1
|
Sisto M, Lisi S. Epigenetic Modulations of Non-Coding RNAs: A Novel Therapeutic Perspective in Sjӧgren's Syndrome. FRONT BIOSCI-LANDMRK 2024; 29:403. [PMID: 39735974 DOI: 10.31083/j.fbl2912403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/02/2024] [Accepted: 07/10/2024] [Indexed: 12/31/2024]
Abstract
Sjögren's syndrome (SS) is an autoimmune disease that can be classified as an epithelitis based on the immune-mediated attack directed specifically at epithelial cells. SS predominantly affects women, is characterized by the production of highly specific circulating autoantibodies, and the major targets are the salivary and lachrymal glands. Although a genetic predisposition has been amply demonstrated for SS, the etiology remains unclear. The recent integration of epigenetic data relating to autoimmune diseases opens new therapeutic perspectives based on a better understanding of the molecular processes implicated. In the autoimmune field, non-coding RNA molecules (nc-RNA), which regulate gene expression by binding to mRNAs and could have a therapeutic value, have aroused great interest. The focus of this review is to summarize the biological functions of nc-RNAs in the pathogenesis of SS and decode molecular pathways implicated in the disease, in order to identify new therapeutic strategies.
Collapse
Affiliation(s)
- Margherita Sisto
- Department of Translational Biomedicine and Neuroscience (DiBraiN), Section of Human Anatomy and Histology, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Sabrina Lisi
- Department of Translational Biomedicine and Neuroscience (DiBraiN), Section of Human Anatomy and Histology, University of Bari "Aldo Moro", 70124 Bari, Italy
| |
Collapse
|
2
|
Fei S, Ma Y, Zhou B, Chen X, Zhang Y, Yue K, Li Q, Gui Y, Xiang T, Liu J, Yang B, Wang L, Huang X. Platelet membrane biomimetic nanoparticle-targeted delivery of TGF-β1 siRNA attenuates renal inflammation and fibrosis. Int J Pharm 2024; 659:124261. [PMID: 38782155 DOI: 10.1016/j.ijpharm.2024.124261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/03/2024] [Accepted: 05/21/2024] [Indexed: 05/25/2024]
Abstract
The progression of renal fibrosis to end-stage renal disease (ESRD) is significantly influenced by transforming growth factor-beta (TGF-beta) signal pathway. This study aimed to develop nanoparticles (PMVs@PLGA complexes) with platelet membrane camouflage, which can transport interfering RNA to target and regulate the TGF-β1 pathway in damaged renal tissues. The aim is to reduce the severity of acute kidney injury and to reduce fibrosis in chronic kidney disease. Hence, we formulated PMVs@TGF-β1-siRNA NP complexes and employed them for both in vitro and in vivo therapy. From the experimental findings we know that the PMVs@siRNA NPs could effectively target the kidneys in unilateral ureteral obstruction (UUO) mice and ischemia/reperfusion injury (I/R) mice. In animal models of treatment, PMVs@siRNA NP complexes effectively decreased the expression of TGF-β1 and mitigated inflammation and fibrosis in the kidneys by blocking the TGF-β1/Smad3 pathway. Therefore, these PMVs@siRNA NP complexes can serve as a promising biological delivery system for treating kidney diseases.
Collapse
Affiliation(s)
- Shengnan Fei
- Department of Nephrology, Affiliated Hospital of Nantong University, Nantong 226001, PR China; Medical School of Nantong University, Nantong 226001, PR China
| | - Yidan Ma
- Department of Nephrology, Affiliated Hospital of Nantong University, Nantong 226001, PR China; Medical School of Nantong University, Nantong 226001, PR China
| | - Bing Zhou
- Department of Nephrology, Affiliated Hospital of Nantong University, Nantong 226001, PR China; Medical School of Nantong University, Nantong 226001, PR China
| | - Xu Chen
- Department of Nephrology, Affiliated Hospital of Nantong University, Nantong 226001, PR China
| | - Yuan Zhang
- Department of Nephrology, Affiliated Hospital of Nantong University, Nantong 226001, PR China
| | - Kun Yue
- Department of Nephrology, Affiliated Hospital of Nantong University, Nantong 226001, PR China; Medical School of Nantong University, Nantong 226001, PR China
| | - Qingxin Li
- Department of Nephrology, Affiliated Hospital of Nantong University, Nantong 226001, PR China; Medical School of Nantong University, Nantong 226001, PR China
| | - Yuanyuan Gui
- Department of Nephrology, Affiliated Hospital of Nantong University, Nantong 226001, PR China; Medical School of Nantong University, Nantong 226001, PR China
| | - Tianya Xiang
- Department of Nephrology, Affiliated Hospital of Nantong University, Nantong 226001, PR China; Medical School of Nantong University, Nantong 226001, PR China
| | - Jianhang Liu
- Department of Nephrology, Affiliated Hospital of Nantong University, Nantong 226001, PR China; Medical School of Nantong University, Nantong 226001, PR China
| | - Bin Yang
- Department of Cardiovascular Sciences, College of Life Sciences, University of Leicester LE1 9HN, University Hospitals of Leicester NHS Trust, Leicester, United Kingdom
| | - Lei Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, Jiangsu, PR China; Nantong Egens Biotechnology Co., Ltd, Nantong 226001, Jiangsu, PR China.
| | - Xinzhong Huang
- Department of Nephrology, Affiliated Hospital of Nantong University, Nantong 226001, PR China.
| |
Collapse
|
3
|
Man J, Shen Y, Song Y, Yang K, Pei P, Hu L. Biomaterials-mediated radiation-induced diseases treatment and radiation protection. J Control Release 2024; 370:318-338. [PMID: 38692438 DOI: 10.1016/j.jconrel.2024.04.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/31/2024] [Accepted: 04/25/2024] [Indexed: 05/03/2024]
Abstract
In recent years, the intersection of the academic and medical domains has increasingly spotlighted the utilization of biomaterials in radioactive disease treatment and radiation protection. Biomaterials, distinguished from conventional molecular pharmaceuticals, offer a suite of advantages in addressing radiological conditions. These include their superior biological activity, chemical stability, exceptional histocompatibility, and targeted delivery capabilities. This review comprehensively delineates the therapeutic mechanisms employed by various biomaterials in treating radiological afflictions impacting the skin, lungs, gastrointestinal tract, and hematopoietic systems. Significantly, these nanomaterials function not only as efficient drug delivery vehicles but also as protective agents against radiation, mitigating its detrimental effects on the human body. Notably, the strategic amalgamation of specific biomaterials with particular pharmacological agents can lead to a synergistic therapeutic outcome, opening new avenues in the treatment of radiation- induced diseases. However, despite their broad potential applications, the biosafety and clinical efficacy of these biomaterials still require in-depth research and investigation. Ultimately, this review aims to not only bridge the current knowledge gaps in the application of biomaterials for radiation-induced diseases but also to inspire future innovations and research directions in this rapidly evolving field.
Collapse
Affiliation(s)
- Jianping Man
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yanhua Shen
- Experimental Animal Centre of Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215005, China
| | - Yujie Song
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Kai Yang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Pei Pei
- Teaching and Research Section of Nuclear Medicine, School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui, People's Republic of China..
| | - Lin Hu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China..
| |
Collapse
|
4
|
Rose SC, Larsen M, Xie Y, Sharfstein ST. Salivary Gland Bioengineering. Bioengineering (Basel) 2023; 11:28. [PMID: 38247905 PMCID: PMC10813147 DOI: 10.3390/bioengineering11010028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/19/2023] [Accepted: 11/30/2023] [Indexed: 01/23/2024] Open
Abstract
Salivary gland dysfunction affects millions globally, and tissue engineering may provide a promising therapeutic avenue. This review delves into the current state of salivary gland tissue engineering research, starting with a study of normal salivary gland development and function. It discusses the impact of fibrosis and cellular senescence on salivary gland pathologies. A diverse range of cells suitable for tissue engineering including cell lines, primary salivary gland cells, and stem cells are examined. Moreover, the paper explores various supportive biomaterials and scaffold fabrication methodologies that enhance salivary gland cell survival, differentiation, and engraftment. Innovative engineering strategies for the improvement of vascularization, innervation, and engraftment of engineered salivary gland tissue, including bioprinting, microfluidic hydrogels, mesh electronics, and nanoparticles, are also evaluated. This review underscores the promising potential of this research field for the treatment of salivary gland dysfunction and suggests directions for future exploration.
Collapse
Affiliation(s)
- Stephen C. Rose
- Department of Nanoscale Science and Engineering, College of Nanotechnology, Science, and Engineering, University at Albany, SUNY, 257 Fuller Road, Albany, NY 12203, USA (Y.X.)
| | - Melinda Larsen
- Department of Biological Sciences and The RNA Institute, University at Albany, SUNY, 1400 Washington Ave., Albany, NY 12222, USA;
| | - Yubing Xie
- Department of Nanoscale Science and Engineering, College of Nanotechnology, Science, and Engineering, University at Albany, SUNY, 257 Fuller Road, Albany, NY 12203, USA (Y.X.)
| | - Susan T. Sharfstein
- Department of Nanoscale Science and Engineering, College of Nanotechnology, Science, and Engineering, University at Albany, SUNY, 257 Fuller Road, Albany, NY 12203, USA (Y.X.)
| |
Collapse
|
5
|
Wang B, Chen J, Zhang C, Zhang Q, Zhu Z, Qiu L, Yan J, Li Z, Zhu X, Zhang Y, Jiang Y. Biomimetic nanoparticles of platelet membranes carrying bFGF and VEGFA genes promote deep burn wound healing. Int Immunopharmacol 2023; 125:111164. [PMID: 37925947 DOI: 10.1016/j.intimp.2023.111164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/27/2023] [Accepted: 10/31/2023] [Indexed: 11/07/2023]
Abstract
INTRODUCTION The treatment of burn wounds, especially deep burn wounds, remains a major clinical challenge. Growth factors such as basic fibroblast growth factor (bFGF) and vascular endothelial growth factor A (VEGFA) show great potential in promoting the healing of damaged tissues. This study explored wound healing following targeted delivery of bFGF and VEGFA genes into deep burn wounds through a novel platelet membrane-coated nanoparticle (PM@gene-NP) complex delivery system. METHODS First, bFGF and VEGFA genes were inserted into plasmid (pEGFP-N1) vectors. Subsequently, the assembled plasmids were loaded onto nanoparticles to form gene-loaded nanoparticle complexes, which were then wrapped with extracted platelet membrane, fully simulating the characteristics of platelets, in order to actively target sites of inflammatory damage. After administration of PM@gene-NP complexes through the tail vein of rats, a series of experiments were conducted to evaluate wound healing. RESULTS The PM@gene-NP complexes effectively targeted the burn sites. After the administration of the PM@gene-NP complexes, the rats exhibited increased blood flow in the burn wounds, which also healed faster than control groups. Histological results showed fewer inflammatory cells in the burned skin tissue after treatment. After the wounds healed, the production of hair follicles, sebaceous glands and other skin accessories in the skin tissue increased. CONCLUSION Our results showed that the PM@gene-NP complexes can effectively deliver gene therapy to the injured area, and this delivery system should be considered as a potential method for treating deep burns.
Collapse
Affiliation(s)
- Bolin Wang
- Department of Burn and Plastic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu 226000, China
| | - Jianle Chen
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu 226000, China
| | - Chuwei Zhang
- Department of Burn and Plastic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu 226000, China
| | - Qingrong Zhang
- Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma, Burn and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Third Military Medical University (Army Medical University), 400038 Chongqing, China; Department of Burn and Plastic Surgery, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Zhihan Zhu
- Department of Burn and Plastic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu 226000, China
| | - Ling Qiu
- Department of Burn and Plastic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu 226000, China
| | - Jun Yan
- Department of Burn and Plastic Surgery, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Zihan Li
- Department of Burn and Plastic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu 226000, China
| | - Xinghua Zhu
- Department of Burn and Plastic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu 226000, China.
| | - Yi Zhang
- Department of Burn and Plastic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu 226000, China.
| | - Yun Jiang
- Department of Burn and Plastic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu 226000, China.
| |
Collapse
|
6
|
Buss LG, De Oliveira Pessoa D, Snider JM, Padi M, Martinez JA, Limesand KH. Metabolomics analysis of pathways underlying radiation-induced salivary gland dysfunction stages. PLoS One 2023; 18:e0294355. [PMID: 37983277 PMCID: PMC10659204 DOI: 10.1371/journal.pone.0294355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 10/30/2023] [Indexed: 11/22/2023] Open
Abstract
Salivary gland hypofunction is an adverse side effect associated with radiotherapy for head and neck cancer patients. This study delineated metabolic changes at acute, intermediate, and chronic radiation damage response stages in mouse salivary glands following a single 5 Gy dose. Ultra-high performance liquid chromatography-mass spectrometry was performed on parotid salivary gland tissue collected at 3, 14, and 30 days following radiation (IR). Pathway enrichment analysis, network analysis based on metabolite structural similarity, and network analysis based on metabolite abundance correlations were used to incorporate both metabolite levels and structural annotation. The greatest number of enriched pathways are observed at 3 days and the lowest at 30 days following radiation. Amino acid metabolism pathways, glutathione metabolism, and central carbon metabolism in cancer are enriched at all radiation time points across different analytical methods. This study suggests that glutathione and central carbon metabolism in cancer may be important pathways in the unresolved effect of radiation treatment.
Collapse
Affiliation(s)
- Lauren G. Buss
- School of Nutritional Sciences and Wellness, University of Arizona, Tucson, AZ, United States of America
| | - Diogo De Oliveira Pessoa
- Biostatistics and Bioinformatics Shared Resource, Arizona Cancer Center, University of Arizona, Tucson, AZ, United States of America
| | - Justin M. Snider
- School of Nutritional Sciences and Wellness, University of Arizona, Tucson, AZ, United States of America
- University of Arizona Cancer Center, Tucson, AZ, United States of America
| | - Megha Padi
- Biostatistics and Bioinformatics Shared Resource, Arizona Cancer Center, University of Arizona, Tucson, AZ, United States of America
- University of Arizona Cancer Center, Tucson, AZ, United States of America
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, United States of America
| | - Jessica A. Martinez
- School of Nutritional Sciences and Wellness, University of Arizona, Tucson, AZ, United States of America
- University of Arizona Cancer Center, Tucson, AZ, United States of America
| | - Kirsten H. Limesand
- School of Nutritional Sciences and Wellness, University of Arizona, Tucson, AZ, United States of America
- University of Arizona Cancer Center, Tucson, AZ, United States of America
| |
Collapse
|
7
|
Ohm AM, Affandi T, Reisz JA, Caino MC, D'Alessandro A, Reyland ME. Metabolic reprogramming contributes to radioprotection by protein kinase Cδ. J Biol Chem 2023; 299:105186. [PMID: 37611829 PMCID: PMC10519828 DOI: 10.1016/j.jbc.2023.105186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 08/25/2023] Open
Abstract
Loss of protein kinase Cδ (PKCδ) activity renders cells resistant to DNA damaging agents, including irradiation; however, the mechanism(s) underlying resistance is poorly understood. Here, we have asked if metabolic reprogramming by PKCδ contributes to radioprotection. Analysis of global metabolomics showed that depletion of PKCδ affects metabolic pathways that control energy production and antioxidant, nucleotide, and amino acid biosynthesis. Increased NADPH and nucleotide production in PKCδ-depleted cells is associated with upregulation of the pentose phosphate pathway (PPP) as evidenced by increased activation of G6PD and an increase in the nucleotide precursor, 5-phosphoribosyl-1-pyrophosphate. Stable isotope tracing with U-[13C6] glucose showed reduced utilization of glucose for glycolysis in PKCδ-depleted cells and no increase in U-[13C6] glucose incorporation into purines or pyrimidines. In contrast, isotope tracing with [13C5, 15N2] glutamine showed increased utilization of glutamine for synthesis of nucleotides, glutathione, and tricarboxylic acid intermediates and increased incorporation of labeled glutamine into pyruvate and lactate. Using a glycolytic rate assay, we confirmed that anaerobic glycolysis is increased in PKCδ-depleted cells; this was accompanied by a reduction in oxidative phosphorylation, as assayed using a mitochondrial stress assay. Importantly, pretreatment of cells with specific inhibitors of the PPP or glutaminase prior to irradiation reversed radioprotection in PKCδ-depleted cells, indicating that these cells have acquired codependency on the PPP and glutamine for survival. Our studies demonstrate that metabolic reprogramming to increase utilization of glutamine and nucleotide synthesis contributes to radioprotection in the context of PKCδ inhibition.
Collapse
Affiliation(s)
- Angela M Ohm
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Trisiani Affandi
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Julie A Reisz
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - M Cecilia Caino
- Department of Pharmacology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Mary E Reyland
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.
| |
Collapse
|
8
|
DeLouise L, Piraino L, Chen CY, Mereness J, Dunman P, Benoit D, Ovitt C. Identifying novel radioprotective drugs via salivary gland tissue chip screening. RESEARCH SQUARE 2023:rs.3.rs-3246405. [PMID: 37790388 PMCID: PMC10543286 DOI: 10.21203/rs.3.rs-3246405/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
During head and neck cancer treatment, off-target ionizing radiation damage to the salivary glands commonly causes a permanent loss of secretory function. Due to the resulting decrease in saliva production, patients have trouble eating, speaking and are predisposed to oral infections and tooth decay. While the radioprotective antioxidant drug Amifostine is FDA approved to prevent radiation-induced hyposalivation, it has intolerable side effects that limit its use, motivating the discovery of alternative therapeutics. To address this issue, we previously developed a salivary gland mimetic (SGm) tissue chip platform. Here, we leverage this SGm tissue chip for high-content drug discovery. First, we developed in-chip assays to quantify glutathione and cellular senescence (β-galactosidase), which are biomarkers of radiation damage, and we validated radioprotection using WR-1065, the active form of Amifostine. Other reported radioprotective drugs including Edaravone, Tempol, N-acetylcysteine (NAC), Rapamycin, Ex-Rad, and Palifermin were also tested to validate the ability of the assays to detect cell damage and radioprotection. All of the drugs except NAC and Ex-Rad exhibited robust radioprotection. Next, a Selleck Chemicals library of 438 FDA-approved drugs was screened for radioprotection. We discovered 25 hits, with most of the drugs identified exhibiting mechanisms of action other than antioxidant activity. Hits were down-selected using EC50 values and pharmacokinetic and pharmacodynamic data from the PubChem database. This led us to test Phenylbutazone (anti-inflammatory), Enoxacin (antibiotic), and Doripenem (antibiotic) for in vivo radioprotection in mice using retroductal injections. Results confirm that Phenylbutazone and Enoxacin exhibited radioprotection equivalent to Amifostine. This body of work demonstrates the development and validation of assays using a SGm tissue chip platform for high-content drug screening and the successful in vitro discovery and in vivo validation of novel radioprotective drugs with non-antioxidant primary indications pointing to possible, yet unknown novel mechanisms of radioprotection.
Collapse
|
9
|
Piraino L, Chen CY, Mereness J, Dunman PM, Ovitt C, Benoit D, DeLouise L. Identifying novel radioprotective drugs via salivary gland tissue chip screening. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.12.548707. [PMID: 37503292 PMCID: PMC10369976 DOI: 10.1101/2023.07.12.548707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
During head and neck cancer treatment, off-target ionizing radiation damage to the salivary glands commonly causes a permanent loss of secretory function. Due to the resulting decrease in saliva production, patients have trouble eating, speaking and are predisposed to oral infections and tooth decay. While the radioprotective antioxidant drug Amifostine is approved to prevent radiation-induced hyposalivation, it has intolerable side effects that limit its use, motivating the discovery of alternative therapeutics. To address this issue, we previously developed a salivary gland mimetic (SGm) tissue chip platform. Here, we leverage this SGm tissue chip for high-content drug discovery. First, we developed in-chip assays to quantify glutathione and cellular senescence (β-galactosidase), which are biomarkers of radiation damage, and we validated radioprotection using WR-1065, the active form of Amifostine. Following validation, we tested other reported radioprotective drugs, including, Edaravone, Tempol, N-acetylcysteine (NAC), Rapamycin, Ex-Rad, and Palifermin, confirming that all drugs but NAC and Ex-Rad exhibited robust radioprotection. Next, a Selleck Chemicals library of 438 FDA-approved drugs was screened for radioprotection. We discovered 25 hits, with most of the drugs identified with mechanisms of action other than antioxidant activity. Hits were down-selected using EC 50 values and pharmacokinetics and pharmacodynamics data from the PubChem database leading to testing of Phenylbutazone (anti-inflammatory), Enoxacin (antibiotic), and Doripenem (antibiotic) for in vivo radioprotection in mice using retroductal injections. Results confirm that Phenylbutazone and Enoxacin exhibited equivalent radioprotection to Amifostine. This body of work demonstrates the development and validation of assays using a SGm tissue chip platform for high-content drug screening and the successful in vitro discovery and in vivo validation of novel radioprotective drugs with nonantioxidant primary indications pointing to possible, yet unknown novel mechanisms of radioprotection.
Collapse
|
10
|
Effect of nanoparticle-mediated delivery of SFRP4 siRNA for treating Dupuytren disease. Gene Ther 2023; 30:31-40. [PMID: 35347304 DOI: 10.1038/s41434-022-00330-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 01/31/2022] [Accepted: 03/02/2022] [Indexed: 11/08/2022]
Abstract
Dupuytren disease (DD) is a progressive fibrous proliferative disease. It invades the palmar aponeurosis and extends to the finger fascia, eventually leading to flexion contracture of the metacarpophalangeal or interphalangeal joint. At present, surgical resection and the local injection of collagenase are the main methods for the treatment of DD, but postoperative complications and high recurrence rates often occur. Bioinformatics analysis showed that the increased expression of SFRP4 protein was closely related to the incidence of DD. Persistent and effective inhibition of SFRP4 expression may be a promising treatment for DD. We prepared SFRP4 siRNA/nanoparticle complexes (si-SFRP4) and negative siRNA/nanoparticle complexes (NC) and applied them in vitro and in vivo. Flow cytometry analysis showed that si-SFRP4 could be successfully transfected into DD cells. MTT and EdU staining assays showed that the OD values and percentage of EdU-positive cells in the si-SFRP4 group were significantly lower than those in the NC group. Scratch tests showed that the wound healing rate of the si-SFRP4 group was lower than that of the NC group, and the difference was statistically significant. The expression of SFRP4 and α-SMA protein in the si-SFRP4 group significantly decreased in both DD cells and xenografts. Compared with the NC group, the xenograft quality of the si-SFRP4 group was significantly reduced. Masson's trichrome staining showed that the collagen and fibrous cells in the si-SFRP4 group were more uniform, slender, parallel and regular. The above experimental results suggest that the proliferation and metabolism of palmar aponeurosis cells and the quality of metacarpal fascia xenografts were both significantly decreased. We speculated that nanoparticle-mediated SFRP4 siRNA can be used as a potential new method for the treatment of DD.
Collapse
|
11
|
Upadhyay A, Cao UMN, Hariharan A, Almansoori A, Tran SD. Gene Therapeutic Delivery to the Salivary Glands. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1436:55-68. [PMID: 36826746 DOI: 10.1007/5584_2023_766] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
The salivary glands, exocrine glands in our body producing saliva, can be easily damaged by various factors. Radiation therapy and Sjogren's syndrome (a systemic autoimmune disease) are the two main causes of salivary gland damage, leading to a severe reduction in patients' quality of life. Gene transfer to the salivary glands has been considered a promising approach to treating the dysfunction. Gene therapy has long been applied to cure multiple diseases, including cancers, and hereditary and infectious diseases, which are proven to be safe and effective for the well-being of patients. The application of this treatment on salivary gland injuries has been studied for decades, yet its clinical progress is delayed. This chapter provides a coup d'oeil into gene transfer methods and various gene/vector types for salivary glands to help the new scientists and update established scientists on the progress that has been made during the past decades for the treatment of salivary gland disorders.
Collapse
Affiliation(s)
- Akshaya Upadhyay
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC, Canada
| | - Uyen M N Cao
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC, Canada
| | - Arvind Hariharan
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC, Canada
| | - Akram Almansoori
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC, Canada
| | - Simon D Tran
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC, Canada.
| |
Collapse
|
12
|
Dong Y, Zhang C, Zhang Q, Li Z, Wang Y, Yan J, Wu G, Qiu L, Zhu Z, Wang B, Gu H, Zhang Y. Identification of nanoparticle-mediated siRNA-ASPN as a key gene target in the treatment of keloids. Front Bioeng Biotechnol 2022; 10:1025546. [PMID: 36394011 PMCID: PMC9649824 DOI: 10.3389/fbioe.2022.1025546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/17/2022] [Indexed: 12/03/2022] Open
Abstract
Background: Keloid, also known as connective tissue hyperplasia, is a benign proliferative disorder with a global distribution. The available therapeutic interventions are steroid injections, surgical removal of keloids, radiotherapy, compression therapy, the application of cryosurgery, and many other methods. Objectives: Existing treatments or approaches for keloids may lead to similar or even larger lesions at the site of keloid excision, leading to a high recurrence rate. Therefore, this study aims at identifying a new gene-based therapy for the treatment of keloids. Methods: An ASPN-siRNA/nanoparticle combination (si-ASPN) and a negative siRNA/nanoparticle complex (NC) was developed on the basis of bioinformatics studies and used in vitro and in vivo experiments. Results: The results showed a strong correlation between the development of keloids and high expression of ASPN protein. With the expression of ASPN protein greatly reduced in keloid fibroblasts and nude mice allografts after treatment with si-ASPN, the collagen and fibroblasts were also uniform, thinner, parallel and regular. Conclusion: All the above experimental results suggest that keloid and ASPN are closely related and both fibroblast growth and metabolism of keloid are inhibited after silencing ASPN. Therefore, ASPN-siRNA delivered via nanoparticles can serve as a novel intervention therapy for the treatment of keloids.
Collapse
Affiliation(s)
- Yipeng Dong
- Department of Burns and Plastic Surgery, Affiliated Hospital of Nantong University, Nantong, China
- Medical School of Nantong University, Nantong, China
| | - Chuwei Zhang
- Department of Burns and Plastic Surgery, Affiliated Hospital of Nantong University, Nantong, China
- Medical School of Nantong University, Nantong, China
| | - Qingrong Zhang
- Department of Burns and Plastic Surgery, Affiliated Hospital of Nantong University, Nantong, China
- Institute of Burn Research, Third Military Medical University (Army Medical University), Chongqing, China
| | - Zihan Li
- Department of Burns and Plastic Surgery, Affiliated Hospital of Nantong University, Nantong, China
- Medical School of Nantong University, Nantong, China
| | - Yixiao Wang
- Medical School of Nantong University, Nantong, China
| | - Jun Yan
- Department of Burns and Plastic Surgery, Affiliated Hospital of Nantong University, Nantong, China
- Medical School of Nantong University, Nantong, China
| | - Gujie Wu
- Medical School of Nantong University, Nantong, China
| | - Ling Qiu
- Department of Burns and Plastic Surgery, Affiliated Hospital of Nantong University, Nantong, China
- Medical School of Nantong University, Nantong, China
| | - Zhihan Zhu
- Department of Burns and Plastic Surgery, Affiliated Hospital of Nantong University, Nantong, China
- Medical School of Nantong University, Nantong, China
| | - Bolin Wang
- Department of Burns and Plastic Surgery, Affiliated Hospital of Nantong University, Nantong, China
- Medical School of Nantong University, Nantong, China
| | - Haiying Gu
- Institute of Analytical Chemistry for Life Science, Nantong University, Nantong, China
- School of Public Health, Nantong University, Nantong, China
- *Correspondence: Yi Zhang, ; Haiying Gu,
| | - Yi Zhang
- Department of Burns and Plastic Surgery, Affiliated Hospital of Nantong University, Nantong, China
- *Correspondence: Yi Zhang, ; Haiying Gu,
| |
Collapse
|
13
|
Wang T, Zhou T, Xu M, Wang S, Wu A, Zhang M, Zhou YL, Shi J. Platelet membrane-camouflaged nanoparticles carry microRNA inhibitor against myocardial ischaemia‒reperfusion injury. J Nanobiotechnology 2022; 20:434. [PMID: 36195952 PMCID: PMC9531416 DOI: 10.1186/s12951-022-01639-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 09/18/2022] [Indexed: 12/04/2022] Open
Abstract
The incidence of myocardial ischaemia‒reperfusion injury (MIRI) is increasing every year, and there is an urgent need to develop new therapeutic approaches. Nrf2 is thought to play a protective role during MIRI and it is regulated by microRNAs (miRNAs). This study focused on PLGA nanoparticles camouflaged by platelet membrane vesicles (PMVs) (i.e., PMVs@PLGA complexes) carrying microRNA inhibitors, which regulate Nrf2 and can play a therapeutic role in the MIRI process. In vitro and in vivo characterization showed that PMVs@PLGA has excellent transfection efficiency, low toxicity and good targeting. MicroRNAs that effectively regulate Nrf2 were identified, and then PMVs@PLGA-miRNA complexes were prepared and used for in vitro and in vivo treatment. PMVs@PLGA-miRNA complexes can effectively target the delivery of inhibitors to cardiomyocytes. Our results suggest that PMVs@PLGA complexes are a novel delivery system and a novel biological approach to the treatment of MIRI.
Collapse
Affiliation(s)
- Tianyi Wang
- Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, and Research Institution of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, NO.20, Xisi Road, Nantong, 226001, Jiangsu, China.,Department of Thoracic Surgery, Affiliated Hospital of Nantong University, NO.20, Xisi Road, Nantong, 226001, Jiangsu, China
| | - Tingting Zhou
- Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, and Research Institution of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, NO.20, Xisi Road, Nantong, 226001, Jiangsu, China.,Department of Thoracic Surgery, Affiliated Hospital of Nantong University, NO.20, Xisi Road, Nantong, 226001, Jiangsu, China
| | - Mingming Xu
- Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, and Research Institution of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, NO.20, Xisi Road, Nantong, 226001, Jiangsu, China.,Department of Thoracic Surgery, Affiliated Hospital of Nantong University, NO.20, Xisi Road, Nantong, 226001, Jiangsu, China
| | - Shuo Wang
- Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, and Research Institution of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, NO.20, Xisi Road, Nantong, 226001, Jiangsu, China.,Department of Thoracic Surgery, Affiliated Hospital of Nantong University, NO.20, Xisi Road, Nantong, 226001, Jiangsu, China
| | - Anqi Wu
- Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, and Research Institution of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, NO.20, Xisi Road, Nantong, 226001, Jiangsu, China.,Department of Thoracic Surgery, Affiliated Hospital of Nantong University, NO.20, Xisi Road, Nantong, 226001, Jiangsu, China
| | - Mingyang Zhang
- Department of Forensic Sciences, Soochow University, NO.178, Ganjiang Road, Suzhou, 215000, Jiangsu, China.
| | - You Lang Zhou
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, NO.20, Xisi Road, Nantong, 226001, Jiangsu, China.
| | - Jiahai Shi
- Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, and Research Institution of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, NO.20, Xisi Road, Nantong, 226001, Jiangsu, China. .,Department of Thoracic Surgery, Affiliated Hospital of Nantong University, NO.20, Xisi Road, Nantong, 226001, Jiangsu, China. .,School of Public Health, Nantong University, NO.9, Seyuan Road, Nantong, 226019, Jiangsu, China.
| |
Collapse
|
14
|
Chibly AM, Aure MH, Patel VN, Hoffman MP. Salivary gland function, development, and regeneration. Physiol Rev 2022; 102:1495-1552. [PMID: 35343828 PMCID: PMC9126227 DOI: 10.1152/physrev.00015.2021] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 11/27/2021] [Accepted: 03/17/2022] [Indexed: 02/08/2023] Open
Abstract
Salivary glands produce and secrete saliva, which is essential for maintaining oral health and overall health. Understanding both the unique structure and physiological function of salivary glands, as well as how they are affected by disease and injury, will direct the development of therapy to repair and regenerate them. Significant recent advances, particularly in the OMICS field, increase our understanding of how salivary glands develop at the cellular, molecular, and genetic levels: the signaling pathways involved, the dynamics of progenitor cell lineages in development, homeostasis, and regeneration, and the role of the extracellular matrix microenvironment. These provide a template for cell and gene therapies as well as bioengineering approaches to repair or regenerate salivary function.
Collapse
Affiliation(s)
- Alejandro M Chibly
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland
| | - Marit H Aure
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland
| | - Vaishali N Patel
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland
| | - Matthew P Hoffman
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
15
|
Ahmed SF, Bakr NM, Abdelgawad N, Bashir DW. Possible radioprotection of submandibular glands in gamma-irradiated rats using kaempferol: a histopathological and immunohistochemical study. Int J Radiat Biol 2022; 99:396-405. [PMID: 35758986 DOI: 10.1080/09553002.2022.2094015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
Abstract
BACKGROUND AND PURPOSE Salivary gland damage remains a problem despite advances in radiotherapy schedules for head and neck cancer. Kaempferol, a natural flavonoid, found in several fruits and vegetables, is a good antioxidant. This study was designed to evaluate the possible protective effects of kaempferol on submandibular glands (SMGs) of rats exposed to fractionated gamma irradiation. MATERIALS AND METHODS Twenty-four male adult Wistar albino rats were included in this study and assigned to three groups (n = 8). Rats in group K received kaempferol orally in five doses at a dose of 10 mg/kg/2 days for 10 days. Meanwhile, rats in group R were subjected to fractionated whole-body gamma irradiation at a dose of 2 Gy/5 days/week for 2 weeks (20 Gy), and the KR group received kaempferol as group K and then was subjected to a fractionated whole-body gamma irradiation as group R. SMG samples were collected on days 1 and 7 after the last radiation session; and processed for histopathological and immunohistochemical investigations. RESULTS The SMGs of group R showed focal atrophy and degeneration. Acini showed vacuolization and had pyknotic hyperchromatic nuclei. Striated ducts degenerated, shrunken, and were surrounded by empty spaces. The percentage of areas covered by cyclooxygenase-2 (COX-2) significantly increased, whereas the percentage of areas covered by proliferating cell nuclear antigen (PCNA) significantly decreased compared with those in group K. Cotreatment with kaempferol (group KR) partially preserved normal gland architecture where acinar vacuolation and degeneration were almost absent; however, some ducts degenerated. A significant decrease in the percentage of areas covered by COX-2 and a significant increase in the percentage of areas covered by PCNA were observed compared with those in group R. CONCLUSIONS Kaempferol has a possible radioprotective effect on the SMGs of rats exposed to fractionated gamma irradiation.
Collapse
Affiliation(s)
- Salwa Farid Ahmed
- Health Radiation Research Department, National Centre for Radiation Research and Technology, Atomic Energy Authority, Cairo, Egypt
| | - Noura Mohammed Bakr
- Oral and Dental Biology Department, Faculty of Dental Medicine for Girls, Al-Azhar University, Cairo, Egypt
| | - Nora Abdelgawad
- Oral Medicine, Periodontology, Diagnosis and Radiology Department, Faculty of Dental Medicine for Girls, Al-Azhar University, Cairo, Egypt
| | - Dina W Bashir
- Cytology and Histology Department, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
16
|
Black JD, Affandi T, Black AR, Reyland ME. PKCα and PKCδ: Friends and Rivals. J Biol Chem 2022; 298:102194. [PMID: 35760100 PMCID: PMC9352922 DOI: 10.1016/j.jbc.2022.102194] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/13/2022] [Accepted: 06/21/2022] [Indexed: 01/06/2023] Open
Abstract
PKC comprises a large family of serine/threonine kinases that share a requirement for allosteric activation by lipids. While PKC isoforms have significant homology, functional divergence is evident among subfamilies and between individual PKC isoforms within a subfamily. Here, we highlight these differences by comparing the regulation and function of representative PKC isoforms from the conventional (PKCα) and novel (PKCδ) subfamilies. We discuss how unique structural features of PKCα and PKCδ underlie differences in activation and highlight the similar, divergent, and even opposing biological functions of these kinases. We also consider how PKCα and PKCδ can contribute to pathophysiological conditions and discuss challenges to targeting these kinases therapeutically.
Collapse
Affiliation(s)
- Jennifer D Black
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE.
| | - Trisiani Affandi
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus
| | - Adrian R Black
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE
| | - Mary E Reyland
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus.
| |
Collapse
|
17
|
Insights into Nanomedicine for Head and Neck Cancer Diagnosis and Treatment. MATERIALS 2022; 15:ma15062086. [PMID: 35329542 PMCID: PMC8951645 DOI: 10.3390/ma15062086] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/21/2022] [Accepted: 03/01/2022] [Indexed: 02/04/2023]
Abstract
Head and neck cancers rank sixth among the most common cancers today, and the survival rate has remained virtually unchanged over the past 25 years, due to late diagnosis and ineffective treatments. They have two main risk factors, tobacco and alcohol, and human papillomavirus infection is a secondary risk factor. These cancers affect areas of the body that are fundamental for the five senses. Therefore, it is necessary to treat them effectively and non-invasively as early as possible, in order to do not compromise vital functions, which is not always possible with conventional treatments (chemotherapy or radiotherapy). In this sense, nanomedicine plays a key role in the treatment and diagnosis of head and neck cancers. Nanomedicine involves using nanocarriers to deliver drugs to sites of action and reducing the necessary doses and possible side effects. The main purpose of this review is to give an overview of the applications of nanocarrier systems to the diagnosis and treatment of head and neck cancer. Herein, several types of delivery strategies, radiation enhancement, inside-out hyperthermia, and theragnostic approaches are addressed.
Collapse
|
18
|
Pan Y, Tang W, Fan W, Zhang J, Chen X. Development of nanotechnology-mediated precision radiotherapy for anti-metastasis and radioprotection. Chem Soc Rev 2022; 51:9759-9830. [DOI: 10.1039/d1cs01145f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Radiotherapy (RT), including external beam RT and internal radiation therapy, uses high-energy ionizing radiation to kill tumor cells.
Collapse
Affiliation(s)
- Yuanbo Pan
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, 310009, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, 310009, China
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore
| | - Wei Tang
- Departments of Pharmacy and Diagnostic Radiology, Nanomedicine Translational Research Program, Faculty of Science and Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117544, Singapore
| | - Wenpei Fan
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing, 210009, China
| | - Jianmin Zhang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, 310009, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, 310009, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| |
Collapse
|
19
|
Garland KM, Rosch JC, Carson CS, Wang-Bishop L, Hanna A, Sevimli S, Van Kaer C, Balko JM, Ascano M, Wilson JT. Pharmacological Activation of cGAS for Cancer Immunotherapy. Front Immunol 2021; 12:753472. [PMID: 34899704 PMCID: PMC8662543 DOI: 10.3389/fimmu.2021.753472] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/29/2021] [Indexed: 01/23/2023] Open
Abstract
When compartmentally mislocalized within cells, nucleic acids can be exceptionally immunostimulatory and can even trigger the immune-mediated elimination of cancer. Specifically, the accumulation of double-stranded DNA in the cytosol can efficiently promote antitumor immunity by activating the cGAMP synthase (cGAS) / stimulator of interferon genes (STING) cellular signaling pathway. Targeting this cytosolic DNA sensing pathway with interferon stimulatory DNA (ISD) is therefore an attractive immunotherapeutic strategy for the treatment of cancer. However, the therapeutic activity of ISD is limited by several drug delivery barriers, including susceptibility to deoxyribonuclease degradation, poor cellular uptake, and inefficient cytosolic delivery. Here, we describe the development of a nucleic acid immunotherapeutic, NanoISD, which overcomes critical delivery barriers that limit the activity of ISD and thereby promotes antitumor immunity through the pharmacological activation of cGAS at the forefront of the STING pathway. NanoISD is a nanoparticle formulation that has been engineered to confer deoxyribonuclease resistance, enhance cellular uptake, and promote endosomal escape of ISD into the cytosol, resulting in potent activation of the STING pathway via cGAS. NanoISD mediates the local production of proinflammatory cytokines via STING signaling. Accordingly, the intratumoral administration of NanoISD induces the infiltration of natural killer cells and T lymphocytes into murine tumors. The therapeutic efficacy of NanoISD is demonstrated in preclinical tumor models by attenuated tumor growth, prolonged survival, and an improved response to immune checkpoint blockade therapy.
Collapse
Affiliation(s)
- Kyle M. Garland
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, United States
| | - Jonah C. Rosch
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, United States
| | - Carcia S. Carson
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States
| | - Lihong Wang-Bishop
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, United States
| | - Ann Hanna
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Sema Sevimli
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, United States
| | - Casey Van Kaer
- Department of Bioengineering, Northeastern University, Boston, MA, United States
| | - Justin M. Balko
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Manuel Ascano
- Department of Biochemistry, Vanderbilt University Medical Center, Nashville, TN, United States
| | - John T. Wilson
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, United States
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, United States
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN, United States
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN, United States
- Vanderbilt Institute of Chemical Biology, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
20
|
Abd El-Haleem MR, Amer MG, Fares AE, Kamel AHM. Evaluation of the Radioprotective Effect of Silver Nanoparticles on Irradiated Submandibular Gland of Adult Albino Rats. A Histological and Sialochemical Study. BIONANOSCIENCE 2021. [DOI: 10.1007/s12668-021-00917-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
21
|
Nam K, Dos Santos HT, Maslow F, Trump BG, Lei P, Andreadis ST, Baker OJ. Laminin-1 Peptides Conjugated to Fibrin Hydrogels Promote Salivary Gland Regeneration in Irradiated Mouse Submandibular Glands. Front Bioeng Biotechnol 2021; 9:729180. [PMID: 34631679 PMCID: PMC8498954 DOI: 10.3389/fbioe.2021.729180] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/23/2021] [Indexed: 11/13/2022] Open
Abstract
Previous studies demonstrated that salivary gland morphogenesis and differentiation are enhanced by modification of fibrin hydrogels chemically conjugated to Laminin-1 peptides. Specifically, Laminin-1 peptides (A99: CGGALRGDN-amide and YIGSR: CGGADPGYIGSRGAA-amide) chemically conjugated to fibrin promoted formation of newly organized salivary epithelium both in vitro (e.g., using organoids) and in vivo (e.g., in a wounded mouse model). While these studies were successful, the model's usefulness for inducing regenerative patterns after radiation therapy remains unknown. Therefore, the goal of the current study was to determine whether transdermal injection with the Laminin-1 peptides A99 and YIGSR chemically conjugated to fibrin hydrogels promotes tissue regeneration in irradiated salivary glands. Results indicate that A99 and YIGSR chemically conjugated to fibrin hydrogels promote formation of functional salivary tissue when transdermally injected to irradiated salivary glands. In contrast, when left untreated, irradiated salivary glands display a loss in structure and functionality. Together, these studies indicate that fibrin hydrogel-based implantable scaffolds containing Laminin-1 peptides promote secretory function of irradiated salivary glands.
Collapse
Affiliation(s)
- Kihoon Nam
- Bond Life Sciences Center, University of Missouri, Columbia, MO, United States.,Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Harim T Dos Santos
- Bond Life Sciences Center, University of Missouri, Columbia, MO, United States.,Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Frank Maslow
- Bond Life Sciences Center, University of Missouri, Columbia, MO, United States.,Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Bryan G Trump
- School of Dentistry, University of Utah, Salt Lake City, UT, United States
| | - Pedro Lei
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, United States
| | - Stelios T Andreadis
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, United States.,Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, NY, United States.,Center of Bioinformatics and Life Sciences, University at Buffalo, The State University of New York, Buffalo, NY, United States.,Center of Cell, Gene and Tissue Engineering, University at Buffalo, The State University of New York, Buffalo, NY, United States
| | - Olga J Baker
- Bond Life Sciences Center, University of Missouri, Columbia, MO, United States.,Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Missouri, Columbia, MO, United States.,Department of Biochemistry, University of Missouri, Columbia, MO, United States
| |
Collapse
|
22
|
Zhang Q, Zhang C, Feng L, Wang L, Qi J, Dong Y, Zhou YL, Hu K, Zhang Y. Effects of nanoparticle-mediated Co-delivery of bFGF and VEGFA genes to deep burn wounds: An in vivo study. Colloids Surf B Biointerfaces 2021; 209:112135. [PMID: 34655915 DOI: 10.1016/j.colsurfb.2021.112135] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 09/16/2021] [Accepted: 09/22/2021] [Indexed: 01/04/2023]
Abstract
Deep burns are a common form of trauma worldwide, and they are hard to be cured in a short time and enhance psychological pressure of the patients. How to effectively promote the healing of wounds after burns is a continuing challenge currently faced by burn physicians. Various strategies of promoting wound healing of deep burns have been developed, including gene therapy and growth factor therapy. In this study, we developed a combined therapy using PLGA nanoparticles as carriers to deliver bFGF and VEGFA genes to promote healing of burn wounds. We first inserted the bFGF and VEGFA genes into pEGFP-N1 vectors and loaded the mixed generated plasmids into PLGA nanoparticles. Next, we injected the nanoparticle/plasmid complexes into the rats intracutaneously and found that the complexes were successfully transfected in vivo one week later. Finally, we injected the nanoparticle/plasmid complexes containing bFGF and VEGFA around burn wounds. We found that the percentage of wound healing of rats treated with nanoparticles/bFGF+ VEGFA plasmid complexes was higher than that of rats in the scald control group, and the early percentage of wound complete epithelialization was also higher. Therefore, combining gene therapy with nanoparticles may be an effective biological strategy for wound repair.
Collapse
Affiliation(s)
- Qingrong Zhang
- Department of Burn and Plastic Surgery, Affiliated Hospital of Nantong University, Nantong 226001, People's Republic of China
| | - Chuwei Zhang
- Nantong University Xinglin College, Nantong 226001, People's Republic of China
| | - Liang Feng
- Department of Burn and Plastic Surgery, Nantong Third People's Hospital, Nantong University, Nantong 226001, People's Republic of China
| | - Lei Wang
- Department of Burn and Plastic Surgery, Affiliated Hospital of Nantong University, Nantong 226001, People's Republic of China
| | - Jun Qi
- Department of Burn and Plastic Surgery, Affiliated Hospital of Nantong University, Nantong 226001, People's Republic of China
| | - Yipeng Dong
- Nantong University, Nantong 226001, People's Republic of China
| | - You Lang Zhou
- The Hand Surgery Research Center, Department of Hand Surgery, Affiliated Hospital of Nantong University, Nantong 226001, People's Republic of China.
| | - Kesu Hu
- Department of Burn and Plastic Surgery, Affiliated Hospital of Nantong University, Nantong 226001, People's Republic of China.
| | - Yi Zhang
- Department of Burn and Plastic Surgery, Affiliated Hospital of Nantong University, Nantong 226001, People's Republic of China.
| |
Collapse
|
23
|
Cho JM, Yoon YJ, Lee S, Kim D, Choi D, Kim J, Lim JY. Retroductal Delivery of Epidermal Growth Factor Protects Salivary Progenitors after Irradiation. J Dent Res 2021; 100:883-890. [PMID: 33754871 DOI: 10.1177/0022034521999298] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Salivary gland hypofunction after irradiation is associated with a deficit of epithelial stem/progenitors in salivary glands. Although epidermal growth factor (EGF) is known to stimulate the proliferation of epithelial cells, the therapeutic effect of EGF on salivary epithelial stem/progenitors remains undetermined. In this study, we administered EGF to submandibular glands (SMGs) via a retrograde route through the SMG excretory duct before fractionated irradiation and examined whether EGF could protect salivary epithelial progenitor cells from radiation and alleviate radiation-induced salivary hypofunction. EGF-treated mice exhibited greater body and gland weights at 12 wk after irradiation than untreated mice. The retroductal delivery of EGF improved salivary secretory function and increased salivary amylase activity in a dose-dependent manner. Histological examinations highlighted the amelioration of the loss of keratine-14+ (KRT14+) basal ductal and/or MIST1+ acinar cells, as well as induction of fibrosis, following irradiation in EGF-treated mice. An additional in vitro experiment using a salivary gland organoid irradiation model indicated that the radioprotective effects of EGF promoted the growth and inhibited the apoptotic cell death of salivary epithelial cells. Our results suggest that retroductal delivery of EGF may be a promising therapeutic option for preventing radiation-induced salivary gland hypofunction.
Collapse
Affiliation(s)
- J M Cho
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Y J Yoon
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - S Lee
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - D Kim
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - D Choi
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - J Kim
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - J Y Lim
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
24
|
Xie J, Zhao M, Wang C, Yong Y, Gu Z, Zhao Y. Rational Design of Nanomaterials for Various Radiation-Induced Diseases Prevention and Treatment. Adv Healthc Mater 2021; 10:e2001615. [PMID: 33506624 DOI: 10.1002/adhm.202001615] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/05/2020] [Indexed: 12/17/2022]
Abstract
Radiation treatments often unfavorably damage neighboring healthy organs and cause a series of radiation sequelae, such as radiation-induced hematopoietic system diseases, radiation-induced gastrointestinal diseases, radiation-induced lung diseases, and radiation-induced skin diseases. Recently, emerging nanomaterials have exhibited good superiority for these radiation-induced disease treatments. Given this background, the rational design principle of nanomaterials, which helps to optimize the therapeutic efficiency, has been an increasing need. Consequently, it is of great significance to perform a systematic summarization of the advances in this field, which can trigger the development of new high-performance nanoradioprotectors with drug efficiency maximization. Herein, this review highlights the advances and perspectives in the rational design of nanomaterials for preventing and treating various common radiation-induced diseases. Furthermore, the sources, clinical symptoms, and pathogenesis/injury mechanisms of these radiation-induced diseases will also be introduced. Furthermore, current challenges and directions for future efforts in this field are also discussed.
Collapse
Affiliation(s)
- Jiani Xie
- School of Food and Biological Engineering Chengdu University Chengdu 610106 China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
| | - Maoru Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
- Center of Materials Science and Optoelectronics Engineering College of Materials Science and Optoelectronic Technology University of Chinese Academy of Sciences Beijing 100049 China
| | - Chengyan Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
- Center of Materials Science and Optoelectronics Engineering College of Materials Science and Optoelectronic Technology University of Chinese Academy of Sciences Beijing 100049 China
| | - Yuan Yong
- College of Chemistry and Environment Protection Engineering Southwest Minzu University Chengdu 610041 China
| | - Zhanjun Gu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
- Center of Materials Science and Optoelectronics Engineering College of Materials Science and Optoelectronic Technology University of Chinese Academy of Sciences Beijing 100049 China
- GBA Research Innovation Institute for Nanotechnology Guangdong 510700 China
| | - Yuliang Zhao
- Center of Materials Science and Optoelectronics Engineering College of Materials Science and Optoelectronic Technology University of Chinese Academy of Sciences Beijing 100049 China
- GBA Research Innovation Institute for Nanotechnology Guangdong 510700 China
- CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology of China Chinese Academy of Sciences Beijing 100190 China
| |
Collapse
|
25
|
Liao Y, Wang D, Gu Z. Research Progress of Nanomaterials for Radioprotection. ACTA CHIMICA SINICA 2021. [DOI: 10.6023/a21070319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
26
|
Radiation-Induced Salivary Gland Dysfunction: Mechanisms, Therapeutics and Future Directions. J Clin Med 2020; 9:jcm9124095. [PMID: 33353023 PMCID: PMC7767137 DOI: 10.3390/jcm9124095] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/17/2020] [Accepted: 12/17/2020] [Indexed: 12/14/2022] Open
Abstract
Salivary glands sustain collateral damage following radiotherapy (RT) to treat cancers of the head and neck, leading to complications, including mucositis, xerostomia and hyposalivation. Despite salivary gland-sparing techniques and modified dosing strategies, long-term hypofunction remains a significant problem. Current therapeutic interventions provide temporary symptom relief, but do not address irreversible glandular damage. In this review, we summarize the current understanding of mechanisms involved in RT-induced hyposalivation and provide a framework for future mechanistic studies. One glaring gap in published studies investigating RT-induced mechanisms of salivary gland dysfunction concerns the effect of irradiation on adjacent non-irradiated tissue via paracrine, autocrine and direct cell-cell interactions, coined the bystander effect in other models of RT-induced damage. We hypothesize that purinergic receptor signaling involving P2 nucleotide receptors may play a key role in mediating the bystander effect. We also discuss promising new therapeutic approaches to prevent salivary gland damage due to RT.
Collapse
|
27
|
Xing SG, Zhou YL, Yang QQ, Ju F, Zhang L, Tang JB. Effects of nanoparticle-mediated growth factor gene transfer to the injured microenvironment on the tendon-to-bone healing strength. Biomater Sci 2020; 8:6611-6624. [PMID: 33231577 DOI: 10.1039/d0bm01222j] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The tendon-to-bone healing after trauma is usually slow and weak, and the repair site is easily disrupted during early mobilization exercise. bFGF and VEGFA gene therapy may hold promise in augmenting the tendon-to-bone healing process through enhancing cell proliferation and angiogenesis. This study is conducted to determine the effects of nanoparticle-mediated co-delivery of bFGF and VEGFA genes to the tendon-to-bone repair interface on the healing strength and biological responses in a chicken model. The PLGA nanoparticle/pEGFP-bFGF + pEGFP-VEGFA plasmid complexes were prepared and were characterized in vitro and in vivo. The nanoparticle/plasmid complexes can effectively transfer bFGF and VEGFA genes to the tendon-to-bone interface. Nanoparticle-mediated co-delivery of bFGF and VEGFA genes significantly improved the tendon-to-bone healing in terms of healing strengths and histology in a chicken flexor tendon repair model. Our results suggest a new biological approach to accelerate the tendon-to-bone healing.
Collapse
Affiliation(s)
- Shu Guo Xing
- The Nanomedicine Research Laboratory, Research for Frontier Medicine and Hand Surgery Research Center, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China.
| | | | | | | | | | | |
Collapse
|
28
|
Barrows CM, Wu D, Farach-Carson MC, Young S. Building a Functional Salivary Gland for Cell-Based Therapy: More than Secretory Epithelial Acini. Tissue Eng Part A 2020; 26:1332-1348. [PMID: 32829674 PMCID: PMC7759264 DOI: 10.1089/ten.tea.2020.0184] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/20/2020] [Indexed: 11/13/2022] Open
Abstract
A few treatment options exist for patients experiencing xerostomia due to hyposalivation that occurs as a result of disease or injury to the gland. An opportunity for a permanent solution lies in the field of salivary gland replacement through tissue engineering. Recent success emboldens in the vision of producing a tissue-engineered salivary gland composed of differentiated salivary epithelial cells that are able to differentiate to form functional units that produce and deliver saliva to the oral cavity. This vision is augmented by advances in understanding cellular mechanisms that guide branching morphogenesis and salivary epithelial cell polarization in both acinar and ductal structures. Growth factors and other guidance cues introduced into engineered constructs help to develop a more complex glandular structure that seeks to mimic native salivary gland tissue. This review describes the separate epithelial phenotypes that make up the gland, and it describes their relationship with the other cell types such as nerve and vasculature that surround them. The review is organized around the links between the native components that form and contribute to various aspects of salivary gland development, structure, and function and how this information can drive the design of functional tissue-engineered constructs. In addition, we discuss the attributes of various biomaterials commonly used to drive function and form in engineered constructs. The review also contains a current description of the state-of-the-art of the field, including successes and challenges in creating materials for preclinical testing in animal models. The ability to integrate biomolecular cues in combination with a range of materials opens the door to the design of increasingly complex salivary gland structures that, once accomplished, can lead to breakthroughs in other fields of tissue engineering of epithelial-based exocrine glands or oral tissues.
Collapse
Affiliation(s)
- Caitlynn M.L. Barrows
- Department of Diagnostic and Biomedical Sciences and The University of Texas Health Science Center at Houston, School of Dentistry, Houston, Texas, USA
- Department of Oral and Maxillofacial Surgery, The University of Texas Health Science Center at Houston, School of Dentistry, Houston, Texas, USA
| | - Danielle Wu
- Department of Diagnostic and Biomedical Sciences and The University of Texas Health Science Center at Houston, School of Dentistry, Houston, Texas, USA
| | - Mary C. Farach-Carson
- Department of Diagnostic and Biomedical Sciences and The University of Texas Health Science Center at Houston, School of Dentistry, Houston, Texas, USA
- Department of Biosciences and Rice University, Houston, Texas, USA
- Department of Bioengineering, Rice University, Houston, Texas, USA
| | - Simon Young
- Department of Oral and Maxillofacial Surgery, The University of Texas Health Science Center at Houston, School of Dentistry, Houston, Texas, USA
| |
Collapse
|
29
|
Speidel JT, Affandi T, Jones DNM, Ferrara SE, Reyland ME. Functional proteomic analysis reveals roles for PKCδ in regulation of cell survival and cell death: Implications for cancer pathogenesis and therapy. Adv Biol Regul 2020; 78:100757. [PMID: 33045516 PMCID: PMC8294469 DOI: 10.1016/j.jbior.2020.100757] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/18/2020] [Accepted: 09/21/2020] [Indexed: 12/18/2022]
Abstract
Protein Kinase C-δ (PKCδ), regulates a broad group of biological functions and disease processes, including well-defined roles in immune function, cell survival and apoptosis. PKCδ primarily regulates apoptosis in normal tissues and non-transformed cells, and genetic disruption of the PRKCD gene in mice is protective in many diseases and tissue damage models. However pro-survival/pro-proliferative functions have also been described in some transformed cells and in mouse models of cancer. Recent evidence suggests that the contribution of PKCδ to specific cancers may depend in part on the oncogenic context of the tumor, consistent with its paradoxical role in cell survival and cell death. Here we will discuss what is currently known about biological functions of PKCδ and potential paradigms for PKCδ function in cancer. To further understand mechanisms of regulation by PKCδ, and to gain insight into the plasticity of PKCδ signaling, we have used functional proteomics to identify pathways that are dependent on PKCδ. Understanding how these distinct functions of PKCδ are regulated will be critical for the logical design of therapeutics to target this pathway.
Collapse
Affiliation(s)
- Jordan T Speidel
- Department of Craniofacial Biology, School of Dental Medicine, USA
| | - Trisiani Affandi
- Department of Craniofacial Biology, School of Dental Medicine, USA
| | | | - Sarah E Ferrara
- University of Colorado Comprehensive Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Mary E Reyland
- Department of Craniofacial Biology, School of Dental Medicine, USA.
| |
Collapse
|
30
|
Jensen SB, Vissink A, Limesand KH, Reyland ME. Salivary Gland Hypofunction and Xerostomia in Head and Neck Radiation Patients. J Natl Cancer Inst Monogr 2020; 2019:5551361. [PMID: 31425600 DOI: 10.1093/jncimonographs/lgz016] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 05/21/2019] [Accepted: 05/26/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The most manifest long-term consequences of radiation therapy in the head and neck cancer patient are salivary gland hypofunction and a sensation of oral dryness (xerostomia). METHODS This critical review addresses the consequences of radiation injury to salivary gland tissue, the clinical management of salivary gland hypofunction and xerostomia, and current and potential strategies to prevent or reduce radiation injury to salivary gland tissue or restore the function of radiation-injured salivary gland tissue. RESULTS Salivary gland hypofunction and xerostomia have severe implications for oral functioning, maintenance of oral and general health, and quality of life. Significant progress has been made to spare salivary gland function chiefly due to advances in radiation techniques. Other strategies have also been developed, e.g., radioprotectors, identification and preservation/expansion of salivary stem cells by stimulation with cholinergic muscarinic agonists, and application of new lubricating or stimulatory agents, surgical transfer of submandibular glands, and acupuncture. CONCLUSION Many advances to manage salivary gland hypofunction and xerostomia induced by radiation therapy still only offer partial protection since they are often of short duration, lack the protective effects of saliva, or potentially have significant adverse effects. Intensity-modulated radiation therapy (IMRT), and its next step, proton therapy, have the greatest potential as a management strategy for permanently preserving salivary gland function in head and neck cancer patients.Presently, gene transfer to supplement fluid formation and stem cell transfer to increase the regenerative potential in radiation-damaged salivary glands are promising approaches for regaining function and/or regeneration of radiation-damaged salivary gland tissue.
Collapse
Affiliation(s)
- Siri Beier Jensen
- Department of Dentistry and Oral Health, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Arjan Vissink
- Department of Oral and Maxillofacial Surgery, University of Groningen, University Medical Center, Groningen, The Netherlands
| | | | - Mary E Reyland
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO
| |
Collapse
|
31
|
Rocchi C, Emmerson E. Mouth-Watering Results: Clinical Need, Current Approaches, and Future Directions for Salivary Gland Regeneration. Trends Mol Med 2020; 26:649-669. [PMID: 32371171 DOI: 10.1016/j.molmed.2020.03.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 03/03/2020] [Accepted: 03/27/2020] [Indexed: 12/31/2022]
Abstract
Permanent damage to the salivary glands and resulting hyposalivation and xerostomia have a substantial impact on patient health, quality of life, and healthcare costs. Currently, patients rely on lifelong treatments that alleviate the symptoms, but no long-term restorative solutions exist. Recent advances in adult stem cell enrichment and transplantation, bioengineering, and gene transfer have proved successful in rescuing salivary gland function in a number of animal models that reflect human diseases and that result in hyposalivation and xerostomia. By overcoming the limitations of stem cell transplants and better understanding the mechanisms of cellular plasticity in the adult salivary gland, such studies provide encouraging evidence that a regenerative strategy for patients will be available in the near future.
Collapse
Affiliation(s)
- Cecilia Rocchi
- The MRC Centre for Regenerative Medicine, The University of Edinburgh, Edinburgh BioQuarter, 5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Elaine Emmerson
- The MRC Centre for Regenerative Medicine, The University of Edinburgh, Edinburgh BioQuarter, 5 Little France Drive, Edinburgh, EH16 4UU, UK.
| |
Collapse
|
32
|
Khan E, Farooq I, Khabeer A, Ali S, Zafar MS, Khurshid Z. Salivary gland tissue engineering to attain clinical benefits: a special report. Regen Med 2020; 15:1455-1461. [PMID: 32253995 DOI: 10.2217/rme-2019-0079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The salivary glands produce saliva, which helps in mediating the oral colonization of microbes, the repair of mucosa, the remineralization of teeth, lubrication and gustation. However, certain medications, therapeutic radiation and certain autoimmune diseases can cause a reduction in the salivary flow. The aim of this report was to review and highlight the indications and techniques of salivary gland engineering to counter hyposalivation. This report concludes that in the literature, numerous strategies have been suggested and discussed pertaining to the engineering of salivary gland, however, challenges remain in terms of its production and accurate function. Dedicated efforts are required from researchers all over the world to obtain the maximum benefits from salivary gland engineering techniques.
Collapse
Affiliation(s)
- Erum Khan
- CODE-M Center of Dental Education & Medicine, Karachi, Pakistan.,Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Imran Farooq
- Department of Biomedical Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Abdul Khabeer
- Department of Restorative Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Saqib Ali
- Department of Biomedical Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Muhammad Sohail Zafar
- Department of Restorative Dentistry, College of Dentistry, Taibah University, Al Madina Al Munawwarra, Saudi Arabia.,Department of Dental Materials, Islamic International Dental College, Riphah International University, Islamabad, Pakistan
| | - Zohaib Khurshid
- Department of Prosthodontics and Dental Implantology, College of Dentistry, King Faisal University, Al-Ahsa, Saudi Arabia
| |
Collapse
|
33
|
Sims KR, Maceren JP, Strand AI, He B, Overby C, Benoit DSW. Rigor and reproducibility in polymer nanoparticle synthesis and characterization. RSC Adv 2020; 10:2513-2518. [PMID: 34631039 PMCID: PMC8496373 DOI: 10.1039/c9ra10091a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 01/07/2020] [Indexed: 01/21/2023] Open
Abstract
Standardized process improvement methods and tools were used to enhance the rigor and reproducibility of diblock copolymer nanoparticle (NP) synthesis and characterization. Models linking design parameters with NP characteristics boosted process control for NP synthesis, which may improve translation and commercialization of NP research.
Collapse
Affiliation(s)
- Kenneth R. Sims
- Dept. of Biomedical Engineering, University of RochesterRochesterNYUSA
- Translational Biomedical Science, University of Rochester School of Medicine and DentistryRochesterNYUSA
| | | | | | - Brian He
- Dept. of Statistics, University of RochesterRochesterNYUSA
| | - Clyde Overby
- Dept. of Biomedical Engineering, University of RochesterRochesterNYUSA
| | - Danielle S. W. Benoit
- Dept. of Biomedical Engineering, University of RochesterRochesterNYUSA
- Materials Science ProgramRochesterNYUSA
- Center for Oral Biology, University of RochesterRochesterNYUSA
- Center for Musculoskeletal Research, University of RochesterRochesterNYUSA
- Dept. of Chemical Engineering, University of RochesterRochesterNYUSA
| |
Collapse
|
34
|
Patel P, Meghani N, Kansara K, Kumar A. Nanotherapeutics for the Treatment of Cancer and Arthritis. Curr Drug Metab 2020; 20:430-445. [PMID: 30479211 DOI: 10.2174/1389200220666181127102720] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 10/11/2018] [Accepted: 10/11/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND Nanotechnology is gaining significant attention worldwide for the treatment of complex diseases such as AIDS (acquired immune deficiency syndrome), cancer and rheumatoid arthritis. Nanomedicine is the application of nanotechnology used for diagnosis and treatment for the disease that includes the preservation and improvement of human health by covering an area such as drug delivery using nanocarriers, nanotheranostics and nanovaccinology. The present article provides an insight into several aspects of nanomedicine such as usages of multiple types of nanocarriers, their status, advantages and disadvantages with reference to cancer and rheumatoid arthritis. METHODS An extensive search was performed on the bibliographic database for research article on nanotechnology and nanomedicine along with looking deeply into the aspects of these diseases, and how all of them are co-related. We further combined all the necessary information from various published articles and briefed to provide the current status. RESULTS Nanomedicine confers a unique technology against complex diseases which includes early diagnosis, prevention, and personalized therapy. The most common nanocarriers used globally are liposomes, polymeric nanoparticles, dendrimers, metallic nanoparticles, magnetic nanoparticles, solid lipid nanoparticles, polymeric micelles and nanotubes among others. CONCLUSION Nanocarriers are used to deliver drugs and biomolecules like proteins, antibody fragments, DNA fragments, and RNA fragments as the base of cancer biomarkers.
Collapse
Affiliation(s)
- Pal Patel
- Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad, 380009, Gujarat, India
| | - Nikita Meghani
- Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad, 380009, Gujarat, India
| | - Krupa Kansara
- Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad, 380009, Gujarat, India
| | - Ashutosh Kumar
- Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad, 380009, Gujarat, India
| |
Collapse
|
35
|
Shailender G, Patanla K, Malla RR. ShRNA-mediated matrix metalloproteinase-2 gene silencing protects normal cells and sensitizes cancer cells against ionizing-radiation induced damage. J Cell Biochem 2019; 121:1332-1352. [PMID: 31489968 DOI: 10.1002/jcb.29369] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 08/20/2019] [Indexed: 01/17/2023]
Abstract
INTRODUCTION Ionizing radiation (IR) affects healthy tissues during the treatment of cancer radiation therapy and other nuclear and radiological accidents. Some natural compounds showed nonspecific radioprotective activity with severe side effects. The present study is aimed to develop potent and specific radioprotective short hairpin RNA (shRNA), which selectively protects normal cells from IR by specifically targeting matrix metalloproteinases (MMP-2). RESULTS IR reduced the viability of human normal dermal fibroblasts (HDFs) in a dose-response manner. It enhanced the expression of MMP-2 at 10 Gy. Plasmid MMP-2shRNA (pMMP-2) reduced the IR (10 Gy) induced cytotoxicity analyzed by lactate dehydrogenase (LDH) assay, normalized IR induced cellular and morphological changes with enhanced the clonogenicity in 48 hours at 2 µg/mL. It reduced the ROS generation, released HDFs from G2 /M arrest and rescued from apoptosis analyzed by DCFDA dye, cell cycle analysis by PI stain and annexin V assay, respectively. pMMP-2 also modulates the expression of EGFR and reduced IR induced expression of DNA damage response protein, ATM and increased the expression of repair proteins, KU70/KU80, and RAD51. In addition, decreased the expression of cell cycle regulatory proteins cyclin-dependent kinases (CDK1) and Cyclin B as well as proapoptotic proteins BAX, caspase-3, and Cytochrome-C and increased the expression of survival protein, Bcl-2. In contrary pMMP-2 decreased the LDH activity, survival fraction and blocked G2 /M phase of cell cycle and increased apoptosis in MCF-7 cells. In addition, decreased the expression of EGFR, proapoptotic BAX and DNA repair proteins ATM, KU70/80 and RAD51, increased expression of cyclinB as well as CDK1. CONCLUSION Results conclude that pMMP-2 protected HDFs from IR and sensitized the MCF-7 cells. Therefore, pMMP-2 can be employed for better treatment of radiation accidents and during the treatment of radiotherapy.
Collapse
Affiliation(s)
- Gugalavath Shailender
- Cancer Biology Lab, Department of Biochemistry, GIS, GITAM (Deemed to be University), Vishakhapatnam, India
| | - Kiranmayi Patanla
- Department of Biotechnology, GIS, GITAM (Deemed to be University), Vishakhapatnam, India
| | - Rama Rao Malla
- Cancer Biology Lab, Department of Biochemistry, GIS, GITAM (Deemed to be University), Vishakhapatnam, India
| |
Collapse
|
36
|
Mitroulia A, Gavriiloglou M, Athanasiadou P, Bakopoulou A, Poulopoulos A, Panta P, Patil S, Andreadis D. Salivary Gland Stem Cells and Tissue Regeneration: An Update on Possible Therapeutic Application. J Contemp Dent Pract 2019; 20:978-986. [PMID: 31797858 DOI: 10.5005/jp-journals-10024-2620] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
The aim of this review is to combine literature and experimental data concerning the impact of salivary gland (SG) stem cells (SCs) and their therapeutic prospects in tissue regeneration. So far, SCs were isolated from human and rodent major and minor SGs that enabled their regeneration. Several scaffolds were also combined with "SCs" and different "proteins" to achieve guided differentiation, although none have been proven as ideal. A new aspect of SC therapy aims to establish a vice versa relationship between SG and other ecto- or endodermal organs such as the pancreas, liver, kidneys, and thyroid. SC therapy could be a cheap and simple, non-traumatic, and individualized therapy for medically challenging cases like xerostomia and major organ failures. Functional improvement has been achieved in these organs, but till date, the whole organ in vivo regeneration was not achieved. Concerns about malignant formations and possible failures are yet to be resolved. In this review article, we highlight the basic embryology of SGs, existence of SG SCs with a detailed exploration of various cellular markers, scaffolds for tissue engineering, and, in the later part, cover potential therapeutic applications with a special focus on the pancreas and liver. Keywords: Salivary gland stem cells, Stem cell therapy, Tissue regeneration.
Collapse
Affiliation(s)
- Aikaterini Mitroulia
- Department of Oral Medicine/Pathology, School of Dentistry, Aristotle University of Thessaloniki, Greece
| | - Marianna Gavriiloglou
- Department of Oral Medicine/Pathology, School of Dentistry, Aristotle University of Thessaloniki, Greece
| | - Poluxeni Athanasiadou
- Department of Oral Medicine/Pathology, School of Dentistry, Aristotle University of Thessaloniki, Greece
| | - Athina Bakopoulou
- Department of Prosthodontics and Implantology-Tissue Regeneration Unit, School of Dentistry, Aristotle University of Thessaloniki, Greece
| | - Athanasios Poulopoulos
- Department of Oral Medicine/Pathology, School of Dentistry, Aristotle University of Thessaloniki, Greece
| | - Prashanth Panta
- Department of Oral Medicine and Radiology, MNR Dental College and Hospital, Sangareddy, Telangana, India, Phone: +91 9701806830, e-mail:
| | - Shankargouda Patil
- Department of Maxillofacial Surgery and Diagnostic Sciences, Division of Oral Pathology, College of Dentistry, Jazan University, Jazan, Kingdom of Saudi Arabia
| | - Dimitrios Andreadis
- Department of Oral Medicine/Pathology, School of Dentistry, Aristotle University of Thessaloniki, Greece
| |
Collapse
|
37
|
Shailender G, Kumari S, Kiranmayi P, Malla RR. Effect of MMP-2 gene silencing on radiation-induced DNA damage in human normal dermal fibroblasts and breast cancer cells. Genes Environ 2019; 41:16. [PMID: 31367263 PMCID: PMC6647068 DOI: 10.1186/s41021-019-0131-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 07/12/2019] [Indexed: 02/08/2023] Open
Abstract
Introduction Diagnostic and therapeutic ionizing radiation (IR) is one of the well known long term risk factors of breast cancer. Extremely lethal consequences of IR causes double-strand breaks, which are mainly responsible for genomic instability, altered gene expression, and cell death. Findings This study evaluated the effect of matrix metalloproteinases-2 (MMP-2) gene silencing using MMP-2 shRNA expression plasmids (pMMP-2) on IR induced cytotoxicity and DNA damage by MTT, dead green, γH2AX and comet assays in human normal dermal fibroblasts (HDFs) and MCF-7 human breast cancer cells. IR has decreased the viability of HDFs and MCF-7 cells with increasing IR (2-10Gy). IR induced DNA damage in both HDFs and MCF-7 cells. However, pMMP-2 transfection has increased the viability of irradiated HDFs (10Gy) and significantly decreased the viability of irradiated MCF-7 cells (10Gy). Further, DNA damage in terms of γH2AX foci decreased with pMMP-2 transfection in irradiated HDFs (10Gy) and increased in irradiated MCF-7 cells (10Gy). In addition, MMP-2 gene silencing using pMMP-2 decreased comet tail length in irradiated HDFs but increased in irradiated MCF-7 cells. Conclusions The results conclude that pMMP-2 has protected HDFs and sensitized the MCF-7 cells from IR induced DNA damage. This differential response might be due to IR induced MMP-2 distinctive ROS generation in HDFs and MCF-7 cells. Electronic supplementary material The online version of this article (10.1186/s41021-019-0131-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gugalavath Shailender
- 1Cancer Biology Lab, Department of Biochemistry and Bioinformatics, Institute of Science, GITAM (Deemed to be University), Visakhapatnam, Andhra Pradesh India
| | - Seema Kumari
- 1Cancer Biology Lab, Department of Biochemistry and Bioinformatics, Institute of Science, GITAM (Deemed to be University), Visakhapatnam, Andhra Pradesh India
| | - Patnala Kiranmayi
- 2Department of Biotechnology, Institute of Science, GITAM Deemed to be University, Visakhapatnam, Andhra Pradesh India
| | - Rama Rao Malla
- 1Cancer Biology Lab, Department of Biochemistry and Bioinformatics, Institute of Science, GITAM (Deemed to be University), Visakhapatnam, Andhra Pradesh India
| |
Collapse
|
38
|
Garland KM, Sevimli S, Kilchrist KV, Duvall CL, Cook RS, Wilson JT. Microparticle Depots for Controlled and Sustained Release of Endosomolytic Nanoparticles. Cell Mol Bioeng 2019; 12:429-442. [PMID: 31719925 DOI: 10.1007/s12195-019-00571-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 04/22/2019] [Indexed: 12/18/2022] Open
Abstract
Introduction Nucleic acids have gained recognition as promising immunomodulatory therapeutics. However, their potential is limited by several drug delivery barriers, and there is a need for technologies that enhance intracellular delivery of nucleic acid drugs. Furthermore, controlled and sustained release is a significant concern, as the kinetics and localization of immunomodulators can influence resultant immune responses. Here, we describe the design and initial evaluation of poly(lactic-co-glycolic) acid (PLGA) microparticle (MP) depots for enhanced retention and sustained release of endosomolytic nanoparticles that enable the cytosolic delivery of nucleic acids. Methods Endosomolytic p[DMAEMA]10kD-bl-[PAA0.3-co-DMAEMA0.3-co-BMA0.4]25kD diblock copolymers were synthesized by reversible addition-fragmentation chain transfer polymerization. Polymers were electrostatically complexed with nucleic acids and resultant nanoparticles (NPs) were encapsulated in PLGA MPs. To modulate release kinetics, ammonium bicarbonate was added as a porogen. Release profiles were quantified in vitro and in vivo via quantification of fluorescently-labeled nucleic acid. Bioactivity of released NPs was assessed using small interfering RNA (siRNA) targeting luciferase as a representative nucleic acid cargo. MPs were incubated with luciferase-expressing 4T1 (4T1-LUC) breast cancer cells in vitro or administered intratumorally to 4T1-LUC breast tumors, and silencing via RNA interference was quantified via longitudinal luminescence imaging. Results Endosomolytic NPs complexed to siRNA were effectively loaded into PLGA MPs and release kinetics could be modulated in vitro and in vivo via control of MP porosity, with porous MPs exhibiting faster cargo release. In vitro, release of NPs from porous MP depots enabled sustained luciferase knockdown in 4T1 breast cancer cells over a five-day treatment period. Administered intratumorally, MPs prolonged the retention of nucleic acid within the injected tumor, resulting in enhanced and sustained silencing of luciferase relative to a single bolus administration of NPs at an equivalent dose. Conclusion This work highlights the potential of PLGA MP depots as a platform for local release of endosomolytic polymer NPs that enhance the cytosolic delivery of nucleic acid therapeutics.
Collapse
Affiliation(s)
- Kyle M Garland
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN USA
| | - Sema Sevimli
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN USA
| | - Kameron V Kilchrist
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN USA
| | - Craig L Duvall
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN USA
| | - Rebecca S Cook
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN USA.,Cancer Biology Program, Vanderbilt University, Nashville, TN USA.,Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN USA
| | - John T Wilson
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN USA.,Department of Biomedical Engineering, Vanderbilt University, Nashville, TN USA.,Cancer Biology Program, Vanderbilt University, Nashville, TN USA.,Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN USA
| |
Collapse
|
39
|
Ohm AM, Affandi T, Reyland ME. EGF receptor and PKCδ kinase activate DNA damage-induced pro-survival and pro-apoptotic signaling via biphasic activation of ERK and MSK1 kinases. J Biol Chem 2019; 294:4488-4497. [PMID: 30679314 DOI: 10.1074/jbc.ra118.006944] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 01/16/2019] [Indexed: 01/18/2023] Open
Abstract
DNA damage-mediated activation of extracellular signal-regulated kinase (ERK) can regulate both cell survival and cell death. We show here that ERK activation in this context is biphasic and that early and late activation events are mediated by distinct upstream signals that drive cell survival and apoptosis, respectively. We identified the nuclear kinase mitogen-sensitive kinase 1 (MSK1) as a downstream target of both early and late ERK activation. We also observed that activation of ERK→MSK1 up to 4 h after DNA damage depends on epidermal growth factor receptor (EGFR), as EGFR or mitogen-activated protein kinase/extracellular signal-regulated kinase kinase (MEK)/ERK inhibitors or short hairpin RNA-mediated MSK1 depletion enhanced cell death. This prosurvival response was partially mediated through enhanced DNA repair, as EGFR or MEK/ERK inhibitors delayed DNA damage resolution. In contrast, the second phase of ERK→MSK1 activation drove apoptosis and required protein kinase Cδ (PKCδ) but not EGFR. Genetic disruption of PKCδ reduced ERK activation in an in vivo irradiation model, as did short hairpin RNA-mediated depletion of PKCδ in vitro In both models, PKCδ inhibition preferentially suppressed late activation of ERK. We have shown previously that nuclear localization of PKCδ is necessary and sufficient for apoptosis. Here we identified a nuclear PKCδ→ERK→MSK1 signaling module that regulates apoptosis. We also show that expression of nuclear PKCδ activates ERK and MSK1, that ERK activation is required for MSK1 activation, and that both ERK and MSK1 activation are required for apoptosis. Our findings suggest that location-specific activation by distinct upstream regulators may enable distinct functional outputs from common signaling pathways.
Collapse
Affiliation(s)
- Angela M Ohm
- From the Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - Trisiani Affandi
- From the Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - Mary E Reyland
- From the Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| |
Collapse
|
40
|
Xie J, Wang C, Zhao F, Gu Z, Zhao Y. Application of Multifunctional Nanomaterials in Radioprotection of Healthy Tissues. Adv Healthc Mater 2018; 7:e1800421. [PMID: 30019546 DOI: 10.1002/adhm.201800421] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 06/18/2018] [Indexed: 01/06/2023]
Abstract
Radiotherapy has been extensively used in clinic for malignant tumors treatment. However, a severe challenge of it is that the ionizing radiation needed to kill tumors inevitably causes damage to surrounding normal tissues. Although some of the molecular radioprotective drugs, such as amifostine, have been used as clinical adjuvants to radio-protect healthy tissues, their shortcomings such as short systemic circulation time and fast biological clearing from the body largely hinder the sustained bioactivity. Recently, with the rapid development of nanotechnology in the biological field, the multifunctional nanomaterials not only establish powerful drug delivery systems to improve the molecular radioprotective drugs' biological availability, but also open a new route to develop neozoic radioprotective agents because some nanoparticles possess intrinsic radioprotective abilities. Therefore, considering these overwhelming superiorities, this review systematically summarizes the advances in healthy tissue radioprotection applications of multifunctional nanomaterials. Furthermore, this review also points out a perspective of nanomaterial designs for radioprotection applications and discusses the challenges and future outlooks of the nanomaterial-mediated radioprotection.
Collapse
Affiliation(s)
- Jiani Xie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety; Institute of High Energy Physics; Chinese Academy of Sciences; Beijing 100049 China
| | - Chengyan Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety; Institute of High Energy Physics; Chinese Academy of Sciences; Beijing 100049 China
| | - Feng Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety; Institute of High Energy Physics; Chinese Academy of Sciences; Beijing 100049 China
| | - Zhanjun Gu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety; Institute of High Energy Physics; Chinese Academy of Sciences; Beijing 100049 China
- College of Materials Science and Optoelectronic Technology; University of Chinese Academy of Sciences; Beijing 100049 China
| | - Yuliang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety; Institute of High Energy Physics; Chinese Academy of Sciences; Beijing 100049 China
- College of Materials Science and Optoelectronic Technology; University of Chinese Academy of Sciences; Beijing 100049 China
- CAS Center for Excellence in Nanoscience; National Center for Nanoscience and Technology of China; Chinese Academy of Sciences; Beijing 100190 China
| |
Collapse
|
41
|
Varghese J, Schmale I, Mickelsen D, Hansen M, Newlands S, Benoit D, Korshunov V, Ovitt C. Localized Delivery of Amifostine Enhances Salivary Gland Radioprotection. J Dent Res 2018; 97:1252-1259. [PMID: 29634396 PMCID: PMC6151913 DOI: 10.1177/0022034518767408] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Radiotherapy for head and neck cancers commonly causes damage to salivary gland tissue, resulting in xerostomia (dry mouth) and numerous adverse medical and quality-of-life issues. Amifostine is the only Food and Drug Administration-approved radioprotective drug used clinically to prevent xerostomia. However, systemic administration of amifostine is limited by severe side effects, including rapid decrease in blood pressure (hypotension), nausea, and a narrow therapeutic window. In this study, we demonstrate that retroductal delivery of amifostine and its active metabolite, WR-1065, to murine submandibular glands prior to a single radiation dose of 15 Gy maintained gland function and significantly increased acinar cell survival. Furthermore, in vivo stimulated saliva secretion was maintained in retrograde-treated groups at levels significantly higher than irradiated-only and systemically treated groups. In contrast to intravenous injections, retroductal delivery of WR-1065 or amifostine significantly attenuated hypotension. We conclude that localized delivery to salivary glands markedly improves radioprotection at the cellular level, as well as mitigates the adverse side effects associated with systemic administration. These results support the further development of a localized delivery system that would be compatible with the fractionated dose regimen used clinically.
Collapse
Affiliation(s)
- J.J. Varghese
- Department of Biomedical Engineering,
University of Rochester, Rochester, NY, USA
| | - I.L. Schmale
- Department of Otolaryngology, University of
Rochester, Rochester, NY, USA
| | - D. Mickelsen
- Aab Cardiovascular Research Institute,
University of Rochester, Rochester, NY, USA
| | - M.E. Hansen
- Department of Biomedical Engineering,
University of Rochester, Rochester, NY, USA
| | - S.D. Newlands
- Department of Otolaryngology, University of
Rochester, Rochester, NY, USA
- Wilmot Cancer Institute, University of
Rochester, Rochester, NY, USA
- Department of Neuroscience, University of
Rochester, Rochester, NY, USA
| | - D.S.W. Benoit
- Department of Biomedical Engineering,
University of Rochester, Rochester, NY, USA
- Center for Oral Biology, University of
Rochester, Rochester, NY, USA
- Department of Biomedical Genetics, University
of Rochester, Rochester, NY, USA
- Center for Musculoskeletal Research,
University of Rochester, Rochester, NY, USA
- Department of Orthopaedics, University of
Rochester, Rochester, NY, USA
- Department of Chemical Engineering,
University of Rochester, Rochester, NY, USA
| | - V.A. Korshunov
- Aab Cardiovascular Research Institute,
University of Rochester, Rochester, NY, USA
| | - C.E. Ovitt
- Center for Oral Biology, University of
Rochester, Rochester, NY, USA
- Department of Biomedical Genetics, University
of Rochester, Rochester, NY, USA
| |
Collapse
|
42
|
Sunavala-Dossabhoy G. Radioactive iodine: An unappreciated threat to salivary gland function. Oral Dis 2018; 24:198-201. [PMID: 29480611 DOI: 10.1111/odi.12774] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 08/22/2017] [Indexed: 02/06/2023]
Abstract
Thyroid cancer is an endocrine malignancy whose prevalence is increasing in the United States. Nearly 57,000 new cases of thyroid cancer are estimated to be diagnosed in 2017. The standard of care for differentiated thyroid cancer is thyroidectomy followed by ablation of thyroid remnants with high-dose radioactive iodine (131 I). Apart from thyroid glands, 131 I accumulates in cells of salivary glands and compromises its function. Xerostomia is, therefore, a frequent and often persistent complaint of patients. Despite adoption of standard preventive measures, parenchymal damage and chronic salivary dysfunction are observed in a substantial number of patients. Saliva is important for oral homeostasis, and its reduction increases the risk of oral morbidity. As differentiated thyroid cancer patients have an excellent survival rate, preservation of salivary gland function carries added significance. A focus on treatments that preserve or restore long-term salivary flow can significantly improve the quality of life of thyroid cancer survivors.
Collapse
Affiliation(s)
- G Sunavala-Dossabhoy
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center and Feist-Weiller Cancer Center, Shreveport, LA, USA
| |
Collapse
|
43
|
Wang Y, Zhang S, Benoit DSW. Degradable poly(ethylene glycol) (PEG)-based hydrogels for spatiotemporal control of siRNA/nanoparticle delivery. J Control Release 2018; 287:58-66. [PMID: 30077736 DOI: 10.1016/j.jconrel.2018.08.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 07/21/2018] [Accepted: 08/01/2018] [Indexed: 01/02/2023]
Abstract
Despite great therapeutic potential and development of a repertoire of delivery approaches addressing degradation and cellular uptake limitations, small interfering RNA (siRNA) exhibits poorly controlled tissue-specific localization. To overcome this hurdle, siRNA was complexed to nanoparticles (siRNA/NP) embedded within poly(ethylene glycol)-poly(lactic acid)-dimethacrylate (PEG-PLA-DM) hydrogels with the hypothesis that hydrolytic degradation of ester bonds within the PLA crosslinks would provide tunable, sustained siRNA/NP release. Hydrogels formed from macromers with increasing PLA repeats (e.g., 0 or non-degradable to 5 PLA repeats flanking PEG cores) and mixtures of nondegradable PEG-DM (0 PLA) and degradable PEG-PLA5-DM macromers were investigated. Hydrogels formed only with fully degradable crosslinks degraded rapidly over 6-14 days with limited control over siRNA/NP release. However, hydrogels formed with mixtures of nondegradable and 20%, 50%, and 100% degradable macromers resulted in siRNA/NP release over 3 to 28 days. Subsequently, gene silencing mediated by released siRNA/NP from 20% and 50% degradable hydrogels was sustained for ~28 days. Furthermore, in vivo imaging showed that hydrogel degradation controlled siRNA/NP localization, with sustained siRNA/NP release from 0%, 20% and 50% degradable hydrogels over 28, 21, and 15 days. A model, which accounts for hydrogel degradation rate and siRNA/NP diffusion, was developed to enable rational design of siRNA/NP delivery depots. Overall, this study shows that siRNA/NP release can be sustained via encapsulation in hydrogels with tunable degradation kinetics and modeled for a priori design of delivery depots.
Collapse
Affiliation(s)
- Yuchen Wang
- Department of Biomedical Engineering, 308 Robert B. Goergen Hall, University of Rochester, Rochester, NY 14627, USA; Center for Musculoskeletal Research, 601 Elmwood Ave, University of Rochester Medical Center, Rochester, NY 14642, USA.
| | - Sue Zhang
- Department of Biomedical Engineering, 308 Robert B. Goergen Hall, University of Rochester, Rochester, NY 14627, USA.
| | - Danielle S W Benoit
- Department of Biomedical Engineering, 308 Robert B. Goergen Hall, University of Rochester, Rochester, NY 14627, USA; Center for Musculoskeletal Research, 601 Elmwood Ave, University of Rochester Medical Center, Rochester, NY 14642, USA; Departments of Chemical Engineering, 4510 Wegmans Hall, University of Rochester, Rochester, NY 14627, USA; Departments of Orthopaedics, 601 Elmwood Ave, University of Rochester, Rochester, NY 14642, USA; Departments of Biomedical Genetics, 601 Elmwood Ave, University of Rochester, Rochester, NY 14642, USA.
| |
Collapse
|
44
|
Varghese JJ, Schmale IL, Hansen ME, Newlands SD, Benoit DSW, Ovitt CE. Murine Salivary Functional Assessment via Pilocarpine Stimulation Following Fractionated Radiation. J Vis Exp 2018. [PMID: 29781993 DOI: 10.3791/57522] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Hyposalivation is commonly observed in the autoimmune reaction of Sjögren's syndrome or following radiation injury to the major salivary glands. In these cases, questions remain regarding disease pathogenesis and effective interventions. An optimized technique that allows functional assessment of the salivary glands is invaluable for investigating exocrine gland biology, dysfunction, and therapeutics. Here, we present a step by step approach to performing pilocarpine stimulated saliva secretion, including tracheostomy and the dissection of the three major murine salivary glands. We also detail the appropriate murine head and neck anatomy accessed during these techniques. This approach is scalable, allowing for multiple mice to be processed simultaneously, thus improving the efficiency of the work flow. We aim to improve the reproducibility of these methods, each of which has further applications within the field. In addition to saliva collection, we discuss metrics for quantifying and normalizing functional capacity of these tissues. Representative data are included from submandibular glands with depressed salivary gland function 2 weeks following fractionated radiation (4 doses of 6.85 Gy).
Collapse
Affiliation(s)
- Jomy J Varghese
- Department of Biomedical Engineering, University of Rochester;
| | - Isaac L Schmale
- Department of Otolaryngology, University of Rochester Medical Center
| | | | - Shawn D Newlands
- Department of Otolaryngology, University of Rochester Medical Center
| | | | | |
Collapse
|
45
|
Varghese JJ, Schmale IL, Wang Y, Hansen ME, Newlands SD, Ovitt CE, Benoit DSW. Retroductal Nanoparticle Injection to the Murine Submandibular Gland. J Vis Exp 2018. [PMID: 29781991 DOI: 10.3791/57521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Two common goals of salivary gland therapeutics are prevention and cure of tissue dysfunction following either autoimmune or radiation injury. By locally delivering bioactive compounds to the salivary glands, greater tissue concentrations can be safely achieved versus systemic administration. Furthermore, off target tissue effects from extra-glandular accumulation of material can be dramatically reduced. In this regard, retroductal injection is a widely used method for investigating both salivary gland biology and pathophysiology. Retroductal administration of growth factors, primary cells, adenoviral vectors, and small molecule drugs has been shown to support gland function in the setting of injury. We have previously shown the efficacy of a retroductally injected nanoparticle-siRNA strategy to maintain gland function following irradiation. Here, a highly effective and reproducible method to administer nanomaterials to the murine submandibular gland through Wharton's duct is detailed (Figure 1). We describe accessing the oral cavity and outline the steps necessary to cannulate Wharton's duct, with further observations serving as quality checks throughout the procedure.
Collapse
Affiliation(s)
- Jomy J Varghese
- Department of Biomedical Engineering, University of Rochester;
| | - Isaac L Schmale
- Department of Otolaryngology Head and Neck Surgery, University of Rochester Medical Center
| | - Yuchen Wang
- Department of Biomedical Engineering, University of Rochester
| | | | - Shawn D Newlands
- Department of Otolaryngology Head and Neck Surgery, University of Rochester Medical Center
| | | | | |
Collapse
|
46
|
Maruyama CL, Monroe MM, Hunt JP, Buchmann L, Baker OJ. Comparing human and mouse salivary glands: A practice guide for salivary researchers. Oral Dis 2018; 25:403-415. [PMID: 29383862 DOI: 10.1111/odi.12840] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 01/05/2018] [Accepted: 01/23/2018] [Indexed: 12/13/2022]
Abstract
Mice are a widely utilized in vivo model for translational salivary gland research but must be used with caution. Specifically, mouse salivary glands are similar in many ways to human salivary glands (i.e., in terms of their anatomy, histology, and physiology) and are both readily available and relatively easy and affordable to maintain. However, there are some significant differences between the two organisms, and by extension, the salivary glands derived from them must be taken into account for translational studies. The current review details pertinent similarities and differences between human and mouse salivary glands and offers practical guidelines for using both for research purposes.
Collapse
Affiliation(s)
- C L Maruyama
- University of Utah School of Dentistry, Salt Lake City, UT, USA
| | - M M Monroe
- Department of Otolaryngology-Head and Neck Surgery, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - J P Hunt
- Department of Otolaryngology-Head and Neck Surgery, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - L Buchmann
- Department of Otolaryngology-Head and Neck Surgery, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - O J Baker
- University of Utah School of Dentistry, Salt Lake City, UT, USA
| |
Collapse
|
47
|
Serpine1 Knockdown Enhances MMP Activity after Flexor Tendon Injury in Mice: Implications for Adhesions Therapy. Sci Rep 2018; 8:5810. [PMID: 29643421 PMCID: PMC5895578 DOI: 10.1038/s41598-018-24144-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 03/27/2018] [Indexed: 12/12/2022] Open
Abstract
Injuries to flexor tendons can be complicated by fibrotic adhesions, which severely impair the function of the hand. Adhesions have been associated with TGF-β1, which causes upregulation of PAI-1, a master suppressor of protease activity, including matrix metalloproteinases (MMP). In the present study, the effects of inhibiting PAI-1 in murine zone II flexor tendon injury were evaluated utilizing knockout (KO) mice and local nanoparticle-mediated siRNA delivery. In the PAI-1 KO murine model, reduced adherence of injured tendon to surrounding subcutaneous tissue and accelerated recovery of normal biomechanical properties compared to wild type controls were observed. Furthermore, MMP activity was significantly increased in the injured tendons of the PAI-1 KO mice, which could explain their reduced adhesions and accelerated remodeling. These data demonstrate that PAI-1 mediates fibrotic adhesions in injured flexor tendons by suppressing MMP activity. In vitro siRNA delivery to silence Serpine1 expression after treatment with TGF-β1 increased MMP activity. Nanoparticle-mediated delivery of siRNA targeting Serpine1 in injured flexor tendons significantly reduced target gene expression and subsequently increased MMP activity. Collectively, the data demonstrate that PAI-1 can be a druggable target for treating adhesions and accelerating the remodeling of flexor tendon injuries.
Collapse
|
48
|
Yang QQ, Shao YX, Zhang LZ, Zhou YL. Therapeutic strategies for flexor tendon healing by nanoparticle-mediated co-delivery of bFGF and VEGFA genes. Colloids Surf B Biointerfaces 2018; 164:165-176. [DOI: 10.1016/j.colsurfb.2018.01.031] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 01/15/2018] [Accepted: 01/18/2018] [Indexed: 01/10/2023]
|
49
|
Wang Y, Newman MR, Benoit DSW. Development of controlled drug delivery systems for bone fracture-targeted therapeutic delivery: A review. Eur J Pharm Biopharm 2018; 127:223-236. [PMID: 29471078 DOI: 10.1016/j.ejpb.2018.02.023] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 02/17/2018] [Accepted: 02/17/2018] [Indexed: 01/09/2023]
Abstract
Impaired fracture healing is a major clinical problem that can lead to patient disability, prolonged hospitalization, and significant financial burden. Although the majority of fractures heal using standard clinical practices, approximately 10% suffer from delayed unions or non-unions. A wide range of factors contribute to the risk for nonunions including internal factors, such as patient age, gender, and comorbidities, and external factors, such as the location and extent of injury. Current clinical approaches to treat nonunions include bone grafts and low-intensity pulsed ultrasound (LIPUS), which realizes clinical success only to select patients due to limitations including donor morbidities (grafts) and necessity of fracture reduction (LIPUS), respectively. To date, therapeutic approaches for bone regeneration rely heavily on protein-based growth factors such as INFUSE, an FDA-approved scaffold for delivery of bone morphogenetic protein 2 (BMP-2). Small molecule modulators and RNAi therapeutics are under development to circumvent challenges associated with traditional growth factors. While preclinical studies has shown promise, drug delivery has become a major hurdle stalling clinical translation. Therefore, this review overviews current therapies employed to stimulate fracture healing pre-clinically and clinically, including a focus on drug delivery systems for growth factors, parathyroid hormone (PTH), small molecules, and RNAi therapeutics, as well as recent advances and future promise of fracture-targeted drug delivery.
Collapse
Affiliation(s)
- Yuchen Wang
- Department of Biomedical Engineering, 308 Robert B. Goergen Hall, University of Rochester, Rochester, NY 14627, USA; Center for Musculoskeletal Research, 601 Elmwood Ave, University of Rochester Medical Center, Rochester, NY 14642, USA.
| | - Maureen R Newman
- Department of Biomedical Engineering, 308 Robert B. Goergen Hall, University of Rochester, Rochester, NY 14627, USA; Center for Musculoskeletal Research, 601 Elmwood Ave, University of Rochester Medical Center, Rochester, NY 14642, USA.
| | - Danielle S W Benoit
- Department of Biomedical Engineering, 308 Robert B. Goergen Hall, University of Rochester, Rochester, NY 14627, USA; Center for Musculoskeletal Research, 601 Elmwood Ave, University of Rochester Medical Center, Rochester, NY 14642, USA; Department of Chemical Engineering, 4517 Wegmans Hall, University of Rochester, Rochester, NY 14627, USA; Department of Orthopaedics, 601 Elmwood Ave, University of Rochester, Rochester, NY 14642, USA; Department of Biomedical Genetics, 601 Elmwood Ave, University of Rochester, Rochester, NY 14642, USA; Center for Oral Biology, 601 Elmwood Ave, University of Rochester Medical Center, Rochester, NY 14642, USA.
| |
Collapse
|
50
|
Malcolm DW, Varghese JJ, Sorrells JE, Ovitt CE, Benoit DSW. The Effects of Biological Fluids on Colloidal Stability and siRNA Delivery of a pH-Responsive Micellar Nanoparticle Delivery System. ACS NANO 2018; 12:187-197. [PMID: 29232104 PMCID: PMC5987762 DOI: 10.1021/acsnano.7b05528] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Nanoparticles (NPs) interact with complex protein milieus in biological fluids, and these interactions have profound effects on NP physicochemical properties and function. Surprisingly, most studies neglect the impact of these interactions, especially with respect to NP-mediated siRNA delivery. Here, the effects of serum on colloidal stability and siRNA delivery of a pH-responsive micellar NP delivery system were characterized. Results show cationic NP-siRNA complexes aggregate in ≥2% serum in buffer, but are stable in serum-free media. Furthermore, nonaggregated NP-siRNA delivered in serum-free media result in 4-fold greater siRNA uptake in vitro, compared to aggregated NP-siRNA. Interestingly, pH-responsive membrane lysis behavior, which is required for endosomal escape, and NP-siRNA dissociation, necessary for gene knockdown, are significantly reduced in serum. Consistent with these data, nonaggregated NP-siRNA in serum-free conditions result in highly efficient gene silencing, even at doses as low as 5 nM siRNA. NP-siRNA diameter was measured at albumin and IgG levels mimicking biological fluids. Neither albumin nor IgG alone induces NP-siRNA aggregation, implicating other serum proteins in NP colloidal instability. Finally, as a proof-of-principle that stability is maintained in established in vivo models, transmission electron microscopy reveals NP-siRNA are taken up by ductal epithelial cells in a nonaggregated state when injected retroductally into mouse salivary glands in vivo. Overall, this study shows serum-induced NP-siRNA aggregation significantly diminishes efficiency of siRNA delivery by reducing uptake, pH-responsive membrane lysis activity, and NP-siRNA dissociation. Moreover, these results highlight the importance of local NP-mediated drug delivery and are broadly applicable to other drug delivery systems.
Collapse
Affiliation(s)
- Dominic W. Malcolm
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| | - Jomy J. Varghese
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| | - Janet E. Sorrells
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
| | - Catherine E. Ovitt
- Center for Oral Biology, University of Rochester, Rochester, NY, USA
- Department of Biomedical Genetics, University of Rochester, Rochester, NY, USA
| | - Danielle S. W. Benoit
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
- Department of Chemical Engineering, University of Rochester, Rochester, NY, USA
- Corresponding Author Contact Information: Danielle S. W. Benoit, Ph.D., 308 Robert B. Goergen Hall,, Department of Biomedical Engineering, University of Rochester, Rochester, NY 14627, USA.,
| |
Collapse
|