1
|
Dong C, Tan D, Sun H, Li Z, Zhang L, Zheng Y, Liu S, Zhang Y, He Q. Interleukin-12 Delivery Strategies and Advances in Tumor Immunotherapy. Curr Issues Mol Biol 2024; 46:11548-11579. [PMID: 39451566 PMCID: PMC11506767 DOI: 10.3390/cimb46100686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/11/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024] Open
Abstract
Interleukin-12 (IL-12) is considered to be a promising cytokine for enhancing an antitumor immune response; however, recombinant IL-12 has shown significant toxicity and limited efficacy in early clinical trials. Recently, many strategies for delivering IL-12 to tumor tissues have been developed, such as modifying IL-12, utilizing viral vectors, non-viral vectors, and cellular vectors. Previous studies have found that the fusion of IL-12 with extracellular matrix proteins, collagen, and immune factors is a way to enhance its therapeutic potential. In addition, studies have demonstrated that viral vectors are a good platform, and a variety of viruses such as oncolytic viruses, adenoviruses, and poxviruses have been used to deliver IL-12-with testing previously conducted in various cancer models. The local expression of IL-12 in tumors based on viral delivery avoids systemic toxicity while inducing effective antitumor immunity and acting synergistically with other therapies without compromising safety. In addition, lipid nanoparticles are currently considered to be the most mature drug delivery system. Moreover, cells are also considered to be drug carriers because they can effectively deliver therapeutic substances to tumors. In this article, we will systematically discuss the anti-tumor effects of IL-12 on its own or in combination with other therapies based on different delivery strategies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Qing He
- State Key Laboratory of Drug Regulatory Sciences, National Institutes for Food and Drug Control, Beijing 102629, China; (C.D.); (D.T.); (H.S.); (Z.L.); (L.Z.); (Y.Z.); (S.L.); (Y.Z.)
| |
Collapse
|
2
|
Dasgupta S, Saha A, Ganguly N, Bhuniya A, Dhar S, Guha I, Ghosh T, Sarkar A, Ghosh S, Roy K, Das T, Banerjee S, Pal C, Baral R, Bose A. NLGP regulates RGS5-TGFβ axis to promote pericyte-dependent vascular normalization during restricted tumor growth. FASEB J 2022; 36:e22268. [PMID: 35363396 DOI: 10.1096/fj.202101093r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 02/05/2022] [Accepted: 03/09/2022] [Indexed: 12/25/2022]
Abstract
Altered RGS5-associated intracellular pericyte signaling and its abnormal crosstalk with endothelial cells (ECs) result chaotic tumor-vasculature, prevent effective drug delivery, promote immune-evasion and many more to ensure ultimate tumor progression. Moreover, the frequency of lethal-RGS5high pericytes within tumor was found to increase with disease progression, which signifies the presence of altered cell death pathway within tumor microenvironment (TME). In this study, we checked whether and how neem leaf glycoprotein (NLGP)-immunotherapy-mediated tumor growth restriction is associated with modification of pericytes' signaling, functions and its interaction with ECs. Analysis of pericytes isolated from tumors of NLGP treated mice suggested that NLGP treatment promotes apoptosis of NG2+ RGS5high -fuctionally altered pericytes by downregulating intra-tumoral TGFβ, along with maintenance of more matured RGS5neg pericytes. NLGP-mediated inhibition of TGFβ within TME rescues binding of RGS5 with Gαi and thereby termination of PI3K-AKT mediated survival signaling by downregulating Bcl2 and initiating pJNK mediated apoptosis. Limited availability of TGFβ also prevents complex-formation between RGS5 and Smad2 and rapid RGS5 nuclear translocation to mitigate alternate immunoregulatory functions of RGS5high tumor-pericytes. We also observed binding of Ang1 from pericytes with Tie2 on ECs in NLGP-treated tumor, which support re-association of pericytes with endothelium and subsequent vessel stabilization. Furthermore, NLGP-therapy- associated RGS5 deficiency relieved CD4+ and CD8+ T cells from anergy by regulating 'alternate-APC-like' immunomodulatory characters of tumor-pericytes. Taken together, present study described the mechanisms of NLGP's effectiveness in normalizing tumor-vasculature by chiefly modulating pericyte-biology and EC-pericyte interactions in tumor-host to further strengthen its translational potential as single modality treatment.
Collapse
Affiliation(s)
- Shayani Dasgupta
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| | - Akata Saha
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| | - Nilanjan Ganguly
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| | - Avishek Bhuniya
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| | - Sukanya Dhar
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| | - Ipsita Guha
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| | - Tithi Ghosh
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| | - Anirban Sarkar
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| | - Sarbari Ghosh
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| | - Kamalika Roy
- Cellular Immunology and Experimental Therapeutics Laboratory, Department of Zoology, West Bengal State University, Barasat, India
| | - Tapasi Das
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| | - Saptak Banerjee
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| | - Chiranjib Pal
- Cellular Immunology and Experimental Therapeutics Laboratory, Department of Zoology, West Bengal State University, Barasat, India
| | - Rathindranath Baral
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| | - Anamika Bose
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| |
Collapse
|
3
|
Leleux JA, Albershardt TC, Reeves R, James R, Krull J, Parsons AJ, ter Meulen J, Berglund P. Intratumoral expression of IL-12 from lentiviral or RNA vectors acts synergistically with TLR4 agonist (GLA) to generate anti-tumor immunological memory. PLoS One 2021; 16:e0259301. [PMID: 34855754 PMCID: PMC8638928 DOI: 10.1371/journal.pone.0259301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 10/15/2021] [Indexed: 11/20/2022] Open
Abstract
Systemic interleukin-12 (IL12) anti-tumor therapy is highly potent but has had limited utility in the clinic due to severe toxicity. Here, we present two IL12-expressing vector platforms, both of which can overcome the deficiencies of previous systemic IL12 therapies: 1) an integrating lentiviral vector, and 2) a self-replicating messenger RNA formulated with polyethyleneimine. Intratumoral administration of either IL12 vector platform resulted in recruitment of immune cells, including effector T cells and dendritic cells, and the complete remission of established tumors in multiple murine models. Furthermore, concurrent intratumoral administration of the synthetic TLR4 agonist glucopyranosyl lipid A formulated in a stable emulsion (GLA-SE) induced systemic memory T cell responses that mediated complete protection against tumor rechallenge in all survivor mice (8/8 rechallenged mice), whereas only 2/6 total rechallenged mice treated with intratrumoral IL12 monotherapy rejected the rechallenge. Taken together, expression of vectorized IL12 in combination with a TLR4 agonist represents a varied approach to broaden the applicability of intratumoral immune therapies of solid tumors.
Collapse
MESH Headings
- Animals
- CD8-Positive T-Lymphocytes/immunology
- Female
- Gene Expression Regulation
- Genetic Vectors/administration & dosage
- Genetic Vectors/pharmacology
- Glucosides/pharmacology
- Immunity, Innate/drug effects
- Immunity, Innate/genetics
- Immunologic Memory/drug effects
- Immunologic Memory/genetics
- Immunotherapy/methods
- Interferon-gamma/blood
- Interleukin-12/blood
- Interleukin-12/genetics
- Interleukin-12/immunology
- Lentivirus/genetics
- Lipid A/pharmacology
- Melanoma, Experimental/genetics
- Melanoma, Experimental/immunology
- Melanoma, Experimental/therapy
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Transgenic
- Neoplasms, Experimental/genetics
- Neoplasms, Experimental/immunology
- Neoplasms, Experimental/pathology
- Toll-Like Receptor 4/agonists
- Mice
Collapse
Affiliation(s)
- Jardin A. Leleux
- Immune Design Corp., Seattle, WA, A wholly owned subsidiary of Merck & Co., Inc., Kenilworth, NJ, United States of America
| | - Tina C. Albershardt
- Immune Design Corp., Seattle, WA, A wholly owned subsidiary of Merck & Co., Inc., Kenilworth, NJ, United States of America
| | - Rebecca Reeves
- Immune Design Corp., Seattle, WA, A wholly owned subsidiary of Merck & Co., Inc., Kenilworth, NJ, United States of America
| | - Reice James
- Immune Design Corp., Seattle, WA, A wholly owned subsidiary of Merck & Co., Inc., Kenilworth, NJ, United States of America
| | - Jordan Krull
- Immune Design Corp., Seattle, WA, A wholly owned subsidiary of Merck & Co., Inc., Kenilworth, NJ, United States of America
| | - Andrea J. Parsons
- Immune Design Corp., Seattle, WA, A wholly owned subsidiary of Merck & Co., Inc., Kenilworth, NJ, United States of America
| | - Jan ter Meulen
- Immune Design Corp., Seattle, WA, A wholly owned subsidiary of Merck & Co., Inc., Kenilworth, NJ, United States of America
| | - Peter Berglund
- Immune Design Corp., Seattle, WA, A wholly owned subsidiary of Merck & Co., Inc., Kenilworth, NJ, United States of America
| |
Collapse
|
4
|
RGS5-TGFβ-Smad2/3 axis switches pro- to anti-apoptotic signaling in tumor-residing pericytes, assisting tumor growth. Cell Death Differ 2021; 28:3052-3076. [PMID: 34012071 PMCID: PMC8564526 DOI: 10.1038/s41418-021-00801-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 04/29/2021] [Accepted: 05/03/2021] [Indexed: 02/04/2023] Open
Abstract
Regulator-of-G-protein-signaling-5 (RGS5), a pro-apoptotic/anti-proliferative protein, is a signature molecule of tumor-associated pericytes, highly expressed in several cancers, and is associated with tumor growth and poor prognosis. Surprisingly, despite the negative influence of intrinsic RGS5 expression on pericyte survival, RGS5highpericytes accumulate in progressively growing tumors. However, responsible factor(s) and altered-pathway(s) are yet to report. RGS5 binds with Gαi/q and promotes pericyte apoptosis in vitro, subsequently blocking GPCR-downstream PI3K-AKT signaling leading to Bcl2 downregulation and promotion of PUMA-p53-Bax-mediated mitochondrial damage. However, within tumor microenvironment (TME), TGFβ appeared to limit the cytocidal action of RGS5 in tumor-residing RGS5highpericytes. We observed that in the presence of high RGS5 concentrations, TGFβ-TGFβR interactions in the tumor-associated pericytes lead to the promotion of pSmad2-RGS5 binding and nuclear trafficking of RGS5, which coordinately suppressed RGS5-Gαi/q and pSmad2/3-Smad4 pairing. The RGS5-TGFβ-pSmad2 axis thus mitigates both RGS5- and TGFβ-dependent cellular apoptosis, resulting in sustained pericyte survival/expansion within the TME by rescuing PI3K-AKT signaling and preventing mitochondrial damage and caspase activation. This study reports a novel mechanism by which TGFβ fortifies and promotes survival of tumor pericytes by switching pro- to anti-apoptotic RGS5 signaling in TME. Understanding this altered RGS5 signaling might prove beneficial in designing future cancer therapy.
Collapse
|
5
|
Zebley CC, Abdelsamed HA, Ghoneim HE, Alli S, Brown C, Haydar D, Mi T, Harris T, McGargill MA, Krenciute G, Youngblood B. Proinflammatory cytokines promote TET2-mediated DNA demethylation during CD8 T cell effector differentiation. Cell Rep 2021; 37:109796. [PMID: 34644568 PMCID: PMC8593824 DOI: 10.1016/j.celrep.2021.109796] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 07/30/2021] [Accepted: 09/14/2021] [Indexed: 12/24/2022] Open
Abstract
To gain insight into the signaling determinants of effector-associated DNA methylation programming among CD8 T cells, we explore the role of interleukin (IL)-12 in the imprinting of IFNg expression during CD8 T cell priming. We observe that anti-CD3/CD28-mediated stimulation of human naive CD8 T cells is not sufficient to induce substantial demethylation of the IFNg promoter. However, anti-CD3/CD28 stimulation in the presence of the inflammatory cytokine, IL-12, results in stable demethylation of the IFNg locus that is commensurate with IFNg expression. IL-12-associated demethylation of the IFNg locus is coupled to cell division through TET2-dependent demethylation in an ex vivo human chimeric antigen receptor T cell model system and an in vivo immunologically competent murine system. Collectively, these data illustrate that IL-12 signaling promotes TET2-mediated effector DNA demethylation programming in CD8 T cells and serve as proof of concept that cytokines can guide induction of epigenetically regulated traits for T cell-based immunotherapies.
Collapse
Affiliation(s)
- Caitlin C Zebley
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; St. Jude Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Hossam A Abdelsamed
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Hazem E Ghoneim
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Shanta Alli
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Charmaine Brown
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Dalia Haydar
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Tian Mi
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Tarsha Harris
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Maureen A McGargill
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Giedre Krenciute
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Ben Youngblood
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
6
|
Kułach N, Pilny E, Cichoń T, Czapla J, Jarosz-Biej M, Rusin M, Drzyzga A, Matuszczak S, Szala S, Smolarczyk R. Mesenchymal stromal cells as carriers of IL-12 reduce primary and metastatic tumors of murine melanoma. Sci Rep 2021; 11:18335. [PMID: 34526531 PMCID: PMC8443548 DOI: 10.1038/s41598-021-97435-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 08/20/2021] [Indexed: 01/14/2023] Open
Abstract
Due to immunosuppressive properties and confirmed tropism towards cancer cells mesenchymal stromal cells (MSC) have been used in many trials. In our study we used these cells as carriers of IL-12 in the treatment of mice with primary and metastatic B16-F10 melanomas. IL-12 has confirmed anti-cancer activity, induces a strong immune response against cancer cells and acts as an anti-angiogenic agent. A major limitation of the use of IL-12 in therapy is its systemic toxicity. The aim of the work was to develop a system in which cytokine may be administered intravenously without toxic side effects. In this study MSC were used as carriers of the IL-12. We confirmed antitumor effectiveness of the cells secreting IL-12 (MSC/IL-12) in primary and metastatic murine melanoma models. We observed inhibition of tumor growth and a significant reduction in the number of metastases in mice after MSC/IL-12 administration. MSC/IL-12 decreased vascular density and increased the number of anticancer M1 macrophages and CD8+ cytotoxic T lymphocytes in tumors of treated mice. To summarize, we showed that MSC are an effective, safe carrier of IL-12 cytokine. Administered systemically they exert therapeutic properties of IL-12 cytokine without toxicity. Therapeutic effect may be a result of pleiotropic (proinflammatory and anti-angiogenic) properties of IL-12 released by modified MSC.
Collapse
Affiliation(s)
- Natalia Kułach
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej Street 15, 44-102, Gliwice, Poland
| | - Ewelina Pilny
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej Street 15, 44-102, Gliwice, Poland
| | - Tomasz Cichoń
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej Street 15, 44-102, Gliwice, Poland
| | - Justyna Czapla
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej Street 15, 44-102, Gliwice, Poland
| | - Magdalena Jarosz-Biej
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej Street 15, 44-102, Gliwice, Poland
| | - Marek Rusin
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej Street 15, 44-102, Gliwice, Poland
| | - Alina Drzyzga
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej Street 15, 44-102, Gliwice, Poland
| | - Sybilla Matuszczak
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej Street 15, 44-102, Gliwice, Poland
| | - Stanisław Szala
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej Street 15, 44-102, Gliwice, Poland
| | - Ryszard Smolarczyk
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej Street 15, 44-102, Gliwice, Poland.
| |
Collapse
|
7
|
Guha I, Bhuniya A, Shukla D, Patidar A, Nandi P, Saha A, Dasgupta S, Ganguly N, Ghosh S, Nair A, Majumdar S, Saha B, Storkus WJ, Baral R, Bose A. Tumor Arrests DN2 to DN3 Pro T Cell Transition and Promotes Its Conversion to Thymic Dendritic Cells by Reciprocally Regulating Notch1 and Ikaros Signaling. Front Immunol 2020; 11:898. [PMID: 32582141 PMCID: PMC7292239 DOI: 10.3389/fimmu.2020.00898] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 04/17/2020] [Indexed: 11/13/2022] Open
Abstract
Tumor progression in the host leads to severe impairment of intrathymic T-cell differentiation/maturation, leading to the paralysis of cellular anti-tumor immunity. Such suppression manifests the erosion of CD4+CD8+ double-positive (DP) immature thymocytes and a gradual increase in CD4-CD8- double negative (DN) early T-cell progenitors. The impact of such changes on the T-cell progenitor pool in the context of cancer remains poorly investigated. Here, we show that tumor progression blocks the transition of Lin-Thy1.2+CD25+CD44+c-KitlowDN2b to Lin-Thy1.2+CD25+CD44-c-Kit-DN3 in T-cell maturation, instead leading to DN2-T-cell differentiation into dendritic cells (DC). We observed that thymic IL-10 expression is upregulated, particularly at cortico-medullary junctions (CMJ), under conditions of progressive disease, resulting in the termination of IL-10Rhigh DN2-T-cell maturation due to dysregulated expression of Notch1 and its target, CCR7 (thus restricting these cells to the CMJ). Intrathymic differentiation of T-cell precursors in IL-10-/- mice and in vitro fetal thymic organ cultures revealed that IL-10 promotes the interaction between thymic stromal cells and Notch1low DN2-T cells, thus facilitating these DN2-T cells to differentiate toward CD45+CD11c+MHC-II+ thymic DCs as a consequence of activating the Ikaros/IRF8 signaling axis. We conclude that a novel function of thymically-expressed IL-10 in the tumor-bearing host diverts T-cell differentiation toward a DC pathway, thus limiting the protective adaptive immune repertoire.
Collapse
Affiliation(s)
- Ipsita Guha
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), Kolkata, India
| | - Avishek Bhuniya
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), Kolkata, India
| | - Divanshu Shukla
- Department of Pathogenesis and Cell Responses, National Centre for Cell Sciences, Pune, India
| | - Ashok Patidar
- Department of Pathogenesis and Cell Responses, National Centre for Cell Sciences, Pune, India
| | - Partha Nandi
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), Kolkata, India
| | - Akata Saha
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), Kolkata, India
| | - Shayani Dasgupta
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), Kolkata, India
| | - Nilanjan Ganguly
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), Kolkata, India
| | - Sweta Ghosh
- Department of Molecular Medicine, Bose Institute, Kolkata, India
| | - Arathi Nair
- Department of Pathogenesis and Cell Responses, National Centre for Cell Sciences, Pune, India
| | - Subrata Majumdar
- Department of Molecular Medicine, Bose Institute, Kolkata, India
| | - Bhaskar Saha
- Department of Pathogenesis and Cell Responses, National Centre for Cell Sciences, Pune, India
| | - Walter J Storkus
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Rathindranath Baral
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), Kolkata, India
| | - Anamika Bose
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), Kolkata, India
| |
Collapse
|
8
|
Byrne-Hoffman CN, Deng W, McGrath O, Wang P, Rojanasakul Y, Klinke DJ. Interleukin-12 elicits a non-canonical response in B16 melanoma cells to enhance survival. Cell Commun Signal 2020; 18:78. [PMID: 32450888 PMCID: PMC7249691 DOI: 10.1186/s12964-020-00547-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 03/06/2020] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Oncogenesis rewires signaling networks to confer a fitness advantage to malignant cells. For instance, the B16F0 melanoma cell model creates a cytokine sink for Interleukin-12 (IL-12) to deprive neighboring cells of this important anti-tumor immune signal. While a cytokine sink provides an indirect fitness advantage, does IL-12 provide an intrinsic advantage to B16F0 cells? METHODS Acute in vitro viability assays were used to compare the cytotoxic effect of imatinib on a melanoma cell line of spontaneous origin (B16F0) with a normal melanocyte cell line (Melan-A) in the presence of IL-12. The results were analyzed using a mathematical model coupled with a Markov Chain Monte Carlo approach to obtain a posterior distribution in the parameters that quantified the biological effect of imatinib and IL-12. Intracellular signaling responses to IL-12 were compared using flow cytometry in 2D6 cells, a cell model for canonical signaling, and B16F0 cells, where potential non-canonical signaling occurs. Bayes Factors were used to select among competing signaling mechanisms that were formulated as mathematical models. Analysis of single cell RNAseq data from human melanoma patients was used to explore generalizability. RESULTS Functionally, IL-12 enhanced the survival of B16F0 cells but not normal Melan-A melanocytes that were challenged with a cytotoxic agent. Interestingly, the ratio of IL-12 receptor components (IL12RB2:IL12RB1) was increased in B16F0 cells. A similar pattern was observed in human melanoma. To identify a mechanism, we assayed the phosphorylation of proteins involved in canonical IL-12 signaling, STAT4, and cell survival, Akt. In contrast to T cells that exhibited a canonical response to IL-12 by phosphorylating STAT4, IL-12 stimulation of B16F0 cells predominantly phosphorylated Akt. Mechanistically, the differential response in B16F0 cells is explained by both ligand-dependent and ligand-independent aspects to initiate PI3K-AKT signaling upon IL12RB2 homodimerization. Namely, IL-12 promotes IL12RB2 homodimerization with low affinity and IL12RB2 overexpression promotes homodimerization via molecular crowding on the plasma membrane. CONCLUSIONS The data suggest that B16F0 cells shifted the intracellular response to IL-12 from engaging immune surveillance to favoring cell survival. Identifying how signaling networks are rewired in model systems of spontaneous origin can inspire therapeutic strategies in humans. Interleukin-12 is a key cytokine that promotes anti-tumor immunity, as it is secreted by antigen presenting cells to activate Natural Killer cells and T cells present within the tumor microenvironment. Thinking of cancer as an evolutionary process implies that an immunosuppressive tumor microenvironment could arise during oncogenesis by interfering with endogenous anti-tumor immune signals, like IL-12. Previously, we found that B16F0 cells, a cell line derived from a spontaneous melanoma, interrupts this secreted heterocellular signal by sequestering IL-12, which provides an indirect fitness advantage. Normally, IL-12 signals via a receptor comprised of two components, IL12RB1 and IL12RB2, that are expressed in a 1:1 ratio and activates STAT4 as a downstream effector. Here, we report that B16F0 cells gain an intrinsic advantage by rewiring the canonical response to IL-12 to instead initiate PI3K-AKT signaling, which promotes cell survival. The data suggest a model where overexpressing one component of the IL-12 receptor, IL12RB2, enables melanoma cells to shift the functional response via both IL-12-mediated and molecular crowding-based IL12RB2 homodimerization. To explore the generalizability of these results, we also found that the expression of IL12RB2:IL12RB1 is similarly skewed in human melanoma based on transcriptional profiles of melanoma cells and tumor-infiltrating lymphocytes. Additional file 6: Video abstract. (MP4 600 kb).
Collapse
Affiliation(s)
- Christina N Byrne-Hoffman
- Department of Pharmaceutical Sciences; West Virginia University, 1 Medical Center Drive, Morgantown, 26506, WV, US
| | - Wentao Deng
- Department of Microbiology, Immunology, and Cell Biology; West Virginia University, 1 Medical Center Drive, Morgantown, 26506, WV, US
| | - Owen McGrath
- Department of Chemical and Biomedical Engineering; West Virginia University, 395 Evansdale Drive, Morgantown, 26506, WV, US
| | - Peng Wang
- Department of Pharmaceutical Sciences; West Virginia University, 1 Medical Center Drive, Morgantown, 26506, WV, US
| | - Yon Rojanasakul
- Department of Pharmaceutical Sciences; West Virginia University, 1 Medical Center Drive, Morgantown, 26506, WV, US
| | - David J Klinke
- Department of Microbiology, Immunology, and Cell Biology; West Virginia University, 1 Medical Center Drive, Morgantown, 26506, WV, US. .,Department of Chemical and Biomedical Engineering; West Virginia University, 395 Evansdale Drive, Morgantown, 26506, WV, US. .,WVU Cancer Institute; West Virginia University, 1 Medical Center Drive, Morgantown, 26506, WV, US.
| |
Collapse
|
9
|
Barrett JA, Cai H, Miao J, Khare PD, Gonzalez P, Dalsing-Hernandez J, Sharma G, Chan T, Cooper LJN, Lebel F. Regulated intratumoral expression of IL-12 using a RheoSwitch Therapeutic System ® (RTS ®) gene switch as gene therapy for the treatment of glioma. Cancer Gene Ther 2018; 25:106-116. [PMID: 29755109 PMCID: PMC6021367 DOI: 10.1038/s41417-018-0019-0] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 02/07/2018] [Accepted: 03/02/2018] [Indexed: 12/19/2022]
Abstract
The purpose of this study was to determine if localized delivery of IL-12 encoded by a replication-incompetent adenoviral vector engineered to express IL-12 via a RheoSwitch Therapeutic System® (RTS®) gene switch (Ad-RTS-IL-12) administered intratumorally which is inducibly controlled by the oral activator veledimex is an effective approach for glioma therapy. Mice bearing 5–10-day-old intracranial GL-261 gliomas were intratumorally administered Ad-RTS-mIL-12 in which IL-12 protein expression is tightly controlled by the activator ligand, veledimex. Local tumor viral vector levels concomitant with veledimex levels, IL-12-mRNA expression, local and systemic cytokine expression, tumor and systemic flow cytometry and overall survival were studied. Ad-RTS-mIL-12+veledimex elicited a dose-related increase in tumor IL-12 mRNA and IL-12 protein and discontinuation of veledimex resulted in a return to baseline levels. These changes correlated with local immune and antitumor responses. Veledimex crossed the blood–brain barrier in both orthotopic GL-261 mice and cynomolgus monkeys. We have demonstrated that this therapy induced localized controlled production of IL-12 which correlates with an increase in tumor-infiltrating lymphocytes (TILs) leading to the desired biologic response of tumor growth inhibition and regression. At day 85 (study termination), 65% of the animals that received veledimex at 10 or 30 mg/m2/day were alive and tumor free. In contrast, the median survival for the other groups were: vehicle 23 days, bevacizumab 20 days, temozolomide 33 days and anti-PD-1 37 days. These findings suggest that the controlled intratumoral production of IL-12 induces local immune cell infiltration and improved survival in glioma, thereby demonstrating that this novel regulated immunotherapeutic approach may be an effective form of therapy for glioma.
Collapse
Affiliation(s)
| | | | - John Miao
- Ziopharm Oncology Inc., Boston, MA, USA, 02129
| | | | - Paul Gonzalez
- Translational Drug Development, Scottsdale, AZ, USA, 85259
| | | | - Geeta Sharma
- Charles River Laboratories, Worcester, MA, USA, 01605
| | - Tim Chan
- Intrexon Corporation, Germantown, MD, 20876, USA
| | | | | |
Collapse
|
10
|
Liu X, Gao X, Zheng S, Wang B, Li Y, Zhao C, Muftuoglu Y, Chen S, Li Y, Yao H, Sun H, Mao Q, You C, Guo G, Wei Y. Modified nanoparticle mediated IL-12 immunogene therapy for colon cancer. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2017; 13:1993-2004. [DOI: 10.1016/j.nano.2017.04.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 04/04/2017] [Accepted: 04/10/2017] [Indexed: 12/18/2022]
|
11
|
Ghosh T, Barik S, Bhuniya A, Dhar J, Dasgupta S, Ghosh S, Sarkar M, Guha I, Sarkar K, Chakrabarti P, Saha B, Storkus WJ, Baral R, Bose A. Tumor-associated mesenchymal stem cells inhibit naïve T cell expansion by blocking cysteine export from dendritic cells. Int J Cancer 2016; 139:2068-81. [PMID: 27405489 DOI: 10.1002/ijc.30265] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 06/08/2016] [Accepted: 06/29/2016] [Indexed: 12/28/2022]
Abstract
Mesenchymal stem cells (MSCs) represent an important cellular constituent of the tumor microenvironment, which along with tumor cells themselves, serve to regulate protective immune responses in support of progressive disease. We report that tumor MSCs prevent the ability of dendritic cells (DC) to promote naïve CD4(+) and CD8(+) T cell expansion, interferon gamma secretion and cytotoxicity against tumor cells, which are critical to immune-mediated tumor eradication. Notably, tumor MSCs fail to prevent DC-mediated early T cell activation events or the ability of responder T cells to produce IL-2. The immunoregulatory activity of tumor MSCs is IL-10- and STAT3-dependent, with STAT3 repressing DC expression of cystathionase, a critical enzyme that converts methionine-to-cysteine. Under cysteine-deficient priming conditions, naïve T cells exhibit defective cellular metabolism and proliferation. Bioinformatics analyses as well as in vitro observations suggest that STAT3 may directly bind to a GAS-like motif within the cystathionase promoter (-269 to -261) leading to IL-10-STAT3 mediated repression of cystathionase gene transcription. Our collective results provide evidence for a novel mechanism of tumor MSC-mediated T cell inhibition within tumor microenvironment.
Collapse
Affiliation(s)
- Tithi Ghosh
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), Kolkata, West Bengal, 700026, India
| | - Subhasis Barik
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), Kolkata, West Bengal, 700026, India
| | - Avishek Bhuniya
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), Kolkata, West Bengal, 700026, India
| | - Jesmita Dhar
- Bioinformatics Centre and Department of Biochemistry, Bose Institute, Kolkata, West Bengal, 700054, India
| | - Shayani Dasgupta
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), Kolkata, West Bengal, 700026, India
| | - Sarbari Ghosh
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), Kolkata, West Bengal, 700026, India
| | - Madhurima Sarkar
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), Kolkata, West Bengal, 700026, India
| | - Ipsita Guha
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), Kolkata, West Bengal, 700026, India
| | - Koustav Sarkar
- SRM Research Institute and Department of Biotechnology, SRM University, Chennai, Tamil Nadu, 603203, India
| | - Pinak Chakrabarti
- Bioinformatics Centre and Department of Biochemistry, Bose Institute, Kolkata, West Bengal, 700054, India
| | - Bhaskar Saha
- National Centre for Cell Science, Pune, Maharashtra, 411007, India
| | - Walter J Storkus
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Rathindranath Baral
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), Kolkata, West Bengal, 700026, India
| | - Anamika Bose
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), Kolkata, West Bengal, 700026, India
| |
Collapse
|
12
|
An overlooked tumor promoting immunoregulation by non-hematopoietic stromal cells. Immunol Lett 2016; 176:114-21. [PMID: 27311851 DOI: 10.1016/j.imlet.2016.06.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 05/26/2016] [Accepted: 06/10/2016] [Indexed: 01/14/2023]
Abstract
Multidirectional complex communication between tumor-residing hematopoietic and non-hematopoietic stromal cells (NHSCs) decisively regulates cancer development, progression and therapeutic responses. HSCs predominantly participate in the immune regulations, while, NHSCs, provide parenchymal support or serve as a conduit for other cells or support angiogenesis. However, recent reports suggest NHSCs can additionally participate in ongoing tumor promoting immune reactions within tumor-microenvironment (TME). In this review, based on the state-of-art knowledge and accumulated evidence by us, we discuss the role of quite a few NHSCs in tumor from immunological perspectives. Understanding such consequence of NHSCs will surely pave the way in crafting effective cancer management.
Collapse
|
13
|
Hernandez-Alcoceba R, Poutou J, Ballesteros-Briones MC, Smerdou C. Gene therapy approaches against cancer using in vivo and ex vivo gene transfer of interleukin-12. Immunotherapy 2016; 8:179-98. [PMID: 26786809 DOI: 10.2217/imt.15.109] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
IL-12 is an immunostimulatory cytokine with strong antitumor properties. Systemic administration of IL-12 in cancer patients led to severe toxic effects, prompting the development of gene therapy vectors able to express this cytokine locally in tumors. Both nonviral and viral vectors have demonstrated a high antitumor efficacy in preclinical tumor models. Some of these vectors, including DNA electroporation, adenovirus and ex vivo transduced dendritic cells, were tested in patients, showing low toxicity and moderate antitumor efficacy. IL-12 activity can be potentiated by molecules with immunostimulatory, antiangiogenic or cytotoxic activity. These combination therapies are of clinical interest because they could lower the threshold for IL-12 efficacy, increasing the therapeutic potential of gene therapy and preventing the toxicity mediated by this cytokine.
Collapse
Affiliation(s)
- Ruben Hernandez-Alcoceba
- Division of Gene Therapy, CIMA, University of Navarra, Pamplona 31008 Spain.,Instituto de Investigación Sanitaria de Navarra, c/Irunlarrea 3, Pamplona 31008, Spain
| | - Joanna Poutou
- Division of Gene Therapy, CIMA, University of Navarra, Pamplona 31008 Spain.,Instituto de Investigación Sanitaria de Navarra, c/Irunlarrea 3, Pamplona 31008, Spain
| | - María Cristina Ballesteros-Briones
- Division of Gene Therapy, CIMA, University of Navarra, Pamplona 31008 Spain.,Instituto de Investigación Sanitaria de Navarra, c/Irunlarrea 3, Pamplona 31008, Spain
| | - Cristian Smerdou
- Division of Gene Therapy, CIMA, University of Navarra, Pamplona 31008 Spain.,Instituto de Investigación Sanitaria de Navarra, c/Irunlarrea 3, Pamplona 31008, Spain
| |
Collapse
|
14
|
Baar J, Storkus WJ, Finke J, Butterfield L, Lazarus H, Reese J, Downes K, Budd T, Brufsky A, Fu P. Pilot trial of a type I - polarized autologous dendritic cell vaccine incorporating tumor blood vessel antigen-derived peptides in patients with metastatic breast cancer. J Immunother Cancer 2015. [PMCID: PMC4547175 DOI: 10.1186/2051-1426-3-s1-p3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
15
|
Banerjee S, Halder K, Ghosh S, Bose A, Majumdar S. The combination of a novel immunomodulator with a regulatory T cell suppressing antibody (DTA-1) regress advanced stage B16F10 solid tumor by repolarizing tumor associated macrophages in situ. Oncoimmunology 2015; 4:e995559. [PMID: 25949923 DOI: 10.1080/2162402x.2014.995559] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 12/02/2014] [Indexed: 01/19/2023] Open
Abstract
Tumor associated macrophages and tumor infiltrating regulatory T cells greatly hamper host-protective antitumor responses. Therefore, we utilized a novel immunomodulator, heat-killed Mycobacterium indicus pranii (Mw), to repolarize TAM and an agonistic GITR antibody (DTA-1) to reduce intratumoral regulatory T cell frequency for generation of a host-protective antitumor response. Although, the combination of Mw and DTA-1was found to be effective against advanced stage tumors, however, Mw or DTA-1 failed to do so when administered individually. The presence of high level of regulatory T cells abrogated the only Mw induced antitumor functions, whereas only DTA-1 treatment was found to be ineffective due to its inability to induce TAM repolarization in vivo. The combination therapy was found to be effective since DTA-1 treatment reduced the frequency of regulatory T cells to such an extent where they could not attenuate Mw induced TAM repolarization in vivo. Therefore, the combination therapy involving Mw and DTA-1 may be utilized to the success of advanced stage solid tumor immunotherapies.
Collapse
Affiliation(s)
| | - Kuntal Halder
- Division of Molecular Medicine; Bose Institute ; Kolkata, India
| | - Sweta Ghosh
- Division of Molecular Medicine; Bose Institute ; Kolkata, India
| | - Anamika Bose
- Division of Molecular Medicine; Bose Institute ; Kolkata, India
| | | |
Collapse
|
16
|
Facciponte JG, Ugel S, De Sanctis F, Li C, Wang L, Nair G, Sehgal S, Raj A, Matthaiou E, Coukos G, Facciabene A. Tumor endothelial marker 1-specific DNA vaccination targets tumor vasculature. J Clin Invest 2014; 124:1497-511. [PMID: 24642465 DOI: 10.1172/jci67382] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 01/16/2014] [Indexed: 12/11/2022] Open
Abstract
Tumor endothelial marker 1 (TEM1; also known as endosialin or CD248) is a protein found on tumor vasculature and in tumor stroma. Here, we tested whether TEM1 has potential as a therapeutic target for cancer immunotherapy by immunizing immunocompetent mice with Tem1 cDNA fused to the minimal domain of the C fragment of tetanus toxoid (referred to herein as Tem1-TT vaccine). Tem1-TT vaccination elicited CD8+ and/or CD4+ T cell responses against immunodominant TEM1 protein sequences. Prophylactic immunization of animals with Tem1-TT prevented or delayed tumor formation in several murine tumor models. Therapeutic vaccination of tumor-bearing mice reduced tumor vascularity, increased infiltration of CD3+ T cells into the tumor, and controlled progression of established tumors. Tem1-TT vaccination also elicited CD8+ cytotoxic T cell responses against murine tumor-specific antigens. Effective Tem1-TT vaccination did not affect angiogenesis-dependent physiological processes, including wound healing and reproduction. Based on these data and the widespread expression of TEM1 on the vasculature of different tumor types, we conclude that targeting TEM1 has therapeutic potential in cancer immunotherapy.
Collapse
MESH Headings
- Animals
- Antigens, CD/genetics
- Antigens, CD/immunology
- CD4-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/immunology
- Cancer Vaccines/genetics
- Cancer Vaccines/immunology
- Cancer Vaccines/therapeutic use
- Cell Line, Tumor
- Female
- Humans
- Immune Tolerance
- Immunodominant Epitopes
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Microvessels/immunology
- Microvessels/pathology
- Neoplasm Proteins/antagonists & inhibitors
- Neoplasm Proteins/genetics
- Neoplasm Proteins/immunology
- Neoplasms, Experimental/blood supply
- Neoplasms, Experimental/immunology
- Neoplasms, Experimental/therapy
- Pregnancy
- Tetanus Toxoid/genetics
- Tetanus Toxoid/immunology
- Vaccines, DNA/genetics
- Vaccines, DNA/immunology
- Vaccines, DNA/therapeutic use
Collapse
|
17
|
Lowe DB, Bose A, Taylor JL, Tawbi H, Lin Y, Kirkwood JM, Storkus WJ. Dasatinib promotes the expansion of a therapeutically superior T-cell repertoire in response to dendritic cell vaccination against melanoma. Oncoimmunology 2014; 3:e27589. [PMID: 24734217 PMCID: PMC3984268 DOI: 10.4161/onci.27589] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 12/18/2013] [Accepted: 12/18/2013] [Indexed: 12/16/2022] Open
Abstract
Dasatinib (DAS) is a potent inhibitor of the BCR-ABL, SRC, c-KIT, PDGFR, and ephrin tyrosine kinases that has demonstrated only modest clinical efficacy in melanoma patients. Given reports suggesting that DAS enhances T cell infiltration into the tumor microenvironment, we analyzed whether therapy employing the combination of DAS plus dendritic cell (DC) vaccination would promote superior immunotherapeutic benefit against melanoma. Using a M05 (B16.OVA) melanoma mouse model, we observed that a 7-day course of orally-administered DAS (0.1 mg/day) combined with a DC-based vaccine (VAC) against the OVA257–264 peptide epitope more potently inhibited tumor growth and extended overall survival as compared with treatment with either single modality. The superior efficacy of the combinatorial treatment regimen included a reduction in hypoxic-signaling associated with reduced levels of immunosuppressive CD11b+Gr1+ myeloid-derived suppressor cells (MDSC) and CD4+Foxp3+ regulatory T (Treg) populations in the melanoma microenvironment. Furthermore, DAS + VAC combined therapy upregulated expression of Type-1 T cell recruiting CXCR3 ligand chemokines in the tumor stroma correlating with activation and recruitment of Type-1, vaccine-induced CXCR3+CD8+ tumor-infiltrating lymphocytes (TILs) and CD11c+ DC into the tumor microenvironment. The culmination of this bimodal approach was a profound “spreading” in the repertoire of tumor-associated antigens recognized by CD8+ TILs, in support of the therapeutic superiority of combined DAS + VAC immunotherapy in the melanoma setting.
Collapse
Affiliation(s)
- Devin B Lowe
- Department of Dermatology; University of Pittsburgh School of Medicine; Pittsburgh, PA USA
| | - Anamika Bose
- Department of Dermatology; University of Pittsburgh School of Medicine; Pittsburgh, PA USA
| | - Jennifer L Taylor
- Department of Dermatology; University of Pittsburgh School of Medicine; Pittsburgh, PA USA
| | - Hussein Tawbi
- Department of Medicine; University of Pittsburgh School of Medicine; Pittsburgh, PA USA ; University of Pittsburgh Cancer Institute; Pittsburgh, PA USA
| | - Yan Lin
- Department of Biostatistics; University of Pittsburgh School of Medicine; Pittsburgh, PA USA ; University of Pittsburgh Cancer Institute; Pittsburgh, PA USA
| | - John M Kirkwood
- Department of Medicine; University of Pittsburgh School of Medicine; Pittsburgh, PA USA ; University of Pittsburgh Cancer Institute; Pittsburgh, PA USA
| | - Walter J Storkus
- Department of Dermatology; University of Pittsburgh School of Medicine; Pittsburgh, PA USA ; Department of Immunology; University of Pittsburgh School of Medicine; Pittsburgh, PA USA ; University of Pittsburgh Cancer Institute; Pittsburgh, PA USA
| |
Collapse
|
18
|
DLK1: a novel target for immunotherapeutic remodeling of the tumor blood vasculature. Mol Ther 2013; 21:1958-68. [PMID: 23896726 DOI: 10.1038/mt.2013.133] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 05/22/2013] [Indexed: 12/14/2022] Open
Abstract
Tumor blood vessels are frequently inefficient in their design and function, leading to high interstitial fluid pressure, hypoxia, and acidosis in the tumor microenvironment (TME), rendering tumors refractory to the delivery of chemotherapeutic agents and immune effector cells. Here we identified the NOTCH antagonist delta-like 1 homologue (DLK1) as a vascular pericyte-associated antigen expressed in renal cell carcinomas (RCC), but not in normal kidney tissues in mice and humans. Vaccination of mice bearing established RCC against DLK1 led to immune-mediated elimination of DLK1(+) pericytes and to blood vessel normalization (i.e., decreased vascular permeability and intratumoral hypoxia) in the TME, in association with tumor growth suppression. After therapeutic vaccination, tumors displayed increased prevalence of activated VCAM1(+)CD31(+) vascular endothelial cells (VECs) and CXCL10, a type-1 T cell recruiting chemokine, in concert with increased levels of type-1 CD8(+) tumor-infiltrating lymphocytes (TIL). Vaccination against DLK1 also yielded (i) dramatic reductions in Jarid1B(+), CD133(+), and CD44(+) (hypoxia-responsive) stromal cell populations, (ii) enhanced tumor cell apoptosis, and (iii) increased NOTCH signaling in the TME. Coadministration of a γ-secretase inhibitor (N-[N-(3,5-Difluorophenacetyl-l-alanyl)]-(S)-phenylglycine t-butyl ester (DAPT)) that interferes with canonical NOTCH signaling resulted in the partial loss of therapeutic benefits associated with lentivirus encoding full-length murine (lvDLK1)-based vaccination.
Collapse
|
19
|
Tan C, Dannull J, Nair SK, Ding E, Tyler DS, Pruitt SK, Lee WT. Local secretion of IL-12 augments the therapeutic impact of dendritic cell-tumor cell fusion vaccination. J Surg Res 2013; 185:904-11. [PMID: 23891424 DOI: 10.1016/j.jss.2013.06.045] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 06/14/2013] [Accepted: 06/20/2013] [Indexed: 12/23/2022]
Abstract
BACKGROUND The development of dendritic cell (DC)-tumor fusion vaccines is a promising approach in cancer immunotherapy. Using fusion vaccines allows a broad spectrum of known and unidentified tumor-associated antigens to be presented in the context of MHC class I and class II molecules, with potent co-stimulation provided by the DCs. Although DC-tumor fusion cells are immunogenic, murine studies have shown that effective immunotherapy requires a third signal, which can be provided by exogenous interleukin 12 (IL-12). Unfortunately, systemic administration of IL-12 induces severe toxicity in cancer patients, potentially precluding clinical use of this cytokine to augment fusion vaccine efficacy. To overcome this limitation, we developed a novel approach in which DC-tumor fusion cells locally secrete IL-12, then evaluated the effectiveness of this approach in a murine B16 melanoma model. MATERIALS AND METHODS Tumor cells were stably transduced to secrete murine IL-12p70. These tumor cells were then electrofused to DC to form DC-tumor heterokaryons. These cells were used to treat established B16 pulmonary metastases. Enumeration of these metastases was performed and compared between experimental groups using Wilcoxon rank sum test. Interferon γ enzyme-linked immunosorbent spot assay was performed on splenocytes from treated mice. RESULTS We show that vaccination with DCs fused to syngeneic melanoma cells that stably express murine IL-12p70 significantly reduces counts of established lung metastases in treated animals when compared with DC-tumor alone (P = 0.029). Interferon γ enzyme-linked immunosorbent spot assays suggest that this antitumor response is mediated by CD4(+) T cells, in the absence of a tumor-specific CD8(+) T cell response, and that the concomitant induction of antitumor CD4(+) and CD8(+) T cell responses required exogenous IL-12. CONCLUSIONS This study is, to the best of our knowledge, the first report that investigates the impact of local secretion of IL-12 on antitumor immunity induced by a DC-tumor fusion cell vaccine in a melanoma model and may aid the rational design of future clinical trials.
Collapse
Affiliation(s)
- Chunrui Tan
- Division of Otolaryngology, Duke University Medical Center, Durham, North Carolina
| | | | | | | | | | | | | |
Collapse
|
20
|
Expression of CCL19 from oncolytic vaccinia enhances immunotherapeutic potential while maintaining oncolytic activity. Neoplasia 2013; 14:1115-21. [PMID: 23308044 DOI: 10.1593/neo.121272] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 10/24/2012] [Accepted: 10/29/2012] [Indexed: 11/18/2022]
Abstract
Promising phase II clinical results have been reported recently for several oncolytic viral therapeutics, including strains based on vaccinia virus. One reason for this has been an increased appreciation of the critical therapeutic importance of the immune response raised by these viruses. However, the most commonly used approaches to enhance these immunotherapeutic effects in oncolytic viruses, typically though expression of cytokine transgenes, often also result in a reduction in oncolytic activity and premature clearance of the virotherapy from the tumor. Approaches that enhance the immunotherapeutic effects while maintaining oncolytic activity would therefore be beneficial. Here, it is demonstrated that the expression of the chemokine CCL19 (ELC) from an oncolytic vaccinia virus (vvCCL19) results in increased antitumor effects in syngeneic mouse tumor models. This corresponded with increased t cell and dendritic cell infiltration into the tumor. However, vvCCL19 persisted in the tumor at equivalent levels to a control virus without CCL19, demonstrating that oncolytic activity was not curtailed. Instead, vvCCL19 was cleared rapidly and selectively from normal tissues and organs, indicating a potentially increased safety profile. The therapeutic activity of vvCCL19 could be further significantly increased through combination with adoptive transfer of therapeutic immune cells expressing CCR7, the receptor for CCL19. This approach therefore represents a means to increase the safety and therapeutic benefit of oncolytic viruses, used alone or in combination with immune cell therapies.
Collapse
|
21
|
Bose A, Barik S, Banerjee S, Ghosh T, Mallick A, Bhattacharyya Majumdar S, Goswami KK, Bhuniya A, Banerjee S, Baral R, Storkus WJ, Dasgupta PS, Majumdar S. Tumor-derived vascular pericytes anergize Th cells. THE JOURNAL OF IMMUNOLOGY 2013; 191:971-81. [PMID: 23785117 DOI: 10.4049/jimmunol.1300280] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Immune evasion within the tumor microenvironment supports malignant growth and is also a major obstacle for successful immunotherapy. Multiple cellular components and soluble factors coordinate to disrupt protective immune responses. Although stromal cells are well-known for their parenchymal supportive roles in cancer establishment and progression, we demonstrate for the first time, to our knowledge, that tumor-derived vascular pericytes negatively influence CD4(+) T cell activation and proliferation, and promote anergy in recall response to Ag by CD4(+)CD44(+) T cells via regulator of G protein signaling 5- and IL-6-dependent pathways. Our data support a new specific role for tumor-derived pericytes in the immune evasion paradigm within the tumor microenvironment and suggest the targeting of these cell populations in the context of successful immunotherapeutics for the treatment of cancer.
Collapse
Affiliation(s)
- Anamika Bose
- Department of Molecular Medicine, Bose Institute, Kolkata 700054, India.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Collapse of the tumor stroma is triggered by IL-12 induction of Fas. Mol Ther 2013; 21:1369-77. [PMID: 23568260 DOI: 10.1038/mt.2013.58] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 03/04/2013] [Indexed: 01/06/2023] Open
Abstract
Engineering CD8⁺ T cells to deliver interleukin 12 (IL-12) to the tumor site can lead to striking improvements in the ability of adoptively transferred T cells to induce the regression of established murine cancers. We have recently shown that IL-12 triggers an acute inflammatory environment that reverses dysfunctional antigen presentation by myeloid-derived cells within tumors and leads to an increase in the infiltration of adoptively transferred antigen-specific CD8⁺ T cells. Here, we find that local delivery of IL-12 increased the expression of Fas within tumor-infiltrating macrophages, dendritic cells, and myeloid-derived suppressor cells (MDSC), and that these changes were abrogated in mice deficient in IL-12-receptor signaling. Importantly, upregulation of Fas in host mice played a critical role in the proliferation and antitumor activity of adoptively transferred IL-12-modified CD8⁺ T cells. We also observed higher percentages of myeloid-derived cell populations within tumors in Fas-deficient mice, indicating that tumor stromal destruction was dependent on the Fas death receptor. Taken together, these results describe the likely requirement for costimulatory reverse signaling through Fasl on T cells that successfully infiltrate tumors, a mechanism triggered by the induction of Fas expression on myeloid-derived cells by IL-12 and the subsequent collapse of the tumor stroma.
Collapse
|
23
|
Mallick A, Barik S, Goswami KK, Banerjee S, Ghosh S, Sarkar K, Bose A, Baral R. Neem leaf glycoprotein activates CD8(+) T cells to promote therapeutic anti-tumor immunity inhibiting the growth of mouse sarcoma. PLoS One 2013; 8:e47434. [PMID: 23326300 PMCID: PMC3543399 DOI: 10.1371/journal.pone.0047434] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 09/17/2012] [Indexed: 11/18/2022] Open
Abstract
In spite of sufficient data on Neem Leaf Glycoprotein (NLGP) as a prophylactic vaccine, little knowledge currently exists to support the use of NLGP as a therapeutic vaccine. Treatment of mice bearing established sarcomas with NLGP (25 µg/mice/week subcutaneously for 4 weeks) resulted in tumor regression or dormancy (Tumor free/Regressor, 13/24 (NLGP), 4/24 (PBS)). Evaluation of CD8+ T cell status in blood, spleen, TDLN, VDLN and tumor revealed increase in cellular number. Elevated expression of CD69, CD44 and Ki67 on CD8+ T cells revealed their state of activation and proliferation by NLGP. Depletion of CD8+ T cells in mice at the time of NLGP treatment resulted in partial termination of tumor regression. An expansion of CXCR3+ and CCR5+ T cells was observed in the TDLN and tumor, along with their corresponding ligands. NLGP treatment enhances type 1 polarized T-bet expressing T cells with downregulation of GATA3. Treg cell population was almost unchanged. However, T∶Treg ratios significantly increased with NLGP. Enhanced secretion/expression of IFNγ was noted after NLGP therapy. In vitro culture of T cells with IL-2 and sarcoma antigen resulted in significant enhancement in cytotoxic efficacy. Consistently higher expression of CD107a was also observed in CD8+ T cells from tumors. Reinoculation of sarcoma cells in tumor regressed NLGP-treated mice maintained tumor free status in majority. This is correlated with the increment of CD44hiCD62Lhi central memory T cells. Collectively, these findings support a paradigm in which NLGP dynamically orchestrates the activation, expansion, and recruitment of CD8+ T cells into established tumors to operate significant tumor cell lysis.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/immunology
- Antineoplastic Agents/pharmacology
- Azadirachta/chemistry
- Azadirachta/immunology
- CD8-Positive T-Lymphocytes/drug effects
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Cytotoxicity, Immunologic/drug effects
- Cytotoxicity, Immunologic/immunology
- Female
- Glycoproteins/immunology
- Glycoproteins/pharmacology
- Immunohistochemistry
- Interferon-gamma/immunology
- Interferon-gamma/metabolism
- Lymphocyte Activation/drug effects
- Lymphocyte Activation/immunology
- Mice
- Plant Leaves/chemistry
- Plant Leaves/immunology
- Plant Proteins/immunology
- Plant Proteins/pharmacology
- Receptors, CCR5/genetics
- Receptors, CCR5/immunology
- Receptors, CCR5/metabolism
- Receptors, CXCR3/genetics
- Receptors, CXCR3/immunology
- Receptors, CXCR3/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Sarcoma, Experimental/drug therapy
- Sarcoma, Experimental/immunology
- Sarcoma, Experimental/pathology
- Spleen/drug effects
- Spleen/immunology
- Spleen/pathology
- Survival Analysis
- Time Factors
- Tumor Burden/drug effects
- Tumor Burden/immunology
Collapse
Affiliation(s)
- Atanu Mallick
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), Kolkata, India
| | - Subhasis Barik
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), Kolkata, India
| | - Kuntal Kanti Goswami
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), Kolkata, India
| | - Saptak Banerjee
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), Kolkata, India
| | - Sarbari Ghosh
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), Kolkata, India
| | - Koustav Sarkar
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), Kolkata, India
| | - Anamika Bose
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), Kolkata, India
| | - Rathindranath Baral
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), Kolkata, India
- * E-mail:
| |
Collapse
|
24
|
Combined vaccine+axitinib therapy yields superior antitumor efficacy in a murine melanoma model. Melanoma Res 2012; 22:236-43. [PMID: 22504156 DOI: 10.1097/cmr.0b013e3283538293] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Axitinib, a tyrosine kinase inhibitor of vascular endothelial growth factor receptors, has demonstrated modest efficacy when applied as a single agent in the setting of advanced-stage melanoma. On the basis of the reported ability of axitinib to 'normalize' the tumor vasculature, we hypothesize that combination therapy using axitinib plus specific peptide-based vaccination would promote superior activation and recruitment of protective T cells into the melanoma microenvironment, leading to enhanced treatment benefit. Using a subcutaneous M05 (B16.OVA) melanoma model, we observed that a treatment regimen consisting of a 7-day course of axitinib (0.5 mg/day provided orally) combined with a subcutaneous vaccine [ovalbumin (OVA) peptide-pulsed syngenic dendritic cells adenovirally engineered to produce IL-12p70] yielded superior protection against melanoma growth and extended overall survival when compared with animals receiving either single modality therapy. Treatment benefits were associated with: (a) a reduction in suppressor cell (myeloid-derived suppressor cells and Treg) populations in the tumor, (b) activation of tumor vascular endothelial cells, and (c) activation and recruitment of type-1, vaccine-induced CD8 T cells into tumors. These results support the therapeutic superiority of combined vaccine+axitinib immunotherapy and the translation of such approaches into the clinic for the treatment of patients with advanced-stage melanoma.
Collapse
|
25
|
Pegram HJ, Lee JC, Hayman EG, Imperato GH, Tedder TF, Sadelain M, Brentjens RJ. Tumor-targeted T cells modified to secrete IL-12 eradicate systemic tumors without need for prior conditioning. Blood 2012; 119:4133-41. [PMID: 22354001 PMCID: PMC3359735 DOI: 10.1182/blood-2011-12-400044] [Citation(s) in RCA: 528] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Adoptive cell therapy with tumor-targeted T cells is a promising approach to cancer therapy. Enhanced clinical outcome using this approach requires conditioning regimens with total body irradiation, lymphodepleting chemotherapy, and/or additional cytokine support. However, the need for prior conditioning precludes optimal application of this approach to a significant number of cancer patients intolerant to these regimens. Herein, we present preclinical studies demonstrating that treatment with CD19-specific, chimeric antigen receptor (CAR)-modified T cells that are further modified to constitutively secrete IL-12 are able to safely eradicate established disease in the absence of prior conditioning. We demonstrate in a novel syngeneic tumor model that tumor elimination requires both CD4(+) and CD8(+) T-cell subsets, autocrine IL-12 stimulation, and subsequent IFNγ secretion by the CAR(+) T cells. Importantly, IL-12-secreting, tumor-targeted T cells acquire intrinsic resistance to T regulatory cell-mediated inhibition. Based on these preclinical data, we anticipate that adoptive therapy using CAR-targeted T cells modified to secrete IL-12 will obviate or reduce the need for potentially hazardous conditioning regimens to achieve optimal antitumor responses in cancer patients.
Collapse
MESH Headings
- Animals
- Antigens, CD19/genetics
- Antigens, CD19/immunology
- Antineoplastic Agents, Alkylating/therapeutic use
- B-Lymphocytes/drug effects
- B7-1 Antigen/genetics
- Combined Modality Therapy
- Cyclophosphamide/therapeutic use
- Cytotoxicity, Immunologic
- Humans
- Immunotherapy, Adoptive
- Interferon-gamma/blood
- Interleukin-12/blood
- Interleukin-12/genetics
- Interleukin-12/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Recombinant Fusion Proteins/genetics
- T-Cell Antigen Receptor Specificity
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- T-Lymphocyte Subsets/transplantation
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/immunology
- Thymoma/drug therapy
- Thymoma/immunology
- Thymoma/therapy
- Thymus Neoplasms/drug therapy
- Thymus Neoplasms/immunology
- Thymus Neoplasms/therapy
- Transplantation Conditioning
- Transplantation, Isogeneic
Collapse
Affiliation(s)
- Hollie J Pegram
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, 1275 York Ave, New York, NY 10021, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Rao A, Taylor JL, Chi-Sabins N, Kawabe M, Gooding WE, Storkus WJ. Combination therapy with HSP90 inhibitor 17-DMAG reconditions the tumor microenvironment to improve recruitment of therapeutic T cells. Cancer Res 2012; 72:3196-206. [PMID: 22552283 DOI: 10.1158/0008-5472.can-12-0538] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Ineffective recognition of tumor cells by CD8+ T cells is a limitation of cancer immunotherapy. Therefore, treatment regimens that coordinately promote enhanced antitumor CD8+ T-cell activation, delivery, and target cell recognition should yield greater clinical benefit. Using an MCA205 sarcoma model, we show that in vitro treatment of tumor cells with the HSP90 inhibitor 17-DMAG results in the transient (proteasome-dependent) degradation of the HSP90 client protein EphA2 and the subsequent increased recognition of tumor cells by Type-1 anti-EphA2 CD8+ T cells. In vivo administration of 17-DMAG to tumor-bearing mice led to slowed tumor growth, enhanced/prolonged recognition of tumor cells by anti-EphA2 CD8+ T cells, reduced levels of myeloid-derived suppressor cells and regulatory T cells in the tumor microenvironment, and activation of tumor-associated vascular endothelial cells in association with elevated levels of Type-1 tumor-infiltrating lymphocytes. When combined with EphA2-specific active vaccination or the adoptive transfer of EphA2-specific CD8+ T cells, 17-DMAG cotreatment yielded a superior tumor therapeutic regimen that was capable of rendering animals free of disease. Taken together, our findings indicate that 17-DMAG functions as an immune adjuvant in the context of vaccines targeting EphA2.
Collapse
Affiliation(s)
- Aparna Rao
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | | | | | |
Collapse
|
27
|
Jackaman C, Nelson DJ. Intratumoral interleukin-2/agonist CD40 antibody drives CD4+ -independent resolution of treated-tumors and CD4+ -dependent systemic and memory responses. Cancer Immunol Immunother 2012; 61:549-60. [PMID: 22002241 PMCID: PMC11029634 DOI: 10.1007/s00262-011-1120-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Accepted: 09/23/2011] [Indexed: 12/21/2022]
Abstract
Targeting interleukin-2 (IL-2) and/or agonist anti-CD40 antibody (Ab) into tumors represents an effective vaccination strategy that avoids systemic toxicity and resolves treated-site tumors. Here, we examined IL-2 and/or anti-CD40 Ab-driven local versus systemic T cell function and the installation of T cell memory. Single tumor studies showed that IL-2 induced a potent CD4+ and CD8+ T cell response that was limited to the draining lymph node and treated-site tumor, and lymph node tumor-specific CD8+ T cells did not upregulate CD44. A two-tumor model showed that while IL-2-treated-site tumors resolved, distal tumors continued to grow, implying limited systemic immunity. In contrast, anti-CD40 Ab treatment with or without IL-2 expanded the systemic T cell response to non-draining lymph nodes, and distal tumors resolved. Tumor-specific T cells in lymph nodes of anti-CD40 Ab ± IL-2-treated mice upregulated CD44, demonstrating activation and transition to effector/memory migratory cells. While CD40-activated CD4+ T cells were not required for eradicating treated-site tumors, they, plus CD8+ T cells, were crucial for removing distal tumors. Rechallenge/depletion experiments showed that the effector/memory phase required the presence of previously CD40/IL-2-activated CD4+ and CD8+ T cells to prevent recurrence. These novel findings show that different T cell effector mechanisms can operate for the eradication of local treated-site tumors versus untreated distal tumors and that signaling through CD40 generates a whole of body, effector/memory CD4+ and CD8+ T cell response that is amplified and prolonged via IL-2. Thus, successful immunotherapy needs to generate collaborating CD4+ and CD8+ T cells for a complete long-term protective cure.
Collapse
Affiliation(s)
- Connie Jackaman
- School of Biomedical Sciences, Immunology and Cancer Group, Curtin University, Kent St., Bentley, Perth, WA 6102 Australia
- Western Australia Biomedical Research Institute, Bentley, Perth, WA 6102 Australia
- Curtin Health Innovation Research Institute, Bentley, Perth, WA 6102 Australia
| | - Delia J. Nelson
- School of Biomedical Sciences, Immunology and Cancer Group, Curtin University, Kent St., Bentley, Perth, WA 6102 Australia
- Western Australia Biomedical Research Institute, Bentley, Perth, WA 6102 Australia
- Curtin Health Innovation Research Institute, Bentley, Perth, WA 6102 Australia
| |
Collapse
|
28
|
Lowe DB, Storkus WJ. Chronic inflammation and immunologic-based constraints in malignant disease. Immunotherapy 2012; 3:1265-74. [PMID: 21995576 DOI: 10.2217/imt.11.113] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Acute inflammatory reactions benefit the host by supporting the effective clearance of pathogens and fostering wound healing, in addition to other self-preservative processes. However, when the inflammatory program is not resolved, becoming chronic in nature, it creates an environment conducive to cancer development and progression. Therefore, minimizing exposure to risk factors that contribute to chronic inflammation and reconditioning the host towards a state of (at least locoregional) acute inflammation would meaningfully impact cancer incidence and its treatment, respectively. Regarding cancer therapy, combinational treatments that both disrupt chronic inflammation and install specific adaptive type I immunity are predicted to enhance quality of life and extend the overall survival of patients.
Collapse
Affiliation(s)
- Devin B Lowe
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | | |
Collapse
|
29
|
Zhao X, Bose A, Komita H, Taylor JL, Chi N, Lowe DB, Okada H, Cao Y, Mukhopadhyay D, Cohen PA, Storkus WJ. Vaccines targeting tumor blood vessel antigens promote CD8(+) T cell-dependent tumor eradication or dormancy in HLA-A2 transgenic mice. THE JOURNAL OF IMMUNOLOGY 2012; 188:1782-8. [PMID: 22246626 DOI: 10.4049/jimmunol.1101644] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We have recently shown that effective cytokine gene therapy of solid tumors in HLA-A2 transgenic (HHD) mice lacking murine MHC class I molecule expression results in the generation of HLA-A2-restricted CD8(+) T effector cells selectively recognizing tumor blood vessel-associated pericytes and/or vascular endothelial cells. Using an HHD model in which HLA-A2(neg) tumor (MC38 colon carcinoma or B16 melanoma) cells are not recognized by the CD8(+) T cell repertoire, we now show that vaccines on the basis of tumor-associated blood vessel Ags (TBVA) elicit protective Tc1-dependent immunity capable of mediating tumor regression or extending overall survival. Vaccine efficacy was not observed if (HLA-A2(neg)) wild-type C57BL/6 mice were instead used as recipient animals. In the HHD model, effective vaccination resulted in profound infiltration of tumor lesions by CD8(+) (but not CD4(+)) T cells, in a coordinate reduction of CD31(+) blood vessels in the tumor microenvironment, and in the "spreading" of CD8(+) T cell responses to alternate TBVA that were not intrinsic to the vaccine. Protective Tc1-mediated immunity was durable and directly recognized pericytes and/or vascular endothelial cells flow-sorted from tumor tissue but not from tumor-uninvolved normal kidneys harvested from these same animals. Strikingly, the depletion of CD8(+), but not CD4(+), T cells at late time points after effective therapy frequently resulted in the recurrence of disease at the site of the regressed primary lesion. This suggests that the vaccine-induced anti-TBVA T cell repertoire can mediate the clinically preferred outcomes of either effectively eradicating tumors or policing a state of (occult) tumor dormancy.
Collapse
Affiliation(s)
- Xi Zhao
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Combined Tbet and IL12 gene therapy elicits and recruits superior antitumor immunity in vivo. Mol Ther 2012; 20:644-51. [PMID: 22215017 DOI: 10.1038/mt.2011.283] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
We have recently shown that intratumor (i.t.) injection of syngenic dendritic cells (DC) engineered to express the transcription factor Tbet (TBX21) promotes protective type-1 T cell-mediated immunity via a mechanism that is largely interleukin (IL)-12p70-independent. Since IL-12 is a classical promoter of type-1 immunity, the current study was undertaken to determine whether gene therapy using combined Tbet and IL-12 complementary DNA (cDNA) would yield improved antitumor efficacy based on the complementary/synergistic action of these biologic modifiers. Mice bearing established subcutaneous (s.c.) tumors injected with DC concomitantly expressing ectopic Tbet and IL12 (i.e., DC.Tbet/IL12) displayed superior (i) rates of tumor rejection and extended overall survival, (ii) cross-priming of Tc1 reactive against antigens expressed within the tumor microenvironment, and (iii) infiltration of CD8(+) T cells into treated tumors in association with elevated locoregional production of CXCR3 ligand chemokines. In established bilateral tumor models, i.t. delivery of DC.Tbet/IL12 into a single lesion led to slowed growth or regression at both tumor sites. Furthermore, DC.Tbet/IL12 pulsed with tumor antigen-derived peptides and injected as a therapy distal to the tumor site prevented tumor growth and activated robust antigen-specific Tc1 responses. These data support the translation use of combined Tbet and IL-12p70 gene therapy in the cancer setting.
Collapse
|
31
|
Abstract
Progress in vector design and an increased knowledge of mechanisms underlying tumor-induced immune suppression have led to a new and promising generation of Adenovirus (Ad)-based immunotherapies, which are discussed in this review. As vaccine vehicles Ad vectors (AdVs) have been clinically evaluated and proven safe, but a major limitation of the commonly used Ad5 serotype is neutralization by preexistent or rapidly induced immune responses. Genetic modifications in the Ad capsid can reduce intrinsic immunogenicity and facilitate escape from antibody-mediated neutralization. Further modification of the Ad hexon and fiber allows for liver and scavenger detargeting and selective targeting of, for example, dendritic cells. These next-generation Ad vaccines with enhanced efficacy are now becoming available for testing as tumor vaccines. In addition, AdVs encoding immune-modulating products may be used to convert the tumor microenvironment from immune-suppressive and proinvasive to proinflammatory, thus facilitating cell-mediated effector functions that can keep tumor growth and invasion in check. Oncolytic AdVs, that selectively replicate in tumor cells and induce an immunogenic form of cell death, can also be armed with immune-activating transgenes to amplify primed antitumor immune responses. These novel immunotherapy strategies, employing highly efficacious AdVs in optimized configurations, show great promise and warrant clinical exploration.
Collapse
|
32
|
Wen CC, Chen HM, Chen SS, Huang LT, Chang WT, Wei WC, Chou LC, Arulselvan P, Wu JB, Kuo SC, Yang NS. Specific microtubule-depolymerizing agents augment efficacy of dendritic cell-based cancer vaccines. J Biomed Sci 2011; 18:44. [PMID: 21689407 PMCID: PMC3141632 DOI: 10.1186/1423-0127-18-44] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Accepted: 06/20/2011] [Indexed: 12/13/2022] Open
Abstract
Background Damage-associated molecular patterns (DAMPs) are associated with immunogenic cell death and have the ability to enhance maturation and antigen presentation of dendritic cells (DCs). Specific microtubule-depolymerizing agents (MDAs) such as colchicine have been shown to confer anti-cancer activity and also trigger activation of DCs. Methods In this study, we evaluated the ability of three MDAs (colchicine and two 2-phenyl-4-quinolone analogues) to induce immunogenic cell death in test tumor cells, activate DCs, and augment T-cell proliferation activity. These MDAs were further evaluated for use as an adjuvant in a tumor cell lysate-pulsed DC vaccine. Results The three test phytochemicals considerably increased the expression of DAMPs including HSP70, HSP90 and HMGB1, but had no effect on expression of calreticulin (CRT). DC vaccines pulsed with MDA-treated tumor cell lysates had a significant effect on tumor growth, showed cytotoxic T-lymphocyte activity against tumors, and increased the survival rate of test mice. In vivo antibody depletion experiments suggested that CD8+ and NK cells, but not CD4+ cells, were the main effector cells responsible for the observed anti-tumor activity. In addition, culture of DCs with GM-CSF and IL-4 during the pulsing and stimulation period significantly increased the production of IL-12 and decreased production of IL-10. MDAs also induced phenotypic maturation of DCs and augmented CD4+ and CD8+ T-cell proliferation when co-cultured with DCs. Conclusions Specific MDAs including the clinical drug, colchicine, can induce immunogenic cell death in tumor cells, and DCs pulsed with MDA-treated tumor cell lysates (TCLs) can generate potent anti-tumor immunity in mice. This approach may warrant future clinical evaluation as a cancer vaccine.
Collapse
Affiliation(s)
- Chih-Chun Wen
- Graduate Institute of Pharmaceutical Chemistry, China Medical University, Taichung, Taiwan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|