1
|
D'Alessio AM, Boffa I, De Stefano L, Soria LR, Brunetti-Pierri N. Liver gene transfer for metabolite detoxification in inherited metabolic diseases. FEBS Lett 2024; 598:2372-2384. [PMID: 38884367 DOI: 10.1002/1873-3468.14957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/28/2024] [Accepted: 06/04/2024] [Indexed: 06/18/2024]
Abstract
Inherited metabolic disorders (IMDs) are a growing group of genetic diseases caused by defects in enzymes that mediate cellular metabolism, often resulting in the accumulation of toxic substrates. The liver is a highly metabolically active organ that hosts several thousands of chemical reactions. As such, it is an organ frequently affected in IMDs. In this article, we review current approaches for liver-directed gene-based therapy aimed at metabolite detoxification in a variety of IMDs. Moreover, we discuss current unresolved challenges in gene-based therapies for IMDs.
Collapse
Affiliation(s)
- Alfonso M D'Alessio
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
- Scuola Superiore Meridionale (SSM, School of Advanced Studies), Genomics and Experimental Medicine Program, University of Naples Federico II, Naples, Italy
| | - Iolanda Boffa
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
- Azienda Ospedaliera Universitaria Federico II, Naples, Italy
| | - Lucia De Stefano
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Leandro R Soria
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Nicola Brunetti-Pierri
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
- Scuola Superiore Meridionale (SSM, School of Advanced Studies), Genomics and Experimental Medicine Program, University of Naples Federico II, Naples, Italy
- Department of Translational Medicine, Federico II University of Naples, Naples, Italy
| |
Collapse
|
2
|
Tanpaiboon P, Huang Y, Louie JZ, Sharma R, Cederbaum S, Salazar D. Plasma arginine levels in arginase deficiency in the "real world". Mol Genet Metab Rep 2024; 38:101042. [PMID: 38221915 PMCID: PMC10787283 DOI: 10.1016/j.ymgmr.2023.101042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/12/2023] [Accepted: 12/18/2023] [Indexed: 01/16/2024] Open
Abstract
Background Deficiency of arginase-1, the final enzyme in the urea cycle, causes a distinct clinical syndrome and is characterized biochemically by a high level of plasma arginine. While conventional therapy for urea cycle disorders can lower these levels to some extent, it does not normalize them. Until now, research on plasma arginine levels in this disorder has primarily relied on data from specialized tertiary centers, which limits the ability to assess the natural history and treatment efficacy of arginase-1 deficiency due to the small number of patients in each center and technical variations in plasma arginine measurements among different laboratories. Method In this study, we reported plasma arginine levels from 51 patients with arginase-1 deficiency in the database of Quest Diagnostics. The samples were collected from different US regions. Results The mean plasma arginine level in these treated patients was 373 μmol/L and the median level was 368.4 μmol/L. Our data set from 30 arginase deficiency patients with plasma amino acid data from five or more collections revealed significant correlations between the levels of arginine and five other amino acids (citrulline, alanine, ornithine, glutamine, and asparagine). Conclusion Despite treatment, the arginine levels remained persistently elevated and did not change significantly with age, suggesting the current treatment regimen is inadequate to control arginine levels and underscoring the need to seek more effective treatments for this disorder.
Collapse
Affiliation(s)
- Pranoot Tanpaiboon
- Biochemical Genetics, R&D Molecular Genetics & Oncology, Quest Diagnostics Nichols Institute, San Juan Capistrano, CA 92675, United States of America
| | - Yue Huang
- Division of Clinical Genetics, Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, United States of America
| | - Judy Z. Louie
- Biochemical Genetics, R&D Molecular Genetics & Oncology, Quest Diagnostics Nichols Institute, San Juan Capistrano, CA 92675, United States of America
| | - Rajesh Sharma
- Ex-employee Quest Diagnostics Nichols Institute, San Juan Capistrano, CA 92675, United States of America
| | - Stephen Cederbaum
- Division of Clinical Genetics, Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, United States of America
- Departments of Psychiatry, Pediatrics and Human Genetics and the Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, United States of America
| | - Denise Salazar
- Biochemical Genetics, R&D Molecular Genetics & Oncology, Quest Diagnostics Nichols Institute, San Juan Capistrano, CA 92675, United States of America
| |
Collapse
|
3
|
Koeberl DD, Koch RL, Lim JA, Brooks ED, Arnson BD, Sun B, Kishnani PS. Gene therapy for glycogen storage diseases. J Inherit Metab Dis 2024; 47:93-118. [PMID: 37421310 PMCID: PMC10874648 DOI: 10.1002/jimd.12654] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 05/24/2023] [Accepted: 07/05/2023] [Indexed: 07/10/2023]
Abstract
Glycogen storage disorders (GSDs) are inherited disorders of metabolism resulting from the deficiency of individual enzymes involved in the synthesis, transport, and degradation of glycogen. This literature review summarizes the development of gene therapy for the GSDs. The abnormal accumulation of glycogen and deficiency of glucose production in GSDs lead to unique symptoms based upon the enzyme step and tissues involved, such as liver and kidney involvement associated with severe hypoglycemia during fasting and the risk of long-term complications including hepatic adenoma/carcinoma and end stage kidney disease in GSD Ia from glucose-6-phosphatase deficiency, and cardiac/skeletal/smooth muscle involvement associated with myopathy +/- cardiomyopathy and the risk for cardiorespiratory failure in Pompe disease. These symptoms are present to a variable degree in animal models for the GSDs, which have been utilized to evaluate new therapies including gene therapy and genome editing. Gene therapy for Pompe disease and GSD Ia has progressed to Phase I and Phase III clinical trials, respectively, and are evaluating the safety and bioactivity of adeno-associated virus vectors. Clinical research to understand the natural history and progression of the GSDs provides invaluable outcome measures that serve as endpoints to evaluate benefits in clinical trials. While promising, gene therapy and genome editing face challenges with regard to clinical implementation, including immune responses and toxicities that have been revealed during clinical trials of gene therapy that are underway. Gene therapy for the glycogen storage diseases is under development, addressing an unmet need for specific, stable therapy for these conditions.
Collapse
Affiliation(s)
- Dwight D. Koeberl
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical School, Durham, NC, United States
- Department of Molecular Genetics & Microbiology, Duke University Medical Center, Durham, NC, United States
| | - Rebecca L. Koch
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical School, Durham, NC, United States
| | - Jeong-A Lim
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical School, Durham, NC, United States
| | - Elizabeth D. Brooks
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical School, Durham, NC, United States
| | - Benjamin D. Arnson
- Department of Molecular Genetics & Microbiology, Duke University Medical Center, Durham, NC, United States
| | - Baodong Sun
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical School, Durham, NC, United States
| | - Priya S. Kishnani
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical School, Durham, NC, United States
- Department of Molecular Genetics & Microbiology, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|
4
|
Duff C, Alexander IE, Baruteau J. Gene therapy for urea cycle defects: An update from historical perspectives to future prospects. J Inherit Metab Dis 2024; 47:50-62. [PMID: 37026568 PMCID: PMC10953416 DOI: 10.1002/jimd.12609] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 04/08/2023]
Abstract
Urea cycle defects (UCDs) are severe inherited metabolic diseases with high unmet needs which present a permanent risk of hyperammonaemic decompensation and subsequent acute death or neurological sequelae, when treated with conventional dietetic and medical therapies. Liver transplantation is currently the only curative option, but has the potential to be supplanted by highly effective gene therapy interventions without the attendant need for life-long immunosuppression or limitations imposed by donor liver supply. Over the last three decades, pioneering genetic technologies have been explored to circumvent the consequences of UCDs, improve quality of life and long-term outcomes: adenoviral vectors, adeno-associated viral vectors, gene editing, genome integration and non-viral technology with messenger RNA. In this review, we present a summarised view of this historical path, which includes some seminal milestones of the gene therapy's epic. We provide an update about the state of the art of gene therapy technologies for UCDs and the current advantages and pitfalls driving future directions for research and development.
Collapse
Affiliation(s)
- Claire Duff
- Genetics and Genomic Medicine Department, Great Ormond Street Institute of Child HealthUniversity College LondonLondonUK
| | - Ian E. Alexander
- Gene Therapy Research Unit, Children's Medical Research Institute, Faculty of Medicine and HealthThe University of Sydney and Sydney Children's Hospitals NetworkWestmeadNew South WalesAustralia
- Discipline of Child and Adolescent HealthThe University of SydneyWestmeadNew South WalesAustralia
| | - Julien Baruteau
- Genetics and Genomic Medicine Department, Great Ormond Street Institute of Child HealthUniversity College LondonLondonUK
- National Institute of Health Research Great Ormond Street Biomedical Research CentreLondonUK
- Metabolic Medicine DepartmentGreat Ormond Street Hospital for Children NHS Foundation TrustLondonUK
| |
Collapse
|
5
|
Arnson B, Kang HR, Brooks ED, Gheorghiu D, Ilich E, Courtney D, Everitt JI, Cullen BR, Koeberl DD. Genome editing using Staphylococcus aureus Cas9 in a canine model of glycogen storage disease Ia. Mol Ther Methods Clin Dev 2023; 29:108-119. [PMID: 37021039 PMCID: PMC10068017 DOI: 10.1016/j.omtm.2023.03.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 03/03/2023] [Indexed: 03/11/2023]
Abstract
Glycogen storage disease type Ia (GSD Ia) is the inherited deficiency of glucose-6-phosphatase (G6Pase), associated with life-threatening hypoglycemia and long-term complications, including hepatocellular carcinoma formation. Gene replacement therapy fails to stably reverse G6Pase deficiency. We attempted genome editing using two adeno-associated virus vectors, one that expressed Staphylococcus aureus Cas9 protein and a second containing a donor transgene encoding G6Pase, in a dog model for GSD Ia. We demonstrated donor transgene integration in the liver of three adult-treated dogs accompanied by stable G6Pase expression and correction of hypoglycemia during fasting. Two puppies with GSD Ia were treated by genome editing that achieved donor transgene integration in the liver. Integration frequency ranged from 0.5% to 1% for all dogs. In adult-treated dogs, anti-SaCas9 antibodies were detected before genome editing, reflecting prior exposure to S. aureus. Nuclease activity was low, as reflected by a low percentage of indel formation at the predicted site of SaCas9 cutting that indicated double-stranded breaks followed by non-homologous end-joining. Thus, genome editing can integrate a therapeutic transgene in the liver of a large animal model, either early or later in life, and further development is warranted to provide a more stable treatment for GSD Ia.
Collapse
Affiliation(s)
- Benjamin Arnson
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical School, Durham, NC, USA
- Department of Molecular Genetics & Microbiology, Duke University Medical Center, Durham, NC, USA
| | - Hye Ri Kang
- Department of Pediatrics, UT Southwestern Medical Center, Dallas, TX, USA
| | - Elizabeth D. Brooks
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical School, Durham, NC, USA
| | - Dorothy Gheorghiu
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical School, Durham, NC, USA
| | - Ekaterina Ilich
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical School, Durham, NC, USA
| | - David Courtney
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast, UK
| | - Jeffrey I. Everitt
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA
| | - Bryan R. Cullen
- Department of Molecular Genetics & Microbiology, Duke University Medical Center, Durham, NC, USA
| | - Dwight D. Koeberl
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical School, Durham, NC, USA
- Department of Molecular Genetics & Microbiology, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
6
|
Diaz GA, Bechter M, Cederbaum SD. The role and control of arginine levels in arginase 1 deficiency. J Inherit Metab Dis 2023; 46:3-14. [PMID: 36175366 PMCID: PMC10091968 DOI: 10.1002/jimd.12564] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/22/2022] [Accepted: 09/27/2022] [Indexed: 01/19/2023]
Abstract
Arginase 1 Deficiency (ARG1-D) is a rare urea cycle disorder that results in persistent hyperargininemia and a distinct, progressive neurologic phenotype involving developmental delay, intellectual disability, and spasticity, predominantly affecting the lower limbs and leading to mobility impairment. Unlike the typical presentation of other urea cycle disorders, individuals with ARG1-D usually appear healthy at birth and hyperammonemia is comparatively less severe and less common. Clinical manifestations typically begin to develop in early childhood in association with high plasma arginine levels, with hyperargininemia (and not hyperammonemia) considered to be the primary driver of disease sequelae. Nearly five decades of clinical experience with ARG1-D and empirical studies in genetically manipulated models have generated a large body of evidence that, when considered in aggregate, implicates arginine directly in disease pathophysiology. Severe dietary protein restriction to minimize arginine intake and diversion of ammonia from the urea cycle are the mainstay of care. Although this approach does reduce plasma arginine and improve patients' cognitive and motor/mobility manifestations, it is inadequate to achieve and maintain sufficiently low arginine levels and prevent progression in the long term. This review presents a comprehensive discussion of the clinical and scientific literature, the effects and limitations of the current standard of care, and the authors' perspectives regarding the past, current, and future management of ARG1-D.
Collapse
Affiliation(s)
- George A Diaz
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Stephen D Cederbaum
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
7
|
Bazo A, Lantero A, Mauleón I, Neri L, Poms M, Häberle J, Ricobaraza A, Bénichou B, Combal JP, Gonzalez-Aseguinolaza G, Aldabe R. Gene Therapy in Combination with Nitrogen Scavenger Pretreatment Corrects Biochemical and Behavioral Abnormalities of Infant Citrullinemia Type 1 Mice. Int J Mol Sci 2022; 23:14940. [PMID: 36499263 PMCID: PMC9736988 DOI: 10.3390/ijms232314940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 12/02/2022] Open
Abstract
Citrullinemia type I (CTLN1) is a rare autosomal recessive disorder caused by mutations in the gene encoding argininosuccinate synthetase 1 (ASS1) that catalyzes the third step of the urea cycle. CTLN1 patients suffer from impaired elimination of nitrogen, which leads to neurotoxic levels of circulating ammonia and urea cycle byproducts that may cause severe metabolic encephalopathy, death or irreversible brain damage. Standard of care (SOC) of CTLN1 consists of daily nitrogen-scavenger administration, but patients remain at risk of life-threatening decompensations. We evaluated the therapeutic efficacy of a recombinant adeno-associated viral vector carrying the ASS1 gene under the control of a liver-specific promoter (VTX-804). When administered to three-week-old CTLN1 mice, all the animals receiving VTX-804 in combination with SOC gained body weight normally, presented with a normalization of ammonia and reduction of citrulline levels in circulation, and 100% survived for 7 months. Similar to what has been observed in CTLN1 patients, CTLN1 mice showed several behavioral abnormalities such as anxiety, reduced welfare and impairment of innate behavior. Importantly, all clinical alterations were notably improved after treatment with VTX-804. This study demonstrates the potential of VTX-804 gene therapy for future clinical translation to CTLN1 patients.
Collapse
Affiliation(s)
- Andrea Bazo
- Division of Gene Therapy and Regulation of Gene Expression, CIMA, University of Navarra, 31008 Pamplona, Spain
| | | | - Itsaso Mauleón
- Division of Gene Therapy and Regulation of Gene Expression, CIMA, University of Navarra, 31008 Pamplona, Spain
| | - Leire Neri
- Vivet Therapeutics, S.L., 31008 Pamplona, Spain
| | - Martin Poms
- Department of Clinical Chemistry and Biochemistry, University Children’s Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland
| | - Johannes Häberle
- Division of Metabolism, Children’s Research Centre (CRC), University Children’s Hospital Zurich, 8091 Zurich, Switzerland
| | - Ana Ricobaraza
- Division of Gene Therapy and Regulation of Gene Expression, CIMA, University of Navarra, 31008 Pamplona, Spain
| | | | | | - Gloria Gonzalez-Aseguinolaza
- Division of Gene Therapy and Regulation of Gene Expression, CIMA, University of Navarra, 31008 Pamplona, Spain
- Vivet Therapeutics, S.L., 31008 Pamplona, Spain
| | - Rafael Aldabe
- Division of Gene Therapy and Regulation of Gene Expression, CIMA, University of Navarra, 31008 Pamplona, Spain
| |
Collapse
|
8
|
Young mice administered adult doses of AAV5-hFVIII-SQ achieve therapeutic factor VIII expression into adulthood. MOLECULAR THERAPY - METHODS & CLINICAL DEVELOPMENT 2022; 26:519-531. [PMID: 36092364 PMCID: PMC9440360 DOI: 10.1016/j.omtm.2022.08.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 08/09/2022] [Indexed: 11/28/2022]
Abstract
Valoctocogene roxaparvovec (AAV5-hFVIII-SQ) gene transfer provided reduced bleeding for adult clinical trial participants with severe hemophilia A. However, pediatric outcomes are unknown. Using a mouse model of hemophilia A, we investigated the effect of vector dose and age at treatment on transgene production and persistence. We dosed AAV5-hFVIII-SQ to neonatal and adult mice based on body weight or at a fixed dose and assessed human factor VIII-SQ variant (hFVIII-SQ) expression through 16 weeks. AAV5-hFVIII-SQ dosed per body weight in neonatal mice did not result in meaningful plasma hFVIII-SQ protein levels in adulthood. When treated with the same total vector genomes per mouse as adult mice, neonates maintained hFVIII-SQ expression into adulthood, although plasma levels were 3- to 4-fold lower versus mice dosed as adults. Mice <1 week old initially exhibited high hFVIII-SQ plasma levels and maintained meaningful levels into adulthood, despite a partial decline potentially due to age-related body mass and blood volume increases. Spatial transduction patterns differed between mice dosed as neonates versus adults. No features of hepatotoxicity or endoplasmic reticulum stress were observed with dosing at any age. These data suggest that young mice require the same total vector genomes as adult mice to sustain hFVIII-SQ plasma levels.
Collapse
|
9
|
Khoja S, Liu XB, Truong B, Nitzahn M, Lambert J, Eliav A, Nasser E, Randolph E, Burke KE, White R, Zhu X, Martini PG, Nissim I, Cederbaum SD, Lipshutz GS. Intermittent lipid nanoparticle mRNA administration prevents cortical dysmyelination associated with arginase deficiency. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 28:859-874. [PMID: 35694211 PMCID: PMC9156989 DOI: 10.1016/j.omtn.2022.04.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 04/22/2022] [Indexed: 11/28/2022]
Abstract
Arginase deficiency is associated with prominent neuromotor features, including spastic diplegia, clonus, and hyperreflexia; intellectual disability and progressive neurological decline are other signs. In a constitutive murine model, we recently described leukodystrophy as a significant component of the central nervous system features of arginase deficiency. In the present studies, we sought to examine if the administration of a lipid nanoparticle carrying human ARG1 mRNA to constitutive knockout mice could prevent abnormalities in myelination associated with arginase deficiency. Imaging of the cingulum, striatum, and cervical segments of the corticospinal tract revealed a drastic reduction of myelinated axons; signs of degenerating axons were also present with thin myelin layers. Lipid nanoparticle/ARG1 mRNA administration resulted in both light and electron microscopic evidence of a dramatic recovery of myelin density compared with age-matched controls; oligodendrocytes were seen to be extending processes to wrap many axons. Abnormally thin myelin layers, when myelination was present, were resolved with intermittent mRNA administration, indicative of not only a greater density of myelinated axons but also an increase in the thickness of the myelin sheath. In conclusion, lipid nanoparticle/ARG1 mRNA administration in arginase deficiency prevents the associated leukodystrophy and restores normal oligodendrocyte function.
Collapse
Affiliation(s)
- Suhail Khoja
- Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Xiao-Bo Liu
- Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Brian Truong
- Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Matthew Nitzahn
- Molecular Biology Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Jenna Lambert
- Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Adam Eliav
- Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Eram Nasser
- Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Emma Randolph
- Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | | | - Rebecca White
- Moderna Inc., 200 Technology Square, Cambridge, MA 02139, USA
| | - Xuling Zhu
- Moderna Inc., 200 Technology Square, Cambridge, MA 02139, USA
| | | | - Itzhak Nissim
- Division of Metabolism and Human Genetics, The Children Hospital of Philadelphia and The Department of Biochemistry and Biophysics, Perlman School of Medicine, Philadelphia, PA 19104, USA
| | - Stephen D. Cederbaum
- Department of Psychiatry, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- Intellectual and Developmental Disabilities Research Center at UCLA, Los Angeles, CA 90095, USA
- Semel Institute for Neuroscience, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Gerald S. Lipshutz
- Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- Molecular Biology Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- Department of Psychiatry, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- Intellectual and Developmental Disabilities Research Center at UCLA, Los Angeles, CA 90095, USA
- Semel Institute for Neuroscience, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| |
Collapse
|
10
|
Khoja S, Lambert J, Nitzahn M, Eliav A, Zhang Y, Tamboline M, Le CT, Nasser E, Li Y, Patel P, Zhuravka I, Lueptow LM, Tkachyova I, Xu S, Nissim I, Schulze A, Lipshutz GS. Gene therapy for guanidinoacetate methyltransferase deficiency restores cerebral and myocardial creatine while resolving behavioral abnormalities. Mol Ther Methods Clin Dev 2022; 25:278-296. [PMID: 35505663 PMCID: PMC9051621 DOI: 10.1016/j.omtm.2022.03.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/27/2022] [Indexed: 11/06/2022]
Abstract
Creatine deficiency disorders are inborn errors of creatine metabolism, an energy homeostasis molecule. One of these, guanidinoacetate N-methyltransferase (GAMT) deficiency, has clinical characteristics that include features of autism, self-mutilation, intellectual disability, and seizures, with approximately 40% having a disorder of movement; failure to thrive can also be a component. Along with low creatine levels, guanidinoacetic acid (GAA) toxicity has been implicated in the pathophysiology of the disorder. Present-day therapy with oral creatine to control GAA lacks efficacy; seizures can persist. Dietary management and pharmacological ornithine treatment are challenging. Using an AAV-based gene therapy approach to express human codon-optimized GAMT in hepatocytes, in situ hybridization, and immunostaining, we demonstrated pan-hepatic GAMT expression. Serial collection of blood demonstrated a marked early and sustained reduction of GAA with normalization of plasma creatine; urinary GAA levels also markedly declined. The terminal time point demonstrated marked improvement in cerebral and myocardial creatine levels. In conjunction with the biochemical findings, treated mice gained weight to nearly match their wild-type littermates, while behavioral studies demonstrated resolution of abnormalities; PET-CT imaging demonstrated improvement in brain metabolism. In conclusion, a gene therapy approach can result in long-term normalization of GAA with increased creatine in guanidinoacetate N-methyltransferase deficiency and at the same time resolves the behavioral phenotype in a murine model of the disorder. These findings have important implications for the development of a new therapy for this abnormality of creatine metabolism.
Collapse
Affiliation(s)
- Suhail Khoja
- Department of Surgery, UCLA, Los Angeles, CA 90025, USA
| | - Jenna Lambert
- Department of Surgery, UCLA, Los Angeles, CA 90025, USA
| | - Matthew Nitzahn
- Molecular Biology Institute, UCLA, Los Angeles, CA 90025, USA
| | - Adam Eliav
- Department of Surgery, UCLA, Los Angeles, CA 90025, USA
| | - YuChen Zhang
- Semel Institute for Neuroscience, UCLA, Los Angeles, CA 90025, USA
| | - Mikayla Tamboline
- Crump Institute for Molecular Imaging, UCLA, Los Angeles, CA 90025, USA.,Departments of Molecular and Medical Pharmacology, Universtiy of California, Los Angeles, CA 90025, USA
| | - Colleen T Le
- Department of Surgery, UCLA, Los Angeles, CA 90025, USA
| | - Eram Nasser
- Department of Surgery, UCLA, Los Angeles, CA 90025, USA
| | - Yunfeng Li
- Departments of Pathology and Laboratory Medicine, UCLA, Los Angeles, CA 90025, USA
| | - Puja Patel
- Department of Surgery, UCLA, Los Angeles, CA 90025, USA
| | - Irina Zhuravka
- Behavioral Testing Core, Department of Psychology, UCLA, Los Angeles, CA 90025, USA
| | - Lindsay M Lueptow
- Behavioral Testing Core, Department of Psychology, UCLA, Los Angeles, CA 90025, USA
| | - Ilona Tkachyova
- Research Institute, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Shili Xu
- Crump Institute for Molecular Imaging, UCLA, Los Angeles, CA 90025, USA.,Departments of Molecular and Medical Pharmacology, Universtiy of California, Los Angeles, CA 90025, USA.,Jonsson Comprehensive Cancer Center at UCLA, David Geffen School of Medicine at UCLA, Los Angeles, CA 90025, USA
| | - Itzhak Nissim
- Division of Metabolism and Human Genetics, Children's Hospital of Philadelphia, and the Department of Biochemistry and Biophysics, Perlman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Andreas Schulze
- Department of Paediatrics, University of Toronto, Toronto, ON M5G 1X8, Canada.,Department of Biochemistry, University of Toronto, Toronto, ON M5G 1X8, Canada.,Research Institute, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Gerald S Lipshutz
- Department of Surgery, UCLA, Los Angeles, CA 90025, USA.,Molecular Biology Institute, UCLA, Los Angeles, CA 90025, USA.,Semel Institute for Neuroscience, UCLA, Los Angeles, CA 90025, USA.,Departments of Molecular and Medical Pharmacology, Universtiy of California, Los Angeles, CA 90025, USA.,Intellectual and Developmental Disabilities Research Center, UCLA, Los Angeles, CA 90025, USA
| |
Collapse
|
11
|
Pontoizeau C, Simon-Sola M, Gaborit C, Nguyen V, Rotaru I, Tual N, Colella P, Girard M, Biferi MG, Arnoux JB, Rötig A, Ottolenghi C, de Lonlay P, Mingozzi F, Cavazzana M, Schiff M. Neonatal gene therapy achieves sustained disease rescue of maple syrup urine disease in mice. Nat Commun 2022; 13:3278. [PMID: 35672312 PMCID: PMC9174284 DOI: 10.1038/s41467-022-30880-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 05/17/2022] [Indexed: 11/21/2022] Open
Abstract
Maple syrup urine disease (MSUD) is a rare recessively inherited metabolic disorder causing accumulation of branched chain amino acids leading to neonatal death, if untreated. Treatment for MSUD represents an unmet need because the current treatment with life-long low-protein diet is challenging to maintain, and despite treatment the risk of acute decompensations and neuropsychiatric symptoms remains. Here, based on significant liver contribution to the catabolism of the branched chain amino acid leucine, we develop a liver-directed adeno-associated virus (AAV8) gene therapy for MSUD. We establish and characterize the Bckdha (branched chain keto acid dehydrogenase a)−/− mouse that exhibits a lethal neonatal phenotype mimicking human MSUD. Animals were treated at P0 with intravenous human BCKDHA AAV8 vectors under the control of either a ubiquitous or a liver-specific promoter. BCKDHA gene transfer rescued the lethal phenotype. While the use of a ubiquitous promoter fully and sustainably rescued the disease (long-term survival, normal phenotype and correction of biochemical abnormalities), liver-specific expression of BCKDHA led to partial, though sustained rescue. Here we show efficacy of gene therapy for MSUD demonstrating its potential for clinical translation. Maple syrup urine disease (MSUD) is a rare inborn error of metabolism, which is currently treated with life-long low-protein diet that can be challenging to maintain. Here the authors develop an AAV8-directed gene therapy providing sustainable disease rescue in a mouse model of MSUD.
Collapse
Affiliation(s)
- Clément Pontoizeau
- Necker Hospital, APHP, Biochemistry, Metabolomics Unit, Paris Cité University, Paris, France. .,Necker Hospital, APHP, Reference Center for Inborn Error of Metabolism, Pediatrics Department, Paris Cité University, Filière G2M, Paris, France. .,Inserm UMR_S1163, Institut Imagine, Paris, France.
| | | | | | | | - Irina Rotaru
- Inserm UMR_S1163, Institut Imagine, Paris, France
| | - Nolan Tual
- Inserm UMR_S1163, Institut Imagine, Paris, France
| | | | - Muriel Girard
- Necker Hospital, APHP, Pediatric Hepatology Unit, Pediatrics Department, Paris Cité University, Paris, France.,Inserm U1151, Institut Necker Enfants Malades, Paris, France
| | - Maria-Grazia Biferi
- Sorbonne University, Inserm, Institute of Myology, Centre of Research in Myology, Paris, France
| | - Jean-Baptiste Arnoux
- Necker Hospital, APHP, Reference Center for Inborn Error of Metabolism, Pediatrics Department, Paris Cité University, Filière G2M, Paris, France
| | - Agnès Rötig
- Inserm UMR_S1163, Institut Imagine, Paris, France
| | - Chris Ottolenghi
- Necker Hospital, APHP, Biochemistry, Metabolomics Unit, Paris Cité University, Paris, France.,Necker Hospital, APHP, Reference Center for Inborn Error of Metabolism, Pediatrics Department, Paris Cité University, Filière G2M, Paris, France.,Inserm UMR_S1163, Institut Imagine, Paris, France
| | - Pascale de Lonlay
- Necker Hospital, APHP, Reference Center for Inborn Error of Metabolism, Pediatrics Department, Paris Cité University, Filière G2M, Paris, France.,Inserm U1151, Institut Necker Enfants Malades, Paris, France
| | | | - Marina Cavazzana
- Inserm UMR_S1163, Institut Imagine, Paris, France.,Necker Hospital, APHP, Biotherapies Department, Paris Cité University, Paris, France
| | - Manuel Schiff
- Necker Hospital, APHP, Reference Center for Inborn Error of Metabolism, Pediatrics Department, Paris Cité University, Filière G2M, Paris, France. .,Inserm UMR_S1163, Institut Imagine, Paris, France.
| |
Collapse
|
12
|
Nitzahn M, Truong B, Khoja S, Vega-Crespo A, Le C, Eliav A, Makris G, Pyle AD, Häberle J, Lipshutz GS. CRISPR-Mediated Genomic Addition to CPS1 Deficient iPSCs is Insufficient to Restore Nitrogen Homeostasis. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2021; 94:545-557. [PMID: 34970092 PMCID: PMC8686786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
CPS1 deficiency is an inborn error of metabolism caused by loss-of-function mutations in the CPS1 gene, catalyzing the initial reaction of the urea cycle. Deficiency typically leads to toxic levels of plasma ammonia, cerebral edema, coma, and death, with the only curative treatment being liver transplantation; due to limited donor availability and the invasiveness and complications of the procedure, however, alternative therapies are needed. Induced pluripotent stem cells offer an alternative cell source to partial or whole liver grafts that theoretically would not require immune suppression regimens and additionally are amenable to genetic modifications. Here, we genetically modified CPS1 deficient patient-derived stem cells to constitutively express human codon optimized CPS1 from the AAVS1 safe harbor site. While edited stem cells efficiently differentiated to hepatocyte-like cells, they failed to metabolize ammonia more efficiently than their unedited counterparts. This unexpected result appears to have arisen in part due to transgene promoter methylation, and thus transcriptional silencing, in undifferentiated cells, impacting their capacity to restore the complete urea cycle function upon differentiation. As pluripotent stem cell strategies are being expanded widely for potential cell therapies, these results highlight the need for strict quality control and functional analysis to ensure the integrity of cell products.
Collapse
Affiliation(s)
- Matthew Nitzahn
- Molecular Biology Institute, David Geffen School of
Medicine at UCLA, Los Angeles, CA, USA,Department of Surgery, David Geffen School of Medicine
at UCLA, Los Angeles, CA, USA
| | - Brian Truong
- Department of Surgery, David Geffen School of Medicine
at UCLA, Los Angeles, CA, USA,Department of Molecular and Medical Pharmacology, David
Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Suhail Khoja
- Department of Surgery, David Geffen School of Medicine
at UCLA, Los Angeles, CA, USA
| | - Agustin Vega-Crespo
- Department of Molecular and Medical Pharmacology, David
Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Colleen Le
- Department of Surgery, David Geffen School of Medicine
at UCLA, Los Angeles, CA, USA
| | - Adam Eliav
- Department of Surgery, David Geffen School of Medicine
at UCLA, Los Angeles, CA, USA
| | - Georgios Makris
- Division of Metabolism and Children’s Research Center,
University Children’s Hospital Zurich, Switzerland
| | - April D. Pyle
- Department of Microbiology, Immunology, and Molecular
Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA,Eli and Edythe Broad Stem Cell Center, David Geffen
School of Medicine at UCLA, Los Angeles, CA, USA
| | - Johannes Häberle
- Division of Metabolism and Children’s Research Center,
University Children’s Hospital Zurich, Switzerland
| | - Gerald S. Lipshutz
- Molecular Biology Institute, David Geffen School of
Medicine at UCLA, Los Angeles, CA, USA,Department of Surgery, David Geffen School of Medicine
at UCLA, Los Angeles, CA, USA,Department of Molecular and Medical Pharmacology, David
Geffen School of Medicine at UCLA, Los Angeles, CA, USA,Department of Psychiatry, David Geffen School of
Medicine at UCLA, Los Angeles, CA, USA,Intellectual and Developmental Disabilities Research
Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA,Semel Institute for Neuroscience, David Geffen School
of Medicine at UCLA, Los Angeles, CA, USA,To whom all correspondence should be addressed:
Gerald S. Lipshutz, David Geffen School of Medicine at UCLA, Los Angeles, CA
90095-7054;
| |
Collapse
|
13
|
Richmond CR, Ballantyne LL, de Guzman AE, Nieman BJ, Funk CD, Ghasemlou N. Arginase-1 deficiency in neural cells does not contribute to neurodevelopment or functional outcomes after sciatic nerve injury. Neurochem Int 2021; 145:104984. [PMID: 33561495 DOI: 10.1016/j.neuint.2021.104984] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 01/13/2021] [Accepted: 02/02/2021] [Indexed: 10/22/2022]
Abstract
Arginase-1 (Arg1) is an enzyme controlling the final step of the urea cycle, with highest expression in the liver and lower expression in the lungs, pancreas, kidney, and some blood cells. Arg1 deficiency is an inherited urea cycle disorder presenting with neurological dysfunction including spastic diplegia, intellectual and growth retardation, and encephalopathy. The contribution of Arg1 expression in the central and peripheral nervous system to the development of neurological phenotypes remains largely unknown. Previous studies have shown prominent arginase-1 expression in the nervous system and post-peripheral nerve injury in mice, but very low levels in the naïve state. To investigate neurobiological roles of Arg1, we created a conditional neural (n)Arg1 knockout (KO) mouse strain, with expression eliminated in neuronal and glial precursors, and compared them to littermate controls. Long-term analysis did not reveal any major differences in blood amino acid levels, body weight, or stride gait cycle from 8 to 26-weeks of age. Brain structure measured by magnetic resonance imaging at 16-weeks of age observed only a significant decrease in the volume of the mammillary bodies. We also assessed whether nArg1, which is expressed by sensory neurons after injury, may play a role in regeneration following sciatic nerve crush. Only subtle differences were observed in locomotor and sensory recovery between nArg1 KO and control mice. These results suggest that arginase-1 expression in central and peripheral neural cells does not contribute substantially to the phenotypes of this urea cycle disorder, nor is it likely crucial for post-injury regeneration in this mouse model.
Collapse
Affiliation(s)
- Christopher R Richmond
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Laurel L Ballantyne
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - A Elizabeth de Guzman
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario, Canada; Translational Medicine, Hospital for Sick Children, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, M5T 3H7, Canada
| | - Brian J Nieman
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario, Canada; Translational Medicine, Hospital for Sick Children, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, M5T 3H7, Canada; Ontario Institute for Cancer Research, Ontario, M5G 0A3, Canada
| | - Colin D Funk
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L 3N6, Canada.
| | - Nader Ghasemlou
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L 3N6, Canada; Department of Anesthesiology & Perioperative Medicine, Queen's University, Kingston, Ontario, K7L 3N6, Canada; Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, K7L 3N6, Canada.
| |
Collapse
|
14
|
Han SO, Li S, McCall A, Arnson B, Everitt JI, Zhang H, Young SP, ElMallah MK, Koeberl DD. Comparisons of Infant and Adult Mice Reveal Age Effects for Liver Depot Gene Therapy in Pompe Disease. Mol Ther Methods Clin Dev 2020; 17:133-142. [PMID: 31909086 PMCID: PMC6938806 DOI: 10.1016/j.omtm.2019.11.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 11/26/2019] [Indexed: 01/20/2023]
Abstract
Pompe disease is caused by the deficiency of lysosomal acid α-glucosidase (GAA). It is expected that gene therapy to replace GAA with adeno-associated virus (AAV) vectors will be less effective early in life because of the rapid loss of vector genomes. AAV2/8-LSPhGAA (3 × 1010 vector genomes [vg]/mouse) was administered to infant (2-week-old) or adult (2-month-old) GAA knockout mice. AAV vector transduction in adult mice significantly corrected GAA deficiency in the heart (p < 0.0001), diaphragm (p < 0.01), and quadriceps (p < 0.001) for >50 weeks. However, in infant mice, the same treatment only partially corrected GAA deficiency in the heart (p < 0.05), diaphragm (p < 0.05), and quadriceps (p < 0.05). The clearance of glycogen was much more efficient in adult mice compared with infant mice. Improved wire hang test latency was observed for treated adults (p < 0.05), but not for infant mice. Abnormal ventilation was corrected in both infant and adult mice. Vector-treated female mice demonstrated functional improvement, despite a lower degree of biochemical correction compared with male mice. The relative vector dose for infants was approximately 3-fold higher than adults, when normalized to body weight at the time of vector administration. Given these data, the dose requirement to achieve similar efficacy will be higher for the treatment of young patients.
Collapse
Affiliation(s)
- Sang-oh Han
- Division of Medical Genetics, Duke University School of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Songtao Li
- Division of Medical Genetics, Duke University School of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Angela McCall
- Division of Pediatric Allergy, Immunology, and Pulmonary Medicine, Department of Pediatrics, Duke University School of Medicine, Durham, NC 27710, USA
| | - Benjamin Arnson
- Division of Medical Genetics, Duke University School of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Jeffrey I. Everitt
- Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Haoyue Zhang
- Division of Medical Genetics, Duke University School of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Sarah P. Young
- Division of Medical Genetics, Duke University School of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Mai K. ElMallah
- Division of Pediatric Allergy, Immunology, and Pulmonary Medicine, Department of Pediatrics, Duke University School of Medicine, Durham, NC 27710, USA
| | - Dwight D. Koeberl
- Division of Medical Genetics, Duke University School of Medicine, Duke University Medical Center, Durham, NC 27710, USA
- Department of Molecular Genetics and Metabolism, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
15
|
Nitzahn M, Allegri G, Khoja S, Truong B, Makris G, Häberle J, Lipshutz GS. Split AAV-Mediated Gene Therapy Restores Ureagenesis in a Murine Model of Carbamoyl Phosphate Synthetase 1 Deficiency. Mol Ther 2020; 28:1717-1730. [PMID: 32359471 DOI: 10.1016/j.ymthe.2020.04.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 02/25/2020] [Accepted: 04/09/2020] [Indexed: 02/07/2023] Open
Abstract
The urea cycle enzyme carbamoyl phosphate synthetase 1 (CPS1) catalyzes the initial step of the urea cycle; bi-allelic mutations typically present with hyperammonemia, vomiting, ataxia, lethargy progressing into coma, and death due to brain edema if ineffectively treated. The enzyme deficiency is particularly difficult to treat; early recognition is essential to minimize injury to the brain. Even under optimal conditions, therapeutic interventions are of limited scope and efficacy, with most patients developing long-term neurologic sequelae. One significant encumberment to gene therapeutic development is the size of the CPS1 cDNA, which, at 4.5 kb, nears the packaging capacity of adeno-associated virus (AAV). Herein we developed a split AAV (sAAV)-based approach, packaging the large transgene and its regulatory cassette into two separate vectors, thereby delivering therapeutic CPS1 by a dual vector system with testing in a murine model of the disorder. Cps1-deficient mice treated with sAAVs survive long-term with markedly improved ammonia levels, diminished dysregulation of circulating amino acids, and increased hepatic CPS1 expression and activity. In response to acute ammonia challenging, sAAV-treated female mice rapidly incorporated nitrogen into urea. This study demonstrates the first proof-of-principle that sAAV-mediated therapy is a viable, potentially clinically translatable approach to CPS1 deficiency, a devastating urea cycle disorder.
Collapse
Affiliation(s)
- Matthew Nitzahn
- Molecular Biology Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Gabriella Allegri
- Division of Metabolism and Children's Research Center, University Children's Hospital, Zurich, Switzerland
| | - Suhail Khoja
- Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Brian Truong
- Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Georgios Makris
- Division of Metabolism and Children's Research Center, University Children's Hospital, Zurich, Switzerland
| | - Johannes Häberle
- Division of Metabolism and Children's Research Center, University Children's Hospital, Zurich, Switzerland
| | - Gerald S Lipshutz
- Molecular Biology Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; Department of Psychiatry, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; Semel Institute for Neuroscience, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA.
| |
Collapse
|
16
|
Messenger RNA therapy as an option for treating metabolic disorders. Proc Natl Acad Sci U S A 2019; 116:20804-20806. [PMID: 31537746 DOI: 10.1073/pnas.1914673116] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
17
|
Truong B, Allegri G, Liu XB, Burke KE, Zhu X, Cederbaum SD, Häberle J, Martini PGV, Lipshutz GS. Lipid nanoparticle-targeted mRNA therapy as a treatment for the inherited metabolic liver disorder arginase deficiency. Proc Natl Acad Sci U S A 2019; 116:21150-21159. [PMID: 31501335 PMCID: PMC6800360 DOI: 10.1073/pnas.1906182116] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Arginase deficiency is caused by biallelic mutations in arginase 1 (ARG1), the final step of the urea cycle, and results biochemically in hyperargininemia and the presence of guanidino compounds, while it is clinically notable for developmental delays, spastic diplegia, psychomotor function loss, and (uncommonly) death. There is currently no completely effective medical treatment available. While preclinical strategies have been demonstrated, disadvantages with viral-based episomal-expressing gene therapy vectors include the risk of insertional mutagenesis and limited efficacy due to hepatocellular division. Recent advances in messenger RNA (mRNA) codon optimization, synthesis, and encapsulation within biodegradable liver-targeted lipid nanoparticles (LNPs) have potentially enabled a new generation of safer, albeit temporary, treatments to restore liver metabolic function in patients with urea cycle disorders, including ARG1 deficiency. In this study, we applied such technologies to successfully treat an ARG1-deficient murine model. Mice were administered LNPs encapsulating human codon-optimized ARG1 mRNA every 3 d. Mice demonstrated 100% survival with no signs of hyperammonemia or weight loss to beyond 11 wk, compared with controls that perished by day 22. Plasma ammonia, arginine, and glutamine demonstrated good control without elevation of guanidinoacetic acid, a guanidino compound. Evidence of urea cycle activity restoration was demonstrated by the ability to fully metabolize an ammonium challenge and by achieving near-normal ureagenesis; liver arginase activity achieved 54% of wild type. Biochemical and microscopic data showed no evidence of hepatotoxicity. These results suggest that delivery of ARG1 mRNA by liver-targeted nanoparticles may be a viable gene-based therapeutic for the treatment of arginase deficiency.
Collapse
Affiliation(s)
- Brian Truong
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095
- Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095
| | - Gabriella Allegri
- Division of Metabolism and Children's Research Center, University Children's Hospital, 8032 Zurich, Switzerland
| | - Xiao-Bo Liu
- Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095
| | | | | | - Stephen D Cederbaum
- Department of Psychiatry, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095
- Intellectual and Developmental Disabilities Research Center at UCLA, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095
- Semel Institute for Neuroscience, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095
| | - Johannes Häberle
- Division of Metabolism and Children's Research Center, University Children's Hospital, 8032 Zurich, Switzerland
| | | | - Gerald S Lipshutz
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095;
- Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095
- Department of Psychiatry, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095
- Intellectual and Developmental Disabilities Research Center at UCLA, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095
- Semel Institute for Neuroscience, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095
| |
Collapse
|
18
|
Liu XB, Haney JR, Cantero G, Lambert JR, Otero-Garcia M, Truong B, Gropman A, Cobos I, Cederbaum SD, Lipshutz GS. Hepatic arginase deficiency fosters dysmyelination during postnatal CNS development. JCI Insight 2019; 4:130260. [PMID: 31484827 DOI: 10.1172/jci.insight.130260] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 08/01/2019] [Indexed: 12/26/2022] Open
Abstract
Deficiency of arginase is associated with hyperargininemia, and prominent features include spastic diplegia/tetraplegia, clonus, and hyperreflexia; loss of ambulation, intellectual disability and progressive neurological decline are other signs. To gain greater insight into the unique neuromotor features, we performed gene expression profiling of the motor cortex of a murine model of the disorder. Coexpression network analysis suggested an abnormality with myelination, which was supported by limited existing human data. Utilizing electron microscopy, marked dysmyelination was detected in 2-week-old homozygous Arg1-KO mice. The corticospinal tract was found to be adversely affected, supporting dysmyelination as the cause of the unique neuromotor features and implicating oligodendrocyte impairment in a deficiency of hepatic Arg1. Following neonatal hepatic gene therapy to express Arg1, the subcortical white matter, pyramidal tract, and corticospinal tract all showed a remarkable recovery in terms of myelinated axon density and ultrastructural integrity with active wrapping of axons by nearby oligodendrocyte processes. These findings support the following conclusions: arginase deficiency is a leukodystrophy affecting the brain and spinal cord while sparing the peripheral nervous system, and neonatal AAV hepatic gene therapy can rescue the defects associated with myelinated axons, strongly implicating the functional recovery of oligodendrocytes after restoration of hepatic arginase activity.
Collapse
Affiliation(s)
| | - Jillian R Haney
- Department of Psychiatry.,Intellectual and Developmental Disabilities Research Center, and.,Semel Institute for Neuroscience, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Gloria Cantero
- Neuromuscular Disorders Unit, Department of Neurology, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | | | | | - Brian Truong
- Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Andrea Gropman
- Neurogenetics and Neurodevelopmental Pediatrics and Genetics, Children's National Health System, Washington, DC, USA
| | - Inma Cobos
- Department of Pathology and Laboratory Medicine and
| | - Stephen D Cederbaum
- Department of Psychiatry.,Intellectual and Developmental Disabilities Research Center, and.,Semel Institute for Neuroscience, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Gerald S Lipshutz
- Department of Surgery.,Department of Psychiatry.,Intellectual and Developmental Disabilities Research Center, and.,Semel Institute for Neuroscience, David Geffen School of Medicine at UCLA, Los Angeles, California.,Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA.,Molecular Biology Institute, UCLA, Los Angeles, California, USA
| |
Collapse
|
19
|
Xu L, Lau YS, Gao Y, Li H, Han R. Life-Long AAV-Mediated CRISPR Genome Editing in Dystrophic Heart Improves Cardiomyopathy without Causing Serious Lesions in mdx Mice. Mol Ther 2019; 27:1407-1414. [PMID: 31129119 PMCID: PMC6697345 DOI: 10.1016/j.ymthe.2019.05.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/27/2019] [Accepted: 05/01/2019] [Indexed: 12/26/2022] Open
Abstract
Previous studies from others and us have demonstrated that CRISPR genome editing could offer a promising therapeutic strategy to restore dystrophin expression and function in the skeletal muscle and heart of Duchenne muscular dystrophy (DMD) mouse models. However, the long-term efficacy and safety of CRISPR genome-editing therapy for DMD has not been well established. We packaged both SaCas9 and guide RNA (gRNA) together into one AAVrh.74 vector, injected two such vectors (targeting intron 20 and intron 23, respectively) into mdx pups at day 3 and evaluated the mice at 19 months. We found that AAVrh.74-mediated life-long CRISPR genome editing in mdx mice restored dystrophin expression and improved cardiac function without inducing serious adverse effects. PCR analysis and targeted deep sequencing showed that the DSBs were mainly repaired by the precise ligation of the two cut sites. Serological and histological examination of major vital organs did not reveal any signs of tumor development or other deleterious defects arising from CRISPR genome editing. These results support that in vivo CRISPR genome editing could be developed as a safe therapeutic treatment for DMD and potentially other diseases.
Collapse
MESH Headings
- Animals
- CRISPR-Cas Systems
- Cardiomyopathies/etiology
- Cardiomyopathies/metabolism
- Cardiomyopathies/pathology
- Cardiomyopathies/therapy
- DNA Repair
- Dependovirus/genetics
- Disease Models, Animal
- Dystrophin/genetics
- Dystrophin/metabolism
- Fluorescent Antibody Technique
- Gene Editing
- Gene Expression
- Genetic Therapy/methods
- Genetic Vectors/administration & dosage
- Genetic Vectors/genetics
- Mice
- Mice, Inbred mdx
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscular Dystrophy, Duchenne/complications
- Muscular Dystrophy, Duchenne/genetics
- Muscular Dystrophy, Duchenne/therapy
- RNA, Guide, CRISPR-Cas Systems/genetics
- Transduction, Genetic
Collapse
Affiliation(s)
- Li Xu
- Department of Surgery, Davis Heart and Lung Research Institute, Biomedical Sciences Graduate Program, Biophysics Graduate Program, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Yeh Siang Lau
- Department of Surgery, Davis Heart and Lung Research Institute, Biomedical Sciences Graduate Program, Biophysics Graduate Program, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Yandi Gao
- Department of Surgery, Davis Heart and Lung Research Institute, Biomedical Sciences Graduate Program, Biophysics Graduate Program, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Haiwen Li
- Department of Surgery, Davis Heart and Lung Research Institute, Biomedical Sciences Graduate Program, Biophysics Graduate Program, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Renzhi Han
- Department of Surgery, Davis Heart and Lung Research Institute, Biomedical Sciences Graduate Program, Biophysics Graduate Program, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
| |
Collapse
|
20
|
Nelson CE, Wu Y, Gemberling MP, Oliver ML, Waller MA, Bohning JD, Robinson-Hamm JN, Bulaklak K, Castellanos Rivera RM, Collier JH, Asokan A, Gersbach CA. Long-term evaluation of AAV-CRISPR genome editing for Duchenne muscular dystrophy. Nat Med 2019; 25:427-432. [PMID: 30778238 PMCID: PMC6455975 DOI: 10.1038/s41591-019-0344-3] [Citation(s) in RCA: 305] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 12/21/2018] [Indexed: 12/12/2022]
Abstract
Duchenne muscular dystrophy (DMD) is a monogenic disorder and a candidate for therapeutic genome editing. There have been several recent reports of genome editing in preclinical models of Duchenne muscular dystrophy1-6, however, the long-term persistence and safety of these genome editing approaches have not been addressed. Here we show that genome editing and dystrophin protein restoration is sustained in the mdx mouse model of Duchenne muscular dystrophy for 1 year after a single intravenous administration of an adeno-associated virus that encodes CRISPR (AAV-CRISPR). We also show that AAV-CRISPR is immunogenic when administered to adult mice7; however, humoral and cellular immune responses can be avoided by treating neonatal mice. Additionally, we describe unintended genome and transcript alterations induced by AAV-CRISPR that should be considered for the development of AAV-CRISPR as a therapeutic approach. This study shows the potential of AAV-CRISPR for permanent genome corrections and highlights aspects of host response and alternative genome editing outcomes that require further study.
Collapse
Affiliation(s)
- Christopher E Nelson
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
- Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
| | - Yaoying Wu
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Matthew P Gemberling
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
- Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
| | - Matthew L Oliver
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Matthew A Waller
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
- Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
| | - Joel D Bohning
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
- Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
| | - Jacqueline N Robinson-Hamm
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
- Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
| | - Karen Bulaklak
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
- Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
| | | | - Joel H Collier
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Aravind Asokan
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| | - Charles A Gersbach
- Department of Biomedical Engineering, Duke University, Durham, NC, USA.
- Center for Genomic and Computational Biology, Duke University, Durham, NC, USA.
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
21
|
Intravenous and Oral Hyperammonemia Management. CURRENT EMERGENCY AND HOSPITAL MEDICINE REPORTS 2018. [DOI: 10.1007/s40138-018-0174-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
22
|
Baruteau J, Perocheau DP, Hanley J, Lorvellec M, Rocha-Ferreira E, Karda R, Ng J, Suff N, Diaz JA, Rahim AA, Hughes MP, Banushi B, Prunty H, Hristova M, Ridout DA, Virasami A, Heales S, Howe SJ, Buckley SMK, Mills PB, Gissen P, Waddington SN. Argininosuccinic aciduria fosters neuronal nitrosative stress reversed by Asl gene transfer. Nat Commun 2018; 9:3505. [PMID: 30158522 PMCID: PMC6115417 DOI: 10.1038/s41467-018-05972-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 08/06/2018] [Indexed: 12/26/2022] Open
Abstract
Argininosuccinate lyase (ASL) belongs to the hepatic urea cycle detoxifying ammonia, and the citrulline-nitric oxide (NO) cycle producing NO. ASL-deficient patients present argininosuccinic aciduria characterised by hyperammonaemia, multiorgan disease and neurocognitive impairment despite treatment aiming to normalise ammonaemia without considering NO imbalance. Here we show that cerebral disease in argininosuccinic aciduria involves neuronal oxidative/nitrosative stress independent of hyperammonaemia. Intravenous injection of AAV8 vector into adult or neonatal ASL-deficient mice demonstrates long-term correction of the hepatic urea cycle and the cerebral citrulline-NO cycle, respectively. Cerebral disease persists if ammonaemia only is normalised but is dramatically reduced after correction of both ammonaemia and neuronal ASL activity. This correlates with behavioural improvement and reduced cortical cell death. Thus, neuronal oxidative/nitrosative stress is a distinct pathophysiological mechanism from hyperammonaemia. Disease amelioration by simultaneous brain and liver gene transfer with one vector, to treat both metabolic pathways, provides new hope for hepatocerebral metabolic diseases.
Collapse
Affiliation(s)
- Julien Baruteau
- Gene Transfer Technology Group, Institute for Women's Health, University College London, 86-96 Chenies Mews, London, WC1E 6HX, UK
- Metabolic Medicine Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London, WC1N 3JH, UK
- Genetics and Genomic Medicine Programme, Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London, WC1N 1EH, UK
| | - Dany P Perocheau
- Gene Transfer Technology Group, Institute for Women's Health, University College London, 86-96 Chenies Mews, London, WC1E 6HX, UK
| | - Joanna Hanley
- Genetics and Genomic Medicine Programme, Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London, WC1N 1EH, UK
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Maëlle Lorvellec
- Genetics and Genomic Medicine Programme, Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London, WC1N 1EH, UK
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Eridan Rocha-Ferreira
- Perinatal Brain Repair Group, Institute for Women's Health, University College London, 86-96 Chenies Mews, London, WC1E 6HX, UK
| | - Rajvinder Karda
- Gene Transfer Technology Group, Institute for Women's Health, University College London, 86-96 Chenies Mews, London, WC1E 6HX, UK
| | - Joanne Ng
- Gene Transfer Technology Group, Institute for Women's Health, University College London, 86-96 Chenies Mews, London, WC1E 6HX, UK
- Neurology Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London, WC1N 3JH, UK
| | - Natalie Suff
- Gene Transfer Technology Group, Institute for Women's Health, University College London, 86-96 Chenies Mews, London, WC1E 6HX, UK
| | - Juan Antinao Diaz
- Gene Transfer Technology Group, Institute for Women's Health, University College London, 86-96 Chenies Mews, London, WC1E 6HX, UK
| | - Ahad A Rahim
- Department of Pharmacology, School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Michael P Hughes
- Department of Pharmacology, School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Blerida Banushi
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Helen Prunty
- Department of Paediatric Laboratory Medicine, Great Ormond Street Hospital for Children NHS Foundation Trust, London, WC1N 3JH, UK
| | - Mariya Hristova
- Perinatal Brain Repair Group, Institute for Women's Health, University College London, 86-96 Chenies Mews, London, WC1E 6HX, UK
| | - Deborah A Ridout
- Population, Policy and Practice Programme, Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London, WC1N 1E, UK
| | - Alex Virasami
- Histopathology Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London, WC1N 3JH, UK
| | - Simon Heales
- Genetics and Genomic Medicine Programme, Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London, WC1N 1EH, UK
- Department of Paediatric Laboratory Medicine, Great Ormond Street Hospital for Children NHS Foundation Trust, London, WC1N 3JH, UK
| | - Stewen J Howe
- Gene Transfer Technology Group, Institute for Women's Health, University College London, 86-96 Chenies Mews, London, WC1E 6HX, UK
| | - Suzanne M K Buckley
- Gene Transfer Technology Group, Institute for Women's Health, University College London, 86-96 Chenies Mews, London, WC1E 6HX, UK
| | - Philippa B Mills
- Genetics and Genomic Medicine Programme, Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London, WC1N 1EH, UK
| | - Paul Gissen
- Metabolic Medicine Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London, WC1N 3JH, UK
- Genetics and Genomic Medicine Programme, Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London, WC1N 1EH, UK
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Simon N Waddington
- Gene Transfer Technology Group, Institute for Women's Health, University College London, 86-96 Chenies Mews, London, WC1E 6HX, UK.
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, University of the Witswatersrand, Johannesburg, South Africa.
| |
Collapse
|
23
|
Khoja S, Nitzahn M, Hermann K, Truong B, Borzone R, Willis B, Rudd M, Palmer DJ, Ng P, Brunetti-Pierri N, Lipshutz GS. Conditional disruption of hepatic carbamoyl phosphate synthetase 1 in mice results in hyperammonemia without orotic aciduria and can be corrected by liver-directed gene therapy. Mol Genet Metab 2018; 124:243-253. [PMID: 29801986 PMCID: PMC6076338 DOI: 10.1016/j.ymgme.2018.04.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 04/02/2018] [Accepted: 04/02/2018] [Indexed: 02/06/2023]
Abstract
Carbamoyl phosphate synthetase 1 (CPS1) is a urea cycle enzyme that forms carbamoyl phosphate from bicarbonate, ammonia and ATP. Bi-allelic mutations of the CPS1 gene result in a urea cycle disorder presenting with hyperammonemia, often with reduced citrulline, and without orotic aciduria. CPS1 deficiency is particularly challenging to treat and lack of early recognition typically results in early neonatal death. Therapeutic interventions have limited efficacy and most patients develop long-term neurologic sequelae. Using transgenic techniques, we generated a conditional Cps1 knockout mouse. By loxP/Cre recombinase technology, deletion of the Cps1 locus was achieved in adult transgenic animals using a Cre recombinase-expressing adeno-associated viral vector. Within four weeks from vector injection, all animals developed hyperammonemia without orotic aciduria and died. Minimal CPS1 protein was detectable in livers. To investigate the efficacy of gene therapy for CPS deficiency following knock-down of hepatic endogenous CPS1 expression, we injected these mice with a helper-dependent adenoviral vector (HDAd) expressing the large murine CPS1 cDNA under control of the phosphoenolpyruvate carboxykinase promoter. Liver-directed HDAd-mediated gene therapy resulted in survival, normalization of plasma ammonia and glutamine, and 13% of normal Cps1 expression. A gender difference in survival suggests that female mice may require higher hepatic CPS1 expression. We conclude that this conditional murine model recapitulates the clinical and biochemical phenotype detected in human patients with CPS1 deficiency and will be useful to investigate ammonia-mediated neurotoxicity and for the development of cell- and gene-based therapeutic approaches.
Collapse
Affiliation(s)
- Suhail Khoja
- Departments of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, United States
| | - Matt Nitzahn
- Departments of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, United States; Molecular Biology Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, United States
| | - Kip Hermann
- Departments of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, United States; Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, United States
| | - Brian Truong
- Departments of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, United States; Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, United States
| | | | - Brandon Willis
- Mouse Biology Program (MBP), University of California, Davis, United States
| | - Mitchell Rudd
- Departments of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, United States
| | - Donna J Palmer
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
| | - Philip Ng
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
| | - Nicola Brunetti-Pierri
- Telethon Institute of Genetics and Medicine, Naples, Italy; Department of Translational Medicine, Federico II University of Naples, Naples, Italy
| | - Gerald S Lipshutz
- Departments of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, United States; Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, United States; Molecular Biology Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, United States; Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, United States; Urology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, United States; Psychiatry, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, United States; Intellectual and Developmental Disabilities Research Center at UCLA, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, United States; Semel Institute for Neuroscience, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, United States.
| |
Collapse
|
24
|
Asrani KH, Cheng L, Cheng CJ, Subramanian RR. Arginase I mRNA therapy - a novel approach to rescue arginase 1 enzyme deficiency. RNA Biol 2018; 15:914-922. [PMID: 29923457 DOI: 10.1080/15476286.2018.1475178] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Arginase I (ARG1) deficiency is an autosomal recessive urea cycle disorder, caused by deficiency of the enzyme Arginase I, resulting in accumulation of arginine in blood. Current Standard of Care (SOC) for ARG1 deficiency in patients or those having detrimental mutations of ARG1 gene is diet control. Despite diet and drug therapy with nitrogen scavengers, ~25% of patients suffer from severe mental deficits and loss of ambulation. 75% of patients whose symptoms can be managed through diet therapy continue to suffer neuro-cognitive deficits. In our research, we demonstrate in vitro and in vivo that administration of ARG1 mRNA increased ARG1 protein expression and specific activity in relevant cell types, including ARG1-deficient patient cell lines, as well as in wild type mice for up to 4 days. These studies demonstrate that ARG1 mRNA treatment led to increased functional protein expression of ARG1 and subsequently an increase in urea. Hence, ARG1 mRNA therapy could be a potential treatment option to develop for patients.
Collapse
Affiliation(s)
- Kirtika H Asrani
- a Discovery Research Cambridge , Alexion Pharmaceuticals, Inc ., Cambridge , MA , USA
| | - Lei Cheng
- a Discovery Research Cambridge , Alexion Pharmaceuticals, Inc ., Cambridge , MA , USA
| | - Christopher J Cheng
- b Nucleic Acid Technology , Alexion Pharmaceuticals, Inc ., New Haven , CT , USA
| | - Romesh R Subramanian
- a Discovery Research Cambridge , Alexion Pharmaceuticals, Inc ., Cambridge , MA , USA
| |
Collapse
|
25
|
Angarita SAK, Truong B, Khoja S, Nitzahn M, Rajbhandari AK, Zhuravka I, Duarte S, Lin MG, Lam AK, Cederbaum SD, Lipshutz GS. Human hepatocyte transplantation corrects the inherited metabolic liver disorder arginase deficiency in mice. Mol Genet Metab 2018; 124:114-123. [PMID: 29724658 PMCID: PMC5976549 DOI: 10.1016/j.ymgme.2018.04.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 04/16/2018] [Accepted: 04/16/2018] [Indexed: 12/13/2022]
Abstract
The transplantation, engraftment, and expansion of primary hepatocytes have the potential to be an effective therapy for metabolic disorders of the liver including those of nitrogen metabolism. To date, such methods for the treatment of urea cycle disorders in murine models has only been minimally explored. Arginase deficiency, an inherited disorder of nitrogen metabolism that presents in the first two years of life, has the potential to be treated by such methods. To explore the potential of this approach, we mated the conditional arginase deficient mouse with a mouse model deficient in fumarylacetoacetate hydrolase (FAH) and with Rag2 and IL2-Rγ mutations to give a selective advantage to transplanted (normal) human hepatocytes. On day -1, a uroplasminogen-expressing adenoviral vector was administered intravenously followed the next day with the transplantation of 1 × 106 human hepatocytes (or vehicle alone) by intrasplenic injection. As the initial number of administered hepatocytes would be too low to prevent hepatotoxicity-induced mortality, NTBC cycling was performed to allow for hepatocyte expansion and repopulation. While all control mice died, all except one human hepatocyte transplanted mice survived. Four months after hepatocyte transplantation, 2 × 1011 genome copies of AAV-TBG-Cre recombinase was administered IV to disrupt endogenous hepatic arginase expression. While all control mice died within the first month, human hepatocyte transplanted mice did well. Ammonia and amino acids, analyzed in both groups before and after disruption of endogenous arginase expression, while well-controlled in the transplanted group, were markedly abnormal in the controls. Ammonium challenging further demonstrated the durability and functionality of the human repopulated liver. In conclusion, these studies demonstrate that human hepatocyte repopulation in the murine liver can result in effective treatment of arginase deficiency.
Collapse
Affiliation(s)
- Stephanie A K Angarita
- Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Brian Truong
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Suhail Khoja
- Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Matthew Nitzahn
- Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States; Molecular Biology Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Abha K Rajbhandari
- Behavioral Testing Core Facility, Department of Psychology and Brain Research Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Irina Zhuravka
- Behavioral Testing Core Facility, Department of Psychology and Brain Research Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Sergio Duarte
- Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Michael G Lin
- Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Alex K Lam
- Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Stephen D Cederbaum
- Department of Psychiatry, The David Geffen School of Medicine at UCLA, Los Angeles, CA, United States; Intellectual and Developmental Disabilities Research Center at UCLA, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Gerald S Lipshutz
- Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States; Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States; Molecular Biology Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States; Department of Psychiatry, The David Geffen School of Medicine at UCLA, Los Angeles, CA, United States; Intellectual and Developmental Disabilities Research Center at UCLA, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States; Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States; Department of Urology, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States; Semel Institute for Neuroscience, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States; Broad Center for Regenerative Medicine and Stem Cell Research at UCLA, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States.
| |
Collapse
|
26
|
Rescue of the Functional Alterations of Motor Cortical Circuits in Arginase Deficiency by Neonatal Gene Therapy. J Neurosci 2017; 36:6680-90. [PMID: 27335400 DOI: 10.1523/jneurosci.0897-16.2016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 05/11/2016] [Indexed: 01/28/2023] Open
Abstract
UNLABELLED Arginase 1 deficiency is a urea cycle disorder associated with hyperargininemia, spastic diplegia, loss of ambulation, intellectual disability, and seizures. To gain insight on how loss of arginase expression affects the excitability and synaptic connectivity of the cortical neurons in the developing brain, we used anatomical, ultrastructural, and electrophysiological techniques to determine how single-copy and double-copy arginase deletion affects cortical circuits in mice. We find that the loss of arginase 1 expression results in decreased dendritic complexity, decreased excitatory and inhibitory synapse numbers, decreased intrinsic excitability, and altered synaptic transmission in layer 5 motor cortical neurons. Hepatic arginase 1 gene therapy using adeno-associated virus rescued nearly all these abnormalities when administered to neonatal homozygous knock-out animals. Therefore, gene therapeutic strategies can reverse physiological and anatomical markers of arginase 1 deficiency and therefore may be of therapeutic benefit for the neurological disabilities in this syndrome. SIGNIFICANCE STATEMENT These studies are one of the few investigations to try to understand the underlying neurological dysfunction that occurs in urea cycle disorders and the only to examine arginase deficiency. We have demonstrated by multiple modalities that, in murine layer 5 cortical neurons, a gradation of abnormalities exists based on the functional copy number of arginase: intrinsic excitability is altered, there is decreased density in asymmetrical and perisomatic synapses, and analysis of the dendritic complexity is lowest in the homozygous knock-out. With neonatal administration of adeno-associated virus expressing arginase, there is near-total recovery of the abnormalities in neurons and cortical circuits, supporting the concept that neonatal gene therapy may prevent the functional abnormalities that occur in arginase deficiency.
Collapse
|
27
|
Sin YY, Price PR, Ballantyne LL, Funk CD. Proof-of-Concept Gene Editing for the Murine Model of Inducible Arginase-1 Deficiency. Sci Rep 2017; 7:2585. [PMID: 28566761 PMCID: PMC5451454 DOI: 10.1038/s41598-017-02927-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 04/28/2017] [Indexed: 12/14/2022] Open
Abstract
Arginase-1 deficiency in humans is a rare genetic disorder of metabolism resulting from a loss of arginase-1, leading to impaired ureagenesis, hyperargininemia and neurological deficits. Previously, we generated a tamoxifen-inducible arginase-1 deficient mouse model harboring a deletion of Arg1 exons 7 and 8 that leads to similar biochemical defects, along with a wasting phenotype and death within two weeks. Here, we report a strategy utilizing the Clustered, Regularly Interspaced, Short Palindromic Repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) system in conjunction with piggyBac technology to target and reincorporate exons 7 and 8 at the specific Arg1 locus in attempts to restore the function of arginase-1 in induced pluripotent stem cell (iPSC)-derived hepatocyte-like cells (iHLCs) and macrophages in vitro. While successful gene targeted repair was achieved, minimal urea cycle function was observed in the targeted iHLCs compared to adult hepatocytes likely due to inadequate maturation of the cells. On the other hand, iPSC-derived macrophages expressed substantial amounts of "repaired" arginase. Our studies provide proof-of-concept for gene-editing at the Arg1 locus and highlight the challenges that lie ahead to restore sufficient liver-based urea cycle function in patients with urea cycle disorders.
Collapse
Affiliation(s)
- Yuan Yan Sin
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Phillipe R Price
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Laurel L Ballantyne
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Colin D Funk
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada.
| |
Collapse
|
28
|
Lee PC, Truong B, Vega-Crespo A, Gilmore WB, Hermann K, Angarita SA, Tang JK, Chang KM, Wininger AE, Lam AK, Schoenberg BE, Cederbaum SD, Pyle AD, Byrne JA, Lipshutz GS. Restoring Ureagenesis in Hepatocytes by CRISPR/Cas9-mediated Genomic Addition to Arginase-deficient Induced Pluripotent Stem Cells. MOLECULAR THERAPY-NUCLEIC ACIDS 2016; 5:e394. [PMID: 27898091 PMCID: PMC5155330 DOI: 10.1038/mtna.2016.98] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 09/26/2016] [Indexed: 12/18/2022]
Abstract
Urea cycle disorders are incurable enzymopathies that affect nitrogen metabolism and typically lead to hyperammonemia. Arginase deficiency results from a mutation in Arg1, the enzyme regulating the final step of ureagenesis and typically results in developmental disabilities, seizures, spastic diplegia, and sometimes death. Current medical treatments for urea cycle disorders are only marginally effective, and for proximal disorders, liver transplantation is effective but limited by graft availability. Advances in human induced pluripotent stem cell research has allowed for the genetic modification of stem cells for potential cellular replacement therapies. In this study, we demonstrate a universally-applicable CRISPR/Cas9-based strategy utilizing exon 1 of the hypoxanthine-guanine phosphoribosyltransferase locus to genetically modify and restore arginase activity, and thus ureagenesis, in genetically distinct patient-specific human induced pluripotent stem cells and hepatocyte-like derivatives. Successful strategies restoring gene function in patient-specific human induced pluripotent stem cells may advance applications of genetically modified cell therapy to treat urea cycle and other inborn errors of metabolism.
Collapse
Affiliation(s)
- Patrick C Lee
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA.,Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Brian Truong
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA.,Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Agustin Vega-Crespo
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA.,Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - W Blake Gilmore
- Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Kip Hermann
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA.,Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Stephanie Ak Angarita
- Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Jonathan K Tang
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA.,Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Katherine M Chang
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA.,Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Austin E Wininger
- Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Alex K Lam
- Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Benjamen E Schoenberg
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA.,Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Stephen D Cederbaum
- Department of Psychiatry, David Geffen School of Medicine at UCLA, Los Angeles, California, USA.,Intellectual and Developmental Disabilities Research Center at UCLA, Los Angeles, California, USA.,Semel Institute for Neuroscience, UCLA, Los Angeles, California, USA
| | - April D Pyle
- Department of Microbiology, Immunology and Molecular Genetics, UCLA, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - James A Byrne
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA.,Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Gerald S Lipshutz
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA.,Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, California, USA.,Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California, USA.,Department of Psychiatry, David Geffen School of Medicine at UCLA, Los Angeles, California, USA.,Intellectual and Developmental Disabilities Research Center at UCLA, Los Angeles, California, USA.,Semel Institute for Neuroscience, UCLA, Los Angeles, California, USA.,Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA.,Department of Urology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| |
Collapse
|
29
|
Liver-specific knockout of arginase-1 leads to a profound phenotype similar to inducible whole body arginase-1 deficiency. Mol Genet Metab Rep 2016; 9:54-60. [PMID: 27761413 PMCID: PMC5065044 DOI: 10.1016/j.ymgmr.2016.10.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 10/05/2016] [Indexed: 12/27/2022] Open
Abstract
Arginase-1 (Arg1) converts arginine to urea and ornithine in the distal step of the urea cycle in liver. We previously generated a tamoxifen-inducible Arg1 deficient mouse model (Arg1-Cre) that disrupts Arg1 expression throughout the whole body and leads to lethality ≈ 2 weeks after gene disruption. Here, we evaluate if liver-selective Arg1 loss is sufficient to recapitulate the phenotype observed in global Arg1 knockout mice, as well as to gauge the effectiveness of gene delivery or hepatocyte transplantation to rescue the phenotype. Liver-selective Arg1 deletion was induced by using an adeno-associated viral (AAV)-thyroxine binding globulin (TBG) promoter-Cre recombinase vector administered to Arg1 “floxed” mice; Arg1fl/fl). An AAV vector expressing an Arg1-enhanced green fluorescent protein (Arg1-eGFP) transgene was used for gene delivery, while intrasplenic injection of wild-type (WT) C57BL/6 hepatocytes after partial hepatectomy was used for cell delivery to “rescue” tamoxifen-treated Arg1-Cre mice. The results indicate that liver-selective loss of Arg1 (> 90% deficient) leads to a phenotype resembling the whole body knockout of Arg1 with lethality ≈ 3 weeks after Cre-induced gene disruption. Delivery of Arg1-eGFP AAV rescues more than half of Arg1 global knockout male mice (survival > 4 months) but a significant proportion still succumb to the enzyme deficiency even though liver expression and enzyme activity of the fusion protein reach levels observed in WT animals. Significant Arg1 enzyme activity from engrafted WT hepatocytes into knockout livers can be achieved but not sufficient for rescuing the lethal phenotype. This raises a conundrum relating to liver-specific expression of Arg1. On the one hand, loss of expression in this organ appears to be both necessary and sufficient to explain the lethal phenotype of the genetic disorder in mice. On the other hand, gene and cell-directed therapies suggest that rescue of extra-hepatic Arg1 expression may also be necessary for disease correction. Further studies are needed in order to illuminate the detailed mechanisms for pathogenesis of Arg1-deficiency.
Collapse
|
30
|
Sin YY, Baron G, Schulze A, Funk CD. Arginase-1 deficiency. J Mol Med (Berl) 2015; 93:1287-96. [PMID: 26467175 DOI: 10.1007/s00109-015-1354-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 09/14/2015] [Accepted: 10/01/2015] [Indexed: 12/13/2022]
Abstract
Arginase-1 (ARG1) deficiency is a rare autosomal recessive disorder that affects the liver-based urea cycle, leading to impaired ureagenesis. This genetic disorder is caused by 40+ mutations found fairly uniformly spread throughout the ARG1 gene, resulting in partial or complete loss of enzyme function, which catalyzes the hydrolysis of arginine to ornithine and urea. ARG1-deficient patients exhibit hyperargininemia with spastic paraparesis, progressive neurological and intellectual impairment, persistent growth retardation, and infrequent episodes of hyperammonemia, a clinical pattern that differs strikingly from other urea cycle disorders. This review briefly highlights the current understanding of the etiology and pathophysiology of ARG1 deficiency derived from clinical case reports and therapeutic strategies stretching over several decades and reports on several exciting new developments regarding the pathophysiology of the disorder using ARG1 global and inducible knockout mouse models. Gene transfer studies in these mice are revealing potential therapeutic options that can be exploited in the future. However, caution is advised in extrapolating results since the lethal disease phenotype in mice is much more severe than in humans indicating that the mouse models may not precisely recapitulate human disease etiology. Finally, some of the functions and implications of ARG1 in non-urea cycle activities are considered. Lingering questions and future areas to be addressed relating to the clinical manifestations of ARG1 deficiency in liver and brain are also presented. Hopefully, this review will spark invigorated research efforts that lead to treatments with better clinical outcomes.
Collapse
Affiliation(s)
- Yuan Yan Sin
- Department of Biomedical and Molecular Sciences, Queen's University, 433 Botterell Hall, 18 Stuart Street, Kingston, ON, K7L 3N6, Canada
| | - Garrett Baron
- Department of Biomedical and Molecular Sciences, Queen's University, 433 Botterell Hall, 18 Stuart Street, Kingston, ON, K7L 3N6, Canada
| | - Andreas Schulze
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children and University of Toronto, Toronto, ON, Canada.,Genetics and Genome Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada
| | - Colin D Funk
- Department of Biomedical and Molecular Sciences, Queen's University, 433 Botterell Hall, 18 Stuart Street, Kingston, ON, K7L 3N6, Canada.
| |
Collapse
|
31
|
Tai DS, Hu C, Lee CCI, Martinez M, Cantero G, Kim EH, Tarantal AF, Lipshutz GS. Development of operational immunologic tolerance with neonatal gene transfer in nonhuman primates: preliminary studies. Gene Ther 2015; 22:923-30. [PMID: 26333349 DOI: 10.1038/gt.2015.65] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Revised: 05/22/2015] [Accepted: 06/18/2015] [Indexed: 02/05/2023]
Abstract
Achieving persistent expression is a prerequisite for effective genetic therapies for inherited disorders. These proof-of-concept studies focused on adeno-associated virus (AAV) administration to newborn monkeys. Serotype rh10 AAV expressing ovalbumin and green fluorescent protein (GFP) was administered intravenously at birth and compared with vehicle controls. At 4 months postnatal age, a second injection was administered intramuscularly, followed by vaccination at 1 year of age with ovalbumin and GFP. Ovalbumin was highest 2 weeks post administration in the treated monkey, which declined but remained detectable thereafter; controls demonstrated no expression. Long-term AAV genome copies were present in myocytes. At 4 weeks, neutralizing antibodies to rh10 were present in the experimental animal only. With AAV9 administration at 4 months, controls showed transient ovalbumin expression that disappeared with the development of strong anti-ovalbumin and anti-GFP antibodies. In contrast, increased and maintained ovalbumin expression was noted in the monkey administered AAV at birth, without antibody development. After vaccination, the experimental monkey maintained levels of ovalbumin without antibodies, whereas controls demonstrated high levels of antibodies. These preliminary studies suggest that newborn AAV administration expressing secreted and intracellular xenogenic proteins may result in persistent expression in muscle, and subsequent vector administration can result in augmented expression without humoral immune responses.
Collapse
Affiliation(s)
- D S Tai
- Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - C Hu
- Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - C C I Lee
- California National Primate Research Center and Departments of Pediatrics and Cell Biology and Human Anatomy, University of California, Davis, CA, USA
| | - M Martinez
- California National Primate Research Center and Departments of Pediatrics and Cell Biology and Human Anatomy, University of California, Davis, CA, USA
| | - G Cantero
- Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - E H Kim
- Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - A F Tarantal
- California National Primate Research Center and Departments of Pediatrics and Cell Biology and Human Anatomy, University of California, Davis, CA, USA
| | - G S Lipshutz
- Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.,Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.,Department of Urology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.,Department of Psychiatry, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.,Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.,Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| |
Collapse
|
32
|
Matoori S, Leroux JC. Recent advances in the treatment of hyperammonemia. Adv Drug Deliv Rev 2015; 90:55-68. [PMID: 25895618 DOI: 10.1016/j.addr.2015.04.009] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 03/30/2015] [Accepted: 04/13/2015] [Indexed: 02/07/2023]
Abstract
Ammonia is a neurotoxic agent that is primarily generated in the intestine and detoxified in the liver. Toxic increases in systemic ammonia levels predominantly result from an inherited or acquired impairment in hepatic detoxification and lead to potentially life-threatening neuropsychiatric symptoms. Inborn deficiencies in ammonia detoxification mainly affect the urea cycle, an endogenous metabolic removal system in the liver. Hepatic encephalopathy, on the other hand, is a hyperammonemia-related complication secondary to acquired liver function impairment. A range of therapeutic options is available to target either ammonia generation and absorption or ammonia removal. Therapies for hepatic encephalopathy decrease intestinal ammonia production and uptake. Treatments for urea cycle disorders eliminate ammoniagenic amino acids through metabolic transformation, preventing ammonia generation. Therapeutic approaches removing ammonia activate the urea cycle or the second essential endogenous ammonia detoxification system, glutamine synthesis. Recent advances in treating hyperammonemia include using synergistic combination treatments, broadening the indication of orphan drugs, and developing novel approaches to regenerate functional liver tissue. This manuscript reviews the various pharmacological treatments of hyperammonemia and focuses on biopharmaceutical and drug delivery issues.
Collapse
|
33
|
Okun JG, Conway S, Schmidt KV, Schumacher J, Wang X, de Guia R, Zota A, Klement J, Seibert O, Peters A, Maida A, Herzig S, Rose AJ. Molecular regulation of urea cycle function by the liver glucocorticoid receptor. Mol Metab 2015; 4:732-40. [PMID: 26500844 PMCID: PMC4588454 DOI: 10.1016/j.molmet.2015.07.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 07/20/2015] [Accepted: 07/23/2015] [Indexed: 11/21/2022] Open
Abstract
Objective One of the major side effects of glucocorticoid (GC) treatment is lean tissue wasting, indicating a prominent role in systemic amino acid metabolism. In order to uncover a novel aspect of GCs and their intracellular-receptor, the glucocorticoid receptor (GR), on metabolic control, we conducted amino acid and acylcarnitine profiling in human and mouse models of GC/GR gain- and loss-of-function. Methods Blood serum and tissue metabolite levels were determined in Human Addison's disease (AD) patients as well as in mouse models of systemic and liver-specific GR loss-of-function (AAV-miR-GR) with or without dexamethasone (DEX) treatments. Body composition and neuromuscular and metabolic function tests were conducted in vivo and ex vivo, the latter using precision cut liver slices. Results A serum metabolite signature of impaired urea cycle function (i.e. higher [ARG]:[ORN + CIT]) was observed in human (CTRL: 0.45 ± 0.03, AD: 1.29 ± 0.04; p < 0.001) and mouse (AAV-miR-NC: 0.97 ± 0.13, AAV-miR-GR: 2.20 ± 0.19; p < 0.001) GC/GR loss-of-function, with similar patterns also observed in liver. Serum urea levels were consistently affected by GC/GR gain- (∼+32%) and loss (∼−30%) -of-function. Combined liver-specific GR loss-of-function with DEX treatment revealed a tissue-autonomous role for the GR to coordinate an upregulation of liver urea production rate in vivo and ex vivo, and prevent hyperammonaemia and associated neuromuscular dysfunction in vivo. Liver mRNA expression profiling and GR-cistrome mining identified Arginase I (ARG1) a urea cycle gene targeted by the liver GR. Conclusions The liver GR controls systemic and liver urea cycle function by transcriptional regulation of ARG1 expression. Metabolite profiling revealed a role for the HPA-axis-liver GR in regulating urea cycle function in mouse and humans. The liver GR controls enhanced urea cycle function during chronic glucocorticoid exposure. Liver Arginase I is a key urea cycle transcript regulated by the GR.
Collapse
Affiliation(s)
- Jürgen G Okun
- Division of Neuropediatrics and Metabolic Medicine, University Children's Hospital, Heidelberg, Germany
| | - Sean Conway
- Joint Research Division Molecular Metabolic Control, German Cancer Research Center, Center for Molecular Biology, Heidelberg University and Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Kathrin V Schmidt
- Division of Neuropediatrics and Metabolic Medicine, University Children's Hospital, Heidelberg, Germany
| | - Jonas Schumacher
- Joint Research Division Molecular Metabolic Control, German Cancer Research Center, Center for Molecular Biology, Heidelberg University and Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Xiaoyue Wang
- Joint Research Division Molecular Metabolic Control, German Cancer Research Center, Center for Molecular Biology, Heidelberg University and Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Roldan de Guia
- Joint Research Division Molecular Metabolic Control, German Cancer Research Center, Center for Molecular Biology, Heidelberg University and Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Annika Zota
- Joint Research Division Molecular Metabolic Control, German Cancer Research Center, Center for Molecular Biology, Heidelberg University and Heidelberg University Hospital, 69120 Heidelberg, Germany ; Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich, and Joint Heidelberg-IDC Translational Diabetes Program, 85764 Neuherberg, Germany
| | - Johanna Klement
- Department of Internal Medicine, University of Lübeck, 23538 Lübeck, Germany
| | - Oksana Seibert
- Joint Research Division Molecular Metabolic Control, German Cancer Research Center, Center for Molecular Biology, Heidelberg University and Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Achim Peters
- Department of Internal Medicine, University of Lübeck, 23538 Lübeck, Germany
| | - Adriano Maida
- Joint Research Division Molecular Metabolic Control, German Cancer Research Center, Center for Molecular Biology, Heidelberg University and Heidelberg University Hospital, 69120 Heidelberg, Germany ; Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich, and Joint Heidelberg-IDC Translational Diabetes Program, 85764 Neuherberg, Germany
| | - Stephan Herzig
- Joint Research Division Molecular Metabolic Control, German Cancer Research Center, Center for Molecular Biology, Heidelberg University and Heidelberg University Hospital, 69120 Heidelberg, Germany ; Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich, and Joint Heidelberg-IDC Translational Diabetes Program, 85764 Neuherberg, Germany
| | - Adam J Rose
- Joint Research Division Molecular Metabolic Control, German Cancer Research Center, Center for Molecular Biology, Heidelberg University and Heidelberg University Hospital, 69120 Heidelberg, Germany
| |
Collapse
|
34
|
Ballantyne LL, Sin YY, St. Amand T, Si J, Goossens S, Haenebalcke L, Haigh JJ, Kyriakopoulou L, Schulze A, Funk CD. Strategies to rescue the consequences of inducible arginase-1 deficiency in mice. PLoS One 2015; 10:e0125967. [PMID: 25938595 PMCID: PMC4418594 DOI: 10.1371/journal.pone.0125967] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Accepted: 03/27/2015] [Indexed: 12/12/2022] Open
Abstract
Arginase-1 catalyzes the conversion of arginine to ornithine and urea, which is the final step of the urea cycle used to remove excess ammonia from the body. Arginase-1 deficiency leads to hyperargininemia in mice and man with severe lethal consequences in the former and progressive neurological impairment to varying degrees in the latter. In a tamoxifen-induced arginase-1 deficient mouse model, mice succumb to the enzyme deficiency within 2 weeks after inducing the knockout and retain <2 % enzyme in the liver. Standard clinical care regimens for arginase-1 deficiency (low-protein diet, the nitrogen-scavenging drug sodium phenylbutyrate, ornithine supplementation) either failed to extend lifespan (ornithine) or only minimally prolonged lifespan (maximum 8 days with low-protein diet and drug). A conditional, tamoxifen-inducible arginase-1 transgenic mouse strain expressing the enzyme from the Rosa26 locus modestly extended lifespan of neonatal mice, but not that of 4-week old mice, when crossed to the inducible arginase-1 knockout mouse strain. Delivery of an arginase-1/enhanced green fluorescent fusion construct by adeno-associated viral delivery (rh10 serotype with a strong cytomegalovirus-chicken β-actin hybrid promoter) rescued about 30% of male mice with lifespan prolongation to at least 6 months, extensive hepatic expression and restoration of significant enzyme activity in liver. In contrast, a vector of the AAV8 serotype driven by the thyroxine-binding globulin promoter led to weaker liver expression and did not rescue arginase-1 deficient mice to any great extent. Since the induced arginase-1 deficient mouse model displays a much more severe phenotype when compared to human arginase-1 deficiency, these studies reveal that it may be feasible with gene therapy strategies to correct the various manifestations of the disorder and they provide optimism for future clinical studies.
Collapse
Affiliation(s)
- Laurel L. Ballantyne
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada
| | - Yuan Yan Sin
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada
| | - Tim St. Amand
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada
| | - Joshua Si
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada
| | - Steven Goossens
- Vascular Cell Biology Unit, VIB Inflammation Research Center, Ghent, Belgium
- Department for Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Mammalian Functional Genetics Laboratory, Division of Blood Cancers, Australian Centre for Blood Diseases, Department of Clinical Haematology, Monash University and Alfred Health Centre, Melbourne, Australia
| | - Lieven Haenebalcke
- Vascular Cell Biology Unit, VIB Inflammation Research Center, Ghent, Belgium
- Department for Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Jody J. Haigh
- Vascular Cell Biology Unit, VIB Inflammation Research Center, Ghent, Belgium
- Department for Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Mammalian Functional Genetics Laboratory, Division of Blood Cancers, Australian Centre for Blood Diseases, Department of Clinical Haematology, Monash University and Alfred Health Centre, Melbourne, Australia
| | - Lianna Kyriakopoulou
- Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Andreas Schulze
- Division of Clinical & Metabolic Genetics, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada
- Genetics and Genome Biology Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Colin D. Funk
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada
- * E-mail:
| |
Collapse
|
35
|
Hu C, Tai DS, Park H, Cantero-Nieto G, Chan E, Yudkoff M, Cederbaum SD, Lipshutz GS. Minimal ureagenesis is necessary for survival in the murine model of hyperargininemia treated by AAV-based gene therapy. Gene Ther 2015; 22:111-5. [PMID: 25474440 PMCID: PMC4320015 DOI: 10.1038/gt.2014.106] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 09/15/2014] [Accepted: 10/27/2014] [Indexed: 02/07/2023]
Abstract
Hyperammonemia is less severe in arginase 1 deficiency compared with other urea cycle defects. Affected patients manifest hyperargininemia and infrequent episodes of hyperammonemia. Patients typically suffer from neurological impairment with cortical and pyramidal tract deterioration, spasticity, loss of ambulation, seizures and intellectual disability; death is less common than with other urea cycle disorders. In a mouse model of arginase I deficiency, the onset of symptoms begins with weight loss and gait instability, which progresses toward development of tail tremor with seizure-like activity; death typically occurs at about 2 weeks of life. Adeno-associated viral vector gene replacement strategies result in long-term survival of mice with this disorder. With neonatal administration of vector, the viral copy number in the liver greatly declines with hepatocyte proliferation in the first 5 weeks of life. Although the animals do survive, it is not known from a functional standpoint how well the urea cycle is functioning in the adult animals that receive adeno-associated virus. In these studies, we administered [1-13C] acetate to both littermate controls and adeno-associated virus-treated arginase 1 knockout animals and examined flux through the urea cycle. Circulating ammonia levels were mildly elevated in treated animals. Arginine and glutamine also had perturbations. Assessment 30 min after acetate administration demonstrated that ureagenesis was present in the treated knockout liver at levels as low at 3.3% of control animals. These studies demonstrate that only minimal levels of hepatic arginase activity are necessary for survival and ureagenesis in arginase-deficient mice and that this level of activity results in control of circulating ammonia. These results may have implications for potential therapy in humans with arginase deficiency.
Collapse
Affiliation(s)
- Chuhong Hu
- Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Denise S. Tai
- Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Hana Park
- Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Gloria Cantero-Nieto
- Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Emily Chan
- Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Marc Yudkoff
- Division of Metabolic Disease, Department of Pediatrics, Children’s Hospital of Philadelphia
| | - Stephen D. Cederbaum
- Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, California
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, California
- Department of Psychiatry, David Geffen School of Medicine at UCLA, Los Angeles, California
- Department of Intellectual and Developmental Disabilities Research Center at UCLA, David Geffen School of Medicine at UCLA, Los Angeles, California
- The Semel Institute for Neuroscience, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Gerald S. Lipshutz
- Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California
- Department of Psychiatry, David Geffen School of Medicine at UCLA, Los Angeles, California
- Department of Intellectual and Developmental Disabilities Research Center at UCLA, David Geffen School of Medicine at UCLA, Los Angeles, California
- The Semel Institute for Neuroscience, David Geffen School of Medicine at UCLA, Los Angeles, California
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California
- Department of Urology, David Geffen School of Medicine at UCLA, Los Angeles, California
- Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, California
| |
Collapse
|
36
|
Hu C, Kasten J, Park H, Bhargava R, Tai DS, Grody WW, Nguyen QG, Hauschka SD, Cederbaum SD, Lipshutz GS. Myocyte-mediated arginase expression controls hyperargininemia but not hyperammonemia in arginase-deficient mice. Mol Ther 2014; 22:1792-802. [PMID: 24888478 DOI: 10.1038/mt.2014.99] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 05/18/2014] [Indexed: 12/15/2022] Open
Abstract
Human arginase deficiency is characterized by hyperargininemia and infrequent episodes of hyperammonemia that cause neurological impairment and growth retardation. We previously developed a neonatal mouse adeno-associated viral vector (AAV) rh10-mediated therapeutic approach with arginase expressed by a chicken β-actin promoter that controlled plasma ammonia and arginine, but hepatic arginase declined rapidly. This study tested a codon-optimized arginase cDNA and compared the chicken β-actin promoter to liver- and muscle-specific promoters. ARG1(-/-) mice treated with AAVrh10 carrying the liver-specific promoter also exhibited long-term survival and declining hepatic arginase accompanied by the loss of AAV episomes during subsequent liver growth. Although arginase expression in striated muscle was not expected to counteract hyperammonemia, due to muscle's lack of other urea cycle enzymes, we hypothesized that the postmitotic phenotype in muscle would allow vector genomes to persist, and hence contribute to decreased plasma arginine. As anticipated, ARG1(-/-) neonatal mice treated with AAVrh10 carrying a modified creatine kinase-based muscle-specific promoter did not survive longer than controls; however, their plasma arginine levels remained normal when animals were hyperammonemic. These data imply that plasma arginine can be controlled in arginase deficiency by muscle-specific expression, thus suggesting an alternative approach to utilizing the liver for treating hyperargininemia.
Collapse
Affiliation(s)
- Chuhong Hu
- Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Jennifer Kasten
- Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Hana Park
- Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Ragini Bhargava
- Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Denise S Tai
- Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Wayne W Grody
- 1] Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA [2] Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Quynh G Nguyen
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
| | - Stephen D Hauschka
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
| | - Stephen D Cederbaum
- 1] Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, California, USA [2] Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, California, USA [3] Department of Psychiatry, David Geffen School of Medicine at UCLA, Los Angeles, California, USA [4] The Intellectual and Developmental Disabilities Research Center at UCLA, David Geffen School of Medicine at UCLA, Los Angeles, California, USA [5] The Semel Institute for Neuroscience, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Gerald S Lipshutz
- 1] Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California, USA [2] Department of Psychiatry, David Geffen School of Medicine at UCLA, Los Angeles, California, USA [3] The Intellectual and Developmental Disabilities Research Center at UCLA, David Geffen School of Medicine at UCLA, Los Angeles, California, USA [4] The Semel Institute for Neuroscience, David Geffen School of Medicine at UCLA, Los Angeles, California, USA [5] Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA [6] Department of Urology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA [7] Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| |
Collapse
|
37
|
Sin YY, Ballantyne LL, Mukherjee K, St. Amand T, Kyriakopoulou L, Schulze A, Funk CD. Inducible arginase 1 deficiency in mice leads to hyperargininemia and altered amino acid metabolism. PLoS One 2013; 8:e80001. [PMID: 24224027 PMCID: PMC3817112 DOI: 10.1371/journal.pone.0080001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 10/01/2013] [Indexed: 01/06/2023] Open
Abstract
Arginase deficiency is a rare autosomal recessive disorder resulting from a loss of the liver arginase isoform, arginase 1 (ARG1), which is the final step in the urea cycle for detoxifying ammonia. ARG1 deficiency leads to hyperargininemia, characterized by progressive neurological impairment, persistent growth retardation and infrequent episodes of hyperammonemia. Using the Cre/loxP-directed conditional gene knockout system, we generated an inducible Arg1-deficient mouse model by crossing “floxed” Arg1 mice with CreERT2 mice. The resulting mice (Arg-Cre) die about two weeks after tamoxifen administration regardless of the starting age of inducing the knockout. These treated mice were nearly devoid of Arg1 mRNA, protein and liver arginase activity, and exhibited symptoms of hyperammonemia. Plasma amino acid analysis revealed pronounced hyperargininemia and significant alterations in amino acid and guanidino compound metabolism, including increased citrulline and guanidinoacetic acid. Despite no alteration in ornithine levels, concentrations of other amino acids such as proline and the branched-chain amino acids were reduced. In summary, we have generated and characterized an inducible Arg1-deficient mouse model exhibiting several pathologic manifestations of hyperargininemia. This model should prove useful for exploring potential treatment options of ARG1 deficiency.
Collapse
Affiliation(s)
- Yuan Yan Sin
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Laurel L. Ballantyne
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Kamalika Mukherjee
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Tim St. Amand
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Lianna Kyriakopoulou
- Division of Clinical and Metabolic Genetics, and Research Institute, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Andreas Schulze
- Division of Clinical and Metabolic Genetics, and Research Institute, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Colin D. Funk
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
- * E-mail:
| |
Collapse
|
38
|
Kasten J, Hu C, Bhargava R, Park H, Tai D, Byrne JA, Marescau B, De Deyn PP, Schlichting L, Grody WW, Cederbaum SD, Lipshutz GS. Lethal phenotype in conditional late-onset arginase 1 deficiency in the mouse. Mol Genet Metab 2013; 110:222-30. [PMID: 23920045 PMCID: PMC3800271 DOI: 10.1016/j.ymgme.2013.06.020] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 06/25/2013] [Accepted: 06/25/2013] [Indexed: 02/03/2023]
Abstract
Human arginase deficiency is characterized by hyperargininemia and infrequent episodes of hyperammonemia, which lead to neurological impairment with spasticity, loss of ambulation, seizures, and severe mental and growth retardation; uncommonly, patients suffer early death from this disorder. In a murine targeted knockout model, onset of the phenotypic abnormality is heralded by weight loss at around day 15, and death occurs typically by postnatal day 17 with hyperargininemia and markedly elevated ammonia. This discrepancy between the more attenuated juvenile-onset human disease and the lethal neonatal murine model has remained suboptimal for studying and developing therapy for the more common presentation of arginase deficiency. These investigations aimed to address this issue by creating an adult conditional knockout mouse to determine whether later onset of arginase deficiency also resulted in lethality. Animal survival and ammonia levels, body weight, circulating amino acids, and tissue arginase levels were examined as outcome parameters after widespread Cre-recombinase activation in a conditional knockout model of arginase 1 deficiency. One hundred percent of adult female and 70% of adult male mice died an average of 21.0 and 21.6 days, respectively, after the initiation of tamoxifen administration. Animals demonstrated elevated circulating ammonia and arginine at the onset of phenotypic abnormalities. In addition, brain and liver amino acids demonstrated abnormalities. These studies demonstrate that (a) the absence of arginase in adult animals results in a disease profile (leading to death) similar to that of the targeted knockout and (b) the phenotypic abnormalities seen in the juvenile-onset model are not exclusive to the age of the animal but instead to the biochemistry of the disorder. This adult model will be useful for developing gene- and cell-based therapies for this disorder that will not be limited by the small animal size of neonatal therapy and for developing a better understanding of the characteristics of hyperargininemia.
Collapse
Affiliation(s)
- Jennifer Kasten
- Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Chuhong Hu
- Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Ragini Bhargava
- Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Hana Park
- Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Denise Tai
- Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - James A. Byrne
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Bart Marescau
- Laboratory of Neurochemistry and Behavior, University of Antwerp and Institute Born Bunge, Antwerp, Belgium
| | - Peter P. De Deyn
- Laboratory of Neurochemistry and Behavior, University of Antwerp and Institute Born Bunge, Antwerp, Belgium
| | - Lisa Schlichting
- Biochemical Genetics Laboratory, University of Colorado, Denver, CO, USA
| | - Wayne W. Grody
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Stephen D. Cederbaum
- Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Department of Psychiatry, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Intellectual and Developmental Disabilities Research Center at UCLA, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Gerald S. Lipshutz
- Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Intellectual and Developmental Disabilities Research Center at UCLA, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Semel Institute for Neuroscience, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| |
Collapse
|
39
|
AAV-based gene therapy prevents neuropathology and results in normal cognitive development in the hyperargininemic mouse. Gene Ther 2013; 20:785-96. [PMID: 23388701 PMCID: PMC3679314 DOI: 10.1038/gt.2012.99] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 10/12/2012] [Accepted: 12/07/2012] [Indexed: 11/08/2022]
Abstract
Complete arginase I deficiency is the least severe urea cycle disorder, characterized by hyperargininemia and infrequent episodes of hyperammonemia. Patients suffer from neurological impairment with cortical and pyramidal tract deterioration, spasticity, loss of ambulation, and seizures, and is associated with intellectual disability. In mice, onset is heralded by weight loss beginning around day 15; gait instability follows progressing to inability to stand and development of tail tremor with seizure-like activity and death. Here we report that hyperargininemic mice treated neonatally with an adeno-associated virus expressing arginase and followed long-term lack any presentation consistent with brain dysfunction. Behavioral and histopathological evaluation demonstrated that treated mice are indistinguishable from littermates and that putative compounds associated with neurotoxicity are diminished. In addition, treatment results in near complete resolution of metabolic abnormalities early in life; however there is the development of some derangement later with decline in transgene expression. Ammonium challenging revealed that treated mice are affected by exogenous loading much greater than littermates. These results demonstrate that AAV-based therapy for hyperargininemia is effective and prevents development of neurological abnormalities and cognitive dysfunction in a mouse model of hyperargininemia; however nitrogen challenging reveals that these mice remain impaired in the handling of waste nitrogen.
Collapse
|