs. The recombinant oncolytic VACVs with deleting viral virulence factors and/or arming various therapeutic genes have displayed better therapeutic effects in multiple tumor models. Moreover, the combination of OVs with other cancer immunotherapeutic approaches, such as immune checkpoint inhibitors and CAR-T cells, has the potential to improve the outcome in cancer patients. This will open up new possibilities for the application of OVs in cancer treatment, especially for personalized cancer therapies.
Collapse
|
10
|
Immunotherapy for hepatocellular carcinoma. Clin Exp Med 2022:10.1007/s10238-022-00874-5. [PMID: 36001163 DOI: 10.1007/s10238-022-00874-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/08/2022] [Indexed: 11/03/2022]
Abstract
Hepatocellular carcinoma (HCC), a primary malignancy of the liver, is a threat to the health of all humans as a prevalent malignancy and is the sixth most common cancer worldwide. It is difficult to diagnose because symptoms do not show up until late in the disease, and patients often progress to the point where transplantation, resection, or even local treatment cannot be performed. The progression of HCC is regulated by the immune system, and immunotherapy enables the body's immune system's defenses to target liver cancer cells; therefore, immunotherapy has brought a new hope for the treatment of HCC. Currently, the main types of immunotherapies for liver cancer are: immune checkpoint inhibitors, liver cancer vaccines and cellular therapies. In this review, the progress of immunotherapy for the treatment of HCC is summarized.
Collapse
|
11
|
Therapeutic Efficacy of Oncolytic Viruses in Fighting Cancer: Recent Advances and Perspective. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3142306. [PMID: 35910836 PMCID: PMC9337963 DOI: 10.1155/2022/3142306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 04/20/2022] [Accepted: 05/26/2022] [Indexed: 12/22/2022]
Abstract
Immunotherapy is at the cutting edge of modern cancer treatment. Innovative medicines have been developed with varying degrees of success that target all aspects of tumor biology: tumors, niches, and the immune system. Oncolytic viruses (OVs) are a novel and potentially immunotherapeutic approach for cancer treatment. OVs reproduce exclusively in cancer cells, causing the tumor mass to lyse. OVs can also activate the immune system in addition to their primary activity. Tumors create an immunosuppressive environment by suppressing the immune system’s ability to respond to tumor cells. By injecting OVs into the tumor, the immune system is stimulated, allowing it to generate a robust and long-lasting response against the tumor. The essential biological properties of oncolytic viruses, as well as the underlying mechanisms that enable their usage as prospective anticancer medicines, are outlined in this review. We also discuss the increased efficacy of virotherapy when combined with other cancer medications.
Collapse
|
12
|
Optogenetic technologies in translational cancer research. Biotechnol Adv 2022; 60:108005. [PMID: 35690273 DOI: 10.1016/j.biotechadv.2022.108005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 05/07/2022] [Accepted: 06/04/2022] [Indexed: 11/23/2022]
Abstract
Gene and cell therapies are widely recognized as future cancer therapeutics but poor controllability limits their clinical applications. Optogenetics, the use of light-controlled proteins to precisely spatiotemporally regulate the activity of genes and cells, opens up new possibilities for cancer treatment. Light of specific wavelength can activate the immune response, oncolytic activity and modulate cell signaling in tumor cells non-invasively, in dosed manner, with tissue confined action and without side effects of conventional therapies. Here, we review optogenetic approaches in cancer research, their clinical potential and challenges of incorporating optogenetics in cancer therapy. We critically discuss beneficial combinations of optogenetic technologies with therapeutic nanobodies, T-cell activation and CAR-T cell approaches, genome editors and oncolytic viruses. We consider viral vectors and nanoparticles for delivering optogenetic payloads and activating light to tumors. Finally, we highlight herein the prospects for integrating optogenetics into immunotherapy as a novel, fast, reversible and safe approach to cancer treatment.
Collapse
|
13
|
Intravenous Oncolytic Vaccinia Virus Therapy Results in a Differential Immune Response between Cancer Patients. Cancers (Basel) 2022; 14:cancers14092181. [PMID: 35565310 PMCID: PMC9103071 DOI: 10.3390/cancers14092181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/12/2022] [Accepted: 04/15/2022] [Indexed: 01/27/2023] Open
Abstract
Simple Summary Oncolytic viruses (OVs) have been extensively studied as an immunotherapeutic agent against a variety of cancers with some successes. Immunotherapeutic strategies, such as OVs, aim to transform an immunologically ‘cold’ tumour microenvironment into a more favourable inflammatory ‘hot’ tumour. However, it is evident that not all patients have a favourable response to treatment. Furthermore, reliable biomarkers able to predict a patient’s response to therapy have not yet been elucidated. We show evidence of a distinct immunologically exhausted profile in patients who do not respond to OV, which may pave the way for the development of predictive biomarkers leading to a more personalised approach to cancer treatment using combination therapies. Abstract Pexa-Vec is an engineered Wyeth-strain vaccinia oncolytic virus (OV), which has been tested extensively in clinical trials, demonstrating enhanced cytotoxic T cell infiltration into tumours following treatment. Favourable immune consequences to Pexa-Vec include the induction of an interferon (IFN) response, followed by inflammatory cytokine/chemokine secretion. This promotes tumour immune infiltration, innate and adaptive immune cell activation and T cell priming, culminating in targeted tumour cell killing, i.e., an immunologically ‘cold’ tumour microenvironment is transformed into a ‘hot’ tumour. However, as with all immunotherapies, not all patients respond in a uniformly favourable manner. Our study herein, shows a differential immune response by patients to intravenous Pexa-Vec therapy, whereby some patients responded to the virus in a typical and expected manner, demonstrating a significant IFN induction and subsequent peripheral immune activation. However, other patients experienced a markedly subdued immune response and appeared to exhibit an exhausted phenotype at baseline, characterised by higher baseline immune checkpoint expression and regulatory T cell (Treg) levels. This differential baseline immunological profile accurately predicted the subsequent response to Pexa-Vec and may, therefore, enable the development of predictive biomarkers for Pexa-Vec and OV therapies more widely. If confirmed in larger clinical trials, these immunological biomarkers may enable a personalised approach, whereby patients with an exhausted baseline immune profile are treated with immune checkpoint blockade, with the aim of reversing immune exhaustion, prior to or alongside OV therapy.
Collapse
|
14
|
Naumenko VA, Stepanenko AA, Lipatova AV, Vishnevskiy DA, Chekhonin VP. Infection of non-cancer cells: A barrier or support for oncolytic virotherapy? MOLECULAR THERAPY - ONCOLYTICS 2022; 24:663-682. [PMID: 35284629 PMCID: PMC8898763 DOI: 10.1016/j.omto.2022.02.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Oncolytic viruses are designed to specifically target cancer cells, sparing normal cells. Although numerous studies demonstrate the ability of oncolytic viruses to infect a wide range of non-tumor cells, the significance of this phenomenon for cancer virotherapy is poorly understood. To fill the gap, we summarize the data on infection of non-cancer targets by oncolytic viruses with a special focus on tumor microenvironment and secondary lymphoid tissues. The review aims to address two major questions: how do attenuated viruses manage to infect normal cells, and whether it is of importance for oncolytic virotherapy.
Collapse
Affiliation(s)
- Victor A. Naumenko
- V. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow 119034, Russia
- Corresponding author Victor A. Naumenko, PhD, V. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow 119034, Russia.
| | - Aleksei A. Stepanenko
- V. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow 119034, Russia
- Department of Medical Nanobiotechnology, N.I Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Anastasiia V. Lipatova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Daniil A. Vishnevskiy
- V. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow 119034, Russia
| | - Vladimir P. Chekhonin
- V. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow 119034, Russia
- Department of Medical Nanobiotechnology, N.I Pirogov Russian National Research Medical University, Moscow 117997, Russia
| |
Collapse
|
15
|
The intratumoral microbiome: Characterization methods and functional impact. Cancer Lett 2021; 522:63-79. [PMID: 34517085 DOI: 10.1016/j.canlet.2021.09.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 09/01/2021] [Accepted: 09/06/2021] [Indexed: 12/24/2022]
Abstract
Live-pathogenic bacteria, which were identified inside tumors hundreds year ago, are key elements in modern cancer research. As they have a relatively accessible genome, they offer a multitude of metabolic engineering opportunities, useful in several clinical fields. Better understanding of the tumor microenvironment and its associated microbiome would help conceptualize new metabolically engineered species, triggering efficient therapeutic responses against cancer. Unfortunately, given the low microbial biomass nature of tumors, characterizing the tumor microbiome remains a challenge. Tumors have a high host versus bacterial DNA ratio, making it extremely complex to identify tumor-associated bacteria. Nevertheless, with the improvements in next-generation analytic tools, recent studies demonstrated the existence of intratumor bacteria inside defined tumors. It is now proven that each cancer subtype has a unique microbiome, characterized by bacterial communities with specific metabolic functions. This review provides a brief overview of the main approaches used to characterize the tumor microbiome, and of the recently proposed functions of intracellular bacteria identified in oncological entities. The therapeutic aspects of live-pathogenic microbes are also discussed, regarding the tumor microenvironment of each cancer type.
Collapse
|
16
|
Rahman MM, McFadden G. Oncolytic Viruses: Newest Frontier for Cancer Immunotherapy. Cancers (Basel) 2021; 13:5452. [PMID: 34771615 PMCID: PMC8582515 DOI: 10.3390/cancers13215452] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 12/15/2022] Open
Abstract
Cancer remains a leading cause of death worldwide. Despite many signs of progress, currently available cancer treatments often do not provide desired outcomes for too many cancers. Therefore, newer and more effective therapeutic approaches are needed. Oncolytic viruses (OVs) have emerged as a novel cancer treatment modality, which selectively targets and kills cancer cells while sparing normal ones. In the past several decades, many different OV candidates have been developed and tested in both laboratory settings as well as in cancer patient clinical trials. Many approaches have been taken to overcome the limitations of OVs, including engineering OVs to selectively activate anti-tumor immune responses. However, newer approaches like the combination of OVs with current immunotherapies to convert "immune-cold" tumors to "immune-hot" will almost certainly improve the potency of OVs. Here, we discuss strategies that are explored to further improve oncolytic virotherapy.
Collapse
Affiliation(s)
- Masmudur M. Rahman
- Center for Immunotherapy, Vaccines and Virotherapy, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA;
| | | |
Collapse
|
17
|
Wang W, Liu S, Dai P, Yang N, Wang Y, Giese RA, Merghoub T, Wolchok J, Deng L. Elucidating mechanisms of antitumor immunity mediated by live oncolytic vaccinia and heat-inactivated vaccinia. J Immunother Cancer 2021; 9:jitc-2021-002569. [PMID: 34593618 PMCID: PMC8487208 DOI: 10.1136/jitc-2021-002569] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2021] [Indexed: 12/22/2022] Open
Abstract
Background Viral-based immunotherapy can overcome resistance to immune checkpoint blockade (ICB) and fill the unmet needs of many patients with cancer. Oncolytic viruses (OVs) are defined as engineered or naturally occurring viruses that selectively replicate in and kill cancer cells. OVs also induce antitumor immunity. The purpose of this study was to compare the antitumor effects of live oncolytic vaccinia viruses versus the inactivated versions and elucidate their underlying immunological mechanisms. Methods We engineered a replication-competent, oncolytic vaccinia virus (OV-GM) by inserting a murine GM-CSF gene into the thymidine kinase locus of a mutant vaccinia E3L∆83N, which lacks the Z-DNA-binding domain of vaccinia virulence factor E3. We compared the antitumor effects of intratumoral (IT) delivery of live OV-GM versus heat-inactivated OV-GM (heat-iOV-GM) in a murine B16-F10 melanoma bilateral implantation model. We also generated vvDD, a well-studied oncolytic vaccinia virus, and compared the antitumor effects of live vvDD vs heat-inactivated vvDD (heat-ivvDD) in a murine A20 B-cell lymphoma bilateral tumor implantation model. Results Heat-iOV-GM infection of dendritic cells (DCs) and tumor cells in vitro induced type I interferon and proinflammatory cytokines and chemokines, whereas live OV-GM did not. IT live OV-GM was less effective in generating systemic antitumor immunity compared with heat-iOV-GM. Similar to heat-iOV-GM, the antitumor effects of live OV-GM also require Batf3-dependent CD103+ dendritic cells. When combined with systemic delivery of ICB, IT heat-iOV-GM was more effective in eradicating tumors, compared with live OV-GM. IT heat-ivvDD was also more effective in treating murine A20 B-cell lymphoma, compared with live vvDD. Conclusions Tumor lysis induced by the replication of oncolytic vaccinia virus has a limited effect on the generation of systemic antitumor immunity. The activation of Batf3-dependent CD103+ DCs is critical for antitumor effects induced by both live OV-GM and heat-iOV-GM, with the latter being more potent than live OV-GM in inducing innate and adaptive immunity in both locally injected and distant, non-injected tumors. We propose that evaluations of both innate and adaptive immunity, induced by IT oncolytic viral immunotherapy at injected and non-injected tumors, should be included as potential biomarkers for host responses to viral therapy.
Collapse
Affiliation(s)
- Weiyi Wang
- Dermatology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Shuaitong Liu
- Dermatology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Peihong Dai
- Dermatology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Ning Yang
- Dermatology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Yi Wang
- Dermatology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Rachel A Giese
- Immuno-oncology service, Human Oncology and Pathogenesis Program; Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Taha Merghoub
- Immuno-oncology service, Human Oncology and Pathogenesis Program; Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Swim Across America and Ludwig Collaborative Laboratory, Immunology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Jedd Wolchok
- Immuno-oncology service, Human Oncology and Pathogenesis Program; Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Swim Across America and Ludwig Collaborative Laboratory, Immunology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Weill Cornell Medical College, New York, New York, USA
| | - Liang Deng
- Dermatology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA .,Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Weill Cornell Medical College, New York, New York, USA
| |
Collapse
|
18
|
Audi ZF, Saker Z, Rizk M, Harati H, Fares Y, Bahmad HF, Nabha SM. Immunosuppression in Medulloblastoma: Insights into Cancer Immunity and Immunotherapy. Curr Treat Options Oncol 2021; 22:83. [PMID: 34328587 DOI: 10.1007/s11864-021-00874-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2021] [Indexed: 12/13/2022]
Abstract
OPINION STATEMENT Medulloblastoma (MB) is the most common pediatric brain malignancy, with a 5-year overall survival (OS) rate of around 65%. The conventional MB treatment, comprising surgical resection followed by irradiation and adjuvant chemotherapy, often leads to impairment in normal body functions and poor quality of life, especially with the increased risk of recurrence and subsequent development of secondary malignancies. The development and progression of MB are facilitated by a variety of immune-evading mechanisms such as the secretion of immunosuppressive molecules, activation of immunosuppressive cells, inhibition of immune checkpoint molecules, impairment of adhesive molecules, downregulation of the major histocompatibility complex (MHC) molecules, protection against apoptosis, and activation of immunosuppressive pathways. Understanding the tumor-immune relationship in MB is crucial for effective development of immune-based therapeutic strategies. In this comprehensive review, we discuss the immunological aspect of the brain, focusing on the current knowledge tackling the mechanisms of MB immune suppression and evasion. We also highlight several key immunotherapeutic approaches developed to date for the treatment of MB.
Collapse
Affiliation(s)
- Zahraa F Audi
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| | - Zahraa Saker
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| | - Mahdi Rizk
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| | - Hayat Harati
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| | - Youssef Fares
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon.,Department of Neurosurgery, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| | - Hisham F Bahmad
- Arkadi M. Rywlin M.D. Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center, 4300 Alton Rd, Miami Beach, FL, USA.
| | - Sanaa M Nabha
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon.
| |
Collapse
|
19
|
Malogolovkin A, Gasanov N, Egorov A, Weener M, Ivanov R, Karabelsky A. Combinatorial Approaches for Cancer Treatment Using Oncolytic Viruses: Projecting the Perspectives through Clinical Trials Outcomes. Viruses 2021; 13:1271. [PMID: 34209981 PMCID: PMC8309967 DOI: 10.3390/v13071271] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/21/2021] [Accepted: 06/24/2021] [Indexed: 02/06/2023] Open
Abstract
Recent cancer immunotherapy breakthroughs have fundamentally changed oncology and revived the fading hope for a cancer cure. The immune checkpoint inhibitors (ICI) became an indispensable tool for the treatment of many malignant tumors. Alongside ICI, the application of oncolytic viruses in clinical trials is demonstrating encouraging outcomes. Dozens of combinations of oncolytic viruses with conventional radiotherapy and chemotherapy are widely used or studied, but it seems quite complicated to highlight the most effective combinations. Our review summarizes the results of clinical trials evaluating oncolytic viruses with or without genetic alterations in combination with immune checkpoint blockade, cytokines, antigens and other oncolytic viruses as well. This review is focused on the efficacy and safety of virotherapy and the most promising combinations based on the published clinical data, rather than presenting all oncolytic virus variations, which are discussed in comprehensive literature reviews. We briefly revise the research landscape of oncolytic viruses and discuss future perspectives in virus immunotherapy, in order to provide an insight for novel strategies of cancer treatment.
Collapse
Affiliation(s)
- Alexander Malogolovkin
- Gene Therapy Department, Sirius University of Science and Technology, Olympic Avenue, 1, 354340 Sochi, Russia; (N.G.); (A.E.); (M.W.); (R.I.)
| | | | | | | | | | - Alexander Karabelsky
- Gene Therapy Department, Sirius University of Science and Technology, Olympic Avenue, 1, 354340 Sochi, Russia; (N.G.); (A.E.); (M.W.); (R.I.)
| |
Collapse
|
20
|
Abstract
Poxviruses comprise many members that infect both vertebrate and invertebrate animals, including humans. Despite the eradication of the historically notorious smallpox, poxviruses remain significant public health concerns and serious endemic diseases. This short review briefly summarizes the present, historical, and future threats posed by poxviruses to public health, wildlife and domestic animals, the role poxviruses have played in shaping modern medicine and biomedical sciences, the insight poxviruses have provided into complex life processes, and the utility of poxviruses in biotechniques and in fighting other infectious diseases and cancers. It is anticipated that readers will appreciate the great merit and need for continued strong support of poxvirus research; research which benefits not only the expansion of fundamental biological knowledge but also the battle against diverse diseases.
Collapse
Affiliation(s)
- Zhilong Yang
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, USA. .,Division of Biology, Kansas State University, Manhattan, KS, USA.
| | - Mark Gray
- Division of Biology, Kansas State University, Manhattan, KS, USA
| | - Lake Winter
- Division of Biology, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
21
|
Mozaffari Nejad AS, Noor T, Munim ZH, Alikhani MY, Ghaemi A. A bibliometric review of oncolytic virus research as a novel approach for cancer therapy. Virol J 2021; 18:98. [PMID: 33980264 PMCID: PMC8113799 DOI: 10.1186/s12985-021-01571-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 05/03/2021] [Indexed: 02/06/2023] Open
Abstract
Background In recent years, oncolytic viruses (OVs) have drawn attention as a novel therapy to various types of cancers, both in clinical and preclinical cancer studies all around the world. Consequently, researchers have been actively working on enhancing cancer therapy since the early twentieth century. This study presents a systematic review of the literature on OVs, discusses underlying research clusters and, presents future directions of OVs research. Methods A total of 1626 published articles related to OVs as cancer therapy were obtained from the Web of Science (WoS) database published between January 2000 and March 2020. Various aspects of OVs research, including the countries/territories, institutions, journals, authors, citations, research areas, and content analysis to find trending and emerging topics, were analysed using the bibliometrix package in the R-software. Results In terms of the number of publications, the USA based researchers were the most productive (n = 611) followed by Chinese (n = 197), and Canadian (n = 153) researchers. The Molecular Therapy journal ranked first both in terms of the number of publications (n = 133) and local citations (n = 1384). The most prominent institution was Mayo Clinic from the USA (n = 117) followed by the University of Ottawa from Canada (n = 72), and the University of Helsinki from Finland (n = 63). The most impactful author was Bell J.C with the highest number of articles (n = 67) and total local citations (n = 885). The most impactful article was published in the Cell journal. In addition, the latest OVs research mainly builds on four research clusters. Conclusion The domain of OVs research has increased at a rapid rate from 2000 to 2020. Based on the synthesis of reviewed studies, adenovirus, herpes simplex virus, reovirus, and Newcastle disease virus have shown potent anti-cancer activity. Developed countries such as the USA, Canada, the UK, and Finland were the most productive, hence, contributed most to this field. Further collaboration will help improve the clinical research translation of this therapy and bring benefits to cancer patients worldwide.
Collapse
Affiliation(s)
| | - Tehjeeb Noor
- Faculty of Medicine, University of Bergen, Horten, Norway
| | - Ziaul Haque Munim
- Faculty of Technology, Natural and Maritime Sciences, University of South-Eastern Norway, Horten, Norway
| | - Mohammad Yousef Alikhani
- Department of Microbiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Amir Ghaemi
- Department of Influenza and Other Respiratory Viruses, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
22
|
de Almeida NAA, Ribeiro CRDA, Raposo JV, de Paula VS. Immunotherapy and Gene Therapy for Oncoviruses Infections: A Review. Viruses 2021; 13:822. [PMID: 34063186 PMCID: PMC8147456 DOI: 10.3390/v13050822] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/19/2021] [Accepted: 02/24/2021] [Indexed: 12/24/2022] Open
Abstract
Immunotherapy has been shown to be highly effective in some types of cancer caused by viruses. Gene therapy involves insertion or modification of a therapeutic gene, to correct for inappropriate gene products that cause/may cause diseases. Both these types of therapy have been used as alternative ways to avoid cancers caused by oncoviruses. In this review, we summarize recent studies on immunotherapy and gene therapy including the topics of oncolytic immunotherapy, immune checkpoint inhibitors, gene replacement, antisense oligonucleotides, RNA interference, clustered regularly interspaced short palindromic repeats Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-based gene editing, transcription activator-like effector nucleases (TALENs) and custom treatment for Epstein-Barr virus, human T-lymphotropic virus 1, hepatitis B virus, human papillomavirus, hepatitis C virus, herpesvirus associated with Kaposi's sarcoma, Merkel cell polyomavirus, and cytomegalovirus.
Collapse
Affiliation(s)
| | | | | | - Vanessa Salete de Paula
- Laboratory of Molecular Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, 21040-360 Rio de Janeiro, Brazil; (N.A.A.d.A.); (C.R.d.A.R.); (J.V.R.)
| |
Collapse
|
23
|
Oncolytic Virotherapy for Cancer: Clinical Experience. Biomedicines 2021; 9:biomedicines9040419. [PMID: 33924556 PMCID: PMC8069290 DOI: 10.3390/biomedicines9040419] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 12/22/2022] Open
Abstract
Oncolytic viruses are a new class of therapeutics which are largely in the experimental stage, with just one virus approved by the FDA thus far. While the concept of oncolytic virotherapy is not new, advancements in the fields of molecular biology and virology have renewed the interest in using viruses as oncolytic agents. Backed by robust preclinical data, many oncolytic viruses have entered clinical trials. Oncolytic viruses that have completed some levels of clinical trials or are currently undergoing clinical trials are mostly genetically engineered viruses, with the exception of some RNA viruses. Reolysin, an unmodified RNA virus is clinically the most advanced oncolytic RNA virus that has completed different phases of clinical trials. Other oncolytic viruses that have been studied in clinical trials are mostly DNA viruses that belong to one of the three families: herpesviridae, poxviridae or adenoviridae. In this review work we discuss recent clinical studies with oncolytic viruses, especially herpesvirus, poxvirus, adenovirus and reovirus. In summary, the oncolytic viruses tested so far are well tolerated, even in immune-suppressed patients. For most oncolytic viruses, mild and acceptable toxicities are seen at the currently defined highest feasible doses. However, anti-tumor efficacies of oncolytic viruses have been modest, especially when used as monotherapy. Therefore, the potency of oncolytic viruses needs to be enhanced for more oncolytic viruses to hit the clinic. Aiming to achieve higher therapeutic benefits, oncolytic viruses are currently being studied in combination with other therapies. Here we discuss the currently available clinical data on oncolytic viruses, either as monotherapy or in combination with other treatments.
Collapse
|
24
|
Abstract
Hepatocellular carcinoma (HCC) is the most common form of primary liver cancer and the fifth most common cancer worldwide. HCC is recognized as the fourth most common cause of cancer related deaths worldwide due to the lack of effective early diagnostic tools, which often leads to individuals going undiagnosed until the cancer has reached late stage development. The current FDA approved treatments for late stage HCC provide a minimal increase in patient survival and lack tumor specificity, resulting in toxic systemic side effects. Gene therapy techniques, such as chimeric antigen receptor (CAR)-T Cells, viral vectors, and nanoparticles, are being explored as novel treatment options in various genetic diseases. Pre-clinical studies using gene therapy to treat in vitro and in vivo models of HCC have demonstrated potential efficacy for use in human patients. This review highlights genetic targets, techniques, and current clinical trials in HCC utilizing gene therapy.
Collapse
|
25
|
Santry LA, van Vloten JP, Knapp JP, Matuszewska K, McAusland TM, Minott JA, Mould RC, Stegelmeier AA, Major PP, Wootton SK, Petrik JJ, Bridle BW. Tumour vasculature: Friend or foe of oncolytic viruses? Cytokine Growth Factor Rev 2020; 56:69-82. [PMID: 32893095 DOI: 10.1016/j.cytogfr.2020.07.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 07/02/2020] [Indexed: 12/14/2022]
Abstract
In the past two decades there have been substantial advances in understanding the anti-cancer mechanisms of oncolytic viruses (OVs). OVs can mediate their effects directly, by preferentially infecting and killing tumour cells. Additionally, OVs can indirectly generate anti-tumour immune responses. These differing mechanisms have led to a paradoxical divergence in strategies employed to further increase the potency of oncolytic virotherapies. On one hand, the tumour neovasculature is seen as a vital lifeline to the survival of the tumour, leading some to use OVs to target the tumour vasculature in hopes to starve cancers. Therapeutics causing vascular collapse can potentiate tumour hypoxia, nutrient restriction and pro-inflammatory cytokine release, which has shown promise in oncological studies. On the other hand, the same vasculature plays an important role for the dissemination of OVs, trafficking of effector cells and other therapeutics, which has prompted researchers to find ways of normalizing the vasculature to enhance infiltration of leukocytes and delivery of therapeutic agents. This article describes the recent developments of therapies aimed to shut down versus normalize tumour vasculature in order to inform researchers striving to optimize OV-based therapies.
Collapse
Affiliation(s)
- Lisa A Santry
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, N1G 2W1, Canada.
| | - Jacob P van Vloten
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, N1G 2W1, Canada.
| | - Jason P Knapp
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, N1G 2W1, Canada.
| | - Kathy Matuszewska
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, N1G 2W1, Canada.
| | - Thomas M McAusland
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, N1G 2W1, Canada.
| | - Jessica A Minott
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, N1G 2W1, Canada.
| | - Robert C Mould
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, N1G 2W1, Canada.
| | - Ashley A Stegelmeier
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, N1G 2W1, Canada.
| | - Pierre P Major
- Juravinski Cancer Centre, 699 Concession Street, Hamilton, ON L8V 5C2, Canada.
| | - Sarah K Wootton
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, N1G 2W1, Canada.
| | - James J Petrik
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, N1G 2W1, Canada.
| | - Byram W Bridle
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, N1G 2W1, Canada.
| |
Collapse
|
26
|
Jo HH, Chun SJ, Yoo JJ, Lee MH, Kim SG, Kim YS. Early Experience of Oncolytic Virus Injection Combined with Sorafenib in a Patient with Advanced Hepatocellular Carcinoma and Portal Vein Thrombosis. JOURNAL OF LIVER CANCER 2020; 20:177-182. [PMID: 37384323 PMCID: PMC10035676 DOI: 10.17998/jlc.20.2.177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/22/2020] [Accepted: 07/27/2020] [Indexed: 06/30/2023]
Abstract
JX-594 is a modified oncolytic poxvirus designed to selectively replicate in and destroy cancer cells. In a pilot study, JX-594 injection followed by sorafenib was well-tolerated in three patients and associated with objective tumor responses. In this study, we report a case in which a patient with advanced hepatocellular carcinoma and portal vein thrombosis was treated with a combination of JX-594 and sorafenib.
Collapse
Affiliation(s)
- Hyun Ho Jo
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - Seong Joon Chun
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - Jeong-Ju Yoo
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - Min Hee Lee
- Department of Radiology, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - Sang Gyune Kim
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - Young Seok Kim
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| |
Collapse
|
27
|
Li Y, Shen Y, Zhao R, Samudio I, Jia W, Bai X, Liang T. Oncolytic virotherapy in hepato-bilio-pancreatic cancer: The key to breaking the log jam? Cancer Med 2020; 9:2943-2959. [PMID: 32130786 PMCID: PMC7196045 DOI: 10.1002/cam4.2949] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 02/13/2020] [Accepted: 02/14/2020] [Indexed: 02/07/2023] Open
Abstract
Traditional therapies have limited efficacy in hepatocellular carcinoma, pancreatic cancer, and biliary tract cancer, especially for advanced and refractory cancers. Through a deeper understanding of antitumor immunity and the tumor microenvironment, novel immunotherapies are becoming available for cancer treatment. Oncolytic virus (OV) therapy is an emerging type of immunotherapy that has demonstrated effective antitumor efficacy in many preclinical studies and clinical studies. Thus, it may represent a potential feasible treatment for hard to treat gastrointestinal (GI) tumors. Here, we summarize the research progress of OV therapy for the treatment of hepato-bilio-pancreatic cancers. In general, most OV therapies exhibits potent, specific oncolysis both in cell lines in vitro and the animal models in vivo. Currently, several clinical trials have suggested that OV therapy may also be effective in patients with refractory hepato-bilio-pancreatic cancer. Multiple strategies such as introducing immunostimulatory genes, modifying virus capsid and combining various other therapeutic modalities have been shown enhanced specific oncolysis and synergistic anti-cancer immune stimulation. Combining OV with other antitumor therapies may become a more effective strategy than using virus alone. Nevertheless, more studies are needed to better understand the mechanisms underlying the therapeutic effects of OV, and to design appropriate dosing and combination strategies.
Collapse
Affiliation(s)
- Yuwei Li
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou, China.,Innovation Center for the study of Pancreatic Diseases, Hangzhou, China
| | - Yinan Shen
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou, China.,Innovation Center for the study of Pancreatic Diseases, Hangzhou, China
| | | | | | - William Jia
- Virogin Biotech Canada Ltd, Vancouver, Canada
| | - Xueli Bai
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou, China.,Innovation Center for the study of Pancreatic Diseases, Hangzhou, China
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou, China.,Innovation Center for the study of Pancreatic Diseases, Hangzhou, China
| |
Collapse
|
28
|
Deng L, Fan J, Ding Y, Yang X, Huang B, Hu Z. Target Therapy With Vaccinia Virus Harboring IL-24 For Human Breast Cancer. J Cancer 2020; 11:1017-1026. [PMID: 31956348 PMCID: PMC6959063 DOI: 10.7150/jca.37590] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 10/26/2019] [Indexed: 01/04/2023] Open
Abstract
Background: Breast cancer is a heterogeneous disease with high aggression and novel targeted therapeutic strategies are required. Oncolytic vaccinia virus is an attractive candidate for cancer treatment due to its tumor cell-specific replication causing lysis of tumor cells as well as a delivery vector to overexpress therapeutic transgenes. Interleukin-24 (IL-24) is a novel tumor suppressor cytokine that selectively induces apoptosis in a wide variety of tumor types, including breast cancer. In this study, we used vaccinia virus as a delivery vector to express IL-24 gene and antitumor effects were evaluated both in vitro and in vivo. Methods: The vaccinia virus strain Guang9 armed with IL-24 gene (VG9-IL-24) was constructed via disruption of the viral thymidine kinase (TK) gene region. The cytotoxicity of VG9-IL-24 in various breast cancer cell lines was assessed by MTT and cell cycle progression and apoptosis were examined by flow cytometry. In vivo antitumor effects were further observed in MDA-MB-231 xenograft mouse model. Results: In vitro, VG9-IL-24 efficiently infected and selectively killed breast cancer cells with no strong cytotoxicity to normal cells. VG9-IL-24 induced increased number of apoptotic cells and blocked breast cancer cells in the G2/M phase of the cell cycle. Western blotting results indicated that VG9-IL-24-mediated apoptosis was related to PI3K/β-catenin signaling pathway. In vivo, VG9-IL-24 delayed tumor growth and improved survival. Conclusions: Our findings provided documentation that VG9-IL-24 was targeted in vitro and exhibited enhanced antitumor effects, and it may be an innovative therapy for breast cancer.
Collapse
Affiliation(s)
- Lili Deng
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Jun Fan
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Yuedi Ding
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Xue Yang
- Wuxi Children's Hospital, Wuxi People's Hospital affiliated to Nanjing Medical University, Wuxi 214023, China
| | - Biao Huang
- School of Life Science, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Zhigang Hu
- Wuxi Children's Hospital, Wuxi People's Hospital affiliated to Nanjing Medical University, Wuxi 214023, China
| |
Collapse
|
29
|
Sun T, Luo Y, Wang M, Xie T, Yan H. Recombinant Oncolytic Vaccinia Viruses Expressing Human β-Defensin 2 Enhance Anti-tumor Immunity. Mol Ther Oncolytics 2019; 13:49-57. [PMID: 31011627 PMCID: PMC6463222 DOI: 10.1016/j.omto.2019.03.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 03/26/2019] [Indexed: 12/15/2022] Open
Abstract
Cancer is still a leading of cause of death worldwide. Among the bio-therapy strategies for cancer, vaccinia virus (VV) has been widely used as an expression vector because of its potent oncolytic activities in addition to its large capacity for insertion of foreign genes and excellent safety records. In the present study, a novel recombinant VV, VV-HBD2-lacZ, expressing human β-defensin 2 (HBD2), an anti-microbial peptide of the innate immune system, was constructed. First, the chemotaxis characteristics of HBD2 expressed on VV-HBD2-lacZ-infected cells toward dendritic cells (DCs) in vitro and in vivo were demonstrated. The anti-tumor effects of VV-HBD2-lacZ in vitro and in vivo in a mouse melanoma cancer model were then investigated. It was found that VV-HBD2-lacZ was able to inhibit tumor growth and metastasis significantly. It was further demonstrated that VV-HBD2-lacZ induced potent cytotoxic activity by increasing the tumor-infiltrating CD4+ and CD8+ T cells. These results indicate that HBD2-expressing VV recruited plasmacytoid DCs (pDCs) to the tumor location, leading to cytotoxic T cell response against the tumor, and thus inhibited tumor growth in vitro and in vivo. In conclusion, oncolytic HBD2-expressing VV provides an effective treatment for tumors by triggering innate and adaptive immunity.
Collapse
Affiliation(s)
- Ting Sun
- Institute of Materia Medica, Zhejiang Academy of Medical Sciences, Hangzhou 310013, China
| | - Yanxi Luo
- Institute of Materia Medica, Zhejiang Academy of Medical Sciences, Hangzhou 310013, China
| | - Minglong Wang
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Tian Xie
- Holistic Integrative Pharmacy Institutes, Hangzhou Normal University, Hangzhou 311121, China
| | - Hui Yan
- Institute of Materia Medica, Zhejiang Academy of Medical Sciences, Hangzhou 310013, China
| |
Collapse
|
30
|
Moehler M, Heo J, Lee HC, Tak WY, Chao Y, Paik SW, Yim HJ, Byun KS, Baron A, Ungerechts G, Jonker D, Ruo L, Cho M, Kaubisch A, Wege H, Merle P, Ebert O, Habersetzer F, Blanc JF, Rosmorduc O, Lencioni R, Patt R, Leen AM, Foerster F, Homerin M, Stojkowitz N, Lusky M, Limacher JM, Hennequi M, Gaspar N, McFadden B, De Silva N, Shen D, Pelusio A, Kirn DH, Breitbach CJ, Burke JM. Vaccinia-based oncolytic immunotherapy Pexastimogene Devacirepvec in patients with advanced hepatocellular carcinoma after sorafenib failure: a randomized multicenter Phase IIb trial (TRAVERSE). Oncoimmunology 2019; 8:1615817. [PMID: 31413923 PMCID: PMC6682346 DOI: 10.1080/2162402x.2019.1615817] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 04/15/2019] [Accepted: 04/19/2019] [Indexed: 02/07/2023] Open
Abstract
Pexastimogene devacirepvec (Pexa-Vec) is a vaccinia virus-based oncolytic immunotherapy designed to preferentially replicate in and destroy tumor cells while stimulating anti-tumor immunity by expressing GM-CSF. An earlier randomized Phase IIa trial in predominantly sorafenib-naïve hepatocellular carcinoma (HCC) demonstrated an overall survival (OS) benefit. This randomized, open-label Phase IIb trial investigated whether Pexa-Vec plus Best Supportive Care (BSC) improved OS over BSC alone in HCC patients who failed sorafenib therapy (TRAVERSE). 129 patients were randomly assigned 2:1 to Pexa-Vec plus BSC vs. BSC alone. Pexa-Vec was given as a single intravenous (IV) infusion followed by up to 5 IT injections. The primary endpoint was OS. Secondary endpoints included overall response rate (RR), time to progression (TTP) and safety. A high drop-out rate in the control arm (63%) confounded assessment of response-based endpoints. Median OS (ITT) for Pexa-Vec plus BSC vs. BSC alone was 4.2 and 4.4 months, respectively (HR, 1.19, 95% CI: 0.78–1.80; p = .428). There was no difference between the two treatment arms in RR or TTP. Pexa-Vec was generally well-tolerated. The most frequent Grade 3 included pyrexia (8%) and hypotension (8%). Induction of immune responses to vaccinia antigens and HCC associated antigens were observed. Despite a tolerable safety profile and induction of T cell responses, Pexa-Vec did not improve OS as second-line therapy after sorafenib failure. The true potential of oncolytic viruses may lie in the treatment of patients with earlier disease stages which should be addressed in future studies. ClinicalTrials.gov: NCT01387555
Collapse
Affiliation(s)
- M Moehler
- First Department of Medicine, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - J Heo
- College of Medicine, Pusan National University and Medical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
| | - H C Lee
- Asan Medical Center, University of Ulsan College of Medicine, Ulsan, Republic ofKorea
| | - W Y Tak
- School of Medicine, Kyungpook National University Medical Center, Daegu, Republic of Korea
| | - Y Chao
- Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - S W Paik
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - H J Yim
- Department of Internal Medicine, Korea University Ansan Hospital, Ansan-si, Republic of Korea
| | - K S Byun
- Department of Internal Medicine, Korea UniversityCollege of Medicine, Seoul, Republic of Korea
| | - A Baron
- Department of Medicine, California Pacific Medical Center, San Francisco, CA, USA
| | - G Ungerechts
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) and Heidelberg University Hospital, Heidelberg, Germany
| | - D Jonker
- The Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Canada
| | - L Ruo
- Department of Surgery, Juravinski Hospital and Cancer Centre, McMaster University, Hamilton, Canada
| | - M Cho
- Department of Internal Medicine, Pusan National University Yangsan Hospital, Busan, Republic of Korea
| | - A Kaubisch
- Department of Medicine, Montefiore Medical Center, New York, NY, USA
| | - H Wege
- Department of Medicine, Gastroenterology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - P Merle
- Hepatology Unit, Croix-Rousse Hospital, Lyon, France
| | - O Ebert
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University, Munich, Germany
| | - F Habersetzer
- Pôle Hépato-Digestif, Hôpitaux Universitaires de Strasbourg, INSERM 1110, IHU de Strasbourg and Université de Strasbourg, Strasbourg, France
| | - J F Blanc
- Hepato-Gastroenterology and Digestive Oncology Department, CHU Bordeaux, Bordeaux, France
| | | | - R Lencioni
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - R Patt
- Rad-MD, New York, NY, USA
| | - A M Leen
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - F Foerster
- First Department of Medicine, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - M Homerin
- Medical Affairs, Transgene S.A., Illkirch-Graffenstaden, France
| | - N Stojkowitz
- Clinical Operations, Transgene S.A., 400 Bd Gonthier d'Andernach, Parc d'Innovation, 67405 Illkirch-Graffenstaden, France
| | - M Lusky
- Program Management, Transgene S.A., 400 Bd Gonthier d'Andernach, Parc d'Innovation, 67405 Illkirch-Graffenstaden, France
| | - J M Limacher
- Medical Affairs, Transgene S.A., 400 Bd Gonthier d'Andernach, Parc d'Innovation, 67405 Illkirch-Graffenstaden, France
| | - M Hennequi
- Biostatistics, Transgene S.A., 400 Bd Gonthier d'Andernach, Parc d'Innovation, 67405 Illkirch-Graffenstaden, France
| | - N Gaspar
- Clinical Assays, SillaJen Inc., San Francisco, CA, USA
| | - B McFadden
- Analytical Development and Quality Control, SillaJen Inc., San Francisco, CA, USA
| | - N De Silva
- Clinical, SillaJen Inc., San Francisco, CA, USA
| | - D Shen
- Clinical, SillaJen Inc., San Francisco, CA, USA
| | - A Pelusio
- Clinical, SillaJen Inc., San Francisco, CA, USA
| | - D H Kirn
- SillaJen Inc., San Francisco, CA, USA
| | | | - J M Burke
- Clinical, SillaJen Inc., San Francisco, CA, USA
| |
Collapse
|
31
|
Yang R, Wang L, Sheng J, Huang Q, Pan D, Xu Y, Yan J, Wang X, Dong Z, Yang M. Combinatory effects of vaccinia virus VG9 and the STAT3 inhibitor Stattic on cancer therapy. Arch Virol 2019; 164:1805-1814. [PMID: 31087190 DOI: 10.1007/s00705-019-04257-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 03/22/2019] [Indexed: 01/08/2023]
Abstract
The recombinant vaccinia virus VG9 and the STAT3 inhibitor Stattic were combined to kill cancer cells via both oncolytic activity and inhibition of STAT3 phosphorylation in cells. The combinatory anti-tumour activity of these compounds was superior to the activity of VG9 or Stattic alone in vivo. The inhibition of tumour growth occurred via increased apoptosis and autophagy pathways. Furthermore, the combinatory anti-tumour activity was more efficient than that of VG9 or Stattic alone on xenografts, especially in nude mice.
Collapse
Affiliation(s)
- Runlin Yang
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, No. 20, Qianrong Road, Wuxi, 214063, China.
| | - Lizhen Wang
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, No. 20, Qianrong Road, Wuxi, 214063, China
| | - Jie Sheng
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, 210029, China
| | - Qianhuan Huang
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, 210029, China
| | - Donghui Pan
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, No. 20, Qianrong Road, Wuxi, 214063, China
| | - Yuping Xu
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, No. 20, Qianrong Road, Wuxi, 214063, China
| | - Junjie Yan
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, No. 20, Qianrong Road, Wuxi, 214063, China
| | - Xinyu Wang
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, No. 20, Qianrong Road, Wuxi, 214063, China
| | - Ziyue Dong
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, No. 20, Qianrong Road, Wuxi, 214063, China
| | - Min Yang
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, No. 20, Qianrong Road, Wuxi, 214063, China. .,The First School of Clinical Medicine, Nanjing Medical University, Nanjing, 210029, China. .,School of Pharmaceutical Science, Zhengzhou University, Zhengzhou, 450000, China.
| |
Collapse
|
32
|
Bourgeois-Daigneault MC, Roy DG, Aitken AS, El Sayes N, Martin NT, Varette O, Falls T, St-Germain LE, Pelin A, Lichty BD, Stojdl DF, Ungerechts G, Diallo JS, Bell JC. Neoadjuvant oncolytic virotherapy before surgery sensitizes triple-negative breast cancer to immune checkpoint therapy. Sci Transl Med 2019; 10:10/422/eaao1641. [PMID: 29298865 DOI: 10.1126/scitranslmed.aao1641] [Citation(s) in RCA: 216] [Impact Index Per Article: 43.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 06/20/2017] [Accepted: 11/09/2017] [Indexed: 12/14/2022]
Abstract
Triple-negative breast cancer (TNBC) is an aggressive disease for which treatment options are limited and associated with severe toxicities. Immunotherapeutic approaches like immune checkpoint inhibitors (ICIs) are a potential strategy, but clinical trials have demonstrated limited success in this patient cohort. Clinical studies using ICIs have revealed that patients with preexisting anticancer immunity are the most responsive. Given that oncolytic viruses (OVs) induce antitumor immunity, we investigated their use as an ICI-sensitizing approach. Using a therapeutic model that mimics the course of treatment for women with newly diagnosed TNBC, we demonstrate that early OV treatment coupled with surgical resection provides long-term benefits. OV therapy sensitizes otherwise refractory TNBC to immune checkpoint blockade, preventing relapse in most of the treated animals. We suggest that OV therapy in combination with immune checkpoint blockade warrants testing as a neoadjuvant treatment option in the window of opportunity between TNBC diagnosis and surgical resection.
Collapse
Affiliation(s)
- Marie-Claude Bourgeois-Daigneault
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa K1H 8L6, Canada. .,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa K1H 8M5, Canada
| | - Dominic Guy Roy
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa K1H 8L6, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa K1H 8M5, Canada
| | - Amelia Sadie Aitken
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa K1H 8L6, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa K1H 8M5, Canada
| | - Nader El Sayes
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa K1H 8L6, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa K1H 8M5, Canada
| | - Nikolas Tim Martin
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa K1H 8L6, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa K1H 8M5, Canada
| | - Oliver Varette
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa K1H 8L6, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa K1H 8M5, Canada
| | - Theresa Falls
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa K1H 8L6, Canada
| | | | - Adrian Pelin
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa K1H 8L6, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa K1H 8M5, Canada
| | - Brian Dennis Lichty
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton L8S 4K1, Canada
| | - David Francis Stojdl
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa K1H 8M5, Canada.,Children's Hospital of Eastern Ontario Research Institute, Ottawa K1H 8L1, Canada
| | - Guy Ungerechts
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa K1H 8L6, Canada
| | - Jean-Simon Diallo
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa K1H 8L6, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa K1H 8M5, Canada
| | - John Cameron Bell
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa K1H 8L6, Canada. .,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa K1H 8M5, Canada
| |
Collapse
|
33
|
Pre-surgical neoadjuvant oncolytic virotherapy confers protection against rechallenge in a murine model of breast cancer. Sci Rep 2019; 9:1865. [PMID: 30755678 PMCID: PMC6372691 DOI: 10.1038/s41598-018-38385-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 12/27/2018] [Indexed: 01/08/2023] Open
Abstract
The use of oncolytic viruses (OVs) for cancer treatment is emerging as a successful strategy that combines the direct, targeted killing of the cancer with the induction of a long-lasting anti-tumor immune response. Using multiple aggressive murine models of triple-negative breast cancer, we have recently demonstrated that the early administration of oncolytic Maraba virus (MRB) prior to surgical resection of the primary tumor is sufficient to minimize the metastatic burden, protect against tumor rechallenge, cure a fraction of the mice and sensitize refractory tumors to immune checkpoint blockade without the need for further treatment. Here, we apply our surgical model to other OVs: Vesicular stomatitis virus (VSV), Adenovirus (Ad), Reovirus (Reo) and Herpes simplex virus (HSV) and show that all of the tested OVs could positively change the outcome of the treated animals. The growth of the primary and secondary tumors was differently affected by the various OVs and most of the viruses conferred survival benefits in this neoadjuvant setting despite the absence of direct treatment following rechallenge. This study establishes that OV-therapy confers long-term protection when administered in the pre-operative window of opportunity.
Collapse
|
34
|
Guo ZS, Lu B, Guo Z, Giehl E, Feist M, Dai E, Liu W, Storkus WJ, He Y, Liu Z, Bartlett DL. Vaccinia virus-mediated cancer immunotherapy: cancer vaccines and oncolytics. J Immunother Cancer 2019; 7:6. [PMID: 30626434 PMCID: PMC6325819 DOI: 10.1186/s40425-018-0495-7] [Citation(s) in RCA: 185] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 12/26/2018] [Indexed: 12/11/2022] Open
Abstract
Cancer vaccines and oncolytic immunotherapy are promising treatment strategies with potential to provide greater clinical benefit to patients with advanced-stage cancer. In particular, recombinant vaccinia viruses (VV) hold great promise as interventional agents. In this article, we first summarize the current understanding of virus biology and viral genes involved in host-virus interactions to further improve the utility of these agents in therapeutic applications. We then discuss recent findings from basic and clinical studies using VV as cancer vaccines and oncolytic immunotherapies. Despite encouraging results gleaned from translational studies in animal models, clinical trials implementing VV vectors alone as cancer vaccines have yielded largely disappointing results. However, the combination of VV vaccines with alternate forms of standard therapies has resulted in superior clinical efficacy. For instance, combination regimens using TG4010 (MVA-MUC1-IL2) with first-line chemotherapy in advanced-stage non-small cell lung cancer or combining PANVAC with docetaxel in the setting of metastatic breast cancer have clearly provided enhanced clinical benefits to patients. Another novel cancer vaccine approach is to stimulate anti-tumor immunity via STING activation in Batf3-dependent dendritic cells (DC) through the use of replication-attenuated VV vectors. Oncolytic VVs have now been engineered for improved safety and superior therapeutic efficacy by arming them with immune-stimulatory genes or pro-apoptotic molecules to facilitate tumor immunogenic cell death, leading to enhanced DC-mediated cross-priming of T cells recognizing tumor antigens, including neoantigens. Encouraging translational and early phase clinical results with Pexa-Vec have matured into an ongoing global phase III trial for patients with hepatocellular carcinoma. Combinatorial approaches, most notably those using immune checkpoint blockade, have produced exciting pre-clinical results and warrant the development of innovative clinical studies. Finally, we discuss major hurdles that remain in the field and offer some perspectives regarding the development of next generation VV vectors for use as cancer therapeutics.
Collapse
Affiliation(s)
- Zong Sheng Guo
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - Binfeng Lu
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Zongbi Guo
- Fujian Tianjian Pharmaceutical Co. Ltd., Sanming, Fujian, China
| | - Esther Giehl
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Mathilde Feist
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Enyong Dai
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Weilin Liu
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Walter J Storkus
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Yukai He
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Zuqiang Liu
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - David L Bartlett
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
35
|
Passaro C, Somma SD, Malfitano AM, Portella G. Oncolytic virotherapy for anaplastic and poorly differentiated thyroid cancer: a promise or a clinical reality? INTERNATIONAL JOURNAL OF ENDOCRINE ONCOLOGY 2018. [DOI: 10.2217/ije-2017-0028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Oncolytic viruses (OVs) selectively infect and lyse cancer cells. A direct lytic effect of OVs has been theorized in the initial studies; however, the antineoplastic effect of OVs is also due to the induction of an immune response against cancer cells. Anaplastic thyroid cancer is one of the most aggressive human malignancies with a short survival time of about 6–12 months from the diagnosis. The lack of effective therapies has prompted to investigate the efficacy of OVs in anaplastic thyroid carcinoma. Different OVs have been tested in preclinical studies, either as single agents or in combinatorial treatments. In this review, the results of these studies are summarized and future perspective discussed.
Collapse
Affiliation(s)
- Carmela Passaro
- Dipartimento di Scienze Mediche Traslazionali, Università degli Studi di Napoli Federico II, Napoli, Italia
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Sarah Di Somma
- Dipartimento di Scienze Mediche Traslazionali, Università degli Studi di Napoli Federico II, Napoli, Italia
| | - Anna Maria Malfitano
- Dipartimento di Scienze Mediche Traslazionali, Università degli Studi di Napoli Federico II, Napoli, Italia
| | - Giuseppe Portella
- Dipartimento di Scienze Mediche Traslazionali, Università degli Studi di Napoli Federico II, Napoli, Italia
| |
Collapse
|
36
|
Badrinath N, Jeong YI, Woo HY, Bang SY, Kim C, Heo J, Kang DH, Yoo SY. Local delivery of a cancer-favoring oncolytic vaccinia virus via poly (lactic-co-glycolic acid) nanofiber for theranostic purposes. Int J Pharm 2018; 552:437-442. [PMID: 30308276 DOI: 10.1016/j.ijpharm.2018.10.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 09/21/2018] [Accepted: 10/07/2018] [Indexed: 12/22/2022]
Abstract
Local delivery of viruses via nanomaterials has been demonstrated in the treatment of colon cancer. A cancer-favoring oncolytic vaccinia virus (CVV), which is an evolutionary cancer-favoring engineered vaccinia virus carrying the green fluorescent protein (GFP) gene, has antitumor efficacy in drug-resistant colon cancer and metastatic liver cells. Here, we present the antitumor efficacy of a CVV coated a poly lactic-co-glycolic acid (PLGA) nanofiber for local drug delivery in theranostic approaches. In vitro- and in vivo-based analyses using mouse colon carcinoma models confirmed the therapeutic efficacy of CVV-PLGA nanofibers through diagnostic localization of the tumors and reduced tumor burden as a result of enhanced apoptosis. We propose that the CVV-PLGA nanofiber may be used for theranostic purposes in cancer therapy.
Collapse
Affiliation(s)
- Narayanasamy Badrinath
- Biomedical Science, School of Medicine, Pusan National University, Yangsan 50612, Gyeongnam, Republic of Korea
| | - Young Il Jeong
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Gyeongnam, Republic of Korea
| | - Hyun Young Woo
- Department of Internal Medicine, College of Medicine, Pusan National University and Medical Research Institute, Seo-gu, Busan, Republic of Korea
| | - Seo Young Bang
- BIO-IT Foundry Technology Institute, Pusan National University, Gumjeong-gu, Busan 46241, Republic of Korea
| | - Chan Kim
- Amogreentech Co. Ltd. Gyeonggi-do, Republic of Korea
| | - Jeong Heo
- Department of Internal Medicine, College of Medicine, Pusan National University and Medical Research Institute, Seo-gu, Busan, Republic of Korea
| | - Dae Hwan Kang
- Department of Internal Medicine, College of Medicine, Pusan National University and Medical Research Institute, Seo-gu, Busan, Republic of Korea
| | - So Young Yoo
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Gyeongnam, Republic of Korea; BIO-IT Foundry Technology Institute, Pusan National University, Gumjeong-gu, Busan 46241, Republic of Korea.
| |
Collapse
|
37
|
Hu J, Wang H, Gu J, Liu X, Zhou X. Trail armed oncolytic poxvirus suppresses lung cancer cell by inducing apoptosis. Acta Biochim Biophys Sin (Shanghai) 2018; 50:1018-1027. [PMID: 30137199 DOI: 10.1093/abbs/gmy096] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Indexed: 12/11/2022] Open
Abstract
Lung cancer has a high morbidity rate worldwide and is often resistant to therapy. Oncolytic virus therapy is a developing trend for cancer treatment. Thus, we constructed an oncolytic poxvirus carrying human trail gene that expresses a membrane-binding tumor necrosis factor and associated apoptosis-inducing ligand (TRAIL, Oncopox-trail). We hypothesized that the expression of trail would increase the efficacy of the oncolytic poxvirus. The effect of the TRAIL protein depends on the death receptors on the surface of different cancer cells. The expression of death receptors in lung cancer cell lines was analyzed by western blot analysis. In vitro, the oncolytic poxvirus carrying the trail gene displayed a better cytotoxicity at the cell level in the lung cancer cell line than that carrying the Oncopox-empty. TRAIL protein mainly induced apoptosis and inhibited necrosis. In vivo, two transplanted tumor models of human A549 lung cancer cells and mouse Lewis lung cancer cells were used to verify the anti-cancer effect of the oncolytic poxvirus carrying the trail gene. TUNEL staining results of the tumor histological sections also verified the anti-cancer effect. Similarly, through systemic administration of Oncopox-trail, the oncolytic poxvirus also exhibited anti-cancer effect.
Collapse
Affiliation(s)
- Jinqing Hu
- Laboratory of Cell Biology, Xin-yuan Institute of Medicine and Biotechnology, School of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China
| | - Huaiyuan Wang
- State Key Laboratory of Cell Biology, Innovation Center for Cell Signaling Network, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jinfa Gu
- State Key Laboratory of Cell Biology, Innovation Center for Cell Signaling Network, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xinyuan Liu
- Laboratory of Cell Biology, Xin-yuan Institute of Medicine and Biotechnology, School of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China
- State Key Laboratory of Cell Biology, Innovation Center for Cell Signaling Network, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiumei Zhou
- Laboratory of Cell Biology, Xin-yuan Institute of Medicine and Biotechnology, School of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China
| |
Collapse
|
38
|
Matuszewska K, Santry LA, van Vloten JP, AuYeung AWK, Major PP, Lawler J, Wootton SK, Bridle BW, Petrik J. Combining Vascular Normalization with an Oncolytic Virus Enhances Immunotherapy in a Preclinical Model of Advanced-Stage Ovarian Cancer. Clin Cancer Res 2018; 25:1624-1638. [PMID: 30206160 DOI: 10.1158/1078-0432.ccr-18-0220] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 05/03/2018] [Accepted: 09/07/2018] [Indexed: 11/16/2022]
Abstract
PURPOSE Intravenous delivery of oncolytic viruses often leads to tumor vascular shutdown, resulting in decreased tumor perfusion and elevated tumor hypoxia. We hypothesized that using 3TSR to normalize tumor vasculature prior to administration of an oncolytic Newcastle disease virus (NDV) would enhance virus delivery and trafficking of immunologic cell subsets to the tumor core, resulting in systemically enhanced immunotherapy and regression of advanced-stage epithelial ovarian cancer (EOC). EXPERIMENTAL DESIGN Using an orthotopic, syngeneic mouse model of advanced-stage EOC, we pretreated mice with 3TSR (4 mg/kg per day) alone or followed by combination with fusogenic NDV(F3aa) (1.0 × 108 plaque-forming units). RESULTS Treatment with 3TSR normalized tumor vasculature, enhanced blood perfusion of primary EOC tumors, and induced disease regression. Animals treated with combination therapy had the greatest reduction in primary tumor mass, ascites accumulation, and secondary lesions (50% of mice were completely devoid of peritoneal metastases). Combining 3TSR + NDV(F3aa) led to enhanced trafficking of immunologic cells into the primary tumor core. CONCLUSIONS We have shown, for the first time, that NDV, like other oncolytic viruses, is a potent mediator of acute vascular shutdown and that preventing this through vascular normalization can promote regression in a preclinical model of advanced-stage ovarian cancer. This challenges the current focus on induction of intravascular thrombosis as a requisite for successful oncolytic virotherapy.See related commentary by Bykov and Zamarin, p. 1446.
Collapse
Affiliation(s)
- Kathy Matuszewska
- Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Lisa A Santry
- Department of Pathobiology, University of Guelph, Guelph, Ontario, Canada
| | - Jacob P van Vloten
- Department of Pathobiology, University of Guelph, Guelph, Ontario, Canada
| | - Amanda W K AuYeung
- Department of Pathobiology, University of Guelph, Guelph, Ontario, Canada
| | - Pierre P Major
- Department of Oncology, McMaster University, Hamilton, Ontario, Canada
| | - Jack Lawler
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Sarah K Wootton
- Department of Pathobiology, University of Guelph, Guelph, Ontario, Canada
| | - Byram W Bridle
- Department of Pathobiology, University of Guelph, Guelph, Ontario, Canada
| | - Jim Petrik
- Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, Canada.
| |
Collapse
|
39
|
Oncolytic virotherapy – A novel strategy for cancer therapy. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2018. [DOI: 10.1016/j.ejmhg.2017.10.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
40
|
Improved immune response against HIV-1 Env antigen by enhancing EEV production via a K151E mutation in the A34R gene of replication-competent vaccinia virus Tiantan. Antiviral Res 2018; 153:49-59. [DOI: 10.1016/j.antiviral.2018.03.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 03/08/2018] [Accepted: 03/12/2018] [Indexed: 02/06/2023]
|
41
|
Yokoda R, Nagalo BM, Arora M, Egan JB, Bogenberger JM, DeLeon TT, Zhou Y, Ahn DH, Borad MJ. Oncolytic virotherapy in upper gastrointestinal tract cancers. Oncolytic Virother 2018; 7:13-24. [PMID: 29616200 PMCID: PMC5870634 DOI: 10.2147/ov.s161397] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Upper gastrointestinal tract malignancies are among the most challenging cancers with regard to response to treatment and prognosis. Cancers of the esophagus, stomach, pancreas, liver, and biliary tree have dismal 5-year survival, and very modest improvements in this rate have been made in recent times. Oncolytic viruses are being developed to address these malignancies, with a focus on high safety profiles and low off-target toxicities. Each viral platform has evolved to enhance oncolytic potency and the clinical response to either single-agent viral therapy or combined viral treatment with radiotherapy and chemotherapy. A panel of genomic alterations, chimeric proteins, and pseudotyped capsids are the breakthroughs for vector success. This article revisits developments for each viral platform to each tumor type, in an attempt to achieve maximum tumor selectivity. From the bench to clinical trials, the scope of this review is to highlight the beginnings of translational oncolytic virotherapy research in upper gastrointestinal tract malignancies and provide a bioengineering perspective of the most promising platforms.
Collapse
Affiliation(s)
- Raquel Yokoda
- Division of Hematology/Oncology, Department of Medicine, Mayo Clinic, Scottsdale, AZ
| | - Bolni M Nagalo
- Division of Hematology/Oncology, Department of Medicine, Mayo Clinic, Scottsdale, AZ
| | - Mansi Arora
- Division of Hematology/Oncology, Department of Medicine, Mayo Clinic, Scottsdale, AZ
| | - Jan B Egan
- Division of Hematology/Oncology, Department of Medicine, Mayo Clinic, Scottsdale, AZ
| | - James M Bogenberger
- Division of Hematology/Oncology, Department of Medicine, Mayo Clinic, Scottsdale, AZ
| | - Thomas T DeLeon
- Division of Hematology/Oncology, Department of Medicine, Mayo Clinic, Scottsdale, AZ
| | - Yumei Zhou
- Division of Hematology/Oncology, Department of Medicine, Mayo Clinic, Scottsdale, AZ
| | - Daniel H Ahn
- Division of Hematology/Oncology, Department of Medicine, Mayo Clinic, Scottsdale, AZ
| | - Mitesh J Borad
- Division of Hematology/Oncology, Department of Medicine, Mayo Clinic, Scottsdale, AZ.,Department of Molecular Medicine, Center for Individualized Medicine, Mayo Clinic, Rochester, MN.,Department of Oncology, Mayo Clinic Cancer Center, Phoenix, AZ, USA
| |
Collapse
|
42
|
Engineering of double recombinant vaccinia virus with enhanced oncolytic potential for solid tumor virotherapy. Oncotarget 2018; 7:74171-74188. [PMID: 27708236 PMCID: PMC5342044 DOI: 10.18632/oncotarget.12367] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 09/21/2016] [Indexed: 12/22/2022] Open
Abstract
Vaccinia virus (VACV) oncolytic therapy has been successful in a number of tumor models. In this study our goal was to generate a double recombinant vaccinia virus (VV-GMCSF-Lact) with enhanced antitumor activity that expresses exogenous proteins: the antitumor protein lactaptin and human granulocyte-macrophage colony-stimulating factor (GM-CSF). Lactaptin has previously been demonstrated to act as a tumor suppressor in mouse hepatoma as well as MDA-MB-231 human adenocarcinoma cells grafted into SCID mice. VV-GMCSF-Lact was engineered from Lister strain (L-IVP) vaccinia virus and has deletions of the viral thymidine kinase and vaccinia growth factor genes. Cell culture experiments revealed that engineered VV-GMCSF-Lact induced the death of cultured cancer cells more efficiently than recombinant VACV coding only GM-CSF (VV-GMCSF-dGF). Normal human MCF-10A cells were resistant to both recombinants up to 10 PFU/cell. The selectivity index for breast cancer cells measured in pair cultures MCF-7/MCF-10A was 200 for recombinant VV-GMCSF-Lact coding lactaptin and 100 for VV-GMCSF-dGF. Using flow cytometry we demonstrated that both recombinants induced apoptosis in treated cells but that the rate in the cells with active caspase −3 and −7 was higher after treatment with VV-GMCSF-Lact than with VV-GMCSF-dGF. Tumor growth inhibition and survival outcomes after VV-GMCSF-Lact treatment were estimated using immunodeficient and immunocompetent mice models. We observed that VV-GMCSF-Lact efficiently delays the growth of sensitive and chemoresistant tumors. These results demonstrate that recombinant VACVs coding an apoptosis-inducing protein have good therapeutic potential against chemoresistant tumors. Our data will also stimulate further investigation of coding lactaptin double recombinant VACV in clinical settings.
Collapse
|
43
|
Samson A, Bentham MJ, Scott K, Nuovo G, Bloy A, Appleton E, Adair RA, Dave R, Peckham-Cooper A, Toogood G, Nagamori S, Coffey M, Vile R, Harrington K, Selby P, Errington-Mais F, Melcher A, Griffin S. Oncolytic reovirus as a combined antiviral and anti-tumour agent for the treatment of liver cancer. Gut 2018; 67:562-573. [PMID: 27902444 PMCID: PMC5868283 DOI: 10.1136/gutjnl-2016-312009] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 09/26/2016] [Accepted: 10/13/2016] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Oncolytic viruses (OVs) represent promising, proinflammatory cancer treatments. Here, we explored whether OV-induced innate immune responses could simultaneously inhibit HCV while suppressing hepatocellular carcinoma (HCC). Furthermore, we extended this exemplar to other models of virus-associated cancer. DESIGN AND RESULTS Clinical grade oncolytic orthoreovirus (Reo) elicited innate immune activation within primary human liver tissue in the absence of cytotoxicity and independently of viral genome replication. As well as achieving therapy in preclinical models of HCC through the activation of innate degranulating immune cells, Reo-induced cytokine responses efficiently suppressed HCV replication both in vitro and in vivo. Furthermore, Reo-induced innate responses were also effective against models of HBV-associated HCC, as well as an alternative endogenous model of Epstein-Barr virus-associated lymphoma. Interestingly, Reo appeared superior to the majority of OVs in its ability to elicit innate inflammatory responses from primary liver tissue. CONCLUSIONS We propose that Reo and other select proinflammatory OV may be used in the treatment of multiple cancers associated with oncogenic virus infections, simultaneously reducing both virus-associated oncogenic drive and tumour burden. In the case of HCV-associated HCC (HCV-HCC), Reo should be considered as an alternative agent to supplement and support current HCV-HCC therapies, particularly in those countries where access to new HCV antiviral treatments may be limited.
Collapse
Affiliation(s)
- Adel Samson
- Leeds Institute of Cancer & Pathology (LICAP) and Leeds Cancer Research UK Clinical Centre, Faculty of Medicine and Health, University of Leeds, St James’ University Hospital, Leeds, UK
| | - Matthew J Bentham
- Leeds Institute of Cancer & Pathology (LICAP) and Leeds Cancer Research UK Clinical Centre, Faculty of Medicine and Health, University of Leeds, St James’ University Hospital, Leeds, UK
| | - Karen Scott
- Leeds Institute of Cancer & Pathology (LICAP) and Leeds Cancer Research UK Clinical Centre, Faculty of Medicine and Health, University of Leeds, St James’ University Hospital, Leeds, UK
| | - Gerard Nuovo
- The Ohio State University, Comprehensive Cancer Centre, Columbus, Ohio, USA
| | - Abigail Bloy
- Leeds Institute of Cancer & Pathology (LICAP) and Leeds Cancer Research UK Clinical Centre, Faculty of Medicine and Health, University of Leeds, St James’ University Hospital, Leeds, UK
| | - Elizabeth Appleton
- Leeds Institute of Cancer & Pathology (LICAP) and Leeds Cancer Research UK Clinical Centre, Faculty of Medicine and Health, University of Leeds, St James’ University Hospital, Leeds, UK
| | - Robert A Adair
- Leeds Institute of Cancer & Pathology (LICAP) and Leeds Cancer Research UK Clinical Centre, Faculty of Medicine and Health, University of Leeds, St James’ University Hospital, Leeds, UK
| | - Rajiv Dave
- Leeds Institute of Cancer & Pathology (LICAP) and Leeds Cancer Research UK Clinical Centre, Faculty of Medicine and Health, University of Leeds, St James’ University Hospital, Leeds, UK
| | - Adam Peckham-Cooper
- Leeds Institute of Cancer & Pathology (LICAP) and Leeds Cancer Research UK Clinical Centre, Faculty of Medicine and Health, University of Leeds, St James’ University Hospital, Leeds, UK
| | - Giles Toogood
- Leeds Institute of Cancer & Pathology (LICAP) and Leeds Cancer Research UK Clinical Centre, Faculty of Medicine and Health, University of Leeds, St James’ University Hospital, Leeds, UK
| | | | - Matthew Coffey
- Department of Virology II, National Institute of Infectious Diseases 1-23-1 Toyama, Tokyo, Japan
- Oncolytics Biotech, Calgary, Alberta, Canada
| | - Richard Vile
- Leeds Institute of Cancer & Pathology (LICAP) and Leeds Cancer Research UK Clinical Centre, Faculty of Medicine and Health, University of Leeds, St James’ University Hospital, Leeds, UK
- Department of Immunology, Mayo Clinic, Rochester, Minnesota, USA
- Department of Molecular Medicine, The Institute of Cancer Research, London, UK
| | - Kevin Harrington
- Department of Molecular Medicine, The Institute of Cancer Research, London, UK
| | - Peter Selby
- Leeds Institute of Cancer & Pathology (LICAP) and Leeds Cancer Research UK Clinical Centre, Faculty of Medicine and Health, University of Leeds, St James’ University Hospital, Leeds, UK
| | - Fiona Errington-Mais
- Leeds Institute of Cancer & Pathology (LICAP) and Leeds Cancer Research UK Clinical Centre, Faculty of Medicine and Health, University of Leeds, St James’ University Hospital, Leeds, UK
| | - Alan Melcher
- Department of Molecular Medicine, The Institute of Cancer Research, London, UK
| | - Stephen Griffin
- Leeds Institute of Cancer & Pathology (LICAP) and Leeds Cancer Research UK Clinical Centre, Faculty of Medicine and Health, University of Leeds, St James’ University Hospital, Leeds, UK
| |
Collapse
|
44
|
Moon EK, Wang LCS, Bekdache K, Lynn RC, Lo A, Thorne SH, Albelda SM. Intra-tumoral delivery of CXCL11 via a vaccinia virus, but not by modified T cells, enhances the efficacy of adoptive T cell therapy and vaccines. Oncoimmunology 2018; 7:e1395997. [PMID: 29399394 DOI: 10.1080/2162402x.2017.1395997] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 10/19/2017] [Indexed: 12/22/2022] Open
Abstract
T cell trafficking into tumors depends on a "match" between chemokine receptors on effector cells (e.g., CXCR3 and CCR5) and tumor-secreted chemokines. There is often a chemokine/chemokine receptor "mismatch", with tumors producing minute amounts of chemokines, resulting in inefficient targeting of effectors to tumors. We aimed to alter tumors to produce higher levels of CXCL11, a CXCR3 ligand, to attract more effector cells following immunotherapy. Mice bearing established subcutaneous tumors were studied. In our first approach, we used modified chimeric antigen receptor (CAR)-transduced human T cells to deliver CXCL11 (CAR/CXCL11) into tumors. In our second approach, we intravenously (iv) administered a modified oncolytic vaccinia virus (VV) engineered to produce CXCL11 (VV.CXCL11). The effect of these treatments on T cell trafficking into the tumors and anti-tumor efficacy after subsequent CAR T cell injections or anti-tumor vaccines was determined. CAR/CXCL11 and VV.CXCL11 significantly increased CXCL11 protein levels within tumors. For CAR/CXCL11, injection of a subsequent dose of CAR T cells did not result in increased intra-tumoral trafficking, and appeared to decrease the function of the injected CAR T cells. In contrast, VV.CXCL11 increased the number of total and antigen-specific T cells within tumors after CAR T cell injection or vaccination and significantly enhanced anti-tumor efficacy. Both approaches were successful in increasing CXCL11 levels within the tumors; however, only the vaccinia approach was successful in recruiting T cells and augmenting anti-tumor efficacy. VV.CXCL11 should be considered as a potential approach to augment adoptive T cell transfer or vaccine immunotherapy.
Collapse
Affiliation(s)
- Edmund K Moon
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Liang-Chuan S Wang
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.,current address: Preclinical Pharmacology, Incyte Corporation, Wilmington, DE, USA
| | - Kheng Bekdache
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Rachel C Lynn
- Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Albert Lo
- Department of Biomedical Sciences, School of Veterinary Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Stephen H Thorne
- University of Pittsburgh Cancer Institute, and Departments of Surgery and Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Steven M Albelda
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
45
|
Yoo SY, Bang SY, Jeong SN, Kang DH, Heo J. A cancer-favoring oncolytic vaccinia virus shows enhanced suppression of stem-cell like colon cancer. Oncotarget 2017; 7:16479-89. [PMID: 26918725 PMCID: PMC4941329 DOI: 10.18632/oncotarget.7660] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Accepted: 02/06/2016] [Indexed: 12/11/2022] Open
Abstract
Stem cell-like colon cancer cells (SCCs) pose a major challenge in colon cancer treatment because of their resistance to chemotherapy and radiotherapy. Oncolytic virus-based therapy has shown promising results in uncured cancer patients; however, its effects on SCCs are not well studied yet. Here, we engineered a cancer-favoring oncolytic vaccinia virus (CVV) as a potent biotherapeutic and investigated its therapeutic efficacy in terms of killing SCCs. CVV is an evolved Wyeth strain vaccinia virus (EVV) lacking the viral thymidine kinase. SCC models were established using human or mouse colon cancer spheres, which continuously expressed stemness markers. The cancer-favoring characteristics and different cytotoxic pathways for killing cancer cells successfully overrode general drug resistance, thereby killing colon cancer cells regardless of the presence of SCCs. Subcutaneously injected HT29 spheres showed lower growth in CVV-treated models than in 5-Fu-treated models. Intraperitoneally injected CT26 spheres induced tumor masses in the abdominal region. CVV-treated groups showed higher survival rates and smaller tumor mass formation, compared to 5-Fu-treated groups. Interestingly, the combined treatment of CVV with 5-Fu showed improved survival rates and complete suppression of tumor mass. The CVV developed in this study, thus, effectively suppresses SCCs, which can be synergistically enhanced by simultaneous treatment with the anticancer drug 5-Fu. Our novel CVV is highly advantageous as a next-generation therapeutic for treating colon cancer.
Collapse
Affiliation(s)
- So Young Yoo
- BIO-IT Foundry Technology Institute, Pusan National University, Busan 609-735, Republic of Korea.,Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 626-770, Republic of Korea
| | - Seo Young Bang
- BIO-IT Foundry Technology Institute, Pusan National University, Busan 609-735, Republic of Korea
| | - Su-Nam Jeong
- BIO-IT Foundry Technology Institute, Pusan National University, Busan 609-735, Republic of Korea
| | - Dae Hwan Kang
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 626-770, Republic of Korea.,Department of Internal Medicine, College of Medicine, Pusan National University and Medical Research Institute, Busan 602-739, Republic of Korea.,Republic of Korea Research Institute, Busan 602-739, Republic of Korea
| | - Jeong Heo
- Department of Internal Medicine, College of Medicine, Pusan National University and Medical Research Institute, Busan 602-739, Republic of Korea.,Republic of Korea Research Institute, Busan 602-739, Republic of Korea
| |
Collapse
|
46
|
Irwin CR, Hitt MM, Evans DH. Targeting Nucleotide Biosynthesis: A Strategy for Improving the Oncolytic Potential of DNA Viruses. Front Oncol 2017; 7:229. [PMID: 29018771 PMCID: PMC5622948 DOI: 10.3389/fonc.2017.00229] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 09/07/2017] [Indexed: 12/14/2022] Open
Abstract
The rapid growth of tumors depends upon elevated levels of dNTPs, and while dNTP concentrations are tightly regulated in normal cells, this control is often lost in transformed cells. This feature of cancer cells has been used to advantage to develop oncolytic DNA viruses. DNA viruses employ many different mechanisms to increase dNTP levels in infected cells, because the low concentration of dNTPs found in non-cycling cells can inhibit virus replication. By disrupting the virus-encoded gene(s) that normally promote dNTP biosynthesis, one can assemble oncolytic versions of these agents that replicate selectively in cancer cells. This review covers the pathways involved in dNTP production, how they are dysregulated in cancer cells, and the various approaches that have been used to exploit this biology to improve the tumor specificity of oncolytic viruses. In particular, we compare and contrast the ways that the different types of oncolytic virus candidates can directly modulate these processes. We limit our review to the large DNA viruses that naturally encode homologs of the cellular enzymes that catalyze dNTP biogenesis. Lastly, we consider how this knowledge might guide future development of oncolytic viruses.
Collapse
Affiliation(s)
- Chad R Irwin
- Faculty of Medicine and Dentistry, Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada.,Faculty of Medicine and Dentistry, Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada
| | - Mary M Hitt
- Faculty of Medicine and Dentistry, Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada.,Faculty of Medicine and Dentistry, Department of Oncology, University of Alberta, Edmonton, AB, Canada
| | - David H Evans
- Faculty of Medicine and Dentistry, Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada.,Faculty of Medicine and Dentistry, Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
47
|
Kim SY, Kang D, Choi HJ, Joo Y, Kim JH, Song JJ. Prime-boost immunization by both DNA vaccine and oncolytic adenovirus expressing GM-CSF and shRNA of TGF-β2 induces anti-tumor immune activation. Oncotarget 2017; 8:15858-15877. [PMID: 28178658 PMCID: PMC5362529 DOI: 10.18632/oncotarget.15008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 12/31/2016] [Indexed: 12/21/2022] Open
Abstract
A successful DNA vaccine for the treatment of tumors should break established immune tolerance to tumor antigen. However, due to the relatively low immunogenicity of DNA vaccines, compared to other kinds of vaccines using live virus or protein, a recombinant viral vector was used to enhance humoral and cellular immunity. In the current study, we sought to develop a novel anti-cancer agent as a complex of DNA and oncolytic adenovirus for the treatment of malignant melanoma in the C57BL/6 mouse model. MART1, a human melanoma-specific tumor antigen, was used to induce an increased immune reaction, since a MART1-protective response is required to overcome immune tolerance to the melanoma antigen MelanA. Because GM-CSF is a potent inducer of anti-tumor immunity and TGF-β2 is involved in tumor survival and host immune suppression, mouse GM-CSF (mGM-CSF) and shRNA of mouse TGF-β2 (shmTGF-β2) genes were delivered together with MART1 via oncolytic adenovirus. MART1 plasmid was also used for antigen-priming. To compare the anti-tumor effect of oncolytic adenovirus expressing both mGM-CSF and shmTGF-β2 (AdGshT) with that of oncolytic adenovirus expressing mGM-CSF only (AdG), each virus was intratumorally injected into melanoma-bearing C57BL/6 mice. As a result, mice that received AdGshT showed delayed tumor growth than those that received AdG. Heterologous prime-boost immunization was combined with oncolytic AdGshT and MART1 expression to result in further delayed tumor growth. This regression is likely due to the following 4 combinations: MART1-derived mouse melanoma antigen-specific immune reaction, immune stimulation by mGM-CSF/shmTGF-β2, tumor growth inhibition by shmTGF-β2, and tumor cell-specific lysis via an oncolytic adenovirus. Immune activation was mainly induced by mature tumor-infiltrating dendritic cell (TIDC) and lowered regulatory T cells in tumor-infiltrating lymphocytes (TIL). Taken together, these findings demonstrate that human MART1 induces a mouse melanoma antigen-specific immune reaction. In addition, the results also indicate that combination therapy of MART1 plasmid, together with an oncolytic adenovirus expressing MART1, mGM-CSF, and shmTGF-β2, is a promising candidate for the treatment of malignant melanoma.
Collapse
Affiliation(s)
- So Young Kim
- Institute for Cancer Research, Yonsei University College of Medicine, Seoul, Korea
| | - Dongxu Kang
- Institute for Cancer Research, Yonsei University College of Medicine, Seoul, Korea.,Department of Oncology, Affiliated Hospital of Yanbian University, Yanji, Jilin Province, P.R. China
| | - Hye Jin Choi
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Yeonsoo Joo
- Institute for Cancer Research, Yonsei University College of Medicine, Seoul, Korea.,Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Joo-Hang Kim
- CHA Bundang Medical Center, CHA University, Seongnam, Korea
| | - Jae J Song
- Institute for Cancer Research, Yonsei University College of Medicine, Seoul, Korea.,Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
48
|
Santiago DN, Heidbuechel JPW, Kandell WM, Walker R, Djeu J, Engeland CE, Abate-Daga D, Enderling H. Fighting Cancer with Mathematics and Viruses. Viruses 2017; 9:E239. [PMID: 28832539 PMCID: PMC5618005 DOI: 10.3390/v9090239] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 08/18/2017] [Accepted: 08/18/2017] [Indexed: 12/19/2022] Open
Abstract
After decades of research, oncolytic virotherapy has recently advanced to clinical application, and currently a multitude of novel agents and combination treatments are being evaluated for cancer therapy. Oncolytic agents preferentially replicate in tumor cells, inducing tumor cell lysis and complex antitumor effects, such as innate and adaptive immune responses and the destruction of tumor vasculature. With the availability of different vector platforms and the potential of both genetic engineering and combination regimens to enhance particular aspects of safety and efficacy, the identification of optimal treatments for patient subpopulations or even individual patients becomes a top priority. Mathematical modeling can provide support in this arena by making use of experimental and clinical data to generate hypotheses about the mechanisms underlying complex biology and, ultimately, predict optimal treatment protocols. Increasingly complex models can be applied to account for therapeutically relevant parameters such as components of the immune system. In this review, we describe current developments in oncolytic virotherapy and mathematical modeling to discuss the benefit of integrating different modeling approaches into biological and clinical experimentation. Conclusively, we propose a mutual combination of these research fields to increase the value of the preclinical development and the therapeutic efficacy of the resulting treatments.
Collapse
Affiliation(s)
- Daniel N Santiago
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA.
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA.
| | | | - Wendy M Kandell
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA.
- Cancer Biology PhD Program, University of South Florida, Tampa, FL 33612, USA.
| | - Rachel Walker
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA.
| | - Julie Djeu
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA.
| | - Christine E Engeland
- German Cancer Research Center, Heidelberg University, 69120 Heidelberg, Germany.
- National Center for Tumor Diseases Heidelberg, Department of Translational Oncology, Department of Medical Oncology, 69120 Heidelberg, Germany.
| | - Daniel Abate-Daga
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA.
- Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA.
- Department of Oncologic Sciences, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA.
| | - Heiko Enderling
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA.
- Department of Oncologic Sciences, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA.
| |
Collapse
|
49
|
Hamid O, Hoffner B, Gasal E, Hong J, Carvajal RD. Oncolytic immunotherapy: unlocking the potential of viruses to help target cancer. Cancer Immunol Immunother 2017; 66:1249-1264. [PMID: 28712033 PMCID: PMC5626801 DOI: 10.1007/s00262-017-2025-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 05/23/2017] [Indexed: 12/22/2022]
Abstract
Oncolytic immunotherapy is a research area of cancer immunotherapy investigating the use of modified viruses to target cancer cells. A variety of different viral backbones (e.g., adenovirus, reovirus) with a diverse range of genetic modifications are currently being investigated for the treatment of a variety of cancers. The oncolytic virus that has advanced the furthest in clinical development is talimogene laherparepvec, a recombinant HSV-1 virus expressing granulocyte-macrophage colony-stimulating factor (GM-CSF). In a phase 3 study in patients with unresectable metastatic melanoma, intralesional talimogene laherparepvec treatment resulted in a higher durable response rate compared with subcutaneous GM-CSF treatment (16.3 versus 2.1%; P < 0.001). Notably, responses were observed at uninjected lesions including visceral lesions, indicating a systemic antitumor response had occurred. Studies evaluating combination treatments involving oncolytic viruses and immunologic agents are ongoing. This review focuses on the mechanisms of action for oncolytic viruses and highlights select agents and combinations currently in development.
Collapse
Affiliation(s)
- Omid Hamid
- The Angeles Clinic and Research Institute, 11818 Wilshire Blvd #200, Los Angeles, CA, 90025, USA.
| | | | | | - Jenny Hong
- Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | | |
Collapse
|
50
|
Mell LK, Brumund KT, Daniels GA, Advani SJ, Zakeri K, Wright ME, Onyeama SJ, Weisman RA, Sanghvi PR, Martin PJ, Szalay AA. Phase I Trial of Intravenous Oncolytic Vaccinia Virus (GL-ONC1) with Cisplatin and Radiotherapy in Patients with Locoregionally Advanced Head and Neck Carcinoma. Clin Cancer Res 2017; 23:5696-5702. [PMID: 28679776 DOI: 10.1158/1078-0432.ccr-16-3232] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 03/21/2017] [Accepted: 06/27/2017] [Indexed: 11/16/2022]
Abstract
Purpose: Preclinical models have shown that the effectiveness of GL-ONC1, a modified oncolytic vaccinia virus, is enhanced by radiation and chemotherapy. The purpose of this study was to determine the safety of GL-ONC1 when delivered intravenously with chemoradiotherapy to patients with primary, nonmetastatic head and neck cancer.Experimental Design: Patients with locoregionally advanced unresected, nonmetastatic carcinoma of the head/neck, excluding stage III-IVA p16-positive oropharyngeal cancers, were treated with escalating doses and cycles of intravenous GL-ONC1, along with radiotherapy and chemotherapy. The primary aims were to define the MTD and dose-limiting toxicities, and to recommend a dose for phase II trials.Results: Between May 2012 and December 2014, 19 patients were enrolled. The most frequent adverse reactions included grade 1-2 rigors, fever, fatigue, and rash. Grade 3 adverse reactions included hypotension, mucositis, nausea, and vomiting. In 2 patients, the rash was confirmed as viral in origin by fluorescence imaging and viral plaque assay. In 4 patients, viral presence in tumor was confirmed on midtreatment biopsy by quantitative PCR. In 1 patient, live virus was confirmed in a tongue tumor 7 days after receiving the first dose of virus. The MTD was not reached. With median follow-up of 30 months, 1-year (2-year) progression-free survival and overall survival were 74.4% (64.1%) and 84.6% (69.2%), respectively.Conclusions: Delivery of GL-ONC1 is safe and feasible in patients with locoregionally advanced head/neck cancer undergoing standard chemoradiotherapy. A phase II study is warranted to further investigate this novel treatment strategy. Clin Cancer Res; 23(19); 5696-702. ©2017 AACR.
Collapse
Affiliation(s)
- Loren K Mell
- Center for Translational Radiation Medicine and Imaging, Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California.
| | - Kevin T Brumund
- Department of Surgery, Division of Otolaryngology-Head and Neck Surgery, University of California San Diego, La Jolla, California
| | - Gregory A Daniels
- Center for Personalized Cancer Therapy, and Division of Hematology and Oncology, UCSD Moores Cancer Center, La Jolla, California
| | - Sunil J Advani
- Center for Translational Radiation Medicine and Imaging, Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California
| | - Kaveh Zakeri
- Center for Translational Radiation Medicine and Imaging, Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California
| | - Mary E Wright
- Center for Translational Radiation Medicine and Imaging, Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California
| | - Sara-Jane Onyeama
- Center for Translational Radiation Medicine and Imaging, Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California
| | - Robert A Weisman
- Department of Surgery, Division of Otolaryngology-Head and Neck Surgery, University of California San Diego, La Jolla, California
| | - Parag R Sanghvi
- Center for Translational Radiation Medicine and Imaging, Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California
| | - Peter J Martin
- Department of Otolaryngology, Kaiser Permanente, San Diego, California
| | - Aladar A Szalay
- Center for Translational Radiation Medicine and Imaging, Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California
| |
Collapse
|