1
|
Numazawa R, Tanaka Y, Nishioka S, Tsuji R, Maeda H, Tanaka M, Takeuchi M, Yamagata Y. Aspergillus oryzae PrtR alters transcription of individual peptidase genes in response to the growth environment. Appl Microbiol Biotechnol 2024; 108:90. [PMID: 38204127 PMCID: PMC10781853 DOI: 10.1007/s00253-023-12833-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 09/19/2023] [Accepted: 09/30/2023] [Indexed: 01/12/2024]
Abstract
Aspergillus oryzae PrtR is an ortholog of the transcription factor PrtT, which positively regulates the transcription of extracellular peptidase genes in Aspergillus niger and Aspergillus fumigatus. To identify the genes under the control of PrtR and elucidate its regulatory mechanism in A. oryzae, prtR gene disruption mutants were generated. The control strain clearly showed a halo on media containing skim milk as the nitrogen source, whereas the ΔprtR strain formed a smaller halo. Measurement of acid peptidase activity revealed that approximately 84% of acidic endopeptidase and 86% of carboxypeptidase activities are positively regulated by PrtR. As the transcription of the prtR gene varied depending on culture conditions, especially with or without a protein substrate, it was considered that its transcription would be regulated in response to a nitrogen source. In addition, contrary to previous expectations, PrtR was found to act both in promoting and repressing the transcription of extracellular peptidase genes. The mode of regulation varied from gene to gene. Some genes were regulated in the same manner in both liquid and solid cultures, whereas others were regulated in different ways depending on the culture conditions. Furthermore, PrtR has been suggested to regulate the transcription of peptidase genes that are closely associated with other transcription factors. KEY POINTS: • Almost all peptidase genes in Aspergillus oryzae are positively regulated by PrtR • However, several genes are regulated negatively by PrtR • PrtR optimizes transcription of peptidase genes in response to culture conditions.
Collapse
Affiliation(s)
- Rika Numazawa
- Department of Applied Biological Science, United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-Cho, Fuchu, Tokyo, 1838509, Japan
| | - Yukako Tanaka
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-Cho, Fuchu, Tokyo, 1838509, Japan
| | - Sawako Nishioka
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-Cho, Fuchu, Tokyo, 1838509, Japan
| | - Ryotaro Tsuji
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-Cho, Fuchu, Tokyo, 1838509, Japan
| | - Hiroshi Maeda
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-Cho, Fuchu, Tokyo, 1838509, Japan
| | - Mizuki Tanaka
- Department of Applied Biological Science, United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-Cho, Fuchu, Tokyo, 1838509, Japan
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-Cho, Fuchu, Tokyo, 1838509, Japan
| | - Michio Takeuchi
- Department of Applied Biological Science, United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-Cho, Fuchu, Tokyo, 1838509, Japan
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-Cho, Fuchu, Tokyo, 1838509, Japan
| | - Youhei Yamagata
- Department of Applied Biological Science, United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-Cho, Fuchu, Tokyo, 1838509, Japan.
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-Cho, Fuchu, Tokyo, 1838509, Japan.
| |
Collapse
|
2
|
Rabot C, Grau MF, Entwistle R, Chiang YM, Zamora de Roberts Y, Ahuja M, Oakley CE, Wang CCC, Todd RB, Oakley BR. Transcription Factor Engineering in Aspergillus nidulans Leads to the Discovery of an Orsellinaldehyde Derivative Produced via an Unlinked Polyketide Synthase Gene. JOURNAL OF NATURAL PRODUCTS 2024; 87:2384-2392. [PMID: 39334518 DOI: 10.1021/acs.jnatprod.4c00483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/30/2024]
Abstract
Secondary metabolites are generally produced by enzymes encoded by genes within a biosynthetic gene cluster. Transcription factor genes are frequently located within these gene clusters. These transcription factors often drive expression of the other genes of the biosynthetic gene cluster, and overexpression of the transcription factor provides a facile approach to express all genes within a gene cluster, resulting in production of downstream metabolite(s). Unfortunately this approach is not always successful, leading us to engineer more effective hybrid transcription factors. Herein, we attempted to activate a putative cryptic biosynthetic gene cluster in Aspergillus nidulans using a combination of transcription factor engineering and overexpression approaches. This resulted in the discovery of a novel secondary metabolite we term triorsellinaldehyde. Surprisingly, deletion of the polyketide synthase gene within the gene cluster did not prevent triorsellinaldehyde production. However, targeted deletion of a polyketide synthase gene elsewhere in the genome revealed its role in triorsellinaldehyde biosynthesis.
Collapse
Affiliation(s)
- Chris Rabot
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, California 90089, United States
| | - Michelle F Grau
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, California 90089, United States
| | - Ruth Entwistle
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, United States
| | - Yi-Ming Chiang
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, California 90089, United States
| | | | - Manmeet Ahuja
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, United States
| | - C Elizabeth Oakley
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, United States
| | - Clay C C Wang
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, California 90089, United States
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Richard B Todd
- Department of Plant Pathology, Kansas State University, Manhattan, Kansas 66506, United States
| | - Berl R Oakley
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, United States
| |
Collapse
|
3
|
Rinker DC, Sauters TJC, Steffen K, Gumilang A, Raja HA, Rangel-Grimaldo M, Pinzan CF, de Castro PA, Dos Reis TF, Delbaje E, Houbraken J, Goldman GH, Oberlies NH, Rokas A. Strain heterogeneity in a non-pathogenic Aspergillus fungus highlights factors associated with virulence. Commun Biol 2024; 7:1082. [PMID: 39232082 PMCID: PMC11374809 DOI: 10.1038/s42003-024-06756-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/20/2024] [Indexed: 09/06/2024] Open
Abstract
Fungal pathogens exhibit extensive strain heterogeneity, including variation in virulence. Whether closely related non-pathogenic species also exhibit strain heterogeneity remains unknown. Here, we comprehensively characterized the pathogenic potentials (i.e., the ability to cause morbidity and mortality) of 16 diverse strains of Aspergillus fischeri, a non-pathogenic close relative of the major pathogen Aspergillus fumigatus. In vitro immune response assays and in vivo virulence assays using a mouse model of pulmonary aspergillosis showed that A. fischeri strains varied widely in their pathogenic potential. Furthermore, pangenome analyses suggest that A. fischeri genomic and phenotypic diversity is even greater. Genomic, transcriptomic, and metabolic profiling identified several pathways and secondary metabolites associated with variation in virulence. Notably, strain virulence was associated with the simultaneous presence of the secondary metabolites hexadehydroastechrome and gliotoxin. We submit that examining the pathogenic potentials of non-pathogenic close relatives is key for understanding the origins of fungal pathogenicity.
Collapse
Affiliation(s)
- David C Rinker
- Department of Biological Sciences and Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN, USA
| | - Thomas J C Sauters
- Department of Biological Sciences and Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN, USA
| | - Karin Steffen
- Department of Biological Sciences and Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN, USA
| | - Adiyantara Gumilang
- Department of Biological Sciences and Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN, USA
| | - Huzefa A Raja
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Manuel Rangel-Grimaldo
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Camila Figueiredo Pinzan
- Faculdade de Ciencias Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Patrícia Alves de Castro
- Faculdade de Ciencias Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Thaila Fernanda Dos Reis
- Faculdade de Ciencias Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Endrews Delbaje
- Faculdade de Ciencias Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Jos Houbraken
- Food and Indoor Mycology, Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - Gustavo H Goldman
- Faculdade de Ciencias Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil.
| | - Nicholas H Oberlies
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, USA.
| | - Antonis Rokas
- Department of Biological Sciences and Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
4
|
Theobald S, Vesth TC, Geib E, Nybo JL, Frisvad JC, Larsen TO, Kuo A, LaButti K, Lyhne EK, Kjærbølling I, Ledsgaard L, Barry K, Clum A, Chen C, Nolan M, Sandor L, Lipzen A, Mondo S, Pangilinan J, Salamov A, Riley R, Wiebenga A, Müller A, Kun RS, dos Santos Gomes AC, Henrissat B, Magnuson JK, Simmons BA, Mäkelä MR, Mortensen UH, Grigoriev IV, Brock M, Baker SE, de Vries RP, Andersen MR. Genomic Analysis of Aspergillus Section Terrei Reveals a High Potential in Secondary Metabolite Production and Plant Biomass Degradation. J Fungi (Basel) 2024; 10:507. [PMID: 39057392 PMCID: PMC11278011 DOI: 10.3390/jof10070507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
Aspergillus terreus has attracted interest due to its application in industrial biotechnology, particularly for the production of itaconic acid and bioactive secondary metabolites. As related species also seem to possess a prosperous secondary metabolism, they are of high interest for genome mining and exploitation. Here, we present draft genome sequences for six species from Aspergillus section Terrei and one species from Aspergillus section Nidulantes. Whole-genome phylogeny confirmed that section Terrei is monophyletic. Genome analyses identified between 70 and 108 key secondary metabolism genes in each of the genomes of section Terrei, the highest rate found in the genus Aspergillus so far. The respective enzymes fall into 167 distinct families with most of them corresponding to potentially unique compounds or compound families. Moreover, 53% of the families were only found in a single species, which supports the suitability of species from section Terrei for further genome mining. Intriguingly, this analysis, combined with heterologous gene expression and metabolite identification, suggested that species from section Terrei use a strategy for UV protection different to other species from the genus Aspergillus. Section Terrei contains a complete plant polysaccharide degrading potential and an even higher cellulolytic potential than other Aspergilli, possibly facilitating additional applications for these species in biotechnology.
Collapse
Affiliation(s)
- Sebastian Theobald
- Department of Biotechnology and Bioengineering, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; (S.T.); (T.C.V.); (J.L.N.); (J.C.F.); (T.O.L.); (E.K.L.); (I.K.); (L.L.); (B.H.); (U.H.M.)
| | - Tammi C. Vesth
- Department of Biotechnology and Bioengineering, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; (S.T.); (T.C.V.); (J.L.N.); (J.C.F.); (T.O.L.); (E.K.L.); (I.K.); (L.L.); (B.H.); (U.H.M.)
| | - Elena Geib
- School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, UK; (E.G.); (M.B.)
| | - Jane L. Nybo
- Department of Biotechnology and Bioengineering, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; (S.T.); (T.C.V.); (J.L.N.); (J.C.F.); (T.O.L.); (E.K.L.); (I.K.); (L.L.); (B.H.); (U.H.M.)
| | - Jens C. Frisvad
- Department of Biotechnology and Bioengineering, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; (S.T.); (T.C.V.); (J.L.N.); (J.C.F.); (T.O.L.); (E.K.L.); (I.K.); (L.L.); (B.H.); (U.H.M.)
| | - Thomas O. Larsen
- Department of Biotechnology and Bioengineering, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; (S.T.); (T.C.V.); (J.L.N.); (J.C.F.); (T.O.L.); (E.K.L.); (I.K.); (L.L.); (B.H.); (U.H.M.)
| | - Alan Kuo
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; (A.K.); (K.L.); (K.B.); (A.C.); (C.C.); (M.N.); (L.S.); (A.L.); (S.M.); (J.P.); (A.S.); (R.R.); (I.V.G.)
| | - Kurt LaButti
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; (A.K.); (K.L.); (K.B.); (A.C.); (C.C.); (M.N.); (L.S.); (A.L.); (S.M.); (J.P.); (A.S.); (R.R.); (I.V.G.)
| | - Ellen K. Lyhne
- Department of Biotechnology and Bioengineering, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; (S.T.); (T.C.V.); (J.L.N.); (J.C.F.); (T.O.L.); (E.K.L.); (I.K.); (L.L.); (B.H.); (U.H.M.)
| | - Inge Kjærbølling
- Department of Biotechnology and Bioengineering, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; (S.T.); (T.C.V.); (J.L.N.); (J.C.F.); (T.O.L.); (E.K.L.); (I.K.); (L.L.); (B.H.); (U.H.M.)
| | - Line Ledsgaard
- Department of Biotechnology and Bioengineering, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; (S.T.); (T.C.V.); (J.L.N.); (J.C.F.); (T.O.L.); (E.K.L.); (I.K.); (L.L.); (B.H.); (U.H.M.)
| | - Kerrie Barry
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; (A.K.); (K.L.); (K.B.); (A.C.); (C.C.); (M.N.); (L.S.); (A.L.); (S.M.); (J.P.); (A.S.); (R.R.); (I.V.G.)
| | - Alicia Clum
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; (A.K.); (K.L.); (K.B.); (A.C.); (C.C.); (M.N.); (L.S.); (A.L.); (S.M.); (J.P.); (A.S.); (R.R.); (I.V.G.)
| | - Cindy Chen
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; (A.K.); (K.L.); (K.B.); (A.C.); (C.C.); (M.N.); (L.S.); (A.L.); (S.M.); (J.P.); (A.S.); (R.R.); (I.V.G.)
| | - Matt Nolan
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; (A.K.); (K.L.); (K.B.); (A.C.); (C.C.); (M.N.); (L.S.); (A.L.); (S.M.); (J.P.); (A.S.); (R.R.); (I.V.G.)
| | - Laura Sandor
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; (A.K.); (K.L.); (K.B.); (A.C.); (C.C.); (M.N.); (L.S.); (A.L.); (S.M.); (J.P.); (A.S.); (R.R.); (I.V.G.)
| | - Anna Lipzen
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; (A.K.); (K.L.); (K.B.); (A.C.); (C.C.); (M.N.); (L.S.); (A.L.); (S.M.); (J.P.); (A.S.); (R.R.); (I.V.G.)
| | - Stephen Mondo
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; (A.K.); (K.L.); (K.B.); (A.C.); (C.C.); (M.N.); (L.S.); (A.L.); (S.M.); (J.P.); (A.S.); (R.R.); (I.V.G.)
| | - Jasmyn Pangilinan
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; (A.K.); (K.L.); (K.B.); (A.C.); (C.C.); (M.N.); (L.S.); (A.L.); (S.M.); (J.P.); (A.S.); (R.R.); (I.V.G.)
| | - Asaf Salamov
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; (A.K.); (K.L.); (K.B.); (A.C.); (C.C.); (M.N.); (L.S.); (A.L.); (S.M.); (J.P.); (A.S.); (R.R.); (I.V.G.)
| | - Robert Riley
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; (A.K.); (K.L.); (K.B.); (A.C.); (C.C.); (M.N.); (L.S.); (A.L.); (S.M.); (J.P.); (A.S.); (R.R.); (I.V.G.)
| | - Ad Wiebenga
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute and Fungal Molecular Physiology, Utrecht University, 3584 Utrecht, The Netherlands; (A.W.); (A.M.); (R.S.K.); (A.C.d.S.G.)
| | - Astrid Müller
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute and Fungal Molecular Physiology, Utrecht University, 3584 Utrecht, The Netherlands; (A.W.); (A.M.); (R.S.K.); (A.C.d.S.G.)
| | - Roland S. Kun
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute and Fungal Molecular Physiology, Utrecht University, 3584 Utrecht, The Netherlands; (A.W.); (A.M.); (R.S.K.); (A.C.d.S.G.)
| | - Ana Carolina dos Santos Gomes
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute and Fungal Molecular Physiology, Utrecht University, 3584 Utrecht, The Netherlands; (A.W.); (A.M.); (R.S.K.); (A.C.d.S.G.)
| | - Bernard Henrissat
- Department of Biotechnology and Bioengineering, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; (S.T.); (T.C.V.); (J.L.N.); (J.C.F.); (T.O.L.); (E.K.L.); (I.K.); (L.L.); (B.H.); (U.H.M.)
- Department of Biological Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Jon K. Magnuson
- Environmental Molecular Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA; (J.K.M.); (B.A.S.)
- US Department of Energy Joint Bioenergy Institute, 5885 Hollis St., Emeryville, CA 94608, USA
| | - Blake A. Simmons
- Environmental Molecular Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA; (J.K.M.); (B.A.S.)
- Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Miia R. Mäkelä
- Department of Microbiology, University of Helsinki, Viikinkaari 9, 00014 Helsinki, Finland;
| | - Uffe H. Mortensen
- Department of Biotechnology and Bioengineering, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; (S.T.); (T.C.V.); (J.L.N.); (J.C.F.); (T.O.L.); (E.K.L.); (I.K.); (L.L.); (B.H.); (U.H.M.)
| | - Igor V. Grigoriev
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; (A.K.); (K.L.); (K.B.); (A.C.); (C.C.); (M.N.); (L.S.); (A.L.); (S.M.); (J.P.); (A.S.); (R.R.); (I.V.G.)
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Matthias Brock
- School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, UK; (E.G.); (M.B.)
| | - Scott E. Baker
- Environmental Molecular Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA; (J.K.M.); (B.A.S.)
- US Department of Energy Joint Bioenergy Institute, 5885 Hollis St., Emeryville, CA 94608, USA
| | - Ronald P. de Vries
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute and Fungal Molecular Physiology, Utrecht University, 3584 Utrecht, The Netherlands; (A.W.); (A.M.); (R.S.K.); (A.C.d.S.G.)
| | - Mikael R. Andersen
- Department of Biotechnology and Bioengineering, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; (S.T.); (T.C.V.); (J.L.N.); (J.C.F.); (T.O.L.); (E.K.L.); (I.K.); (L.L.); (B.H.); (U.H.M.)
| |
Collapse
|
5
|
Tong L, Li Y, Lou X, Wang B, Jin C, Fang W. Powerful cell wall biomass degradation enzymatic system from saprotrophic Aspergillus fumigatus. Cell Surf 2024; 11:100126. [PMID: 38827922 PMCID: PMC11143905 DOI: 10.1016/j.tcsw.2024.100126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/08/2024] [Accepted: 05/15/2024] [Indexed: 06/05/2024] Open
Abstract
Cell wall biomass, Earth's most abundant natural resource, holds significant potential for sustainable biofuel production. Composed of cellulose, hemicellulose, lignin, pectin, and other polymers, the plant cell wall provides essential structural support to diverse organisms in nature. In contrast, non-plant species like insects, crustaceans, and fungi rely on chitin as their primary structural polysaccharide. The saprophytic fungus Aspergillus fumigatus has been widely recognized for its adaptability to various environmental conditions. It achieves this by secreting different cell wall biomass degradation enzymes to obtain essential nutrients. This review compiles a comprehensive collection of cell wall degradation enzymes derived from A. fumigatus, including cellulases, hemicellulases, various chitin degradation enzymes, and other polymer degradation enzymes. Notably, these enzymes exhibit biochemical characteristics such as temperature tolerance or acid adaptability, indicating their potential applications across a spectrum of industries.
Collapse
Affiliation(s)
- Lige Tong
- National Key Laboratory of Non-food Biomass Energy Technology, Institute of Biological Sciences and Technology, Guangxi Academy of Sciences, Nanning, Guangxi, China
| | - Yunaying Li
- National Key Laboratory of Non-food Biomass Energy Technology, Institute of Biological Sciences and Technology, Guangxi Academy of Sciences, Nanning, Guangxi, China
- College of Life Sciences, Hebei Innovation Center for Bioengineering and Biotechnology, Institute of Life Sciences and Green Development, Baoding, Hebei, China
| | - Xinke Lou
- National Key Laboratory of Non-food Biomass Energy Technology, Institute of Biological Sciences and Technology, Guangxi Academy of Sciences, Nanning, Guangxi, China
- College of Life Sciences, Hebei Innovation Center for Bioengineering and Biotechnology, Institute of Life Sciences and Green Development, Baoding, Hebei, China
| | - Bin Wang
- National Key Laboratory of Non-food Biomass Energy Technology, Institute of Biological Sciences and Technology, Guangxi Academy of Sciences, Nanning, Guangxi, China
| | - Cheng Jin
- National Key Laboratory of Non-food Biomass Energy Technology, Institute of Biological Sciences and Technology, Guangxi Academy of Sciences, Nanning, Guangxi, China
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Wenxia Fang
- National Key Laboratory of Non-food Biomass Energy Technology, Institute of Biological Sciences and Technology, Guangxi Academy of Sciences, Nanning, Guangxi, China
| |
Collapse
|
6
|
Ghorbel D, Amouri I, Khemekhem N, Neji S, Trabelsi H, Elloumi M, Sellami H, Makni F, Ayadi A, Hadrich I. Investigation of Azole Resistance Involving cyp51A and cyp51B Genes in Clinical Aspergillus flavus Isolates. Pol J Microbiol 2024; 73:131-142. [PMID: 38700908 PMCID: PMC11192525 DOI: 10.33073/pjm-2024-001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 12/03/2023] [Indexed: 06/22/2024] Open
Abstract
This study aimed to investigate azole resistance mechanisms in Aspergillus flavus, which involve cyp51A and cyp51B genes. Real-time Reverse Transcriptase qPCR method was applied to determine the overexpression of cyp51A and cyp51B genes for 34 A. flavus isolates. PCR sequencing of these two genes was used to detect the presence of gene mutations. Susceptibility test found sensitivity to voriconazole (VOR) in all strains. 14.7% and 8.8% of isolates were resistant to itraconazole (IT) and posaconazole (POS), respectively, with a cross-resistance in 5.8%. For the double resistant isolates (IT/POS), the expression of cyp51A was up to 17-fold higher. PCR sequencing showed the presence of 2 mutations in cyp51A: a synonymous point mutation (P61P) in eight isolates, which did not affect the structure of CYP51A protein, and another non synonymous mutation (G206L) for only the TN-33 strain (cross IT/POS resistance) causing an amino acid change in the protein sequence. However, we noted in cyp51B the presence of the only non-synonymous mutation (L177G) causing a change in amino acids in the protein sequence for the TN-31 strain, which exhibits IT/POS cross-resistance. A short single intron of 67 bp was identified in the cyp51A gene, whereas three short introns of 54, 53, and 160 bp were identified in the cyp51B gene. According to the models provided by PatchDock software, the presence of non-synonymous mutations did not affect the interaction of CYP51A and CYP51B proteins with antifungals. In our study, the overexpression of the cyp51A and cyp51B genes is the primary mechanism responsible for resistance in A. flavus collection. Nevertheless, other resistance mechanisms can be involved.
Collapse
Affiliation(s)
- Dhoha Ghorbel
- Fungi and Parasitic Molecular Biology Laboratory, School of Medicine, University of Sfax, Sfax, Tunisia
| | - Imen Amouri
- Fungi and Parasitic Molecular Biology Laboratory, School of Medicine, University of Sfax, Sfax, Tunisia
| | - Nahed Khemekhem
- Fungi and Parasitic Molecular Biology Laboratory, School of Medicine, University of Sfax, Sfax, Tunisia
| | - Sourour Neji
- Fungi and Parasitic Molecular Biology Laboratory, School of Medicine, University of Sfax, Sfax, Tunisia
| | - Houaida Trabelsi
- Fungi and Parasitic Molecular Biology Laboratory, School of Medicine, University of Sfax, Sfax, Tunisia
| | - Moez Elloumi
- Haematology Department, UH Hedi Chaker, Sfax, Tunisia
| | - Hayet Sellami
- Fungi and Parasitic Molecular Biology Laboratory, School of Medicine, University of Sfax, Sfax, Tunisia
| | - Fattouma Makni
- Fungi and Parasitic Molecular Biology Laboratory, School of Medicine, University of Sfax, Sfax, Tunisia
| | - Ali Ayadi
- Fungi and Parasitic Molecular Biology Laboratory, School of Medicine, University of Sfax, Sfax, Tunisia
| | - Ines Hadrich
- Fungi and Parasitic Molecular Biology Laboratory, School of Medicine, University of Sfax, Sfax, Tunisia
- Faculty of Science, University of Gabes, Gabes, Tunisia
| |
Collapse
|
7
|
Wang WH, Li CR, Qin XJ, Yang XQ, Xie SD, Jiang Q, Zou LH, Zhang YJ, Zhu GL, Zhao P. Novel Alkaloids from Aspergillus fumigatus VDL36, an Endophytic Fungus Associated with Vaccinium dunalianum. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:10970-10980. [PMID: 38708787 DOI: 10.1021/acs.jafc.4c00371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
Eleven alkaloids (1-11) including seven new ones, 1-7, were isolated from the solid fermentation of Aspergillus fumigatus VDL36, an endophytic fungus isolated from the leaves of Vaccinium dunalianum Wight (Ericaceae), a perennial evergreen shrub distributed across the Southwest regions of China, Myanmar, and Vietnam. Their structures were elucidated on the basis of extensive spectroscopic methods. The isolates were evaluated for in vitro antifungal activities against five phytopathogenic fungi (Fusarium oxysporum, Coriolus versicolor, Fusarium solani, Botrytis cinerea, Fusarium graminearum). As a result, the new compounds fumigaclavine I (1), 13-ethoxycyclotryprostatin A (5), 13-dehydroxycyclotryprostatin A (6), and 12β-hydroxy-13-oxofumitremorgin C (7) exhibited antifungal activities with MIC values of 7.8-62.5 μg/mL which were comparable to the two positive controls ketoconazole (MIC = 7.8-31.25 μg/mL) and carbendazim (MIC = 1.95-7.8 μg/mL). Furthermore, compounds 1 and 5 demonstrated potent protective and curative effects against the tomato gray mold in vivo. Preliminary structure-activity relationships of the tested indole diketopiperazine alkaloids indicate that the introduction of a substituent group at position C-13 enhances their biological activities.
Collapse
Affiliation(s)
- Wei-Hua Wang
- Key Laboratory of State Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest Forestry University, Kunming 650224, P. R. China
- Yunnan Key Laboratory of Gastrodia and Fungi Symbiotic Biology, Zhaotong University, Zhaotong 657000, Yunnan, P. R. China
| | - Chu-Ran Li
- Key Laboratory of State Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest Forestry University, Kunming 650224, P. R. China
| | - Xu-Jie Qin
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, P. R. China
| | - Xiao-Qin Yang
- Key Laboratory of State Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest Forestry University, Kunming 650224, P. R. China
| | - Si-Da Xie
- Key Laboratory of State Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest Forestry University, Kunming 650224, P. R. China
| | - Qian Jiang
- Key Laboratory of State Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest Forestry University, Kunming 650224, P. R. China
| | - Li-Hua Zou
- Key Laboratory of State Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest Forestry University, Kunming 650224, P. R. China
| | - Ying-Jun Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, P. R. China
| | - Guo-Lei Zhu
- Key Laboratory of State Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest Forestry University, Kunming 650224, P. R. China
| | - Ping Zhao
- Key Laboratory of State Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest Forestry University, Kunming 650224, P. R. China
| |
Collapse
|
8
|
Balamurugan C, Steenwyk JL, Goldman GH, Rokas A. The evolution of the gliotoxin biosynthetic gene cluster in Penicillium fungi. G3 (BETHESDA, MD.) 2024; 14:jkae063. [PMID: 38507596 PMCID: PMC11075534 DOI: 10.1093/g3journal/jkae063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 12/27/2023] [Accepted: 03/11/2024] [Indexed: 03/22/2024]
Abstract
Fungi biosynthesize diverse secondary metabolites, small organic bioactive molecules with key roles in fungal ecology. Fungal secondary metabolites are often encoded by physically clustered genes known as biosynthetic gene clusters (BGCs). Fungi in the genus Penicillium produce a cadre of secondary metabolites, some of which are useful (e.g. the antibiotic penicillin and the cholesterol-lowering drug mevastatin) and others harmful (e.g. the mycotoxin patulin and the immunosuppressant gliotoxin) to human affairs. Fungal genomes often also encode resistance genes that confer protection against toxic secondary metabolites. Some Penicillium species, such as Penicillium decumbens, are known to produce gliotoxin, a secondary metabolite with known immunosuppressant activity. To investigate the evolutionary conservation of homologs of the gliotoxin BGC and of genes involved in gliotoxin resistance in Penicillium, we analyzed 35 Penicillium genomes from 23 species. Homologous, lesser fragmented gliotoxin BGCs were found in 12 genomes, mostly fragmented remnants of the gliotoxin BGC were found in 21 genomes, whereas the remaining 2 Penicillium genomes lacked the gliotoxin BGC altogether. In contrast, broad conservation of homologs of resistance genes that reside outside the BGC across Penicillium genomes was observed. Evolutionary rate analysis revealed that BGCs with higher numbers of genes evolve slower than BGCs with few genes, suggestive of constraint and potential functional significance or more recent decay. Gene tree-species tree reconciliation analyses suggested that the history of homologs in the gliotoxin BGC across the genus Penicillium likely involved multiple duplications, losses, and horizontal gene transfers. Our analyses suggest that genes encoded in BGCs can have complex evolutionary histories and be retained in genomes long after the loss of secondary metabolite biosynthesis.
Collapse
Affiliation(s)
- Charu Balamurugan
- Department of Biological Sciences, Vanderbilt University, VU Station B #35-1634, Nashville, TN 37235, USA
- Vanderbilt Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN 37235, USA
| | - Jacob L Steenwyk
- Department of Biological Sciences, Vanderbilt University, VU Station B #35-1634, Nashville, TN 37235, USA
- Vanderbilt Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN 37235, USA
- Howards Hughes Medical Institute and the Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Gustavo H Goldman
- Faculdade de Ciencias Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo CEP 14040-903, Brazil
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, VU Station B #35-1634, Nashville, TN 37235, USA
- Vanderbilt Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN 37235, USA
| |
Collapse
|
9
|
Jia X, Song J, Wu Y, Feng S, Sun Z, Hu Y, Yu M, Han R, Zeng B. Strategies for the Enhancement of Secondary Metabolite Production via Biosynthesis Gene Cluster Regulation in Aspergillus oryzae. J Fungi (Basel) 2024; 10:312. [PMID: 38786667 PMCID: PMC11121810 DOI: 10.3390/jof10050312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/17/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
The filamentous fungus Aspergillus oryzae (A. oryzae) has been extensively used for the biosynthesis of numerous secondary metabolites with significant applications in agriculture and food and medical industries, among others. However, the identification and functional prediction of metabolites through genome mining in A. oryzae are hindered by the complex regulatory mechanisms of secondary metabolite biosynthesis and the inactivity of most of the biosynthetic gene clusters involved. The global regulatory factors, pathway-specific regulatory factors, epigenetics, and environmental signals significantly impact the production of secondary metabolites, indicating that appropriate gene-level modulations are expected to promote the biosynthesis of secondary metabolites in A. oryzae. This review mainly focuses on illuminating the molecular regulatory mechanisms for the activation of potentially unexpressed pathways, possibly revealing the effects of transcriptional, epigenetic, and environmental signal regulation. By gaining a comprehensive understanding of the regulatory mechanisms of secondary metabolite biosynthesis, strategies can be developed to enhance the production and utilization of these metabolites, and potential functions can be fully exploited.
Collapse
Affiliation(s)
- Xiao Jia
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China; (X.J.); (J.S.); (Y.W.); (S.F.); (Z.S.); (Y.H.); (M.Y.); (R.H.)
- College of Materials and Energy, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Jiayi Song
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China; (X.J.); (J.S.); (Y.W.); (S.F.); (Z.S.); (Y.H.); (M.Y.); (R.H.)
- College of Life and Health Sciences, Northeastern University, No. 3-11, Wenhua Road, Shenyang 110819, China
| | - Yijian Wu
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China; (X.J.); (J.S.); (Y.W.); (S.F.); (Z.S.); (Y.H.); (M.Y.); (R.H.)
| | - Sai Feng
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China; (X.J.); (J.S.); (Y.W.); (S.F.); (Z.S.); (Y.H.); (M.Y.); (R.H.)
| | - Zeao Sun
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China; (X.J.); (J.S.); (Y.W.); (S.F.); (Z.S.); (Y.H.); (M.Y.); (R.H.)
| | - Yan Hu
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China; (X.J.); (J.S.); (Y.W.); (S.F.); (Z.S.); (Y.H.); (M.Y.); (R.H.)
| | - Mengxue Yu
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China; (X.J.); (J.S.); (Y.W.); (S.F.); (Z.S.); (Y.H.); (M.Y.); (R.H.)
| | - Rui Han
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China; (X.J.); (J.S.); (Y.W.); (S.F.); (Z.S.); (Y.H.); (M.Y.); (R.H.)
| | - Bin Zeng
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China; (X.J.); (J.S.); (Y.W.); (S.F.); (Z.S.); (Y.H.); (M.Y.); (R.H.)
| |
Collapse
|
10
|
Puumala E, Sychantha D, Lach E, Reeves S, Nabeela S, Fogal M, Nigam A, Johnson JW, Aspuru-Guzik A, Shapiro RS, Uppuluri P, Kalyaanamoorthy S, Magolan J, Whitesell L, Robbins N, Wright GD, Cowen LE. Allosteric inhibition of tRNA synthetase Gln4 by N-pyrimidinyl-β-thiophenylacrylamides exerts highly selective antifungal activity. Cell Chem Biol 2024; 31:760-775.e17. [PMID: 38402621 PMCID: PMC11031294 DOI: 10.1016/j.chembiol.2024.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/19/2023] [Accepted: 01/29/2024] [Indexed: 02/27/2024]
Abstract
Candida species are among the most prevalent causes of systemic fungal infections, which account for ∼1.5 million annual fatalities. Here, we build on a compound screen that identified the molecule N-pyrimidinyl-β-thiophenylacrylamide (NP-BTA), which strongly inhibits Candida albicans growth. NP-BTA was hypothesized to target C. albicans glutaminyl-tRNA synthetase, Gln4. Here, we confirmed through in vitro amino-acylation assays NP-BTA is a potent inhibitor of Gln4, and we defined how NP-BTA arrests Gln4's transferase activity using co-crystallography. This analysis also uncovered Met496 as a critical residue for the compound's species-selective target engagement and potency. Structure-activity relationship (SAR) studies demonstrated the NP-BTA scaffold is subject to oxidative and non-oxidative metabolism, making it unsuitable for systemic administration. In a mouse dermatomycosis model, however, topical application of the compound provided significant therapeutic benefit. This work expands the repertoire of antifungal protein synthesis target mechanisms and provides a path to develop Gln4 inhibitors.
Collapse
Affiliation(s)
- Emily Puumala
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - David Sychantha
- M.G. DeGroote Institute for Infectious Disease Research, David Braley Centre for Antibiotic Discovery, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Elizabeth Lach
- M.G. DeGroote Institute for Infectious Disease Research, David Braley Centre for Antibiotic Discovery, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Shawn Reeves
- Department of Chemistry, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Sunna Nabeela
- Division of Infectious Diseases, The Lundquist Institute for Biomedical Innovation at Harbor-University of California Los Angeles Medical Center, Torrance, CA 90502, USA
| | - Meea Fogal
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - AkshatKumar Nigam
- Department of Computer Science, Stanford University, Stanford, CA 94305, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Jarrod W Johnson
- M.G. DeGroote Institute for Infectious Disease Research, David Braley Centre for Antibiotic Discovery, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Alán Aspuru-Guzik
- Chemical Physics Theory Group, Department of Chemistry, University of Toronto Toronto, ON M5S 3H6, Canada; Department of Computer Science, University of Toronto, Toronto, ON M5S 2E4, Canada; Department of Chemical Engineering & Applied Chemistry, University of Toronto, Toronto, ON M5S 3E5, Canada; Department of Materials Science & Engineering, University of Toronto, Toronto, ON M5S 3E4, Canada; Vector Institute for Artificial Intelligence, Toronto, ON M5G 1M1, Canada; Lebovic Fellow, Canadian Institute for Advanced Research (CIFAR), Toronto, ON M5G 1M1, Canada; Acceleration Consortium, University of Toronto, Toronto, ON M5S 3H6, Canada
| | - Rebecca S Shapiro
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Priya Uppuluri
- Division of Infectious Diseases, The Lundquist Institute for Biomedical Innovation at Harbor-University of California Los Angeles Medical Center, Torrance, CA 90502, USA; David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90024, USA
| | | | - Jakob Magolan
- M.G. DeGroote Institute for Infectious Disease Research, David Braley Centre for Antibiotic Discovery, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Luke Whitesell
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Nicole Robbins
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Gerard D Wright
- M.G. DeGroote Institute for Infectious Disease Research, David Braley Centre for Antibiotic Discovery, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Leah E Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
11
|
Romero G, González S, Royero W, González A. Morphological and transcriptional analysis of Colletotrichum lindemuthianum race 7 during early stages of infection in common bean. Genet Mol Biol 2024; 47:e20220263. [PMID: 38593425 PMCID: PMC11003654 DOI: 10.1590/1678-4685-gmb-2022-0263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 01/26/2024] [Indexed: 04/11/2024] Open
Abstract
The infection process of the hemibiotrophic fungus Colletotrichum lindemuthianum has been independently studied at the microscopic and genomic levels. However, the relationship between the morphological changes and the pathogenicity mechanisms of the fungus at the early stages of the infection remains uncharacterized. Therefore, this study attempts to bridge this gap by integrating microscopic and transcriptional approaches to understand the infection process of C. lindemuthianum. Fungal structures were followed by fluorescence microscopy for 120 hours. Simultaneously, the transcriptomic profile was made using RNAseq. Morphological characterization shows that appressoria, infective vesicles, and secondary hypha formation occur before 72 hours. Additionally, we assembled 38,206 transcripts with lengths between 201 and 3,548 bp. The secretome annotation revealed the expression of 1,204 CAZymes, of which 17 exhibited secretion domains and were identified as chitinases and β-1,3-glucanases, 27 were effector candidates, and 30 were transport proteins mostly associated with ABC-type. Finally, we confirmed the presence and expression of CAC1 role during the appressoria formation of Clr7. This result represents the first report of adenylate cyclase expression evaluated under three different approaches. In conclusion, C. lindemuthianum colonizes the host through different infection structures complemented with the expression of multiple enzymes, where CAC1 favors disease development.
Collapse
Affiliation(s)
- German Romero
- Universidad Nacional de Colombia, Facultad de Ciencias Agrarias, Bogotá, Colombia
| | - Sandra González
- Universidad Nacional de Colombia, Instituto de Biotecnología, Bogotá, Colombia
| | - Wendy Royero
- Universidad Nacional de Colombia, Instituto de Biotecnología, Bogotá, Colombia
| | - Adriana González
- Universidad Nacional de Colombia, Facultad de Ciencias Agrarias, Bogotá, Colombia
| |
Collapse
|
12
|
Qin L, Gong X, Nong J, Tang X, Cui K, Zhao Y, Xia S. Histone Methyltransferase SsDim5 Regulates Fungal Virulence through H3K9 Trimethylation in Sclerotinia sclerotiorum. J Fungi (Basel) 2024; 10:271. [PMID: 38667942 PMCID: PMC11051235 DOI: 10.3390/jof10040271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
Histone post-translational modification is one of the main mechanisms of epigenetic regulation, which plays a crucial role in the control of gene expression and various biological processes. However, whether or not it affects fungal virulence in Sclerotinia sclerotiorum is not clear. In this study, we identified and cloned the histone methyltransferase Defective in methylation 5 (Dim5) in S. sclerotiorum, which encodes a protein containing a typical SET domain. SsDim5 was found to be dynamically expressed during infection. Knockout experiment demonstrated that deletion of SsDim5 reduced the virulence in Ssdim5-1/Ssdim5-2 mutant strains, accompanied by a significant decrease in H3K9 trimethylation levels. Transcriptomic analysis further revealed the downregulation of genes associated with mycotoxins biosynthesis in SsDim5 deletion mutants. Additionally, the absence of SsDim5 affected the fungus's response to oxidative and osmotic, as well as cellular integrity. Together, our results indicate that the H3K9 methyltransferase SsDim5 is essential for H3K9 trimethylation, regulating fungal virulence throug mycotoxins biosynthesis, and the response to environmental stresses in S. sclerotiorum.
Collapse
Affiliation(s)
- Lei Qin
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China; (L.Q.); (X.G.); (J.N.); (X.T.); (Y.Z.)
| | - Xin Gong
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China; (L.Q.); (X.G.); (J.N.); (X.T.); (Y.Z.)
| | - Jieying Nong
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China; (L.Q.); (X.G.); (J.N.); (X.T.); (Y.Z.)
| | - Xianyu Tang
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China; (L.Q.); (X.G.); (J.N.); (X.T.); (Y.Z.)
| | - Kan Cui
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha 410125, China;
| | - Yan Zhao
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China; (L.Q.); (X.G.); (J.N.); (X.T.); (Y.Z.)
| | - Shitou Xia
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China; (L.Q.); (X.G.); (J.N.); (X.T.); (Y.Z.)
| |
Collapse
|
13
|
Steenwyk JL, Balamurugan C, Raja HA, Gonçalves C, Li N, Martin F, Berman J, Oberlies NH, Gibbons JG, Goldman GH, Geiser DM, Houbraken J, Hibbett DS, Rokas A. Phylogenomics reveals extensive misidentification of fungal strains from the genus Aspergillus. Microbiol Spectr 2024; 12:e0398023. [PMID: 38445873 PMCID: PMC10986620 DOI: 10.1128/spectrum.03980-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/18/2024] [Indexed: 03/07/2024] Open
Abstract
Modern taxonomic classification is often based on phylogenetic analyses of a few molecular markers, although single-gene studies are still common. Here, we leverage genome-scale molecular phylogenetics (phylogenomics) of species and populations to reconstruct evolutionary relationships in a dense data set of 710 fungal genomes from the biomedically and technologically important genus Aspergillus. To do so, we generated a novel set of 1,362 high-quality molecular markers specific for Aspergillus and provided profile Hidden Markov Models for each, facilitating their use by others. Examining the resulting phylogeny helped resolve ongoing taxonomic controversies, identified new ones, and revealed extensive strain misidentification (7.59% of strains were previously misidentified), underscoring the importance of population-level sampling in species classification. These findings were corroborated using the current standard, taxonomically informative loci. These findings suggest that phylogenomics of species and populations can facilitate accurate taxonomic classifications and reconstructions of the Tree of Life.IMPORTANCEIdentification of fungal species relies on the use of molecular markers. Advances in genomic technologies have made it possible to sequence the genome of any fungal strain, making it possible to use genomic data for the accurate assignment of strains to fungal species (and for the discovery of new ones). We examined the usefulness and current limitations of genomic data using a large data set of 710 publicly available genomes from multiple strains and species of the biomedically, agriculturally, and industrially important genus Aspergillus. Our evolutionary genomic analyses revealed that nearly 8% of publicly available Aspergillus genomes are misidentified. Our work highlights the usefulness of genomic data for fungal systematic biology and suggests that systematic genome sequencing of multiple strains, including reference strains (e.g., type strains), of fungal species will be required to reduce misidentification errors in public databases.
Collapse
Affiliation(s)
- Jacob L. Steenwyk
- Howards Hughes Medical Institute and the Department of Molecular and Cell Biology, University of California, Berkeley, California, USA
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, Tennessee, USA
| | - Charu Balamurugan
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, Tennessee, USA
| | - Huzefa A. Raja
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina, USA
| | - Carla Gonçalves
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, Tennessee, USA
| | - Ningxiao Li
- Department of Plant Pathology, University of California, Davis, California, USA
- USDA-ARS, Salinas, California, USA
| | | | - Judith Berman
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Israel
| | - Nicholas H. Oberlies
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina, USA
| | - John G. Gibbons
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts, USA
- Organismic and Evolutionary Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts, USA
| | - Gustavo H. Goldman
- Faculdade de Ciencias Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - David M. Geiser
- Department of Plant Pathology and Environmental Microbiology, Penn State University, University Park, Pennsylvania, USA
| | - Jos Houbraken
- Food and Indoor Mycology, Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - David S. Hibbett
- Biology Department, Clark University, Worcester, Massachusetts, USA
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, Tennessee, USA
- Heidelberg Institute for Theoretical Studies, Schloss-Wolfsbrunnenweg, Heidelberg, Germany
| |
Collapse
|
14
|
Seo HW, Wassano NS, Amir Rawa MS, Nickles GR, Damasio A, Keller NP. A Timeline of Biosynthetic Gene Cluster Discovery in Aspergillus fumigatus: From Characterization to Future Perspectives. J Fungi (Basel) 2024; 10:266. [PMID: 38667937 PMCID: PMC11051388 DOI: 10.3390/jof10040266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
In 1999, the first biosynthetic gene cluster (BGC), synthesizing the virulence factor DHN melanin, was characterized in Aspergillus fumigatus. Since then, 19 additional BGCs have been linked to specific secondary metabolites (SMs) in this species. Here, we provide a comprehensive timeline of A. fumigatus BGC discovery and find that initial advances centered around the commonly expressed SMs where chemical structure informed rationale identification of the producing BGC (e.g., gliotoxin, fumigaclavine, fumitremorgin, pseurotin A, helvolic acid, fumiquinazoline). Further advances followed the transcriptional profiling of a ΔlaeA mutant, which aided in the identification of endocrocin, fumagillin, hexadehydroastechrome, trypacidin, and fumisoquin BGCs. These SMs and their precursors are the commonly produced metabolites in most A. fumigatus studies. Characterization of other BGC/SM pairs required additional efforts, such as induction treatments, including co-culture with bacteria (fumicycline/neosartoricin, fumigermin) or growth under copper starvation (fumivaline, fumicicolin). Finally, four BGC/SM pairs were discovered via overexpression technologies, including the use of heterologous hosts (fumicycline/neosartoricin, fumihopaside, sphingofungin, and sartorypyrone). Initial analysis of the two most studied A. fumigatus isolates, Af293 and A1160, suggested that both harbored ca. 34-36 BGCs. However, an examination of 264 available genomes of A. fumigatus shows up to 20 additional BGCs, with some strains showing considerable variations in BGC number and composition. These new BGCs present a new frontier in the future of secondary metabolism characterization in this important species.
Collapse
Affiliation(s)
- Hye-Won Seo
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI 53706, USA; (H.-W.S.); (N.S.W.); (M.S.A.R.); (G.R.N.)
| | - Natalia S. Wassano
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI 53706, USA; (H.-W.S.); (N.S.W.); (M.S.A.R.); (G.R.N.)
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), São Paulo 13083-970, Brazil;
| | - Mira Syahfriena Amir Rawa
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI 53706, USA; (H.-W.S.); (N.S.W.); (M.S.A.R.); (G.R.N.)
| | - Grant R. Nickles
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI 53706, USA; (H.-W.S.); (N.S.W.); (M.S.A.R.); (G.R.N.)
| | - André Damasio
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), São Paulo 13083-970, Brazil;
| | - Nancy P. Keller
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI 53706, USA; (H.-W.S.); (N.S.W.); (M.S.A.R.); (G.R.N.)
- Department of Plant Pathology, University of Wisconsin, Madison, WI 53706, USA
| |
Collapse
|
15
|
Rinker DC, Sauters TJC, Steffen K, Gumilang A, Raja HA, Rangel-Grimaldo M, Pinzan CF, de Castro PA, dos Reis TF, Delbaje E, Houbraken J, Goldman GH, Oberlies NH, Rokas A. Strain heterogeneity in a non-pathogenic fungus highlights factors contributing to virulence. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.08.583994. [PMID: 38496489 PMCID: PMC10942418 DOI: 10.1101/2024.03.08.583994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Fungal pathogens exhibit extensive strain heterogeneity, including variation in virulence. Whether closely related non-pathogenic species also exhibit strain heterogeneity remains unknown. Here, we comprehensively characterized the pathogenic potentials (i.e., the ability to cause morbidity and mortality) of 16 diverse strains of Aspergillus fischeri, a non-pathogenic close relative of the major pathogen Aspergillus fumigatus. In vitro immune response assays and in vivo virulence assays using a mouse model of pulmonary aspergillosis showed that A. fischeri strains varied widely in their pathogenic potential. Furthermore, pangenome analyses suggest that A. fischeri genomic and phenotypic diversity is even greater. Genomic, transcriptomic, and metabolomic profiling identified several pathways and secondary metabolites associated with variation in virulence. Notably, strain virulence was associated with the simultaneous presence of the secondary metabolites hexadehydroastechrome and gliotoxin. We submit that examining the pathogenic potentials of non-pathogenic close relatives is key for understanding the origins of fungal pathogenicity.
Collapse
Affiliation(s)
- David C. Rinker
- Department of Biological Sciences and Evolutionary Studies Initiative, Vanderbilt University, Nashville, Tennessee, USA
| | - Thomas J. C. Sauters
- Department of Biological Sciences and Evolutionary Studies Initiative, Vanderbilt University, Nashville, Tennessee, USA
| | - Karin Steffen
- Department of Biological Sciences and Evolutionary Studies Initiative, Vanderbilt University, Nashville, Tennessee, USA
| | - Adiyantara Gumilang
- Department of Biological Sciences and Evolutionary Studies Initiative, Vanderbilt University, Nashville, Tennessee, USA
| | - Huzefa A. Raja
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina, USA
| | - Manuel Rangel-Grimaldo
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina, USA
| | - Camila Figueiredo Pinzan
- Faculdade de Ciencias Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Patrícia Alves de Castro
- Faculdade de Ciencias Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Thaila Fernanda dos Reis
- Faculdade de Ciencias Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Endrews Delbaje
- Faculdade de Ciencias Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Jos Houbraken
- Food and Indoor Mycology, Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - Gustavo H. Goldman
- Faculdade de Ciencias Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Nicholas H. Oberlies
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina, USA
| | - Antonis Rokas
- Department of Biological Sciences and Evolutionary Studies Initiative, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
16
|
Jentsch MC, Lübke S, Schrödl W, Volke D, Krizsan A, Hoffmann R, Kaiser-Thom S, Gerber V, Marti E, Wagner B, Schnabel CL. Immunoproteomics enable broad identification of new Aspergillus fumigatus antigens in severe equine asthma. Front Immunol 2024; 15:1347164. [PMID: 38487534 PMCID: PMC10937411 DOI: 10.3389/fimmu.2024.1347164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/01/2024] [Indexed: 03/17/2024] Open
Abstract
Introduction Severe equine asthma (SEA) is a common chronic disease of adult horses with characteristic recurrent airway obstruction and similarities to neutrophilic asthma in humans. As an extrinsic stimulus, hay dust exposure is a major risk factor and induces acute exacerbation in susceptible horses. However, single inducing agents of SEA have hardly been identified on a molecular basis. Aspergillus fumigatus (A. fumigatus) is a common mold species in hay and has been described as a major provoking agent of SEA. Methods Aiming to identify disease-relevant antigens, we analyzed A. fumigatus using an immunoproteomics approach on two-dimensional immunoblots of A. fumigatus protein probed with serum from environmentally matched asthmatic and healthy horses (n=5 pairs). A. fumigatus binding serum immunoglobulins (Pan-Ig), and the isotypes IgG4/7 and IgG3/5 were quantified for each protein spot and then compared between asthmatic and healthy horses. Results and discussion For 21 out of 289 spots serum immunoglobulin (Ig) binding was different between the two groups for Pan-Ig or the isotypes. If differences were detected, Pan-Ig and IgG4/7 binding to the proteins were lower, while IgG3/5 binding was higher in asthmatic than healthy horse sera. Proteins were extracted from the 21 spots of interest and analyzed by liquid chromatography mass spectrometry. Eight prioritized proteins (candidate antigens) were expressed as recombinant proteins. Some of these have been previously described as major or minor A. fumigatus allergens, alongside other proteins, most with hydrolase activity. Recombinant candidate antigens were tested on 1D immunoblots to confirm their relevance as antigens by serum antibody binding. Four proteins (beta-hexosaminidase, class II aldolase/adducin domain protein, glucoamylase, peptide hydrolase B0XX53) showed different antibody binding characteristics between asthmatic and healthy horses and are likely relevant antigens in SEA. Their identification can provide the basis for innovative diagnostics, prevention, or therapeutic approaches. Additionally, a more profound understanding of SEA and its potential underlying mechanisms can be established. Elevated serum IgG3/5 antibodies correlate with T helper cell 2 responses in other equine pathologies, and the recombinant SEA antigens developed here can become instrumental in analyzing the involvement of SEA-specific T cell responses and Ig responses in future studies.
Collapse
Affiliation(s)
- Maria-Christin Jentsch
- Institute of Immunology, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| | - Sabrina Lübke
- Institute of Immunology, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| | - Wieland Schrödl
- Institute of Bacteriology and Mycology, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| | - Daniela Volke
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, Centre for Biotechnology and Biomedicine, Leipzig University, Leipzig, Germany
| | - Andor Krizsan
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, Centre for Biotechnology and Biomedicine, Leipzig University, Leipzig, Germany
| | - Ralf Hoffmann
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, Centre for Biotechnology and Biomedicine, Leipzig University, Leipzig, Germany
| | - Sarah Kaiser-Thom
- Swiss Institute of Equine Medicine, Department of Clinical Veterinary Medicine, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Vinzenz Gerber
- Swiss Institute of Equine Medicine, Department of Clinical Veterinary Medicine, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Eliane Marti
- Division of Neurological Sciences, Department of Clinical Research and Veterinary Public Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Bettina Wagner
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Christiane L. Schnabel
- Institute of Immunology, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| |
Collapse
|
17
|
Garcia JF, Morales-Cruz A, Cochetel N, Minio A, Figueroa-Balderas R, Rolshausen PE, Baumgartner K, Cantu D. Comparative Pangenomic Insights into the Distinct Evolution of Virulence Factors Among Grapevine Trunk Pathogens. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2024; 37:127-142. [PMID: 37934016 DOI: 10.1094/mpmi-09-23-0129-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
The permanent organs of grapevines (Vitis vinifera L.), like those of other woody perennials, are colonized by various unrelated pathogenic ascomycete fungi secreting cell wall-degrading enzymes and phytotoxic secondary metabolites that contribute to host damage and disease symptoms. Trunk pathogens differ in the symptoms they induce and the extent and speed of damage. Isolates of the same species often display a wide virulence range, even within the same vineyard. This study focuses on Eutypa lata, Neofusicoccum parvum, and Phaeoacremonium minimum, causal agents of Eutypa dieback, Botryosphaeria dieback, and Esca, respectively. We sequenced 50 isolates from viticulture regions worldwide and built nucleotide-level, reference-free pangenomes for each species. Through examination of genomic diversity and pangenome structure, we analyzed intraspecific conservation and variability of putative virulence factors, focusing on functions under positive selection and recent gene family dynamics of contraction and expansion. Our findings reveal contrasting distributions of putative virulence factors in the core, dispensable, and private genomes of each pangenome. For example, carbohydrate active enzymes (CAZymes) were prevalent in the core genomes of each pangenome, whereas biosynthetic gene clusters were prevalent in the dispensable genomes of E. lata and P. minimum. The dispensable fractions were also enriched in Gypsy transposable elements and virulence factors under positive selection (polyketide synthase genes in E. lata and P. minimum, glycosyltransferases in N. parvum). Our findings underscore the complexity of the genomic architecture in each species and provide insights into their adaptive strategies, enhancing our understanding of the underlying mechanisms of virulence. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Jadran F Garcia
- Department of Viticulture and Enology, University of California, Davis, Davis, CA, U.S.A
| | - Abraham Morales-Cruz
- Department of Viticulture and Enology, University of California, Davis, Davis, CA, U.S.A
- U.S. Department of Energy, Joint Genome Institute, Lawrence Berkeley National Lab, Berkeley, CA, U.S.A
| | - Noé Cochetel
- Department of Viticulture and Enology, University of California, Davis, Davis, CA, U.S.A
| | - Andrea Minio
- Department of Viticulture and Enology, University of California, Davis, Davis, CA, U.S.A
| | - Rosa Figueroa-Balderas
- Department of Viticulture and Enology, University of California, Davis, Davis, CA, U.S.A
| | - Philippe E Rolshausen
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, U.S.A
| | - Kendra Baumgartner
- Crops Pathology and Genetics Research Unit, U.S. Department of Agriculture-Agricultural Research Service, Davis, CA, U.S.A
| | - Dario Cantu
- Department of Viticulture and Enology, University of California, Davis, Davis, CA, U.S.A
- Genome Center, University of California, Davis, Davis, CA, U.S.A
| |
Collapse
|
18
|
Lyčka M, Bubeník M, Závodník M, Peska V, Fajkus P, Demko M, Fajkus J, Fojtová M. TeloBase: a community-curated database of telomere sequences across the tree of life. Nucleic Acids Res 2024; 52:D311-D321. [PMID: 37602392 PMCID: PMC10767889 DOI: 10.1093/nar/gkad672] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/27/2023] [Accepted: 08/14/2023] [Indexed: 08/22/2023] Open
Abstract
Discoveries over the recent decade have demonstrated the unexpected diversity of telomere DNA motifs in nature. However, currently available resources, 'Telomerase database' and 'Plant rDNA database', contain just fragments of all relevant literature published over decades of telomere research as they have a different primary focus and limited updates. To fill this gap, we gathered data about telomere DNA sequences from a thorough literature screen as well as by analysing publicly available NGS data, and we created TeloBase (http://cfb.ceitec.muni.cz/telobase/) as a comprehensive database of information about telomere motif diversity. TeloBase is supplemented by internal taxonomy utilizing popular on-line taxonomic resources that enables in-house data filtration and graphical visualisation of telomere DNA evolutionary dynamics in the form of heat tree plots. TeloBase avoids overreliance on administrators for future data updates by having a simple form and community-curation system for application and approval, respectively, of new telomere sequences by users, which should ensure timeliness of the database and topicality. To demonstrate TeloBase utility, we examined telomere motif diversity in species from the fungal genus Aspergillus, and discovered (TTTATTAGGG)n sequence as a putative telomere motif in the plant family Chrysobalanaceae. This was bioinformatically confirmed by analysing template regions of identified telomerase RNAs.
Collapse
Affiliation(s)
- Martin Lyčka
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, BrnoCZ-62500, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, BrnoCZ-62500, Czech Republic
| | - Michal Bubeník
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, BrnoCZ-62500, Czech Republic
| | - Michal Závodník
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, BrnoCZ-62500, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, BrnoCZ-62500, Czech Republic
| | - Vratislav Peska
- Department of Cell Biology and Radiobiology, Institute of Biophysics, Academy of Sciences of the Czech Republic, BrnoCZ-61200, Czech Republic
| | - Petr Fajkus
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, BrnoCZ-62500, Czech Republic
- Department of Cell Biology and Radiobiology, Institute of Biophysics, Academy of Sciences of the Czech Republic, BrnoCZ-61200, Czech Republic
| | - Martin Demko
- Core Facility Bioinformatics, Central European Institute of Technology (CEITEC), Masaryk University, BrnoCZ-62500, Czech Republic
- Faculty of Informatics, Masaryk University, BrnoCZ-62500, Czech Republic
| | - Jiří Fajkus
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, BrnoCZ-62500, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, BrnoCZ-62500, Czech Republic
- Department of Cell Biology and Radiobiology, Institute of Biophysics, Academy of Sciences of the Czech Republic, BrnoCZ-61200, Czech Republic
| | - Miloslava Fojtová
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, BrnoCZ-62500, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, BrnoCZ-62500, Czech Republic
| |
Collapse
|
19
|
Sasse C, Bastakis E, Bakti F, Höfer AM, Zangl I, Schüller C, Köhler AM, Gerke J, Krappmann S, Finkernagel F, Harting R, Strauss J, Heimel K, Braus GH. Induction of Aspergillus fumigatus zinc cluster transcription factor OdrA/Mdu2 provides combined cellular responses for oxidative stress protection and multiple antifungal drug resistance. mBio 2023; 14:e0262823. [PMID: 37982619 PMCID: PMC10746196 DOI: 10.1128/mbio.02628-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 10/06/2023] [Indexed: 11/21/2023] Open
Abstract
IMPORTANCE An overexpression screen of 228 zinc cluster transcription factor encoding genes of A. fumigatus revealed 11 genes conferring increased tolerance to antifungal drugs. Out of these, four oxidative stress and drug tolerance transcription factor encoding odr genes increased tolerance to oxidative stress and antifungal drugs when overexpressed. This supports a correlation between oxidative stress response and antifungal drug tolerance in A. fumigatus. OdrA/Mdu2 is required for the cross-tolerance between azoles, polyenes, and oxidative stress and activates genes for detoxification. Under oxidative stress conditions or when overexpressed, OdrA/Mdu2 accumulates in the nucleus and activates detoxifying genes by direct binding at their promoters, as we describe with the mdr1 gene encoding an itraconazole specific efflux pump. Finally, this work gives new insights about drug and stress resistance in the opportunistic pathogenic fungus A. fumigatus.
Collapse
Affiliation(s)
- Christoph Sasse
- Department of Molecular Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), Institute of Microbiology and Genetics, University of Göttingen, Göttingen, Germany
| | - Emmanouil Bastakis
- Department of Molecular Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), Institute of Microbiology and Genetics, University of Göttingen, Göttingen, Germany
| | - Fruzsina Bakti
- Department of Molecular Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), Institute of Microbiology and Genetics, University of Göttingen, Göttingen, Germany
| | - Annalena M. Höfer
- Department of Molecular Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), Institute of Microbiology and Genetics, University of Göttingen, Göttingen, Germany
| | - Isabella Zangl
- Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, University of Natural Resources and Life Sciences, Vienna (BOKU), Campus, Tulln, Austria
- Core Facility Bioactive Molecules–Screening and Analysis, University of Natural Resources and Life Sciences, Vienna (BOKU), Austria
| | - Christoph Schüller
- Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, University of Natural Resources and Life Sciences, Vienna (BOKU), Campus, Tulln, Austria
- Core Facility Bioactive Molecules–Screening and Analysis, University of Natural Resources and Life Sciences, Vienna (BOKU), Austria
| | - Anna M. Köhler
- Department of Molecular Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), Institute of Microbiology and Genetics, University of Göttingen, Göttingen, Germany
| | - Jennifer Gerke
- Department of Molecular Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), Institute of Microbiology and Genetics, University of Göttingen, Göttingen, Germany
| | - Sven Krappmann
- Institute of Microbiology–Clinical Microbiology, Immunology and Hygiene, University Hospital Erlangen and Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
- Center for Infection Research (ECI) and Medical Immunology Campus Erlangen (MICE), Erlangen, Germany
| | - Florian Finkernagel
- Center for Tumor Biology and Immunology, Core Facility Bioinformatics, Philipps University, Marburg, Germany
| | - Rebekka Harting
- Department of Molecular Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), Institute of Microbiology and Genetics, University of Göttingen, Göttingen, Germany
| | - Joseph Strauss
- Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, University of Natural Resources and Life Sciences, Vienna (BOKU), Campus, Tulln, Austria
| | - Kai Heimel
- Department of Microbial Cell Biology, Institute of Microbiology and Genetics, Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen, Germany
| | - Gerhard H. Braus
- Department of Molecular Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), Institute of Microbiology and Genetics, University of Göttingen, Göttingen, Germany
| |
Collapse
|
20
|
Dishliyska V, Stoyancheva G, Abrashev R, Miteva-Staleva J, Spasova B, Angelova M, Krumova E. Catalase from the Antarctic Fungus Aspergillus fumigatus I-9-Biosynthesis and Gene Characterization. Indian J Microbiol 2023; 63:541-548. [PMID: 38031622 PMCID: PMC10682308 DOI: 10.1007/s12088-023-01110-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/07/2023] [Indexed: 12/01/2023] Open
Abstract
Extremely cold habitats are a serious challenge for the existing there organisms. Inhabitants of these conditions are mostly microorganisms and lower mycetae. The mechanisms of microbial adaptation to extreme conditions are still unclear. Low temperatures cause significant physiological and biochemical changes in cells. Recently, there has been increasing interest in the relationship between low-temperature exposure and oxidative stress events, as well as the importance of antioxidant enzymes for survival in such conditions. The catalase is involved in the first line of the cells' antioxidant defense. Published information supports the concept of a key role for catalase in antioxidant defense against cold stress in a wide range of organisms isolated from the Antarctic. Data on representatives of microscopic fungi, however, are rarely found. There is scarce information on the characterization of catalase synthesized by adapted to cold stress organisms. Overall, this study aimed to observe the role of catalase in the survival strategy of filamentous fungi in extremely cold habitats and to identify the gene encoded catalase enzyme. Our results clearly showed that catalase is the main part of antioxidant enzyme defense in fungal cells against oxidative stress caused by low temperature exposure.
Collapse
Affiliation(s)
- Vladislava Dishliyska
- Departament of Mycology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Acad. G, Bonchev Str. Bl.26, 1113 Sofia, Bulgaria
| | - Galina Stoyancheva
- Departament of General Microbiology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Acad. G, Bonchev Str. Bl.26, 1113 Sofia, Bulgaria
| | - Radoslav Abrashev
- Departament of Mycology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Acad. G, Bonchev Str. Bl.26, 1113 Sofia, Bulgaria
| | - Jeny Miteva-Staleva
- Departament of Mycology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Acad. G, Bonchev Str. Bl.26, 1113 Sofia, Bulgaria
| | - Boriana Spasova
- Departament of Mycology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Acad. G, Bonchev Str. Bl.26, 1113 Sofia, Bulgaria
| | - Maria Angelova
- Departament of Mycology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Acad. G, Bonchev Str. Bl.26, 1113 Sofia, Bulgaria
| | - Ekaterina Krumova
- Departament of Mycology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Acad. G, Bonchev Str. Bl.26, 1113 Sofia, Bulgaria
| |
Collapse
|
21
|
Earle K, Valero C, Conn DP, Vere G, Cook PC, Bromley MJ, Bowyer P, Gago S. Pathogenicity and virulence of Aspergillus fumigatus. Virulence 2023; 14:2172264. [PMID: 36752587 PMCID: PMC10732619 DOI: 10.1080/21505594.2023.2172264] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 12/16/2022] [Indexed: 02/09/2023] Open
Abstract
Pulmonary infections caused by the mould pathogen Aspergillus fumigatus are a major cause of morbidity and mortality globally. Compromised lung defences arising from immunosuppression, chronic respiratory conditions or more recently, concomitant viral or bacterial pulmonary infections are recognised risks factors for the development of pulmonary aspergillosis. In this review, we will summarise our current knowledge of the mechanistic basis of pulmonary aspergillosis with a focus on emerging at-risk populations.
Collapse
Affiliation(s)
- Kayleigh Earle
- Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Clara Valero
- Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Daniel P. Conn
- MRC Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - George Vere
- MRC Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Peter C. Cook
- MRC Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Michael J. Bromley
- Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Paul Bowyer
- Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Sara Gago
- Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| |
Collapse
|
22
|
Simmons BC, Rhodes J, Rogers TR, Verweij PE, Abdolrasouli A, Schelenz S, Hemmings SJ, Talento AF, Griffin A, Mansfield M, Sheehan D, Bosch T, Fisher MC. Genomic Epidemiology Identifies Azole Resistance Due to TR 34/L98H in European Aspergillus fumigatus Causing COVID-19-Associated Pulmonary Aspergillosis. J Fungi (Basel) 2023; 9:1104. [PMID: 37998909 PMCID: PMC10672581 DOI: 10.3390/jof9111104] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/31/2023] [Accepted: 11/03/2023] [Indexed: 11/25/2023] Open
Abstract
Aspergillus fumigatus has been found to coinfect patients with severe SARS-CoV-2 virus infection, leading to COVID-19-associated pulmonary aspergillosis (CAPA). The CAPA all-cause mortality rate is approximately 50% and may be complicated by azole resistance. Genomic epidemiology can help shed light on the genetics of A. fumigatus causing CAPA, including the prevalence of resistance-associated alleles. We present a population genomic analysis of 21 CAPA isolates from four European countries with these isolates compared against 240 non-CAPA A. fumigatus isolates from a wider population. Bioinformatic analysis and antifungal susceptibility testing were performed to quantify resistance and identify possible genetically encoded azole-resistant mechanisms. The phylogenetic analysis of the 21 CAPA isolates showed that they were representative of the wider A. fumigatus population with no obvious clustering. The prevalence of phenotypic azole resistance in CAPA was 14.3% (n = 3/21); all three CAPA isolates contained a known resistance-associated cyp51A polymorphism. The relatively high prevalence of azole resistance alleles that we document poses a probable threat to treatment success rates, warranting the enhanced surveillance of A. fumigatus genotypes in these patients. Furthermore, potential changes to antifungal first-line treatment guidelines may be needed to improve patient outcomes when CAPA is suspected.
Collapse
Affiliation(s)
- Benjamin C. Simmons
- Medical Research Council Centre for Global Infectious Disease Analysis, Imperial College London, London W2 1PG, UK; (J.R.); (S.J.H.); (M.C.F.)
- UK Health Security Agency, London EP14 4PU, UK
| | - Johanna Rhodes
- Medical Research Council Centre for Global Infectious Disease Analysis, Imperial College London, London W2 1PG, UK; (J.R.); (S.J.H.); (M.C.F.)
- Department of Medical Microbiology, Radboudumc Center for Infectious Diseases (RCI), Radboud University Medical Center, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands;
| | - Thomas R. Rogers
- Department of Clinical Microbiology, St. James’ Hospital Campus, Trinity College Dublin, D08 NHY1 Dublin, Ireland; (T.R.R.); (A.F.T.); (M.M.); (D.S.)
| | - Paul E. Verweij
- Department of Medical Microbiology, Radboudumc Center for Infectious Diseases (RCI), Radboud University Medical Center, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands;
- Radboudumc-CWZ Center of Expertise for Mycology, Radboudumc Center for Infectious Diseases (RCI), Radboud University Medical Center, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
- Center for Infectious Disease Research, Diagnostics and Laboratory Surveillance, National for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA Bilthoven, The Netherlands;
| | - Alireza Abdolrasouli
- Department of Infectious Diseases, Imperial College London, London W2 1NY, UK;
- Department of Infectious Diseases, King’s College Hospital, London SE5 9RS, UK
| | - Silke Schelenz
- Infection Sciences, King’s College Hospital, London SE5 9RS, UK;
- School of Immunology & Microbial Sciences, King’s College London, London WC2R 2LS, UK
| | - Samuel J. Hemmings
- Medical Research Council Centre for Global Infectious Disease Analysis, Imperial College London, London W2 1PG, UK; (J.R.); (S.J.H.); (M.C.F.)
| | - Alida Fe Talento
- Department of Clinical Microbiology, St. James’ Hospital Campus, Trinity College Dublin, D08 NHY1 Dublin, Ireland; (T.R.R.); (A.F.T.); (M.M.); (D.S.)
- Department of Microbiology, Our Lady of Lourdes Hospital, A92 VW28 Drogheda, Ireland
- Department of Microbiology, Royal College of Surgeons, D02 YN77 Dublin, Ireland
| | - Auveen Griffin
- Department of Microbiology, St. James’ Hospital, D08 NHY1 Dublin, Ireland;
| | - Mary Mansfield
- Department of Clinical Microbiology, St. James’ Hospital Campus, Trinity College Dublin, D08 NHY1 Dublin, Ireland; (T.R.R.); (A.F.T.); (M.M.); (D.S.)
| | - David Sheehan
- Department of Clinical Microbiology, St. James’ Hospital Campus, Trinity College Dublin, D08 NHY1 Dublin, Ireland; (T.R.R.); (A.F.T.); (M.M.); (D.S.)
| | - Thijs Bosch
- Center for Infectious Disease Research, Diagnostics and Laboratory Surveillance, National for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA Bilthoven, The Netherlands;
| | - Matthew C. Fisher
- Medical Research Council Centre for Global Infectious Disease Analysis, Imperial College London, London W2 1PG, UK; (J.R.); (S.J.H.); (M.C.F.)
| |
Collapse
|
23
|
Lin SY, Oakley CE, Jenkinson CB, Chiang YM, Lee CK, Jones CG, Seidler PM, Nelson HM, Todd RB, Wang CCC, Oakley BR. A heterologous expression platform in Aspergillus nidulans for the elucidation of cryptic secondary metabolism biosynthetic gene clusters: discovery of the Aspergillus fumigatus sartorypyrone biosynthetic pathway. Chem Sci 2023; 14:11022-11032. [PMID: 37860661 PMCID: PMC10583710 DOI: 10.1039/d3sc02226a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 06/26/2023] [Indexed: 10/21/2023] Open
Abstract
Aspergillus fumigatus is a serious human pathogen causing life-threatening Aspergillosis in immunocompromised patients. Secondary metabolites (SMs) play an important role in pathogenesis, but the products of many SM biosynthetic gene clusters (BGCs) remain unknown. In this study, we have developed a heterologous expression platform in Aspergillus nidulans, using a newly created genetic dereplication strain, to express a previously unknown BGC from A. fumigatus and determine its products. The BGC produces sartorypyrones, and we have named it the spy BGC. Analysis of targeted gene deletions by HRESIMS, NMR, and microcrystal electron diffraction (MicroED) enabled us to identify 12 products from the spy BGC. Seven of the compounds have not been isolated previously. We also individually expressed the polyketide synthase (PKS) gene spyA and demonstrated that it produces the polyketide triacetic acid lactone (TAL), a potentially important biorenewable platform chemical. Our data have allowed us to propose a biosynthetic pathway for sartorypyrones and related natural products. This work highlights the potential of using the A. nidulans heterologous expression platform to uncover cryptic BGCs from A. fumigatus and other species, despite the complexity of their secondary metabolomes.
Collapse
Affiliation(s)
- Shu-Yi Lin
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California Los Angeles CA 90089 USA
| | - C Elizabeth Oakley
- Department of Molecular Biosciences, University of Kansas 1200 Sunnyside Avenue Lawrence KS 66045 USA
| | - Cory B Jenkinson
- Department of Molecular Biosciences, University of Kansas 1200 Sunnyside Avenue Lawrence KS 66045 USA
| | - Yi-Ming Chiang
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California Los Angeles CA 90089 USA
| | - Ching-Kuo Lee
- School of Pharmacy, College of Pharmacy, Taipei Medical University Taipei 11031 Taiwan
| | - Christopher G Jones
- The Arnold and Mabel Beckman Laboratory of Chemical Synthesis, Division of Chemistry and Chemical Engineering, California Institute of Technology Pasadena California 91125 USA
| | - Paul M Seidler
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California Los Angeles CA 90089 USA
| | - Hosea M Nelson
- The Arnold and Mabel Beckman Laboratory of Chemical Synthesis, Division of Chemistry and Chemical Engineering, California Institute of Technology Pasadena California 91125 USA
| | - Richard B Todd
- Department of Plant Pathology, Kansas State University Manhattan KS 66506 USA
| | - Clay C C Wang
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California Los Angeles CA 90089 USA
- Department of Chemistry, University of Southern California Los Angeles CA 90089 USA
| | - Berl R Oakley
- Department of Molecular Biosciences, University of Kansas 1200 Sunnyside Avenue Lawrence KS 66045 USA
| |
Collapse
|
24
|
Thorn V, Xu J. Mitogenome Variations in a Global Population of Aspergillus fumigatus. J Fungi (Basel) 2023; 9:995. [PMID: 37888251 PMCID: PMC10608017 DOI: 10.3390/jof9100995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 10/28/2023] Open
Abstract
Aspergillus fumigatus is a ubiquitous, critical priority human fungal pathogen. Despite its clinical importance, there is limited knowledge regarding the variations of the genome within mitochondria, the powerhouse organelle within eukaryotic cells. In this study, we leveraged publicly available, raw, whole genome sequence data isolates from 1939 to investigate the variations in the mitochondrial genomes of A. fumigatus. These isolates were isolated from 22 countries on six continents, as well as from outer space and from within the International Space Station. In total, our analysis revealed 39 mitochondrial single nucleotide polymorphisms (mtSNPs) within this global sample, and, together, these 39 mtSNPs grouped the 1939 isolates into 79 mitochondrial multilocus genotypes (MLGs). Among the 79 MLGs, 39 were each distributed in at least two countries and 30 were each shared by at least two continents. The two most frequent MLGs were also broadly distributed: MLG11 represented 420 isolates from 11 countries and four continents and while MLG79 represented 418 isolates from 18 countries and five continents, consistent with long-distance dispersals of mitogenomes. Our population genetic analyses of the mtSNPs revealed limited differentiation among continental populations, but highly variable genetic differences among national populations, largely due to localized clonal expansions of different MLGs. Phylogenetic analysis and Discriminant Analysis of Principal Components of mtSNPs suggested the presence of at least three mitogenome clusters. Linkage disequilibrium, Index of Association, and phylogenetic incompatibility analyses collectively suggested evidence for mitogenome recombination in natural populations of A. fumigatus. In addition, sequence read depth analyses revealed an average ratio of ~20 mitogenomes per nuclear genome in this global population, but the ratios varied among strains within and between certain geographic populations. Together, our results suggest evidence for organelle dynamics, genetic differentiation, recombination, and both widespread and localized clonal expansion of the mitogenomes in the global A. fumigatus population.
Collapse
Affiliation(s)
| | - Jianping Xu
- Department of Biology, Institute of Infectious Diseases Research, McMaster University, Hamilton, ON L8S 4K1, Canada;
| |
Collapse
|
25
|
Gopalakrishnan Meena M, Lane MJ, Tannous J, Carrell AA, Abraham PE, Giannone RJ, Ané JM, Keller NP, Labbé JL, Geiger AG, Kainer D, Jacobson DA, Rush TA. A glimpse into the fungal metabolomic abyss: Novel network analysis reveals relationships between exogenous compounds and their outputs. PNAS NEXUS 2023; 2:pgad322. [PMID: 37854706 PMCID: PMC10581544 DOI: 10.1093/pnasnexus/pgad322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/20/2023] [Indexed: 10/20/2023]
Abstract
Fungal specialized metabolites are a major source of beneficial compounds that are routinely isolated, characterized, and manufactured as pharmaceuticals, agrochemical agents, and industrial chemicals. The production of these metabolites is encoded by biosynthetic gene clusters that are often silent under standard growth conditions. There are limited resources for characterizing the direct link between abiotic stimuli and metabolite production. Herein, we introduce a network analysis-based, data-driven algorithm comprising two routes to characterize the production of specialized fungal metabolites triggered by different exogenous compounds: the direct route and the auxiliary route. Both routes elucidate the influence of treatments on the production of specialized metabolites from experimental data. The direct route determines known and putative metabolites induced by treatments and provides additional insight over traditional comparison methods. The auxiliary route is specific for discovering unknown analytes, and further identification can be curated through online bioinformatic resources. We validated our algorithm by applying chitooligosaccharides and lipids at two different temperatures to the fungal pathogen Aspergillus fumigatus. After liquid chromatography-mass spectrometry quantification of significantly produced analytes, we used network centrality measures to rank the treatments' ability to elucidate these analytes and confirmed their identity through fragmentation patterns or in silico spiking with commercially available standards. Later, we examined the transcriptional regulation of these metabolites through real-time quantitative polymerase chain reaction. Our data-driven techniques can complement existing metabolomic network analysis by providing an approach to track the influence of any exogenous stimuli on metabolite production. Our experimental-based algorithm can overcome the bottlenecks in elucidating novel fungal compounds used in drug discovery.
Collapse
Affiliation(s)
| | - Matthew J Lane
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, TN 37916, USA
| | - Joanna Tannous
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Alyssa A Carrell
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Paul E Abraham
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Richard J Giannone
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Jean-Michel Ané
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Agronomy, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Nancy P Keller
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jesse L Labbé
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Now at Tekholding, Salt Lake City, UT 84119, USA
| | - Armin G Geiger
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, TN 37916, USA
| | - David Kainer
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Now at ARC Centre of Excellence for Plant Success in Nature and Agriculture, University of Queensland, Brisbane, QLD 4072, Australia
| | - Daniel A Jacobson
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Tomás A Rush
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| |
Collapse
|
26
|
Hao J, Wang X, Shi Y, Li L, Chu J, Li J, Lin W, Yu T, Hou D. Integrated omic profiling of the medicinal mushroom Inonotus obliquus under submerged conditions. BMC Genomics 2023; 24:554. [PMID: 37726686 PMCID: PMC10507853 DOI: 10.1186/s12864-023-09656-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 09/06/2023] [Indexed: 09/21/2023] Open
Abstract
BACKGROUND The Inonotus obliquus mushroom, a wondrous fungus boasting edible and medicinal qualities, has been widely used as a folk medicine and shown to have many potential pharmacological secondary metabolites. The purpose of this study was to supply a global landscape of genome-based integrated omic analysis of the fungus under lab-growth conditions. RESULTS This study presented a genome with high accuracy and completeness using the Pacbio Sequel II third-generation sequencing method. The de novo assembled fungal genome was 36.13 Mb, and contained 8352 predicted protein-coding genes, of which 365 carbohydrate-active enzyme (CAZyme)-coding genes and 19 biosynthetic gene clusters (BCGs) for secondary metabolites were identified. Comparative transcriptomic and proteomic analysis revealed a global view of differential metabolic change between seed and fermentation culture, and demonstrated positive correlations between transcription and expression levels of 157 differentially expressed genes involved in the metabolism of amino acids, fatty acids, secondary metabolites, antioxidant and immune responses. Facilitated by the widely targeted metabolomic approach, a total of 307 secondary substances were identified and quantified, with a significant increase in the production of antioxidant polyphenols. CONCLUSION This study provided the comprehensive analysis of the fungus Inonotus obliquus, and supplied fundamental information for further screening of promising target metabolites and exploring the link between the genome and metabolites.
Collapse
Affiliation(s)
- Jinghua Hao
- School of Bioscience and Technology, Weifang Medical University, Weifang, 261053, China
| | - Xiaoli Wang
- School of Bioscience and Technology, Weifang Medical University, Weifang, 261053, China
| | - Yanhua Shi
- School of Bioscience and Technology, Weifang Medical University, Weifang, 261053, China
| | - Lingjun Li
- School of Modern Agriculture and Environment, Weifang Institute of Technology, Weifang, 261053, China
| | - Jinxin Chu
- School of Bioscience and Technology, Weifang Medical University, Weifang, 261053, China
| | - Junjie Li
- School of Bioscience and Technology, Weifang Medical University, Weifang, 261053, China
| | - Weiping Lin
- School of Bioscience and Technology, Weifang Medical University, Weifang, 261053, China.
| | - Tao Yu
- School of Bioscience and Technology, Weifang Medical University, Weifang, 261053, China.
| | - Dianhai Hou
- School of Bioscience and Technology, Weifang Medical University, Weifang, 261053, China.
| |
Collapse
|
27
|
Vig I, Benkő Z, Gila BC, Palczert Z, Jakab Á, Nagy F, Miskei M, Lee MK, Yu JH, Pócsi I, Emri T. Functional characterization of genes encoding cadmium pumping P 1B-type ATPases in Aspergillus fumigatus and Aspergillus nidulans. Microbiol Spectr 2023; 11:e0028323. [PMID: 37676031 PMCID: PMC10581124 DOI: 10.1128/spectrum.00283-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 06/12/2023] [Indexed: 09/08/2023] Open
Abstract
Several P1B-type ATPases are important Cd2+/Cu2+ pumps in Aspergillus species, and they are tightly associated with the heavy metal stress tolerance of these ascomycetous fungi. To better understand the roles of the two P1B-type ATPases, Aspergillus nidulans CrpA Cd2+/Cu2+ pump (orthologue of the Candida albicans Crp1 Cd2+/Cu2+ pump) and Aspergillus fumigatus PcaA Cd2+ pump (orthologue of the Saccharomyces cerevisiae Pca1 Cd2+ pump), we have generated individual mutants and characterized their heavy metal susceptibilities. The deletion of CrpA in A. nidulans has led to the increased sensitivity of the fungus to stresses induced by Zn2+, Fe2+, or the combination of oxidative-stress-inducing menadione sodium bisulfite and Fe3+. Heterologous expression of A. fumigatus PcaA in the S. cerevisiae pca1 deletion mutant has resulted in enhanced tolerance of the yeast to stresses elicited by Cd2+or Zn2+ but not by Fe2+/Fe3+ or Cu2+. Mammalian host immune defense can attack microbes by secreting Zn2+ or Cu2+, and the oxidative stress induced by host immune systems can also disturb metal (Cu2+, Fe2+, and Zn2+) homeostasis in microbes. In summary, PcaA and CrpA can protect fungal cells from these complex stresses that contribute to the virulence of the pathogenic Aspergillus species. Moreover, due to their presence on the fungal cell surface, these P1B-type ATPases may serve as a novel drug target in the future. IMPORTANCE Mammalian host immune defense disrupts heavy metal homeostasis of fungal pathogens. P1B-type ATPase of Aspergillus fumigatus and Aspergillus nidulans may help to cope with this stress and serve as virulence traits. In our experiments, both A. nidulans Cd2+/Cu2+ pump CrpA and A. fumigatus Cd2+ pump PcaA protected fungal cells from toxic Zn2+, and CrpA also decreased Fe2+ susceptibility most likely indirectly. In addition, CrpA protected cells against the combined stress induced by the oxidative stressor menadione and Fe3+. Since P1B-type ATPases are present on the fungal cell surface, these proteins may serve as a novel drug target in the future.
Collapse
Affiliation(s)
- Ildikó Vig
- Department of Molecular Biotechnology and Microbiology, Faculty of Sciences and Technology, University of Debrecen, Debrecen, Hungary
- ELRN-UD Fungal Stress Biology Research Group, Debrecen, Hungary
| | - Zsigmond Benkő
- Department of Molecular Biotechnology and Microbiology, Faculty of Sciences and Technology, University of Debrecen, Debrecen, Hungary
| | - Barnabás Cs. Gila
- Department of Molecular Biotechnology and Microbiology, Faculty of Sciences and Technology, University of Debrecen, Debrecen, Hungary
| | - Zoltán Palczert
- Department of Molecular Biotechnology and Microbiology, Faculty of Sciences and Technology, University of Debrecen, Debrecen, Hungary
| | - Ágnes Jakab
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Fruzsina Nagy
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Márton Miskei
- ELRN-UD Fungal Stress Biology Research Group, Debrecen, Hungary
| | - Mi-Kyung Lee
- Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, South Korea
| | - Jae-Hyuk Yu
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - István Pócsi
- Department of Molecular Biotechnology and Microbiology, Faculty of Sciences and Technology, University of Debrecen, Debrecen, Hungary
- ELRN-UD Fungal Stress Biology Research Group, Debrecen, Hungary
| | - Tamás Emri
- Department of Molecular Biotechnology and Microbiology, Faculty of Sciences and Technology, University of Debrecen, Debrecen, Hungary
- ELRN-UD Fungal Stress Biology Research Group, Debrecen, Hungary
| |
Collapse
|
28
|
Illek B, Fischer H, Machen TE, Hari G, Clemons KV, Sass G, Ferreira JAG, Stevens DA. Protective role of CFTR during fungal infection of cystic fibrosis bronchial epithelial cells with Aspergillus fumigatus. Front Cell Infect Microbiol 2023; 13:1196581. [PMID: 37680748 PMCID: PMC10482090 DOI: 10.3389/fcimb.2023.1196581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/19/2023] [Indexed: 09/09/2023] Open
Abstract
Lung infection with the fungus Aspergillus fumigatus (Af) is a common complication in cystic fibrosis (CF) and is associated with loss of pulmonary function. We established a fungal epithelial co-culture model to examine the impact of Af infection on CF bronchial epithelial barrier function using Af strains 10AF and AF293-GFP, and the CFBE41o- cell line homozygous for the F508del mutation with (CF+CFTR) and without (CF) normal CFTR expression. Following exposure of the epithelial surface to Af conidia, formation of germlings (early stages of fungal growth) was detected after 9-12 hours and hyphae (mature fungal growth) after 12-24 hours. During fungal morphogenesis, bronchial epithelial cells showed signs of damage including rounding, and partial detachment after 24 hours. Fluorescently labeled conidia were internalized after 6 hours and more internalized conidia were observed in CF compared to CF+CFTR cells. Infection of the apical surface with 10AF conidia, germlings, or hyphae was performed to determine growth stage-specific effects on tight junction protein zona occludens protein 1 (ZO-1) expression and transepithelial electrical resistance (TER). In response to infection with conidia or germlings, epithelial barrier function degraded time-dependently (based on ZO-1 immunofluorescence and TER) with a delayed onset in CF+CFTR cell monolayers and required viable fungi and apical application. Infection with hyphae caused an earlier onset and faster rate of decline in TER compared to conidia and germlings. Gliotoxin, a major Af virulence factor, caused a rapid decline in TER and induced a transient chloride secretory response in CF+CFTR but not CF cells. Our findings suggest growth and internalization of Af result in deleterious effects on bronchial epithelial barrier function that occurred more rapidly in the absence of CFTR. Bronchial epithelial barrier breakdown was time-dependent and morphotype-specific and mimicked by acute administration of gliotoxin. Our study also suggests a protective role for CFTR by turning on CFTR-dependent chloride transport in response to gliotoxin, a mechanism that will support mucociliary clearance, and could delay the loss of epithelial integrity during fungal development in vivo.
Collapse
Affiliation(s)
- Beate Illek
- UCSF Benioff Children's Hospital Oakland, Children's Hospital Oakland Research Institute, Oakland, CA, United States
| | - Horst Fischer
- UCSF Benioff Children's Hospital Oakland, Children's Hospital Oakland Research Institute, Oakland, CA, United States
| | - Terry E. Machen
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Gopika Hari
- UCSF Benioff Children's Hospital Oakland, Children's Hospital Oakland Research Institute, Oakland, CA, United States
| | - Karl V. Clemons
- California Institute for Medical Research, San Jose, CA, United States
- Division of Infectious Diseases and Geographic Medicine, Stanford University Medical School, Stanford, CA, United States
| | - Gabriele Sass
- California Institute for Medical Research, San Jose, CA, United States
| | - Jose A. G. Ferreira
- California Institute for Medical Research, San Jose, CA, United States
- Division of Infectious Diseases and Geographic Medicine, Stanford University Medical School, Stanford, CA, United States
| | - David A. Stevens
- California Institute for Medical Research, San Jose, CA, United States
- Division of Infectious Diseases and Geographic Medicine, Stanford University Medical School, Stanford, CA, United States
| |
Collapse
|
29
|
Li Y, Dai M, Lu L, Zhang Y. The C 2H 2-Type Transcription Factor ZfpA, Coordinately with CrzA, Affects Azole Susceptibility by Regulating the Multidrug Transporter Gene atrF in Aspergillus fumigatus. Microbiol Spectr 2023; 11:e0032523. [PMID: 37318356 PMCID: PMC10434176 DOI: 10.1128/spectrum.00325-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 05/26/2023] [Indexed: 06/16/2023] Open
Abstract
The incidence of invasive aspergillosis caused by Aspergillus fumigatus has risen steadily over the past few decades due to the limited effective treatment options and the emergence of antifungal-resistant isolates. In clinic-isolated A. fumigatus, the azole resistance mechanism is primarily caused by mutations of the drug target and/or overexpression of drug efflux pumps. However, knowledge about how drug efflux pumps are transcriptionally regulated is limited. In this study, we found that loss of a C2H2 transcription factor ZfpA (zinc finger protein) results in the marked upregulation of a series of drug efflux pump-encoding genes, especially atrF, which contributes to azole drug resistance in A. fumigatus. CrzA is a previously identified positive transcription factor for genes of drug efflux pumps, and ZfpA transcriptionally inhibits expressions of drug efflux pumps in a CrzA-dependent way. Under the treatment of azoles, both ZfpA and CrzA transfer to nuclei and coregulate the expression of multidrug transporters and then keep normal drug susceptibility in fungal cells. Findings in this study demonstrated that ZfpA is not only involved in fungal growth and virulence potential but also negatively regulates antifungal drug susceptibility. IMPORTANCE Conserved across all kingdoms of life, ABC transporters comprise one of the largest protein families. They are associated with multidrug resistance, affecting aspects such as resistance to antimicrobials or anticancer drugs. Despite the importance of ABC transporters in multidrug resistance, the understanding of their regulatory network is still limited in A. fumigatus. Here, we found that the loss of the transcription factor ZfpA induces the expression of the ABC transporter gene atrF, altering azole susceptibility in A. fumigatus. ZfpA, coordinately with CrzA, affects the azole susceptibility by regulating the expression of the ABC transporter gene atrF. These findings reveal the regulatory mechanism of the ABC transporter gene atrF in A. fumigatus.
Collapse
Affiliation(s)
- Yeqi Li
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Centre for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Mengyao Dai
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Centre for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Ling Lu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Centre for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Yuanwei Zhang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Centre for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
30
|
Verma A, Tiwari H, Singh S, Gupta P, Rai N, Kumar Singh S, Singh BP, Rao S, Gautam V. Epigenetic manipulation for secondary metabolite activation in endophytic fungi: current progress and future directions. Mycology 2023; 14:275-291. [PMID: 38187885 PMCID: PMC10769123 DOI: 10.1080/21501203.2023.2241486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/21/2023] [Indexed: 01/09/2024] Open
Abstract
Fungal endophytes have emerged as a promising source of secondary metabolites with significant potential for various applications in the field of biomedicine. The biosynthetic gene clusters of endophytic fungi are responsible for encoding several enzymes and transcriptional factors that are involved in the biosynthesis of secondary metabolites. The investigation of fungal metabolic potential at genetic level faces certain challenges, including the synthesis of appropriate amounts of chemicals, and loss of the ability of fungal endophytes to produce secondary metabolites in an artificial culture medium. Therefore, there is a need to delve deeper into the field of fungal genomics and transcriptomics to explore the potential of fungal endophytes in generating secondary metabolites governed by biosynthetic gene clusters. The silent biosynthetic gene clusters can be activated by modulating the chromatin structure using chemical compounds. Epigenetic modification plays a significant role by inducing cryptic gene responsible for the production of secondary metabolites using DNA methyl transferase and histone deacetylase. CRISPR-Cas9-based genome editing emerges an effective tool to enhance the production of desired metabolites by modulating gene expression. This review primarily focuses on the significance of epigenetic elicitors and their capacity to boost the production of secondary metabolites from endophytes. This article holds the potential to rejuvenate the drug discovery pipeline by introducing new chemical compounds.
Collapse
Affiliation(s)
- Ashish Verma
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Harshita Tiwari
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Swati Singh
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Priyamvada Gupta
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Nilesh Rai
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Santosh Kumar Singh
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Bhim Pratap Singh
- Department of Agriculture & Environmental Sciences (AES), National Institute of Food Technology Entrepreneurship & Management (NIFTEM), Sonepat, India
| | - Sombir Rao
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | - Vibhav Gautam
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| |
Collapse
|
31
|
Hemmings SJ, Rhodes JL, Fisher MC. Long-read Sequencing and de novo Genome Assembly of Three Aspergillus fumigatus Genomes. Mycopathologia 2023; 188:409-412. [PMID: 37227556 PMCID: PMC10386934 DOI: 10.1007/s11046-023-00740-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 04/21/2023] [Indexed: 05/26/2023]
Abstract
Aspergillus fumigatus is a genetically diverse fungal species, which is near ubiquitous in its global distribution and is the major cause of the life-threatening disease invasive aspergillosis. We present 3 de novo genome assemblies that were selected to be representative of the genetic diversity of clinical and environmental A. fumigatus. Sequencing using long-read Oxford Nanopore and subsequent assembly of the genomes yielded 10-23 contigs with an N50 of 4.05 Mbp to 4.93 Mbp.
Collapse
Affiliation(s)
- Samuel J Hemmings
- Department of Infectious Disease Epidemiology, Imperial College London, London, UK.
| | - Johanna L Rhodes
- Department of Medical Microbiology, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Matthew C Fisher
- Department of Infectious Disease Epidemiology, Imperial College London, London, UK
| |
Collapse
|
32
|
Hokken MWJ, Coolen JPM, Steenbreker H, Zoll J, Baltussen TJH, Verweij PE, Melchers WJG. The Transcriptome Response to Azole Compounds in Aspergillus fumigatus Shows Differential Gene Expression across Pathways Essential for Azole Resistance and Cell Survival. J Fungi (Basel) 2023; 9:807. [PMID: 37623579 PMCID: PMC10455693 DOI: 10.3390/jof9080807] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/19/2023] [Accepted: 07/27/2023] [Indexed: 08/26/2023] Open
Abstract
The opportunistic pathogen Aspergillus fumigatus is found on all continents and thrives in soil and agricultural environments. Its ability to readily adapt to novel environments and to produce billions of spores led to the spread of azole-resistant A. fumigatus across the globe, posing a threat to many immunocompromised patients, including critically ill patients with severe influenza or COVID-19. In our study, we sought to compare the adaptational response to azoles from A. fumigatus isolates that differ in azole susceptibility and genetic background. To gain more insight into how short-term adaptation to stressful azole compounds is managed through gene expression, we conducted an RNA-sequencing study on the response of A. fumigatus to itraconazole and the newest clinically approved azole, isavuconazole. We observed many similarities in ergosterol biosynthesis up-regulation across isolates, with the exception of the pan-azole-resistant isolate, which showed very little differential regulation in comparison to other isolates. Additionally, we found differential regulation of membrane efflux transporters, secondary metabolites, iron metabolism, and various stress response and cell signaling mechanisms.
Collapse
Affiliation(s)
- Margriet W. J. Hokken
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands (T.J.H.B.)
- Center of Expertise in Mycology Radboudumc/CWZ, 6500 HB Nijmegen, The Netherlands
| | - Jordy P. M. Coolen
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands (T.J.H.B.)
- Center of Expertise in Mycology Radboudumc/CWZ, 6500 HB Nijmegen, The Netherlands
| | - Hilbert Steenbreker
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands (T.J.H.B.)
| | - Jan Zoll
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands (T.J.H.B.)
- Center of Expertise in Mycology Radboudumc/CWZ, 6500 HB Nijmegen, The Netherlands
| | - Tim J. H. Baltussen
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands (T.J.H.B.)
- Center of Expertise in Mycology Radboudumc/CWZ, 6500 HB Nijmegen, The Netherlands
| | - Paul E. Verweij
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands (T.J.H.B.)
- Center of Expertise in Mycology Radboudumc/CWZ, 6500 HB Nijmegen, The Netherlands
| | - Willem J. G. Melchers
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands (T.J.H.B.)
- Center of Expertise in Mycology Radboudumc/CWZ, 6500 HB Nijmegen, The Netherlands
| |
Collapse
|
33
|
Shelton JMG, Rhodes J, Uzzell CB, Hemmings S, Brackin AP, Sewell TR, Alghamdi A, Dyer PS, Fraser M, Borman AM, Johnson EM, Piel FB, Singer AC, Fisher MC. Citizen science reveals landscape-scale exposures to multiazole-resistant Aspergillus fumigatus bioaerosols. SCIENCE ADVANCES 2023; 9:eadh8839. [PMID: 37478175 PMCID: PMC10361594 DOI: 10.1126/sciadv.adh8839] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 06/20/2023] [Indexed: 07/23/2023]
Abstract
Using a citizen science approach, we identify a country-wide exposure to aerosolized spores of a human fungal pathogen, Aspergillus fumigatus, that has acquired resistance to the agricultural fungicide tebuconazole and first-line azole clinical antifungal drugs. Genomic analysis shows no distinction between resistant genotypes found in the environment and in patients, indicating that at least 40% of azole-resistant A. fumigatus infections are acquired from environmental exposures. Hotspots and coldspots of aerosolized azole-resistant spores were not stable between seasonal sampling periods. This suggests a high degree of atmospheric mixing resulting in an estimated per capita cumulative annual exposure of 21 days (±2.6). Because of the ubiquity of this measured exposure, it is imperative that we determine sources of azole-resistant A. fumigatus to reduce treatment failure in patients with aspergillosis.
Collapse
Affiliation(s)
- Jennifer M. G. Shelton
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, UK
- UK Centre for Ecology & Hydrology, Wallingford, Oxfordshire, UK
| | - Johanna Rhodes
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Christopher B. Uzzell
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, UK
| | - Samuel Hemmings
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, UK
| | - Amelie P. Brackin
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, UK
| | - Thomas R. Sewell
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, UK
| | - Asmaa Alghamdi
- School of Life Sciences, University of Nottingham, Nottingham, UK
- Faculty of Science, Department of Biology, Al-Baha University, Al-Baha, Saudi Arabia
| | - Paul S. Dyer
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Mark Fraser
- UK National Mycology Reference Laboratory, National Infections Service, Public Health England, Science Quarter, Southmead Hospital, Bristol, UK
| | - Andrew M. Borman
- UK National Mycology Reference Laboratory, National Infections Service, Public Health England, Science Quarter, Southmead Hospital, Bristol, UK
- MRC Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Elizabeth M. Johnson
- UK National Mycology Reference Laboratory, National Infections Service, Public Health England, Science Quarter, Southmead Hospital, Bristol, UK
- MRC Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Frédéric B. Piel
- NIHR HPRU in Environmental Exposures and Health, Department of Epidemiology and Biostatistics, Imperial College London, London, UK
| | | | - Matthew C. Fisher
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, UK
| |
Collapse
|
34
|
Sass G, Martinez M, Kotta-Loizou I, Stevens D. AfuPmV-1-Infected Aspergillus fumigatus Is More Susceptible to Stress Than Virus-Free Fungus. J Fungi (Basel) 2023; 9:750. [PMID: 37504738 PMCID: PMC10381315 DOI: 10.3390/jof9070750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/05/2023] [Accepted: 07/11/2023] [Indexed: 07/29/2023] Open
Abstract
Infection with Aspergillus fumigatus polymycovirus 1 (AfuPmV-1) affects Aspergillus fumigatus Af293's growth in vitro, iron metabolism, resistance in intermicrobial competition with Pseudomonas aeruginosa, resistance to osmotic stress, and resistance to the chitin synthase inhibitor nikkomycin Z. Here, we show that response to high temperature, Congo Red-induced stress, and hydrogen peroxide are also dependent on the viral infection status of A. fumigatus. AfuPmV-1- infected Af293 was more susceptible than virus-free Af293 to growth inhibition by high temperature, hydrogen peroxide, Congo Red exposure, and nutrient restriction. Increased resistance of virus-free fungus was observed when cultures were started from conidia but, in the case of high temperature and hydrogen peroxide, not when cultures were started from hyphae. This indicates that the virus impairs the stress response during the growth phase of germination of conidia and development into hyphae. In conclusion, our work indicates that AfuPmV-1 infection in A. fumigatus impairs host responses to stress, as shown by exposure to high temperature, oxidative stress such as hydrogen peroxide, and some cell wall stresses, as shown by exposure to Congo Red (in agreement with our previous observations using nikkomycin Z) and nutrient restriction.
Collapse
Affiliation(s)
- Gabriele Sass
- California Institute for Medical Research, San Jose, CA 95128, USA
| | - Marife Martinez
- California Institute for Medical Research, San Jose, CA 95128, USA
| | - Ioly Kotta-Loizou
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, South Kensington Campus, London SW72AZ, UK
- Department of Clinical, Pharmaceutical and Biological Science, School of Life and Medical Sciences, University of Hertfordshire, College Lane Campus, Hatfield AL109AB, UK
| | - David Stevens
- California Institute for Medical Research, San Jose, CA 95128, USA
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
35
|
Kakoschke TK, Kleinemeier C, Knösel T, Kakoschke SC, Ebel F. The Novel Monoclonal IgG 1-Antibody AB90-E8 as a Diagnostic Tool to Rapidly Distinguish Aspergillus fumigatus from Other Human Pathogenic Aspergillus Species. J Fungi (Basel) 2023; 9:622. [PMID: 37367559 DOI: 10.3390/jof9060622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/28/2023] Open
Abstract
In most cases, invasive aspergillosis (IA) is caused by A. fumigatus, though infections with other Aspergillus spp. with lower susceptibilities to amphotericin B (AmB) gain ground. A. terreus, for instance, is the second leading cause of IA in humans and of serious concern because of its high propensity to disseminate and its in vitro and in vivo resistance to AmB. An early differentiation between A. fumigatus and non-A. fumigatus infections could swiftly recognize a potentially ineffective treatment with AmB and lead to the lifesaving change to a more appropriate drug regime in high-risk patients. In this study, we present the characteristics of the monoclonal IgG1-antibody AB90-E8 that specifically recognizes a surface antigen of A. fumigatus and the closely related, but not human pathogenic A. fischeri. We show immunostainings on fresh frozen sections as well as on incipient mycelium picked from agar plates with tweezers or by using the expeditious tape mount technique. All three methods have a time advantage over the common procedures currently used in the routine diagnosis of IA and outline the potential of AB90-E8 as a rapid diagnostic tool.
Collapse
Affiliation(s)
- Tamara Katharina Kakoschke
- Department of Oral and Maxillofacial Surgery and Facial Plastic Surgery, University Hospital, Ludwig-Maximilians-University Munich, Lindwurmstrasse 2a, 80337 Munich, Germany
- Institute for Infectious Diseases and Zoonoses, Ludwig-Maximilians-University Munich, 85764 Oberschleissheim, Germany
| | - Christoph Kleinemeier
- Institute for Infectious Diseases and Zoonoses, Ludwig-Maximilians-University Munich, 85764 Oberschleissheim, Germany
| | - Thomas Knösel
- Institute of Pathology, Ludwig-Maximilians-University Munich, 81377 Munich, Germany
| | - Sara Carina Kakoschke
- Department of General, Visceral and Transplant Surgery, University Hospital, Ludwig-Maximilians-University Munich, Marchioninistrasse 15, 81337 Munich, Germany
| | - Frank Ebel
- Institute for Infectious Diseases and Zoonoses, Ludwig-Maximilians-University Munich, 85764 Oberschleissheim, Germany
| |
Collapse
|
36
|
Torres DE, Reckard AT, Klocko AD, Seidl MF. Nuclear genome organization in fungi: from gene folding to Rabl chromosomes. FEMS Microbiol Rev 2023; 47:fuad021. [PMID: 37197899 PMCID: PMC10246852 DOI: 10.1093/femsre/fuad021] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/28/2023] [Accepted: 05/08/2023] [Indexed: 05/19/2023] Open
Abstract
Comparative genomics has recently provided unprecedented insights into the biology and evolution of the fungal lineage. In the postgenomics era, a major research interest focuses now on detailing the functions of fungal genomes, i.e. how genomic information manifests into complex phenotypes. Emerging evidence across diverse eukaryotes has revealed that the organization of DNA within the nucleus is critically important. Here, we discuss the current knowledge on the fungal genome organization, from the association of chromosomes within the nucleus to topological structures at individual genes and the genetic factors required for this hierarchical organization. Chromosome conformation capture followed by high-throughput sequencing (Hi-C) has elucidated how fungal genomes are globally organized in Rabl configuration, in which centromere or telomere bundles are associated with opposite faces of the nuclear envelope. Further, fungal genomes are regionally organized into topologically associated domain-like (TAD-like) chromatin structures. We discuss how chromatin organization impacts the proper function of DNA-templated processes across the fungal genome. Nevertheless, this view is limited to a few fungal taxa given the paucity of fungal Hi-C experiments. We advocate for exploring genome organization across diverse fungal lineages to ensure the future understanding of the impact of nuclear organization on fungal genome function.
Collapse
Affiliation(s)
- David E Torres
- Theoretical Biology and Bioinformatics, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
- Laboratory of Phytopathology, Wageningen University and Research,Droevendaalsesteeg 4, 6708 PB Wageningen, The Netherlands
| | - Andrew T Reckard
- Department of Chemistry and Biochemistry, University of Colorado Colorado Springs, 234 Centennial Hall, 1420 Austin Bluffs Pkwy, Colorado Springs, CO 80918 USA
| | - Andrew D Klocko
- Department of Chemistry and Biochemistry, University of Colorado Colorado Springs, 234 Centennial Hall, 1420 Austin Bluffs Pkwy, Colorado Springs, CO 80918 USA
| | - Michael F Seidl
- Theoretical Biology and Bioinformatics, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
37
|
Wilson AM, Wingfield MJ, Wingfield BD. Structure and number of mating pheromone genes is closely linked to sexual reproductive strategy in Huntiella. BMC Genomics 2023; 24:261. [PMID: 37179314 PMCID: PMC10182648 DOI: 10.1186/s12864-023-09355-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
BACKGROUND Huntiella resides in the Ceratocystidaceae, a family of fungi that accommodates important plant pathogens and insect-associated saprotrophs. Species in the genus have either heterothallic or unisexual (a form of homothallism) mating systems, providing an opportunity to investigate the genetic mechanisms that enable transitions between reproductive strategies in related species. Two newly sequenced Huntiella genomes are introduced in this study and comparative genomics and transcriptomics tools are used to investigate the differences between heterothallism and unisexuality across the genus. RESULTS Heterothallic species harbored up to seven copies of the a-factor pheromone, each of which possessed numerous mature peptide repeats. In comparison, unisexual Huntiella species had only two or three copies of this gene, each with fewer repeats. Similarly, while the heterothallic species expressed up to 12 copies of the mature α-factor pheromone, unisexual species had up to six copies. These significant differences imply that unisexual Huntiella species do not rely on a mating partner recognition system in the same way that heterothallic fungi do. CONCLUSION While it is suspected that mating type-independent pheromone expression is the mechanism allowing for unisexual reproduction in Huntiella species, our results suggest that the transition to unisexuality may also have been associated with changes in the genes governing the pheromone pathway. While these results are specifically related to Huntiella, they provide clues leading to a better understanding of sexual reproduction and the fluidity of mating strategies in fungi more broadly.
Collapse
Affiliation(s)
- Andi M Wilson
- Forestry and Agricultural Biotechnology Institute (FABI), Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, 0028, South Africa.
| | - Michael J Wingfield
- Forestry and Agricultural Biotechnology Institute (FABI), Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, 0028, South Africa
| | - Brenda D Wingfield
- Forestry and Agricultural Biotechnology Institute (FABI), Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, 0028, South Africa
| |
Collapse
|
38
|
Tang K, Dong J, Zheng Z, Zhang T, Pan H, Jia H, Li Y, Wei P. The rapid high-throughput screening of ω-transaminases via a colorimetric method using aliphatic α-diketones as amino acceptors. Anal Bioanal Chem 2023; 415:1733-1740. [PMID: 36840810 DOI: 10.1007/s00216-023-04573-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/09/2023] [Accepted: 01/27/2023] [Indexed: 02/26/2023]
Abstract
ω-Transaminases (ω-TAs) are widely available for the production of chiral amines and unnatural amino acids. Herein, a rapid spectrophotometric method was developed for screening ω-TAs based on the colored products that can be generated from transamination reactions between aliphatic α-diketones and amino donors catalyzed by ω-TAs. The possible mechanism of the formation of the colored product was investigated according to LC-Q-TOF-MS analysis. Among seven diketones, 2,3-butanedione was selected as the most suitable amino acceptor for colorimetric screening of ω-TAs with high efficiency, high sensitivity, and low background interference. Meanwhile, the absorbance of the colored product generated by 2,3-butanedione catalyzed by ω-TAs in this method was linearly correlated with the results by HPLC analysis. This method was also confirmed to effectively screen ω-TA mutants with high activity towards isopropylamine.
Collapse
Affiliation(s)
- Kexin Tang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Jiacheng Dong
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Zhengheng Zheng
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Ting Zhang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Huayi Pan
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Honghua Jia
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China.
| | - Yan Li
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China.
| | - Ping Wei
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| |
Collapse
|
39
|
Panaccione DG. Derivation of the multiply-branched ergot alkaloid pathway of fungi. Microb Biotechnol 2023; 16:742-756. [PMID: 36636806 PMCID: PMC10034635 DOI: 10.1111/1751-7915.14214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 12/16/2022] [Accepted: 01/02/2023] [Indexed: 01/14/2023] Open
Abstract
Ergot alkaloids are a large family of fungal specialized metabolites that are important as toxins in agriculture and as the foundation of powerful pharmaceuticals. Fungi from several lineages and diverse ecological niches produce ergot alkaloids from at least one of several branches of the ergot alkaloid pathway. The biochemical and genetic bases for the different branches have been established and are summarized briefly herein. Several pathway branches overlap among fungal lineages and ecological niches, indicating activities of ergot alkaloids benefit fungi in different environments and conditions. Understanding the functions of the multiple genes in each branch of the pathway allows researchers to parse the abundant genomic sequence data available in public databases in order to assess the ergot alkaloid biosynthesis capacity of previously unexplored fungi. Moreover, the characterization of the genes involved in the various branches provides opportunities and resources for the biotechnological manipulation of ergot alkaloids for experimentation and pharmaceutical development.
Collapse
Affiliation(s)
- Daniel G Panaccione
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, West Virginia, USA
| |
Collapse
|
40
|
Parmar M, Arodiya F, Sanyal M. Green Synthesis of Silver Nanoparticles Using Dry Leaf Extract of Ricinus communis and Its Application in Photocatalytic Degradation of Carcinogenic Dyes and Antifungal Studies. BIONANOSCIENCE 2023. [DOI: 10.1007/s12668-023-01084-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
41
|
Mead ME, de Castro PA, Steenwyk JL, Gangneux JP, Hoenigl M, Prattes J, Rautemaa-Richardson R, Guegan H, Moore CB, Lass-Flörl C, Reizine F, Valero C, Van Rhijn N, Bromley MJ, Rokas A, Goldman GH, Gago S. COVID-19-Associated Pulmonary Aspergillosis Isolates Are Genomically Diverse but Similar to Each Other in Their Responses to Infection-Relevant Stresses. Microbiol Spectr 2023; 11:e0512822. [PMID: 36946762 PMCID: PMC10100753 DOI: 10.1128/spectrum.05128-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/25/2023] [Indexed: 03/23/2023] Open
Abstract
Secondary infections caused by the pulmonary fungal pathogen Aspergillus fumigatus are a significant cause of mortality in patients with severe coronavirus disease 19 (COVID-19). Even though epithelial cell damage and aberrant cytokine responses have been linked to susceptibility to COVID-19-associated pulmonary aspergillosis (CAPA), little is known about the mechanisms underpinning copathogenicity. Here, we analyzed the genomes of 11 A. fumigatus isolates from patients with CAPA in three centers from different European countries. CAPA isolates did not cluster based on geographic origin in a genome-scale phylogeny of representative A. fumigatus isolates. Phenotypically, CAPA isolates were more similar to the A. fumigatus A1160 reference strain than to the Af293 strain when grown in infection-relevant stresses, except for interactions with human immune cells wherein macrophage responses were similar to those induced by the Af293 reference strain. Collectively, our data indicate that CAPA isolates are genomically diverse but are more similar to each other in their responses to infection-relevant stresses. A larger number of isolates from CAPA patients should be studied to better understand the molecular epidemiology of CAPA and to identify genetic drivers of copathogenicity and antifungal resistance in patients with COVID-19. IMPORTANCE Coronavirus disease 2019 (COVID-19)-associated pulmonary aspergillosis (CAPA) has been globally reported as a life-threatening complication in some patients with severe COVID-19. Most of these infections are caused by the environmental mold Aspergillus fumigatus, which ranks third in the fungal pathogen priority list of the WHO. However, little is known about the molecular epidemiology of Aspergillus fumigatus CAPA strains. Here, we analyzed the genomes of 11 A. fumigatus isolates from patients with CAPA in three centers from different European countries, and carried out phenotypic analyses with a view to understanding the pathophysiology of the disease. Our data indicate that A. fumigatus CAPA isolates are genomically diverse but are more similar to each other in their responses to infection-relevant stresses.
Collapse
Affiliation(s)
- Matthew E. Mead
- Department of Biological Sciences and Evolutionary Studies Initiative, Vanderbilt University, Nashville, Tennessee, USA
| | - Patrícia Alves de Castro
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Jacob L. Steenwyk
- Department of Biological Sciences and Evolutionary Studies Initiative, Vanderbilt University, Nashville, Tennessee, USA
| | - Jean-Pierre Gangneux
- University of Rennes, CHU Rennes, Inserm, EHESP, IRSET (Institut de recherche en santé, environnement et travail), Rennes, France
| | - Martin Hoenigl
- Division of Infectious Diseases, Medical University of Graz, Graz, Austria
- Biotech Med, Graz, Austria
| | - Juergen Prattes
- Division of Infectious Diseases, Medical University of Graz, Graz, Austria
| | - Riina Rautemaa-Richardson
- Mycology Reference Centre Manchester and Department of Infectious Diseases, Manchester University, Manchester University NHS Foundation Trust, Wythenshawe Hospital, Manchester, United Kingdom
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Hélène Guegan
- University of Rennes, CHU Rennes, Inserm, EHESP, IRSET (Institut de recherche en santé, environnement et travail), Rennes, France
| | - Caroline B. Moore
- Mycology Reference Centre Manchester and Department of Infectious Diseases, Manchester University, Manchester University NHS Foundation Trust, Wythenshawe Hospital, Manchester, United Kingdom
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Cornelia Lass-Flörl
- European Excellence Center for Medical Mycology (ECMM), Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Austria
| | - Florian Reizine
- University of Rennes, CHU Rennes, Inserm, EHESP, IRSET (Institut de recherche en santé, environnement et travail), Rennes, France
- Medical Intensive Care Unit, Rennes University Hospital, Rennes, France
| | - Clara Valero
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
- Manchester Fungal Infection Group, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Norman Van Rhijn
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
- Manchester Fungal Infection Group, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Michael J. Bromley
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
- Manchester Fungal Infection Group, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Antonis Rokas
- Department of Biological Sciences and Evolutionary Studies Initiative, Vanderbilt University, Nashville, Tennessee, USA
| | - Gustavo H. Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Sara Gago
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
- Manchester Fungal Infection Group, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - on behalf of the ECMM CAPA Study Group
- Department of Biological Sciences and Evolutionary Studies Initiative, Vanderbilt University, Nashville, Tennessee, USA
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
- University of Rennes, CHU Rennes, Inserm, EHESP, IRSET (Institut de recherche en santé, environnement et travail), Rennes, France
- Division of Infectious Diseases, Medical University of Graz, Graz, Austria
- Biotech Med, Graz, Austria
- Mycology Reference Centre Manchester and Department of Infectious Diseases, Manchester University, Manchester University NHS Foundation Trust, Wythenshawe Hospital, Manchester, United Kingdom
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
- European Excellence Center for Medical Mycology (ECMM), Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Austria
- Medical Intensive Care Unit, Rennes University Hospital, Rennes, France
- Manchester Fungal Infection Group, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
42
|
Scott J, Valero C, Mato-López Á, Donaldson IJ, Roldán A, Chown H, Van Rhijn N, Lobo-Vega R, Gago S, Furukawa T, Morogovsky A, Ben Ami R, Bowyer P, Osherov N, Fontaine T, Goldman GH, Mellado E, Bromley M, Amich J. Aspergillus fumigatus Can Display Persistence to the Fungicidal Drug Voriconazole. Microbiol Spectr 2023; 11:e0477022. [PMID: 36912663 PMCID: PMC10100717 DOI: 10.1128/spectrum.04770-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/12/2023] [Indexed: 03/14/2023] Open
Abstract
Aspergillus fumigatus is a filamentous fungus that can infect the lungs of patients with immunosuppression and/or underlying lung diseases. The mortality associated with chronic and invasive aspergillosis infections remain very high, despite availability of antifungal treatments. In the last decade, there has been a worrisome emergence and spread of resistance to the first-line antifungals, the azoles. The mortality caused by resistant isolates is even higher, and patient management is complicated as the therapeutic options are reduced. Nevertheless, treatment failure is also common in patients infected with azole-susceptible isolates, which can be due to several non-mutually exclusive reasons, such as poor drug absorption. In addition, the phenomena of tolerance or persistence, where susceptible pathogens can survive the action of an antimicrobial for extended periods, have been associated with treatment failure in bacterial infections, and their occurrence in fungal infections already proposed. Here, we demonstrate that some isolates of A. fumigatus display persistence to voriconazole. A subpopulation of the persister isolates can survive for extended periods and even grow at low rates in the presence of supra-MIC of voriconazole and seemingly other azoles. Persistence cannot be eradicated with adjuvant drugs or antifungal combinations and seemed to reduce the efficacy of treatment for certain individuals in a Galleria mellonella model of infection. Furthermore, persistence implies a distinct transcriptional profile, demonstrating that it is an active response. We propose that azole persistence might be a relevant and underestimated factor that could influence the outcome of infection in human aspergillosis. IMPORTANCE The phenomena of antibacterial tolerance and persistence, where pathogenic microbes can survive for extended periods in the presence of cidal drug concentrations, have received significant attention in the last decade. Several mechanisms of action have been elucidated, and their relevance for treatment failure in bacterial infections demonstrated. In contrast, our knowledge of antifungal tolerance and, in particular, persistence is still very limited. In this study, we have characterized the response of the prominent fungal pathogen Aspergillus fumigatus to the first-line therapy antifungal voriconazole. We comprehensively show that some isolates display persistence to this fungicidal antifungal and propose various potential mechanisms of action. In addition, using an alternative model of infection, we provide initial evidence to suggest that persistence may cause treatment failure in some individuals. Therefore, we propose that azole persistence is an important factor to consider and further investigate in A. fumigatus.
Collapse
Affiliation(s)
- Jennifer Scott
- Manchester Fungal Infection Group, Division of Evolution, Infection, and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Clara Valero
- Manchester Fungal Infection Group, Division of Evolution, Infection, and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Álvaro Mato-López
- Mycology Reference Laboratory (Laboratorio de Referencia e Investigación en Micología [LRIM]), National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain
| | - Ian J. Donaldson
- Bioinformatics Core Facility, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Alejandra Roldán
- Mycology Reference Laboratory (Laboratorio de Referencia e Investigación en Micología [LRIM]), National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain
| | - Harry Chown
- Manchester Fungal Infection Group, Division of Evolution, Infection, and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Norman Van Rhijn
- Manchester Fungal Infection Group, Division of Evolution, Infection, and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Rebeca Lobo-Vega
- Mycology Reference Laboratory (Laboratorio de Referencia e Investigación en Micología [LRIM]), National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain
| | - Sara Gago
- Manchester Fungal Infection Group, Division of Evolution, Infection, and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Takanori Furukawa
- Manchester Fungal Infection Group, Division of Evolution, Infection, and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Alma Morogovsky
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine Ramat-Aviv, Tel-Aviv, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ronen Ben Ami
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine Ramat-Aviv, Tel-Aviv, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Paul Bowyer
- Manchester Fungal Infection Group, Division of Evolution, Infection, and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Nir Osherov
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine Ramat-Aviv, Tel-Aviv, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Thierry Fontaine
- Institut Pasteur, Université de Paris, INRAE, USC2019, Unité Biologie et Pathogénicité Fongiques, Paris, France
| | - Gustavo H. Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Emilia Mellado
- Mycology Reference Laboratory (Laboratorio de Referencia e Investigación en Micología [LRIM]), National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain
- CiberInfec ISCIII, CIBER en Enfermedades Infecciosas, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Michael Bromley
- Manchester Fungal Infection Group, Division of Evolution, Infection, and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Jorge Amich
- Manchester Fungal Infection Group, Division of Evolution, Infection, and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
- Mycology Reference Laboratory (Laboratorio de Referencia e Investigación en Micología [LRIM]), National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain
| |
Collapse
|
43
|
Stevens DA, Kotta-Loizou I, Martinez M, Coutts RHA, Sass G. Virus Infection Impairs Fungal Response to Stress: Effect of Salt. Viruses 2023; 15:718. [PMID: 36992427 PMCID: PMC10056142 DOI: 10.3390/v15030718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/06/2023] [Accepted: 03/09/2023] [Indexed: 03/12/2023] Open
Abstract
Infection with Aspergillus fumigatus polymycovirus 1 (AfuPmV-1) weakens the resistance of biofilms of common A. fumigatus reference strain Af293 in intermicrobial competition with Pseudomonas aeruginosa, and sensitizes A. fumigatus for antifungal effects of nikkomycin Z. We compared the sensitivity of two virus-infected (VI) and one virus-free (VF) Af293 strains to hypertonic salt. Salt stress impairs the growth of VI and VF at all times; VF control growth always exceeds VI, and VF growth in salt always exceeds VI. Since VF growth exceeds VI in the presence and absence of salt, we also examined growth in salt as a percentage of control growth. Initially, as a percentage of control, VI exceeded VF, but at 120 h VF began to exceed VI consistently even by this measure; thus, at that time the growth of VF in salt surges in relation to control growth, or, alternatively, its growth in salt persists compared to the relative inhibition of VI. In summary, virus infection impairs the response of A. fumigatus to several different stresses, including hypertonic salt.
Collapse
Affiliation(s)
- David A. Stevens
- California Institute for Medical Research, San Jose, CA 95128, USA
- Division of Infectious Diseases & Geographic Medicine, Stanford University, Stanford, CA 94305, USA
| | - Ioly Kotta-Loizou
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
- Department of Clinical, Pharmaceutical and Biological Science, School of Life and Medical Sciences, University of Hertfordshire, College Lane Campus, Hatfield AL10 9AB, UK
| | - Marife Martinez
- California Institute for Medical Research, San Jose, CA 95128, USA
| | - Robert H. A. Coutts
- Department of Clinical, Pharmaceutical and Biological Science, School of Life and Medical Sciences, University of Hertfordshire, College Lane Campus, Hatfield AL10 9AB, UK
| | - Gabriele Sass
- California Institute for Medical Research, San Jose, CA 95128, USA
| |
Collapse
|
44
|
Urquhart AS, Idnurm A. A Polyphasic Approach including Whole Genome Sequencing Reveals Paecilomyces paravariotii sp. nov. as a Cryptic Sister Species to P. variotii. J Fungi (Basel) 2023; 9:285. [PMID: 36983453 PMCID: PMC10055108 DOI: 10.3390/jof9030285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/10/2023] [Accepted: 02/15/2023] [Indexed: 02/24/2023] Open
Abstract
Whole genome sequencing is rapidly increasing phylogenetic resolution across many groups of fungi. To improve sequencing coverage in the genus Paecilomyces (Eurotiales), we report nine new Paecilomyces genomes representing five different species. Phylogenetic comparison between these genomes and those reported previously showed that Paecilomyces paravariotii is a distinct species from its close relative P. variotii. The independence of P. paravariotii is supported by analysis of overall gene identify (via BLAST), differences in secondary metabolism and an inability to form ascomata when paired with a fertile P. variotii strain of opposite mating type. Furthermore, whole genome sequencing resolves the P. formosus clade into three separate species, one of which lacked a valid name that is now provided.
Collapse
Affiliation(s)
- Andrew S. Urquhart
- Commonwealth Scientific and Industrial Research Organisation, Saint Lucia, QLD 4067, Australia
- Applied Biosciences, Macquarie University, Macquarie Park, NSW 2113, Australia
| | - Alexander Idnurm
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
45
|
Wang Y, Yang M, Ge F, Jiang B, Hu R, Zhou X, Yang Y, Liu M. Lysine Succinylation of VBS Contributes to Sclerotia Development and Aflatoxin Biosynthesis in Aspergillus flavus. Mol Cell Proteomics 2023; 22:100490. [PMID: 36566904 PMCID: PMC9879794 DOI: 10.1016/j.mcpro.2022.100490] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 12/06/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Aspergillus flavus is a common saprophytic and pathogenic fungus, and its secondary metabolic pathways are one of the most highly characterized owing to its aflatoxin (AF) metabolite affecting global economic crops and human health. Different natural environments can cause significant variations in AF synthesis. Succinylation was recently identified as one of the most critical regulatory post-translational modifications affecting metabolic pathways. It is primarily reported in human cells and bacteria with few studies on fungi. Proteomic quantification of lysine succinylation (Ksuc) exploring its potential involvement in secondary metabolism regulation (including AF production) has not been performed under natural conditions in A. flavus. In this study, a quantification method was performed based on tandem mass tag labeling and antibody-based affinity enrichment of succinylated peptides via high accuracy nano-liquid chromatography with tandem mass spectrometry to explore the succinylation mechanism affecting the pathogenicity of naturally isolated A. flavus strains with varying toxin production. Altogether, 1240 Ksuc sites in 768 proteins were identified with 1103 sites in 685 proteins quantified. Comparing succinylated protein levels between high and low AF-producing A. flavus strains, bioinformatics analysis indicated that most succinylated proteins located in the AF biosynthetic pathway were downregulated, which directly affected AF synthesis. Versicolorin B synthase is a key catalytic enzyme for heterochrome B synthesis during AF synthesis. Site-directed mutagenesis and biochemical studies revealed that versicolorin B synthase succinylation is an important regulatory mechanism affecting sclerotia development and AF biosynthesis in A. flavus. In summary, our quantitative study of the lysine succinylome in high/low AF-producing strains revealed the role of Ksuc in regulating AF biosynthesis. We revealed novel insights into the metabolism of AF biosynthesis using naturally isolated A. flavus strains and identified a rich source of metabolism-related enzymes regulated by succinylation.
Collapse
Affiliation(s)
- Yu Wang
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences - Wuhan National Laboratory for Optoelectronics, Hubei Optics Valley Laboratory, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China
| | - Mingkun Yang
- University of Chinese Academy of Sciences, Beijing, China; State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Feng Ge
- University of Chinese Academy of Sciences, Beijing, China; State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Bin Jiang
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences - Wuhan National Laboratory for Optoelectronics, Hubei Optics Valley Laboratory, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China.
| | - Rui Hu
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences - Wuhan National Laboratory for Optoelectronics, Hubei Optics Valley Laboratory, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China.
| | - Xin Zhou
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences - Wuhan National Laboratory for Optoelectronics, Hubei Optics Valley Laboratory, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yunhuang Yang
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences - Wuhan National Laboratory for Optoelectronics, Hubei Optics Valley Laboratory, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China
| | - Maili Liu
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences - Wuhan National Laboratory for Optoelectronics, Hubei Optics Valley Laboratory, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
46
|
Sass G, Kotta-Loizou I, Martinez M, Larwood DJ, Stevens DA. Polymycovirus Infection Sensitizes Aspergillus fumigatus for Antifungal Effects of Nikkomycin Z. Viruses 2023; 15:197. [PMID: 36680240 PMCID: PMC9864188 DOI: 10.3390/v15010197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/04/2023] [Accepted: 01/06/2023] [Indexed: 01/12/2023] Open
Abstract
Infection with Aspergillus fumigatus polymycovirus 1 (AfuPmV-1) weakens resistance of Aspergillus fumigatus common reference strain Af293 biofilms in intermicrobial competition with Pseudomonas aeruginosa. We compared the sensitivity of two infected and one virus-free Af293 strains to antifungal drugs. All three were comparably sensitive to drugs affecting fungal membranes (voriconazole, amphotericin) or cell wall glucan synthesis (micafungin, caspofungin). In contrast, forming biofilms of virus-free Af293 were much more resistant than AfuPmV-1-infected Af293 to nikkomycin Z (NikZ), a drug inhibiting chitin synthase. The IC50 for NikZ on biofilms was between 3.8 and 7.5 µg/mL for virus-free Af293 and 0.94-1.88 µg/mL for infected strains. The IC50 for the virus-free A. fumigatus strain 10AF was ~2 µg/mL in most experiments. NikZ also modestly affected the planktonic growth of infected Af293 more than the virus-free strain (MIC 50%, 2 and 4 µg/mL, respectively). Virus-free Af293 biofilm showed increased metabolism, and fungus growing as biofilm or planktonically showed increased growth compared to infected; these differences do not explain the resistance of the virus-free fungus to NikZ. In summary, AfuPmV-1 infection sensitized A. fumigatus to NikZ, but did not affect response to drugs commonly used against A. fumigatus infection. Virus infection had a greater effect on NikZ inhibition of biofilm than planktonic growth.
Collapse
Affiliation(s)
- Gabriele Sass
- California Institute for Medical Research, San Jose, CA 95128, USA
| | - Ioly Kotta-Loizou
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
- Department of Clinical, Pharmaceutical and Biological Science, School of Life and Medical Sciences, University of Hertfordshire, College Lane Campus, Hatfield AL10 9AB, UK
| | - Marife Martinez
- California Institute for Medical Research, San Jose, CA 95128, USA
| | | | - David A. Stevens
- California Institute for Medical Research, San Jose, CA 95128, USA
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
47
|
Winter DJ, Weir BS, Glare T, Rhodes J, Perrott J, Fisher MC, Stajich JE, Digby A, Dearden PK, Cox MP. A single fungal strain was the unexpected cause of a mass aspergillosis outbreak in the world's largest and only flightless parrot. iScience 2022; 25:105470. [PMID: 36404926 PMCID: PMC9668684 DOI: 10.1016/j.isci.2022.105470] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 10/03/2022] [Accepted: 10/28/2022] [Indexed: 11/15/2022] Open
Abstract
Kākāpō are a critically endangered species of parrots restricted to a few islands off the coast of New Zealand. Kākāpō are very closely monitored, especially during nesting seasons. In 2019, during a highly successful nesting season, an outbreak of aspergillosis affected 21 individuals and led to the deaths of 9, leaving a population of only 211 kākāpō. In monitoring this outbreak, cultures of aspergillus were grown, and genome sequenced. These sequences demonstrate that, very unusually for an aspergillus outbreak, a single strain of aspergillus caused the outbreak. This strain was found on two islands, but only one had an outbreak of aspergillosis; indicating that the strain was necessary, but not sufficient, to cause disease. Our analysis provides an understanding of the 2019 outbreak and provides potential ways to manage such events in the future.
Collapse
Affiliation(s)
- David J. Winter
- School of Natural Sciences, Massey University, Palmerston North, New Zealand
- Genomics Aotearoa, University of Otago, Dunedin, New Zealand
| | - Bevan S. Weir
- Manaaki Whenua – Landcare Research, Auckland, New Zealand
| | - Travis Glare
- Department of Wine, Food & Molecular Bioscience, Lincoln University, Lincoln, New Zealand
| | - Johanna Rhodes
- MRC Centre for Global Infectious Disease Analysis, Imperial College School of Public Health, Imperial College London, South Kensington, London SW7 2BX,UK
| | - John Perrott
- School of Environmental Science, Faculty of Health and Environmental Science, Auckland University of Technology, Auckland, New Zealand
| | - Matthew C. Fisher
- MRC Centre for Global Infectious Disease Analysis, Imperial College School of Public Health, Imperial College London, South Kensington, London SW7 2BX,UK
| | - Jason E. Stajich
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, Riverside, CA, USA
| | - Kākāpō Aspergillosis Research Consortium
- School of Natural Sciences, Massey University, Palmerston North, New Zealand
- Genomics Aotearoa, University of Otago, Dunedin, New Zealand
- Manaaki Whenua – Landcare Research, Auckland, New Zealand
- Department of Wine, Food & Molecular Bioscience, Lincoln University, Lincoln, New Zealand
- MRC Centre for Global Infectious Disease Analysis, Imperial College School of Public Health, Imperial College London, South Kensington, London SW7 2BX,UK
- School of Environmental Science, Faculty of Health and Environmental Science, Auckland University of Technology, Auckland, New Zealand
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, Riverside, CA, USA
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
- Kākāpō Recovery, Department of Conservation, Invercargill, New Zealand
| | - Andrew Digby
- Kākāpō Recovery, Department of Conservation, Invercargill, New Zealand
| | - Peter K. Dearden
- Genomics Aotearoa, University of Otago, Dunedin, New Zealand
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Murray P. Cox
- School of Natural Sciences, Massey University, Palmerston North, New Zealand
- Genomics Aotearoa, University of Otago, Dunedin, New Zealand
| |
Collapse
|
48
|
Huber EM. Epipolythiodioxopiperazine-Based Natural Products: Building Blocks, Biosynthesis and Biological Activities. Chembiochem 2022; 23:e202200341. [PMID: 35997236 PMCID: PMC10086836 DOI: 10.1002/cbic.202200341] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/19/2022] [Indexed: 01/25/2023]
Abstract
Epipolythiodioxopiperazines (ETPs) are fungal secondary metabolites that share a 2,5-diketopiperazine scaffold built from two amino acids and bridged by a sulfide moiety. Modifications of the core and the amino acid side chains, for example by methylations, acetylations, hydroxylations, prenylations, halogenations, cyclizations, and truncations create the structural diversity of ETPs and contribute to their biological activity. However, the key feature responsible for the bioactivities of ETPs is their sulfide moiety. Over the last years, combinations of genome mining, reverse genetics, metabolomics, biochemistry, and structural biology deciphered principles of ETP production. Sulfurization via glutathione and uncovering of the thiols followed by either oxidation or methylation crystallized as fundamental steps that impact expression of the biosynthesis cluster, toxicity and secretion of the metabolite as well as self-tolerance of the producer. This article showcases structure and activity of prototype ETPs such as gliotoxin and discusses the current knowledge on the biosynthesis routes of these exceptional natural products.
Collapse
Affiliation(s)
- Eva M Huber
- Chair of Biochemistry, Center for Protein Assemblies, Technical University of Munich, Ernst-Otto-Fischer-Str. 8, 85748, Garching, Germany
| |
Collapse
|
49
|
Zhao S, Martin-Vicente A, Colabardini AC, Pereira Silva L, Rinker DC, Fortwendel JR, Goldman GH, Gibbons JG. Genomic and Molecular Identification of Genes Contributing to the Caspofungin Paradoxical Effect in Aspergillus fumigatus. Microbiol Spectr 2022; 10:e0051922. [PMID: 36094204 PMCID: PMC9603777 DOI: 10.1128/spectrum.00519-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 08/17/2022] [Indexed: 11/25/2022] Open
Abstract
Aspergillus fumigatus is a deadly opportunistic fungal pathogen responsible for ~100,000 annual deaths. Azoles are the first line antifungal agent used against A. fumigatus, but azole resistance has rapidly evolved making treatment challenging. Caspofungin is an important second-line therapy against invasive pulmonary aspergillosis, a severe A. fumigatus infection. Caspofungin functions by inhibiting β-1,3-glucan synthesis, a primary and essential component of the fungal cell wall. A phenomenon termed the caspofungin paradoxical effect (CPE) has been observed in several fungal species where at higher concentrations of caspofungin, chitin replaces β-1,3-glucan, morphology returns to normal, and growth rate increases. CPE appears to occur in vivo, and it is therefore clinically important to better understand the genetic contributors to CPE. We applied genomewide association (GWA) analysis and molecular genetics to identify and validate candidate genes involved in CPE. We quantified CPE across 67 clinical isolates and conducted three independent GWA analyses to identify genetic variants associated with CPE. We identified 48 single nucleotide polymorphisms (SNPs) associated with CPE. We used a CRISPR/Cas9 approach to generate gene deletion mutants for seven genes harboring candidate SNPs. Two null mutants, ΔAfu3g13230 and ΔAfu4g07080 (dscP), resulted in reduced basal growth rate and a loss of CPE. We further characterized the dscP phosphatase-null mutant and observed a significant reduction in conidia production and extremely high sensitivity to caspofungin at both low and high concentrations. Collectively, our work reveals the contribution of Afu3g13230 and dscP in CPE and sheds new light on the complex genetic interactions governing this phenotype. IMPORTANCE This is one of the first studies to apply genomewide association (GWA) analysis to identify genes involved in an Aspergillus fumigatus phenotype. A. fumigatus is an opportunistic fungal pathogen that causes hundreds of thousands of infections and ~100,000 deaths each year, and antifungal resistance has rapidly evolved in this species. A phenomenon called the caspofungin paradoxical effect (CPE) occurs in some isolates, where high concentrations of the drug lead to increased growth rate. There is clinical relevance in understanding the genetic basis of this phenotype, since caspofungin concentrations could lead to unintended adverse clinical outcomes in certain cases. Using GWA analysis, we identified several interesting candidate polymorphisms and genes and then generated gene deletion mutants to determine whether these genes were important for CPE. Two of these mutant strains (ΔAfu3g13230 and ΔAfu4g07080/ΔdscP) displayed a loss of the CPE. This study sheds light on the genes involved in clinically important phenotype CPE.
Collapse
Affiliation(s)
- Shu Zhao
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts, USA
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Adela Martin-Vicente
- Department of Clinical Pharmacy and Translational Science, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Ana Cristina Colabardini
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Lilian Pereira Silva
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - David C. Rinker
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| | - Jarrod R. Fortwendel
- Department of Clinical Pharmacy and Translational Science, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Gustavo Henrique Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - John G. Gibbons
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts, USA
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
- Organismic and Evolutionary Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts, USA
| |
Collapse
|
50
|
Calcineurin Inhibitors Synergize with Manogepix to Kill Diverse Human Fungal Pathogens. J Fungi (Basel) 2022; 8:jof8101102. [PMID: 36294667 PMCID: PMC9605145 DOI: 10.3390/jof8101102] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/13/2022] [Accepted: 10/15/2022] [Indexed: 11/17/2022] Open
Abstract
Invasive fungal infections have mortality rates of 30–90%, depending on patient co-morbidities and the causative pathogen. The frequent emergence of drug resistance reduces the efficacy of currently approved treatment options, highlighting an urgent need for antifungals with new modes of action. Addressing this need, fosmanogepix (N-phosphonooxymethylene prodrug of manogepix; MGX) is the first in a new class of gepix drugs, and acts as a broad-spectrum, orally bioavailable inhibitor of the essential fungal glycosylphosphatidylinositol (GPI) acyltransferase Gwt1. MGX inhibits the growth of diverse fungal pathogens and causes accumulation of immature GPI-anchored proteins in the fungal endoplasmic reticulum. Relevant to the ongoing clinical development of fosmanogepix, we report a synergistic, fungicidal interaction between MGX and inhibitors of the protein phosphatase calcineurin against important human fungal pathogens. To investigate this synergy further, we evaluated a library of 124 conditional expression mutants covering 95% of the genes encoding proteins involved in GPI-anchor biosynthesis or proteins predicted to be GPI-anchored. Strong negative chemical-genetic interactions between the calcineurin inhibitor FK506 and eleven GPI-anchor biosynthesis genes were identified, indicating that calcineurin signalling is required for fungal tolerance to not only MGX, but to inhibition of the GPI-anchor biosynthesis pathway more broadly. Depletion of these GPI-anchor biosynthesis genes, like MGX treatment, also exposed fungal cell wall (1→3)-β-D-glucans. Taken together, these findings suggest the increased risk of invasive fungal infections associated with use of calcineurin inhibitors as immunosuppressants may be mitigated by their synergistic fungicidal interaction with (fos)manogepix and its ability to enhance exposure of immunostimulatory glucans.
Collapse
|