1
|
Gurriaran-Rodriguez U, Kodippili K, Datzkiw D, Javandoost E, Xiao F, Rejas MT, Rudnicki MA. Wnt7a is required for regeneration of dystrophic skeletal muscle. Skelet Muscle 2024; 14:34. [PMID: 39702274 DOI: 10.1186/s13395-024-00367-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 12/04/2024] [Indexed: 12/21/2024] Open
Abstract
Intramuscular injection of Wnt7a has been shown to accelerate and augment skeletal muscle regeneration and to ameliorate dystrophic progression in mdx muscle, a model for Duchenne muscular dystrophy (DMD). Here, we assessed muscle regeneration and function in wild type (WT) and mdx mice where Wnt7a was deleted in muscle using a conditional Wnt7a floxed allele and a Myf5-Cre driver. We found that both WT and mdx mice lacking Wnt7a in muscle, exhibited marked deficiencies in muscle regeneration at 21 d following cardiotoxin (CTX) induced injury. Unlike WT, deletion of Wnt7a in mdx resulted in decreased force generation prior to CTX injury. However, both WT and mdx muscle lacking Wnt7a displayed decreased force generation following CTX injection. Notably the regeneration deficit in mdx mice was rescued by a single tail vein injection of extracellular vesicles containing Wnt7a (Wnt7a-EVs). Therefore, we conclude that the regenerative capacity of muscle in mdx mice is highly dependant on the upregulation of endogenous Wnt7a following injury, and that systemic delivery of Wnt7a-EVs represents a therapeutic strategy for treating DMD.
Collapse
MESH Headings
- Animals
- Regeneration
- Mice, Inbred mdx
- Wnt Proteins/metabolism
- Wnt Proteins/genetics
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/physiopathology
- Muscle, Skeletal/drug effects
- Muscular Dystrophy, Duchenne/genetics
- Muscular Dystrophy, Duchenne/physiopathology
- Muscular Dystrophy, Duchenne/metabolism
- Muscular Dystrophy, Duchenne/pathology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Male
- Muscular Dystrophy, Animal/genetics
- Muscular Dystrophy, Animal/metabolism
- Muscular Dystrophy, Animal/physiopathology
- Muscular Dystrophy, Animal/pathology
Collapse
Affiliation(s)
- Uxia Gurriaran-Rodriguez
- Ottawa Hospital Research Institute Regenerative Medicine Program, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- CIC bioGUNE, Bizkaia Technology Park, Derio, 48160, Spain
| | - Kasun Kodippili
- Ottawa Hospital Research Institute Regenerative Medicine Program, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - David Datzkiw
- Ottawa Hospital Research Institute Regenerative Medicine Program, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Ehsan Javandoost
- Ottawa Hospital Research Institute Regenerative Medicine Program, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Fan Xiao
- Ottawa Hospital Research Institute Regenerative Medicine Program, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Maria Teresa Rejas
- Electron Microscopy Facility, Centro de Biología Molecular, Severo Ochoa. CSIC, Madrid, Spain
| | - Michael A Rudnicki
- Ottawa Hospital Research Institute Regenerative Medicine Program, Ottawa, ON, Canada.
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
2
|
Gurriaran-Rodriguez U, Datzkiw D, Radusky LG, Esper M, Javandoost E, Xiao F, Ming H, Fisher S, Marina A, De Repentigny Y, Kothary R, Azkargorta M, Elortza F, Rojas AL, Serrano L, Hierro A, Rudnicki MA. Identification of the Wnt signal peptide that directs secretion on extracellular vesicles. SCIENCE ADVANCES 2024; 10:eado5914. [PMID: 39661666 PMCID: PMC11633749 DOI: 10.1126/sciadv.ado5914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 11/05/2024] [Indexed: 12/13/2024]
Abstract
Wnt proteins are hydrophobic glycoproteins that are nevertheless capable of long-range signaling. We found that Wnt7a is secreted long distance on the surface of extracellular vesicles (EVs) following muscle injury. We defined a signal peptide region in Wnts required for secretion on EVs, termed exosome-binding peptide (EBP). Addition of EBP to an unrelated protein directed secretion on EVs. Palmitoylation and the signal peptide were not required for Wnt7a-EV secretion. Coatomer was identified as the EV-binding protein for the EBP. Analysis of cocrystal structures, binding thermodynamics, and mutagenesis found that a dilysine motif mediates EBP binding to coatomer with a conserved function across the Wnt family. We showed that EBP is required for Wnt7a bioactivity when expressed in vivo during regeneration. Overall, our study has elucidated the structural basis and singularity of Wnt secretion on EVs, alternatively to canonical secretion, opening avenues for innovative therapeutic targeting strategies and systemic protein delivery.
Collapse
Affiliation(s)
- Uxia Gurriaran-Rodriguez
- Ottawa Hospital Research Institute, Regenerative Medicine Program, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - David Datzkiw
- Ottawa Hospital Research Institute, Regenerative Medicine Program, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Leandro G. Radusky
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain
| | - Marie Esper
- Ottawa Hospital Research Institute, Regenerative Medicine Program, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Ehsan Javandoost
- Ottawa Hospital Research Institute, Regenerative Medicine Program, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Fan Xiao
- Ottawa Hospital Research Institute, Regenerative Medicine Program, Ottawa, Ontario, Canada
| | - Hong Ming
- Ottawa Hospital Research Institute, Regenerative Medicine Program, Ottawa, Ontario, Canada
| | - Solomon Fisher
- Ottawa Hospital Research Institute, Regenerative Medicine Program, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Alberto Marina
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Yves De Repentigny
- Ottawa Hospital Research Institute, Regenerative Medicine Program, Ottawa, Ontario, Canada
| | - Rashmi Kothary
- Ottawa Hospital Research Institute, Regenerative Medicine Program, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Mikel Azkargorta
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Felix Elortza
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Adriana L. Rojas
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Luis Serrano
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Aitor Hierro
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Michael A. Rudnicki
- Ottawa Hospital Research Institute, Regenerative Medicine Program, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
3
|
Gurriaran-Rodriguez U, De Repentigny Y, Kothary R, Rudnicki MA. Isolation of small extracellular vesicles from regenerating muscle tissue using tangential flow filtration and size exclusion chromatography. Skelet Muscle 2024; 14:22. [PMID: 39394606 PMCID: PMC11468478 DOI: 10.1186/s13395-024-00355-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 09/30/2024] [Indexed: 10/13/2024] Open
Abstract
We have recently made the strikingly discovery that upon a muscle injury, Wnt7a is upregulated and secreted from new regenerating myofibers on the surface of exosomes to elicit its myogenerative response distally. Despite recent advances in extracellular vesicle (EVs) isolation from diverse tissues, there is still a lack of specific methodology to purify EVs from muscle tissue. To eliminate contamination with non-EV secreted proteins and cytoplasmic fragments, which are typically found when using classical methodology, such as ultracentrifugation, we adapted a protocol combining Tangential Flow Filtration (TFF) and Size Exclusion Chromatography (SEC). We found that this approach allows simultaneous purification of Wnt7a, bound to EVs (retentate fraction) and free non-EV Wnt7a (permeate fraction). Here we described this optimized protocol designed to specifically isolate EVs from hind limb muscle explants, without cross-contamination with other sources of non-EV bounded proteins. The first step of the protocol is to remove large EVs with sequential centrifugation. Extracellular vesicles are then concentrated and washed in exchange buffer by TFF. Lastly, SEC is performed to remove any soluble protein traces remaining after TFF. Overall, this procedure can be used to isolate EVs from conditioned media or biofluid that contains EVs derived from any cell type or tissue, improving reproducibility, efficiency, and purity of EVs preparations. Our purification protocol results in high purity EVs that maintain structural integrity and thus fully compatible with in vitro and in vivo bioactivity and analytic assays.
Collapse
Affiliation(s)
- Uxia Gurriaran-Rodriguez
- Ottawa Hospital Research Institute, Regenerative Medicine Program, Ottawa, ON, Canada.
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.
- CIC bioGUNE, Bizkaia Technology Park, Derio, 48160, Spain.
| | - Yves De Repentigny
- Ottawa Hospital Research Institute, Regenerative Medicine Program, Ottawa, ON, Canada
| | - Rashmi Kothary
- Ottawa Hospital Research Institute, Regenerative Medicine Program, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Michael A Rudnicki
- Ottawa Hospital Research Institute, Regenerative Medicine Program, Ottawa, ON, Canada.
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.
- Regenerative Medicine Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada.
| |
Collapse
|
4
|
Toumaj N, Salehi M, Zamani S, Arabpour Z, Djalian AR, Rahmati M. Development of alginate/chitosan hydrogel loaded with obestatin and evaluation of collagen type I, III, VEGF and TGF-β 1 gene expression for skin repair in a rat model (in vitro and in vitro study). Skin Res Technol 2024; 30:e70018. [PMID: 39167033 PMCID: PMC11337927 DOI: 10.1111/srt.70018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 08/04/2024] [Indexed: 08/23/2024]
Abstract
BACKGROUND Skin injuries have long been recognized as a prevalent type of physical injury. As a result, numerous research studies have been performed to discover an effective mechanism for wound healing. Therefore, tissue engineering of skin has developed as a potential solution for traditional methods of treating skin injuries. METHODS AND MATERIALS Alginate/Chitosan hydrogel was mixed with 1, 10, 100, and 150 µM Obestatin, and evaluated the morphology, cumulative release, hemocompatibility and cytocompatibility, water absorption, cell viability, weight loss, and antibacterial characteristics of three-dimensional (3D) alginate (Alg) and chitosan (Cs) hydrogels during the process of wound curing. Various concentrations of Obestatin (Obes) were utilized for this purpose. Finally, the hydrogels that were made were tested on a full-thickness dermal wound in a Wistar rat model. The curative effects were determined by analyzing RNA expression and examining tissue stained with Masson's trichrome (MT) and hematoxylin-eosin (H&E). RESULTS The biodegradability of this hydrogel was verified using weight loss testing, which demonstrated a reduction of around 90% after a period of 3 days. Furthermore, the MTT assay demonstrated that hydrogels have a beneficial effect on cell proliferation without inducing any harmful effects. Furthermore, the hydrogels produced demonstrated higher wound closure in vivo compared to the wounds treated with gauze (negative control group). Among the hydrogel groups, the chitosan/alginate/obestatin 100 µM group exhibited the apical percentage of wound closure, gene expression, and secondary epithelialization, but in 150 µM concentrations, we saw a lower rate of cell growth and proliferation and increase in hemolysis. In addition, RT-PCR analysis demonstrated that a concentration of 100 µM obestatin resulted in an upregulation in the expression of mRNA for vascular endothelial growth factor (VEGF), collagen type I & type III, and transforming growth factor-beta (TGF-β). CONCLUSION The present study suggests that 3D Alg/Cs hydrogels with a concentration of 100 µM obestatin have the potential for clinical application in the treatment of skin injuries.
Collapse
Affiliation(s)
- Nazanin Toumaj
- Student Research Committee, School of MedicineShahroud University of Medical SciencesShahroudIran
| | - Majid Salehi
- Tissue Engineering and Stem Cells Research CenterShahroud University of Medical SciencesShahroudIran
- Department of Tissue Engineering, School of MedicineShahroud University of Medical SciencesShahroudIran
| | - Sepehr Zamani
- Student Research Committee, School of MedicineShahroud University of Medical SciencesShahroudIran
| | - Zohreh Arabpour
- Department of Ophthalmology and Visual SciencesUniversity of Illinois at ChicagoChicagoIllinoisUSA
| | - Ali R. Djalian
- Department of Ophthalmology and Visual SciencesUniversity of Illinois at ChicagoChicagoIllinoisUSA
| | - Majid Rahmati
- Department of Medical Biotechnology, School of MedicineShahroud University of Medical SciencesShahroudIran
| |
Collapse
|
5
|
Mitra A, Mandal S, Bose B, Shenoy P S. Unlocking the Potential of Obestatin: A Novel Peptide Intervention for Skeletal Muscle Regeneration and Prevention of Atrophy. Mol Biotechnol 2024; 66:948-959. [PMID: 38198052 DOI: 10.1007/s12033-023-01011-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 11/27/2023] [Indexed: 01/11/2024]
Abstract
Obestatin is derived from the same gene as that of ghrelin and their functions were perceived to be antagonistic. Recent developments have shown that although they are known to have contradictory functions, effect of obestatin on skeletal muscle regeneration is similar to that of ghrelin. Obestatin works through a receptor called GPR39, a ghrelin and motilin family receptor and transduces signals in skeletal muscle similar to that of ghrelin. Not only there is a similarity in the receptor family, but also obestatin targets similar proteins and transcription factors as that of ghrelin (for example, FoxO family members) for salvaging skeletal muscle atrophy. Moreover, like ghrelin, obestatin also works by inducing the transcription of Pax7 which is required for muscle stem cell mobilisation. Hence, there are quite some evidences which points to the fact that obestatin can be purposed as a peptide intervention to prevent skeletal muscle wasting and induce myogenesis. This review elaborates these aspects of obestatin which can be further exploited and addressed to bring obestatin as a clinical intervention towards preventing skeletal muscle atrophy and sarcopenia.
Collapse
Affiliation(s)
- Akash Mitra
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Deralakatte, Mangalore, Karnataka, 575018, India
| | - Samanwita Mandal
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Deralakatte, Mangalore, Karnataka, 575018, India
| | - Bipasha Bose
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Deralakatte, Mangalore, Karnataka, 575018, India
| | - Sudheer Shenoy P
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Deralakatte, Mangalore, Karnataka, 575018, India.
| |
Collapse
|
6
|
Gurriaran-Rodriguez U, Rudnicki MA. Isolation of small extracellular vesicles from regenerating muscle tissue using Tangential Flow Filtration and Size Exclusion Chromatography. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.14.580358. [PMID: 38405765 PMCID: PMC10888854 DOI: 10.1101/2024.02.14.580358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
We have recently made the strikingly discovery that upon a muscle injury, Wnt7a is upregulated and secreted from new regenerating myofibers on the surface of exosomes to elicit its myogenerative response distally. Despite recent advances in extracellular vesicle (EVs) isolation from diverse tissues, there is still a lack of specific methodology to purify EVs from muscle tissue. To eliminate contamination with non-EV secreted proteins and cytoplasmic fragments, which are typically found when using classical methodology, such as ultracentrifugation, we adapted a protocol combining Tangential Flow Filtration (TFF) and Size Exclusion Chromatography (SEC). We found that this approach allows simultaneous purification of Wnt7a, bound to EVs (retentate fraction) and free non-EV Wnt7a (permeate fraction). Here we described this optimized protocol designed to specifically isolate EVs from hind limb muscle explants, without cross-contamination with other sources of non-EV bounded proteins. The first step of the protocol is to remove large EVs with sequential centrifugation. Extracellular vesicles are then concentrated and washed in exchange buffer by TFF. Lastly, SEC is performed to remove any soluble protein traces remaining after TFF. Overall, this procedure can be used to isolate EVs from conditioned media or biofluid that contains EVs derived from any cell type or tissue, improving reproducibility, efficiency, and purity of EVs preparations. Our purification protocol results in high purity EVs that maintain structural integrity and thus fully compatible with in vitro and in vivo bioactivity and analytic assays.
Collapse
|
7
|
Gurriaran-Rodriguez U, Kodippili K, Datzkiw D, Javandoost E, Xiao F, Rejas MT, Rudnicki MA. Wnt7a is Required for Regeneration of Dystrophic Skeletal Muscle. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.24.577041. [PMID: 38328077 PMCID: PMC10849716 DOI: 10.1101/2024.01.24.577041] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Intramuscular injection of Wnt7a has been shown to accelerate and augment skeletal muscle regeneration and to ameliorate dystrophic progression in mdx muscle, a model for Duchenne muscular dystrophy (DMD). However, loss-of-function studies to investigate the requirement for Wnt7a in muscle regeneration has not been evaluated. Here, we assessed muscle regeneration and function in wild type (WT) and mdx mice where Wnt7a was specifically deleted in muscle using a conditional Wnt7a floxed allele and a Myf5-Cre driver. We found that both WT and mdx mice with deletion of Wnt7a in muscle, exhibited marked deficiencies in muscle regeneration at 21 d following cardiotoxin (CTX) induced injury. Unlike WT, deletion of Wnt7a in mdx resulted in a marked decrease in specific force generation prior to CTX injury. However, both WT and mdx muscle lacking Wnt7a displayed decreased specific force generation following CTX injection. Notably the regeneration deficit observed in mdx mice lacking Wnt7a in muscle was rescued by a single tail vein injection of an extracellular vesicle preparation containing Wnt7a (Wnt7a-EVs). Therefore, we conclude that the regenerative capacity of muscle in mdx mice is due to the upregulation of endogenous Wnt7a following injury, and that systemic delivery of Wnt7a-EVs represents a therapeutic strategy for treating DMD.
Collapse
Affiliation(s)
- Uxia Gurriaran-Rodriguez
- Ottawa Hospital Research Institute, Regenerative Medicine Program, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Kasun Kodippili
- Ottawa Hospital Research Institute, Regenerative Medicine Program, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - David Datzkiw
- Ottawa Hospital Research Institute, Regenerative Medicine Program, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Ehsan Javandoost
- Ottawa Hospital Research Institute, Regenerative Medicine Program, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Fan Xiao
- Ottawa Hospital Research Institute, Regenerative Medicine Program, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Maria Teresa Rejas
- Electron Microscopy Facility, Centro de Biología Molecular, Severo Ochoa. CSIC, Madrid, Spain
| | - Michael A. Rudnicki
- Ottawa Hospital Research Institute, Regenerative Medicine Program, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
8
|
Gurriaran-Rodriguez U, Datzkiw D, Radusky LG, Esper M, Xiao F, Ming H, Fisher S, Rojas MA, De Repentigny Y, Kothary R, Rojas AL, Serrano L, Hierro A, Rudnicki MA. Wnt binding to Coatomer proteins directs secretion on exosomes independently of palmitoylation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.30.542914. [PMID: 37398399 PMCID: PMC10312507 DOI: 10.1101/2023.05.30.542914] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Wnt proteins are secreted hydrophobic glycoproteins that act over long distances through poorly understood mechanisms. We discovered that Wnt7a is secreted on extracellular vesicles (EVs) following muscle injury. Structural analysis identified the motif responsible for Wnt7a secretion on EVs that we term the Exosome Binding Peptide (EBP). Addition of the EBP to an unrelated protein directed secretion on EVs. Disruption of palmitoylation, knockdown of WLS, or deletion of the N-terminal signal peptide did not affect Wnt7a secretion on purified EVs. Bio-ID analysis identified Coatomer proteins as candidates responsible for loading Wnt7a onto EVs. The crystal structure of EBP bound to the COPB2 coatomer subunit, the binding thermodynamics, and mutagenesis experiments, together demonstrate that a dilysine motif in the EBP mediates binding to COPB2. Other Wnts contain functionally analogous structural motifs. Mutation of the EBP results in a significant impairment in the ability of Wnt7a to stimulate regeneration, indicating that secretion of Wnt7a on exosomes is critical for normal regeneration in vivo . Our studies have defined the structural mechanism that mediates binding of Wnt7a to exosomes and elucidated the singularity of long-range Wnt signalling.
Collapse
|
9
|
Shen D, Sugiyama Y, Ishida K, Fuseya S, Ishida T, Kawamata M, Tanaka S. Subfascial infiltration of 0.5% ropivacaine, but not 0.25% ropivacaine, exacerbates damage and inflammation in surgically incised abdominal muscles of rats. Sci Rep 2022; 12:9409. [PMID: 35672375 PMCID: PMC9174254 DOI: 10.1038/s41598-022-13628-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 05/26/2022] [Indexed: 11/08/2022] Open
Abstract
Ropivacaine-induced myotoxicity in surgically incised muscles has not been fully investigated. We evaluated the effects of infiltration anesthesia with ropivacaine on damage, inflammation and regeneration in the incised muscles of rats undergoing laparotomy. Ropivacaine or saline was infiltrated below the muscle fascia over the incised muscles. Pain-related behaviors and histological muscle damage were assessed. Macrophage infiltration at days 2 and 5 and proliferation of satellite cells at day 5 were detected by CD68 and MyoD immunostaining, respectively. Pain-related behaviors were inhibited by 0.25% and 0.5% of ropivacaine for 2 h after surgery. Single infiltration of 0.5% ropivacaine did not induce injury in intact muscles without incision, but single and repeated infiltration of 0.5% ropivacaine significantly augmented laparotomy-induced muscle injury and increased the numbers of CD68-positve macrophages and MyoD-positive cells compared to those in rats with infiltration of saline or 0.25% ropivacaine. In contrast, there were no significant differences in them between rats with saline infusion and rats with 0.25% ropivacaine infiltration. In conclusion, single or repeated subfascial infiltration of 0.25% ropivacaine can be used without exacerbating the damage and inflammation in surgically incised muscles, but the use of 0.5% ropivacaine may be a concern because of potentially increased muscle damage.
Collapse
Affiliation(s)
- Dandan Shen
- Department of Anesthesiology and Resuscitology, Shinshu University School of Medicine, Matsumoto City, Nagano, 390-8621, Japan
| | - Yuki Sugiyama
- Department of Anesthesiology and Resuscitology, Shinshu University School of Medicine, Matsumoto City, Nagano, 390-8621, Japan
| | - Kumiko Ishida
- Department of Anesthesiology and Resuscitology, Shinshu University School of Medicine, Matsumoto City, Nagano, 390-8621, Japan
| | - Satoshi Fuseya
- Department of Anesthesiology and Resuscitology, Shinshu University School of Medicine, Matsumoto City, Nagano, 390-8621, Japan
| | - Takashi Ishida
- Department of Anesthesiology and Resuscitology, Shinshu University School of Medicine, Matsumoto City, Nagano, 390-8621, Japan
| | - Mikito Kawamata
- Department of Anesthesiology and Resuscitology, Shinshu University School of Medicine, Matsumoto City, Nagano, 390-8621, Japan
| | - Satoshi Tanaka
- Department of Anesthesiology and Resuscitology, Shinshu University School of Medicine, Matsumoto City, Nagano, 390-8621, Japan.
| |
Collapse
|
10
|
Villarreal D, Pradhan G, Zhou Y, Xue B, Sun Y. Diverse and Complementary Effects of Ghrelin and Obestatin. Biomolecules 2022; 12:biom12040517. [PMID: 35454106 PMCID: PMC9028691 DOI: 10.3390/biom12040517] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/21/2022] [Accepted: 03/25/2022] [Indexed: 02/06/2023] Open
Abstract
Ghrelin and obestatin are two “sibling proteins” encoded by the same preproghrelin gene but possess an array of diverse and complex functions. While there are ample literature documenting ghrelin’s functions, the roles of obestatin are less clear and controversial. Ghrelin and obestatin have been perceived to be antagonistic initially; however, recent studies challenge this dogma. While they have opposing effects in some systems, they function synergistically in other systems, with many functions remaining debatable. In this review, we discuss their functional relationship under three “C” categories, namely complex, complementary, and contradictory. Their functions in food intake, weight regulation, hydration, gastrointestinal motility, inflammation, and insulin secretion are complex. Their functions in pancreatic beta cells, cardiovascular, muscle, neuroprotection, cancer, and digestive system are complementary. Their functions in white adipose tissue, thermogenesis, and sleep regulation are contradictory. Overall, this review accumulates the multifaceted functions of ghrelin and obestatin under both physiological and pathological conditions, with the intent of contributing to a better understanding of these two important gut hormones.
Collapse
Affiliation(s)
- Daniel Villarreal
- Department of Nutrition, Texas A & M University, College Station, TX 77843, USA;
| | - Geetali Pradhan
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA;
- Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yu Zhou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao 266071, China;
| | - Bingzhong Xue
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA;
| | - Yuxiang Sun
- Department of Nutrition, Texas A & M University, College Station, TX 77843, USA;
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA;
- Correspondence: ; Tel.: +1-979-862-9143
| |
Collapse
|
11
|
Zeng X, Xie L, Ge Y, Zhou Y, Wang H, Chen Y, Zhu X, Liu H, Liao Q, Kong Y, Pan L, Li J, Xue L, Li S, Zhou X, Shi C, Sheng X. Satellite Cells are Activated in a Rat Model of Radiation-Induced Muscle Fibrosis. Radiat Res 2022; 197:638-649. [PMID: 35294551 DOI: 10.1667/rade-21-00183.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 02/22/2022] [Indexed: 11/03/2022]
Abstract
Radiation-induced muscle fibrosis is a long-term side effect of radiotherapy that significantly affects the quality of life and even reduces the survival of cancer patients. We have demonstrated that radiation induces satellite cell (SC) activation at the molecular level; however, cellular evidence in a rat model of radiation-induced muscle fibrosis was lacking. In this study, we evaluated SC activation in vivo and investigated whether radiation affects the proliferation and differentiation potential of SCs in vitro. For in vivo studies, Sprague-Dawley rats were randomly divided into six groups (n = 6 per group): non-irradiated controls, 90 Gy/1 week-, 90 Gy/2 weeks-, 90 Gy/4 weeks-, 90 Gy/12 weeks- and 90 Gy/24 weeks-postirradiation groups. Rats received a single dose of radiation in the left groin area and rectus femoris tissues were collected in the indicated weeks. Fibrosis, apoptosis, and autophagy were evaluated by Masson's trichrome staining, TUNEL staining, and electron microscopy, respectively. SC activation and central nuclear muscle fibers were evaluated by immunofluorescence staining and hematoxylin and eosin staining. IL-1β concentrations in serum and irradiated muscle tissue samples were determined by ELISA. For in vitro studies, SCs were isolated from rats with radiation-induced muscle fibrosis and their proliferation and differentiation were evaluated by immunofluorescence staining. In vivo, fibrosis increased over time postirradiation. Apoptosis and autophagy levels, IL-1β concentrations in serum and irradiated skin tissues, and the numbers of SCs and central nuclear muscle fibers were increased in the irradiated groups when compared with the control group. In vitro, cultured SCs from irradiated muscle were positive for the proliferation marker Pax7, and differentiated SCs were positive for the myogenic differentiation marker MyHC. This study provided cellular evidence of SC activation and proliferation in rats with radiation-induced muscle fibrosis.
Collapse
Affiliation(s)
- Xiaoling Zeng
- Graduate Collaborative Training of Hunan Cancer Hospital, Hengyang Medical School, University of South China, Department of Head and Neck Surgery, Central laboratory, The Affiliated Cancer Hospital of Xiangya School of Medicine, Changsha, Hunan Province, China
| | - Luyuan Xie
- Changsha Medical University, Changsha, Hunan Province, China
| | - Yuxin Ge
- Graduate Collaborative Training of Hunan Cancer Hospital, Hengyang Medical School, University of South China, Department of Head and Neck Surgery, Central laboratory, The Affiliated Cancer Hospital of Xiangya School of Medicine, Changsha, Hunan Province, China
| | - Yue Zhou
- Department of Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan Province, China
| | - Hui Wang
- Department of Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan Province, China
| | - Yongyi Chen
- Nursing Department, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Changsha, Hunan Province, China
| | - Xiaomei Zhu
- Nursing Department, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Changsha, Hunan Province, China
| | - Huayun Liu
- Nursing Department, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Changsha, Hunan Province, China
| | - Qianjin Liao
- Graduate Collaborative Training of Hunan Cancer Hospital, Hengyang Medical School, University of South China, Department of Head and Neck Surgery, Central laboratory, The Affiliated Cancer Hospital of Xiangya School of Medicine, Changsha, Hunan Province, China
| | - Yu Kong
- Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, China
| | - Lijun Pan
- Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, China
| | - Junjun Li
- Pathology Department, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Changsha, Hunan Province, China
| | - Lei Xue
- Pathology Department, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Changsha, Hunan Province, China
| | - Sha Li
- Graduate Collaborative Training of Hunan Cancer Hospital, Hengyang Medical School, University of South China, Department of Head and Neck Surgery, Central laboratory, The Affiliated Cancer Hospital of Xiangya School of Medicine, Changsha, Hunan Province, China
| | - Xiao Zhou
- Graduate Collaborative Training of Hunan Cancer Hospital, Hengyang Medical School, University of South China, Department of Head and Neck Surgery, Central laboratory, The Affiliated Cancer Hospital of Xiangya School of Medicine, Changsha, Hunan Province, China
| | - Chunmeng Shi
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing, China
| | - Xiaowu Sheng
- Graduate Collaborative Training of Hunan Cancer Hospital, Hengyang Medical School, University of South China, Department of Head and Neck Surgery, Central laboratory, The Affiliated Cancer Hospital of Xiangya School of Medicine, Changsha, Hunan Province, China
| |
Collapse
|
12
|
Cid-Díaz T, Leal-López S, Fernández-Barreiro F, González-Sánchez J, Santos-Zas I, Andrade-Bulos LJ, Rodríguez-Fuentes ME, Mosteiro CS, Mouly V, Casabiell X, Relova JL, Pazos Y, Camiña JP. Obestatin signalling counteracts glucocorticoid-induced skeletal muscle atrophy via NEDD4/KLF15 axis. J Cachexia Sarcopenia Muscle 2021; 12:493-505. [PMID: 33687156 PMCID: PMC8061369 DOI: 10.1002/jcsm.12677] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 12/16/2020] [Accepted: 12/30/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND A therapeutic approach for the treatment of glucocorticoid-induced skeletal muscle atrophy should be based on the knowledge of the molecular mechanisms determining the unbalance between anabolic and catabolic processes and how to re-establish this balance. Here, we investigated whether the obestatin/GPR39 system, an autocrine signalling system acting on myogenesis and with anabolic effects on the skeletal muscle, could protect against chronic glucocorticoid-induced muscle atrophy. METHODS In this study, we used an in vivo model of muscle atrophy induced by the synthetic glucocorticoid dexamethasone to examine the liaison molecules that define the interaction between the glucocorticoid receptor and the obestatin/GPR39 systems. The findings were extended to in vitro effects on human atrophy using human KM155C25 myotubes. RESULTS KLF15 and FoxO transcription factors were identified as direct targets of obestatin signalling in the control of proteostasis in skeletal muscle. The KLF15-triggered gene expression program, including atrogenes and FoxOs, was regulated via KLF15 ubiquitination by the E3 ubiquitin ligase NEDD4. Additionally, a specific pattern of FoxO post-translational modification, including FoxO4 phosphorylation by Akt pathway, was critical in the regulation of the ubiquitin-proteasome system. The functional cooperativity between Akt and NEDD4 in the regulation of FoxO and KLF15 provides integrated cues to counteract muscle proteostasis and re-establish protein synthesis. CONCLUSIONS The effective control of FoxO activity in response to glucocorticoid is critical to counteract muscle-related pathologies. These results highlight the potential of the obestatin/GPR39 system to fine-tune the effects of glucocorticoids on skeletal muscle wasting.
Collapse
Affiliation(s)
- Tania Cid-Díaz
- Laboratorio de Endocrinología Celular, Instituto de Investigación Sanitaria de Santiago (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS), Servicio Gallego de Salud (SERGAS), Trav. Choupana s/n, Santiago de Compostela, Spain
| | - Saúl Leal-López
- Laboratorio de Patología Digestiva, Instituto de Investigación Sanitaria de Santiago (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS), Servicio Gallego de Salud (SERGAS), Trav. Choupana s/n, Santiago de Compostela, Spain
| | - Fátima Fernández-Barreiro
- Laboratorio de Endocrinología Celular, Instituto de Investigación Sanitaria de Santiago (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS), Servicio Gallego de Salud (SERGAS), Trav. Choupana s/n, Santiago de Compostela, Spain
| | - Jessica González-Sánchez
- Laboratorio de Endocrinología Celular, Instituto de Investigación Sanitaria de Santiago (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS), Servicio Gallego de Salud (SERGAS), Trav. Choupana s/n, Santiago de Compostela, Spain
| | - Icía Santos-Zas
- Paris Cardiovascular Research Center-PARCC, Université Paris Descartes, Sorbonne Paris Cité, INSERM UMRS 970, Paris, France
| | - Luis J Andrade-Bulos
- Laboratorio de Endocrinología Celular, Instituto de Investigación Sanitaria de Santiago (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS), Servicio Gallego de Salud (SERGAS), Trav. Choupana s/n, Santiago de Compostela, Spain
| | - Manuel E Rodríguez-Fuentes
- Laboratorio de Endocrinología Celular, Instituto de Investigación Sanitaria de Santiago (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS), Servicio Gallego de Salud (SERGAS), Trav. Choupana s/n, Santiago de Compostela, Spain
| | - Carlos S Mosteiro
- Laboratorio de Endocrinología Celular, Instituto de Investigación Sanitaria de Santiago (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS), Servicio Gallego de Salud (SERGAS), Trav. Choupana s/n, Santiago de Compostela, Spain
| | - Vincent Mouly
- Center of Research in Myology, Sorbonne Universités, UPMC Univ Paris 06, INSERM UMRS 974, Paris, France
| | - Xesús Casabiell
- Departamento de Fisiología, Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - Jose Luis Relova
- Laboratorio de Endocrinología Celular, Instituto de Investigación Sanitaria de Santiago (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS), Servicio Gallego de Salud (SERGAS), Trav. Choupana s/n, Santiago de Compostela, Spain.,Departamento de Fisiología, Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - Yolanda Pazos
- Laboratorio de Patología Digestiva, Instituto de Investigación Sanitaria de Santiago (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS), Servicio Gallego de Salud (SERGAS), Trav. Choupana s/n, Santiago de Compostela, Spain
| | - Jesus P Camiña
- Laboratorio de Endocrinología Celular, Instituto de Investigación Sanitaria de Santiago (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS), Servicio Gallego de Salud (SERGAS), Trav. Choupana s/n, Santiago de Compostela, Spain
| |
Collapse
|
13
|
Concurrent Akt, ERK1/2 and AMPK Activation by Obestatin Inhibits Apoptotic Signaling Cascades on Nutrient-Deprived PC12 Cells. Cell Mol Neurobiol 2021; 42:1607-1614. [PMID: 33400083 PMCID: PMC9142446 DOI: 10.1007/s10571-020-01025-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/02/2020] [Indexed: 01/08/2023]
Abstract
Targeting apoptosis in the ischemic penumbra is a rational therapeutic approach for restricting cerebral infarct volume after clinical stroke. The present work explored the capability of the obestatin peptide, as a novel approach to inhibit apoptotic signaling cascades on PC12 cells. According to the results, obestatin treatment significantly reduced nutrient deprivation-induced apoptotic cell death. The protective effects were related to the regulation of the anti-apoptotic protein, BCL-2, and the apoptotic protein caspase-3. This encompasses the control of apoptosis by the interplay between Akt, ERK1/2 and AMPK signaling pathways. The activation of Akt and AMPK was concomitant with the phosphorylation of their downstream targets, GSK3 and ACC, respectively. Besides, obestatin also causes FoxO1 nuclear export supporting the prevention of the apoptosome formation. The concurrent activation of Akt and AMPK by obestatin via the GPR39 receptor, supports a role for this system in the balance concerning the catabolic and the anabolic signaling to sustain cellular function and viability. Furthermore, these results provide both an insight into how the obestatin/GPR39 system regulates anti-apoptotic pathways, and a framework for ascertaining how this system can be optimally targeted in treatment of brain cell death after stroke.
Collapse
|
14
|
Kallifatidis G, Mamouni K, Lokeshwar BL. The Role of β-Arrestins in Regulating Stem Cell Phenotypes in Normal and Tumorigenic Cells. Int J Mol Sci 2020; 21:ijms21239310. [PMID: 33297302 PMCID: PMC7729818 DOI: 10.3390/ijms21239310] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/04/2020] [Accepted: 12/04/2020] [Indexed: 01/03/2023] Open
Abstract
β-Arrestins (ARRBs) are ubiquitously expressed scaffold proteins that mediate inactivation of G-protein-coupled receptor signaling, and in certain circumstances, G-protein independent pathways. Intriguingly, the two known ARRBs, β-arrestin1 (ARRB1) and β-Arrestin2 (ARRB2), seem to have opposing functions in regulating signaling cascades in several models in health and disease. Recent evidence suggests that ARRBs are implicated in regulating stem cell maintenance; however, their role, although crucial, is complex, and there is no universal model for ARRB-mediated regulation of stem cell characteristics. For the first time, this review compiles information on the function of ARRBs in stem cell biology and will discuss the role of ARRBs in regulating cell signaling pathways implicated in stem cell maintenance in normal and malignant stem cell populations. Although promising targets for cancer therapy, the ubiquitous nature of ARRBs and the plethora of functions in normal cell biology brings challenges for treatment selectivity. However, recent studies show promising evidence for specifically targeting ARRBs in myeloproliferative neoplasms.
Collapse
Affiliation(s)
- Georgios Kallifatidis
- Department of Biological Sciences, Augusta University, Augusta, GA 30912, USA
- Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA;
- Research Service, Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
- Correspondence: (G.K.); (B.L.L.); Tel.: +1-706-446-4976 (G.K.); +1-706-723-0033 (B.L.L.); Fax: +1-305-721-0101 (B.L.L.)
| | - Kenza Mamouni
- Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA;
- Research Service, Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
| | - Bal L. Lokeshwar
- Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA;
- Research Service, Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
- Correspondence: (G.K.); (B.L.L.); Tel.: +1-706-446-4976 (G.K.); +1-706-723-0033 (B.L.L.); Fax: +1-305-721-0101 (B.L.L.)
| |
Collapse
|
15
|
Szlis M, Wójcik-Gładysz A, Przybył BJ. Central obestatin administration affect the LH and FSH secretory activity in peripubertal sheep. Theriogenology 2020; 145:10-17. [PMID: 31982689 DOI: 10.1016/j.theriogenology.2020.01.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 01/14/2020] [Accepted: 01/14/2020] [Indexed: 02/06/2023]
Abstract
Obestatin - a 23 amino acid peptide is synthesized as another product of the ghrl gene and its synthesis occurs mainly in gastric mucosa cells. This hormone is involved in complex gut-brain neurohormonal networks, thereby can participates in the modulation of gonadotrophic axis activity. The aim of this study was to investigate the consequence of intracerebroventricular infusions of obestatin on LH and FSH pituitary cells secretory activity in peripubertal female sheep. Animals were randomly divided into two groups: the control group (n = 14) received intracerebroventricular infusions of Ringer-Lock solution (120 μL h-1), and the obestatin group (n = 14) was infused with obestatin (25 μg/120 μL h-1) diluted in Ringer-Lock solution. A series of four infusions was performed on three consecutive days. Blood samples were collected on day 0 and day 3. The sheep were slaughtered immediately after the end of the experiment. For molecular biological analysis, pituitaries from 7 sheep from each group (n = 7 + 7) were prepared and frozen in liquid nitrogen immediately after collection and then stored at -80 °C until Real Time RT-qPCR and RIA analyzes. For immunohistochemical analysis, pituitary tissues from the remaining animals (n = 7 + 7) was fixed in situ for further examination. Real-Time qPCR and immunohistochemistry analyses revealed substantial changes in the LH and FSH pituitary cells secretory activity in obestatin-infused sheep. Exogenous obestatin administration reduced LHβ mRNA expression and increased the accumulation of immunoreactive LH in gonadotrophic cells of the adenohypophysis. These changes were accompanied by a decrease in the mean LH concentration in the peripheral blood resulting from the lower LH pulse amplitude. Moreover, an increase in both FSHβ mRNA expression and FSH immunoreactivity and amount in pituitary cells were noted, while mean blood FSH concentration remained unchanged after obestatin treatment. The obtained results showed that exogenous obestatin affected LH secretory activity at the level of protein synthesis, accumulation and release as well as obestatin increase FSHβ mRNA expression and accumulation of this hormone but at the same time have no effect on FSH release to blood. Thus, obestatin can participate in the neuroendocrine network, which modulates gonadotrophic axis activity in sheep.
Collapse
Affiliation(s)
- Michał Szlis
- Department of Animal Physiology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110, Jabłonna, Poland
| | - Anna Wójcik-Gładysz
- Department of Animal Physiology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110, Jabłonna, Poland.
| | - Bartosz Jarosław Przybył
- Department of Animal Physiology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110, Jabłonna, Poland
| |
Collapse
|
16
|
Sağsöz H, Erdoğan S, Saruhan BG. The expressions of some metabolic hormones (leptin, ghrelin and obestatin) in the tissues of sheep tongue. Anat Histol Embryol 2019; 49:112-120. [PMID: 31568599 DOI: 10.1111/ahe.12499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 09/03/2019] [Indexed: 12/12/2022]
Abstract
In this study, we aimed to observe the localization and expression of peptide hormones-leptin, ghrelin and obestatin-in the sheep tongue by immunohistochemistry. For that purpose, tongues of ten adult sheep were used. Leptin expression of moderate intensity was observed in the basal and parabasal epithelial cells of the luminal epithelium, and leptin was strongly expressed in the taste buds of the circumvallate and fungiform papillae and in von Ebner's glands. Ghrelin was primarily expressed in some of the skeletal muscle cells and the smooth muscle cells of the middle layer of blood vessels. A strong expression was observed in the epithelial cells lining the base of the groove surrounding the circumvallate papillae. Obestatin expression was particularly strong in the epithelial cells of the salivary ducts. It was also stronger in the von Ebner's glands than in the seromucous glands. Leptin, ghrelin and obestatin were shown to be produced at varying levels in different cell types, including epithelial, stromal and skeletal muscle cells, as well as in ganglion neurons, neural plexuses and blood vessels in the sheep tongue. Cellular localization and expression of these peptide hormones have not been investigated in many species including sheep.
Collapse
Affiliation(s)
- Hakan Sağsöz
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Dicle University, Diyarbakır, Turkey
| | - Serkan Erdoğan
- Department of Anatomy, Faculty of Veterinary Medicine, Namık Kemal University, Tekirdağ, Turkey
| | - Berna Güney Saruhan
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Dicle University, Diyarbakır, Turkey
| |
Collapse
|
17
|
Wójcik-Gładysz A, Szlis M, Przybył BJ, Polkowska J. Obestatin may affect the GnRH/KNDy gene network in sheep hypothalamus. Res Vet Sci 2019; 123:51-58. [DOI: 10.1016/j.rvsc.2018.12.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 12/15/2018] [Accepted: 12/17/2018] [Indexed: 02/06/2023]
|
18
|
Stempniewicz A, Ceranowicz P, Warzecha Z. Potential Therapeutic Effects of Gut Hormones, Ghrelin and Obestatin in Oral Mucositis. Int J Mol Sci 2019; 20:ijms20071534. [PMID: 30934722 PMCID: PMC6479885 DOI: 10.3390/ijms20071534] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 03/15/2019] [Accepted: 03/19/2019] [Indexed: 12/16/2022] Open
Abstract
Chemotherapy and/or head and neck radiotherapy are frequently associated with oral mucositis. Oral pain, odynophagia and dysphagia, opioid use, weight loss, dehydration, systemic infection, hospitalization and introduction of a feeding tube should be mentioned as the main determinated effect of oral mucositis. Oral mucositis leads to a decreased quality of life and an increase in treatment costs. Moreover, oral mucositis is a life-threatening disease. In addition to its own direct life-threatening consequences, it can also lead to a reduced survival due to the discontinuation or dose reduction of anti-neoplasm therapy. There are numerous strategies for the prevention or treatment of oral mucositis; however, their effectiveness is limited and does not correspond to expectations. This review is focused on the ghrelin and obestatin as potentially useful candidates for the prevention and treatment of chemo- or/and radiotherapy-induced oral mucositis.
Collapse
Affiliation(s)
- Agnieszka Stempniewicz
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, Grzegórzecka 16 St., 31-531 Krakow, Poland.
| | - Piotr Ceranowicz
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, Grzegórzecka 16 St., 31-531 Krakow, Poland.
| | - Zygmunt Warzecha
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, Grzegórzecka 16 St., 31-531 Krakow, Poland.
| |
Collapse
|
19
|
González-Sánchez J, Sánchez-Temprano A, Cid-Díaz T, Pabst-Fernández R, Mosteiro CS, Gallego R, Nogueiras R, Casabiell X, Butler-Browne GS, Mouly V, Relova JL, Pazos Y, Camiña JP. Improvement of Duchenne muscular dystrophy phenotype following obestatin treatment. J Cachexia Sarcopenia Muscle 2018; 9:1063-1078. [PMID: 30216693 PMCID: PMC6240759 DOI: 10.1002/jcsm.12338] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 06/14/2018] [Accepted: 06/26/2018] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND This study was performed to test the therapeutic potential of obestatin, an autocrine anabolic factor regulating skeletal muscle repair, to ameliorate the Duchenne muscular dystrophy (DMD) phenotype. METHODS AND RESULTS Using a multidisciplinary approach, we characterized the ageing-related preproghrelin/GPR39 expression patterns in tibialis anterior (TA) muscles of 4-, 8-, and 18-week-old mdx mice (n = 3/group) and established the effects of obestatin administration at this level in 8-week-old mdx mice (n = 5/group). The findings were extended to in vitro effects on human immortalized DMD myotubes. An analysis of TAs revealed an age-related loss of preproghrelin expression, as precursor of obestatin, in mdx mice. Administration of obestatin resulted in a significant increase in tetanic specific force (33.0% ± 1.5%, P < 0.05), compared with control mdx mice. Obestatin-treated TAs were characterized by reduction of fibres with centrally located nuclei (10.0% ± 1.2%, P < 0.05) together with an increase in the number of type I fibres (25.2% ± 1.7%, P < 0.05) associated to histone deacetylases/myocyte enhancer factor-2 and peroxisome proliferator-activated receptor-gamma coactivator 1α axis, and down-regulation of ubiquitin E3-ligases by inactivation of FoxO1/4, indexes of muscle atrophy. Obestatin reduced the level of contractile damage and tissue fibrosis. These observations correlated with decline in serum creatine kinase (58.8 ± 15.2, P < 0.05). Obestatin led to stabilization of the sarcolemma by up-regulation of utrophin, α-syntrophin, β-dystroglycan, and α7β1-integrin proteins. These pathways were also operative in human DMD myotubes. CONCLUSIONS These results highlight the potential of obestatin as a peptide therapeutic for preserving muscle integrity in DMD, thus allowing a better efficiency of gene or cell therapy in a combined therapeutic approach.
Collapse
Affiliation(s)
- Jessica González-Sánchez
- Laboratorio de Endocrinología Celular, Instituto de Investigación Sanitaria de Santiago (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS), Servicio Gallego de Salud (SERGAS), Santiago de Compostela, Spain
| | - Agustín Sánchez-Temprano
- Laboratorio de Endocrinología Celular, Instituto de Investigación Sanitaria de Santiago (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS), Servicio Gallego de Salud (SERGAS), Santiago de Compostela, Spain
| | - Tania Cid-Díaz
- Laboratorio de Endocrinología Celular, Instituto de Investigación Sanitaria de Santiago (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS), Servicio Gallego de Salud (SERGAS), Santiago de Compostela, Spain
| | - Regina Pabst-Fernández
- Laboratorio de Endocrinología Celular, Instituto de Investigación Sanitaria de Santiago (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS), Servicio Gallego de Salud (SERGAS), Santiago de Compostela, Spain
| | - Carlos S Mosteiro
- Laboratorio de Endocrinología Celular, Instituto de Investigación Sanitaria de Santiago (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS), Servicio Gallego de Salud (SERGAS), Santiago de Compostela, Spain
| | - Rosalía Gallego
- Departamento de Ciencias Morfológicas, Universidad de Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - Ruben Nogueiras
- Departamento de Fisiología, USC, Santiago de Compostela, Spain
| | - Xesús Casabiell
- Departamento de Fisiología, USC, Santiago de Compostela, Spain
| | - Gillian S Butler-Browne
- Center for Research in Myology, Sorbonne Universités, UPMC Univ Paris 06, INSERM UMRS 974, Paris, France
| | - Vincent Mouly
- Center for Research in Myology, Sorbonne Universités, UPMC Univ Paris 06, INSERM UMRS 974, Paris, France
| | | | - Yolanda Pazos
- Laboratorio de Patología Digestiva, IDIS, CHUS, SERGAS, Santiago de Compostela, Spain
| | - Jesús P Camiña
- Laboratorio de Endocrinología Celular, Instituto de Investigación Sanitaria de Santiago (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS), Servicio Gallego de Salud (SERGAS), Santiago de Compostela, Spain
| |
Collapse
|
20
|
Angelino E, Reano S, Bollo A, Ferrara M, De Feudis M, Sustova H, Agosti E, Clerici S, Prodam F, Tomasetto CL, Graziani A, Filigheddu N. Ghrelin knockout mice display defective skeletal muscle regeneration and impaired satellite cell self-renewal. Endocrine 2018; 62:129-135. [PMID: 29846901 DOI: 10.1007/s12020-018-1606-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 04/15/2018] [Indexed: 12/18/2022]
Abstract
PURPOSE Muscle regeneration depends on satellite cells (SCs), quiescent precursors that, in consequence of injury or pathological states such as muscular dystrophies, activate, proliferate, and differentiate to repair the damaged tissue. A subset of SCs undergoes self-renewal, thus preserving the SC pool and its regenerative potential. The peptides produced by the ghrelin gene, i.e., acylated ghrelin (AG), unacylated ghrelin (UnAG), and obestatin (Ob), affect skeletal muscle biology in several ways, not always with overlapping effects. In particular, UnAG and Ob promote SC self-renewal and myoblast differentiation, thus fostering muscle regeneration. METHODS To delineate the endogenous contribution of preproghrelin in muscle regeneration, we evaluated the repair process in Ghrl-/- mice upon CTX-induced injury. RESULTS Although muscles from Ghrl-/- mice do not visibly differ from WT muscles in term of weight, structure, and SCs content, muscle regeneration after CTX-induced injury is impaired in Ghrl-/- mice, indicating that ghrelin-derived peptides actively participate in muscle repair. Remarkably, the lack of ghrelin gene impacts SC self-renewal during regeneration. CONCLUSIONS Although we cannot discern the specific Ghrl-derived peptide responsible for such activities, these data indicate that Ghrl contributes to a proper muscle regeneration.
Collapse
Affiliation(s)
- Elia Angelino
- Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
- Università Vita-Salute San Raffaele, Milano, Italy
| | - Simone Reano
- Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Alessandro Bollo
- Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
- Università Vita-Salute San Raffaele, Milano, Italy
| | - Michele Ferrara
- Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
- Università Vita-Salute San Raffaele, Milano, Italy
| | - Marilisa De Feudis
- Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Hana Sustova
- Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Emanuela Agosti
- Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Sara Clerici
- Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
- Università Vita-Salute San Raffaele, Milano, Italy
| | - Flavia Prodam
- Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
| | - Catherine-Laure Tomasetto
- IGBMC - Institut de Génétique et de Biologie Moléculaire et Cellulaire - Université de Strasbourg, Illkirch, France
| | - Andrea Graziani
- Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy.
- Università Vita-Salute San Raffaele, Milano, Italy.
| | - Nicoletta Filigheddu
- Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy.
| |
Collapse
|
21
|
Renzini A, Marroncelli N, Noviello C, Moresi V, Adamo S. HDAC4 Regulates Skeletal Muscle Regeneration via Soluble Factors. Front Physiol 2018; 9:1387. [PMID: 30319457 PMCID: PMC6171007 DOI: 10.3389/fphys.2018.01387] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 09/12/2018] [Indexed: 12/11/2022] Open
Abstract
Skeletal muscle possesses a high ability to regenerate after an insult or in pathological conditions, relying on satellite cells, the skeletal muscle stem cells. Satellite cell behavior is tightly regulated by the surrounding microenvironment, which provides multiple signals derived from local cells and systemic factors. Among epigenetic mechanisms, histone deacetylation has been proved to affect muscle regeneration. Indeed, pan-histone deacetylase inhibitors were found to improve muscle regeneration, while deletion of histone deacetylase 4 (HDAC4) in satellite cells inhibits their proliferation and differentiation, leading to compromised muscle regeneration. In this study, we delineated the HDAC4 function in adult skeletal muscle, following injury, by using a tissue-specific null mouse line. We showed that HDAC4 is crucial for skeletal muscle regeneration by mediating soluble factors that influence muscle-derived cell proliferation and differentiation. These findings add new biological functions to HDAC4 in skeletal muscle that need considering when administering histone deacetylase inhibitors.
Collapse
Affiliation(s)
- Alessandra Renzini
- DAHFMO Unit of Histology and Medical Embryology, Interuniversity Institute of Myology, Sapienza University of Rome, Rome, Italy
| | - Nicoletta Marroncelli
- DAHFMO Unit of Histology and Medical Embryology, Interuniversity Institute of Myology, Sapienza University of Rome, Rome, Italy
| | - Chiara Noviello
- DAHFMO Unit of Histology and Medical Embryology, Interuniversity Institute of Myology, Sapienza University of Rome, Rome, Italy
| | - Viviana Moresi
- DAHFMO Unit of Histology and Medical Embryology, Interuniversity Institute of Myology, Sapienza University of Rome, Rome, Italy.,Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele Pisana, Rome, Italy
| | - Sergio Adamo
- DAHFMO Unit of Histology and Medical Embryology, Interuniversity Institute of Myology, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
22
|
Renzini A, Benedetti A, Bouchè M, Silvestroni L, Adamo S, Moresi V. Culture conditions influence satellite cell activation and survival of single myofibers. Eur J Transl Myol 2018; 28:7567. [PMID: 29991990 PMCID: PMC6036316 DOI: 10.4081/ejtm.2018.7567] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 05/24/2018] [Accepted: 05/24/2018] [Indexed: 02/08/2023] Open
Abstract
Single myofiber isolation protocols allow to obtain an in vitro system in which the physical association between the myofiber and its stem cells, the satellite cells, is adequately preserved. This technique is an indispensable tool by which the muscle regeneration process can be recapitulated and studied in each specific phase, from satellite cell activation to proliferation, from differentiation to fusion. This study aims to clarify the effect of different culture conditions on single myofibers, their associated satellite cells, and the physiological behavior of the satellite cells upon long term culture. By direct observations of the cultures, we compared different experimental conditions and their effect on both satellite cell behavior and myofiber viability.
Collapse
Affiliation(s)
- Alessandra Renzini
- DAHFMO Unit of Histology and Medical Embryology, InterUniversity Institute of Myology, Sapienza University of Rome, Italy
| | - Anna Benedetti
- DAHFMO Unit of Histology and Medical Embryology, InterUniversity Institute of Myology, Sapienza University of Rome, Italy
| | - Marina Bouchè
- DAHFMO Unit of Histology and Medical Embryology, InterUniversity Institute of Myology, Sapienza University of Rome, Italy
| | - Leopoldo Silvestroni
- Department of Fundamental and Basic Sciences for Engineering, Sapienza University of Rome, Italy
| | - Sergio Adamo
- DAHFMO Unit of Histology and Medical Embryology, InterUniversity Institute of Myology, Sapienza University of Rome, Italy
| | - Viviana Moresi
- DAHFMO Unit of Histology and Medical Embryology, InterUniversity Institute of Myology, Sapienza University of Rome, Italy
| |
Collapse
|
23
|
HDAC4 regulates satellite cell proliferation and differentiation by targeting P21 and Sharp1 genes. Sci Rep 2018; 8:3448. [PMID: 29472596 PMCID: PMC5823886 DOI: 10.1038/s41598-018-21835-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 02/12/2018] [Indexed: 12/31/2022] Open
Abstract
Skeletal muscle exhibits a high regenerative capacity, mainly due to the ability of satellite cells to replicate and differentiate in response to appropriate stimuli. Epigenetic control is effective at different stages of this process. It has been shown that the chromatin-remodeling factor HDAC4 is able to regulate satellite cell proliferation and commitment. However, its molecular targets are still uncovered. To explain the signaling pathways regulated by HDAC4 in satellite cells, we generated tamoxifen-inducible mice with conditional inactivation of HDAC4 in Pax7+ cells (HDAC4 KO mice). We found that the proliferation and differentiation of HDAC4 KO satellite cells were compromised, although similar amounts of satellite cells were found in mice. Moreover, we found that the inhibition of HDAC4 in satellite cells was sufficient to block the differentiation process. By RNA-sequencing analysis we identified P21 and Sharp1 as HDAC4 target genes. Reducing the expression of these target genes in HDAC4 KO satellite cells, we also defined the molecular pathways regulated by HDAC4 in the epigenetic control of satellite cell expansion and fusion.
Collapse
|
24
|
Szlis M, Polkowska J, Skrzeczyńska E, Przybył BJ, Wójcik-Gładysz A. Does obestatin modulate the hypothalamic appetite-regulating network in peripubertal sheep? J Anim Physiol Anim Nutr (Berl) 2018; 102:690-700. [DOI: 10.1111/jpn.12879] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 01/28/2018] [Indexed: 12/12/2022]
Affiliation(s)
- M. Szlis
- Department of Animal Physiology; The Kielanowski Institute of Animal Physiology and Nutrition; Polish Academy of Sciences; Jabłonna Poland
| | - J. Polkowska
- Department of Animal Physiology; The Kielanowski Institute of Animal Physiology and Nutrition; Polish Academy of Sciences; Jabłonna Poland
| | - E. Skrzeczyńska
- Department of Animal Physiology; The Kielanowski Institute of Animal Physiology and Nutrition; Polish Academy of Sciences; Jabłonna Poland
| | - B. J. Przybył
- Department of Animal Physiology; The Kielanowski Institute of Animal Physiology and Nutrition; Polish Academy of Sciences; Jabłonna Poland
| | - A. Wójcik-Gładysz
- Department of Animal Physiology; The Kielanowski Institute of Animal Physiology and Nutrition; Polish Academy of Sciences; Jabłonna Poland
| |
Collapse
|
25
|
Green BD, Grieve DJ. Biochemical properties and biological actions of obestatin and its relevence in type 2 diabetes. Peptides 2018; 100:249-259. [PMID: 29412827 DOI: 10.1016/j.peptides.2017.12.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 12/05/2017] [Accepted: 12/06/2017] [Indexed: 12/15/2022]
Abstract
Obestatin was initially discovered in rat stomach extract, and although it is principally produced in the gastric mucosa, it can be found throughout the gastrointestinal tract. This 23-amino acid C-terminally amidated peptide is derived from preproghrelin and has been ascribed a wide range of metabolic effects relevant to type 2 diabetes. Obestatin reportedly inhibits gastrointestinal motility, reduces food intake and lowers body weight and improves lipid metabolism. Furthermore, it appears to exert actions on the pancreatic β-cell, most notably increasing β-cell mass and upregulating genes associated with insulin production and β-cell regeneration, with relevance to type 2 diabetes. It is becoming evident that obestatin also exerts pleiotropic effects on the cardiovascular system, possibly modulating blood pressure, endothelial function and triggering cardioprotective mechanisms, which may be important in determining cardiovascular outcomes in type 2 diabetes. Furthermore, it seems that like other gut peptides obestatin has neuroprotective properties. This review examines the biochemical properties of the obestatin peptide (its structure, sequence, stability and distribution) and the candidate receptors through which it may act. It provides a balanced examination of the reported pancreatic and extrapancreatic actions of obestatin and evaluates its potential relevance with respect to diabetes therapy, together with discussion of direct evidence linking alterations in obestatin signalling with obesity/diabetes and other diseases.
Collapse
Affiliation(s)
- Brian D Green
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, BT9 5BN, UK.
| | - David J Grieve
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, BT9 7AE, UK
| |
Collapse
|
26
|
Yang Q, Li Y, Zhang X, Chen D. Zac1/GPR39 phosphorylating CaMK-II contributes to the distinct roles of Pax3 and Pax7 in myogenic progression. Biochim Biophys Acta Mol Basis Dis 2018; 1864:407-419. [DOI: 10.1016/j.bbadis.2017.10.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Revised: 09/15/2017] [Accepted: 10/22/2017] [Indexed: 12/12/2022]
|
27
|
Obestatin stimulates the somatotrophic axis activity in sheep. Brain Res 2018; 1678:278-287. [DOI: 10.1016/j.brainres.2017.10.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 09/25/2017] [Accepted: 10/31/2017] [Indexed: 01/12/2023]
|
28
|
Cid‐Díaz T, Santos‐Zas I, González‐Sánchez J, Gurriarán‐Rodríguez U, Mosteiro CS, Casabiell X, García‐Caballero T, Mouly V, Pazos Y, Camiña JP. Obestatin controls the ubiquitin-proteasome and autophagy-lysosome systems in glucocorticoid-induced muscle cell atrophy. J Cachexia Sarcopenia Muscle 2017; 8:974-990. [PMID: 28675664 PMCID: PMC5700440 DOI: 10.1002/jcsm.12222] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 04/09/2017] [Accepted: 05/22/2017] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Many pathological states characterized by muscle atrophy are associated with an increase in circulating glucocorticoids and poor patient prognosis, making it an important target for treatment. The development of treatments for glucocorticoid-induced and wasting disorder-related skeletal muscle atrophy should be designed based on how the particular transcriptional program is orchestrated and how the balance of muscle protein synthesis and degradation is deregulated. Here, we investigated whether the obestatin/GPR39 system, an autocrine/paracrine signaling system acting on myogenesis and with anabolic effects on the skeletal muscle, could protect against glucocorticoid-induced muscle cell atrophy. METHODS In the present study, we have utilized mouse C2C12 myotube cultures to examine whether the obestatin/GPR39 signaling pathways can affect the atrophy induced by the synthetic glucocorticoid dexamethasone. We have extended these findings to in vitro effects on human atrophy using human KM155C25 myotubes. RESULTS The activation of the obestatin/GPR39 system protects from glucocorticoid-induced atrophy by regulation of Akt, PKD/PKCμ, CAMKII and AMPK signaling and its downstream targets in the control of protein synthesis, ubiquitin-proteasome system and autophagy-lysosome system in mouse cells. We compared mouse and human myotube cells in their response to glucocorticoid and identified differences in both the triggering of the atrophic program and the response to obestatin stimulation. Notably, we demonstrate that specific patterns of post-translational modifications of FoxO4 and FoxO1 play a key role in directing FoxO activity in response to obestatin in human myotubes. CONCLUSIONS Our findings emphasize the function of the obestatin/GPR39 system in coordinating a variety of pathways involved in the regulation of protein degradation during catabolic conditions.
Collapse
Affiliation(s)
- Tania Cid‐Díaz
- Área de Endocrinología Molecular y Celular, Instituto de Investigación Sanitaria de Santiago (IDIS)Complejo Hospitalario Universitario de Santiago (CHUS), Servicio Gallego de Salud (SERGAS)Choupana s/n15706Santiago de CompostelaSpain
| | - Icía Santos‐Zas
- Área de Endocrinología Molecular y Celular, Instituto de Investigación Sanitaria de Santiago (IDIS)Complejo Hospitalario Universitario de Santiago (CHUS), Servicio Gallego de Salud (SERGAS)Choupana s/n15706Santiago de CompostelaSpain
| | - Jessica González‐Sánchez
- Área de Endocrinología Molecular y Celular, Instituto de Investigación Sanitaria de Santiago (IDIS)Complejo Hospitalario Universitario de Santiago (CHUS), Servicio Gallego de Salud (SERGAS)Choupana s/n15706Santiago de CompostelaSpain
| | - Uxía Gurriarán‐Rodríguez
- Sprott Center for Stem Cell ResearchOttawa Hospital Research Institute501 Smyth RoadOttawaOntarioK1H 8L6Canada
| | - Carlos S. Mosteiro
- Área de Endocrinología Molecular y Celular, Instituto de Investigación Sanitaria de Santiago (IDIS)Complejo Hospitalario Universitario de Santiago (CHUS), Servicio Gallego de Salud (SERGAS)Choupana s/n15706Santiago de CompostelaSpain
| | - Xesús Casabiell
- Departamento de FisiologíaFacultad de Veterinaria, Universidad de Santiago de Compostela (USC)Carballo Calero s/n27002LugoSpain
| | - Tomás García‐Caballero
- Departamento de Ciencias MorfológicasFacultad de Medicina, USCSan Francisco s/n15704Santiago de CompostelaSpain
| | - Vincent Mouly
- Sorbonne Universités, UPMC Université Paris 06, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology47 Boulevard de l'hôpital75013ParisFrance
| | - Yolanda Pazos
- Área de Endocrinología Molecular y Celular, Instituto de Investigación Sanitaria de Santiago (IDIS)Complejo Hospitalario Universitario de Santiago (CHUS), Servicio Gallego de Salud (SERGAS)Choupana s/n15706Santiago de CompostelaSpain
| | - Jesús P. Camiña
- Área de Endocrinología Molecular y Celular, Instituto de Investigación Sanitaria de Santiago (IDIS)Complejo Hospitalario Universitario de Santiago (CHUS), Servicio Gallego de Salud (SERGAS)Choupana s/n15706Santiago de CompostelaSpain
| |
Collapse
|
29
|
Santos-Zas I, Negroni E, Mamchaoui K, Mosteiro CS, Gallego R, Butler-Browne GS, Pazos Y, Mouly V, Camiña JP. Obestatin Increases the Regenerative Capacity of Human Myoblasts Transplanted Intramuscularly in an Immunodeficient Mouse Model. Mol Ther 2017; 25:2345-2359. [PMID: 28750736 DOI: 10.1016/j.ymthe.2017.06.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 06/23/2017] [Accepted: 06/24/2017] [Indexed: 02/08/2023] Open
Abstract
Although cell-based therapy is considered a promising method aiming at treating different muscular disorders, little clinical benefit has been reported. One of major hurdles limiting the efficiency of myoblast transfer therapy is the poor survival of the transplanted cells. Any intervention upon the donor cells focused on enhancing in vivo survival, proliferation, and expansion is essential to improve the effectiveness of such therapies in regenerative medicine. In the present work, we investigated the potential role of obestatin, an autocrine peptide factor regulating skeletal muscle growth and repair, to improve the outcome of myoblast-based therapy by xenotransplanting primary human myoblasts into immunodeficient mice. The data proved that short in vivo obestatin treatment of primary human myoblasts not only enhances the efficiency of engraftment, but also facilitates an even distribution of myoblasts in the host muscle. Moreover, this treatment leads to a hypertrophic response of the human-derived regenerating myofibers. Taken together, the activation of the obestatin/GPR39 pathway resulted in an overall improvement of the efficacy of cell engraftment within the host's skeletal muscle. These data suggest considerable potential for future therapeutic applications and highlight the importance of combinatorial therapies.
Collapse
Affiliation(s)
- Icia Santos-Zas
- Laboratorio de Endocrinología Celular, Instituto de Investigación Sanitaria de Santiago (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS), Servicio Gallego de Salud (SERGAS), 15706 Santiago de Compostela, Spain
| | - Elisa Negroni
- Sorbonne Universités, Université Pierre et Marie Curie Université Paris 06, INSERM UMRS974, Center for Research in Myology, 47 Boulevard de l'hôpital, 75013 Paris, France
| | - Kamel Mamchaoui
- Sorbonne Universités, Université Pierre et Marie Curie Université Paris 06, INSERM UMRS974, Center for Research in Myology, 47 Boulevard de l'hôpital, 75013 Paris, France
| | - Carlos S Mosteiro
- Laboratorio de Endocrinología Celular, Instituto de Investigación Sanitaria de Santiago (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS), Servicio Gallego de Salud (SERGAS), 15706 Santiago de Compostela, Spain
| | - Rosalia Gallego
- Departamento de Ciencias Morfológicas, Universidad de Santiago de Compostela, 15704 Santiago de Compostela, Spain
| | - Gillian S Butler-Browne
- Sorbonne Universités, Université Pierre et Marie Curie Université Paris 06, INSERM UMRS974, Center for Research in Myology, 47 Boulevard de l'hôpital, 75013 Paris, France
| | - Yolanda Pazos
- Laboratorio de Patología Digestiva, IDIS, CHUS, SERGAS, 15706 Santiago de Compostela, Spain
| | - Vincent Mouly
- Sorbonne Universités, Université Pierre et Marie Curie Université Paris 06, INSERM UMRS974, Center for Research in Myology, 47 Boulevard de l'hôpital, 75013 Paris, France.
| | - Jesus P Camiña
- Laboratorio de Endocrinología Celular, Instituto de Investigación Sanitaria de Santiago (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS), Servicio Gallego de Salud (SERGAS), 15706 Santiago de Compostela, Spain.
| |
Collapse
|
30
|
Obestatin controls skeletal muscle fiber-type determination. Sci Rep 2017; 7:2137. [PMID: 28522824 PMCID: PMC5437042 DOI: 10.1038/s41598-017-02337-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 04/11/2017] [Indexed: 01/27/2023] Open
Abstract
Obestatin/GPR39 signaling stimulates skeletal muscle growth and repair by inducing both G-protein-dependent and -independent mechanisms linking the activated GPR39 receptor with distinct sets of accessory and effector proteins. In this work, we describe a new level of activity where obestatin signaling plays a role in the formation, contractile properties and metabolic profile of skeletal muscle through determination of oxidative fiber type. Our data indicate that obestatin regulates Mef2 activity and PGC-1α expression. Both mechanisms result in a shift in muscle metabolism and function. The increase in Mef2 and PGC-1α signaling activates oxidative capacity, whereas Akt/mTOR signaling positively regulates myofiber growth. Taken together, these data indicate that the obestatin signaling acts on muscle fiber-type program in skeletal muscle.
Collapse
|
31
|
Kolodziejski PA, Pruszynska-Oszmalek E, Sassek M, Kaczmarek P, Szczepankiewicz D, Billert M, Mackowiak P, Strowski MZ, Nowak KW. Changes in obestatin gene and GPR39 receptor expression in peripheral tissues of rat models of obesity, type 1 and type 2 diabetes. J Diabetes 2017; 9:353-361. [PMID: 27106635 DOI: 10.1111/1753-0407.12417] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 03/13/2016] [Accepted: 04/15/2016] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Obestatin has a role in regulating food intake and energy expenditure, but the roles of obestatin and the GPR39 receptor in obesity and type 1 and type 2 diabetes mellitus (T1DM and T2DM, respectively) are not well understood. The aim of the present study was to investigate changes in obestatin and GPR39 in pathophysiological conditions like obesity, T1DM, and T2DM. METHODS Using rat models of diet-induced obesity (DIO), T1DM and T2DM (n = 14 per group), obestatin, its precursor protein preproghrelin, and GPR39 expression was investigated in tissues involved in glucose and lipid homeostasis regulation. Furthermore, serum obestatin and ghrelin concentrations were determined. RESULTS Serum obestatin concentrations were positively correlated with glucagon (r = 0.6456; P < 0.001) and visfatin (r = 0.5560; P < 0.001), and negatively correlated with insulin (r = -0.4362; P < 0.05), adiponectin (r = -0.3998; P < 0.05), and leptin (r = -0.4180; P < 0.05). There were differences in GPR39 and preproghrelin expression in the three animal models. Hepatic GPR39 and preproghrelin mRNA expression was greater in T1DM, T2DM, and obese rats than in lean controls, whereas pancreatic GPR39 mRNA and protein and preproghrelin mRNA expression was decreased in T1DM, T2DM, and DIO rats. Higher GPR39 and preproghrelin protein and mRNA levels were found in adipose tissues of T1DM compared with control. In adipose tissues of T2DM and DIO rats, GPR39 protein levels were lower than in lean or T1DM rats. Preproghrelin mRNA was higher in adipose tissues of T1DM, T2DM, and DIO than lean rats. CONCLUSION We hypothesize that changes in obestatin, GPR39, and ghrelin may contribute to metabolic abnormalities in T1DM, T2DM, and obesity.
Collapse
Affiliation(s)
- Pawel Antoni Kolodziejski
- Department of Animal Physiology and Biochemistry, Poznan University of Life Sciences, Poznan, Poland
- Department of Hepatology and Gastroenterology and the Interdisciplinary Centre of Metabolism: Endocrinology, Diabetes and Metabolism, Charité-University Medicine Berlin, Berlin, Germany
| | - Ewa Pruszynska-Oszmalek
- Department of Animal Physiology and Biochemistry, Poznan University of Life Sciences, Poznan, Poland
| | - Maciej Sassek
- Department of Animal Physiology and Biochemistry, Poznan University of Life Sciences, Poznan, Poland
| | - Przemyslaw Kaczmarek
- Department of Animal Physiology and Biochemistry, Poznan University of Life Sciences, Poznan, Poland
| | - Dawid Szczepankiewicz
- Department of Animal Physiology and Biochemistry, Poznan University of Life Sciences, Poznan, Poland
| | - Maria Billert
- Department of Animal Physiology and Biochemistry, Poznan University of Life Sciences, Poznan, Poland
| | - Paweł Mackowiak
- Department of Animal Physiology and Biochemistry, Poznan University of Life Sciences, Poznan, Poland
| | - Mathias Z Strowski
- Department of Hepatology and Gastroenterology and the Interdisciplinary Centre of Metabolism: Endocrinology, Diabetes and Metabolism, Charité-University Medicine Berlin, Berlin, Germany
- Medical Clinic 1, Department of Gastroenterology, Elblandklinik, Meissen, Germany
| | - Krzysztof W Nowak
- Department of Animal Physiology and Biochemistry, Poznan University of Life Sciences, Poznan, Poland
| |
Collapse
|
32
|
Zissler A, Steinbacher P, Zimmermann R, Pittner S, Stoiber W, Bathke AC, Sänger AM. Extracorporeal Shock Wave Therapy Accelerates Regeneration After Acute Skeletal Muscle Injury. Am J Sports Med 2017; 45:676-684. [PMID: 27729321 DOI: 10.1177/0363546516668622] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Muscle injuries are among the most common sports-related lesions in athletes; however, optimal treatment remains obscure. Extracorporeal shock wave therapy (ESWT) may be a promising approach in this context, because it has gained increasing importance in tissue regeneration in various medical fields. HYPOTHESIS ESWT stimulates and accelerates regenerative processes of acute muscle injuries. STUDY DESIGN Controlled laboratory study. METHODS Adult Sprague-Dawley rats were divided into 4 experimental groups (2 ESWT+ groups and 2 ESWT- groups) as well as an uninjured control group (n ≥ 6 in each group). An acute cardiotoxin-induced injury was set into the quadriceps femoris muscle of rats in the experimental groups. A single ESWT session was administered to injured muscles of the ESWT+ groups 1 day after injury, whereas ESWT- groups received no further treatment. At 4 and 7 days after injury, 1 each of the ESWT+ and ESWT- groups was euthanized. Regenerating lesions were excised and analyzed by histomorphometry and immunohistochemistry to assess fiber size, myonuclear content, and recruitment of satellite cells. RESULTS The size and myonuclear content of regenerating fibers in ESWT+ muscle was significantly increased compared with ESWT- muscle fibers at both 4 and 7 days after injury. Similarly, at both time points, ESWT+ muscles exhibited significantly higher contents of pax7-positive satellite cells, mitotically active H3P+ cells, and, of cells expressing the myogenic regulatory factors, myoD and myogenin, indicating enhanced proliferation and differentiation rates of satellite cells after ESWT. Mitotic activity at 4 days after injury was doubled in ESWT+ compared with ESWT- muscles. CONCLUSION ESWT stimulates regeneration of skeletal muscle tissue and accelerates repair processes. CLINICAL RELEVANCE We provide evidence for accelerated regeneration of damaged skeletal muscle after ESWT. Although further studies are necessary, our findings support the view that ESWT is an effective method to improve muscle healing, with special relevance to sports injuries.
Collapse
Affiliation(s)
- Angela Zissler
- Department of Cell Biology, University of Salzburg, Salzburg, Austria
| | - Peter Steinbacher
- Department of Cell Biology, University of Salzburg, Salzburg, Austria
| | - Reinhold Zimmermann
- Department of Urology and Andrology, Salzburg General Hospital, Salzburg, Austria
| | - Stefan Pittner
- Department of Cell Biology, University of Salzburg, Salzburg, Austria
| | - Walter Stoiber
- Department of Cell Biology, University of Salzburg, Salzburg, Austria
| | - Arne C Bathke
- Department of Mathematics, University of Salzburg, Salzburg, Austria
| | | |
Collapse
|
33
|
Liu X, Liu Y, Zhao L, Zeng Z, Xiao W, Chen P. Macrophage depletion impairs skeletal muscle regeneration: The roles of regulatory factors for muscle regeneration. Cell Biol Int 2017; 41:228-238. [PMID: 27888539 DOI: 10.1002/cbin.10705] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 11/18/2016] [Indexed: 01/28/2023]
Abstract
Though macrophages are essential for skeletal muscle regeneration, which is a complex process, the roles and mechanisms of the macrophages in the process of muscle regeneration are still not fully understood. The objective of this study is to explore the roles of macrophages and the mechanisms involved in the regeneration of injured skeletal muscle. One hundred and twelve C57BL/6 mice were randomly divided into muscle contusion and macrophages depleted groups. Their gastrocnemius muscles were harvested at the time points of 12 h, 1, 3, 5, 7, 14 d post-injury. The changes in skeletal muscle morphology were assessed by hematoxylin and eosin (HE) stain. The gene expression was analyzed by real-time polymerase chain reaction. The data showed that CL-liposomes treatment did affect the expression of myogenic regulatory factors (MyoD, myogenin) after injury. In addition, CL-liposomes treatment decreased the expression of regulatory factors of muscle regeneration (HGF, uPA, COX-2, IGF-1, MGF, FGF6) and increased the expression of inflammatory cytokines (TGF-β1, TNF-α, IL-1β, RANTES) in the late stage of regeneration. Moreover, there were significant correlations between macrophages and some regulatory factors (such as HGF, uPA) for muscle regeneration. These results suggested that macrophages depletion impairs skeletal muscle regeneration and that the regulatory factors for muscle regeneration may play important roles in this process.
Collapse
Affiliation(s)
- Xiaoguang Liu
- School of Kinesiology, Shanghai University of Sport, Shanghai, 200438, China
| | - Yu Liu
- School of Kinesiology, Shanghai University of Sport, Shanghai, 200438, China.,Department of Exercise Science, Shenyang Sport University, Shenyang, 110001, China
| | - Linlin Zhao
- School of Kinesiology, Shanghai University of Sport, Shanghai, 200438, China
| | - Zhigang Zeng
- School of Kinesiology, Shanghai University of Sport, Shanghai, 200438, China
| | - Weihua Xiao
- School of Kinesiology, Shanghai University of Sport, Shanghai, 200438, China
| | - Peijie Chen
- School of Kinesiology, Shanghai University of Sport, Shanghai, 200438, China
| |
Collapse
|
34
|
Cowan E, Burch KJ, Green BD, Grieve DJ. Obestatin as a key regulator of metabolism and cardiovascular function with emerging therapeutic potential for diabetes. Br J Pharmacol 2016; 173:2165-81. [PMID: 27111465 DOI: 10.1111/bph.13502] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 04/05/2016] [Accepted: 04/15/2016] [Indexed: 01/01/2023] Open
Abstract
Obestatin is a 23-amino acid C-terminally amidated gastrointestinal peptide derived from preproghrelin and which forms an α helix. Although obestatin has a short biological half-life and is rapidly degraded, it is proposed to exert wide-ranging pathophysiological actions. Whilst the precise nature of many of its effects is unclear, accumulating evidence supports positive actions on both metabolism and cardiovascular function. For example, obestatin has been reported to inhibit food and water intake, body weight gain and gastrointestinal motility and also to mediate promotion of cell survival and prevention of apoptosis. Obestatin-induced increases in beta cell mass, enhanced adipogenesis and improved lipid metabolism have been noted along with up-regulation of genes associated with beta cell regeneration, insulin production and adipogenesis. Furthermore, human circulating obestatin levels generally demonstrate an inverse association with obesity and diabetes, whilst the peptide has been shown to confer protective metabolic effects in experimental diabetes, suggesting that it may hold therapeutic potential in this setting. Obestatin also appears to be involved in blood pressure regulation and to exert beneficial effects on endothelial function, with experimental studies indicating that it may also promote cardioprotective actions against, for example, ischaemia-reperfusion injury. This review will present a critical appraisal of the expanding obestatin research area and discuss the emerging therapeutic potential of this peptide for both metabolic and cardiovascular complications of diabetes.
Collapse
Affiliation(s)
- Elaine Cowan
- Queen's University Belfast, Institute for Global Food Security, School of Biological Sciences, Belfast, UK
| | - Kerry J Burch
- Queen's University Belfast, Wellcome-Wolfson Institute for Experimental Medicine, Belfast, UK
| | - Brian D Green
- Queen's University Belfast, Institute for Global Food Security, School of Biological Sciences, Belfast, UK
| | - David J Grieve
- Queen's University Belfast, Wellcome-Wolfson Institute for Experimental Medicine, Belfast, UK
| |
Collapse
|
35
|
Santos-Zas I, Gurriarán-Rodríguez U, Cid-Díaz T, Figueroa G, González-Sánchez J, Bouzo-Lorenzo M, Mosteiro CS, Señarís J, Casanueva FF, Casabiell X, Gallego R, Pazos Y, Mouly V, Camiña JP. β-Arrestin scaffolds and signaling elements essential for the obestatin/GPR39 system that determine the myogenic program in human myoblast cells. Cell Mol Life Sci 2016; 73:617-35. [PMID: 26211463 PMCID: PMC11108386 DOI: 10.1007/s00018-015-1994-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 07/08/2015] [Accepted: 07/16/2015] [Indexed: 12/27/2022]
Abstract
Obestatin/GPR39 signaling stimulates skeletal muscle repair by inducing the expansion of satellite stem cells as well as myofiber hypertrophy. Here, we describe that the obestatin/GPR39 system acts as autocrine/paracrine factor on human myogenesis. Obestatin regulated multiple steps of myogenesis: myoblast proliferation, cell cycle exit, differentiation and recruitment to fuse and form multinucleated hypertrophic myotubes. Obestatin-induced mitogenic action was mediated by ERK1/2 and JunD activity, being orchestrated by a G-dependent mechanism. At a later stage of myogenesis, scaffolding proteins β-arrestin 1 and 2 were essential for the activation of cell cycle exit and differentiation through the transactivation of the epidermal growth factor receptor (EGFR). Upon obestatin stimulus, β-arrestins are recruited to the membrane, where they functionally interact with GPR39 leading to Src activation and signalplex formation to EGFR transactivation by matrix metalloproteinases. This signalplex regulated the mitotic arrest by p21 and p57 expression and the mid- to late stages of differentiation through JNK/c-Jun, CAMKII, Akt and p38 pathways. This finding not only provides the first functional activity for β-arrestins in myogenesis but also identify potential targets for therapeutic approaches by triggering specific signaling arms of the GPR39 signaling involved in myogenesis.
Collapse
Affiliation(s)
- Icía Santos-Zas
- Área de Endocrinología Molecular y Celular, Instituto de Investigación Sanitaria de Santiago (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS), Servicio Gallego de Salud (SERGAS), Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, Santiago de Compostela, Spain
| | - Uxía Gurriarán-Rodríguez
- Área de Endocrinología Molecular y Celular, Instituto de Investigación Sanitaria de Santiago (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS), Servicio Gallego de Salud (SERGAS), Santiago de Compostela, Spain
- Sprott Centre for Stem Cell Research, Ottawa Health Research Institute, Ottawa, Canada
| | - Tania Cid-Díaz
- Área de Endocrinología Molecular y Celular, Instituto de Investigación Sanitaria de Santiago (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS), Servicio Gallego de Salud (SERGAS), Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, Santiago de Compostela, Spain
| | - Gabriela Figueroa
- Área de Endocrinología Molecular y Celular, Instituto de Investigación Sanitaria de Santiago (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS), Servicio Gallego de Salud (SERGAS), Santiago de Compostela, Spain
| | - Jessica González-Sánchez
- Área de Endocrinología Molecular y Celular, Instituto de Investigación Sanitaria de Santiago (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS), Servicio Gallego de Salud (SERGAS), Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, Santiago de Compostela, Spain
| | - Mónica Bouzo-Lorenzo
- Área de Endocrinología Molecular y Celular, Instituto de Investigación Sanitaria de Santiago (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS), Servicio Gallego de Salud (SERGAS), Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, Santiago de Compostela, Spain
| | - Carlos S Mosteiro
- Área de Endocrinología Molecular y Celular, Instituto de Investigación Sanitaria de Santiago (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS), Servicio Gallego de Salud (SERGAS), Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, Santiago de Compostela, Spain
| | - José Señarís
- Servicio de Cirugía Ortopédica y Traumatología, CHUS, SERGAS, Santiago de Compostela, Spain
| | - Felipe F Casanueva
- CIBER Fisiopatología de la Obesidad y Nutrición, Santiago de Compostela, Spain
- Departamento de Medicina, USC, Santiago de Compostela, Spain
| | - Xesús Casabiell
- Departamento de Fisiología, USC, Santiago de Compostela, Spain
| | - Rosalía Gallego
- Departamento de Ciencias Morfológicas, USC, Santiago de Compostela, Spain
| | - Yolanda Pazos
- Área de Endocrinología Molecular y Celular, Instituto de Investigación Sanitaria de Santiago (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS), Servicio Gallego de Salud (SERGAS), Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, Santiago de Compostela, Spain
| | - Vincent Mouly
- Institut de Myologie, INSERM, and Sorbonne Universités, Université Pierre et Marie Curie, Paris, France
| | - Jesús P Camiña
- Área de Endocrinología Molecular y Celular, Instituto de Investigación Sanitaria de Santiago (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS), Servicio Gallego de Salud (SERGAS), Santiago de Compostela, Spain.
- CIBER Fisiopatología de la Obesidad y Nutrición, Santiago de Compostela, Spain.
| |
Collapse
|
36
|
Bonnet M, Tournayre J, Cassar-Malek I. Integrated data mining of transcriptomic and proteomic datasets to predict the secretome of adipose tissue and muscle in ruminants. MOLECULAR BIOSYSTEMS 2016; 12:2722-34. [DOI: 10.1039/c6mb00224b] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Adipose tissue and muscle are endocrine organs releasing signalling and mediator proteins termed adipokines and myokines. The identification of the complete set of proteins secreted by adipose tissue and muscle is a challenge to understand the molecular cross-talk between these tissues and to reveal potential targets to control body or muscle composition and metabolism.
Collapse
Affiliation(s)
- M. Bonnet
- INRA
- UMR1213 Herbivores
- F-63122 Saint-Genès-Champanelle
- France
- Clermont Université
| | - J. Tournayre
- INRA
- UMR1213 Herbivores
- F-63122 Saint-Genès-Champanelle
- France
- Clermont Université
| | - I. Cassar-Malek
- INRA
- UMR1213 Herbivores
- F-63122 Saint-Genès-Champanelle
- France
- Clermont Université
| |
Collapse
|