1
|
La Torre M, Burla R, Saggio I. Preserving Genome Integrity: Unveiling the Roles of ESCRT Machinery. Cells 2024; 13:1307. [PMID: 39120335 PMCID: PMC11311930 DOI: 10.3390/cells13151307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/02/2024] [Accepted: 08/02/2024] [Indexed: 08/10/2024] Open
Abstract
The endosomal sorting complex required for transport (ESCRT) machinery is composed of an articulated architecture of proteins that assemble at multiple cellular sites. The ESCRT machinery is involved in pathways that are pivotal for the physiology of the cell, including vesicle transport, cell division, and membrane repair. The subunits of the ESCRT I complex are mainly responsible for anchoring the machinery to the action site. The ESCRT II subunits function to bridge and recruit the ESCRT III subunits. The latter are responsible for finalizing operations that, independently of the action site, involve the repair and fusion of membrane edges. In this review, we report on the data related to the activity of the ESCRT machinery at two sites: the nuclear membrane and the midbody and the bridge linking cells in the final stages of cytokinesis. In these contexts, the machinery plays a significant role for the protection of genome integrity by contributing to the control of the abscission checkpoint and to nuclear envelope reorganization and correlated resilience. Consistently, several studies show how the dysfunction of the ESCRT machinery causes genome damage and is a codriver of pathologies, such as laminopathies and cancer.
Collapse
Affiliation(s)
- Mattia La Torre
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University, 00185 Rome, Italy; (M.L.T.); (R.B.)
| | - Romina Burla
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University, 00185 Rome, Italy; (M.L.T.); (R.B.)
- CNR Institute of Molecular Biology and Pathology, 00185 Rome, Italy
| | - Isabella Saggio
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University, 00185 Rome, Italy; (M.L.T.); (R.B.)
| |
Collapse
|
2
|
Qin F, Cai B, Wang P, Cao R, Zhang Y, Wen H, Zheng Y, Zhao W, Gao C, Liu B. LTN1 promotes RLR degradation to inhibit immune response to RNA virus through the ESCRT pathway. Autophagy 2024; 20:1270-1285. [PMID: 38060409 PMCID: PMC11210911 DOI: 10.1080/15548627.2023.2291939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 11/20/2023] [Accepted: 11/30/2023] [Indexed: 06/22/2024] Open
Abstract
The excessive activation of immune responses will trigger autoimmune diseases or inflammatory injury. The endosomal sorting complexes required for transport (ESCRT) system can capture and mediate ubiquitinated protein degradation, which timely terminates signaling pathway hyperactivation. However, whether the ESCRT system participates in regulating RIGI-like receptor (RLR)-mediated antiviral responses remains unknown. In this study, we show that LTN1/listerin, a major component of RQC, can recruit E3 ubiquitin ligase TRIM27 to trigger K63-linked polyubiquitination of RIGI and IFIH1/MDA5. This K63-linked polyubiquitination facilitates the sorting and degradation of RIGI and IFIH1 proteins through the ESCRT-dependent pathway. Concordantly, LTN1 deficiency enhances the innate antiviral response to infection with RNA viruses. Thus, our work uncovers a new mechanism for RIGI and IFIH1 degradation and identifies the role of LTN1 in negatively regulating RLR-mediated antiviral innate immunity, which may provide new targets for the intervention of viral infection.Abbreviation: 5'-pppRNA: 5' triphosphate double stranded RNA; ATG5: autophagy related 5; ATG7: autophagy related 7; BafA1: bafilomycin A1; ESCRT: endosomal sorting complexes required for transport; CHX: cycloheximide; IFIH1/MDA5: interferon induced with helicase C domain 1; IFN: interferon; PIK3C3/VPS34: phosphatidylinositol 3-kinase catalytic subunit type 3; RIGI: RNA sensor RIG-I; RLR: RIGI-like receptors; RQC: ribosome-associated protein quality control; SeV: Sendai virus; TRIM27: tripartite motif-containing 27; VSV: vesicular stomatitis virus; VPS4: vacuolar protein sorting 4.
Collapse
Affiliation(s)
- Fei Qin
- Key Laboratory of Infection and Immunity of Shandong Province & Key Laboratory for Experimental Teratology of Ministry of Education, Shandong University, Jinan, Shandong, China
- Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Baoshan Cai
- Key Laboratory of Infection and Immunity of Shandong Province & Key Laboratory for Experimental Teratology of Ministry of Education, Shandong University, Jinan, Shandong, China
- Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Peng Wang
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Runyu Cao
- Key Laboratory of Infection and Immunity of Shandong Province & Key Laboratory for Experimental Teratology of Ministry of Education, Shandong University, Jinan, Shandong, China
- Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Yuling Zhang
- Key Laboratory of Infection and Immunity of Shandong Province & Key Laboratory for Experimental Teratology of Ministry of Education, Shandong University, Jinan, Shandong, China
- Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Hongling Wen
- Department of Microbiological Laboratory Technology, School of Public Health, Shandong University, Jinan, Shandong, China
| | - Yi Zheng
- Key Laboratory of Infection and Immunity of Shandong Province & Key Laboratory for Experimental Teratology of Ministry of Education, Shandong University, Jinan, Shandong, China
- Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Wei Zhao
- Key Laboratory of Infection and Immunity of Shandong Province & Key Laboratory for Experimental Teratology of Ministry of Education, Shandong University, Jinan, Shandong, China
- Department of Pathogenic Biology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Chengjiang Gao
- Key Laboratory of Infection and Immunity of Shandong Province & Key Laboratory for Experimental Teratology of Ministry of Education, Shandong University, Jinan, Shandong, China
- Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Bingyu Liu
- Key Laboratory of Infection and Immunity of Shandong Province & Key Laboratory for Experimental Teratology of Ministry of Education, Shandong University, Jinan, Shandong, China
- Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| |
Collapse
|
3
|
Martínez-Soto D, García-Ortega LF, Guzmán-Rincón A, Ortiz-Castellanos L, León-Ramírez CG. Conservation of the Pal/Rim Pathway in Ustilaginomycetes. Curr Microbiol 2024; 81:173. [PMID: 38750329 DOI: 10.1007/s00284-024-03696-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/08/2024] [Indexed: 06/29/2024]
Abstract
The ability of fungi to effectively sense and internalize signals related to extracellular changing environments is essential for survival. This adaptability is particularly important for fungal pathogens of humans and plants that must sense and respond to drastic environmental changes when colonizing their hosts. One of the most important physicochemical factors affecting fungal growth and development is the pH. Ascomycota fungal species possess mechanisms such as the Pal/Rim pathway for external pH sensing and adaptation. However, the conservation of this mechanism in other fungi, such as Ustilaginomycetes is still little studied. To overcome this knowledge gap, we used a comparative genomic approach to explore the conservation of the Pal/Rim pathway in the 13 best sequenced and annotated Ustilaginomycetes. Our findings reveal that the Rim proteins and the Endosomal Sorting Complex Required for Transport (ESCRT) proteins are conserved in Ustilaginomycetes. They conserve the canonical domains present in Pal/Rim and ESCRT proteins of Ascomycota. This study sheds light on the molecular mechanisms used by these fungi for responding to extracellular stresses such as the pH, and open the door to further experimentations for understanding the molecular bases of the signaling in Ustilaginomycetes.
Collapse
Affiliation(s)
- Domingo Martínez-Soto
- Departamento de Microbiología, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Carretera Tijuana-Ensenada 3918, Zona Playitas, 22860, Ensenada, BC, Mexico.
| | - Luis F García-Ortega
- Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Km 9.6, Libramiento Norte, Carretera Irapuato-León, 36821, Irapuato, Guanajuato, Mexico
| | - Andrés Guzmán-Rincón
- Bioingenieria, Universidad Autónoma de Baja California, Carretera Transpeninsular Ensenada-Tijuana 3917, Zona Playitas, 22860, Ensenada, BC, Mexico
| | - Lucila Ortiz-Castellanos
- Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Km 9.6, Libramiento Norte, Carretera Irapuato-León, 36821, Irapuato, Guanajuato, Mexico
| | - Claudia G León-Ramírez
- Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Km 9.6, Libramiento Norte, Carretera Irapuato-León, 36821, Irapuato, Guanajuato, Mexico
| |
Collapse
|
4
|
Spada SJ, Rose KM, Sette P, O'Connor SK, Dussupt V, Siddartha Yerramilli V, Nagashima K, Sjoelund VH, Cruz P, Kabat J, Ganesan S, Smelkinson M, Nita-Lazar A, Hoyt F, Scarlata S, Hirsch V, Best SM, Grigg ME, Bouamr F. Human ESCRT-I and ALIX function as scaffolding helical filaments in vivo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.01.592080. [PMID: 38903125 PMCID: PMC11188096 DOI: 10.1101/2024.05.01.592080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
The Endosomal Sorting Complex Required for Transport (ESCRT) is an evolutionarily conserved machinery that performs reverse-topology membrane scission in cells universally required from cytokinesis to budding of enveloped viruses. Upstream acting ESCRT-I and ALIX control these events and link recruitment of viral and cellular partners to late-acting ESCRT-III CHMP4 through incompletely understood mechanisms. Using structure-function analyses combined with super-resolution imaging, we show that ESCRT-I and ALIX function as distinct helical filaments in vivo . Together, they are essential for optimal structural scaffolding of HIV-1 nascent virions, the retention of viral and human genomes through defined functional interfaces, and recruitment of CHMP4 that itself assembles into corkscrew-like filaments intertwined with ESCRT-I or ALIX helices. Disruption of filament assembly or their conformationally clustered RNA binding interfaces in human cells impaired membrane abscission, resulted in major structural instability and leaked nucleic acid from nascent virions and nuclear envelopes. Thus, ESCRT-I and ALIX function as helical filaments in vivo and serve as both nucleic acid-dependent structural scaffolds as well as ESCRT-III assembly templates. Significance statement When cellular membranes are dissolved or breached, ESCRT is rapidly deployed to repair membranes to restore the integrity of intracellular compartments. Membrane sealing is ensured by ESCRT-III filaments assembled on the inner face of membrane; a mechanism termed inverse topology membrane scission. This mechanism, initiated by ESCRT-I and ALIX, is universally necessary for cytokinesis, wound repair, budding of enveloped viruses, and more. We show ESCRT-I and ALIX individually oligomerize into helical filaments that cluster newly discovered nucleic acid-binding interfaces and scaffold-in genomes within nascent virions and nuclear envelopes. These oligomers additionally appear to serve as ideal templates for ESCRT-III polymerization, as helical filaments of CHMP4B were found intertwined ESCRT-I or ALIX filaments in vivo . Similarly, corkscrew-like filaments of ALIX are also interwoven with ESCRT-I, supporting a model of inverse topology membrane scission that is synergistically reinforced by inward double filament scaffolding.
Collapse
|
5
|
Brugger M, Lauri A, Zhen Y, Gramegna LL, Zott B, Sekulić N, Fasano G, Kopajtich R, Cordeddu V, Radio FC, Mancini C, Pizzi S, Paradisi G, Zanni G, Vasco G, Carrozzo R, Palombo F, Tonon C, Lodi R, La Morgia C, Arelin M, Blechschmidt C, Finck T, Sørensen V, Kreiser K, Strobl-Wildemann G, Daum H, Michaelson-Cohen R, Ziccardi L, Zampino G, Prokisch H, Abou Jamra R, Fiorini C, Arzberger T, Winkelmann J, Caporali L, Carelli V, Stenmark H, Tartaglia M, Wagner M. Bi-allelic variants in SNF8 cause a disease spectrum ranging from severe developmental and epileptic encephalopathy to syndromic optic atrophy. Am J Hum Genet 2024; 111:594-613. [PMID: 38423010 PMCID: PMC10940020 DOI: 10.1016/j.ajhg.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 02/07/2024] [Accepted: 02/07/2024] [Indexed: 03/02/2024] Open
Abstract
The endosomal sorting complex required for transport (ESCRT) machinery is essential for membrane remodeling and autophagy and it comprises three multi-subunit complexes (ESCRT I-III). We report nine individuals from six families presenting with a spectrum of neurodevelopmental/neurodegenerative features caused by bi-allelic variants in SNF8 (GenBank: NM_007241.4), encoding the ESCRT-II subunit SNF8. The phenotypic spectrum included four individuals with severe developmental and epileptic encephalopathy, massive reduction of white matter, hypo-/aplasia of the corpus callosum, neurodevelopmental arrest, and early death. A second cohort shows a milder phenotype with intellectual disability, childhood-onset optic atrophy, or ataxia. All mildly affected individuals shared the same hypomorphic variant, c.304G>A (p.Val102Ile). In patient-derived fibroblasts, bi-allelic SNF8 variants cause loss of ESCRT-II subunits. Snf8 loss of function in zebrafish results in global developmental delay and altered embryo morphology, impaired optic nerve development, and reduced forebrain size. In vivo experiments corroborated the pathogenicity of the tested SNF8 variants and their variable impact on embryo development, validating the observed clinical heterogeneity. Taken together, we conclude that loss of ESCRT-II due to bi-allelic SNF8 variants is associated with a spectrum of neurodevelopmental/neurodegenerative phenotypes mediated likely via impairment of the autophagic flux.
Collapse
Affiliation(s)
- Melanie Brugger
- Institute of Human Genetics, Technical University of Munich, Munich, Germany
| | - Antonella Lauri
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Yan Zhen
- Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Laura L Gramegna
- IRCCS Istituto Delle Scienze Neurologiche di Bologna, Programma Neuroimmagini Funzionali e Molecolari, Bologna, Italy; Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Benedikt Zott
- Department of Diagnostic and Interventional Neuroradiology, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany; Institute of Neuroscience, Technical University of Munich, Munich, Germany
| | - Nikolina Sekulić
- Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, Faculty of Medicine, University of Oslo, Oslo, Norway; Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, Norway
| | - Giulia Fasano
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Robert Kopajtich
- Institute of Human Genetics, Technical University of Munich, Munich, Germany; Institute of Neurogenomics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Viviana Cordeddu
- Dipartimento di Oncologia e Medicina Molecolare, Istituto Superiore di Sanità, Rome, Italy
| | | | - Cecilia Mancini
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Simone Pizzi
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Graziamaria Paradisi
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Ginevra Zanni
- Unit of Muscular and Neurodegenerative Disorders and Unit of Developmental Neurology Piazza S. Onofrio 4, 00165 Rome, Italy
| | - Gessica Vasco
- Department of Neurorehabilitation and Robotics, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Rosalba Carrozzo
- Translational Pediatrics and Clinical Genetics Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Flavia Palombo
- IRCCS Istituto Delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy
| | - Caterina Tonon
- IRCCS Istituto Delle Scienze Neurologiche di Bologna, Programma Neuroimmagini Funzionali e Molecolari, Bologna, Italy; Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Raffaele Lodi
- IRCCS Istituto Delle Scienze Neurologiche di Bologna, Programma Neuroimmagini Funzionali e Molecolari, Bologna, Italy; Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Chiara La Morgia
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy; IRCCS Istituto Delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy
| | - Maria Arelin
- Department for Women and Child Health, Hospital for Children and Adolescents, University Hospitals, University of Leipzig, Leipzig, Germany
| | | | - Tom Finck
- Department of Diagnostic and Interventional Neuroradiology, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Vigdis Sørensen
- Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Kornelia Kreiser
- Department of Radiology and Neuroradiology, Rehabilitation and University Hospital Ulm, Ulm, Germany
| | | | - Hagit Daum
- Department of Genetics, Hadassah Medical Organization and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Rachel Michaelson-Cohen
- Department of Gynecology, Shaare Zedek Medical Center, Jerusalem, Israel; Medical Genetics Unit, Shaare Zedek Medical Center, Jerusalem, Israel
| | | | - Giuseppe Zampino
- Center for Rare Diseases and Birth Defects, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy; Università Cattolica Sacro Cuore, Rome, Italy
| | - Holger Prokisch
- Institute of Human Genetics, Technical University of Munich, Munich, Germany; Institute of Neurogenomics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Rami Abou Jamra
- Institute of Human Genetics, University Medical Center Leipzig, Leipzig, Germany
| | - Claudio Fiorini
- IRCCS Istituto Delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy
| | - Thomas Arzberger
- Department of Psychiatry and Psychotherapy, University Hospital, Ludwig-Maximilians-University, Munich, Germany; Center for Neuropathology and Prion Research, University Hospital Munich, Ludwig-Maximilians-University, Munich, Germany
| | - Juliane Winkelmann
- Institute of Human Genetics, Technical University of Munich, Munich, Germany; Institute of Neurogenomics, Helmholtz Zentrum München, Neuherberg, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Leonardo Caporali
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy; IRCCS Istituto Delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy
| | - Valerio Carelli
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy; IRCCS Istituto Delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy
| | - Harald Stenmark
- Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Marco Tartaglia
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy.
| | - Matias Wagner
- Institute of Human Genetics, Technical University of Munich, Munich, Germany; Institute of Neurogenomics, Helmholtz Zentrum München, Neuherberg, Germany; Division of Pediatric Neurology, LMU Center for Development and Children with Medical Complexity, Ludwig-Maximilians-University Munich, Munich, Germany.
| |
Collapse
|
6
|
Dai J, Feng Y, Liao Y, Tan L, Sun Y, Song C, Qiu X, Ding C. ESCRT machinery and virus infection. Antiviral Res 2024; 221:105786. [PMID: 38147902 DOI: 10.1016/j.antiviral.2023.105786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 12/28/2023]
Abstract
The endosomal sorting complex required for transport (ESCRT) machinery plays a significant role in the spread of human viruses. However, our understanding of how the host ESCRT machinery responds to viral infection remains limited. Emerging evidence suggests that the ESCRT machinery can be hijacked by viruses of different families to enhance their replication. Throughout their life cycle, these viruses can interfere with or exploit ESCRT-mediated physiological processes to increase their chances of infecting the host. In contrast, to counteract virus infection, the interferon-stimulated gene 15 (ISG15) or the E3 ISG15-protein ligase (HERC5) system within the infected cells is activated to degrade the ESCRT proteins. Many retroviral and RNA viral proteins have evolved "late (L) domain" motifs, which enable them to recruit host ESCRT subunit proteins to facilitate virus transport, replication, budding, mature, and even endocytosis, Therefore, the L domain motifs and ESCRT subunit proteins could serve as promising drug targets for antiviral therapy. This review investigated the composition and essential functions of the ESCRT, shedding light on the impact of ESCRT subunits and viral L domain motifs on the replication of viruses. Furthermore, the antiviral effects facilitated by the ESCRT machinery have been investigated, aiming to provide valuable insights to guide the development and utilization of antiviral drugs.
Collapse
Affiliation(s)
- Jun Dai
- Experimental Animal Center, Zunyi Medical University, Zunyi, 563099, China; Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China.
| | - Yiyi Feng
- Laboratory of Veterinary Microbiology and Animal Infectious Diseases, College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning, 530004, Guangxi, China.
| | - Ying Liao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China.
| | - Lei Tan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China.
| | - Yingjie Sun
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China.
| | - Cuiping Song
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China.
| | - Xusheng Qiu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China.
| | - Chan Ding
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
7
|
Guzewska MM, Myszczynski K, Heifetz Y, Kaczmarek MM. Embryonic signals mediate extracellular vesicle biogenesis and trafficking at the embryo-maternal interface. Cell Commun Signal 2023; 21:210. [PMID: 37596609 PMCID: PMC10436626 DOI: 10.1186/s12964-023-01221-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 07/11/2023] [Indexed: 08/20/2023] Open
Abstract
BACKGROUND Extracellular vesicles (EVs) are membrane-coated nanoparticles secreted by almost all cell types in living organisms. EVs, as paracrine mediators, are involved in intercellular communication, immune response, and several reproductive events, including the maintenance of pregnancy. Using a domestic animal model (Sus scrofa) with an epitheliochorial, superficial type of placentation, we focused on EV biogenesis pathway at the embryo-maternal interface, when the embryonic signaling occurs for maternal recognition and the maintenance of pregnancy. RESULTS Transmission electron microscopy was used during early pregnancy to visualize EVs and apocrine and/or merocrine pathways of secretion. Immunofluorescent staining localized proteins responsible for EV biogenesis and cell polarization at the embryo-maternal interface. The expression profiles of genes involved in biogenesis and the secretion of EVs pointed to the possible modulation of endometrial expression by embryonic signals. Further in vitro studies showed that factors of embryonic origin can regulate the expression of the ESCRT-II complex and EV trafficking within endometrial luminal epithelial cells. Moreover, miRNA-mediated rapid negative regulation of gene expression was abolished by delivered embryonic signals. CONCLUSIONS Our findings demonstrated that embryonic signals are potent modulators of ESCRT-dependent EV-mediated secretory activity of the endometrium during the critical stages of early pregnancy. Video Abstract.
Collapse
Affiliation(s)
- Maria M Guzewska
- Department of Hormonal Action Mechanisms, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Kamil Myszczynski
- Molecular Biology Laboratory, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Yael Heifetz
- Department of Entomology, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Monika M Kaczmarek
- Department of Hormonal Action Mechanisms, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland.
- Molecular Biology Laboratory, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland.
| |
Collapse
|
8
|
Hudait A, Hurley JH, Voth GA. Dynamics of upstream ESCRT organization at the HIV-1 budding site. Biophys J 2023; 122:2655-2674. [PMID: 37218128 PMCID: PMC10397573 DOI: 10.1016/j.bpj.2023.05.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/27/2023] [Accepted: 05/11/2023] [Indexed: 05/24/2023] Open
Abstract
In the late stages of the HIV-1 life cycle, membrane localization and self-assembly of Gag polyproteins induce membrane deformation and budding. Release of the virion requires direct interaction between immature Gag lattice and upstream ESCRT machinery at the viral budding site, followed by assembly of downstream ESCRT-III factors, culminating in membrane scission. However, molecular details of upstream ESCRT assembly dynamics at the viral budding site remain unclear. In this work, using coarse-grained (CG) molecular dynamics (MD) simulations, we investigated the interactions between Gag, ESCRT-I, ESCRT-II, and membrane to delineate the dynamical mechanisms by which upstream ESCRTs assemble templated by late-stage immature Gag lattice. We first systematically derived "bottom-up" CG molecular models and interactions of upstream ESCRT proteins from experimental structural data and extensive all-atom MD simulations. Using these molecular models, we performed CG MD simulations of ESCRT-I oligomerization and ESCRT-I/II supercomplex formation at the neck of the budding virion. Our simulations demonstrate that ESCRT-I can effectively oligomerize to higher-order complexes templated by the immature Gag lattice both in the absence of ESCRT-II and when multiple copies of ESCRT-II are localized at the bud neck. The ESCRT-I/II supercomplexes formed in our simulations exhibit predominantly columnar structures, which has important implications for the nucleation pathway of downstream ESCRT-III polymers. Importantly, ESCRT-I/II supercomplexes bound to Gag initiate membrane neck constriction by pulling the inner edge of the bud neck closer to the ESCRT-I headpiece ring. Our findings serve to elucidate a network of interactions between upstream ESCRT machinery, immature Gag lattice, and membrane neck that regulate protein assembly dynamics at the HIV-1 budding site.
Collapse
Affiliation(s)
- Arpa Hudait
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, Illinois
| | - James H Hurley
- Department of Molecular and Cell Biology and California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, California; California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, California
| | - Gregory A Voth
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, Illinois.
| |
Collapse
|
9
|
González B, Aldea M, Cullen PJ. Chaperone-Dependent Degradation of Cdc42 Promotes Cell Polarity and Shields the Protein from Aggregation. Mol Cell Biol 2023; 43:200-222. [PMID: 37114947 PMCID: PMC10184603 DOI: 10.1080/10985549.2023.2198171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/02/2023] [Accepted: 03/06/2023] [Indexed: 04/29/2023] Open
Abstract
Rho GTPases are global regulators of cell polarity and signaling. By exploring the turnover regulation of the yeast Rho GTPase Cdc42p, we identified new regulatory features surrounding the stability of the protein. We specifically show that Cdc42p is degraded at 37 °C by chaperones through lysine residues located in the C-terminus of the protein. Cdc42p turnover at 37 °C occurred by the 26S proteasome in an ESCRT-dependent manner in the lysosome/vacuole. By analyzing versions of Cdc42p that were defective for turnover, we show that turnover at 37 °C promoted cell polarity but was defective for sensitivity to mating pheromone, presumably mediated through a Cdc42p-dependent MAP kinase pathway. We also identified one residue (K16) in the P-loop of the protein that was critical for Cdc42p stability. Accumulation of Cdc42pK16R in some contexts led to the formation of protein aggregates, which were enriched in aging mother cells and cells undergoing proteostatic stress. Our study uncovers new aspects of protein turnover regulation of a Rho-type GTPase that may extend to other systems. Moreover, residues identified here that mediate Cdc42p turnover correlate with several human diseases, which may suggest that turnover regulation of Cdc42p is important to aspects of human health.
Collapse
Affiliation(s)
- Beatriz González
- Department of Biological Sciences, State University of New York at Buffalo, New York, USA
| | - Martí Aldea
- Molecular Biology Institute of Barcelona (IBMB), CSIC, Barcelona, Spain
| | - Paul J. Cullen
- Department of Biological Sciences, State University of New York at Buffalo, New York, USA
| |
Collapse
|
10
|
Ruan Z, Liang Y, Chen Z, Yin J, Li C, Pan P, Zhang Q, Wu J, Luo Z. Enterovirus 71 non-structural protein 3A hijacks vacuolar protein sorting 25 to boost exosome biogenesis to facilitate viral replication. Front Microbiol 2022; 13:1024899. [PMID: 36274707 PMCID: PMC9581156 DOI: 10.3389/fmicb.2022.1024899] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022] Open
Abstract
Human enterovirus 71 (EV71) is one of the major agents of the hand, foot, and mouth disease (HFMD), and occasionally causes severe neurological complications. There is clinical evidence that EV71 infection increases the exosomes in the serum of severe HFMD patients, suggesting a role of exosomes in EV71 pathogenesis. However, the relationship between exosomes and EV71 replication remains elusive. In this study, we initially found that EV71 infection elevated exosome biogenesis in the cultured cells. Among EV71 non-structural proteins, we identified EV71 3A, but not 3B, constitutively promoted exosome secretion. In detail, EV71 3A protein interacted with vacuolar protein sorting 25 (VPS25), while knock-down of VPS25 reduced EV71 3A protein- and EV71-induced exosome production. Further studies revealed VPS25 located on exosomes and its expression correlated to the exosome production. During EV71 infection, knock-down of VPS25 decreased exosome biogenesis to attenuate viral replication. Consistently, GW4869, an exosome inhibitor, exerted an obviously antiviral activity against EV71 replication companied with the decrease of exosome secretion or formation. These findings suggest the binding of EV71 3A and VPS25 benefited exosome biogenesis, thereby boosting viral replication. This study uncovers a novel mechanism underlying EV71-mediated exosomes in the regulation of viral replication, which provides potential anti-viral strategies against the EV71 infection and transmission in HFMD.
Collapse
Affiliation(s)
- Zhihui Ruan
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Yicong Liang
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Zicong Chen
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Jialing Yin
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Chengcheng Li
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Pan Pan
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
- Foshan Institute of Medical Microbiology, Foshan, China
| | - Qiwei Zhang
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
- Foshan Institute of Medical Microbiology, Foshan, China
| | - Jianguo Wu
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
- Foshan Institute of Medical Microbiology, Foshan, China
- Jianguo Wu,
| | - Zhen Luo
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
- Foshan Institute of Medical Microbiology, Foshan, China
- *Correspondence: Zhen Luo,
| |
Collapse
|
11
|
Zeng EZ, Chen I, Chen X, Yuan X. Exosomal MicroRNAs as Novel Cell-Free Therapeutics in Tissue Engineering and Regenerative Medicine. Biomedicines 2022; 10:2485. [PMID: 36289747 PMCID: PMC9598823 DOI: 10.3390/biomedicines10102485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 09/06/2022] [Accepted: 09/22/2022] [Indexed: 11/17/2022] Open
Abstract
Extracellular vesicles (EVs) are membrane-bound vesicles (50-1000 nm) that can be secreted by all cell types. Microvesicles and exosomes are the major subsets of EVs that exhibit the cell-cell communications and pathological functions of human tissues, and their therapeutic potentials. To further understand and engineer EVs for cell-free therapy, current developments in EV biogenesis and secretion pathways are discussed to illustrate the remaining gaps in EV biology. Specifically, microRNAs (miRs), as a major EV cargo that exert promising therapeutic results, are discussed in the context of biological origins, sorting and packing, and preclinical applications in disease progression and treatments. Moreover, advanced detection and engineering strategies for exosomal miRs are also reviewed. This article provides sufficient information and knowledge for the future design of EVs with specific miRs or protein cargos in tissue repair and regeneration.
Collapse
Affiliation(s)
- Eric Z. Zeng
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32310, USA
| | - Isabelle Chen
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32310, USA
- Los Altos High School, Los Altos, CA 94022, USA
| | - Xingchi Chen
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32310, USA
| | - Xuegang Yuan
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32310, USA
- Department of Pathology & Laboratory Medicine, David Geffen School of Medicine, University of California-Los Angeles (UCLA), Los Angeles, CA 95616, USA
| |
Collapse
|
12
|
Shukla S, Larsen KP, Ou C, Rose K, Hurley JH. In vitro reconstitution of calcium-dependent recruitment of the human ESCRT machinery in lysosomal membrane repair. Proc Natl Acad Sci U S A 2022; 119:e2205590119. [PMID: 35994655 PMCID: PMC9436306 DOI: 10.1073/pnas.2205590119] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 07/28/2022] [Indexed: 11/28/2022] Open
Abstract
The endosomal sorting complex required for transport (ESCRT) machinery is centrally involved in the repair of damage to both the plasma and lysosome membranes. ESCRT recruitment to sites of damage occurs on a fast time scale, and Ca2+ has been proposed to play a key signaling role in the process. Here, we show that the Ca2+-binding regulatory protein ALG-2 binds directly to negatively charged membranes in a Ca2+-dependent manner. Next, by monitoring the colocalization of ALIX with ALG-2 on negatively charged membranes, we show that ALG-2 recruits ALIX to the membrane. Furthermore, we show that ALIX recruitment to the membrane orchestrates the downstream assembly of late-acting CHMP4B, CHMP3, and CHMP2A subunits along with the AAA+ ATPase VPS4B. Finally, we show that ALG-2 can also recruit the ESCRT-III machinery to the membrane via the canonical ESCRT-I/II pathway. Our reconstitution experiments delineate the minimal sets of components needed to assemble the entire membrane repair machinery and open an avenue for the mechanistic understanding of endolysosomal membrane repair.
Collapse
Affiliation(s)
- Sankalp Shukla
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720
| | - Kevin P. Larsen
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720
| | - Chenxi Ou
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720
| | - Kevin Rose
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720
| | - James H. Hurley
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720
| |
Collapse
|
13
|
Hatano T, Palani S, Papatziamou D, Salzer R, Souza DP, Tamarit D, Makwana M, Potter A, Haig A, Xu W, Townsend D, Rochester D, Bellini D, Hussain HMA, Ettema TJG, Löwe J, Baum B, Robinson NP, Balasubramanian M. Asgard archaea shed light on the evolutionary origins of the eukaryotic ubiquitin-ESCRT machinery. Nat Commun 2022; 13:3398. [PMID: 35697693 PMCID: PMC9192718 DOI: 10.1038/s41467-022-30656-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 05/10/2022] [Indexed: 11/23/2022] Open
Abstract
The ESCRT machinery, comprising of multiple proteins and subcomplexes, is crucial for membrane remodelling in eukaryotic cells, in processes that include ubiquitin-mediated multivesicular body formation, membrane repair, cytokinetic abscission, and virus exit from host cells. This ESCRT system appears to have simpler, ancient origins, since many archaeal species possess homologues of ESCRT-III and Vps4, the components that execute the final membrane scission reaction, where they have been shown to play roles in cytokinesis, extracellular vesicle formation and viral egress. Remarkably, metagenome assemblies of Asgard archaea, the closest known living relatives of eukaryotes, were recently shown to encode homologues of the entire cascade involved in ubiquitin-mediated membrane remodelling, including ubiquitin itself, components of the ESCRT-I and ESCRT-II subcomplexes, and ESCRT-III and Vps4. Here, we explore the phylogeny, structure, and biochemistry of Asgard homologues of the ESCRT machinery and the associated ubiquitylation system. We provide evidence for the ESCRT-I and ESCRT-II subcomplexes being involved in ubiquitin-directed recruitment of ESCRT-III, as it is in eukaryotes. Taken together, our analyses suggest a pre-eukaryotic origin for the ubiquitin-coupled ESCRT system and a likely path of ESCRT evolution via a series of gene duplication and diversification events.
Collapse
Grants
- MC_U105184326 Medical Research Council
- MC_UP_1201/27 Medical Research Council
- 203276/Z/16/Z Wellcome Trust
- Wellcome Trust
- WT101885MA Wellcome Trust
- Wellcome Trust (Wellcome)
- Leverhulme Trust
- Svenska Forskningsrådet Formas (Swedish Research Council Formas)
- Above funding attributed to the authors as follows (from paper acknowledgements): Computational analysis was facilitated by resources provided by the Swedish National Infrastructure for Computing (SNIC) at the Uppsala Multidisciplinary Center for Advanced Computational Science (UPPMAX), partially funded by the Swedish Research Council through grant agreement no. 2018-05973. We thank the Warwick Proteomics RTP for mass spectrometry. MKB was supported by the Wellcome Trust (WT101885MA) and the European Research Council (ERC-2014-ADG No. 671083). Work by the NR laboratory was supported by start-up funds from the Division of Biomedical and Life Sciences (BLS, Lancaster University) and a Leverhulme Research Project Grant (RPG-2019-297). NR would like to thank Johanna Syrjanen for performing trial expressions of the Odinarchaeota ESCRT proteins, and Joseph Maman for helpful discussion regarding the SEC-MALS. NR, WX and AP would like to thank Charley Lai and Siu-Kei Yau for assistance with initial Odinarchaeota ESCRT protein purifications. DPS and BB would like to thank Chris Johnson at the MRC LMB Biophysics facility for performing the SEC-MALS assay on Heimdallarchaeotal Vps22. TH, HH, MB, RS, JL, D Tamarit, TE, DPS and BB received support from a Wellcome Trust collaborative award (203276/Z/16/Z). BB and DPS were supported by the MRC. D Tamarit was supported by the Swedish Research Council (International Postdoc grant 2018-06609).
Collapse
Affiliation(s)
- Tomoyuki Hatano
- Centre for Mechanochemical Cell Biology, Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
| | - Saravanan Palani
- Centre for Mechanochemical Cell Biology, Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Dimitra Papatziamou
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, LA1 4YG, UK
| | - Ralf Salzer
- MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
| | - Diorge P Souza
- MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
| | - Daniel Tamarit
- Laboratory of Microbiology, Wageningen University, 6708 WE, Wageningen, The Netherlands
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, SE-75007, Uppsala, Sweden
| | - Mehul Makwana
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, LA1 4YG, UK
| | - Antonia Potter
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, LA1 4YG, UK
| | - Alexandra Haig
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, LA1 4YG, UK
| | - Wenjue Xu
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, LA1 4YG, UK
| | - David Townsend
- Department of Chemistry, Lancaster University, Lancaster, LA1 4YB, UK
| | - David Rochester
- Department of Chemistry, Lancaster University, Lancaster, LA1 4YB, UK
| | - Dom Bellini
- MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
| | - Hamdi M A Hussain
- Centre for Mechanochemical Cell Biology, Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
| | - Thijs J G Ettema
- Laboratory of Microbiology, Wageningen University, 6708 WE, Wageningen, The Netherlands
| | - Jan Löwe
- MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
| | - Buzz Baum
- MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK.
| | - Nicholas P Robinson
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, LA1 4YG, UK.
| | - Mohan Balasubramanian
- Centre for Mechanochemical Cell Biology, Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK.
| |
Collapse
|
14
|
Jukic N, Perrino AP, Humbert F, Roux A, Scheuring S. Snf7 spirals sense and alter membrane curvature. Nat Commun 2022; 13:2174. [PMID: 35449207 PMCID: PMC9023468 DOI: 10.1038/s41467-022-29850-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 04/03/2022] [Indexed: 11/25/2022] Open
Abstract
Endosomal Sorting Complex Required for Transport III (ESCRT-III) is a conserved protein system involved in many cellular processes resulting in membrane deformation and scission, topologically away from the cytoplasm. However, little is known about the transition of the planar membrane-associated protein assembly into a 3D structure. High-speed atomic force microscopy (HS-AFM) provided insights into assembly, structural dynamics and turnover of Snf7, the major ESCRT-III component, on planar supported lipid bilayers. Here, we develop HS-AFM experiments that remove the constraints of membrane planarity, crowdedness, and support rigidity. On non-planar membranes, Snf7 monomers are curvature insensitive, but Snf7-spirals selectively adapt their conformation to membrane geometry. In a non-crowded system, Snf7-spirals reach a critical radius, and remodel to minimize internal stress. On non-rigid supports, Snf7-spirals compact and buckle, deforming the underlying bilayer. These experiments provide direct evidence that Snf7 is sufficient to mediate topological transitions, in agreement with the loaded spiral spring model.
Collapse
Affiliation(s)
- Nebojsa Jukic
- Physiology, Biophysics and Systems Biology Graduate Program, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Alma P Perrino
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Frédéric Humbert
- Department of Biochemistry, University of Geneva, CH-1211, Geneva, Switzerland
| | - Aurélien Roux
- Department of Biochemistry, University of Geneva, CH-1211, Geneva, Switzerland
- Swiss National Centre for Competence in Research Programme Chemical Biology, CH-1211, Geneva, Switzerland
| | - Simon Scheuring
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, 10065, USA.
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 10065, USA.
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, New York, NY, 14853, USA.
| |
Collapse
|
15
|
The Role of Exosome and the ESCRT Pathway on Enveloped Virus Infection. Int J Mol Sci 2021; 22:ijms22169060. [PMID: 34445766 PMCID: PMC8396519 DOI: 10.3390/ijms22169060] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 08/20/2021] [Accepted: 08/20/2021] [Indexed: 02/06/2023] Open
Abstract
The endosomal sorting complex required for transport (ESCRT) system consists of peripheral membrane protein complexes ESCRT-0, -I, -II, -III VPS4-VTA1, and ALIX homodimer. This system plays an important role in the degradation of non-essential or dangerous plasma membrane proteins, the biogenesis of lysosomes and yeast vacuoles, the budding of most enveloped viruses, and promoting membrane shedding of cytokinesis. Recent results show that exosomes and the ESCRT pathway play important roles in virus infection. This review mainly focuses on the roles of exosomes and the ESCRT pathway in virus assembly, budding, and infection of enveloped viruses. The elaboration of the mechanism of exosomes and the ESCRT pathway in some enveloped viruses provides important implications for the further study of the infection mechanism of other enveloped viruses.
Collapse
|
16
|
Qiu Y, Li P, Zhang Z, Wu M. Insights Into Exosomal Non-Coding RNAs Sorting Mechanism and Clinical Application. Front Oncol 2021; 11:664904. [PMID: 33987099 PMCID: PMC8111219 DOI: 10.3389/fonc.2021.664904] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 04/07/2021] [Indexed: 12/12/2022] Open
Abstract
Exosomes are natural nanoscale bilayer phospholipid vesicles that can be secreted by almost all types of cells and are detected in almost all types of body fluids. Exosomes are effective mediators of cell–cell signaling communication because of their ability to carry and transfer a variety of bioactive molecules, including non-coding RNAs. Non-coding RNAs have also been found to exert strong effects on a variety of biological processes, including tumorigenesis. Many researchers have established that exosomes encapsulate bioactive non-coding RNAs that alter the biological phenotype of specific target cells in an autocrine or a paracrine manner. However, the mechanism by which the producer cells package non-coding RNAs into exosomes is not well understood. This review focuses on the current research on exosomal non-coding RNAs, including the biogenesis of exosomes, the possible mechanism of sorting non-coding RNAs, their biological functions, and their potential for clinical application in the future.
Collapse
Affiliation(s)
- Yi Qiu
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, China.,Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, China
| | - Peiyao Li
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, China National Health Commission Key Laboratory of Carcinogenesis, Xiangya Hospital, Central South University, Changsha, China
| | - Zuping Zhang
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, China.,Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, China
| | - Minghua Wu
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, China.,Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, China
| |
Collapse
|
17
|
Why Cells and Viruses Cannot Survive without an ESCRT. Cells 2021; 10:cells10030483. [PMID: 33668191 PMCID: PMC7995964 DOI: 10.3390/cells10030483] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/19/2021] [Accepted: 02/21/2021] [Indexed: 12/15/2022] Open
Abstract
Intracellular organelles enwrapped in membranes along with a complex network of vesicles trafficking in, out and inside the cellular environment are one of the main features of eukaryotic cells. Given their central role in cell life, compartmentalization and mechanisms allowing their maintenance despite continuous crosstalk among different organelles have been deeply investigated over the past years. Here, we review the multiple functions exerted by the endosomal sorting complex required for transport (ESCRT) machinery in driving membrane remodeling and fission, as well as in repairing physiological and pathological membrane damages. In this way, ESCRT machinery enables different fundamental cellular processes, such as cell cytokinesis, biogenesis of organelles and vesicles, maintenance of nuclear–cytoplasmic compartmentalization, endolysosomal activity. Furthermore, we discuss some examples of how viruses, as obligate intracellular parasites, have evolved to hijack the ESCRT machinery or part of it to execute/optimize their replication cycle/infection. A special emphasis is given to the herpes simplex virus type 1 (HSV-1) interaction with the ESCRT proteins, considering the peculiarities of this interplay and the need for HSV-1 to cross both the nuclear-cytoplasmic and the cytoplasmic-extracellular environment compartmentalization to egress from infected cells.
Collapse
|
18
|
The Interplay between ESCRT and Viral Factors in the Enveloped Virus Life Cycle. Viruses 2021; 13:v13020324. [PMID: 33672541 PMCID: PMC7923801 DOI: 10.3390/v13020324] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 02/08/2021] [Accepted: 02/12/2021] [Indexed: 12/13/2022] Open
Abstract
Viruses are obligate parasites that rely on host cellular factors to replicate and spread. The endosomal sorting complexes required for transport (ESCRT) system, which is classically associated with sorting and downgrading surface proteins, is one of the host machineries hijacked by viruses across diverse families. Knowledge gained from research into ESCRT and viruses has, in turn, greatly advanced our understanding of many other cellular functions in which the ESCRT pathway is involved, e.g., cytokinesis. This review highlights the interplay between the ESCRT pathway and the viral factors of enveloped viruses with a special emphasis on retroviruses.
Collapse
|
19
|
Protein crowding mediates membrane remodeling in upstream ESCRT-induced formation of intraluminal vesicles. Proc Natl Acad Sci U S A 2020; 117:28614-28624. [PMID: 33139578 DOI: 10.1073/pnas.2014228117] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
As part of the lysosomal degradation pathway, the endosomal sorting complexes required for transport (ESCRT-0 to -III/VPS4) sequester receptors at the endosome and simultaneously deform the membrane to generate intraluminal vesicles (ILVs). Whereas ESCRT-III/VPS4 have an established function in ILV formation, the role of upstream ESCRTs (0 to II) in membrane shape remodeling is not understood. Combining experimental measurements and electron microscopy analysis of ESCRT-III-depleted cells with a mathematical model, we show that upstream ESCRT-induced alteration of the Gaussian bending rigidity and their crowding in concert with the transmembrane cargo on the membrane induce membrane deformation and facilitate ILV formation: Upstream ESCRT-driven budding does not require ATP consumption as only a small energy barrier needs to be overcome. Our model predicts that ESCRTs do not become part of the ILV, but localize with a high density at the membrane neck, where the steep decline in the Gaussian curvature likely triggers ESCRT-III/VPS4 assembly to enable neck constriction and scission.
Collapse
|
20
|
Abstract
The endosomal sorting complexes required for transport (ESCRTs) I, -II and -III, and their associated factors are a collection of ∼20 proteins in yeast and ∼30 in mammals, responsible for severing membrane necks in processes that range from multivesicular body formation, HIV release and cytokinesis, to plasma and lysosomal membrane repair. ESCRTs are best known for 'reverse-topology' membrane scission, where they act on the inner surface of membrane necks, often when membranes are budded away from the cytosol. These events are driven by membrane-associated assemblies of dozens to hundreds of ESCRT molecules. ESCRT-III proteins form filaments with a variety of geometries and ESCRT-I has now been shown to also form helical structures. The complex nature of the system and the unusual topology of its action has made progress challenging, and led to controversies with regard to its underlying mechanism. This Review will focus on recent advances obtained by structural in vitro reconstitution and in silico mechanistic studies, and places them in their biological context. The field is converging towards a consensus on the broad outlines of a mechanism that is driven by a progressive ATP-dependent treadmilling exchange of ESCRT subunits, as well as compositional change and geometric transitions in ESCRT filaments.
Collapse
Affiliation(s)
- Mark Remec Pavlin
- Graduate Group in Biophysics, University of California, Berkeley, Berkeley, CA 94720, USA.,California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720, USA
| | - James H Hurley
- Graduate Group in Biophysics, University of California, Berkeley, Berkeley, CA 94720, USA .,California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720, USA.,Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA.,Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|
21
|
Pfitzner AK, Mercier V, Jiang X, Moser von Filseck J, Baum B, Šarić A, Roux A. An ESCRT-III Polymerization Sequence Drives Membrane Deformation and Fission. Cell 2020; 182:1140-1155.e18. [PMID: 32814015 PMCID: PMC7479521 DOI: 10.1016/j.cell.2020.07.021] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 05/04/2020] [Accepted: 07/15/2020] [Indexed: 01/02/2023]
Abstract
The endosomal sorting complex required for transport-III (ESCRT-III) catalyzes membrane fission from within membrane necks, a process that is essential for many cellular functions, from cell division to lysosome degradation and autophagy. How it breaks membranes, though, remains unknown. Here, we characterize a sequential polymerization of ESCRT-III subunits that, driven by a recruitment cascade and by continuous subunit-turnover powered by the ATPase Vps4, induces membrane deformation and fission. During this process, the exchange of Vps24 for Did2 induces a tilt in the polymer-membrane interface, which triggers transition from flat spiral polymers to helical filament to drive the formation of membrane protrusions, and ends with the formation of a highly constricted Did2-Ist1 co-polymer that we show is competent to promote fission when bound on the inside of membrane necks. Overall, our results suggest a mechanism of stepwise changes in ESCRT-III filament structure and mechanical properties via exchange of the filament subunits to catalyze ESCRT-III activity.
Collapse
Affiliation(s)
| | - Vincent Mercier
- Department of Biochemistry, University of Geneva, 1211 Geneva, Switzerland; National Center of Competence in Research in Chemical Biology, University of Geneva, 1211 Geneva, Switzerland
| | - Xiuyun Jiang
- Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, UK; Institute for the Physics of Living Systems, University College London, Gower Street, London WC1E 6BT, UK; MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| | | | - Buzz Baum
- Institute for the Physics of Living Systems, University College London, Gower Street, London WC1E 6BT, UK; MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Anđela Šarić
- Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, UK; Institute for the Physics of Living Systems, University College London, Gower Street, London WC1E 6BT, UK; MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Aurélien Roux
- Department of Biochemistry, University of Geneva, 1211 Geneva, Switzerland; National Center of Competence in Research in Chemical Biology, University of Geneva, 1211 Geneva, Switzerland.
| |
Collapse
|
22
|
Abstract
Cellular membranes can form two principally different involutions, which either exclude or contain cytosol. The 'classical' budding reactions, such as those occurring during endocytosis or formation of exocytic vesicles, involve proteins that assemble on the cytosol-excluding face of the bud neck. Inverse membrane involution occurs in a wide range of cellular processes, supporting cytokinesis, endosome maturation, autophagy, membrane repair and many other processes. Such inverse membrane remodelling is mediated by a heteromultimeric protein machinery known as endosomal sorting complex required for transport (ESCRT). ESCRT proteins assemble on the cytosolic (or nucleoplasmic) face of the neck of the forming involution and cooperate with the ATPase VPS4 to drive membrane scission or sealing. Here, we review similarities and differences of various ESCRT-dependent processes, with special emphasis on mechanisms of ESCRT recruitment.
Collapse
|
23
|
Ibl V. ESCRTing in cereals: still a long way to go. SCIENCE CHINA-LIFE SCIENCES 2019; 62:1144-1152. [PMID: 31327097 DOI: 10.1007/s11427-019-9572-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 05/28/2019] [Indexed: 01/28/2023]
Abstract
The multivesicular body (MVB) sorting pathway provides a mechanism for the delivery of cargo destined for degradation to the vacuole or lysosome. The endosomal sorting complex required for transport (ESCRT) is essential for the MVB sorting pathway by driving the cargo sorting to its destination. Many efforts in plant research have identified the ESCRT machinery and functionally characterised the first plant ESCRT proteins. However, most studies have been performed in the model plant Arabidopsis thaliana that is genetically and physiologically different to crops. Cereal crops are important for animal feed and human nutrition and have further been utilized as promising candidates for recombinant protein production. In this review, I summarize the role of plant ESCRT components in cereals that are involved in efficient adaptation to environmental stress and grain development. A special focus is on barley (Hordeum vulgare L.) ESCRT proteins, where recent studies show their quantitative mapping during grain development, e.g. associating HvSNF7.1 with protein trafficking to protein bodies (PBs) in starchy endosperm. Thus, it is indispensable to identify the molecular key-players within the endomembrane system including ESCRT proteins to optimize and possibly enhance tolerance to environmental stress, grain yield and recombinant protein production in cereal grains.
Collapse
Affiliation(s)
- Verena Ibl
- Department of Ecogenomics and Systems Biology, University of Vienna, 1090, Vienna, Austria.
| |
Collapse
|
24
|
Karasmanis EP, Hwang D, Nakos K, Bowen JR, Angelis D, Spiliotis ET. A Septin Double Ring Controls the Spatiotemporal Organization of the ESCRT Machinery in Cytokinetic Abscission. Curr Biol 2019; 29:2174-2182.e7. [PMID: 31204162 DOI: 10.1016/j.cub.2019.05.050] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 03/29/2019] [Accepted: 05/20/2019] [Indexed: 01/01/2023]
Abstract
Abscission is the terminal step of mitosis that physically separates two daughter cells [1, 2]. Abscission requires the endocytic sorting complex required for transport (ESCRT), a molecular machinery of multiple subcomplexes (ESCRT-I/II/III) that promotes membrane remodeling and scission [3-5]. Recruitment of ESCRT-I/II complexes to the midbody of telophase cells initiates ESCRT-III assembly into two rings, which subsequently expand into helices and spirals that narrow down to the incipient site of abscission [6-8]. ESCRT-III assembly is highly dynamic and spatiotemporally ordered, but the underlying mechanisms are poorly understood. Here, we report that, after cleavage furrow closure, septins form a membrane-bound double ring that controls the organization and function of ESCRT-III. The septin double ring demarcates the sites of ESCRT-III assembly into rings and disassembles before ESCRT-III rings expand into helices and spirals. We show that septin 9 (SEPT9) depletion, which abrogates abscission, impairs recruitment of VPS25 (ESCRT-II) and CHMP6 (ESCRT-III). Strikingly, ESCRT-III subunits (CHMP4B and CHMP2A/B) accumulate to the midbody, but they are highly disorganized, failing to form symmetric rings and to expand laterally into the cone-shaped helices and spirals of abscission. We found that SEPT9 interacts directly with the ubiquitin E2 variant (UEV) domain of ESCRT-I protein TSG101 through two N-terminal PTAP motifs, which are required for the recruitment of VPS25 and CHMP6, and the spatial organization of ESCRT-III (CHMP4B and CHMP2B) into functional rings. These results reveal that septins function in the ESCRT-I-ESCRT-II-CHMP6 pathway of ESCRT-III assembly and provide a framework for the spatiotemporal control of the ESCRT machinery of cytokinetic abscission.
Collapse
Affiliation(s)
- Eva P Karasmanis
- Department of Biology, Drexel University, Philadelphia, PA 19104, USA
| | - Daniel Hwang
- Department of Biology, Drexel University, Philadelphia, PA 19104, USA
| | | | - Jonathan R Bowen
- Department of Biology, Drexel University, Philadelphia, PA 19104, USA
| | - Dimitrios Angelis
- Department of Biology, Drexel University, Philadelphia, PA 19104, USA
| | - Elias T Spiliotis
- Department of Biology, Drexel University, Philadelphia, PA 19104, USA.
| |
Collapse
|
25
|
Hasegawa J, Imen J, Yamamoto H, Tsujita K, Tokuda E, Shibata H, Maki M, Itoh T. SH3YL1 cooperates with ESCRT-I in the sorting and degradation of the EGF receptor. J Cell Sci 2019; 132:jcs.229179. [DOI: 10.1242/jcs.229179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 08/29/2019] [Indexed: 12/12/2022] Open
Abstract
Ubiquitinated membrane proteins such as epidermal growth factor receptor (EGFR) are delivered to early endosomes and then sorted to lysosomes via multivesicular bodies (MVBs) for degradation. The regulatory mechanism underlying formation of intralumenal vesicles en route to generation of MVBs is not fully understood. In this study, we found that SH3YL1, a phosphoinositide-binding protein, had a vesicular localization pattern overlapping with internalized EGF in endosomes in the degradative pathway. Deficiency of SH3YL1 prevents EGF trafficking from early to late endosomes and inhibits degradation of EGFR. Moreover, we show that SH3YL1 mediates EGFR sorting into MVBs in a manner dependent on its carboxy-terminal SH3 domain, which is necessary for the interaction with an ESCRT-I component, Vps37B. Taken together, our observations reveal an indispensable role of SH3YL1 in MVB-sorting and EGFR degradation mediated by ESCRT complexes.
Collapse
Affiliation(s)
- Junya Hasegawa
- Division of Membrane Biology, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017, Japan
| | - Jebri Imen
- Division of Membrane Biology, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017, Japan
- Biosignal Research Center, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Hikaru Yamamoto
- Biosignal Research Center, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Kazuya Tsujita
- Division of Membrane Biology, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017, Japan
- Biosignal Research Center, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Emi Tokuda
- Integrated Center for Mass Spectrometry, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017, Japan
| | - Hideki Shibata
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Masatoshi Maki
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Toshiki Itoh
- Division of Membrane Biology, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017, Japan
- Biosignal Research Center, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| |
Collapse
|
26
|
McCullough J, Frost A, Sundquist WI. Structures, Functions, and Dynamics of ESCRT-III/Vps4 Membrane Remodeling and Fission Complexes. Annu Rev Cell Dev Biol 2018; 34:85-109. [PMID: 30095293 PMCID: PMC6241870 DOI: 10.1146/annurev-cellbio-100616-060600] [Citation(s) in RCA: 170] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The endosomal sorting complexes required for transport (ESCRT) pathway mediates cellular membrane remodeling and fission reactions. The pathway comprises five core complexes: ALIX, ESCRT-I, ESCRT-II, ESCRT-III, and Vps4. These soluble complexes are typically recruited to target membranes by site-specific adaptors that bind one or both of the early-acting ESCRT factors: ALIX and ESCRT-I/ESCRT-II. These factors, in turn, nucleate assembly of ESCRT-III subunits into membrane-bound filaments that recruit the AAA ATPase Vps4. Together, ESCRT-III filaments and Vps4 remodel and sever membranes. Here, we review recent advances in our understanding of the structures, activities, and mechanisms of the ESCRT-III and Vps4 machinery, including the first high-resolution structures of ESCRT-III filaments, the assembled Vps4 enzyme in complex with an ESCRT-III substrate, the discovery that ESCRT-III/Vps4 complexes can promote both inside-out and outside-in membrane fission reactions, and emerging mechanistic models for ESCRT-mediated membrane fission.
Collapse
Affiliation(s)
- John McCullough
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA;
| | - Adam Frost
- Department of Biochemistry and Biophysics, University of California, San Francisco, California 94158, USA
- Chan Zuckerberg Biohub, San Francisco, California 94158, USA
| | - Wesley I Sundquist
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA;
| |
Collapse
|
27
|
Emerman AB, Blower MD. The RNA-binding complex ESCRT-II in Xenopus laevis eggs recognizes purine-rich sequences through its subunit, Vps25. J Biol Chem 2018; 293:12593-12605. [PMID: 29903915 DOI: 10.1074/jbc.ra118.003718] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 06/12/2018] [Indexed: 12/29/2022] Open
Abstract
RNA-binding proteins (RBP) are critical regulators of gene expression. Recent studies have uncovered hundreds of mRNA-binding proteins that do not contain annotated RNA-binding domains and have well-established roles in other cellular processes. Investigation of these nonconventional RBPs is critical for revealing novel RNA-binding domains and may disclose connections between RNA regulation and other aspects of cell biology. The endosomal sorting complex required for transport II (ESCRT-II) is a nonconventional RNA-binding complex that has a canonical role in multivesicular body formation. ESCRT-II was identified previously as an RNA-binding complex in Drosophila oocytes, but whether its RNA-binding properties extend beyond Drosophila is unknown. In this study, we found that the RNA-binding properties of ESCRT-II are conserved in Xenopus eggs, where ESCRT-II interacted with hundreds of mRNAs. Using a UV cross-linking approach, we demonstrated that ESCRT-II binds directly to RNA through its subunit, Vps25. UV cross-linking and immunoprecipitation (CLIP)-Seq revealed that Vps25 specifically recognizes a polypurine (i.e. GA-rich) motif in RNA. Using purified components, we could reconstitute the selective Vps25-mediated binding of the polypurine motif in vitro Our results provide insight into the mechanism by which ESCRT-II selectively binds to mRNA and also suggest an unexpected link between endosome biology and RNA regulation.
Collapse
Affiliation(s)
- Amy B Emerman
- From the Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114 and the Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115
| | - Michael D Blower
- From the Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114 and the Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
28
|
Tao S, Guo S, Zhang C. Modularized Extracellular Vesicles: The Dawn of Prospective Personalized and Precision Medicine. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2018; 5:1700449. [PMID: 29619297 PMCID: PMC5827100 DOI: 10.1002/advs.201700449] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/18/2017] [Indexed: 05/20/2023]
Abstract
Extracellular vesicles (EVs) are ubiquitous nanosized membrane vesicles consisting of a lipid bilayer enclosing proteins and nucleic acids, which are active in intercellular communications. EVs are increasingly seen as a vital component of many biological functions that were once considered to require the direct participation of stem cells. Consequently, transplantation of EVs is gradually becoming considered an alternative to stem cell transplantation due to their significant advantages, including their relatively low probability of neoplastic transformation and abnormal differentiation. However, as research has progressed, it is realized that EVs derived from native-source cells may have various shortcomings, which can be corrected by modification and optimization. To date, attempts are made to modify or improve almost all the components of EVs, including the lipid bilayer, proteins, and nucleic acids, launching a new era of modularized EV therapy through the "modular design" of EV components. One high-yield technique, generating EV mimetic nanovesicles, will help to make industrial production of modularized EVs a reality. These modularized EVs have highly customized "modular design" components related to biological function and targeted delivery and are proposed as a promising approach to achieve personalized and precision medicine.
Collapse
Affiliation(s)
- Shi‐Cong Tao
- Department of Orthopaedic SurgeryShanghai Jiao Tong University Affiliated Sixth People's Hospital600 Yishan RoadShanghai200233China
| | - Shang‐Chun Guo
- Institute of Microsurgery on ExtremitiesShanghai Jiao Tong University Affiliated Sixth People's Hospital600 Yishan RoadShanghai200233China
| | - Chang‐Qing Zhang
- Department of Orthopaedic SurgeryShanghai Jiao Tong University Affiliated Sixth People's Hospital600 Yishan RoadShanghai200233China
- Institute of Microsurgery on ExtremitiesShanghai Jiao Tong University Affiliated Sixth People's Hospital600 Yishan RoadShanghai200233China
| |
Collapse
|
29
|
|
30
|
Adell MAY, Migliano SM, Upadhyayula S, Bykov YS, Sprenger S, Pakdel M, Vogel GF, Jih G, Skillern W, Behrouzi R, Babst M, Schmidt O, Hess MW, Briggs JA, Kirchhausen T, Teis D. Recruitment dynamics of ESCRT-III and Vps4 to endosomes and implications for reverse membrane budding. eLife 2017; 6:31652. [PMID: 29019322 PMCID: PMC5665648 DOI: 10.7554/elife.31652] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 09/25/2017] [Indexed: 12/18/2022] Open
Abstract
The ESCRT machinery mediates reverse membrane scission. By quantitative fluorescence lattice light-sheet microscopy, we have shown that ESCRT-III subunits polymerize rapidly on yeast endosomes, together with the recruitment of at least two Vps4 hexamers. During their 3–45 s lifetimes, the ESCRT-III assemblies accumulated 75–200 Snf7 and 15–50 Vps24 molecules. Productive budding events required at least two additional Vps4 hexamers. Membrane budding was associated with continuous, stochastic exchange of Vps4 and ESCRT-III components, rather than steady growth of fixed assemblies, and depended on Vps4 ATPase activity. An all-or-none step led to final release of ESCRT-III and Vps4. Tomographic electron microscopy demonstrated that acute disruption of Vps4 recruitment stalled membrane budding. We propose a model in which multiple Vps4 hexamers (four or more) draw together several ESCRT-III filaments. This process induces cargo crowding and inward membrane buckling, followed by constriction of the nascent bud neck and ultimately ILV generation by vesicle fission.
Collapse
Affiliation(s)
- Manuel Alonso Y Adell
- Division of Cell Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Simona M Migliano
- Division of Cell Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Srigokul Upadhyayula
- Department of Pediatrics, Harvard Medical School, Boston, United States.,Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, United States.,Department of Cell Biology, Harvard Medical School, Boston, United States
| | - Yury S Bykov
- Structural and Computational Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Simon Sprenger
- Division of Cell Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Mehrshad Pakdel
- Division of Cell Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria.,Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Georg F Vogel
- Division of Cell Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria.,Division of Histology and Embryology, Medical University of Innsbruck, Innsbruck, Austria
| | - Gloria Jih
- Department of Cell Biology, Harvard Medical School, Boston, United States
| | - Wesley Skillern
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, United States
| | - Reza Behrouzi
- Department of Cell Biology, Harvard Medical School, Boston, United States
| | - Markus Babst
- Department of Biology, University of Utah, Utah, United States.,Center for Cell and Genome Science, University of Utah, Utah, United States
| | - Oliver Schmidt
- Division of Cell Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Michael W Hess
- Division of Histology and Embryology, Medical University of Innsbruck, Innsbruck, Austria
| | - John Ag Briggs
- Structural and Computational Unit, European Molecular Biology Laboratory, Heidelberg, Germany.,Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Tomas Kirchhausen
- Department of Pediatrics, Harvard Medical School, Boston, United States.,Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, United States.,Department of Cell Biology, Harvard Medical School, Boston, United States
| | - David Teis
- Division of Cell Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria.,Austrian Drug Screening Institute, Innsbruck, Austria
| |
Collapse
|
31
|
Stoten CL, Carlton JG. ESCRT-dependent control of membrane remodelling during cell division. Semin Cell Dev Biol 2017; 74:50-65. [PMID: 28843980 PMCID: PMC6015221 DOI: 10.1016/j.semcdb.2017.08.035] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 08/07/2017] [Accepted: 08/18/2017] [Indexed: 12/16/2022]
Abstract
The Endosomal Sorting Complex Required for Transport (ESCRT) proteins form an evolutionarily conserved membrane remodelling machinery. Identified originally for their role in cargo sorting and remodelling of endosomal membranes during yeast vacuolar sorting, an extensive body of work now implicates a sub-complex of this machinery (ESCRT-III), as a transplantable membrane fission machinery that is dispatched to various cellular locations to achieve a topologically unique membrane separation. Surprisingly, several ESCRT-III-regulated processes occur during cell division, when cells undergo a dramatic and co-ordinated remodelling of their membranes to allow the physical processes of division to occur. The ESCRT machinery functions in regeneration of the nuclear envelope during open mitosis and in the abscission phase of cytokinesis, where daughter cells are separated from each other in the last act of division. Roles for the ESCRT machinery in cell division are conserved as far back as Archaea, suggesting that the ancestral role of these proteins was as a membrane remodelling machinery that facilitated division and that was co-opted throughout evolution to perform a variety of other cell biological functions. Here, we will explore the function and regulation of the ESCRT machinery in cell division.
Collapse
|
32
|
Growing functions of the ESCRT machinery in cell biology and viral replication. Biochem Soc Trans 2017; 45:613-634. [PMID: 28620025 DOI: 10.1042/bst20160479] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 02/17/2017] [Accepted: 02/21/2017] [Indexed: 01/31/2023]
Abstract
The vast expansion in recent years of the cellular processes promoted by the endosomal sorting complex required for transport (ESCRT) machinery has reinforced its identity as a modular system that uses multiple adaptors to recruit the core membrane remodelling activity at different intracellular sites and facilitate membrane scission. Functional connections to processes such as the aurora B-dependent abscission checkpoint also highlight the importance of the spatiotemporal regulation of the ESCRT machinery. Here, we summarise the role of ESCRTs in viral budding, and what we have learned about the ESCRT pathway from studying this process. These advances are discussed in the context of areas of cell biology that have been transformed by research in the ESCRT field, including cytokinetic abscission, nuclear envelope resealing and plasma membrane repair.
Collapse
|
33
|
Lippincott-Schwartz J, Freed EO, van Engelenburg SB. A Consensus View of ESCRT-Mediated Human Immunodeficiency Virus Type 1 Abscission. Annu Rev Virol 2017; 4:309-325. [PMID: 28715971 DOI: 10.1146/annurev-virology-101416-041840] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The strong dependence of retroviruses, such as human immunodeficiency virus type 1 (HIV-1), on host cell factors is no more apparent than when the endosomal sorting complex required for transport (ESCRT) machinery is purposely disengaged. The resulting potent inhibition of retrovirus release underscores the importance of understanding fundamental structure-function relationships at the ESCRT-HIV-1 interface. Recent studies utilizing advanced imaging technologies have helped clarify these relationships, overcoming hurdles to provide a range of potential models for ESCRT-mediated virus abscission. Here, we discuss these models in the context of prior work detailing ESCRT machinery and the HIV-1 release process. To provide a template for further refinement, we propose a new working model for ESCRT-mediated HIV-1 release that reconciles disparate and seemingly conflicting studies.
Collapse
Affiliation(s)
| | - E O Freed
- The Virus-Cell Interaction Section, HIV Dynamics and Replication Program, National Cancer Institute, Frederick, Maryland 21701
| | - S B van Engelenburg
- Department of Biological Sciences, University of Denver, Denver, Colorado 80210;
| |
Collapse
|
34
|
Abstract
The narrow membrane necks formed during viral, exosomal and intra-endosomal budding from membranes, as well as during cytokinesis and related processes, have interiors that are contiguous with the cytosol. Severing these necks involves action from the opposite face of the membrane as occurs during the well-characterized formation of coated vesicles. This 'reverse' (or 'inverse')-topology membrane scission is carried out by the endosomal sorting complex required for transport (ESCRT) proteins, which form filaments, flat spirals, tubes and conical funnels that are thought to direct membrane remodelling and scission. Their assembly, and their disassembly by the ATPase vacuolar protein sorting-associated 4 (VPS4) have been intensively studied, but the mechanism of scission has been elusive. New insights from cryo-electron microscopy and various types of spectroscopy may finally be close to rectifying this situation.
Collapse
|
35
|
Dores MR, Grimsey NJ, Mendez F, Trejo J. ALIX Regulates the Ubiquitin-Independent Lysosomal Sorting of the P2Y1 Purinergic Receptor via a YPX3L Motif. PLoS One 2016; 11:e0157587. [PMID: 27301021 PMCID: PMC4907476 DOI: 10.1371/journal.pone.0157587] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 06/01/2016] [Indexed: 12/22/2022] Open
Abstract
Endocytic sorting and lysosomal degradation are integral to the regulation of G protein-coupled receptor (GPCR) function. Upon ligand binding, classical GPCRs are activated, internalized and recycled or sorted to lysosomes for degradation, a process that requires receptor ubiquitination. However, recent studies have demonstrated that numerous GPCRs are sorted to lysosomes independent of receptor ubiquitination. Here, we describe an ubiquitin-independent lysosomal sorting pathway for the purinergic GPCR P2Y1. After activation, P2Y1 sorts to lysosomes for degradation independent of direct ubiquitination that is mediated by a YPX3L motif within the second intracellular loop that serves as a binding site for the adaptor protein ALIX. Depletion of ALIX or site-directed mutation of the YPX3L motif inhibits P2Y1 sorting into the lumen of multivesicular endosomes/lysosomes and degradation. These findings confirm the function of YPX3L motifs as lysosomal targeting sequences for GPCRs and demonstrate that ALIX mediates the ubiquitin-independent degradation of certain GPCRs.
Collapse
Affiliation(s)
- Michael R. Dores
- Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA 92093, United States of America
- Department of Biology, Hofstra University, Hempstead, NY 11549, United States of America
| | - Neil J. Grimsey
- Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA 92093, United States of America
| | - Francisco Mendez
- Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA 92093, United States of America
| | - JoAnn Trejo
- Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA 92093, United States of America
- * E-mail:
| |
Collapse
|
36
|
Alonso Y Adell M, Migliano SM, Teis D. ESCRT-III and Vps4: a dynamic multipurpose tool for membrane budding and scission. FEBS J 2016; 283:3288-302. [PMID: 26910595 DOI: 10.1111/febs.13688] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 01/19/2016] [Accepted: 02/17/2016] [Indexed: 12/11/2022]
Abstract
Complex molecular machineries bud, scission and repair cellular membranes. Components of the multi-subunit endosomal sorting complex required for transport (ESCRT) machinery are enlisted when multivesicular bodies are generated, extracellular vesicles are formed, the plasma membrane needs to be repaired, enveloped viruses bud out of host cells, defective nuclear pores have to be cleared, the nuclear envelope must be resealed after mitosis and for final midbody abscission during cytokinesis. While some ESCRT components are only required for specific processes, the assembly of ESCRT-III polymers on target membranes and the action of the AAA-ATPase Vps4 are mandatory for every process. In this review, we summarize the current knowledge of structural and functional features of ESCRT-III/Vps4 assemblies in the growing pantheon of ESCRT-dependent pathways. We describe specific recruitment processes for ESCRT-III to different membranes, which could be useful to selectively inhibit ESCRT function during specific processes, while not affecting other ESCRT-dependent processes. Finally, we speculate how ESCRT-III and Vps4 might function together and highlight how the characterization of their precise spatiotemporal organization will improve our understanding of ESCRT-mediated membrane budding and scission in vivo.
Collapse
Affiliation(s)
| | - Simona M Migliano
- Division of Cell Biology, Biocenter, Medical University of Innsbruck, Austria
| | - David Teis
- Division of Cell Biology, Biocenter, Medical University of Innsbruck, Austria.
| |
Collapse
|
37
|
Chiaruttini N, Redondo-Morata L, Colom A, Humbert F, Lenz M, Scheuring S, Roux A. Relaxation of Loaded ESCRT-III Spiral Springs Drives Membrane Deformation. Cell 2015; 163:866-79. [PMID: 26522593 PMCID: PMC4644223 DOI: 10.1016/j.cell.2015.10.017] [Citation(s) in RCA: 221] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 05/26/2015] [Accepted: 09/08/2015] [Indexed: 11/29/2022]
Abstract
ESCRT-III is required for lipid membrane remodeling in many cellular processes, from abscission to viral budding and multi-vesicular body biogenesis. However, how ESCRT-III polymerization generates membrane curvature remains debated. Here, we show that Snf7, the main component of ESCRT-III, polymerizes into spirals at the surface of lipid bilayers. When covering the entire membrane surface, these spirals stopped growing when densely packed: they had a polygonal shape, suggesting that lateral compression could deform them. We reasoned that Snf7 spirals could function as spiral springs. By measuring the polymerization energy and the rigidity of Snf7 filaments, we showed that they were deformed while growing in a confined area. Furthermore, we observed that the elastic expansion of compressed Snf7 spirals generated an area difference between the two sides of the membrane and thus curvature. This spring-like activity underlies the driving force by which ESCRT-III could mediate membrane deformation and fission. Snf7 forms highly flexible filaments that spontaneously curl Snf7 filaments forms spirals at the surface of lipid membranes Snf7 spirals are springs as they can deform under lateral compression Relaxation of compressed Snf7 spirals leads to membrane deformation
Collapse
Affiliation(s)
- Nicolas Chiaruttini
- University of Geneva, Department of Biochemistry, quai Ernest Ansermet 30, 1211 Geneva 4, Switzerland
| | - Lorena Redondo-Morata
- U1006 INSERM, Aix-Marseille Université, Parc Scientifique et Technologique de Luminy, 163 avenue de Luminy, 13009 Marseille, France
| | - Adai Colom
- University of Geneva, Department of Biochemistry, quai Ernest Ansermet 30, 1211 Geneva 4, Switzerland; Swiss National Centre for Competence in Research Programme Chemical Biology, 1211 Geneva, Switzerland; U1006 INSERM, Aix-Marseille Université, Parc Scientifique et Technologique de Luminy, 163 avenue de Luminy, 13009 Marseille, France
| | - Frédéric Humbert
- University of Geneva, Department of Biochemistry, quai Ernest Ansermet 30, 1211 Geneva 4, Switzerland
| | - Martin Lenz
- LPTMS,CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91405 Orsay, France
| | - Simon Scheuring
- U1006 INSERM, Aix-Marseille Université, Parc Scientifique et Technologique de Luminy, 163 avenue de Luminy, 13009 Marseille, France.
| | - Aurélien Roux
- University of Geneva, Department of Biochemistry, quai Ernest Ansermet 30, 1211 Geneva 4, Switzerland; Swiss National Centre for Competence in Research Programme Chemical Biology, 1211 Geneva, Switzerland.
| |
Collapse
|
38
|
Takahashi H, Mayers JR, Wang L, Edwardson JM, Audhya A. Hrs and STAM function synergistically to bind ubiquitin-modified cargoes in vitro. Biophys J 2015; 108:76-84. [PMID: 25564854 DOI: 10.1016/j.bpj.2014.11.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 11/04/2014] [Accepted: 11/05/2014] [Indexed: 10/24/2022] Open
Abstract
The turnover of integral membrane proteins requires a specialized transport pathway mediated by components of the endosomal sorting complex required for transport (ESCRT) machinery. In most cases, entry into this pathway requires that cargoes undergo ubiquitin-modification, thereby facilitating their sequestration on endosomal membranes by specific, ubiquitin-binding ESCRT subunits. However, requirements underlying initial cargo recognition of mono-ubiquitinated cargos remain poorly defined. In this study, we determine the capability of each ESCRT complex that harbors a ubiquitin-binding domain to bind a reconstituted integral membrane cargo (VAMP2), which has been covalently linked to mono-ubiquitin. We demonstrate that ESCRT-0, but not ESCRT-I or ESCRT-II, is able to associate stably with the mono-ubiquitinated cargo within a lipid bilayer. Moreover, we show that the ubiquitin-binding domains in both Hrs and STAM must be intact to enable cargo binding. These results indicate that the two subunits of ESCRT-0 function together to bind and sequester cargoes for downstream sorting into intralumenal vesicles.
Collapse
Affiliation(s)
- Hirohide Takahashi
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, United Kingdom
| | - Jonathan R Mayers
- Department of Biomolecular Chemistry, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin
| | - Lei Wang
- Department of Biomolecular Chemistry, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin
| | - J Michael Edwardson
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, United Kingdom
| | - Anjon Audhya
- Department of Biomolecular Chemistry, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin.
| |
Collapse
|
39
|
Meng B, Ip NCY, Prestwood LJ, Abbink TEM, Lever AML. Evidence that the endosomal sorting complex required for transport-II (ESCRT-II) is required for efficient human immunodeficiency virus-1 (HIV-1) production. Retrovirology 2015; 12:72. [PMID: 26268989 PMCID: PMC4535389 DOI: 10.1186/s12977-015-0197-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 07/31/2015] [Indexed: 11/17/2022] Open
Abstract
Background Egress of a number of different virus species from infected cells depends on proteins of the endosomal sorting complexes required for transport (ESCRT) pathway. HIV has also hijacked this system to bud viruses outward from the cell surface. How ESCRT-I activates ESCRT-III in this process remains unclear with conflicting published evidence for the requirement of ESCRT-II which fulfils this role in other systems. We investigated the role of ESCRT-II using knockdown mediated by siRNA and shRNA, mutants which prevent ESCRT-I/ESCRT-II interaction and a CRISPR/Cas9 EAP45 knockout cell line. Results Depletion or elimination of ESCRT-II components from an HIV infected cell produces two distinct effects. The overall production of HIV-1 Gag is reduced leading to a diminished amount of intracellular virion protein. In addition depletion of ESCRT-II produces an effect similar to that seen when ESCRT-I and -III components are depleted, that of a delayed Gag p26 to p24 +p2 cleavage associated with a reduction in export of virion particles and a visible reduction in budding efficiency in virus producing cells. Mutants that interfere with ESCRT-I interacting with ESCRT-II similarly reduce virus export. The export defect is independent of the decrease in overall Gag production. Using a mutant virus which cannot use the ALIX mediated export pathway exacerbates the decrease in virus export seen when ESCRT-II is depleted. ESCRT-II knockdown does not lead to complete elimination of virus release suggesting that the late domain role of ESCRT-II is required for optimal efficiency of viral budding but that there are additional pathways that the virus can employ to facilitate this. Conclusion ESCRT-II contributes to efficient HIV virion production and export by more than one pathway; both by a transcriptional or post transcriptional mechanism and also by facilitating efficient virus export from the cell through interactions with other ESCRT components. Electronic supplementary material The online version of this article (doi:10.1186/s12977-015-0197-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bo Meng
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK.
| | - Natasha C Y Ip
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK.
| | - Liam J Prestwood
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK.
| | - Truus E M Abbink
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK. .,Centre for Childhood White Matter Disorders, VU University Medical Centre, Amsterdam, The Netherlands.
| | - Andrew M L Lever
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK.
| |
Collapse
|
40
|
Li Z, Blissard G. The vacuolar protein sorting genes in insects: A comparative genome view. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2015; 62:211-225. [PMID: 25486452 DOI: 10.1016/j.ibmb.2014.11.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 11/06/2014] [Accepted: 11/21/2014] [Indexed: 06/04/2023]
Abstract
In eukaryotic cells, regulated vesicular trafficking is critical for directing protein transport and for recycling and degradation of membrane lipids and proteins. Through carefully regulated transport vesicles, the endomembrane system performs a large and important array of dynamic cellular functions while maintaining the integrity of the cellular membrane system. Genetic studies in yeast Saccharomyces cerevisiae have identified approximately 50 vacuolar protein sorting (VPS) genes involved in vesicle trafficking, and most of these genes are also characterized in mammals. The VPS proteins form distinct functional complexes, which include complexes known as ESCRT, retromer, CORVET, HOPS, GARP, and PI3K-III. Little is known about the orthologs of VPS proteins in insects. Here, with the newly annotated Manduca sexta genome, we carried out genomic comparative analysis of VPS proteins in yeast, humans, and 13 sequenced insect genomes representing the Orders Hymenoptera, Diptera, Hemiptera, Phthiraptera, Lepidoptera, and Coleoptera. Amino acid sequence alignments and domain/motif structure analyses reveal that most of the components of ESCRT, retromer, CORVET, HOPS, GARP, and PI3K-III are evolutionarily conserved across yeast, insects, and humans. However, in contrast to the VPS gene expansions observed in the human genome, only four VPS genes (VPS13, VPS16, VPS33, and VPS37) were expanded in the six insect Orders. Additionally, VPS2 was expanded only in species from Phthiraptera, Lepidoptera, and Coleoptera. These studies provide a baseline for understanding the evolution of vesicular trafficking across yeast, insect, and human genomes, and also provide a basis for further addressing specific functional roles of VPS proteins in insects.
Collapse
Affiliation(s)
- Zhaofei Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Northwest Loess Plateau Crop Pest Management of Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Taicheng Road, Yangling, Shaanxi 712100, China.
| | - Gary Blissard
- Boyce Thompson Institute, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
41
|
Molecular dynamics at the endocytic portal and regulations of endocytic and recycling traffics. Eur J Cell Biol 2015; 94:235-48. [DOI: 10.1016/j.ejcb.2015.04.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 04/02/2015] [Accepted: 04/08/2015] [Indexed: 02/01/2023] Open
|
42
|
Mageswaran SK, Johnson NK, Odorizzi G, Babst M. Constitutively active ESCRT-II suppresses the MVB-sorting phenotype of ESCRT-0 and ESCRT-I mutants. Mol Biol Cell 2014; 26:554-68. [PMID: 25501366 PMCID: PMC4310745 DOI: 10.1091/mbc.e14-10-1469] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
This study is a step toward understanding the minimal requirements for MVB biogenesis and for ESCRT machinery in this process. Early ESCRT complexes (ESCRT-0 and -I) seem to have redundant functions in cargo sorting. Furthermore, vesicle formation seems to require cargo sorting in addition to late ESCRT machinery. The endosomal sorting complex required for transport (ESCRT) protein complexes function at the endosome in the formation of intraluminal vesicles (ILVs) containing cargo proteins destined for the vacuolar/lysosomal lumen. The early ESCRTs (ESCRT-0 and -I) are likely involved in cargo sorting, whereas ESCRT-III and Vps4 function to sever the neck of the forming ILVs. ESCRT-II links these functions by initiating ESCRT-III formation in an ESCRT-I–regulated manner. We identify a constitutively active mutant of ESCRT-II that partially suppresses the phenotype of an ESCRT-I or ESCRT-0 deletion strain, suggesting that these early ESCRTs are not essential and have redundant functions. However, the ESCRT-III/Vps4 system alone is not sufficient for ILV formation but requires cargo sorting mediated by one of the early ESCRTs.
Collapse
Affiliation(s)
- Shrawan Kumar Mageswaran
- Center for Cell and Genome Science and Department of Biology, University of Utah, Salt Lake City, UT 84112
| | - Natalie K Johnson
- Department of Molecular, Cellular and Developmental Biology, University of Colorado at Boulder, Boulder, CO 80309
| | - Greg Odorizzi
- Department of Molecular, Cellular and Developmental Biology, University of Colorado at Boulder, Boulder, CO 80309
| | - Markus Babst
- Center for Cell and Genome Science and Department of Biology, University of Utah, Salt Lake City, UT 84112
| |
Collapse
|
43
|
Shen QT, Schuh AL, Zheng Y, Quinney K, Wang L, Hanna M, Mitchell JC, Otegui MS, Ahlquist P, Cui Q, Audhya A. Structural analysis and modeling reveals new mechanisms governing ESCRT-III spiral filament assembly. ACTA ACUST UNITED AC 2014; 206:763-77. [PMID: 25202029 PMCID: PMC4164947 DOI: 10.1083/jcb.201403108] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cryo-EM and molecular dynamics simulations reveal unexpected flexibility in individual monomers and a stable interface between monomers in the spiral filaments formed by the ESCRT-III subunit Vps32/CHMP4B. The scission of biological membranes is facilitated by a variety of protein complexes that bind and manipulate lipid bilayers. ESCRT-III (endosomal sorting complex required for transport III) filaments mediate membrane scission during the ostensibly disparate processes of multivesicular endosome biogenesis, cytokinesis, and retroviral budding. However, mechanisms by which ESCRT-III subunits assemble into a polymer remain unknown. Using cryogenic electron microscopy (cryo-EM), we found that the full-length ESCRT-III subunit Vps32/CHMP4B spontaneously forms single-stranded spiral filaments. The resolution afforded by two-dimensional cryo-EM combined with molecular dynamics simulations revealed that individual Vps32/CHMP4B monomers within a filament are flexible and able to accommodate a range of bending angles. In contrast, the interface between monomers is stable and refractory to changes in conformation. We additionally found that the carboxyl terminus of Vps32/CHMP4B plays a key role in restricting the lateral association of filaments. Our findings highlight new mechanisms by which ESCRT-III filaments assemble to generate a unique polymer capable of membrane remodeling in multiple cellular contexts.
Collapse
Affiliation(s)
- Qing-Tao Shen
- Department of Biomolecular Chemistry, School of Medicine and Public Health, Department of Botany, Department of Genetics, Department of Chemistry, Graduate Program in Biophysics, Department of Mathematics, Department of Biochemistry, Institute for Molecular Virology, Howard Hughes Medical Institute, and Morgridge Institute for Research, University of Wisconsin-Madison, Madison, WI 53706 Department of Biomolecular Chemistry, School of Medicine and Public Health, Department of Botany, Department of Genetics, Department of Chemistry, Graduate Program in Biophysics, Department of Mathematics, Department of Biochemistry, Institute for Molecular Virology, Howard Hughes Medical Institute, and Morgridge Institute for Research, University of Wisconsin-Madison, Madison, WI 53706 Department of Biomolecular Chemistry, School of Medicine and Public Health, Department of Botany, Department of Genetics, Department of Chemistry, Graduate Program in Biophysics, Department of Mathematics, Department of Biochemistry, Institute for Molecular Virology, Howard Hughes Medical Institute, and Morgridge Institute for Research, University of Wisconsin-Madison, Madison, WI 53706
| | - Amber L Schuh
- Department of Biomolecular Chemistry, School of Medicine and Public Health, Department of Botany, Department of Genetics, Department of Chemistry, Graduate Program in Biophysics, Department of Mathematics, Department of Biochemistry, Institute for Molecular Virology, Howard Hughes Medical Institute, and Morgridge Institute for Research, University of Wisconsin-Madison, Madison, WI 53706
| | - Yuqing Zheng
- Department of Biomolecular Chemistry, School of Medicine and Public Health, Department of Botany, Department of Genetics, Department of Chemistry, Graduate Program in Biophysics, Department of Mathematics, Department of Biochemistry, Institute for Molecular Virology, Howard Hughes Medical Institute, and Morgridge Institute for Research, University of Wisconsin-Madison, Madison, WI 53706 Department of Biomolecular Chemistry, School of Medicine and Public Health, Department of Botany, Department of Genetics, Department of Chemistry, Graduate Program in Biophysics, Department of Mathematics, Department of Biochemistry, Institute for Molecular Virology, Howard Hughes Medical Institute, and Morgridge Institute for Research, University of Wisconsin-Madison, Madison, WI 53706
| | - Kyle Quinney
- Department of Biomolecular Chemistry, School of Medicine and Public Health, Department of Botany, Department of Genetics, Department of Chemistry, Graduate Program in Biophysics, Department of Mathematics, Department of Biochemistry, Institute for Molecular Virology, Howard Hughes Medical Institute, and Morgridge Institute for Research, University of Wisconsin-Madison, Madison, WI 53706
| | - Lei Wang
- Department of Biomolecular Chemistry, School of Medicine and Public Health, Department of Botany, Department of Genetics, Department of Chemistry, Graduate Program in Biophysics, Department of Mathematics, Department of Biochemistry, Institute for Molecular Virology, Howard Hughes Medical Institute, and Morgridge Institute for Research, University of Wisconsin-Madison, Madison, WI 53706
| | - Michael Hanna
- Department of Biomolecular Chemistry, School of Medicine and Public Health, Department of Botany, Department of Genetics, Department of Chemistry, Graduate Program in Biophysics, Department of Mathematics, Department of Biochemistry, Institute for Molecular Virology, Howard Hughes Medical Institute, and Morgridge Institute for Research, University of Wisconsin-Madison, Madison, WI 53706
| | - Julie C Mitchell
- Department of Biomolecular Chemistry, School of Medicine and Public Health, Department of Botany, Department of Genetics, Department of Chemistry, Graduate Program in Biophysics, Department of Mathematics, Department of Biochemistry, Institute for Molecular Virology, Howard Hughes Medical Institute, and Morgridge Institute for Research, University of Wisconsin-Madison, Madison, WI 53706 Department of Biomolecular Chemistry, School of Medicine and Public Health, Department of Botany, Department of Genetics, Department of Chemistry, Graduate Program in Biophysics, Department of Mathematics, Department of Biochemistry, Institute for Molecular Virology, Howard Hughes Medical Institute, and Morgridge Institute for Research, University of Wisconsin-Madison, Madison, WI 53706 Department of Biomolecular Chemistry, School of Medicine and Public Health, Department of Botany, Department of Genetics, Department of Chemistry, Graduate Program in Biophysics, Department of Mathematics, Department of Biochemistry, Institute for Molecular Virology, Howard Hughes Medical Institute, and Morgridge Institute for Research, University of Wisconsin-Madison, Madison, WI 53706
| | - Marisa S Otegui
- Department of Biomolecular Chemistry, School of Medicine and Public Health, Department of Botany, Department of Genetics, Department of Chemistry, Graduate Program in Biophysics, Department of Mathematics, Department of Biochemistry, Institute for Molecular Virology, Howard Hughes Medical Institute, and Morgridge Institute for Research, University of Wisconsin-Madison, Madison, WI 53706 Department of Biomolecular Chemistry, School of Medicine and Public Health, Department of Botany, Department of Genetics, Department of Chemistry, Graduate Program in Biophysics, Department of Mathematics, Department of Biochemistry, Institute for Molecular Virology, Howard Hughes Medical Institute, and Morgridge Institute for Research, University of Wisconsin-Madison, Madison, WI 53706
| | - Paul Ahlquist
- Department of Biomolecular Chemistry, School of Medicine and Public Health, Department of Botany, Department of Genetics, Department of Chemistry, Graduate Program in Biophysics, Department of Mathematics, Department of Biochemistry, Institute for Molecular Virology, Howard Hughes Medical Institute, and Morgridge Institute for Research, University of Wisconsin-Madison, Madison, WI 53706 Department of Biomolecular Chemistry, School of Medicine and Public Health, Department of Botany, Department of Genetics, Department of Chemistry, Graduate Program in Biophysics, Department of Mathematics, Department of Biochemistry, Institute for Molecular Virology, Howard Hughes Medical Institute, and Morgridge Institute for Research, University of Wisconsin-Madison, Madison, WI 53706 Department of Biomolecular Chemistry, School of Medicine and Public Health, Department of Botany, Department of Genetics, Department of Chemistry, Graduate Program in Biophysics, Department of Mathematics, Department of Biochemistry, Institute for Molecular Virology, Howard Hughes Medical Institute, and Morgridge Institute for Research, University of Wisconsin-Madison, Madison, WI 53706
| | - Qiang Cui
- Department of Biomolecular Chemistry, School of Medicine and Public Health, Department of Botany, Department of Genetics, Department of Chemistry, Graduate Program in Biophysics, Department of Mathematics, Department of Biochemistry, Institute for Molecular Virology, Howard Hughes Medical Institute, and Morgridge Institute for Research, University of Wisconsin-Madison, Madison, WI 53706 Department of Biomolecular Chemistry, School of Medicine and Public Health, Department of Botany, Department of Genetics, Department of Chemistry, Graduate Program in Biophysics, Department of Mathematics, Department of Biochemistry, Institute for Molecular Virology, Howard Hughes Medical Institute, and Morgridge Institute for Research, University of Wisconsin-Madison, Madison, WI 53706
| | - Anjon Audhya
- Department of Biomolecular Chemistry, School of Medicine and Public Health, Department of Botany, Department of Genetics, Department of Chemistry, Graduate Program in Biophysics, Department of Mathematics, Department of Biochemistry, Institute for Molecular Virology, Howard Hughes Medical Institute, and Morgridge Institute for Research, University of Wisconsin-Madison, Madison, WI 53706
| |
Collapse
|
44
|
Kajimoto T, Okada T, Miya S, Zhang L, Nakamura SI. Ongoing activation of sphingosine 1-phosphate receptors mediates maturation of exosomal multivesicular endosomes. Nat Commun 2014; 4:2712. [PMID: 24231649 DOI: 10.1038/ncomms3712] [Citation(s) in RCA: 227] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 10/03/2013] [Indexed: 02/08/2023] Open
Abstract
During late endosome maturation, cargo molecules are sorted into intralumenal vesicles (ILVs) of multivesicular endosomes (MVEs), and are either delivered to lysosomes for degradation or fused with the plasma membranes for exosome release. The mechanism underlying formation of exosomal ILVs and cargo sorting into ILVs destined for exosome release is still unclear. Here we show that inhibitory G protein (Gi)-coupled sphingosine 1-phosphate (S1P) receptors regulate exosomal MVE maturation. Gi-coupled S1P receptors on MVEs are constitutively activated through a constant supply of S1P via autocrine activation within organelles. We also found that the continuous activation of Gi-coupled S1P receptors on MVEs is essential for cargo sorting into ILVs destined for exosome release. Our results reveal a mechanism underlying ESCRT-independent maturation of exosomal MVEs.
Collapse
Affiliation(s)
- Taketoshi Kajimoto
- Division of Biochemistry, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki, Kobe 650-0017, Japan
| | | | | | | | | |
Collapse
|
45
|
Paul P, Simm S, Mirus O, Scharf KD, Fragkostefanakis S, Schleiff E. The complexity of vesicle transport factors in plants examined by orthology search. PLoS One 2014; 9:e97745. [PMID: 24844592 PMCID: PMC4028247 DOI: 10.1371/journal.pone.0097745] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 04/24/2014] [Indexed: 11/18/2022] Open
Abstract
Vesicle transport is a central process to ensure protein and lipid distribution in eukaryotic cells. The current knowledge on the molecular components and mechanisms of this process is majorly based on studies in Saccharomyces cerevisiae and Arabidopsis thaliana, which revealed 240 different proteinaceous factors either experimentally proven or predicted to be involved in vesicle transport. In here, we performed an orthologue search using two different algorithms to identify the components of the secretory pathway in yeast and 14 plant genomes by using the 'core-set' of 240 factors as bait. We identified 4021 orthologues and (co-)orthologues in the discussed plant species accounting for components of COP-II, COP-I, Clathrin Coated Vesicles, Retromers and ESCRTs, Rab GTPases, Tethering factors and SNAREs. In plants, we observed a significantly higher number of (co-)orthologues than yeast, while only 8 tethering factors from yeast seem to be absent in the analyzed plant genomes. To link the identified (co-)orthologues to vesicle transport, the domain architecture of the proteins from yeast, genetic model plant A. thaliana and agriculturally relevant crop Solanum lycopersicum has been inspected. For the orthologous groups containing (co-)orthologues from yeast, A. thaliana and S. lycopersicum, we observed the same domain architecture for 79% (416/527) of the (co-)orthologues, which documents a very high conservation of this process. Further, publically available tissue-specific expression profiles for a subset of (co-)orthologues found in A. thaliana and S. lycopersicum suggest that some (co-)orthologues are involved in tissue-specific functions. Inspection of localization of the (co-)orthologues based on available proteome data or localization predictions lead to the assignment of plastid- as well as mitochondrial localized (co-)orthologues of vesicle transport factors and the relevance of this is discussed.
Collapse
Affiliation(s)
- Puneet Paul
- Department of Biosciences Molecular Cell Biology of Plants
| | - Stefan Simm
- Department of Biosciences Molecular Cell Biology of Plants
| | - Oliver Mirus
- Department of Biosciences Molecular Cell Biology of Plants
| | | | | | - Enrico Schleiff
- Department of Biosciences Molecular Cell Biology of Plants
- Cluster of Excellence Frankfurt
- Center of Membrane Proteomics; Goethe University Frankfurt, Frankfurt/Main, Germany
- * E-mail:
| |
Collapse
|
46
|
Govindaraghavan M, McGuire Anglin SL, Shen KF, Shukla N, De Souza CP, Osmani SA. Identification of interphase functions for the NIMA kinase involving microtubules and the ESCRT pathway. PLoS Genet 2014; 10:e1004248. [PMID: 24675878 PMCID: PMC3967960 DOI: 10.1371/journal.pgen.1004248] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 02/03/2014] [Indexed: 12/11/2022] Open
Abstract
The Never in Mitosis A (NIMA) kinase (the founding member of the Nek family of kinases) has been considered a mitotic specific kinase with nuclear restricted roles in the model fungus Aspergillus nidulans. By extending to A. nidulans the results of a synthetic lethal screen performed in Saccharomyces cerevisiae using the NIMA ortholog KIN3, we identified a conserved genetic interaction between nimA and genes encoding proteins of the Endosomal Sorting Complex Required for Transport (ESCRT) pathway. Absence of ESCRT pathway functions in combination with partial NIMA function causes enhanced cell growth defects, including an inability to maintain a single polarized dominant cell tip. These genetic insights suggest NIMA potentially has interphase functions in addition to its established mitotic functions at nuclei. We therefore generated endogenously GFP-tagged NIMA (NIMA-GFP) which was fully functional to follow its interphase locations using live cell spinning disc 4D confocal microscopy. During interphase some NIMA-GFP locates to the tips of rapidly growing cells and, when expressed ectopically, also locates to the tips of cytoplasmic microtubules, suggestive of non-nuclear interphase functions. In support of this, perturbation of NIMA function either by ectopic overexpression or through partial inactivation results in marked cell tip growth defects with excess NIMA-GFP promoting multiple growing cell tips. Ectopic NIMA-GFP was found to locate to the plus ends of microtubules in an EB1 dependent manner, while impairing NIMA function altered the dynamic localization of EB1 and the cytoplasmic microtubule network. Together, our genetic and cell biological analyses reveal novel non-nuclear interphase functions for NIMA involving microtubules and the ESCRT pathway for normal polarized fungal cell tip growth. These insights extend the roles of NIMA both spatially and temporally and indicate that this conserved protein kinase could help integrate cell cycle progression with polarized cell growth.
Collapse
Affiliation(s)
- Meera Govindaraghavan
- Molecular, Cellular and Developmental Biology Program, The Ohio State University, Columbus, Ohio, United States of America
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, United States of America
| | | | - Kuo-Fang Shen
- Molecular, Cellular and Developmental Biology Program, The Ohio State University, Columbus, Ohio, United States of America
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, United States of America
| | - Nandini Shukla
- Molecular, Cellular and Developmental Biology Program, The Ohio State University, Columbus, Ohio, United States of America
- Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio, United States of America
| | - Colin P. De Souza
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, United States of America
| | - Stephen A. Osmani
- Molecular, Cellular and Developmental Biology Program, The Ohio State University, Columbus, Ohio, United States of America
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, United States of America
- Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail:
| |
Collapse
|
47
|
Stieler JT, Prange R. Involvement of ESCRT-II in hepatitis B virus morphogenesis. PLoS One 2014; 9:e91279. [PMID: 24614091 PMCID: PMC3948859 DOI: 10.1371/journal.pone.0091279] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 02/10/2014] [Indexed: 01/20/2023] Open
Abstract
The hepatitis B virus (HBV) is an enveloped DNA virus that replicates via reverse transcription of its pregenomic RNA (pgRNA). Budding of HBV is supposed to occur at intracellular membranes and requires scission functions of the endosomal sorting complex required for transport (ESCRT) provided by ESCRT-III and VPS4. Here, we have investigated the impact of the upstream-acting ESCRT-I and ESCRT-II complexes in HBV morphogenesis. RNA interference knockdown of the ESCRT-I subunits TSG101 and VPS28 did not block, but rather stimulate virus release. In contrast, RNAi-mediated depletion of the ESCRT-II components EAP20, EAP30 and EAP45 greatly reduced virus egress. By analyzing different steps of the HBV maturation pathway, we find that the knockdown of ESCRT-II not only inhibited the production and/or release of enveloped virions, but also impaired intracellular nucleocapsid formation. Transcription/translation studies revealed that the depletion of ESCRT-II neither affected the synthesis and nuclear export of HBV-specific RNAs nor the expression of the viral core and envelope proteins. Moreover, the absence of ESCRT-II had no effects on the assembly capability and integrity of HBV core/capsids. However, the level of encapsidated pgRNA was significantly reduced in ESCRT-II-depleted cells, implicating that ESCRT-II directs steps accompanying the formation of replication-competent nucleocapsids, like e.g. assisting in RNA trafficking and encapsidation. In support of this, the capsid protein was found to interact and colocalize with ESCRT-II subunits in virus-producing cells. Together, these results indicate an essential role for ESCRT-II in the HBV life cycle and suggest that ESCRT-II functions prior to the final HBV budding reaction.
Collapse
Affiliation(s)
- Jens T. Stieler
- Department of Medical Microbiology and Hygiene, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Reinhild Prange
- Department of Medical Microbiology and Hygiene, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- * E-mail:
| |
Collapse
|
48
|
Schuh AL, Audhya A. The ESCRT machinery: from the plasma membrane to endosomes and back again. Crit Rev Biochem Mol Biol 2014; 49:242-61. [PMID: 24456136 DOI: 10.3109/10409238.2014.881777] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The manipulation and reorganization of lipid bilayers are required for diverse cellular processes, ranging from organelle biogenesis to cytokinetic abscission, and often involves transient membrane disruption. A set of membrane-associated proteins collectively known as the endosomal sorting complex required for transport (ESCRT) machinery has been implicated in membrane scission steps, which transform a single, continuous bilayer into two distinct bilayers, while simultaneously segregating cargo throughout the process. Components of the ESCRT pathway, which include 5 distinct protein complexes and an array of accessory factors, each serve discrete functions. This review focuses on the molecular mechanisms by which the ESCRT proteins facilitate cargo sequestration and membrane remodeling and highlights their unique roles in cellular homeostasis.
Collapse
Affiliation(s)
- Amber L Schuh
- Department of Biomolecular Chemistry, University of Wisconsin-Madison School of Medicine and Public Health , Madison, WI , USA
| | | |
Collapse
|
49
|
Yang X, Mao F, Lv X, Zhang Z, Fu L, Lu Y, Wu W, Zhou Z, Zhang L, Zhao Y. Drosophila Vps36 regulates Smo trafficking in Hedgehog signaling. J Cell Sci 2013; 126:4230-8. [PMID: 23843610 DOI: 10.1242/jcs.128603] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The hedgehog (Hh) signaling pathway plays a very important role in metazoan development by controlling pattern formation. Malfunction of the Hh signaling pathway leads to numerous serious human diseases, including congenital disorders and cancers. The seven-transmembrane domain protein Smoothened (Smo) is a key transducer of the Hh signaling pathway, and mediates the graded Hh signal across the cell plasma membrane, thereby inducing the proper expression of downstream genes. Smo accumulation on the cell plasma membrane is regulated by its C-tail phosphorylation and the graded Hh signal. The inhibitory mechanism for Smo membrane accumulation in the absence of Hh, however, is still largely unknown. Here, we report that Vps36 of the ESCRT-II complex regulates Smo trafficking between the cytosol and plasma membrane by specifically recognizing the ubiquitin signal on Smo in the absence of Hh. Furthermore, in the absence of Hh, Smo is ubiquitylated on its cytoplasmic part, including its internal loops and C-tail. Taken together, our data suggest that the ESCRT-II complex, especially Vps36, has a special role in controlling Hh signaling by targeting the membrane protein Smo for its trafficking in the absence of Hh, thereby regulating Hh signaling activity.
Collapse
Affiliation(s)
- Xiaofeng Yang
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, P. R. China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Where do they come from and where do they go: candidates for regulating extracellular vesicle formation in fungi. Int J Mol Sci 2013; 14:9581-603. [PMID: 23644887 PMCID: PMC3676800 DOI: 10.3390/ijms14059581] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Revised: 04/11/2013] [Accepted: 04/17/2013] [Indexed: 01/23/2023] Open
Abstract
In the past few years, extracellular vesicles (EVs) from at least eight fungal species were characterized. EV proteome in four fungal species indicated putative biogenesis pathways and suggested interesting similarities with mammalian exosomes. Moreover, as observed for mammalian exosomes, fungal EVs were demonstrated to be immunologically active. Here we review the seminal and most recent findings related to the production of EVs by fungi. Based on the current literature about secretion of fungal molecules and biogenesis of EVs in eukaryotes, we focus our discussion on a list of cellular proteins with the potential to regulate vesicle biogenesis in the fungi.
Collapse
|