1
|
Lemberg K, Mertens ND, Yousef K, Schneider R, Merz LM, Mansour B, Salmanullah D, Kolvenbach CM, Saida K, Yu S, Hölzel S, Steinsapir A, Goncalves KA, Nicolas Frank C, Franken GAC, Shril S, Buerger F, Hildebrandt F. Quantifiable and reproducible phenotypic assessment of a constitutive knockout mouse model for congenital nephrotic syndrome of the Finnish type. Sci Rep 2024; 14:15916. [PMID: 38987283 PMCID: PMC11237045 DOI: 10.1038/s41598-024-64883-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 06/13/2024] [Indexed: 07/12/2024] Open
Abstract
Steroid-resistant nephrotic syndrome (SRNS) is the second most frequent cause of childhood chronic kidney disease. Congenital nephrotic syndrome of the Finnish type (CNF) (MIM# 256300) is caused by biallelic variants in the gene NPHS1, encoding nephrin, an integral component of the kidney filtration barrier. No causal treatments exist, and children inevitably require kidney replacement therapy. In preparation for gene replacement therapy (GRT) in CNF, we established a quantifiable and reproducible phenotypic assessment of the nephrin-deficient CNF mouse model: 129/Sv-Nphs1tm1Rkl/J. We assessed the phenotypic spectrum of homozygous mice (Nphs1tm1Rkl/Nphs1tm1Rkl) compared to heterozygous controls (Nphs1tm1Rkl/Nphs1WT) by the following parameters: 1. cohort survival, 2. podocyte foot process (FP) density per glomerular basement membrane (GBM) using transmission electron microscopy, 3. tubular microcysts in brightfield microscopy, and 4. urinary albumin/creatinine ratios. Nphs1tm1Rkl/Nphs1tm1Rkl mice exhibited: 1. perinatal lethality with median survival of 1 day, 2. FP effacement with median FP density of 1.00 FP/µm GBM (2.12 FP/µm in controls), 3. tubular dilation with 65 microcysts per section (6.5 in controls), and 4. increased albumin/creatinine ratio of 238 g/g (4.1 g/g in controls). We here established four quantifiable phenotyping features of a CNF mouse model to facilitate future GRT studies by enabling sensitive detection of phenotypic improvements.
Collapse
Affiliation(s)
- Katharina Lemberg
- Division of Nephrology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Nils D Mertens
- Division of Nephrology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Kirollos Yousef
- Division of Nephrology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Ronen Schneider
- Division of Nephrology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Lea M Merz
- Division of Nephrology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Pediatrics, University Hospital Leipzig, Leipzig, Germany
| | - Bshara Mansour
- Division of Nephrology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Daanya Salmanullah
- Division of Nephrology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Caroline M Kolvenbach
- Division of Nephrology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Medical Faculty, Institute of Anatomy, University of Bonn, Bonn, Germany
| | - Ken Saida
- Division of Nephrology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Seyoung Yu
- Division of Nephrology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Selina Hölzel
- Division of Nephrology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Andrew Steinsapir
- Deerfield Discovery and Development, Deerfield Management Company, L.P. (Series C), New York, NY, USA
| | - Kevin A Goncalves
- Deerfield Discovery and Development, Deerfield Management Company, L.P. (Series C), New York, NY, USA
| | - Camille Nicolas Frank
- Division of Nephrology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Gijs A C Franken
- Division of Nephrology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Shirlee Shril
- Division of Nephrology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Florian Buerger
- Division of Nephrology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- University Children's Hospital, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Friedhelm Hildebrandt
- Division of Nephrology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
2
|
Ding WY, Kuzmuk V, Hunter S, Lay A, Hayes B, Beesley M, Rollason R, Hurcombe JA, Barrington F, Masson C, Cathery W, May C, Tuffin J, Roberts T, Mollet G, Chu CJ, McIntosh J, Coward RJ, Antignac C, Nathwani A, Welsh GI, Saleem MA. Adeno-associated virus gene therapy prevents progression of kidney disease in genetic models of nephrotic syndrome. Sci Transl Med 2023; 15:eabc8226. [PMID: 37556557 DOI: 10.1126/scitranslmed.abc8226] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 07/21/2023] [Indexed: 08/11/2023]
Abstract
Gene therapy for kidney diseases has proven challenging. Adeno-associated virus (AAV) is used as a vector for gene therapy targeting other organs, with particular success demonstrated in monogenic diseases. We aimed to establish gene therapy for the kidney by targeting a monogenic disease of the kidney podocyte. The most common cause of childhood genetic nephrotic syndrome is mutations in the podocyte gene NPHS2, encoding podocin. We used AAV-based gene therapy to rescue this genetic defect in human and mouse models of disease. In vitro transduction studies identified the AAV-LK03 serotype as a highly efficient transducer of human podocytes. AAV-LK03-mediated transduction of podocin in mutant human podocytes resulted in functional rescue in vitro, and AAV 2/9-mediated gene transfer in both the inducible podocin knockout and knock-in mouse models resulted in successful amelioration of kidney disease. A prophylactic approach of AAV 2/9 gene transfer before induction of disease in conditional knockout mice demonstrated improvements in albuminuria, plasma creatinine, plasma urea, plasma cholesterol, histological changes, and long-term survival. A therapeutic approach of AAV 2/9 gene transfer 2 weeks after disease induction in proteinuric conditional knock-in mice demonstrated improvement in urinary albuminuria at days 42 and 56 after disease induction, with corresponding improvements in plasma albumin. Therefore, we have demonstrated successful AAV-mediated gene rescue in a monogenic renal disease and established the podocyte as a tractable target for gene therapy approaches.
Collapse
Affiliation(s)
- Wen Y Ding
- Bristol Renal, Bristol Medical School, Dorothy Hodgkin Building, University of Bristol, Bristol BS1 3NY, UK
| | - Valeryia Kuzmuk
- Bristol Renal, Bristol Medical School, Dorothy Hodgkin Building, University of Bristol, Bristol BS1 3NY, UK
- Purespring Therapeutics, Rolling Stock Yard, 188 York Way, London N7 9AS, UK
| | - Sarah Hunter
- Bristol Renal, Bristol Medical School, Dorothy Hodgkin Building, University of Bristol, Bristol BS1 3NY, UK
| | - Abigail Lay
- Bristol Renal, Bristol Medical School, Dorothy Hodgkin Building, University of Bristol, Bristol BS1 3NY, UK
| | - Bryony Hayes
- Bristol Renal, Bristol Medical School, Dorothy Hodgkin Building, University of Bristol, Bristol BS1 3NY, UK
| | - Matthew Beesley
- Department of Histopathology, Cheltenham General Hospital, Cheltenham GL53 7AN, UK
| | - Ruth Rollason
- Bristol Renal, Bristol Medical School, Dorothy Hodgkin Building, University of Bristol, Bristol BS1 3NY, UK
| | - Jennifer A Hurcombe
- Bristol Renal, Bristol Medical School, Dorothy Hodgkin Building, University of Bristol, Bristol BS1 3NY, UK
| | - Fern Barrington
- Bristol Renal, Bristol Medical School, Dorothy Hodgkin Building, University of Bristol, Bristol BS1 3NY, UK
| | - Catrin Masson
- Bristol Renal, Bristol Medical School, Dorothy Hodgkin Building, University of Bristol, Bristol BS1 3NY, UK
| | - William Cathery
- Bristol Renal, Bristol Medical School, Dorothy Hodgkin Building, University of Bristol, Bristol BS1 3NY, UK
| | - Carl May
- Bristol Renal, Bristol Medical School, Dorothy Hodgkin Building, University of Bristol, Bristol BS1 3NY, UK
| | - Jack Tuffin
- Purespring Therapeutics, Rolling Stock Yard, 188 York Way, London N7 9AS, UK
| | - Timothy Roberts
- Bristol Renal, Bristol Medical School, Dorothy Hodgkin Building, University of Bristol, Bristol BS1 3NY, UK
| | - Geraldine Mollet
- Laboratoire des Maladies Rénales Héréditaires, Inserm UMR 1163, Institut Imagine, Université Paris Cité, Paris 75015, France
| | - Colin J Chu
- Academic Unit of Ophthalmology, Bristol Medical School, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - Jenny McIntosh
- Research Department of Haematology, UCL Cancer Institute, Paul O'Gorman Building, University College London, London WC1E 6BT, UK
| | - Richard J Coward
- Bristol Renal, Bristol Medical School, Dorothy Hodgkin Building, University of Bristol, Bristol BS1 3NY, UK
| | - Corinne Antignac
- Laboratoire des Maladies Rénales Héréditaires, Inserm UMR 1163, Institut Imagine, Université Paris Cité, Paris 75015, France
| | - Amit Nathwani
- Research Department of Haematology, UCL Cancer Institute, Paul O'Gorman Building, University College London, London WC1E 6BT, UK
| | - Gavin I Welsh
- Bristol Renal, Bristol Medical School, Dorothy Hodgkin Building, University of Bristol, Bristol BS1 3NY, UK
| | - Moin A Saleem
- Bristol Renal, Bristol Medical School, Dorothy Hodgkin Building, University of Bristol, Bristol BS1 3NY, UK
| |
Collapse
|
3
|
Nakamura S, Inada E, Saitoh I, Sato M. Recent Genome-Editing Approaches toward Post-Implanted Fetuses in Mice. BIOTECH 2023; 12:biotech12020037. [PMID: 37218754 DOI: 10.3390/biotech12020037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/25/2023] [Accepted: 05/08/2023] [Indexed: 05/24/2023] Open
Abstract
Genome editing, as exemplified by the CRISPR/Cas9 system, has recently been employed to effectively generate genetically modified animals and cells for the purpose of gene function analysis and disease model creation. There are at least four ways to induce genome editing in individuals: the first is to perform genome editing at the early preimplantation stage, such as fertilized eggs (zygotes), for the creation of whole genetically modified animals; the second is at post-implanted stages, as exemplified by the mid-gestational stages (E9 to E15), for targeting specific cell populations through in utero injection of viral vectors carrying genome-editing components or that of nonviral vectors carrying genome-editing components and subsequent in utero electroporation; the third is at the mid-gestational stages, as exemplified by tail-vein injection of genome-editing components into the pregnant females through which the genome-editing components can be transmitted to fetal cells via a placenta-blood barrier; and the last is at the newborn or adult stage, as exemplified by facial or tail-vein injection of genome-editing components. Here, we focus on the second and third approaches and will review the latest techniques for various methods concerning gene editing in developing fetuses.
Collapse
Affiliation(s)
- Shingo Nakamura
- Division of Biomedical Engineering, National Defense Medical College Research Institute, Saitama 359-8513, Japan
| | - Emi Inada
- Department of Pediatric Dentistry, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan
| | - Issei Saitoh
- Department of Pediatric Dentistry, Asahi University School of Dentistry, Mizuho-shi 501-0296, Japan
| | - Masahiro Sato
- Department of Genome Medicine, National Center for Child Health and Development, Tokyo 157-8535, Japan
| |
Collapse
|
4
|
Braun CJ, Adames AC, Saur D, Rad R. Tutorial: design and execution of CRISPR in vivo screens. Nat Protoc 2022; 17:1903-1925. [PMID: 35840661 DOI: 10.1038/s41596-022-00700-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 03/22/2022] [Indexed: 11/09/2022]
Abstract
Here we provide a detailed tutorial on CRISPR in vivo screening. Using the mouse as the model organism, we introduce a range of CRISPR tools and applications, delineate general considerations for 'transplantation-based' or 'direct in vivo' screening design, and provide details on technical execution, sequencing readouts, computational analyses and data interpretation. In vivo screens face unique pitfalls and limitations, such as delivery issues or library bottlenecking, which must be counteracted to avoid screening failure or flawed conclusions. A broad variety of in vivo phenotypes can be interrogated such as organ development, hematopoietic lineage decision and evolutionary licensing in oncogenesis. We describe experimental strategies to address various biological questions and provide an outlook on emerging CRISPR applications, such as genetic interaction screening. These technological advances create potent new opportunities to dissect the molecular underpinnings of complex organismal phenotypes.
Collapse
Affiliation(s)
- Christian J Braun
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Munich, Germany. .,Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technical University of Munich, Munich, Germany. .,Hopp Children's Cancer Center Heidelberg (KiTZ), German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Andrés Carbonell Adames
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Munich, Germany
| | - Dieter Saur
- Institute of Experimental Cancer Therapy, Technical University of Munich, Munich, Germany.,Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany.,Department of Medicine II, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Roland Rad
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technical University of Munich, Munich, Germany. .,Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany. .,Department of Medicine II, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany. .,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
5
|
Loss of CLDN5 in podocytes deregulates WIF1 to activate WNT signaling and contributes to kidney disease. Nat Commun 2022; 13:1600. [PMID: 35332151 PMCID: PMC8948304 DOI: 10.1038/s41467-022-29277-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 03/07/2022] [Indexed: 02/05/2023] Open
Abstract
Although mature podocytes lack tight junctions, tight junction integral membrane protein claudin-5 (CLDN5) is predominantly expressed on plasma membranes of podocytes under normal conditions. Using podocyte-specific Cldn5 knockout mice, we identify CLDN5 as a crucial regulator of podocyte function and reveal that Cldn5 deletion exacerbates podocyte injury and proteinuria in a diabetic nephropathy mouse model. Mechanistically, CLDN5 deletion reduces ZO1 expression and induces nuclear translocation of ZONAB, followed by transcriptional downregulation of WNT inhibitory factor-1 (WIF1) expression, which leads to activation of WNT signaling pathway. Podocyte-derived WIF1 also plays paracrine roles in tubular epithelial cells, as evidenced by the finding that animals with podocyte-specific deletion of Cldn5 or Wif1 have worse kidney fibrosis after unilateral ureteral obstruction than littermate controls. Systemic delivery of WIF1 suppresses the progression of diabetic nephropathy and ureteral obstruction-induced renal fibrosis. These findings establish a function for podocyte CLDN5 in restricting WNT signaling in kidney. Claudin-5 is a tight junction integral membrane protein, but it is also expressed in mature podocytes which lack tight junctions. Here the authors report that podocyte claudin-5 regulates WNT signaling activity by modulating WIF1 expression, and its downregulation contributes to kidney disease progression in mice.
Collapse
|
6
|
Asparaginyl endopeptidase protects against podocyte injury in diabetic nephropathy through cleaving cofilin-1. Cell Death Dis 2022; 13:184. [PMID: 35217650 PMCID: PMC8881581 DOI: 10.1038/s41419-022-04621-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 01/31/2022] [Accepted: 02/08/2022] [Indexed: 11/08/2022]
Abstract
AbstractPodocyte injury and loss are critical events in diabetic nephropathy (DN); however, the underlying molecular mechanisms remain unclear. Here, we demonstrate that asparaginyl endopeptidase (AEP) protects against podocyte injury through modulating the dynamics of the cytoskeleton. AEP was highly upregulated in diabetic glomeruli and hyperglycemic stimuli treated-podocytes; however, AEP gene knockout and its compound inhibitor treatment accelerated DN in streptozotocin-induced diabetic mice, whereas specific induction of AEP in glomerular cells attenuated podocyte injury and renal function deterioration. In vitro, elevated AEP was involved in actin cytoskeleton maintenance and anti-apoptosis effects. Mechanistically, we found that AEP directly cleaved the actin-binding protein cofilin-1 after the asparagine 138 (N138) site. The protein levels of endogenous cofilin-1 1-138 fragments were upregulated in diabetic podocytes, consistent with the changes in AEP levels. Importantly, we found that cofilin-1 1-138 fragments were remarkably unphosphorylated than full-length cofilin-1, indicating the enhanced cytoskeleton maintenance activity of cofilin-1 1-138. Then we validated cofilin-1 1-138 could rescue podocytes from cytoskeleton disarrangement and injury in diabetic conditions. Taken together, our data suggest a protective role of elevated AEP in podocyte injury during DN progression through cleaving cofilin-1 to maintain podocyte cytoskeleton dynamics and defend damage.
Collapse
|
7
|
Lopes FM, Woolf AS, Roberts NA. Envisioning treating genetically-defined urinary tract malformations with viral vector-mediated gene therapy. J Pediatr Urol 2021; 17:610-620. [PMID: 34312114 DOI: 10.1016/j.jpurol.2021.07.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 06/30/2021] [Accepted: 07/02/2021] [Indexed: 12/16/2022]
Abstract
Human urinary tract malformations can cause dysfunctional voiding, urosepsis and kidney failure. Other affected individuals, with severe phenotypes on fetal ultrasound screening, undergo elective termination. Currently, there exist no specific treatments that target the primary biological disease mechanisms that generate these urinary tract malformations. Historically, the pathogenesis of human urinary tract malformations has been obscure. It is now established that some such individuals have defined monogenic causes for their disease. In health, the implicated genes are expressed in either differentiating urinary tract smooth muscle cells, urothelial cells or peripheral nerve cells supplying the bladder. The phenotypes arising from mutations of these genes include megabladder, congenital functional bladder outflow obstruction, and vesicoureteric reflux. We contend that these genetic and molecular insights can now inform the design of novel therapies involving viral vector-mediated gene transfer. Indeed, this technology is being used to treat individuals with early onset monogenic disease outside the urinary tract, such as spinal muscular atrophy. Moreover, it has been contended that human fetal gene therapy, which may be necessary to ameliorate developmental defects, could become a reality in the coming decades. We suggest that viral vector-mediated gene therapies should first be tested in existing mouse models with similar monogenic and anatomical aberrations as found in people with urinary tract malformations. Indeed, gene transfer protocols have been successfully pioneered in newborn and fetal mice to treat non-urinary tract diseases. If similar strategies were successful in animals with urinary tract malformations, this would pave the way for personalized and potentially curative treatments for people with urinary tract malformations.
Collapse
Affiliation(s)
- Filipa M Lopes
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, UK
| | - Adrian S Woolf
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, UK; Royal Manchester Children's Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK.
| | - Neil A Roberts
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, UK.
| |
Collapse
|
8
|
Qu H, Gong X, Liu X, Zhang R, Wang Y, Huang B, Zhang L, Zheng H, Zheng Y. Deficiency of Mitochondrial Glycerol 3-Phosphate Dehydrogenase Exacerbates Podocyte Injury and the Progression of Diabetic Kidney Disease. Diabetes 2021; 70:1372-1387. [PMID: 33741719 DOI: 10.2337/db20-1157] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 03/16/2021] [Indexed: 11/13/2022]
Abstract
Mitochondrial function is essential for bioenergetics, metabolism, and signaling and is compromised in diseases such as proteinuric kidney diseases, contributing to the global burden of kidney failure, cardiovascular morbidity, and death. The key cell type that prevents proteinuria is the terminally differentiated glomerular podocyte. In this study, we characterized the importance of mitochondrial glycerol 3-phosphate dehydrogenase (mGPDH), located on the inner mitochondrial membrane, in regulating podocyte function and glomerular disease. Specifically, podocyte-dominated mGPDH expression was downregulated in the glomeruli of patients and mice with diabetic kidney disease and adriamycin nephropathy. Podocyte-specific depletion of mGPDH in mice exacerbated diabetes- or adriamycin-induced proteinuria, podocyte injury, and glomerular pathology. RNA sequencing revealed that mGPDH regulated the receptor for the advanced glycation end product (RAGE) signaling pathway, and inhibition of RAGE or its ligand, S100A10, protected against the impaired mitochondrial bioenergetics and increased reactive oxygen species generation caused by mGPDH knockdown in cultured podocytes. Moreover, RAGE deletion in podocytes attenuated nephropathy progression in mGPDH-deficient diabetic mice. Rescue of podocyte mGPDH expression in mice with established glomerular injury significantly improved their renal function. In summary, our study proposes that activation of mGPDH induces mitochondrial biogenesis and reinforces mitochondrial function, which may provide a potential therapeutic target for preventing podocyte injury and proteinuria in diabetic kidney disease.
Collapse
Affiliation(s)
- Hua Qu
- Department of Endocrinology, Translational Research of Diabetes Key Laboratory of Chongqing Education Commission of China, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Xiaoli Gong
- Department of Endocrinology, Translational Research of Diabetes Key Laboratory of Chongqing Education Commission of China, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Xiufei Liu
- Department of Endocrinology, Translational Research of Diabetes Key Laboratory of Chongqing Education Commission of China, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Rui Zhang
- Department of Endocrinology, Translational Research of Diabetes Key Laboratory of Chongqing Education Commission of China, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Yuren Wang
- Department of Endocrinology, Translational Research of Diabetes Key Laboratory of Chongqing Education Commission of China, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Bangliang Huang
- Department of Endocrinology, Translational Research of Diabetes Key Laboratory of Chongqing Education Commission of China, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Linlin Zhang
- Department of Endocrinology, Translational Research of Diabetes Key Laboratory of Chongqing Education Commission of China, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Hongting Zheng
- Department of Endocrinology, Translational Research of Diabetes Key Laboratory of Chongqing Education Commission of China, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Yi Zheng
- Department of Endocrinology, Translational Research of Diabetes Key Laboratory of Chongqing Education Commission of China, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| |
Collapse
|
9
|
Nakamura S, Watanabe S, Ando N, Ishihara M, Sato M. Transplacental Gene Delivery (TPGD) as a Noninvasive Tool for Fetal Gene Manipulation in Mice. Int J Mol Sci 2019; 20:ijms20235926. [PMID: 31775372 PMCID: PMC6928727 DOI: 10.3390/ijms20235926] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/14/2019] [Accepted: 11/22/2019] [Indexed: 12/18/2022] Open
Abstract
Transplacental gene delivery (TPGD) is a technique for delivering nucleic acids to fetal tissues via tail-vein injections in pregnant mice. After transplacental transport, administered nucleic acids enter fetal circulation and are distributed among fetal tissues. TPGD was established in 1995 by Tsukamoto et al., and its mechanisms, and potential applications have been further characterized since. Recently, discoveries of sequence specific nucleases, such as zinc-finger nuclease (ZFN), transcription activator-like effector nucleases (TALEN), and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein-9 nuclease (Cas9) (CRISPR/Cas9), have revolutionized genome editing. In 2019, we demonstrated that intravenous injection of plasmid DNA containing CRISPR/Cas9 produced indels in fetal myocardial cells, which are comparatively amenable to transfection with exogenous DNA. In the future, this unique technique will allow manipulation of fetal cell functions in basic studies of fetal gene therapy. In this review, we describe developments of TPGD and discuss their applications to the manipulation of fetal cells.
Collapse
Affiliation(s)
- Shingo Nakamura
- Division of Biomedical Engineering, National Defense Medical College Research Institute, Saitama 359-8513, Japan; (N.A.); (M.I.)
- Correspondence: ; Tel.: +81-4-2995-1211
| | - Satoshi Watanabe
- Animal Genome Unit, Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki 305-0901, Japan;
| | - Naoko Ando
- Division of Biomedical Engineering, National Defense Medical College Research Institute, Saitama 359-8513, Japan; (N.A.); (M.I.)
| | - Masayuki Ishihara
- Division of Biomedical Engineering, National Defense Medical College Research Institute, Saitama 359-8513, Japan; (N.A.); (M.I.)
| | - Masahiro Sato
- Section of Gene Expression Regulation, Frontier Science Research Center, Kagoshima University, Kagoshima 890-8544, Japan;
| |
Collapse
|
10
|
Abstract
A resurgence in the development of newer gene therapy systems has led to recent successes in the treatment of B cell cancers, retinal degeneration and neuromuscular atrophy. Gene therapy offers the ability to treat the patient at the root cause of their malady by restoring normal gene function and arresting the pathological progression of their genetic disease. The current standard of care for most genetic diseases is based upon the symptomatic treatment with polypharmacy while minimizing any potential adverse effects attributed to the off-target and drug-drug interactions on the target or other organs. In the kidney, however, the development of gene therapy modifications to specific renal cells has lagged far behind those in other organ systems. Some positive strides in the past few years provide continued enthusiasm to invest the time and effort in the development of new gene therapy vectors for medical intervention to treat kidney diseases. This mini-review will systematically describe the pros and cons of the most commonly tested gene therapy vector systems derived from adenovirus, retrovirus, and adeno-associated virus and provide insight about their potential utility as a therapy for various types of genetic diseases in the kidney.
Collapse
Affiliation(s)
- Lori Davis
- College of Pharmacy, Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Frank Park
- College of Pharmacy, Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee
| |
Collapse
|
11
|
Chen C, Yao W, Wu S, Zhou S, Ge M, Gu Y, Li X, Chen G, Bellanti JA, Zheng SG, Yuan D, Hei Z. Crosstalk Between Connexin32 and Mitochondrial Apoptotic Signaling Pathway Plays a Pivotal Role in Renal Ischemia Reperfusion-Induced Acute Kidney Injury. Antioxid Redox Signal 2019; 30:1521-1538. [PMID: 29790387 PMCID: PMC7364332 DOI: 10.1089/ars.2017.7375] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Revised: 04/30/2018] [Accepted: 05/22/2018] [Indexed: 12/23/2022]
Abstract
Aims: Perioperative acute kidney injury (AKI) resulting from renal ischemia reperfusion (IR) is not conducive to the postoperative surgical recovery. Our previous study demonstrated that reactive oxygen species (ROS) transmitted by gap junction (GJ) composed of connexin32 (Cx32) contributed to AKI. However, the precise underlying pathophysiologic mechanisms were largely unknown. This study focuses on the underlying mechanisms related to ROS transmitted by Cx32 responsible for AKI aggravation. Results: In a set of in vivo studies, renal IR was found to cause severe impairment in renal tissues with massive ROS generation, which occurred contemporaneously with activation of NF-κB/p53/p53 upregulated modulator of apoptosis (PUMA)-mediated mitochondrial apoptosis pathways. Cx32 deficiency alleviated renal IR-induced AKI, and simultaneously attenuated ROS generation and distribution in renal tissues, which further inhibited NF-κB/p53/PUMA-mediated mitochondrial apoptotic pathways. Correspondingly, in a set of in vitro studies, hypoxia reoxygenation (HR)-induced cellular injury, and cell apoptosis in both human kidney tubular epithelial cells (HK-2s) and rat kidney tubular epithelial cells (NRK52Es) were significantly attenuated by Cx32 inhibitors or Cx32 gene knockdown. More importantly, Cx32 inhibition not only decreased ROS generation and distribution in human or rat kidney tubular epithelial cells but also inhibited its downstream NF-κB/p53/PUMA-mediated mitochondrial apoptotic pathway activation. Innovation and Conclusion: This is the first identification of the underlying mechanisms of IR-induced renal injury integrally which demonstrates the critical role played by Cx32 in IR-induced AKI. Moreover, GJ composed of Cx32 manipulates ROS generation and distribution between neighboring cells, and alters activation of NF-κB/p53/PUMA-mediated mitochondrial apoptotic pathways. Both inhibiting Cx32 function and scavenging ROS effectively reduce mitochondrial apoptosis and subsequently attenuate AKI, providing effective strategies for kidney protection.
Collapse
Affiliation(s)
- Chaojin Chen
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Weifeng Yao
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Shan Wu
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Shaoli Zhou
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Mian Ge
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Yu Gu
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Xiang Li
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Guihua Chen
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Joseph A. Bellanti
- Departments of Pediatrics and Microbiology-Immunology, Georgetown University Medical Center, Washington, District of Columbia
| | - Song Guo Zheng
- Department of Medicine, Milton S Hershey Medical Center, Penn State University, State College, Pennsylvania
| | - Dongdong Yuan
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Ziqing Hei
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
- Department of Anesthesiology, Yuedong Hospital, The Third Affiliated Hospital of Sun Yat-sen University, Meizhou, People's Republic of China
| |
Collapse
|
12
|
Woolf AS, Lopes FM, Ranjzad P, Roberts NA. Congenital Disorders of the Human Urinary Tract: Recent Insights From Genetic and Molecular Studies. Front Pediatr 2019; 7:136. [PMID: 31032239 PMCID: PMC6470263 DOI: 10.3389/fped.2019.00136] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 03/22/2019] [Indexed: 12/13/2022] Open
Abstract
The urinary tract comprises the renal pelvis, the ureter, the urinary bladder, and the urethra. The tract acts as a functional unit, first propelling urine from the kidney to the bladder, then storing it at low pressure inside the bladder which intermittently and completely voids urine through the urethra. Congenital diseases of these structures can lead to a range of diseases sometimes associated with fetal losses or kidney failure in childhood and later in life. In some of these disorders, parts of the urinary tract are severely malformed. In other cases, the organs appear grossly intact yet they have functional deficits that compromise health. Human studies are beginning to indicate monogenic causes for some of these diseases. Here, the implicated genes can encode smooth muscle, neural or urothelial molecules, or transcription factors that regulate their expression. Furthermore, certain animal models are informative about how such molecules control the development and functional differentiation of the urinary tract. In future, novel therapies, including those based on gene transfer and stem cell technologies, may be used to treat these diseases to complement conventional pharmacological and surgical clinical therapies.
Collapse
Affiliation(s)
- Adrian S Woolf
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology Medicine and Health, School of Biological Sciences, University of Manchester, Manchester, United Kingdom.,Royal Manchester Children's Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Filipa M Lopes
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology Medicine and Health, School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| | - Parisa Ranjzad
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology Medicine and Health, School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| | - Neil A Roberts
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology Medicine and Health, School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
13
|
Ikeda Y, Sun Z, Ru X, Vandenberghe LH, Humphreys BD. Efficient Gene Transfer to Kidney Mesenchymal Cells Using a Synthetic Adeno-Associated Viral Vector. J Am Soc Nephrol 2018; 29:2287-2297. [PMID: 29976586 PMCID: PMC6115653 DOI: 10.1681/asn.2018040426] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 06/01/2018] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND After injury, mesenchymal progenitors in the kidney interstitium differentiate into myofibroblasts, cells that have a critical role in kidney fibrogenesis. The ability to deliver genetic material to myofibroblast progenitors could allow new therapeutic approaches to treat kidney fibrosis. Preclinical and clinical studies show that adeno-associated viruses (AAVs) efficiently and safely transduce various tissue targets in vivo; however, protocols for transduction of kidney mesenchymal cells have not been established. METHODS We evaluated the transduction profiles of various pseudotyped AAV vectors expressing either GFP or Cre recombinase reporters in mouse kidney and human kidney organoids. RESULTS Of the six AAVs tested, a synthetic AAV called Anc80 showed specific and high-efficiency transduction of kidney stroma and mesangial cells. We characterized the cell specificity, dose dependence, and expression kinetics and showed the efficacy of this approach by knocking out Gli2 from kidney mesenchymal cells by injection of Anc80-Cre virus into either homozygous or heterozygous Gli2-floxed mice. After unilateral ureteral obstruction, the homozygous Gli2-floxed mice had less fibrosis than the Gli2 heterozygotes had. We observed the same antifibrotic effect in β-catenin-floxed mice injected with Anc80-Cre virus before obstructive injury, strongly supporting a central role for canonical Wnt signaling in kidney myofibroblast activation. Finally, we showed that the Anc80 synthetic virus can transduce the mesenchymal lineage in human kidney organoids. CONCLUSIONS These studies establish a novel method for inducible knockout of floxed genes in mouse mesangium, pericytes, and perivascular fibroblasts and are the foundation for future gene therapy approaches to treat kidney fibrosis.
Collapse
Affiliation(s)
- Yoichiro Ikeda
- Division of Nephrology, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, Missouri
| | - Zhao Sun
- Division of Nephrology, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, Missouri
| | - Xiao Ru
- Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| | - Luk H Vandenberghe
- Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
- The Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts; and
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute and Massachusetts Eye and Ear, Boston, Massachusetts
| | - Benjamin D Humphreys
- Division of Nephrology, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, Missouri;
| |
Collapse
|
14
|
Tabebordbar M, Cheng J, Wagers AJ. Therapeutic Gene Editing in Muscles and Muscle Stem Cells. RESEARCH AND PERSPECTIVES IN NEUROSCIENCES 2017. [DOI: 10.1007/978-3-319-60192-2_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
15
|
Fumoto S, Nishimura K, Nishida K, Kawakami S. Three-Dimensional Imaging of the Intracellular Fate of Plasmid DNA and Transgene Expression: ZsGreen1 and Tissue Clearing Method CUBIC Are an Optimal Combination for Multicolor Deep Imaging in Murine Tissues. PLoS One 2016; 11:e0148233. [PMID: 26824850 PMCID: PMC4732687 DOI: 10.1371/journal.pone.0148233] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Accepted: 12/01/2015] [Indexed: 01/17/2023] Open
Abstract
Evaluation methods for determining the distribution of transgene expression in the body and the in vivo fate of viral and non-viral vectors are necessary for successful development of in vivo gene delivery systems. Here, we evaluated the spatial distribution of transgene expression using tissue clearing methods. After hydrodynamic injection of plasmid DNA into mice, whole tissues were subjected to tissue clearing. Tissue clearing followed by confocal laser scanning microscopy enabled evaluation of the three-dimensional distribution of transgene expression without preparation of tissue sections. Among the tested clearing methods (ClearT2, SeeDB, and CUBIC), CUBIC was the most suitable method for determining the spatial distribution of transgene expression in not only the liver but also other tissues such as the kidney and lung. In terms of the type of fluorescent protein, the observable depth for green fluorescent protein ZsGreen1 was slightly greater than that for red fluorescent protein tdTomato. We observed a depth of ~1.5 mm for the liver and 500 μm for other tissues without preparation of tissue sections. Furthermore, we succeeded in multicolor deep imaging of the intracellular fate of plasmid DNA in the murine liver. Thus, tissue clearing would be a powerful approach for determining the spatial distribution of plasmid DNA and transgene expression in various murine tissues.
Collapse
Affiliation(s)
- Shintaro Fumoto
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Koyo Nishimura
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Koyo Nishida
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Shigeru Kawakami
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
16
|
Mao Y, Wang X, Yan R, Hu W, Li A, Wang S, Li H. Single point mutation in adeno-associated viral vectors -DJ capsid leads to improvement for gene delivery in vivo. BMC Biotechnol 2016; 16:1. [PMID: 26729248 PMCID: PMC4700607 DOI: 10.1186/s12896-015-0230-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 12/22/2015] [Indexed: 11/24/2022] Open
Abstract
Background Rational design of AAV capsids is a simple method for enhancing AAV transduction efficiency. AAV-DJ is a highly recombinogenic hybrid vector created from DNA shuffling of eight AAV serotypes, which mediates efficient gene expression both in vitro and in vivo. AAV2 and AAV8 are the closest parental vectors of AAV-DJ and it has been reported that mutations on the 137/251/503 ubiquitination or phosphorylation sites of the AAV2 or AAV8 capsid lead to dramatic enhancement of gene delivery. Here, we aimed to find out whether the same point mutations on the AAV-DJ capsid could lead to significant improvement for gene delivery both in vitro and in vivo. Results We constructed three single point mutants (K137R/T251A/S503A) of AAV-DJ and the transduction efficiency of these mutants and AAV-DJ were investigated using two reporter gene systems including green fluorescent protein (GFP) and dual-luciferase (Gaussia luciferase and Firefly luciferase). Data indicated that single point mutations T251A/S503A lead to significant improvement of dual-luciferase expression in vivo after tail vein (TV) injection in mice respectively, despite limited enhancement of GFP expression in 293 T, Hela and HepG2 cells in vitro. Moreover, in vivo bioluminescence image and viral genome DNA copy number in tissue analysis showed that these mutants reserved the liver tropism characteristics, consistent with AAV-DJ. Conclusion Single point mutations on the 251/503 sites of AAV-DJ capsid can lead to a significant improvement for in vivo gene expression. These enhanced AAV vectors have great potential in gene therapy applications.
Collapse
Affiliation(s)
- Yingying Mao
- School of Biotechnology, Southern Medical University, 1023 South Shatai Road, Guangzhou, Guangdong, 510515, China
| | - Xuejun Wang
- Department of Biotechnology, Beijing Institute of Radiation Medicine, Beijing, China.
| | - Renhe Yan
- School of Biotechnology, Southern Medical University, 1023 South Shatai Road, Guangzhou, Guangdong, 510515, China
| | - Wei Hu
- Department of Biotechnology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Andrew Li
- Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, USA
| | - Shengqi Wang
- Department of Biotechnology, Beijing Institute of Radiation Medicine, Beijing, China.
| | - Hongwei Li
- School of Biotechnology, Southern Medical University, 1023 South Shatai Road, Guangzhou, Guangdong, 510515, China.
| |
Collapse
|
17
|
Roberts NA, Hilton EN, Woolf AS. From gene discovery to new biological mechanisms: heparanases and congenital urinary bladder disease. Nephrol Dial Transplant 2015; 31:534-40. [PMID: 26315301 PMCID: PMC4805131 DOI: 10.1093/ndt/gfv309] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 07/29/2015] [Indexed: 12/29/2022] Open
Abstract
We present a scientific investigation into the pathogenesis of a urinary bladder disease. The disease in question is called urofacial syndrome (UFS), a congenital condition inherited in an autosomal recessive manner. UFS features incomplete urinary bladder emptying and vesicoureteric reflux, with a high risk of recurrent urosepsis and end-stage renal disease. The story starts from a human genomic perspective, then proceeds through experiments that seek to determine the roles of the implicated molecules in embryonic frogs and newborn mice. A future aim would be to use such biological knowledge to intelligently choose novel therapies for UFS. We focus on heparanase proteins and the peripheral nervous system, molecules and tissues that appear to be key players in the pathogenesis of UFS and therefore must also be critical for functional differentiation of healthy bladders. These considerations allow the envisioning of novel biological treatments, although the potential difficulties of targeting the developing bladder in vivo should not be underestimated.
Collapse
Affiliation(s)
- Neil A Roberts
- Institute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK Royal Manchester Children's Hospital, Manchester, UK
| | - Emma N Hilton
- Institute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK Royal Manchester Children's Hospital, Manchester, UK
| | - Adrian S Woolf
- Institute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK Royal Manchester Children's Hospital, Manchester, UK
| |
Collapse
|
18
|
Dong L, Pietsch S, Englert C. Towards an understanding of kidney diseases associated with WT1 mutations. Kidney Int 2015; 88:684-90. [PMID: 26154924 PMCID: PMC4687464 DOI: 10.1038/ki.2015.198] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 05/12/2015] [Indexed: 12/23/2022]
Abstract
Mutations in Wilms' tumor 1 (WT1) cause a wide spectrum of renal manifestations, eventually leading to end-stage kidney failure. Insufficient understanding of WT1's molecular functions in kidney development has hampered efficient therapeutic applications for WT1-associated diseases. Recently, the generation and characterization of mouse models and application of multiple state-of-the-art approaches have significantly expanded our understanding of the molecular mechanisms of how WT1 mutations lead to kidney failure. Here, we discuss the WT1 binding consensus and illustrate the major roles of WT1 in different cell populations in kidney biology. WT1 controls metanephric mesenchyme (MM) self-renewal and proliferation mainly by regulating FGF and BMP-pSMAD signaling pathways as well as Sall1 and Pax2, encoding key transcription factors; WT1 drives MM differentiation and mesenchyme–epithelial transition by targeting Fgf8 and Wnt4; WT1 defines podocyte identity by activation of other podocyte-specific transcription factors, including Mafb, Lmx1b, FoxC2, and Tcf21. These factors potentially cooperate with WT1 regulating the expression of components and regulators of the cytoskeleton for establishing podocyte polarity, slit diaphragm structure, and focal adhesion to the glomerular basement membrane. Understanding of WT1's function in kidney biology including WT1-regulated pathways will give insights that will eventually help therapeutic applications.
Collapse
Affiliation(s)
- Lihua Dong
- Molecular Genetics, Leibniz Institute for Age Research, Fritz Lipmann Institute, Jena, Germany
| | - Stefan Pietsch
- Molecular Genetics, Leibniz Institute for Age Research, Fritz Lipmann Institute, Jena, Germany
| | - Christoph Englert
- Molecular Genetics, Leibniz Institute for Age Research, Fritz Lipmann Institute, Jena, Germany.,Faculty of Biology and Pharmacy, Friedrich Schiller University of Jena, Jena, Germany
| |
Collapse
|