1
|
Schubert MG, Tang TC, Goodchild-Michelman IM, Ryon KA, Henriksen JR, Chavkin T, Wu Y, Miettinen TP, Van Wychen S, Dahlin LR, Spatafora D, Turco G, Guarnieri MT, Manalis SR, Kowitz J, Hann EC, Dhir R, Quatrini P, Mason CE, Church GM, Milazzo M, Tierney BT. Cyanobacteria newly isolated from marine volcanic seeps display rapid sinking and robust, high-density growth. Appl Environ Microbiol 2024:e0084124. [PMID: 39470214 DOI: 10.1128/aem.00841-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 06/27/2024] [Indexed: 10/30/2024] Open
Abstract
Cyanobacteria are photosynthetic organisms that play important roles in carbon cycling and are promising bioproduction chassis. Here, we isolate two novel cyanobacteria with 4.6Mbp genomes, UTEX 3221 and UTEX 3222, from a unique marine environment with naturally elevated CO₂. We describe complete genome sequences for both isolates and, focusing on UTEX 3222 due to its planktonic growth in liquid, characterize biotechnologically relevant growth and biomass characteristics. UTEX 3222 outpaces other fast-growing model strains on a solid medium. It can double every 2.35 hours in a liquid medium and grows to high density (>31 g/L biomass dry weight) in batch culture, nearly double that of Synechococcus sp. PCC 11901, whose high-density growth was recently reported. In addition, UTEX 3222 sinks readily, settling more quickly than other fast-growing strains, suggesting favorable economics of harvesting UTEX 3222 biomass. These traits may make UTEX 3222 a compelling choice for marine carbon dioxide removal (CDR) and photosynthetic bioproduction from CO₂. Overall, we find that bio-prospecting in environments with naturally elevated CO₂ may uncover novel CO₂-metabolizing organisms with unique characteristics. IMPORTANCE Cyanobacteria provide a potential avenue for both biomanufacturing and combatting climate change via high-efficiency photosynthetic carbon sequestration. This study identifies novel photosynthetic organisms isolated from a unique geochemical environment and describes their genomes, growth behavior in culture, and biochemical composition. These cyanobacteria appear to make a tractable research model, and cultures are made publicly available alongside information about their culture and maintenance. Application of these organisms to carbon sequestration and/or biomanufacturing is discussed, including unusual, rapid settling characteristics of the strains relevant to scaled culture.
Collapse
Affiliation(s)
- Max G Schubert
- Two Frontiers Project, Fort Collins, Colorado, USA
- Wyss Institute of Biologically-Inspired Engineering, Boston, Massachusetts, USA
| | - Tzu-Chieh Tang
- Wyss Institute of Biologically-Inspired Engineering, Boston, Massachusetts, USA
| | | | - Krista A Ryon
- Two Frontiers Project, Fort Collins, Colorado, USA
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, New York, USA
| | - James R Henriksen
- Two Frontiers Project, Fort Collins, Colorado, USA
- Natural Resource Ecology Laboratory, Colorado State University, Fort Collins, Colorado, USA
| | - Theodore Chavkin
- Two Frontiers Project, Fort Collins, Colorado, USA
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Yanqi Wu
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Teemu P Miettinen
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Stefanie Van Wychen
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado, USA
| | - Lukas R Dahlin
- Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado, USA
| | - Davide Spatafora
- Two Frontiers Project, Fort Collins, Colorado, USA
- Department of Integrative Marine Ecology, Sicily, Stazione Zoologica Anton Dohrn, Lungomare Cristoforo Colombo (complesso Roosevelt), Palermo, Italy
- National Biodiversity Future Center, Palermo, Italy
| | - Gabriele Turco
- Two Frontiers Project, Fort Collins, Colorado, USA
- National Biodiversity Future Center, Palermo, Italy
- Department of Earth and Marine Sciences, University of Palermo, Palermo, Italy
| | - Michael T Guarnieri
- Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado, USA
| | - Scott R Manalis
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - John Kowitz
- Two Frontiers Project, Fort Collins, Colorado, USA
| | - Elizabeth C Hann
- Wyss Institute of Biologically-Inspired Engineering, Boston, Massachusetts, USA
| | - Raja Dhir
- Two Frontiers Project, Fort Collins, Colorado, USA
- Seed Health, Venice, California, USA
| | - Paola Quatrini
- Two Frontiers Project, Fort Collins, Colorado, USA
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| | - Christopher E Mason
- Two Frontiers Project, Fort Collins, Colorado, USA
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, New York, USA
| | - George M Church
- Two Frontiers Project, Fort Collins, Colorado, USA
- Wyss Institute of Biologically-Inspired Engineering, Boston, Massachusetts, USA
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Marco Milazzo
- Two Frontiers Project, Fort Collins, Colorado, USA
- National Biodiversity Future Center, Palermo, Italy
- Department of Earth and Marine Sciences, University of Palermo, Palermo, Italy
| | - Braden T Tierney
- Two Frontiers Project, Fort Collins, Colorado, USA
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, New York, USA
| |
Collapse
|
2
|
Sader JE, Gomez A, Neumann AP, Nunn A, Roukes ML. Data-driven fingerprint nanoelectromechanical mass spectrometry. Nat Commun 2024; 15:8800. [PMID: 39438454 PMCID: PMC11496504 DOI: 10.1038/s41467-024-51733-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 08/15/2024] [Indexed: 10/25/2024] Open
Abstract
Fingerprint analysis is a ubiquitous tool for pattern recognition with applications spanning from geolocation and DNA analysis to facial recognition and forensic identification. Central to its utility is the ability to provide accurate identification without an a priori mathematical model for the pattern. We report a data-driven fingerprint approach for nanoelectromechanical systems mass spectrometry that enables mass measurements of particles and molecules using complex, uncharacterized nanoelectromechanical devices of arbitrary specification. Nanoelectromechanical systems mass spectrometry is based on the frequency shifts of the nanoelectromechanical device vibrational modes that are induced by analyte adsorption. The sequence of frequency shifts constitutes a fingerprint of this adsorption, which is directly amenable to pattern matching. Two current requirements of nanoelectromechanical-based mass spectrometry are: (1) a priori knowledge or measurement of the device mode-shapes, and (2) a mode-shape-based model that connects the induced modal frequency shifts to mass adsorption. This may not be possible for advanced nanoelectromechanical devices with three-dimensional mode-shapes and nanometer-sized features. The advance reported here eliminates this impediment, thereby allowing device designs of arbitrary specification and size to be employed. This enables the use of advanced nanoelectromechanical devices with complex vibrational modes, which offer unprecedented prospects for attaining the ultimate detection limits of nanoelectromechanical mass spectrometry.
Collapse
Affiliation(s)
- John E Sader
- Graduate Aerospace Laboratories, California Institute of Technology, Pasadena, California, 91125, USA.
- Department of Applied Physics, California Institute of Technology, Pasadena, California, 91125, USA.
| | - Alfredo Gomez
- Department of Physics, California Institute of Technology, Pasadena, California, 91125, USA
- Language Technologies Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania, 15213, USA
| | - Adam P Neumann
- Department of Physics, California Institute of Technology, Pasadena, California, 91125, USA
| | - Alex Nunn
- Department of Physics, California Institute of Technology, Pasadena, California, 91125, USA
| | - Michael L Roukes
- Department of Applied Physics, California Institute of Technology, Pasadena, California, 91125, USA.
- Department of Physics, California Institute of Technology, Pasadena, California, 91125, USA.
- Department of Bioengineering, California Institute of Technology, Pasadena, California, 91125, USA.
| |
Collapse
|
3
|
Fernandes DA. Comprehensive Review on Bubbles: Synthesis, Modification, Characterization and Biomedical Applications. Bioconjug Chem 2024. [PMID: 39377727 DOI: 10.1021/acs.bioconjchem.4c00137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Accurate detection, treatment, and imaging of diseases are important for effective treatment outcomes in patients. In this regard, bubbles have gained much attention, due to their versatility. Bubbles usually 1 nm to 10 μm in size can be produced and loaded with a variety of lipids, polymers, proteins, and therapeutic and imaging agents. This review details the different production and loading methods for bubbles, for imaging and treatment of diseases/conditions such as cancer, tumor angiogenesis, thrombosis, and inflammation. Bubbles can also be used for perfusion measurements, important for diagnostic and therapeutic decision making in cardiac disease. The different factors important in the stability of bubbles and the different techniques for characterizing their physical and chemical properties are explained, for developing bubbles with advanced therapeutic and imaging features. Hence, the review provides important insights for researchers studying bubbles for biomedical applications.
Collapse
|
4
|
Hattab S, Ma AH, Tariq Z, Vega Prado I, Drobish I, Lee R, Yee R. Rapid Phenotypic and Genotypic Antimicrobial Susceptibility Testing Approaches for Use in the Clinical Laboratory. Antibiotics (Basel) 2024; 13:786. [PMID: 39200086 PMCID: PMC11351821 DOI: 10.3390/antibiotics13080786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/13/2024] [Accepted: 08/15/2024] [Indexed: 09/01/2024] Open
Abstract
The rapid rise in increasingly resistant bacteria has become a major threat to public health. Antimicrobial susceptibility testing (AST) is crucial in guiding appropriate therapeutic decisions and infection prevention practices for patient care. However, conventional culture-based AST methods are time-consuming and labor-intensive. Therefore, rapid AST approaches exist to address the delayed gap in time to actionable results. There are two main types of rapid AST technologies- phenotypic and genotypic approaches. In this review, we provide a summary of all commercially available rapid AST platforms for use in clinical microbiology laboratories. We describe the technologies utilized, performance characteristics, acceptable specimen types, types of resistance detected, turnaround times, limitations, and clinical outcomes driven by these rapid tests. We also discuss crucial factors to consider for the implementation of rapid AST technologies in a clinical laboratory and what the future of rapid AST holds.
Collapse
Affiliation(s)
- Siham Hattab
- Department of Pathology, George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA; (S.H.); (Z.T.); (I.V.P.)
| | - Adrienne H. Ma
- Department of Pharmacy, Valley View Hospital, Glenwood Springs, CO 81647, USA;
| | - Zoon Tariq
- Department of Pathology, George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA; (S.H.); (Z.T.); (I.V.P.)
| | - Ilianne Vega Prado
- Department of Pathology, George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA; (S.H.); (Z.T.); (I.V.P.)
| | - Ian Drobish
- Critical Care Medicine Department, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Rachel Lee
- Division of Infectious Diseases, George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA;
| | - Rebecca Yee
- Department of Pathology, George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA; (S.H.); (Z.T.); (I.V.P.)
| |
Collapse
|
5
|
Neumann AP, Sage E, Boll D, Reinhardt-Szyba M, Fon W, Masselon C, Hentz S, Sader JE, Makarov A, Roukes ML. A Hybrid Orbitrap-Nanoelectromechanical Systems Approach for the Analysis of Individual, Intact Proteins in Real Time. Angew Chem Int Ed Engl 2024; 63:e202317064. [PMID: 38769756 DOI: 10.1002/anie.202317064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 04/15/2024] [Accepted: 05/14/2024] [Indexed: 05/22/2024]
Abstract
Nanoelectromechanical systems (NEMS)-based mass spectrometry (MS) is an emerging technique that enables determination of the mass of individual adsorbed particles by driving nanomechanical devices at resonance and monitoring the real-time changes in their resonance frequencies induced by each single molecule adsorption event. We incorporate NEMS into an Orbitrap mass spectrometer and report our progress towards leveraging the single-molecule capabilities of the NEMS to enhance the dynamic range of conventional MS instrumentation and to offer new capabilities for performing deep proteomic analysis of clinically relevant samples. We use the hybrid instrument to deliver E. coli GroEL molecules (801 kDa) to the NEMS devices in their native, intact state. Custom ion optics are used to focus the beam down to 40 μm diameter with a maximum flux of 25 molecules/second. The mass spectrum obtained with NEMS-MS shows good agreement with the known mass of GroEL.
Collapse
Affiliation(s)
- Adam P Neumann
- Kavli Nanoscience Institute and Department of Physics, California Institute of Technology, Pasadena, California, 91125, USA
| | - Eric Sage
- Kavli Nanoscience Institute and Department of Physics, California Institute of Technology, Pasadena, California, 91125, USA
| | - Dmitri Boll
- Thermo Fisher Scientific, 28199, Bremen, Germany
| | | | - Warren Fon
- Kavli Nanoscience Institute and Department of Physics, California Institute of Technology, Pasadena, California, 91125, USA
| | - Christophe Masselon
- Univ. Grenoble Alpes, CEA, IRIG, Biologie à Grande Echelle, INSERM UA 13, F-38054, Grenoble, France
| | | | - John E Sader
- Graduate Aerospace Laboratories and Department of Applied Physics, California Institute of Technology, Pasadena, California, 91125, USA
| | - Alexander Makarov
- Thermo Fisher Scientific, 28199, Bremen, Germany
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Michael L Roukes
- Kavli Nanoscience Institute and Department of Physics, California Institute of Technology, Pasadena, California, 91125, USA
- Departments of Physics, Applied Physics and Bioengineering, California Institute of Technology, Pasadena, California, 91125, USA
| |
Collapse
|
6
|
Wang L, Sheng M, Chen L, Yang F, Li C, Li H, Nie P, Lv X, Guo Z, Cao J, Wang X, Li L, Hu AL, Guan D, Du J, Cui H, Zheng X. Sub-Nanogram Resolution Measurement of Inertial Mass and Density Using Magnetic-Field-Guided Bubble Microthruster. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403867. [PMID: 38773950 PMCID: PMC11304303 DOI: 10.1002/advs.202403867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/12/2024] [Indexed: 05/24/2024]
Abstract
Artificial micro/nanomotors using active particles hold vast potential in applications such as drug delivery and microfabrication. However, upgrading them to micro/nanorobots capable of performing precise tasks with sophisticated functions remains challenging. Bubble microthruster (BMT) is introduced, a variation of the bubble-driven microrobot, which focuses the energy from a collapsing microbubble to create an inertial impact on nearby target microparticles. Utilizing ultra-high-speed imaging, the microparticle mass and density is determined with sub-nanogram resolution based on the relaxation time characterizing the microparticle's transient response. Master curves of the BMT method are shown to be dependent on the viscosity of the solution. The BMT, controlled by a gamepad with magnetic-field guidance, precisely manipulates target microparticles, including bioparticles. Validation involves measuring the polystyrene microparticle mass and hollow glass microsphere density, and assessing the mouse embryo mass densities. The BMT technique presents a promising chip-free, real-time, highly maneuverable strategy that integrates bubble microrobot-based manipulation with precise bioparticle mass and density detection, which can facilitate microscale bioparticle characterizations such as embryo growth monitoring.
Collapse
Affiliation(s)
- Leilei Wang
- State Key Laboratory of Nonlinear MechanicsBeijing Key Laboratory of Engineered Construction and MechanobiologyInstitute of MechanicsChinese Academy of SciencesBeijing100190China
| | - Minjia Sheng
- School of Building Services Science and EngineeringXi'an University of Architecture and TechnologyXi'an710055China
| | - Li Chen
- School of Building Services Science and EngineeringXi'an University of Architecture and TechnologyXi'an710055China
| | - Fengchang Yang
- State Key Laboratory of Nonlinear MechanicsBeijing Key Laboratory of Engineered Construction and MechanobiologyInstitute of MechanicsChinese Academy of SciencesBeijing100190China
| | - Chenlu Li
- School of Building Services Science and EngineeringXi'an University of Architecture and TechnologyXi'an710055China
| | - Hangyu Li
- State Key Laboratory of Nonlinear MechanicsBeijing Key Laboratory of Engineered Construction and MechanobiologyInstitute of MechanicsChinese Academy of SciencesBeijing100190China
- School of Engineering ScienceUniversity of Chinese Academy of SciencesBeijing100049China
| | - Pengcheng Nie
- State Key Laboratory of Nonlinear MechanicsBeijing Key Laboratory of Engineered Construction and MechanobiologyInstitute of MechanicsChinese Academy of SciencesBeijing100190China
- School of Engineering ScienceUniversity of Chinese Academy of SciencesBeijing100049China
| | - Xinxin Lv
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of EducationBeijing Advanced Innovation Center for Biomedical EngineeringSchool of Biological Science and Medical EngineeringBeihang UniversityBeijing100083China
| | - Zheng Guo
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of EducationBeijing Advanced Innovation Center for Biomedical EngineeringSchool of Biological Science and Medical EngineeringBeihang UniversityBeijing100083China
| | - Jialing Cao
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of EducationBeijing Advanced Innovation Center for Biomedical EngineeringSchool of Biological Science and Medical EngineeringBeihang UniversityBeijing100083China
| | - Xiaohuan Wang
- State Key Laboratory of Nonlinear MechanicsBeijing Key Laboratory of Engineered Construction and MechanobiologyInstitute of MechanicsChinese Academy of SciencesBeijing100190China
| | - Long Li
- State Key Laboratory of Nonlinear MechanicsBeijing Key Laboratory of Engineered Construction and MechanobiologyInstitute of MechanicsChinese Academy of SciencesBeijing100190China
| | - Anthony L. Hu
- The High School Affiliated to Renmin University of ChinaBeijing100080China
| | - Dongshi Guan
- State Key Laboratory of Nonlinear MechanicsBeijing Key Laboratory of Engineered Construction and MechanobiologyInstitute of MechanicsChinese Academy of SciencesBeijing100190China
- School of Engineering ScienceUniversity of Chinese Academy of SciencesBeijing100049China
| | - Jing Du
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of EducationBeijing Advanced Innovation Center for Biomedical EngineeringSchool of Biological Science and Medical EngineeringBeihang UniversityBeijing100083China
| | - Haihang Cui
- School of Building Services Science and EngineeringXi'an University of Architecture and TechnologyXi'an710055China
| | - Xu Zheng
- State Key Laboratory of Nonlinear MechanicsBeijing Key Laboratory of Engineered Construction and MechanobiologyInstitute of MechanicsChinese Academy of SciencesBeijing100190China
| |
Collapse
|
7
|
Wu W, Lam AR, Suarez K, Smith GN, Duquette SM, Yu J, Mankus D, Bisher M, Lytton-Jean A, Manalis SR, Miettinen TP. Constant surface area-to-volume ratio during cell growth as a design principle in mammalian cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.02.601447. [PMID: 39005340 PMCID: PMC11244959 DOI: 10.1101/2024.07.02.601447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
All cells are subject to geometric constraints, such as surface area-to-volume (SA/V) ratio, that impact cell functions and force biological adaptations. Like the SA/V ratio of a sphere, it is generally assumed that the SA/V ratio of cells decreases as cell size increases. Here, we investigate this in near-spherical mammalian cells using single-cell measurements of cell mass and surface proteins, as well as imaging of plasma membrane morphology. We find that the SA/V ratio remains surprisingly constant as cells grow larger. This observation is largely independent of the cell cycle and the amount of cell growth. Consequently, cell growth results in increased plasma membrane folding, which simplifies cellular design by ensuring sufficient membrane area for cell division, nutrient uptake and deformation at all cell sizes.
Collapse
Affiliation(s)
- Weida Wu
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Alice R. Lam
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Kayla Suarez
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Grace N. Smith
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sarah M. Duquette
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jiaquan Yu
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - David Mankus
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Margaret Bisher
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Abigail Lytton-Jean
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Scott R. Manalis
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Teemu P. Miettinen
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
8
|
Alonso-Matilla R, Lam AR, Miettinen TP. Cell-intrinsic mechanical regulation of plasma membrane accumulation at the cytokinetic furrow. Proc Natl Acad Sci U S A 2024; 121:e2320769121. [PMID: 38990949 PMCID: PMC11260091 DOI: 10.1073/pnas.2320769121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 06/11/2024] [Indexed: 07/13/2024] Open
Abstract
Cytokinesis is the process where the mother cell's cytoplasm separates into daughter cells. This is driven by an actomyosin contractile ring that produces cortical contractility and drives cleavage furrow ingression, resulting in the formation of a thin intercellular bridge. While cytoskeletal reorganization during cytokinesis has been extensively studied, less is known about the spatiotemporal dynamics of the plasma membrane. Here, we image and model plasma membrane lipid and protein dynamics on the cell surface during leukemia cell cytokinesis. We reveal an extensive accumulation and folding of the plasma membrane at the cleavage furrow and the intercellular bridge, accompanied by a depletion and unfolding of the plasma membrane at the cell poles. These membrane dynamics are caused by two actomyosin-driven biophysical mechanisms: the radial constriction of the cleavage furrow causes local compression of the apparent cell surface area and accumulation of the plasma membrane at the furrow, while actomyosin cortical flows drag the plasma membrane toward the cell division plane as the furrow ingresses. The magnitude of these effects depends on the plasma membrane fluidity, cortex adhesion, and cortical contractility. Overall, our work reveals cell-intrinsic mechanical regulation of plasma membrane accumulation at the cleavage furrow that is likely to generate localized differences in membrane tension across the cytokinetic cell. This may locally alter endocytosis, exocytosis, and mechanotransduction, while also serving as a self-protecting mechanism against cytokinesis failures that arise from high membrane tension at the intercellular bridge.
Collapse
Affiliation(s)
| | - Alice R. Lam
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Teemu P. Miettinen
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA02139
| |
Collapse
|
9
|
Miettinen TP, Gomez AL, Wu Y, Wu W, Usherwood TR, Hwang Y, Roller BRK, Polz MF, Manalis SR. Cell size, density, and nutrient dependency of unicellular algal gravitational sinking velocities. SCIENCE ADVANCES 2024; 10:eadn8356. [PMID: 38968348 PMCID: PMC11225777 DOI: 10.1126/sciadv.adn8356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 06/04/2024] [Indexed: 07/07/2024]
Abstract
Eukaryotic phytoplankton, also known as algae, form the basis of marine food webs and drive marine carbon sequestration. Algae must regulate their motility and gravitational sinking to balance access to light at the surface and nutrients in deeper layers. However, the regulation of gravitational sinking remains largely unknown, especially in motile species. Here, we quantify gravitational sinking velocities according to Stokes' law in diverse clades of unicellular marine microalgae to reveal the cell size, density, and nutrient dependency of sinking velocities. We identify a motile algal species, Tetraselmis sp., that sinks faster when starved due to a photosynthesis-driven accumulation of carbohydrates and a loss of intracellular water, both of which increase cell density. Moreover, the regulation of cell sinking velocities is connected to proliferation and can respond to multiple nutrients. Overall, our work elucidates how cell size and density respond to environmental conditions to drive the vertical migration of motile algae.
Collapse
Affiliation(s)
- Teemu P. Miettinen
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Annika L. Gomez
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Yanqi Wu
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Weida Wu
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Thomas R. Usherwood
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Harvard-MIT Department of Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Yejin Hwang
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Benjamin R. K. Roller
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, 1030, Austria
| | - Martin F. Polz
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, 1030, Austria
| | - Scott R. Manalis
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
10
|
Li SS, Xue CD, Li YJ, Chen XM, Zhao Y, Qin KR. Microfluidic characterization of single-cell biophysical properties and the applications in cancer diagnosis. Electrophoresis 2024; 45:1212-1232. [PMID: 37909658 DOI: 10.1002/elps.202300177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/25/2023] [Accepted: 10/16/2023] [Indexed: 11/03/2023]
Abstract
Single-cell biophysical properties play a crucial role in regulating cellular physiological states and functions, demonstrating significant potential in the fields of life sciences and clinical diagnostics. Therefore, over the last few decades, researchers have developed various detection tools to explore the relationship between the biophysical changes of biological cells and human diseases. With the rapid advancement of modern microfabrication technology, microfluidic devices have quickly emerged as a promising platform for single-cell analysis offering advantages including high-throughput, exceptional precision, and ease of manipulation. Consequently, this paper provides an overview of the recent advances in microfluidic analysis and detection systems for single-cell biophysical properties and their applications in the field of cancer. The working principles and latest research progress of single-cell biophysical property detection are first analyzed, highlighting the significance of electrical and mechanical properties. The development of data acquisition and processing methods for real-time, high-throughput, and practical applications are then discussed. Furthermore, the differences in biophysical properties between tumor and normal cells are outlined, illustrating the potential for utilizing single-cell biophysical properties for tumor cell identification, classification, and drug response assessment. Lastly, we summarize the limitations of existing microfluidic analysis and detection systems in single-cell biophysical properties, while also pointing out the prospects and future directions of their applications in cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Shan-Shan Li
- School of Mechanical Engineering, Dalian University of Technology, Dalian, Liaoning, P. R. China
| | - Chun-Dong Xue
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Dalian, Liaoning, P. R. China
| | - Yong-Jiang Li
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Dalian, Liaoning, P. R. China
| | - Xiao-Ming Chen
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian, Liaoning, P. R. China
| | - Yan Zhao
- Department of Stomach Surgery, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, P. R. China
| | - Kai-Rong Qin
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Dalian, Liaoning, P. R. China
| |
Collapse
|
11
|
Winter PS, Ramseier ML, Navia AW, Saksena S, Strouf H, Senhaji N, DenAdel A, Mirza M, An HH, Bilal L, Dennis P, Leahy CS, Shigemori K, Galves-Reyes J, Zhang Y, Powers F, Mulugeta N, Gupta AJ, Calistri N, Van Scoyk A, Jones K, Liu H, Stevenson KE, Ren S, Luskin MR, Couturier CP, Amini AP, Raghavan S, Kimmerling RJ, Stevens MM, Crawford L, Weinstock DM, Manalis SR, Shalek AK, Murakami MA. Mutation and cell state compatibility is required and targetable in Ph+ acute lymphoblastic leukemia minimal residual disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.06.597767. [PMID: 38915726 PMCID: PMC11195125 DOI: 10.1101/2024.06.06.597767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Efforts to cure BCR::ABL1 B cell acute lymphoblastic leukemia (Ph+ ALL) solely through inhibition of ABL1 kinase activity have thus far been insufficient despite the availability of tyrosine kinase inhibitors (TKIs) with broad activity against resistance mutants. The mechanisms that drive persistence within minimal residual disease (MRD) remain poorly understood and therefore untargeted. Utilizing 13 patient-derived xenograft (PDX) models and clinical trial specimens of Ph+ ALL, we examined how genetic and transcriptional features co-evolve to drive progression during prolonged TKI response. Our work reveals a landscape of cooperative mutational and transcriptional escape mechanisms that differ from those causing resistance to first generation TKIs. By analyzing MRD during remission, we show that the same resistance mutation can either increase or decrease cellular fitness depending on transcriptional state. We further demonstrate that directly targeting transcriptional state-associated vulnerabilities at MRD can overcome BCR::ABL1 independence, suggesting a new paradigm for rationally eradicating MRD prior to relapse. Finally, we illustrate how cell mass measurements of leukemia cells can be used to rapidly monitor dominant transcriptional features of Ph+ ALL to help rationally guide therapeutic selection from low-input samples.
Collapse
Affiliation(s)
- Peter S. Winter
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Institute for Medical Engineering & Science, MIT, Cambridge, MA, USA
- Department of Chemistry, MIT, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Michelle L. Ramseier
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Institute for Medical Engineering & Science, MIT, Cambridge, MA, USA
- Department of Chemistry, MIT, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Andrew W. Navia
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Institute for Medical Engineering & Science, MIT, Cambridge, MA, USA
- Department of Chemistry, MIT, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Sachit Saksena
- Computer Science and Artificial Intelligence Laboratory, MIT, Cambridge, MA, USA
- Computational and Systems Biology Program, MIT, Cambridge, MA, USA
| | - Haley Strouf
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
| | - Nezha Senhaji
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Alan DenAdel
- Center for Computational Molecular Biology, Brown University, Providence, RI, USA
- Department of Biostatistics, Brown University, Providence, RI, USA
| | - Mahnoor Mirza
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
| | - Hyun Hwan An
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Laura Bilal
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
| | - Peter Dennis
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Catharine S. Leahy
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Kay Shigemori
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Jennyfer Galves-Reyes
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Institute for Medical Engineering & Science, MIT, Cambridge, MA, USA
- Department of Chemistry, MIT, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Ye Zhang
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Department of Biological Engineering, MIT, Cambridge, MA, USA
| | - Foster Powers
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Nolawit Mulugeta
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Institute for Medical Engineering & Science, MIT, Cambridge, MA, USA
- Department of Chemistry, MIT, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | | | - Nicholas Calistri
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
| | - Alex Van Scoyk
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Kristen Jones
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Huiyun Liu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | - Siyang Ren
- Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA USA
| | - Marlise R. Luskin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Charles P. Couturier
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Institute for Medical Engineering & Science, MIT, Cambridge, MA, USA
- Department of Chemistry, MIT, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | | | - Srivatsan Raghavan
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | | | - Mark M. Stevens
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
| | - Lorin Crawford
- Center for Computational Molecular Biology, Brown University, Providence, RI, USA
- Department of Biostatistics, Brown University, Providence, RI, USA
- Microsoft Research, Cambridge, MA, USA
| | - David M. Weinstock
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Current Address: Merck and Co., Rahway, NJ, USA
| | - Scott R. Manalis
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biological Engineering, MIT, Cambridge, MA, USA
| | - Alex K. Shalek
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Institute for Medical Engineering & Science, MIT, Cambridge, MA, USA
- Department of Chemistry, MIT, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Mark A. Murakami
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
12
|
Cai X, Wang Y, Cao Y, Yang W, Xia T, Li W. Flexural-Mode Piezoelectric Resonators: Structure, Performance, and Emerging Applications in Physical Sensing Technology, Micropower Systems, and Biomedicine. SENSORS (BASEL, SWITZERLAND) 2024; 24:3625. [PMID: 38894417 PMCID: PMC11175270 DOI: 10.3390/s24113625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 05/31/2024] [Accepted: 06/01/2024] [Indexed: 06/21/2024]
Abstract
Piezoelectric material-based devices have garnered considerable attention from scientists and engineers due to their unique physical characteristics, resulting in numerous intriguing and practical applications. Among these, flexural-mode piezoelectric resonators (FMPRs) are progressively gaining prominence due to their compact, precise, and efficient performance in diverse applications. FMPRs, resonators that utilize one- or two-dimensional piezoelectric materials as their resonant structure, vibrate in a flexural mode. The resonant properties of the resonator directly influence its performance, making in-depth research into the resonant characteristics of FMPRs practically significant for optimizing their design and enhancing their performance. With the swift advancement of micro-nano electronic technology, the application range of FMPRs continues to broaden. These resonators, representing a domain of piezoelectric material application in micro-nanoelectromechanical systems, have found extensive use in the field of physical sensing and are starting to be used in micropower systems and biomedicine. This paper reviews the structure, working principle, resonance characteristics, applications, and future prospects of FMPRs.
Collapse
Affiliation(s)
- Xianfa Cai
- College of Integrated Circuit Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210046, China; (X.C.); (Y.W.)
| | - Yiqin Wang
- College of Integrated Circuit Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210046, China; (X.C.); (Y.W.)
| | - Yunqi Cao
- State Key Laboratory of Industrial Control Technology, College of Control Science and Engineering, Zhejiang University, Hangzhou 310027, China;
| | - Wenyu Yang
- School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China;
| | - Tian Xia
- Department of Electrical and Biomedical Engineering, University of Vermont, Burlington, VT 05405, USA;
| | - Wei Li
- Department of Mechanical Engineering, University of Vermont, Burlington, VT 05405, USA
| |
Collapse
|
13
|
Wu W, Ishamuddin SH, Quinn TW, Yerrum S, Zhang Y, Debaize LL, Kao PL, Duquette SM, Murakami MA, Mohseni M, Chow KH, Miettinen TP, Ligon KL, Manalis SR. Measuring single-cell density with high throughput enables dynamic profiling of immune cell and drug response from patient samples. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.25.591092. [PMID: 38712225 PMCID: PMC11071500 DOI: 10.1101/2024.04.25.591092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Cell density, the ratio of cell mass to volume, is an indicator of molecular crowding and therefore a fundamental determinant of cell state and function. However, existing density measurements lack the precision or throughput to quantify subtle differences in cell states, particularly in primary samples. Here we present an approach for measuring the density of 30,000 single cells per hour with a precision of 0.03% (0.0003 g/mL) by integrating fluorescence exclusion microscopy with a suspended microchannel resonator. Applying this approach to human lymphocytes, we discovered that cell density and its variation decrease as cells transition from quiescence to a proliferative state, suggesting that the level of molecular crowding decreases and becomes more regulated upon entry into the cell cycle. Using a pancreatic cancer patient-derived xenograft model, we found that the ex vivo density response of primary tumor cells to drug treatment can predict in vivo tumor growth response. Our method reveals unexpected behavior in molecular crowding during cell state transitions and suggests density as a new biomarker for functional precision medicine.
Collapse
Affiliation(s)
- Weida Wu
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main St building 76, Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, 21 Ames St #56-651, Cambridge, MA 02139, USA
| | - Sarah H. Ishamuddin
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main St building 76, Cambridge, MA 02139, USA
| | - Thomas W. Quinn
- Center for Patient-Derived Models, Dana-Farber Cancer Institute, 21 Burlington Ave, Boston, MA 02215, USA
- Department of Pathology, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Avenue, Boston, MA 02215, USA
| | - Smitha Yerrum
- Center for Patient-Derived Models, Dana-Farber Cancer Institute, 21 Burlington Ave, Boston, MA 02215, USA
- Department of Pathology, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Avenue, Boston, MA 02215, USA
| | - Ye Zhang
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main St building 76, Cambridge, MA 02139, USA
| | - Lydie L. Debaize
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA
| | - Pei-Lun Kao
- Center for Patient-Derived Models, Dana-Farber Cancer Institute, 21 Burlington Ave, Boston, MA 02215, USA
- Department of Pathology, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Avenue, Boston, MA 02215, USA
| | - Sarah Marie Duquette
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main St building 76, Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, 21 Ames St #56-651, Cambridge, MA 02139, USA
| | - Mark A. Murakami
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA
| | - Morvarid Mohseni
- Oncology Discovery, Bristol-Myers Squibb, 250 Water St, Cambridge, MA 02141, USA
| | - Kin-Hoe Chow
- Center for Patient-Derived Models, Dana-Farber Cancer Institute, 21 Burlington Ave, Boston, MA 02215, USA
- Department of Pathology, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Avenue, Boston, MA 02215, USA
| | - Teemu P. Miettinen
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main St building 76, Cambridge, MA 02139, USA
| | - Keith L. Ligon
- Center for Patient-Derived Models, Dana-Farber Cancer Institute, 21 Burlington Ave, Boston, MA 02215, USA
- Department of Pathology, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Avenue, Boston, MA 02215, USA
- Broad Institute of Harvard and MIT, 415 Main St, Cambridge, MA 02142, USA
- Department of Pathology, Brigham & Women’s Hospital, Harvard Medical School, 75 Francis St, Boston, MA 02215, USA
- Department of Pathology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Ave, Boston, MA 02115, USA
| | - Scott R. Manalis
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main St building 76, Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, 21 Ames St #56-651, Cambridge, MA 02139, USA
- Broad Institute of Harvard and MIT, 415 Main St, Cambridge, MA 02142, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 33 Massachusetts Ave, Cambridge, MA 02139, USA
| |
Collapse
|
14
|
Miller AB, Rodriguez FH, Langenbucher A, Lin L, Bray C, Duquette S, Zhang Y, Goulet D, Lane AA, Weinstock DM, Hemann MT, Manalis SR. Leukemia circulation kinetics revealed through blood exchange method. Commun Biol 2024; 7:483. [PMID: 38643279 PMCID: PMC11032325 DOI: 10.1038/s42003-024-06181-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 04/10/2024] [Indexed: 04/22/2024] Open
Abstract
Leukemias and their bone marrow microenvironments undergo dynamic changes over the course of disease. However, little is known about the circulation kinetics of leukemia cells, nor the impact of specific factors on the clearance of circulating leukemia cells (CLCs) from the blood. To gain a basic understanding of CLC dynamics over the course of disease progression and therapeutic response, we apply a blood exchange method to mouse models of acute leukemia. We find that CLCs circulate in the blood for 1-2 orders of magnitude longer than solid tumor circulating tumor cells. We further observe that: (i) leukemia presence in the marrow can limit the clearance of CLCs in a model of acute lymphocytic leukemia (ALL), and (ii) CLCs in a model of relapsed acute myeloid leukemia (AML) can clear faster than their untreated counterparts. Our approach can also directly quantify the impact of microenvironmental factors on CLC clearance properties. For example, data from two leukemia models suggest that E-selectin, a vascular adhesion molecule, alters CLC clearance. Our research highlights that clearance rates of CLCs can vary in response to tumor and treatment status and provides a strategy for identifying basic processes and factors that govern the kinetics of circulating cells.
Collapse
Affiliation(s)
- Alex B Miller
- Harvard-MIT Department of Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Boston, MA, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Felicia H Rodriguez
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Adam Langenbucher
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Computation and Systems Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Lin Lin
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Christina Bray
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sarah Duquette
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ye Zhang
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Dan Goulet
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Andrew A Lane
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - David M Weinstock
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Merck and Co., Rahway, NJ, USA
| | - Michael T Hemann
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Scott R Manalis
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
15
|
Imaeda K, Shikama Y, Ushikoshi S, Sakai S, Ryuzaki S, Ueno K. Coherent acoustic vibrations of Au nanoblocks and their modulation by Al2O3 layer deposition. J Chem Phys 2024; 160:144702. [PMID: 38587227 DOI: 10.1063/5.0202690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 03/20/2024] [Indexed: 04/09/2024] Open
Abstract
Coherent acoustic phonons induced in metallic nanostructures have attracted tremendous attention owing to their unique optomechanical characteristics. The frequency of the acoustic phonon vibration is highly sensitive to the material adsorption on metallic nanostructures and, therefore, the acoustic phonon offers a promising platform for ultrasensitive mass sensors. However, the physical origin of acoustic frequency modulation by material adsorption has been partially unexplored so far. In this study, we prepared Al2O3-deposited Au nanoblocks and measured their acoustic phonon frequencies using time-resolved pump-probe measurements. By precisely controlling the thickness of the Al2O3 layer, we systematically investigated the relation between the acoustic phonon frequency and the deposited Al2O3 amounts. The time-resolved measurements revealed that the acoustic breathing modes were predominantly excited in the Au nanoblocks, and their frequencies increased with the increment of the Al2O3 thickness. From the relationship between the acoustic phonon frequency and the Al2O3 thickness, we revealed that the acoustic phonon frequency modulation is attributed to the density change of the whole sample. Our results would provide fruitful information for developing quantitative mass sensing devices based on metallic nanostructures.
Collapse
Affiliation(s)
- Keisuke Imaeda
- Faculty of Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Yuto Shikama
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Shimba Ushikoshi
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Satoshi Sakai
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Sou Ryuzaki
- Faculty of Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Kosei Ueno
- Faculty of Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| |
Collapse
|
16
|
Lu Z, Jia H, Wang D, Yu H. MEMS Resonant Beam with Outstanding Uniformity of Sensitivity and Temperature Distribution for Accurate Gas Sensing and On-Chip TGA. SENSORS (BASEL, SWITZERLAND) 2024; 24:2495. [PMID: 38676112 PMCID: PMC11054474 DOI: 10.3390/s24082495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024]
Abstract
Micromechanical resonators have aroused growing interest as biological and chemical sensors, and microcantilever beams are the main research focus. Recently, a resonant microcantilever with an integrated heater has been applied in on-chip thermogravimetric analysis (TGA). However, there is a strong relationship between the mass sensitivity of a resonant microcantilever and the location of adsorbed masses. Different sampling positions will cause sensitivity differences, which will result in an inaccurate calculation of mass change. Herein, an integrated H-shaped resonant beam with uniform mass sensitivity and temperature distribution is proposed and developed to improve the accuracy of bio/chemical sensing and TGA applications. Experiments verified that the presented resonant beam possesses much better uniformity of sensitivity and temperature distribution compared with resonant microcantilevers. Gas-sensing and TGA experiments utilizing the integrated resonant beam were also carried out and exhibited good measurement accuracy.
Collapse
Affiliation(s)
- Zheng Lu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (Z.L.); (D.W.)
| | - Hao Jia
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China;
| | - Ding Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (Z.L.); (D.W.)
| | - Haitao Yu
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China;
| |
Collapse
|
17
|
Pradeep S, Zangle TA. LVING reveals the intracellular structure of cell growth. Sci Rep 2024; 14:8544. [PMID: 38609444 PMCID: PMC11014851 DOI: 10.1038/s41598-024-58992-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 04/05/2024] [Indexed: 04/14/2024] Open
Abstract
The continuous balance of growth and degradation inside cells maintains homeostasis. Disturbance of this balance by internal or external factors cause state of disease, while effective disease treatments seek to restore this balance. Here, we present a method based on quantitative phase imaging (QPI) based measurements of cell mass and the velocity of mass transport to quantify the balance of growth and degradation within intracellular control volumes. The result, which we call Lagrangian velocimetry for intracellular net growth (LVING), provides high resolution maps of intracellular biomass production and degradation. We use LVING to quantify the growth in different regions of the cell during phases of the cell cycle. LVING can also be used to quantitatively compare the effect of range of chemotherapy drug doses on subcellular growth processes. Finally, we applied LVING to characterize the effect of autophagy on the growth machinery inside cells. Overall, LVING reveals both the structure and distribution of basal growth within cells, as well as the disruptions to this structure that occur during alterations in cell state.
Collapse
Affiliation(s)
- Soorya Pradeep
- Department of Chemical Engineering, University of Utah, Salt Lake City, Utah, USA
| | - Thomas A Zangle
- Department of Chemical Engineering, University of Utah, Salt Lake City, Utah, USA.
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA.
| |
Collapse
|
18
|
Stefan CP, Blancett CD, Huynh KA, Minogue TD. Relative quantification of the recA gene for antimicrobial susceptibility testing in response to ciprofloxacin for pathogens of concern. Sci Rep 2024; 14:2716. [PMID: 38302590 PMCID: PMC10834403 DOI: 10.1038/s41598-024-52937-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 01/25/2024] [Indexed: 02/03/2024] Open
Abstract
Antimicrobial resistance (AR) is one of the greatest threats to global health and is associated with higher treatment costs, longer hospital stays, and increased mortality. Current gold standard antimicrobial susceptibility tests (AST) rely on organism growth rates that result in prolonged time-to-answer for slow growing organisms. Changes in the cellular transcriptome can be rapid in the presence of stressors such as antibiotic pressure, providing the opportunity to develop AST towards transcriptomic signatures. Here, we show that relative quantification of the recA gene is an indicator of pathogen susceptibly when select species are challenged with relevant concentrations of ciprofloxacin. We demonstrate that ciprofloxacin susceptible strains of Y. pestis and B. anthracis have significant increases in relative recA gene expression after 15 min of exposure while resistant strains show no significant differences. Building upon this data, we designed and optimized seven duplex RT-qPCR assays targeting the recA and 16S rRNA gene, response and housekeeping genes, respectively, for multiple biothreat and ESKAPE pathogens. Final evaluation of all seven duplex assays tested against 124 ciprofloxacin susceptible and resistant strains, including Tier 1 pathogens, demonstrated an overall categorical agreement compared to microbroth dilution of 97% using a defined cutoff. Testing pathogen strains commonly associated with urinary tract infections in contrived mock sample sets demonstrated an overall categorical agreement of 96%. These data indicate relative quantification of a single highly conserved gene accurately determines susceptibility for multiple bacterial species in response to ciprofloxacin.
Collapse
Affiliation(s)
- Christopher P Stefan
- Diagnostic Systems Division, United States Army Medical Research Institute of Infectious Disease, Fort Detrick, MD, 21702, USA.
| | - Candace D Blancett
- Diagnostic Systems Division, United States Army Medical Research Institute of Infectious Disease, Fort Detrick, MD, 21702, USA
| | - Kimberly A Huynh
- Diagnostic Systems Division, United States Army Medical Research Institute of Infectious Disease, Fort Detrick, MD, 21702, USA
| | - Timothy D Minogue
- Diagnostic Systems Division, United States Army Medical Research Institute of Infectious Disease, Fort Detrick, MD, 21702, USA
| |
Collapse
|
19
|
Cafolla C, Philpott-Robson J, Elbourne A, Voïtchovsky K. Quantitative Detection of Biological Nanovesicles in Drops of Saliva Using Microcantilevers. ACS APPLIED MATERIALS & INTERFACES 2024; 16:44-53. [PMID: 38157306 PMCID: PMC10788824 DOI: 10.1021/acsami.3c12035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 01/03/2024]
Abstract
Extracellular nanovesicles (EVs) are lipid-based vesicles secreted by cells and are present in all bodily fluids. They play a central role in communication between distant cells and have been proposed as potential indicators for the early detection of a wide range of diseases, including different types of cancer. However, reliable quantification of a specific subpopulation of EVs remains challenging. The process is typically lengthy and costly and requires purification of relatively large quantities of biopsy samples. Here, we show that microcantilevers operated with sufficiently small vibration amplitudes can successfully quantify a specific subpopulation of EVs directly from a drop (0.1 mL) of unprocessed saliva in less than 20 min. Being a complex fluid, saliva is highly non-Newtonian, normally precluding mechanical sensing. With a combination of standard rheology and microrheology, we demonstrate that the non-Newtonian properties are scale-dependent, enabling microcantilever measurements with a sensitivity identical to that in pure water when operating at the nanoscale. We also address the problem of unwanted sensor biofouling by using a zwitterionic coating, allowing efficient quantification of EVs at concentrations down to 0.1 μg/mL, based on immunorecognition of the EVs' surface proteins. We benchmark the technique on model EVs and illustrate its potential by quantifying populations of natural EVs commonly present in human saliva. The method effectively bypasses the difficulty of targeted detection in non-Newtonian fluids and could be used for various applications, from the detection of EVs and viruses in bodily fluids to the detection of molecular clusters or nanoparticles in other complex fluids.
Collapse
Affiliation(s)
| | | | - Aaron Elbourne
- School
of Science, STEM College, RMIT University, Melbourne, VIC 3001, Australia
| | | |
Collapse
|
20
|
Koide H, Yamaguchi K, Sato K, Aoshima M, Kanata S, Yonezawa S, Asai T. Engineering Temperature-Responsive Polymer Nanoparticles that Load and Release Paclitaxel, a Low-Molecular-Weight Anticancer Drug. ACS OMEGA 2024; 9:1011-1019. [PMID: 38222561 PMCID: PMC10785788 DOI: 10.1021/acsomega.3c07226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 01/16/2024]
Abstract
Poly(N-isopropylacrylamide) (pNIPAm) undergoes a hydrophilicity/hydrophobicity change around its lower critical solution temperature (LCST). Therefore, pNIPAm-based polymer nanoparticles (NPs) shrink above their LCST and swell below their LCST. Although temperature responsiveness is an important characteristic of synthetic polymers in drug and gene delivery, few studies have investigated the temperature-responsive catch and release of low-molecular-weight drugs (LMWDs) as their affinity to the target changes. Since LMWDs have only a few functional groups, preparation of NPs with high affinity for LMWDs is hard compared with that for peptides and proteins. However, LMWDs such as anticancer drugs often have a stronger effect than peptides and proteins. Therefore, the development of NPs that can load and release LMWDs is needed for drug delivery. Here, we engineered pNIPAm-based NPs that capture paclitaxel (PTX), an anticancer LMWD that inhibits microtubules, above their LCST and release it below their LCST. The swelling transition of the NPs depended on their hydrophobic monomer structure. NPs with swelling ratios (=NP size at 25 °C/NP size at 37 °C) exceeding 1.90 released captured PTX when cooled to below their LCST by changing the affinity for PTX. On the other hand, NPs with a swelling ratio of only 1.14 released melittin. Therefore, optimizing the functional monomers of temperature-responsive NPs is essential for the catch and release of the target in a temperature-dependent manner. These results can guide the design of stimuli-responsive polymers that catch and release their target molecules.
Collapse
Affiliation(s)
- Hiroyuki Koide
- Department of Medical Biochemistry, University of Shizuoka School of Pharmaceutical Sciences, 52-1 Yada, Suruga-ku, Shizuoka, Shizuoka 422-8526, Japan
| | - Kazuma Yamaguchi
- Department of Medical Biochemistry, University of Shizuoka School of Pharmaceutical Sciences, 52-1 Yada, Suruga-ku, Shizuoka, Shizuoka 422-8526, Japan
| | - Keijiro Sato
- Department of Medical Biochemistry, University of Shizuoka School of Pharmaceutical Sciences, 52-1 Yada, Suruga-ku, Shizuoka, Shizuoka 422-8526, Japan
| | - Maki Aoshima
- Department of Medical Biochemistry, University of Shizuoka School of Pharmaceutical Sciences, 52-1 Yada, Suruga-ku, Shizuoka, Shizuoka 422-8526, Japan
| | - Shoko Kanata
- Department of Medical Biochemistry, University of Shizuoka School of Pharmaceutical Sciences, 52-1 Yada, Suruga-ku, Shizuoka, Shizuoka 422-8526, Japan
| | - Sei Yonezawa
- Department of Medical Biochemistry, University of Shizuoka School of Pharmaceutical Sciences, 52-1 Yada, Suruga-ku, Shizuoka, Shizuoka 422-8526, Japan
| | - Tomohiro Asai
- Department of Medical Biochemistry, University of Shizuoka School of Pharmaceutical Sciences, 52-1 Yada, Suruga-ku, Shizuoka, Shizuoka 422-8526, Japan
| |
Collapse
|
21
|
Escobar J, Molina J, Gil-Santos E, Ruz JJ, Malvar Ó, Kosaka PM, Tamayo J, San Paulo Á, Calleja M. Nanomechanical Sensing for Mass Flow Control in Nanowire-Based Open Nanofluidic Systems. ACS NANO 2023; 17:21044-21055. [PMID: 37903505 PMCID: PMC10655260 DOI: 10.1021/acsnano.3c04020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 10/16/2023] [Accepted: 10/19/2023] [Indexed: 11/01/2023]
Abstract
Open nanofluidic systems, where liquids flow along the outer surface of nanoscale structures, provide otherwise unfeasible capabilities for extremely miniaturized liquid handling applications. A critical step toward fully functional applications is to obtain quantitative mass flow control. We demonstrate the application of nanomechanical sensing for this purpose by integrating voltage-driven liquid flow along nanowire open channels with mass detection based on flexural resonators. This approach is validated by assembling the nanowires with microcantilever resonators, enabling high-precision control of larger flows, and by using the nanowires as resonators themselves, allowing extremely small liquid volume handling. Both implementations are demonstrated by characterizing voltage-driven flow of ionic liquids along the surface of the nanowires. We find a voltage range where mass flow rate follows a nonlinear monotonic increase, establishing a steady flow regime for which we show mass flow control at rates from below 1 ag/s to above 100 fg/s and precise liquid handling down to the zeptoliter scale. The observed behavior of mass flow rate is consistent with a voltage-induced transition from static wetting to dynamic spreading as the mechanism underlying liquid transport along the nanowires.
Collapse
Affiliation(s)
- Javier
E. Escobar
- Instituto
de Micro y Nanotecnología (IMN-CNM, CSIC), Isaac Newton 8, 28760 Tres Cantos, Madrid, Spain
| | - Juan Molina
- Instituto
de Micro y Nanotecnología (IMN-CNM, CSIC), Isaac Newton 8, 28760 Tres Cantos, Madrid, Spain
| | - Eduardo Gil-Santos
- Instituto
de Micro y Nanotecnología (IMN-CNM, CSIC), Isaac Newton 8, 28760 Tres Cantos, Madrid, Spain
| | - José J. Ruz
- Instituto
de Micro y Nanotecnología (IMN-CNM, CSIC), Isaac Newton 8, 28760 Tres Cantos, Madrid, Spain
| | - Óscar Malvar
- Instituto
de Micro y Nanotecnología (IMN-CNM, CSIC), Isaac Newton 8, 28760 Tres Cantos, Madrid, Spain
| | - Priscila M. Kosaka
- Instituto
de Micro y Nanotecnología (IMN-CNM, CSIC), Isaac Newton 8, 28760 Tres Cantos, Madrid, Spain
| | - Javier Tamayo
- Instituto
de Micro y Nanotecnología (IMN-CNM, CSIC), Isaac Newton 8, 28760 Tres Cantos, Madrid, Spain
| | - Álvaro San Paulo
- Instituto
de Micro y Nanotecnología (IMN-CNM, CSIC), Isaac Newton 8, 28760 Tres Cantos, Madrid, Spain
| | - Montserrat Calleja
- Instituto
de Micro y Nanotecnología (IMN-CNM, CSIC), Isaac Newton 8, 28760 Tres Cantos, Madrid, Spain
| |
Collapse
|
22
|
Ko J, Lee BJ, Lee J. Advanced operation of heated fluidic resonators via mechanical and thermal loss reduction in vacuum. MICROSYSTEMS & NANOENGINEERING 2023; 9:127. [PMID: 37829159 PMCID: PMC10564801 DOI: 10.1038/s41378-023-00575-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 06/06/2023] [Accepted: 07/04/2023] [Indexed: 10/14/2023]
Abstract
For simultaneous and quantitative thermophysical measurements of ultrasmall liquid volumes, we have recently developed and reported heated fluidic resonators (HFRs). In this paper, we improve the precision of HFRs in a vacuum by significantly reducing the thermal loss around the sensing element. A vacuum chamber with optical, electrical, and microfluidic access is custom-built to decrease the convection loss by two orders of magnitude under 10-4 mbar conditions. As a result, the measurement sensitivities for thermal conductivity and specific heat capacity are increased by 4.1 and 1.6 times, respectively. When differentiating between deionized water (H2O) and heavy water (D2O) with similar thermophysical properties and ~10% different mass densities, the signal-to-noise ratio (property differences over standard error) for H2O and D2O is increased by 9 and 5 times for thermal conductivity and specific heat capacity, respectively.
Collapse
Affiliation(s)
- Juhee Ko
- Department of Mechanical Engineering, Center for Extreme Thermal Physics and Manufacturing, Korea Advanced Institute of Science and Technology (KAIST), 34141 Daejeon, Korea
| | - Bong Jae Lee
- Department of Mechanical Engineering, Center for Extreme Thermal Physics and Manufacturing, Korea Advanced Institute of Science and Technology (KAIST), 34141 Daejeon, Korea
| | - Jungchul Lee
- Department of Mechanical Engineering, Center for Extreme Thermal Physics and Manufacturing, Korea Advanced Institute of Science and Technology (KAIST), 34141 Daejeon, Korea
| |
Collapse
|
23
|
Sun J, Huang X, Chen J, Xiang R, Ke X, Lin S, Xuan W, Liu S, Cao Z, Sun L. Recent advances in deformation-assisted microfluidic cell sorting technologies. Analyst 2023; 148:4922-4938. [PMID: 37743834 DOI: 10.1039/d3an01150j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Cell sorting is an essential prerequisite for cell research and has great value in life science and clinical studies. Among the many microfluidic cell sorting technologies, label-free methods based on the size of different cell types have been widely studied. However, the heterogeneity in size for cells of the same type and the inevitable size overlap between different types of cells would result in performance degradation in size-based sorting. To tackle such challenges, deformation-assisted technologies are receiving more attention recently. Cell deformability is an inherent biophysical marker of cells that reflects the changes in their internal structures and physiological states. It provides additional dimensional information for cell sorting besides size. Therefore, in this review, we summarize the recent advances in deformation-assisted microfluidic cell sorting technologies. According to how the deformability is characterized and the form in which the force acts, the technologies can be divided into two categories: (1) the indirect category including transit-time-based and image-based methods, and (2) the direct category including microstructure-based and hydrodynamics-based methods. Finally, the separation performance and the application scenarios of each method, the existing challenges and future outlook are discussed. Deformation-assisted microfluidic cell sorting technologies are expected to realize greater potential in the label-free analysis of cells.
Collapse
Affiliation(s)
- Jingjing Sun
- Ministry of Education Key Lab of RF Circuits and Systems, Hangzhou Dianzi University, China.
| | - Xiwei Huang
- Ministry of Education Key Lab of RF Circuits and Systems, Hangzhou Dianzi University, China.
| | - Jin Chen
- Ministry of Education Key Lab of RF Circuits and Systems, Hangzhou Dianzi University, China.
| | - Rikui Xiang
- Ministry of Education Key Lab of RF Circuits and Systems, Hangzhou Dianzi University, China.
| | - Xiang Ke
- Ministry of Education Key Lab of RF Circuits and Systems, Hangzhou Dianzi University, China.
| | - Siru Lin
- Ministry of Education Key Lab of RF Circuits and Systems, Hangzhou Dianzi University, China.
| | - Weipeng Xuan
- Ministry of Education Key Lab of RF Circuits and Systems, Hangzhou Dianzi University, China.
| | - Shan Liu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, China
| | - Zhen Cao
- College of Information Science and Electronic Engineering, Zhejiang University, China
| | - Lingling Sun
- Ministry of Education Key Lab of RF Circuits and Systems, Hangzhou Dianzi University, China.
| |
Collapse
|
24
|
Miller AB, Langenbucher A, Rodriguez FH, Lin L, Bray C, Duquette S, Zhang Y, Goulet D, Lane AA, Weinstock DM, Hemann MT, Manalis SR. Leukemia circulation kinetics revealed through blood exchange method. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.03.556043. [PMID: 37732189 PMCID: PMC10508764 DOI: 10.1101/2023.09.03.556043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Leukemias and their bone marrow microenvironment are known to undergo dynamic changes over the course of disease. However, relatively little is known about the circulation kinetics of leukemia cells, nor the impact of specific factors on the clearance of circulating leukemia cells (CLCs) from the blood. To gain a basic understanding of leukemia cell dynamics over the course of disease progression and therapeutic response, we apply a blood exchange method to mouse models of acute leukemia. We find that CLCs circulate in the blood for 1-2 orders of magnitude longer than solid tumor circulating tumor cells. We further observe that: i) leukemia presence in the marrow can limit the clearance of CLCs in a model of acute lymphocytic leukemia (ALL), and ii) CLCs in a model of relapsed acute myeloid leukemia (AML) can clear faster than their untreated counterparts. Our approach can also directly quantify the impact of microenvironmental factors on CLC clearance properties. For example, data from two leukemia models suggest that E-selectin, a vascular adhesion molecule, alters CLC clearance. Our research highlights that clearance rates of CLCs can vary in response to tumor and treatment status and provides a strategy for identifying basic processes and factors that govern the kinetics of circulating cells.
Collapse
Affiliation(s)
- Alex B Miller
- Harvard-MIT Department of Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Boston, MA, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Adam Langenbucher
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Computation and Systems Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Felicia H Rodriguez
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Lin Lin
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Christina Bray
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sarah Duquette
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ye Zhang
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Dan Goulet
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Andrew A Lane
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - David M Weinstock
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Michael T Hemann
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Scott R Manalis
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
25
|
Walther-Antonio M, Schulze-Makuch D. The Hypothesis of a "Living Pulse" in Cells. Life (Basel) 2023; 13:1506. [PMID: 37511881 PMCID: PMC10381587 DOI: 10.3390/life13071506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/26/2023] [Accepted: 06/30/2023] [Indexed: 07/30/2023] Open
Abstract
Motility is a great biosignature and its pattern is characteristic for specific microbes. However, motion does also occur within the cell by the myriads of ongoing processes within the cell and the exchange of gases and nutrients with the outside environment. Here, we propose that the sum of these processes in a microbial cell is equivalent to a pulse in complex organisms and suggest a first approach to measure the "living pulse" in microorganisms. We emphasize that if a "living pulse" can be shown to exist, it would have far-reaching applications, such as for finding life in extreme environments on Earth and in extraterrestrial locations, as well as making sure that life is not present where it should not be, such as during medical procedures and in the food processing industry.
Collapse
Affiliation(s)
- Marina Walther-Antonio
- Department of Surgery, Division of Surgical Research, Mayo Clinic, Rochester, MN 55905, USA
- Department of Obstetrics and Gynecology, Mayo Clinic, Rochester, MN 55905, USA
- Microbiome Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Dirk Schulze-Makuch
- Astrobiology Group, Center of Astronomy and Astrophysics, Technical University, 10623 Berlin, Germany
- German Research Centre for Geosciences (GFZ), Section Geomicrobiology, 14473 Potsdam, Germany
- Department of Plankton and Microbial Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, 16775 Stechlin, Germany
- School of the Environment, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
26
|
Martín-Pérez A, Ramos D. Nanomechanical hydrodynamic force sensing using suspended microfluidic channels. MICROSYSTEMS & NANOENGINEERING 2023; 9:53. [PMID: 37168769 PMCID: PMC10164740 DOI: 10.1038/s41378-023-00531-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 05/13/2023]
Abstract
Microfluidics has demonstrated high versatility in the analysis of in-flow particles and can even achieve mechanical properties measurements of biological cells by applying hydrodynamic forces. However, there is currently no available technique that enables the direct measurement and tracking of these hydrodynamic forces acting on a flowing particle. In this work, we introduce a novel method for the direct measurement of the hydrodynamic force actuating on an in-flow particle based on the analysis of the induced resonance changes of suspended microchannel resonators (SMRs). This hydrodynamic force sensitivity depends on the device used; therefore, we considered the geometry and materials to advance this dependency on the SMR resonance frequency.
Collapse
Affiliation(s)
- Alberto Martín-Pérez
- Optomechanics Lab, Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC), 3 Sor Juana Inés de la Cruz (Madrid), E-28049 Madrid, Spain
| | - Daniel Ramos
- Optomechanics Lab, Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC), 3 Sor Juana Inés de la Cruz (Madrid), E-28049 Madrid, Spain
| |
Collapse
|
27
|
Sakkos JK, Santos-Merino M, Kokarakis EJ, Li B, Fuentes-Cabrera M, Zuliani P, Ducat DC. Predicting partner fitness based on spatial structuring in a light-driven microbial community. PLoS Comput Biol 2023; 19:e1011045. [PMID: 37134119 PMCID: PMC10184905 DOI: 10.1371/journal.pcbi.1011045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 05/15/2023] [Accepted: 03/22/2023] [Indexed: 05/04/2023] Open
Abstract
Microbial communities have vital roles in systems essential to human health and agriculture, such as gut and soil microbiomes, and there is growing interest in engineering designer consortia for applications in biotechnology (e.g., personalized probiotics, bioproduction of high-value products, biosensing). The capacity to monitor and model metabolite exchange in dynamic microbial consortia can provide foundational information important to understand the community level behaviors that emerge, a requirement for building novel consortia. Where experimental approaches for monitoring metabolic exchange are technologically challenging, computational tools can enable greater access to the fate of both chemicals and microbes within a consortium. In this study, we developed an in-silico model of a synthetic microbial consortia of sucrose-secreting Synechococcus elongatus PCC 7942 and Escherichia coli W. Our model was built on the NUFEB framework for Individual-based Modeling (IbM) and optimized for biological accuracy using experimental data. We showed that the relative level of sucrose secretion regulates not only the steady-state support for heterotrophic biomass, but also the temporal dynamics of consortia growth. In order to determine the importance of spatial organization within the consortium, we fit a regression model to spatial data and used it to accurately predict colony fitness. We found that some of the critical parameters for fitness prediction were inter-colony distance, initial biomass, induction level, and distance from the center of the simulation volume. We anticipate that the synergy between experimental and computational approaches will improve our ability to design consortia with novel function.
Collapse
Affiliation(s)
- Jonathan K Sakkos
- Plant Research Laboratory, Michigan State University, East Lansing, Michigan, United States of America
| | - María Santos-Merino
- Plant Research Laboratory, Michigan State University, East Lansing, Michigan, United States of America
| | - Emmanuel J Kokarakis
- Plant Research Laboratory, Michigan State University, East Lansing, Michigan, United States of America
- Department of Microbiology & Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - Bowen Li
- School of Computing, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Miguel Fuentes-Cabrera
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
| | - Paolo Zuliani
- Dipartimento di Informatica, Università di Roma "La Sapienza", Rome, Italy
| | - Daniel C Ducat
- Plant Research Laboratory, Michigan State University, East Lansing, Michigan, United States of America
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, United States of America
| |
Collapse
|
28
|
Funayama K, Miura A, Tanaka H. Flexibly designable wettability gradient for passive control of fluid motion via physical surface modification. Sci Rep 2023; 13:6440. [PMID: 37081066 PMCID: PMC10119291 DOI: 10.1038/s41598-023-33737-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 04/18/2023] [Indexed: 04/22/2023] Open
Abstract
Modified solid surfaces exhibit unique wetting behavior, such as hydrophobicity and hydrophilicity. Such behavior can passively control the fluid flow. In this study, we experimentally demonstrated a wettability-designable cell array consisting of unetched and physically etched surfaces by reactive ion etching on a silicon substrate. The etching process induced a significant surface roughness on the silicon surface. Thus, the unetched and etched surfaces have different wettabilities. By adjusting the ratio between the unetched and etched surface areas, we designed one- and two-dimensional wettability gradients for the fluid channel. Consequently, fine-tuned channels passively realized unidirectional and curved fluid motions. The design of a wettability gradient is crucial for practical and portable systems with integrated fluid channels.
Collapse
Affiliation(s)
- Keita Funayama
- Toyota Central R&D Labs., Inc., Nagakute, Aichi, 480-1192, Japan.
| | - Atsushi Miura
- Toyota Central R&D Labs., Inc., Nagakute, Aichi, 480-1192, Japan
| | - Hiroya Tanaka
- Toyota Central R&D Labs., Inc., Nagakute, Aichi, 480-1192, Japan
| |
Collapse
|
29
|
Yu J, Li D, Zhu C, Ouyang Q, Miao C, Yu H. A Magnetic Levitation System for Range/Sensitivity-Tunable Measurement of Density. SENSORS (BASEL, SWITZERLAND) 2023; 23:3955. [PMID: 37112295 PMCID: PMC10143956 DOI: 10.3390/s23083955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 06/19/2023]
Abstract
Magnetic levitation (MagLev) is a promising density-based analytical technique with numerous applications. Several MagLev structures with different levels of sensitivity and range have been studied. However, these MagLev structures can seldom satisfy the different performance requirements simultaneously, such as high sensitivity, wide measurement range, and easy operation, which have prevented them from being widely used. In this work, a tunable MagLev system was developed. It is confirmed by numerical simulation and experiments that this system possesses a high resolution down to 10-7 g/cm3 or even higher compared to the existing systems. Meanwhile, the resolution and range of this tunable system can be adjusted to meet different requirements of measurement. More importantly, this system can be operated simply and conveniently. This bundle of characteristics demonstrates that the novel tunable MagLev system could be handily applied in various density-based analyses on demand, which would greatly expand the ability of MagLev technology.
Collapse
Affiliation(s)
- Junhui Yu
- Key Laboratory of Flexible Electronics (KLOFE), School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Donghai Li
- Key Laboratory of Flexible Electronics (KLOFE), School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Chengxian Zhu
- Key Laboratory of Flexible Electronics (KLOFE), School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Qiran Ouyang
- Key Laboratory of Flexible Electronics (KLOFE), School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Chunyang Miao
- Key Laboratory of Flexible Electronics (KLOFE), School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Haidong Yu
- Key Laboratory of Flexible Electronics (KLOFE), School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
- Xi’an Institute of Flexible Electronics, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, China
| |
Collapse
|
30
|
Kida H, Yamasaki Y, Feril Jr. LB, Endo H, Itaka K, Tachibana K. Efficient mRNA Delivery with Lyophilized Human Serum Albumin-Based Nanobubbles. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1283. [PMID: 37049376 PMCID: PMC10097217 DOI: 10.3390/nano13071283] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/30/2023] [Accepted: 04/04/2023] [Indexed: 06/19/2023]
Abstract
In this study, we developed an efficient mRNA delivery vehicle by optimizing a lyophilization method for preserving human serum albumin-based nanobubbles (HSA-NBs), bypassing the need for artificial stabilizers. The morphology of the lyophilized material was verified using scanning electron microscopy, and the concentration, size, and mass of regenerated HSA-NBs were verified using flow cytometry, nanoparticle tracking analysis, and resonance mass measurements, and compared to those before lyophilization. The study also evaluated the response of HSA-NBs to 1 MHz ultrasound irradiation and their ultrasound (US) contrast effect. The functionality of the regenerated HSA-NBs was confirmed by an increased expression of intracellularly transferred Gluc mRNA, with increasing intensity of US irradiation. The results indicated that HSA-NBs retained their structural and functional integrity markedly, post-lyophilization. These findings support the potential of lyophilized HSA-NBs, as efficient imaging, and drug delivery systems for various medical applications.
Collapse
Affiliation(s)
- Hiroshi Kida
- Department of Anatomy, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Yutaro Yamasaki
- Department of Anatomy, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Loreto B. Feril Jr.
- Department of Anatomy, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Hitomi Endo
- Department of Anatomy, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Keiji Itaka
- Department of Biofunction Research, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Tokyo 101-0062, Japan
| | - Katsuro Tachibana
- Department of Anatomy, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| |
Collapse
|
31
|
Khan N, Ali F, Ahmad Z, Murtaza S, Ganie AH, Khan I, Eldin SM. A time fractional model of a Maxwell nanofluid through a channel flow with applications in grease. Sci Rep 2023; 13:4428. [PMID: 36932142 PMCID: PMC10023803 DOI: 10.1038/s41598-023-31567-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/14/2023] [Indexed: 03/19/2023] Open
Abstract
Several scientists are interested in recent developments in nanotechnology and nanoscience. Grease is an essential component of many machines and engines because it helps keep them cool by reducing friction between their various elements. In sealed life applications including centralized lubrication systems, electrical motors, bearings, logging and mining machinery, truck wheel hubs, construction, landscaping, and gearboxes, greases are also utilized. Nanoparticles are added to convectional grease to improve its cooling and lubricating properties. More specifically, the current study goal is to investigate open channel flow while taking grease into account as a Maxwell fluid with MoS2 nanoparticles suspended in it. The Caputo-Fabrizio time-fractional derivative is used to convert the issue from a linked classical order PDE to a local fractional model. To determine the precise solutions for the velocity, temperature, and concentration distributions, two integral transform techniques the finite Fourier sine and the Laplace transform technique are jointly utilized. The resultant answers are physically explored and displayed using various graphs. It is important to note that the fractional model, which offers a variety of integral curves, more accurately depicts the flow behavior than the classical model. Skin friction, the Nusselt number, and the Sherwood number are engineering-related numbers that are quantitatively determined and displayed in tabular form. It is determined that adding MoS2 nanoparticles to grease causes a 19.1146% increase in heat transmission and a 2.5122% decrease in mass transfer. The results obtained in this work are compared with published literature for the accuracy purpose.
Collapse
Affiliation(s)
- Naveed Khan
- Department of Mathematics, City University of Science and Information Technology, Peshawar, 25000, Khyber Pakhtunkhwa, Pakistan
| | - Farhad Ali
- Department of Mathematics, City University of Science and Information Technology, Peshawar, 25000, Khyber Pakhtunkhwa, Pakistan.
| | - Zubair Ahmad
- Department of Mathematics, City University of Science and Information Technology, Peshawar, 25000, Khyber Pakhtunkhwa, Pakistan
| | - Saqib Murtaza
- Department of Mathematics, City University of Science and Information Technology, Peshawar, 25000, Khyber Pakhtunkhwa, Pakistan
| | - Abdul Hamid Ganie
- Basic Sciences Department, College of Science and Theoretical Studies, Saudi Electronic University, Abha Male, 61421, Saudi Arabia
| | - Ilyas Khan
- Department of Mathematics, College of Science Al-Zulfi, Majmaah University, Al-Majmaah, 11952, Saudi Arabia
| | - Sayed M Eldin
- Center of Research, Faculty of Engineering, Future University in Egypt, New Cairo, 11835, Egypt
| |
Collapse
|
32
|
Koide H, Saito K, Yoshimatsu K, Chou B, Hoshino Y, Yonezawa S, Oku N, Asai T, Shea KJ. Cooling-induced, localized release of cytotoxic peptides from engineered polymer nanoparticles in living mice for cancer therapy. J Control Release 2023; 355:745-759. [PMID: 36804558 DOI: 10.1016/j.jconrel.2023.02.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/31/2023] [Accepted: 02/13/2023] [Indexed: 02/23/2023]
Abstract
Temperature-responsive polymers are often characterized by an abrupt change in the degree of swelling brought about by small changes in temperature. Polymers with a lower critical solution temperature (LCST) in particular, are important as drug and gene delivery vehicles. Drug molecules are taken up by the polymer in their solvent swollen state below their LCST. Increasing the temperature above the LCST, typically physiological temperatures, results in desolvation of polymer chains and microstructure collapse. The trapped drug is released slowly by passive diffusion through the collapsed polymer network. Since diffusion is dependent on many variables, localizing and control of the drug delivery rate can be challenging. Here, we report a fundamentally different approach for the rapid (seconds) tumor-specific delivery of a biomacromolecular drug. A copolymer nanoparticle (NP) was engineered with affinity for melittin, a peptide with potent anti-cancer activity, at physiological temperature. Intravenous injection of the NP-melittin complex results in its accumulation in organs and at the tumor. We demonstrate that by local cooling of the tumor the melittin is rapidly released from the NP-melittin complex. The release occurs only at the cooled tumor site. Importantly, tumor growth was significantly suppressed using this technique demonstrating therapeutically useful quantities of the drug can be delivered. This work reports the first example of an in vivo site-specific release of a macromolecular drug by local cooling for cancer therapy. In view of the increasing number of cryotherapeutic devices for in vivo applications, this work has the potential to stimulate cryotherapy for in vivo drug delivery.
Collapse
Affiliation(s)
- Hiroyuki Koide
- Department of Medical Biochemistry, Graduate school of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, Shizuoka 422-8526, Japan.
| | - Kazuhiro Saito
- Department of Medical Biochemistry, Graduate school of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, Shizuoka 422-8526, Japan
| | - Keiichi Yoshimatsu
- Department of Chemistry, Missouri State University, 901 South National Avenue, Springfield, MO 65897, USA; Department of Chemistry, University of California Irvine, Irvine, CA 92697, USA.
| | - Beverly Chou
- Department of Chemistry, University of California Irvine, Irvine, CA 92697, USA
| | - Yu Hoshino
- Department of Applied Chemistry, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
| | - Sei Yonezawa
- Department of Medical Biochemistry, Graduate school of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, Shizuoka 422-8526, Japan
| | - Naoto Oku
- Department of Medical Biochemistry, Graduate school of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, Shizuoka 422-8526, Japan; Laboratory of Biomedical and Analytical Sciences, Faculty of Pharma Sciences, Teikyo University, 2-11-1 Kaga, Itabashi, Tokyo 173-8605, Japan
| | - Tomohiro Asai
- Department of Medical Biochemistry, Graduate school of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, Shizuoka 422-8526, Japan
| | - Kenneth J Shea
- Department of Chemistry, University of California Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
33
|
Stachiv I, Kuo CY, Li W. Protein adsorption by nanomechanical mass spectrometry: Beyond the real-time molecular weighting. Front Mol Biosci 2023; 9:1058441. [PMID: 36685281 PMCID: PMC9849248 DOI: 10.3389/fmolb.2022.1058441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/14/2022] [Indexed: 01/06/2023] Open
Abstract
During past decades, enormous progress in understanding the mechanisms of the intermolecular interactions between the protein and surface at the single-molecule level has been achieved. These advances could only be possible by the ongoing development of highly sophisticated experimental methods such as atomic force microscopy, optical microscopy, surface plasmon resonance, ellipsometry, quartz crystal microbalance, conventional mass spectrometry, and, more recently, the nanomechanical systems. Here, we highlight the main findings of recent studies on the label-free single-molecule (protein) detection by nanomechanical systems including those focusing on the protein adsorption on various substrate surfaces. Since the nanomechanical techniques are capable of detecting and manipulating proteins even at the single-molecule level, therefore, they are expected to open a new way of studying the dynamics of protein functions. It is noteworthy that, in contrast to other experimental methods, where only given protein properties like molecular weight or protein stiffness can be determined, the nanomechanical systems enable a real-time measurement of the multiple protein properties (e.g., mass, stiffness, and/or generated surface stress), making them suitable for the study of protein adsorption mechanisms. Moreover, we also discuss the possible future trends in label-free detection and analysis of dynamics of protein complexes with these nanomechanical systems.
Collapse
Affiliation(s)
- Ivo Stachiv
- Department of Functional Materials, Institute of Physics, Czech Academy of Sciences, Prague, Czechia,*Correspondence: Ivo Stachiv,
| | - Chih-Yun Kuo
- Department of Neurology and Centre of Clinical Neuroscience, First Faculty of Medicine and General University Hospital in Prague, Charles University, Prague, Czechia
| | - Wei Li
- Department of Functional Materials, Institute of Physics, Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
34
|
Drobek C, Meyer J, Mau R, Wolff A, Peters K, Seitz H. Volumetric mass density measurements of mesenchymal stem cells in suspension using a density meter. iScience 2022; 26:105796. [PMID: 36594013 PMCID: PMC9803822 DOI: 10.1016/j.isci.2022.105796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 09/16/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
To use regeneratively active cells for cell therapeutic applications, the cells must be isolated from their resident tissues. Different isolation procedures subject these cells to varying degrees of mechanical strain, which can affect the yield of cell number and viability. Knowledge of cell volumetric mass density is important for experimental and numerical optimization of these procedures. Although methods for measuring cell volumetric mass density already exist, they either consume much time and cell material or require a special setup. Therefore, we developed a user-friendly method that is based on the use of readily available instrumentation. The newly developed method is predicated on the linear relationship between the volumetric mass density of the cell suspension and the volumetric mass density, number, and diameter of the cells in the suspension. We used this method to determine the volumetric mass density of mesenchymal stem cells (MSCs) and compared it to results from the established density centrifugation.
Collapse
Affiliation(s)
- Christoph Drobek
- Chair of Microfluidics, University of Rostock, 18059 Rostock, Germany
- Corresponding author
| | - Juliane Meyer
- Department of Cell Biology, Rostock University Medical Center, 18057 Rostock, Germany
| | - Robert Mau
- Chair of Microfluidics, University of Rostock, 18059 Rostock, Germany
| | - Anne Wolff
- Department of Cell Biology, Rostock University Medical Center, 18057 Rostock, Germany
| | - Kirsten Peters
- Department of Cell Biology, Rostock University Medical Center, 18057 Rostock, Germany
- Department of Life, Light and Matter, University of Rostock, 18059 Rostock, Germany
- Corresponding author
| | - Hermann Seitz
- Chair of Microfluidics, University of Rostock, 18059 Rostock, Germany
- Department of Life, Light and Matter, University of Rostock, 18059 Rostock, Germany
- Corresponding author
| |
Collapse
|
35
|
Conti M, Andolfi L, Betz-Güttner E, Zilio SD, Lazzarino M. Half-wet nanomechanical sensors for cellular dynamics investigations. BIOMATERIALS ADVANCES 2022; 144:213222. [PMID: 36493536 DOI: 10.1016/j.bioadv.2022.213222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/25/2022] [Accepted: 11/22/2022] [Indexed: 12/03/2022]
Abstract
Testing devices based on cell tracking are particularly interesting as diagnostic tools in medicine for antibiotics susceptibility testing and in vitro chemotherapeutic screening. In this framework, the application of nanomechanical sensors has attracted much attention, although some crucial aspects such as the effects of the viscous damping, when operating in physiological conditions environment, still need to be properly solved. To address this problem, we have designed and fabricated a nanomechanical force sensor that operates at the interface between liquid and air. Our sensor consists of a silicon chip including a 500 μm wide Si3N4 suspended membrane where three rectangular silicon nitride cantilevers are defined by a lithographically etched gap. The cantilevers can be operated in air, fully immersed in a liquid environment and in half wetting condition, with one side in contact with the solution and the opposite one in air. The formation of a water meniscus in the gap prevents the leakage of medium to the opposite side, which remained dry and is used to reflect a laser to measure the cantilever deflection. This configuration enables to keep the cells in physiological environment while operating the sensor in dry conditions. The performance of the sensor has been applied to monitor the motion and measures the forces developed by migrating breast cancer cell. The functionalization of one side of the cantilever and the use of a purposely designed chamber of measurements enable the confinement of the cell only on one side of the cantilever. Our data demonstrate that this approach can distinguish the adhesion and contraction forces developed by different cell lines and may represents valuable tool for a fast and quantitative in-vitro screening of new chemotherapeutic drugs targeting cancer cell adhesion and motility.
Collapse
Affiliation(s)
- Martina Conti
- University of Trieste, Department of Physics, PhD in Nanotechnology, 34100 Trieste, Italy; CNR-IOM, Istituto Officina dei Materiali - Consiglio Nazionale delle Ricerche, 34149 Trieste, Italy.
| | - Laura Andolfi
- CNR-IOM, Istituto Officina dei Materiali - Consiglio Nazionale delle Ricerche, 34149 Trieste, Italy
| | - Erik Betz-Güttner
- University of Trieste, Department of Physics, PhD in Nanotechnology, 34100 Trieste, Italy; CNR-IOM, Istituto Officina dei Materiali - Consiglio Nazionale delle Ricerche, 34149 Trieste, Italy
| | - Simone Dal Zilio
- CNR-IOM, Istituto Officina dei Materiali - Consiglio Nazionale delle Ricerche, 34149 Trieste, Italy
| | - Marco Lazzarino
- CNR-IOM, Istituto Officina dei Materiali - Consiglio Nazionale delle Ricerche, 34149 Trieste, Italy
| |
Collapse
|
36
|
Kimmerling RJ, Stevens MM, Olcum S, Minnah A, Vacha M, LaBella R, Ferri M, Wasserman SC, Fujii J, Shaheen Z, Sundaresan S, Ribadeneyra D, Jayabalan DS, Agte S, Aleman A, Criscitiello JA, Niesvizky R, Luskin MR, Parekh S, Rosenbaum CA, Tamrazi A, Reid CA. A pipeline for malignancy and therapy agnostic assessment of cancer drug response using cell mass measurements. Commun Biol 2022; 5:1295. [PMID: 36435843 PMCID: PMC9701192 DOI: 10.1038/s42003-022-04270-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 11/16/2022] [Indexed: 11/28/2022] Open
Abstract
Functional precision medicine offers a promising complement to genomics-based cancer therapy guidance by testing drug efficacy directly on a patient's tumor cells. Here, we describe a workflow that utilizes single-cell mass measurements with inline brightfield imaging and machine-learning based image classification to broaden the clinical utility of such functional testing for cancer. Using these image-curated mass measurements, we characterize mass response signals for 60 different drugs with various mechanisms of action across twelve different cell types, demonstrating an improved ability to detect response for several slow acting drugs as compared with standard cell viability assays. Furthermore, we use this workflow to assess drug responses for various primary tumor specimen formats including blood, bone marrow, fine needle aspirates (FNA), and malignant fluids, all with reports generated within two days and with results consistent with patient clinical responses. The combination of high-resolution measurement, broad drug and malignancy applicability, and rapid return of results offered by this workflow suggests that it is well-suited to performing clinically relevant functional assessment of cancer drug response.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Juanita Fujii
- Department of Clinical Research, Dignity Health, Sequoia Hospital, Redwood City, CA, USA
| | - Zayna Shaheen
- Department of Clinical Research, Dignity Health, Sequoia Hospital, Redwood City, CA, USA
| | - Srividya Sundaresan
- Department of Clinical Research, Dignity Health, Sequoia Hospital, Redwood City, CA, USA
| | | | | | - Sarita Agte
- Department of Medicine, Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Adolfo Aleman
- Department of Medicine, Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | | | - Marlise R Luskin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Samir Parekh
- Department of Medicine, Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Anobel Tamrazi
- Division of Vascular and Interventional Radiology, Palo Alto Medical Foundation, Redwood City, CA, USA
| | | |
Collapse
|
37
|
Ko J, Khan F, Nam Y, Lee BJ, Lee J. Nanomechanical Sensing Using Heater-Integrated Fluidic Resonators. NANO LETTERS 2022; 22:7768-7775. [PMID: 35980246 DOI: 10.1021/acs.nanolett.2c01572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Micro/nanochannel resonators have been used to measure cells, suspended nanoparticles, or liquids, primarily at or near room temperature while their high temperature operation can offer promising applications such as calorimetric measurements and thermogravimetric analysis. To date, global electrothermal or local photothermal heating mechanisms have been attempted for channel resonators, but both approaches are intrinsically limited by a narrow temperature modulation range, slow heating/cooling, less quantitative heating, or time-consuming optical alignment. Here, we introduce heater-integrated fluidic resonators (HFRs) that enable fast, quantitative, alignment-free, and wide-range temperature modulation and simultaneously offer resistive thermometry and resonant densitometry. HFRs with or without a dispensing nozzle are fabricated, thoroughly characterized, and used for high throughput thermophysical properties measurements, microchannel boiling studies, and atomized spray dispensing. The HFR, without a doubt, opens a new avenue for nanoscale thermal analysis and processing and further encourages the integration of additional functions into channel resonators.
Collapse
Affiliation(s)
- Juhee Ko
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea
- Center for Extreme Thermal Physics and Manufacturing, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea
| | - Faheem Khan
- Life Analytical Inc., Edmonton, Alberta T6B 2N2, Canada
| | - Youngsuk Nam
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea
- Center for Extreme Thermal Physics and Manufacturing, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea
| | - Bong Jae Lee
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea
- Center for Extreme Thermal Physics and Manufacturing, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea
| | - Jungchul Lee
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea
- Center for Extreme Thermal Physics and Manufacturing, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea
| |
Collapse
|
38
|
Liang M, Zhong J, Ai Y. A Systematic Study of Size Correlation and Young's Modulus Sensitivity for Cellular Mechanical Phenotyping by Microfluidic Approaches. Adv Healthc Mater 2022; 11:e2200628. [PMID: 35852381 DOI: 10.1002/adhm.202200628] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/29/2022] [Indexed: 01/27/2023]
Abstract
Cellular mechanical properties are a class of intrinsic biophysical markers for cell state and health. Microfluidic mechanical phenotyping methods have emerged as promising tools to overcome the challenges of low throughput and high demand for manual skills in conventional approaches. In this work, two types of microfluidic cellular mechanical phenotyping methods, contactless hydro-stretching deformability cytometry (lh-DC) and contact constriction deformability cytometry (cc-DC) are comprehensively studied and compared. Polymerized hydrogel beads with defined sizes are used to characterize a strong negative correlation between size and deformability in cc-DC (r = -0.95), while lh-DC presents a weak positive correlation (r = 0.13). Young's modulus sensitivity in cc-DC is size-dependent while it is a constant in lh-DC. Moreover, the deformability assessment for human breast cell line mixture suggests the lh-DC exhibits better differentiation capability of cells with different size distributions, while cc-DC provides higher sensitivity to identify cellular mechanical changes within a single cell line. This work is the first to present a quantitative study and comparison of size correlation and Young's modulus sensitivity of contactless and contact microfluidic mechanical phenotyping methods, which provides guidance to choose the most suitable cellular mechanical phenotyping platform for specific cell analysis applications.
Collapse
Affiliation(s)
- Minhui Liang
- Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, Singapore, 487372, Singapore
| | - Jianwei Zhong
- Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, Singapore, 487372, Singapore
| | - Ye Ai
- Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, Singapore, 487372, Singapore
| |
Collapse
|
39
|
Doan-Nguyen TP, Crespy D. Advanced density-based methods for the characterization of materials, binding events, and kinetics. Chem Soc Rev 2022; 51:8612-8651. [PMID: 36172819 DOI: 10.1039/d1cs00232e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Investigations of the densities of chemicals and materials bring valuable insights into the fundamental understanding of matter and processes. Recently, advanced density-based methods have been developed with wide measurement ranges (i.e. 0-23 g cm-3), high resolutions (i.e. 10-6 g cm-3), compatibility with different types of samples and the requirement of extremely low volumes of sample (as low as a single cell). Certain methods, such as magnetic levitation, are inexpensive, portable and user-friendly. Advanced density-based methods are, therefore, beneficially used to obtain absolute density values, composition of mixtures, characteristics of binding events, and kinetics of chemical and biological processes. Herein, the principles and applications of magnetic levitation, acoustic levitation, electrodynamic balance, aqueous multiphase systems, and suspended microchannel resonators for materials science are discussed.
Collapse
Affiliation(s)
- Thao P Doan-Nguyen
- Max Planck-VISTEC Partner Laboratory for Sustainable Materials, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand. .,Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand
| | - Daniel Crespy
- Max Planck-VISTEC Partner Laboratory for Sustainable Materials, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand. .,Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand
| |
Collapse
|
40
|
Figueroa B, Xu FX, Hu R, Men S, Fu D. Quantitative Imaging of Intracellular Density with Ratiometric Stimulated Raman Scattering Microscopy. J Phys Chem B 2022; 126:7595-7603. [PMID: 36135097 DOI: 10.1021/acs.jpcb.2c04355] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cell size and density are tightly controlled in mammalian cells. They impact a wide range of physiological functions, including osmoregulation, tissue homeostasis, and growth regulation. Compared to size, density variation for a given cell type is typically much smaller, implying that cell-type-specific density plays an important role in cell function. However, little is known about how cell density affects cell function or how it is regulated. Current tools for intracellular cell density measurements are limited to either suspended cells or cells grown on 2D substrates, neither of which recapitulate the physiology of single cells in intact tissue. While optical measurements have the potential to noninvasively measure cell density in situ, light scattering in multicellular systems prevents direct quantification. Here, we introduce an intracellular density imaging technique based on ratiometric stimulated Raman scattering microscopy (rSRS). It uses intrinsic vibrational information from intracellular macromolecules to quantify dry mass density. Moreover, water is used as an internal standard to correct for aberration and light scattering effects. We demonstrate real-time measurement of intracellular density and show that density is tightly regulated across different cell types and can be used to differentiate cell types as well as cell states. We further demonstrate dynamic imaging of density change in response to osmotic challenge as well as intracellular density imaging of a 3D tumor spheroid. Our technique has the potential for imaging intracellular density in intact tissue and understanding density regulation and its role in tissue homeostasis.
Collapse
Affiliation(s)
- Benjamin Figueroa
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Fiona Xi Xu
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Ruoqian Hu
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Shuaiqian Men
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Dan Fu
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
41
|
Li Y, Wong IY, Guo M. Reciprocity of Cell Mechanics with Extracellular Stimuli: Emerging Opportunities for Translational Medicine. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107305. [PMID: 35319155 PMCID: PMC9463119 DOI: 10.1002/smll.202107305] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/20/2022] [Indexed: 06/14/2023]
Abstract
Human cells encounter dynamic mechanical cues in healthy and diseased tissues, which regulate their molecular and biophysical phenotype, including intracellular mechanics as well as force generation. Recent developments in bio/nanomaterials and microfluidics permit exquisitely sensitive measurements of cell mechanics, as well as spatiotemporal control over external mechanical stimuli to regulate cell behavior. In this review, the mechanobiology of cells interacting bidirectionally with their surrounding microenvironment, and the potential relevance for translational medicine are considered. Key fundamental concepts underlying the mechanics of living cells as well as the extracelluar matrix are first introduced. Then the authors consider case studies based on 1) microfluidic measurements of nonadherent cell deformability, 2) cell migration on micro/nano-topographies, 3) traction measurements of cells in three-dimensional (3D) matrix, 4) mechanical programming of organoid morphogenesis, as well as 5) active mechanical stimuli for potential therapeutics. These examples highlight the promise of disease diagnosis using mechanical measurements, a systems-level understanding linking molecular with biophysical phenotype, as well as therapies based on mechanical perturbations. This review concludes with a critical discussion of these emerging technologies and future directions at the interface of engineering, biology, and medicine.
Collapse
Affiliation(s)
- Yiwei Li
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei, 430074, China
| | - Ian Y Wong
- School of Engineering, Center for Biomedical Engineering, Joint Program in Cancer Biology, Brown University, 184 Hope St Box D, Providence, RI, 02912, USA
| | - Ming Guo
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
42
|
Chien CC, Jiang J, Gong B, Li T, Gaitas A. AFM Microfluidic Cantilevers as Weight Sensors for Live Single Cell Mass Measurements. MEASUREMENT SCIENCE & TECHNOLOGY 2022; 33:095009. [PMID: 35832465 PMCID: PMC9273105 DOI: 10.1088/1361-6501/ac7280] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Reliably measuring small mass changes at the single-cell level is challenging. In this manuscript, we report the use of microfluidic cantilevers in liquid with sub-nanogram scale weight sensing capability for the measurement of cellular mass changes of living single cells. With this instrumentation, we were able to perform fast mass measurements within 3 minutes. We show results of mass measurements of polystyrene and metal beads of various sizes (smallest weight measured at 280 ± 95 pg) and live single-cell mass measurements in a physiologically relevant environment. We also performed finite element analysis to simulate and optimize the structural design and materials of cantilevers. Our simulation results indicate that using polymer materials, such as SU8 and polyimide, could improve the minimal detectable mass by 3-fold compared to conventional silicon cantilevers. The simulations also suggest that smaller dimensions of length, width, and thickness would improve the mass detection capability of microfluidic cantilevers.
Collapse
Affiliation(s)
- Chen-Chi Chien
- The Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Jiaxin Jiang
- Department of Electrical Engineering and Computer Science, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Bin Gong
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas 77555, USA. Sealy Center for Vector Borne and Zoonotic Diseases, University of Texas Medical Branch, Galveston, Texas 77555, USA
- Center of Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas 77555, USA
- Institute for Human Infectious and Immunity, University of Texas Medical Branch, Galveston, Texas 77555, USA
| | - Tao Li
- Department of Electrical Engineering and Computer Science, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Angelo Gaitas
- The Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
- BioMedical Engineering & Imaging Institute, Leon and Norma Hess Center for Science and Medicine, New York, New York 10029, USA
| |
Collapse
|
43
|
Discrimination of tumor cell type based on cytometric detection of dielectric properties. Talanta 2022; 246:123524. [DOI: 10.1016/j.talanta.2022.123524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/27/2022] [Accepted: 05/01/2022] [Indexed: 01/03/2023]
|
44
|
Li R, Song Z, Zhu H, Zhang F, Chen L, Ning C, Ruan S. Ultrasensitive Detection of Biomarkers in a Color-Switchable Microcavity-Reactor Laser. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202326. [PMID: 35676221 PMCID: PMC9376852 DOI: 10.1002/advs.202202326] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Indexed: 06/15/2023]
Abstract
Early detection and diagnosis are vitally important in reducing the mortality rate of fatal diseases but require highly sensitive detection of biomarkers. Presently, detection methods with the highest sensitivity require in vitro processing, while in vivo compatible fluorescence detections require a much higher concentration of biomarkers or limit of detection (LOD). In this paper, a fundamentally new strategy for ultrasensitive detection based on color-switchable lasing with a cavity-enhanced reduction of LOD is demonstrated, down to 1.4 × 10-16 mg ml-1 for a quantitative detection, lower than both the fluorescence method and plasmonic enhanced method. For a qualitative or a yes/no type of detection, the LOD is as low as 10-17 mg ml-1 . The approach in this work is based on a dye-embedded, in vivo compatible, polystyrene-sphere cavity, penetrable by biomarkers. A polystyrene sphere serves the dual roles of a laser cavity and an in vivo bio-reactor, in which dye molecules react with a biomarker, reporting biomarker information through lasing signals. The cavity-enhanced emission and lasing with only a single biomarker molecule per cavity allow improved visual distinguishability via color changes. Furthermore, when combined with a narrow-band filter, the color-switchable lasers act as an "on-off" logic signal and can be integrated into multiplexing detection assay biochips.
Collapse
Affiliation(s)
- Ran Li
- College of New Materials and New EnergiesShenzhen Technology UniversityShenzhen518118China
| | - Zongpeng Song
- College of New Materials and New EnergiesShenzhen Technology UniversityShenzhen518118China
| | - Haiou Zhu
- College of New Materials and New EnergiesShenzhen Technology UniversityShenzhen518118China
| | - Fanglin Zhang
- School of ChemistryChemical Engineering and Life SciencesWuhan University of TechnologyWuhan430070China
| | - Lingling Chen
- College of Health and Environmental EngineeringShenzhen Technology University, ChinaShenzhen518118China
| | - Cun‐Zheng Ning
- Department of Electronic EngineeringTsinghua UniversityBeijing100084China
| | - Shuangchen Ruan
- College of New Materials and New EnergiesShenzhen Technology UniversityShenzhen518118China
| |
Collapse
|
45
|
Chellasivalingam M, Zielinski AT, Whitney TS, Boies AM, Seshia AA. Towards Portable MEMS Oscillators for Sensing Nanoparticles. SENSORS (BASEL, SWITZERLAND) 2022; 22:5485. [PMID: 35897988 PMCID: PMC9330167 DOI: 10.3390/s22155485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
This paper reports on the design, and implementation of piezoelectric-on-silicon MEMS resonators installed within a portable experimental setup for sensing nanoparticles in a laboratory environment. MEMS oscillators with a center frequency of approximately 5.999 MHz are employed for sensing 50 nm size-selected silver nanoparticles generated in the laboratory. The same experimental setup is then assembled to sense indoor particles that are present in the laboratory environment. The challenges associated with particle deposition as a result of assembling the portable experimental setup is highlighted. Furthermore, the MEMS oscillators demonstrate that the total mass of silver nanoparticles deposited onto the MEMS resonator surface using the inertial impaction technique-based experimental setup is approximately 7.993 nanograms. The total indoor particle mass accumulated on the MEMS resonator surface is estimated to be approximately 1.732 nanograms and 26.9 picograms for two different runs. The frequency resolution of the MEMS oscillator is estimated to be approximately 32 ppb and, consequently, the minimum detectable particle mass is approximately 60 femtograms for a 9.2 s integration time.
Collapse
Affiliation(s)
- Malar Chellasivalingam
- Department of Engineering, University of Cambridge, Cambridge CB2 1PZ, UK; (T.S.W.); (A.M.B.)
- The Nanoscience Centre, University of Cambridge, Cambridge CB3 0FF, UK
| | - Arthur T. Zielinski
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK;
- Centre for Atmospheric Science, University of Cambridge, Cambridge CB2 1EZ, UK
| | - Thomas S. Whitney
- Department of Engineering, University of Cambridge, Cambridge CB2 1PZ, UK; (T.S.W.); (A.M.B.)
| | - Adam M. Boies
- Department of Engineering, University of Cambridge, Cambridge CB2 1PZ, UK; (T.S.W.); (A.M.B.)
| | - Ashwin A. Seshia
- Department of Engineering, University of Cambridge, Cambridge CB2 1PZ, UK; (T.S.W.); (A.M.B.)
- The Nanoscience Centre, University of Cambridge, Cambridge CB3 0FF, UK
| |
Collapse
|
46
|
High-resolution mass measurements of single budding yeast reveal linear growth segments. Nat Commun 2022; 13:3483. [PMID: 35732645 PMCID: PMC9217925 DOI: 10.1038/s41467-022-30781-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 05/18/2022] [Indexed: 11/08/2022] Open
Abstract
The regulation of cell growth has fundamental physiological, biotechnological and medical implications. However, methods that can continuously monitor individual cells at sufficient mass and time resolution hardly exist. Particularly, detecting the mass of individual microbial cells, which are much smaller than mammalian cells, remains challenging. Here, we modify a previously described cell balance ('picobalance') to monitor the proliferation of single cells of the budding yeast, Saccharomyces cerevisiae, under culture conditions in real time. Combined with optical microscopy to monitor the yeast morphology and cell cycle phase, the picobalance approaches a total mass resolution of 0.45 pg. Our results show that single budding yeast cells (S/G2/M phase) increase total mass in multiple linear segments sequentially, switching their growth rates. The growth rates weakly correlate with the cell mass of the growth segments, and the duration of each growth segment correlates negatively with cell mass. We envision that our technology will be useful for direct, accurate monitoring of the growth of single cells throughout their cycle.
Collapse
|
47
|
Qiu Y, Chien CC, Maroulis B, Bei J, Gaitas A, Gong B. Extending applications of AFM to fluidic AFM in single living cell studies. J Cell Physiol 2022; 237:3222-3238. [PMID: 35696489 PMCID: PMC9378449 DOI: 10.1002/jcp.30809] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 05/25/2022] [Indexed: 12/30/2022]
Abstract
In this article, a review of a series of applications of atomic force microscopy (AFM) and fluidic Atomic Force Microscopy (fluidic AFM, hereafter fluidFM) in single-cell studies is presented. AFM applications involving single-cell and extracellular vesicle (EV) studies, colloidal force spectroscopy, and single-cell adhesion measurements are discussed. FluidFM is an offshoot of AFM that combines a microfluidic cantilever with AFM and has enabled the research community to conduct biological, pathological, and pharmacological studies on cells at the single-cell level in a liquid environment. In this review, capacities of fluidFM are discussed to illustrate (1) the speed with which sequential measurements of adhesion using coated colloid beads can be done, (2) the ability to assess lateral binding forces of endothelial or epithelial cells in a confluent cell monolayer in an appropriate physiological environment, and (3) the ease of measurement of vertical binding forces of intercellular adhesion between heterogeneous cells. Furthermore, key applications of fluidFM are reviewed regarding to EV absorption, manipulation of a single living cell by intracellular injection, sampling of cellular fluid from a single living cell, patch clamping, and mass measurements of a single living cell.
Collapse
Affiliation(s)
- Yuan Qiu
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Chen-Chi Chien
- The Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - Basile Maroulis
- The Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - Jiani Bei
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Angelo Gaitas
- The Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, New York City, New York, USA.,BioMedical Engineering & Imaging Institute, Leon and Norma Hess Center for Science and Medicine, New York City, New York, USA
| | - Bin Gong
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA.,Sealy Center for Vector Borne and Zoonotic Diseases, University of Texas Medical Branch, Galveston, Texas, USA.,Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas, USA.,Institute for Human Infectious and Immunity, University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
48
|
Study on the Stability of Functionally Graded Simply Supported Fluid-Conveying Microtube under Multi-Physical Fields. MICROMACHINES 2022; 13:mi13060895. [PMID: 35744509 PMCID: PMC9229689 DOI: 10.3390/mi13060895] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/31/2022] [Accepted: 05/31/2022] [Indexed: 12/10/2022]
Abstract
The stability of functionally graded simply supported fluid-conveying microtubes under multiple physical fields was studied in this article. The strain energy of the fluid-conveying microtubes was determined based on strain gradient theory, and the governing equation of the functionally graded, simply supported, fluid-conveying microtube was established using Hamilton’s principle. The Galerkin method was used to solve the governing equation, and the effects of the dimensionless microscale parameters, temperature difference, and magnetic field intensity on the stability of the microtube were investigated. The results showed that the dimensionless microscale parameters have a significant impact on the stability of the microtube. The smaller the dimensionless microscale parameters were, the stronger the microscale effect of the material and the better the microtube stability became. The increase in the temperature difference decreased the eigenfrequency and critical velocity of the microtube and reduced the microtube stability. However, the magnetic field had the opposite effect. The greater the magnetic field intensity was, the greater the eigenfrequency and critical velocity were, and the more stable the microtube became.
Collapse
|
49
|
Klotz F, Kitzinger K, Ngugi DK, Büsing P, Littmann S, Kuypers MMM, Schink B, Pester M. Quantification of archaea-driven freshwater nitrification from single cell to ecosystem levels. THE ISME JOURNAL 2022; 16:1647-1656. [PMID: 35260828 PMCID: PMC9122916 DOI: 10.1038/s41396-022-01216-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 02/16/2022] [Accepted: 02/18/2022] [Indexed: 05/09/2023]
Abstract
Deep oligotrophic lakes sustain large populations of the class Nitrososphaeria (Thaumarchaeota) in their hypolimnion. They are thought to be the key ammonia oxidizers in this habitat, but their impact on N-cycling in lakes has rarely been quantified. We followed this archaeal population in one of Europe's largest lakes, Lake Constance, for two consecutive years using metagenomics and metatranscriptomics combined with stable isotope-based activity measurements. An abundant (8-39% of picoplankton) and transcriptionally active archaeal ecotype dominated the nitrifying community. It represented a freshwater-specific species present in major inland water bodies, for which we propose the name "Candidatus Nitrosopumilus limneticus". Its biomass corresponded to 12% of carbon stored in phytoplankton over the year´s cycle. Ca. N. limneticus populations incorporated significantly more ammonium than most other microorganisms in the hypolimnion and were driving potential ammonia oxidation rates of 6.0 ± 0.9 nmol l‒1 d‒1, corresponding to potential cell-specific rates of 0.21 ± 0.11 fmol cell-1 d-1. At the ecosystem level, this translates to a maximum capacity of archaea-driven nitrification of 1.76 × 109 g N-ammonia per year or 11% of N-biomass produced annually by phytoplankton. We show that ammonia-oxidizing archaea play an equally important role in the nitrogen cycle of deep oligotrophic lakes as their counterparts in marine ecosystems.
Collapse
Affiliation(s)
- Franziska Klotz
- Department of Biology, University of Konstanz, Universitätsstrasse 10, Konstanz, D-78457, Germany
| | - Katharina Kitzinger
- Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, D-28359, Bremen, Germany
| | - David Kamanda Ngugi
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Inhoffenstr. 7B, D-38124, Braunschweig, Germany
| | - Petra Büsing
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Inhoffenstr. 7B, D-38124, Braunschweig, Germany
| | - Sten Littmann
- Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, D-28359, Bremen, Germany
| | - Marcel M M Kuypers
- Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, D-28359, Bremen, Germany
| | - Bernhard Schink
- Department of Biology, University of Konstanz, Universitätsstrasse 10, Konstanz, D-78457, Germany
| | - Michael Pester
- Department of Biology, University of Konstanz, Universitätsstrasse 10, Konstanz, D-78457, Germany.
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Inhoffenstr. 7B, D-38124, Braunschweig, Germany.
- Technical University of Braunschweig, Institute for Microbiology, Spielmannstrasse 7, D-38106, Braunschweig, Germany.
| |
Collapse
|
50
|
Wang L, Wang C, Wang Y, Quan A, Keshavarz M, Madeira BP, Zhang H, Wang C, Kraft M. A Review on Coupled Bulk Acoustic Wave MEMS Resonators. SENSORS (BASEL, SWITZERLAND) 2022; 22:3857. [PMID: 35632263 PMCID: PMC9144905 DOI: 10.3390/s22103857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/11/2022] [Accepted: 05/17/2022] [Indexed: 05/14/2023]
Abstract
With the introduction of the working principle of coupled resonators, the coupled bulk acoustic wave (BAW) Micro-Electro-Mechanical System (MEMS) resonators have been attracting much attention. In this paper, coupled BAW MEMS resonators are discussed, including the coupling theory, the actuation and sensing theory, the transduction mechanism, and the applications. BAW MEMS resonators normally exhibit two types of vibration modes: lateral (in-plane) modes and flexural (out-of-plane) modes. Compared to flexural modes, lateral modes exhibit a higher stiffness with a higher operating frequency, resulting in a lower internal loss. Also, the lateral mode has a higher Q factor, as the fluid damping imposes less influence on the in-plane motion. The coupled BAW MEMS resonators in these two vibration modes are investigated in this work and their applications for sensing, timing, and frequency reference are also presented.
Collapse
Affiliation(s)
- Linlin Wang
- Micro- and Nanosystems—MNS, Department of Electrical Engineering ESAT, KU Leuven, B-3001 Leuven, Belgium; (L.W.); (A.Q.); (M.K.); (B.P.M.); (H.Z.); (C.W.); (M.K.)
| | - Chen Wang
- Micro- and Nanosystems—MNS, Department of Electrical Engineering ESAT, KU Leuven, B-3001 Leuven, Belgium; (L.W.); (A.Q.); (M.K.); (B.P.M.); (H.Z.); (C.W.); (M.K.)
| | - Yuan Wang
- Department of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Aojie Quan
- Micro- and Nanosystems—MNS, Department of Electrical Engineering ESAT, KU Leuven, B-3001 Leuven, Belgium; (L.W.); (A.Q.); (M.K.); (B.P.M.); (H.Z.); (C.W.); (M.K.)
| | - Masoumeh Keshavarz
- Micro- and Nanosystems—MNS, Department of Electrical Engineering ESAT, KU Leuven, B-3001 Leuven, Belgium; (L.W.); (A.Q.); (M.K.); (B.P.M.); (H.Z.); (C.W.); (M.K.)
| | - Bernardo Pereira Madeira
- Micro- and Nanosystems—MNS, Department of Electrical Engineering ESAT, KU Leuven, B-3001 Leuven, Belgium; (L.W.); (A.Q.); (M.K.); (B.P.M.); (H.Z.); (C.W.); (M.K.)
| | - Hemin Zhang
- Micro- and Nanosystems—MNS, Department of Electrical Engineering ESAT, KU Leuven, B-3001 Leuven, Belgium; (L.W.); (A.Q.); (M.K.); (B.P.M.); (H.Z.); (C.W.); (M.K.)
| | - Chenxi Wang
- Micro- and Nanosystems—MNS, Department of Electrical Engineering ESAT, KU Leuven, B-3001 Leuven, Belgium; (L.W.); (A.Q.); (M.K.); (B.P.M.); (H.Z.); (C.W.); (M.K.)
| | - Michael Kraft
- Micro- and Nanosystems—MNS, Department of Electrical Engineering ESAT, KU Leuven, B-3001 Leuven, Belgium; (L.W.); (A.Q.); (M.K.); (B.P.M.); (H.Z.); (C.W.); (M.K.)
| |
Collapse
|