1
|
Vondrak CJ, Sit B, Suwanbongkot C, Macaluso KR, Lamason RL. A conserved interaction between the effector Sca4 and host clathrin suggests additional contributions for Sca4 during rickettsial infection. Infect Immun 2024; 92:e0026724. [PMID: 39535192 PMCID: PMC11629629 DOI: 10.1128/iai.00267-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Intracellular bacterial pathogens deploy secreted effector proteins that manipulate diverse host machinery and pathways to promote infection. Although many effectors carry out a single function or interaction, there are a growing number of secreted effectors capable of interacting with multiple host factors. However, few effectors secreted by arthropod-borne obligate intracellular Rickettsia species have been linked to multiple host targets. Here, we investigated the conserved rickettsial secreted effector Sca4, which was previously shown to interact with host vinculin in donor cells to promote cell-to-cell spread in the model Rickettsia species R. parkeri. We discovered that Sca4 also binds the host cell protein clathrin heavy chain (CHC, CLTC) via a conserved segment in the Sca4 N-terminus. In mammalian host cells, ablation of CLTC expression or chemical inhibition of endocytosis reduced R. parkeri cell-to-cell spread, indicating that clathrin promotes efficient spread. Unexpectedly, the contribution of CHC to spread was independent of Sca4 and appeared restricted to the recipient host cell, suggesting that the Sca4-clathrin interaction regulates another aspect of the infectious lifecycle. Indeed, R. parkeri lacking Sca4 or expressing a Sca4 truncation unable to bind clathrin had markedly reduced burdens in tick cells, hinting at a cell type-specific function for the Sca4-clathrin interaction. Sca4 homologs from diverse Rickettsia species also bound clathrin, suggesting that the function of this novel effector-host interaction may be broadly important for rickettsial infection. We conclude that Sca4 has multiple targets during infection and that rickettsiae may manipulate host endocytic machinery to facilitate several stages of their life cycles.
Collapse
Affiliation(s)
- Cassandra J. Vondrak
- Microbiology Graduate Program, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Brandon Sit
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Chanakan Suwanbongkot
- Department of Microbiology and Immunology, Frederick P. Whiddon College of Medicine, University of South Alabama, Mobile, Alabama, USA
| | - Kevin R. Macaluso
- Department of Microbiology and Immunology, Frederick P. Whiddon College of Medicine, University of South Alabama, Mobile, Alabama, USA
| | - Rebecca L. Lamason
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
2
|
Kunii M, Harada A. Molecular mechanisms of polarized transport to the apical plasma membrane. Front Cell Dev Biol 2024; 12:1477173. [PMID: 39445332 PMCID: PMC11497131 DOI: 10.3389/fcell.2024.1477173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 09/13/2024] [Indexed: 10/25/2024] Open
Abstract
Cell polarity is essential for cellular function. Directional transport within a cell is called polarized transport, and it plays an important role in cell polarity. In this review, we will introduce the molecular mechanisms of polarized transport, particularly apical transport, and its physiological importance.
Collapse
Affiliation(s)
| | - Akihiro Harada
- Department of Cell Biology, Graduate School of Medicine, The University of Osaka, Osaka, Japan
| |
Collapse
|
3
|
Vondrak CJ, Sit B, Suwanbongkot C, Macaluso KR, Lamason RL. A conserved interaction between the effector Sca4 and host endocytic machinery suggests additional roles for Sca4 during rickettsial infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.24.600492. [PMID: 38979345 PMCID: PMC11230260 DOI: 10.1101/2024.06.24.600492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Intracellular bacterial pathogens deploy secreted effector proteins that manipulate diverse host machinery and pathways to promote infection. Although many effectors carry out a single specific function or interaction, there are a growing number of secreted pathogen effectors capable of interacting with multiple host factors. However, few effectors secreted by obligate intracellular Rickettsia species have been linked to multiple host targets. Here, we investigated the conserved rickettsial secreted effector Sca4, which was previously shown to interact with host vinculin to promote cell-to-cell spread in the model Rickettsia species R. parkeri . We discovered that Sca4 also binds the host cell endocytic factor clathrin heavy chain (CHC, CLTC ) via a conserved segment in the Sca4 N-terminus. Ablation of CLTC expression or chemical inhibition of endocytosis reduced R. parkeri cell-to-cell spread, indicating that clathrin promotes efficient spread between mammalian cells. This activity was independent of Sca4 and appeared restricted to the recipient host cell, suggesting that the Sca4-clathrin interaction also regulates another aspect of the infectious lifecycle. Indeed, R. parkeri lacking Sca4 or expressing a Sca4 truncation unable to bind clathrin had markedly reduced burdens in tick cells, hinting at a cell-type specific function for the Sca4-clathrin interaction. Sca4 homologs from diverse Rickettsia species also bound clathrin, suggesting that the function of this novel effector-host interaction may be broadly important for rickettsial infection. We conclude that Sca4 has multiple targets during infection and that rickettsiae may manipulate host endocytic machinery to facilitate several stages of their life cycles.
Collapse
|
4
|
Ruturaj, Mishra M, Saha S, Maji S, Rodriguez-Boulan E, Schreiner R, Gupta A. Regulation of the apico-basolateral trafficking polarity of the homologous copper-ATPases ATP7A and ATP7B. J Cell Sci 2024; 137:jcs261258. [PMID: 38032054 PMCID: PMC10729821 DOI: 10.1242/jcs.261258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 10/05/2023] [Indexed: 12/01/2023] Open
Abstract
The homologous P-type copper-ATPases (Cu-ATPases) ATP7A and ATP7B are the key regulators of copper homeostasis in mammalian cells. In polarized epithelia, upon copper treatment, ATP7A and ATP7B traffic from the trans-Golgi network (TGN) to basolateral and apical membranes, respectively. We characterized the sorting pathways of Cu-ATPases between TGN and the plasma membrane and identified the machinery involved. ATP7A and ATP7B reside on distinct domains of TGN in limiting copper conditions, and in high copper, ATP7A traffics to basolateral membrane, whereas ATP7B traverses common recycling, apical sorting and apical recycling endosomes en route to apical membrane. Mass spectrometry identified regulatory partners of ATP7A and ATP7B that include the adaptor protein-1 complex. Upon knocking out pan-AP-1, sorting of both Cu-ATPases is disrupted. ATP7A loses its trafficking polarity and localizes on both apical and basolateral surfaces in high copper. By contrast, ATP7B loses TGN retention but retained its trafficking polarity to the apical domain, which became copper independent. Using isoform-specific knockouts, we found that the AP-1A complex provides directionality and TGN retention for both Cu-ATPases, whereas the AP-1B complex governs copper-independent trafficking of ATP7B solely. Trafficking phenotypes of Wilson disease-causing ATP7B mutants that disrupts putative ATP7B-AP1 interaction further substantiates the role of AP-1 in apical sorting of ATP7B.
Collapse
Affiliation(s)
- Ruturaj
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Monalisa Mishra
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Soumyendu Saha
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Saptarshi Maji
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Enrique Rodriguez-Boulan
- Department of Ophthalmology, Margaret Dyson Vision Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Ryan Schreiner
- Division of Regenerative Medicine, Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Arnab Gupta
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| |
Collapse
|
5
|
Fischer AAM, Schatz L, Baaske J, Römer W, Weber W, Thuenauer R. Real-time monitoring of cell surface protein arrival with split luciferases. Traffic 2023; 24:453-462. [PMID: 37403269 DOI: 10.1111/tra.12908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/20/2023] [Accepted: 06/22/2023] [Indexed: 07/06/2023]
Abstract
Each cell in a multicellular organism permanently adjusts the concentration of its cell surface proteins. In particular, epithelial cells tightly control the number of carriers, transporters and cell adhesion proteins at their plasma membrane. However, sensitively measuring the cell surface concentration of a particular protein of interest in live cells and in real time represents a considerable challenge. Here, we introduce a novel approach based on split luciferases, which uses one luciferase fragment as a tag on the protein of interest and the second fragment as a supplement to the extracellular medium. Once the protein of interest arrives at the cell surface, the luciferase fragments complement and generate luminescence. We compared the performance of split Gaussia luciferase and split Nanoluciferase by using a system to synchronize biosynthetic trafficking with conditional aggregation domains. The best results were achieved with split Nanoluciferase, for which luminescence increased more than 6000-fold upon recombination. Furthermore, we showed that our approach can separately detect and quantify the arrival of membrane proteins at the apical and basolateral plasma membrane in single polarized epithelial cells by detecting the luminescence signals with a microscope, thus opening novel avenues for characterizing the variations in trafficking in individual epithelial cells.
Collapse
Affiliation(s)
- Alexandra A M Fischer
- Signaling Research Centres BIOSS and CIBSS and Faculty of Biology, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
| | - Larissa Schatz
- Centre for Structural Systems Biology (CSSB), Hamburg, Germany
- Technology Platform Light Microscopy, University of Hamburg, Hamburg, Germany
| | - Julia Baaske
- Signaling Research Centres BIOSS and CIBSS and Faculty of Biology, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Winfried Römer
- Signaling Research Centres BIOSS and CIBSS and Faculty of Biology, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Wilfried Weber
- Signaling Research Centres BIOSS and CIBSS and Faculty of Biology, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
- INM - Leibniz Institute for New Materials, Saarbrücken, Germany
- Department of Materials Science and Engineering, Saarland University, Saarbrücken, Germany
| | - Roland Thuenauer
- Centre for Structural Systems Biology (CSSB), Hamburg, Germany
- Technology Platform Light Microscopy, University of Hamburg, Hamburg, Germany
- Technology Platform Microscopy and Image Analysis (TP MIA), Leibniz Institute of Virology (LIV), Hamburg, Germany
| |
Collapse
|
6
|
Cai T, Peng J, Omrane M, Benzoubir N, Samuel D, Gassama-Diagne A. Septin 9 Orients the Apico-Basal Polarity Axis and Controls Plasticity Signals. Cells 2023; 12:1815. [PMID: 37508480 PMCID: PMC10377970 DOI: 10.3390/cells12141815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/02/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
The cytoskeleton is a master organizer of the cellular cortex and membrane trafficking and therefore plays a crucial role in apico-basal polarity. Septins form a family of GTPases that assemble into non-polar filaments, which bind to membranes and recruit cytoskeletal elements such as microtubules and actin using their polybasic (PB) domains, to perform their broad biological functions. Nevertheless, the role of septins and the significance of their membrane-binding ability in apico-basal polarity remains under-investigated. Here, using 3D cultures, we demonstrated that septin 9 localizes to the basolateral membrane (BM). Its depletion induces an inverted polarity phenotype, decreasing β-catenin at BM and increasing transforming growth factor (TGFβ) and Epithelial-Mesenchymal Transition (EMT) markers. Similar effects were observed after deleting its two PB domains. The mutant became cytoplasmic and apical. The cysts with an inverted polarity phenotype displayed an invasive phenotype, with src and cortactin accumulating at the peripheral membrane. The inhibition of TGFβ-receptor and RhoA rescued the polarized phenotype, although the cysts from overexpressed septin 9 overgrew and presented a filled lumen. Both phenotypes corresponded to tumor features. This suggests that septin 9 expression, along with its assembly through the two PB domains, is essential for establishing and maintaining apico-basal polarity against tumor development.
Collapse
Affiliation(s)
- Tingting Cai
- Unité 1193 INSERM, F-94800 Villejuif, France
- Université Paris-Saclay, UMR-S 1193, F-94800 Villejuif, France
| | - Juan Peng
- Unité 1193 INSERM, F-94800 Villejuif, France
- Université Paris-Saclay, UMR-S 1193, F-94800 Villejuif, France
| | - Mohyeddine Omrane
- Unité 1193 INSERM, F-94800 Villejuif, France
- Université Paris-Saclay, UMR-S 1193, F-94800 Villejuif, France
| | - Nassima Benzoubir
- Unité 1193 INSERM, F-94800 Villejuif, France
- Université Paris-Saclay, UMR-S 1193, F-94800 Villejuif, France
| | - Didier Samuel
- Unité 1193 INSERM, F-94800 Villejuif, France
- Université Paris-Saclay, UMR-S 1193, F-94800 Villejuif, France
- AP-HP Hôpital Paul Brousse, Centre Hepato-Biliaire, F-94800 Villejuif, France
| | - Ama Gassama-Diagne
- Unité 1193 INSERM, F-94800 Villejuif, France
- Université Paris-Saclay, UMR-S 1193, F-94800 Villejuif, France
| |
Collapse
|
7
|
Zhang N, Zhang H, Khan LA, Jafari G, Eun Y, Membreno E, Gobel V. The biosynthetic-secretory pathway, supplemented by recycling routes, determines epithelial membrane polarity. SCIENCE ADVANCES 2023; 9:eade4620. [PMID: 37379377 PMCID: PMC10306302 DOI: 10.1126/sciadv.ade4620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 05/24/2023] [Indexed: 06/30/2023]
Abstract
In prevailing epithelial polarity models, membrane-based polarity cues (e.g., the partitioning-defective PARs) position apicobasal cellular membrane domains. Intracellular vesicular trafficking expands these domains by sorting polarized cargo toward them. How the polarity cues themselves are polarized in epithelia and how sorting confers long-range apicobasal directionality to vesicles is still unclear. Here, a systems-based approach using two-tiered C. elegans genomics-genetics screens identifies trafficking molecules that are not implicated in apical sorting yet polarize apical membrane and PAR complex components. Live tracking of polarized membrane biogenesis indicates that the biosynthetic-secretory pathway, linked to recycling routes, is asymmetrically oriented toward the apical domain during this domain's biosynthesis, and that this directionality is regulated upstream of PARs and independent of polarized target membrane domains. This alternative mode of membrane polarization could offer solutions to open questions in current models of epithelial polarity and polarized trafficking.
Collapse
Affiliation(s)
- Nan Zhang
- Mucosal Immunology and Biology Research Center, Developmental Biology and Genetics Core, Massachusetts General Hospital for Children, Harvard Medical School, Boston, MA, USA
- Key Laboratory of Zoonosis Research by the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Hongjie Zhang
- Mucosal Immunology and Biology Research Center, Developmental Biology and Genetics Core, Massachusetts General Hospital for Children, Harvard Medical School, Boston, MA, USA
- Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Liakot A. Khan
- Mucosal Immunology and Biology Research Center, Developmental Biology and Genetics Core, Massachusetts General Hospital for Children, Harvard Medical School, Boston, MA, USA
| | - Gholamali Jafari
- Mucosal Immunology and Biology Research Center, Developmental Biology and Genetics Core, Massachusetts General Hospital for Children, Harvard Medical School, Boston, MA, USA
| | - Yong Eun
- Mucosal Immunology and Biology Research Center, Developmental Biology and Genetics Core, Massachusetts General Hospital for Children, Harvard Medical School, Boston, MA, USA
- Department of Medicine, NYC Health & Hospitals/Harlem, Columbia University, New York, NY, USA
| | - Edward Membreno
- Mucosal Immunology and Biology Research Center, Developmental Biology and Genetics Core, Massachusetts General Hospital for Children, Harvard Medical School, Boston, MA, USA
| | - Verena Gobel
- Mucosal Immunology and Biology Research Center, Developmental Biology and Genetics Core, Massachusetts General Hospital for Children, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
8
|
Goering R, Arora A, Pockalny MC, Taliaferro JM. RNA localization mechanisms transcend cell morphology. eLife 2023; 12:e80040. [PMID: 36867563 PMCID: PMC9984196 DOI: 10.7554/elife.80040] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 01/24/2023] [Indexed: 03/04/2023] Open
Abstract
RNA molecules are localized to specific subcellular regions through interactions between RNA regulatory elements and RNA binding proteins (RBPs). Generally, our knowledge of the mechanistic details behind the localization of a given RNA is restricted to a particular cell type. Here, we show that RNA/RBP interactions that regulate RNA localization in one cell type predictably regulate localization in other cell types with vastly different morphologies. To determine transcriptome-wide RNA spatial distributions across the apicobasal axis of human intestinal epithelial cells, we used our recently developed RNA proximity labeling technique, Halo-seq. We found that mRNAs encoding ribosomal proteins (RP mRNAs) were strongly localized to the basal pole of these cells. Using reporter transcripts and single-molecule RNA FISH, we found that pyrimidine-rich motifs in the 5' UTRs of RP mRNAs were sufficient to drive basal RNA localization. Interestingly, the same motifs were also sufficient to drive RNA localization to the neurites of mouse neuronal cells. In both cell types, the regulatory activity of this motif was dependent on it being in the 5' UTR of the transcript, was abolished upon perturbation of the RNA-binding protein LARP1, and was reduced upon inhibition of kinesin-1. To extend these findings, we compared subcellular RNAseq data from neuronal and epithelial cells. We found that the basal compartment of epithelial cells and the projections of neuronal cells were enriched for highly similar sets of RNAs, indicating that broadly similar mechanisms may be transporting RNAs to these morphologically distinct locations. These findings identify the first RNA element known to regulate RNA localization across the apicobasal axis of epithelial cells, establish LARP1 as an RNA localization regulator, and demonstrate that RNA localization mechanisms cut across cell morphologies.
Collapse
Affiliation(s)
- Raeann Goering
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical CampusAuroraUnited States
- RNA Bioscience Initiative, University of Colorado Anschutz Medical CampusAuroraUnited States
| | - Ankita Arora
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical CampusAuroraUnited States
| | - Megan C Pockalny
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical CampusAuroraUnited States
| | - J Matthew Taliaferro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical CampusAuroraUnited States
- RNA Bioscience Initiative, University of Colorado Anschutz Medical CampusAuroraUnited States
| |
Collapse
|
9
|
Kell M, Halpern A, Fölsch H. Immunoprecipitation and Western Blot Analysis of AP-1 Clathrin-Coated Vesicles. Methods Mol Biol 2023; 2557:619-633. [PMID: 36512241 DOI: 10.1007/978-1-0716-2639-9_37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The function and integrity of epithelial cells depends on the polarized localization of transmembrane proteins at either apical or basolateral plasma membrane domains. To facilitate sorting to the basolateral domain, columnar epithelial cells express the tissue-specific AP-1B complex in addition to the ubiquitously expressed AP-1A. Both AP-1A and AP-1B are heterotetrameric clathrin adaptor protein complexes that are closely related. Here we describe a biochemical method to separate AP-1B from AP-1A clathrin-coated vesicles by immunoprecipitation from clathrin-coated vesicle pellets that were obtained by ultracentrifugation and analyzed by SDS-PAGE and western blot using fluorescently labeled secondary antibodies.
Collapse
Affiliation(s)
- Margaret Kell
- Department of Cell and Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Abby Halpern
- Department of Cell and Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Heike Fölsch
- Department of Cell and Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
10
|
Sandoval L, Labarca M, Retamal C, Sánchez P, Larraín J, González A. Sonic hedgehog is basolaterally sorted from the TGN and transcytosed to the apical domain involving Dispatched-1 at Rab11-ARE. Front Cell Dev Biol 2022; 10:833175. [PMID: 36568977 PMCID: PMC9768590 DOI: 10.3389/fcell.2022.833175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 11/04/2022] [Indexed: 12/12/2022] Open
Abstract
Hedgehog proteins (Hhs) secretion from apical and/or basolateral domains occurs in different epithelial cells impacting development and tissue homeostasis. Palmitoylation and cholesteroylation attach Hhs to membranes, and Dispatched-1 (Disp-1) promotes their release. How these lipidated proteins are handled by the complex secretory and endocytic pathways of polarized epithelial cells remains unknown. We show that polarized Madin-Darby canine kidney cells address newly synthesized sonic hedgehog (Shh) from the TGN to the basolateral cell surface and then to the apical domain through a transcytosis pathway that includes Rab11-apical recycling endosomes (Rab11-ARE). Both palmitoylation and cholesteroylation contribute to this sorting behavior, otherwise Shh lacking these lipid modifications is secreted unpolarized. Disp-1 mediates first basolateral secretion from the TGN and then transcytosis from Rab11-ARE. At the steady state, Shh predominates apically and can be basolaterally transcytosed. This Shh trafficking provides several steps for regulation and variation in different epithelia, subordinating the apical to the basolateral secretion.
Collapse
Affiliation(s)
- Lisette Sandoval
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Mariana Labarca
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile,Centro Ciencia y Vida, Fundación Ciencia para la Vida, Santiago, Chile
| | - Claudio Retamal
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile,Centro Ciencia y Vida, Fundación Ciencia para la Vida, Santiago, Chile
| | - Paula Sánchez
- Centro de Envejecimiento y Regeneración (CARE), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Juan Larraín
- Centro de Envejecimiento y Regeneración (CARE), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alfonso González
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile,Centro Ciencia y Vida, Fundación Ciencia para la Vida, Santiago, Chile,Centro de Envejecimiento y Regeneración (CARE), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile,*Correspondence: Alfonso González,
| |
Collapse
|
11
|
Genome-wide association study identified INSC gene associated with Trail Making Test Part A and Alzheimer's disease related cognitive phenotypes. Prog Neuropsychopharmacol Biol Psychiatry 2021; 111:110393. [PMID: 34224794 DOI: 10.1016/j.pnpbp.2021.110393] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 06/14/2021] [Accepted: 06/29/2021] [Indexed: 12/27/2022]
Abstract
BACKGROUND The Trail Making Test (TMT) Part A (TMT-A) is a good measure of performance on cognitive processing speed. This study aimed to perform a genome-wide association study of TMT-A in Alzheimer's disease (AD). METHODS A total of 757 individuals with TMT-A phenotypes and 620,901 single nucleotide polymorphisms (SNPs) were extracted from the Alzheimer's Disease Neuroimaging Initiative 1 (ADNI-1) cohort. AD related cognitive phenotypes include TMT-A, TMT-B, Functional Activities Questionnaire (FAQ), Clinical Dementia Rating Sum of Boxes (CDR-SB), and Alzheimer's Disease Assessment Scale-Cognitive Subscale 13 (ADAS13). Multivariable linear regression analysis of TMT-A was conducted using PLINK software. The most TMT-A associated gene was tested with Color Trails Test 1 Form A (CTTA), a culturally fair analog of the TMT-A. Functional annotation of SNPs was performed using the RegulomeDB and Genotype-Tissue Expression (GTEx) databases. RESULTS The best signal with TMT-A was rs1108010 (p = 4.34 × 10-8) at 11p15.2 within INSC gene, which was also associated with TMT-B, FAQ, CDR-SB, and ADAS13 (p = 2.47 × 10-4, 8.56 × 10-3, 0.0127 and 0.0188, respectively). Furthermore, suggestive loci were identified such as FOXD2 and CLTA with TMT-A, GBP1/GBP3 with TMT-B, GRIK2 with FAQ, BAALC and CCDC146 with CDR-SB, BAALC and NKAIN2 with ADAS13. Additionally, the best SNP within INSC associated with CTTA was rs7931705 (p = 6.15 × 10-5). Several SNPs had significant eQTLs using GTEx. CONCLUSIONS We identified several genes/loci associated with TMT-A and AD related phenotypes. These findings offer the potential for new insights into the pathogenesis of cognitive function and Alzheimer's disease.
Collapse
|
12
|
Ford C, Parchure A, von Blume J, Burd CG. Cargo sorting at the trans-Golgi network at a glance. J Cell Sci 2021; 134:jcs259110. [PMID: 34870705 PMCID: PMC8714066 DOI: 10.1242/jcs.259110] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The Golgi functions principally in the biogenesis and trafficking of glycoproteins and lipids. It is compartmentalized into multiple flattened adherent membrane sacs termed cisternae, which each contain a distinct repertoire of resident proteins, principally enzymes that modify newly synthesized proteins and lipids sequentially as they traffic through the stack of Golgi cisternae. Upon reaching the final compartments of the Golgi, the trans cisterna and trans-Golgi network (TGN), processed glycoproteins and lipids are packaged into coated and non-coated transport carriers derived from the trans Golgi and TGN. The cargoes of clathrin-coated vesicles are chiefly residents of endo-lysosomal organelles, while uncoated carriers ferry cargo to the cell surface. There are outstanding questions regarding the mechanisms of protein and lipid sorting within the Golgi for export to different organelles. Nonetheless, conceptual advances have begun to define the key molecular features of cargo clients and the mechanisms underlying their sorting into distinct export pathways, which we have collated in this Cell Science at a Glance article and the accompanying poster.
Collapse
Affiliation(s)
| | | | - Julia von Blume
- Department of Cell Biology, Yale School of Medicine, Yale University, New Haven, CT 06520, USA
| | - Christopher G. Burd
- Department of Cell Biology, Yale School of Medicine, Yale University, New Haven, CT 06520, USA
| |
Collapse
|
13
|
Hu T, Yin S, Sun J, Linghu Y, Ma J, Pan J, Wang C. Clathrin light chains regulate hypocotyl elongation by affecting the polarization of the auxin transporter PIN3 in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:1922-1936. [PMID: 34478221 DOI: 10.1111/jipb.13171] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/01/2021] [Indexed: 05/26/2023]
Abstract
PIN-FORMED (PIN)-dependent directional auxin transport is crucial for plant development. Although the redistribution of auxin mediated by the polarization of PIN3 plays key roles in modulating hypocotyl cell expansion, how PIN3 becomes repolarized to the proper sites within hypocotyl cells is poorly understood. We previously generated the clathrin light chain clc2-1 clc3-1 double mutant in Arabidopsis thaliana and found that it has an elongated hypocotyl phenotype compared to the wild type. Here, we performed genetic, cell biology, and pharmacological analyses combined with live-cell imaging to elucidate the molecular mechanism underlying the role of clathrin light chains in hypocotyl elongation. Our analyses indicated that the defects of the double mutant enhanced auxin maxima in epidermal cells, thus, promoting hypocotyl elongation. PIN3 relocated to the lateral sides of hypocotyl endodermal cells in clc2-1 clc3-1 mutants to redirect auxin toward the epidermal cell layers. Moreover, the loss of function of PIN3 largely suppressed the long hypocotyl phenotype of the clc2-1 clc3-1 double mutant, as did treatment with auxin transport inhibitors. Based on these data, we propose that clathrin modulates PIN3 abundance and polarity to direct auxin flux and inhibit cell elongation in the hypocotyl, providing novel insights into the regulation of hypocotyl elongation.
Collapse
Affiliation(s)
- Tianwei Hu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Shoupeng Yin
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Jingbo Sun
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Yuting Linghu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Jiaqi Ma
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Jianwei Pan
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Chao Wang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
- College of Life Sciences, Shaoxing University, Shaoxing, 312000, China
| |
Collapse
|
14
|
Kell MJ, Ang SF, Pigati L, Halpern A, Fölsch H. Novel function for AP-1B during cell migration. Mol Biol Cell 2020; 31:2475-2493. [PMID: 32816642 PMCID: PMC7851849 DOI: 10.1091/mbc.e20-04-0256] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The epithelial cell-specific clathrin adaptor protein (AP)-1B has a well-established role in polarized sorting of cargos to the basolateral membrane. Here we show that β1 integrin was dependent on AP-1B and its coadaptor, autosomal recessive hypercholesterolemia protein (ARH), for sorting to the basolateral membrane. We further demonstrate an unprecedented role for AP-1B at the basal plasma membrane during collective cell migration of epithelial sheets. During wound healing, expression of AP-1B (and ARH in AP–1B-positive cells) slowed epithelial-cell migration. We show that AP-1B colocalized with β1 integrin in focal adhesions during cell migration using confocal microscopy and total internal reflection fluorescence microscopy on fixed specimens. Further, AP-1B labeling in cell protrusions was distinct from labeling for the endocytic adaptor complex AP-2. Using stochastic optical reconstruction microscopy we identified numerous AP–1B-coated structures at or close to the basal plasma membrane in cell protrusions. In addition, immunoelectron microscopy showed AP-1B in coated pits and vesicles at the plasma membrane during cell migration. Lastly, quantitative real-time reverse transcription PCR analysis of human epithelial-derived cell lines revealed a loss of AP-1B expression in highly migratory metastatic cancer cells suggesting that AP-1B’s novel role at the basal plasma membrane during cell migration might be an anticancer mechanism.
Collapse
Affiliation(s)
- Margaret Johnson Kell
- Department of Cell and Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Su Fen Ang
- Department of Cell and Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Lucy Pigati
- Department of Cell and Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Abby Halpern
- Department of Cell and Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Heike Fölsch
- Department of Cell and Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| |
Collapse
|
15
|
Storm T, Burgoyne T, Futter CE. Membrane trafficking in the retinal pigment epithelium at a glance. J Cell Sci 2020; 133:133/16/jcs238279. [PMID: 32855284 DOI: 10.1242/jcs.238279] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The retinal pigment epithelium (RPE) is a highly specialised pigmented monolayer sandwiched between the choroid and the photoreceptors in the retina. Key functions of the RPE include transport of nutrients to the neural retina, removal of waste products and water from the retina to the blood, recycling of retinal chromophores, absorption of scattered light and phagocytosis of the tips of the photoreceptor outer segments. These functions place a considerable membrane trafficking burden on the RPE. In this Cell Science at a Glance article and the accompanying poster, we focus on RPE-specific adaptations of trafficking pathways. We outline mechanisms underlying the polarised expression of membrane proteins, melanosome biogenesis and movement, and endocytic trafficking, as well as photoreceptor outer segment phagocytosis and degradation. We also briefly discuss theories of how dysfunction in trafficking pathways contributes to retinal disease.
Collapse
Affiliation(s)
- Tina Storm
- Institute of Ophthalmology, University College London, London EC1V 9EL, UK
| | - Thomas Burgoyne
- Institute of Ophthalmology, University College London, London EC1V 9EL, UK
| | - Clare E Futter
- Institute of Ophthalmology, University College London, London EC1V 9EL, UK
| |
Collapse
|
16
|
Mathew R, Rios-Barrera LD, Machado P, Schwab Y, Leptin M. Transcytosis via the late endocytic pathway as a cell morphogenetic mechanism. EMBO J 2020; 39:e105332. [PMID: 32657472 PMCID: PMC7429744 DOI: 10.15252/embj.2020105332] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/10/2020] [Accepted: 06/16/2020] [Indexed: 12/13/2022] Open
Abstract
Plasma membranes fulfil many physiological functions. In polarized cells, different membrane compartments take on specialized roles, each being allocated correct amounts of membrane. The Drosophila tracheal system, an established tubulogenesis model, contains branched terminal cells with subcellular tubes formed by apical plasma membrane invagination. We show that apical endocytosis and late endosome‐mediated trafficking are required for membrane allocation to the apical and basal membrane domains. Basal plasma membrane growth stops if endocytosis is blocked, whereas the apical membrane grows excessively. Plasma membrane is initially delivered apically and then continuously endocytosed, together with apical and basal cargo. We describe an organelle carrying markers of late endosomes and multivesicular bodies (MVBs) that is abolished by inhibiting endocytosis and which we suggest acts as transit station for membrane destined to be redistributed both apically and basally. This is based on the observation that disrupting MVB formation prevents growth of both compartments.
Collapse
Affiliation(s)
- Renjith Mathew
- Directors' Research Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - L Daniel Rios-Barrera
- Directors' Research Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Pedro Machado
- Electron Microscopy Core Facility, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Yannick Schwab
- Electron Microscopy Core Facility, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Maria Leptin
- Directors' Research Unit, European Molecular Biology Laboratory, Heidelberg, Germany.,Institute of Genetics, University of Cologne, Cologne, Germany
| |
Collapse
|
17
|
Nakamura Y, Ochi Y, Satoh T, Satoh AK. Rab10, Crag and Ehbp1 regulate the basolateral transport of Na +K +ATPase in Drosophila photoreceptors. J Cell Sci 2020; 133:jcs238790. [PMID: 32041903 DOI: 10.1242/jcs.238790] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 01/27/2020] [Indexed: 08/31/2023] Open
Abstract
Cells in situ are often polarized and have multiple plasma membrane domains. To establish and maintain these domains, polarized transport is essential, and its impairment results in genetic disorders. Nevertheless, the underlying mechanisms of polarized transport have not been elucidated. Drosophila photoreceptor offers an excellent model for studying this. We found that Rab10 impairment significantly reduced basolateral levels of Na+K+ATPase, mislocalizing it to the stalk membrane, which is a domain of the apical plasma membrane. Furthermore, the shrunken basolateral and the expanded stalk membranes were accompanied with abnormalities in the Golgi cisternae of Rab10-impaired retinas. The deficiencies of Rab10-GEF Crag or the Rab10 effector Ehbp1 phenocopied Rab10 deficiency, indicating that Crag, Rab10 and Ehbp1 work together for polarized trafficking of membrane proteins to the basolateral membrane. These phenotypes were similar to those seen upon deficiency of AP1 or clathrin, which are known to be involved in the basolateral transport in other systems. Additionally, Crag, Rab10 and Ehbp1 colocalized with AP1 and clathrin on the trans-side of Golgi stacks. Taken together, these results indicate that AP1 and clathrin, and Crag, Rab10 and Ehbp1 collaborate in polarized basolateral transport, presumably in the budding process in the trans-Golgi network.
Collapse
Affiliation(s)
- Yuri Nakamura
- Program of Life and Environmental Science, Graduate School of Integral Science for Life, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8521, Japan
| | - Yuka Ochi
- Program of Life and Environmental Science, Graduate School of Integral Science for Life, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8521, Japan
| | - Takunori Satoh
- Program of Life and Environmental Science, Graduate School of Integral Science for Life, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8521, Japan
| | - Akiko K Satoh
- Program of Life and Environmental Science, Graduate School of Integral Science for Life, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8521, Japan
| |
Collapse
|
18
|
Fred SM, Laukkanen L, Brunello CA, Vesa L, Göös H, Cardon I, Moliner R, Maritzen T, Varjosalo M, Casarotto PC, Castrén E. Pharmacologically diverse antidepressants facilitate TRKB receptor activation by disrupting its interaction with the endocytic adaptor complex AP-2. J Biol Chem 2019; 294:18150-18161. [PMID: 31631060 PMCID: PMC6885648 DOI: 10.1074/jbc.ra119.008837] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 10/15/2019] [Indexed: 01/19/2023] Open
Abstract
Several antidepressant drugs activate tropomyosin-related kinase B (TRKB) receptor, but it remains unclear whether these compounds employ a common mechanism for TRKB activation. Here, using MS, we found that a single intraperitoneal injection of fluoxetine disrupts the interaction of several proteins with TRKB in the hippocampus of mice. These proteins included members of adaptor protein complex-2 (AP-2) involved in vesicular endocytosis. The interaction of TRKB with the cargo-docking μ subunit of the AP-2 complex (AP2M) was confirmed to be disrupted by both acute and repeated fluoxetine treatments. Of note, fluoxetine disrupted the coupling between full-length TRKB and AP2M, but not the interaction between AP2M and the TRKB C-terminal region, indicating that the fluoxetine-binding site in TRKB lies outside the TRKB:AP2M interface. ELISA experiments revealed that in addition to fluoxetine, other chemically diverse antidepressants, such as imipramine, rolipram, phenelzine, ketamine, and its metabolite 2R,6R-hydroxynorketamine, also decreased the interaction between TRKB and AP2M in vitro Silencing the expression of AP2M in a TRKB-expressing mouse fibroblast cell line (MG87.TRKB) increased cell-surface expression of TRKB and facilitated its activation by brain-derived neurotrophic factor (BDNF), observed as levels of phosphorylated TRKB. Moreover, animals haploinsufficient for the Ap2m1 gene displayed increased levels of active TRKB, along with enhanced cell-surface expression of the receptor in cultured hippocampal neurons. Taken together, our results suggest that disruption of the TRKB:AP2M interaction is a common mechanism underlying TRKB activation by several chemically diverse antidepressants.
Collapse
Affiliation(s)
- Senem Merve Fred
- Neuroscience Center-HiLIFE, University of Helsinki, 00014 Helsinki, Finland
| | - Liina Laukkanen
- Neuroscience Center-HiLIFE, University of Helsinki, 00014 Helsinki, Finland
| | - Cecilia A Brunello
- Neuroscience Center-HiLIFE, University of Helsinki, 00014 Helsinki, Finland
| | - Liisa Vesa
- Neuroscience Center-HiLIFE, University of Helsinki, 00014 Helsinki, Finland
| | - Helka Göös
- Institute of Biotechnology-HiLIFE, University of Helsinki, 00014 Helsinki, Finland
| | - Iseline Cardon
- Brain Master Program, Faculty of Science, Aix-Marseille Université, 13007 Marseille, France
| | - Rafael Moliner
- Neuroscience Center-HiLIFE, University of Helsinki, 00014 Helsinki, Finland
| | - Tanja Maritzen
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | - Markku Varjosalo
- Institute of Biotechnology-HiLIFE, University of Helsinki, 00014 Helsinki, Finland
| | - Plinio C Casarotto
- Neuroscience Center-HiLIFE, University of Helsinki, 00014 Helsinki, Finland.
| | - Eero Castrén
- Neuroscience Center-HiLIFE, University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
19
|
Quantitative proteomics of MDCK cells identify unrecognized roles of clathrin adaptor AP-1 in polarized distribution of surface proteins. Proc Natl Acad Sci U S A 2019; 116:11796-11805. [PMID: 31142645 PMCID: PMC6575629 DOI: 10.1073/pnas.1821076116] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Epithelial cells perform critical protective, secretory, absorptive, and sensory functions, for which they require plasma membrane polarization into apical and basolateral domains. Impaired polarity causes cancer and developmental and degenerative disorders. Research on fundamental polarity mechanisms has been hindered by the paucity of model proteins and by the use of overexpression systems. Here, we introduce a high-throughput surface proteomics approach based on domain-selective biotinylation and quantitative mass spectrometry that provides candidate proteins to study polarity under normal expression levels. Using this approach, we described that clathrin adaptors mediate apical and basolateral distribution of surface proteins, expanding the traditional notion that clathrin adaptors mediate only basolateral polarity. Our results establish quantitative surface proteomics as a powerful tool to study epithelial polarity. The current model of polarized plasma membrane protein sorting in epithelial cells has been largely generated on the basis of experiments characterizing the polarized distribution of a relatively small number of overexpressed model proteins under various experimental conditions. Thus, the possibility exists that alternative roles of various types of sorting machinery may have been underestimated or missed. Here, we utilize domain-selective surface biotinylation combined with stable isotope labeling with amino acids in cell culture (SILAC) and mass spectrometry to quantitatively define large populations of apical and basolateral surface proteins in Madin-Darby canine kidney (MDCK) cells. We identified 313 plasma membrane proteins, of which 38% were apical, 51% were basolateral, and 11% were nonpolar. Silencing of clathrin adaptor proteins (AP) AP-1A, AP-1B, or both caused redistribution of basolateral proteins as expected but also, of a large population of apical proteins. Consistent with their previously reported ability to compensate for one another, the strongest loss of polarity was observed when we silenced AP-1A and AP-1B simultaneously. We found stronger evidence of compensation in the apical pathway compared with the basolateral pathway. Surprisingly, we also found subgroups of proteins that were affected after silencing just one adaptor, indicating previously unrecognized independent roles for AP-1A and AP-1B. While AP-1B silencing mainly affected basolateral polarity, AP-1A silencing seemed to cause comparable loss of apical and basolateral polarity. Our results uncover previously overlooked roles of AP-1 in polarized distribution of apical and basolateral proteins and introduce surface proteomics as a method to examine mechanisms of polarization with a depth not possible until now.
Collapse
|
20
|
Yang D, Liu D, Deng H, Zhang J, Qin M, Yuan L, Zou X, Shao B, Li H, Dai W, Zhang H, Wang X, He B, Tang X, Zhang Q. Transferrin Functionization Elevates Transcytosis of Nanogranules across Epithelium by Triggering Polarity-Associated Transport Flow and Positive Cellular Feedback Loop. ACS NANO 2019; 13:5058-5076. [PMID: 31034211 DOI: 10.1021/acsnano.8b07231] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Overcoming the epithelial barriers to enhance drug transport is a focused topic for gastrointestinal, intratracheal, intranasal, vaginal, and intrauterine delivery. Nanomedicines with targeting functionization promote such a process owing to specific ligand-receptor interaction. However, compared to the cell uptake of targeting nanotherapies, currently few studies concentrate on their transcytosis including endocytosis for "in" and exocytosis for "out". In fact, the cellular regulatory mechanism for these pathways as well as the principle of ligand's effect on the transcytosis are almost ignored. Here, we fabricated transferrin (Tf) functionalized nanogranules (Tf-NG) as the nanomedicine model and confirmed the difference in polar distributions of Tf receptors (TfRs) between two epithelium models (bipolarity for Caco-2 and unipolarity for MDCK cells). Compared to the nonspecific reference, Tf-conjugation boosted the endocytosis by different pathways in two cell models and transformed the intracellular route of Tf-NG in both cells differently, affecting exocytosis, recycling, and degradation but not the secretion pathway. Only bipolar cells could establish a complete transport flow from "in" to "out", leading to the enhanced transcytosis of Tf-NG. Importantly, epithelia could make responses to Tf-NG transcytosis. Based on the quantitative proteomics, the intracellular trafficking of Tf-NG altered the protein expression profiles, in which the endocytosis- and transcytosis-related proteins were specifically upregulated. Particularly, only bipolar cells could positively feed back to such trafficking via accelerating the subsequent Tf-NG transcytosis. Here, all the cell transport of Tf-NG was polarity associated. In summary, Tf modification elevated the transcytosis of Tf-NG across the epithelium by triggering the polarity-associated transport flow and positive cell feedback loop. These findings provided an insight into the targeting nanodelivery for efficient transport through epithelial barriers.
Collapse
Affiliation(s)
- Dan Yang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences , Peking University , Beijing 100191 , China
- School of Pharmacy , Shenyang Pharmaceutical University , Shenyang 110016 , China
- State Key Laboratory of Natural and Biomimetic Drugs , Peking University , Beijing 100191 , China
| | - Dechun Liu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences , Peking University , Beijing 100191 , China
- State Key Laboratory of Natural and Biomimetic Drugs , Peking University , Beijing 100191 , China
| | - Hailiang Deng
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences , Peking University , Beijing 100191 , China
- State Key Laboratory of Natural and Biomimetic Drugs , Peking University , Beijing 100191 , China
| | - Jian Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences , Peking University , Beijing 100191 , China
- State Key Laboratory of Natural and Biomimetic Drugs , Peking University , Beijing 100191 , China
| | - Mengmeng Qin
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences , Peking University , Beijing 100191 , China
- State Key Laboratory of Natural and Biomimetic Drugs , Peking University , Beijing 100191 , China
| | - Lan Yuan
- Centre of Medical and Health Analysis , Peking University , Beijing 100191 , China
| | - Xiajuan Zou
- Centre of Medical and Health Analysis , Peking University , Beijing 100191 , China
| | - Bin Shao
- Department of Medical Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education) , Peking University Cancer Hospital and Institute , Beijing 100142 , China
| | - Huiping Li
- Department of Medical Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education) , Peking University Cancer Hospital and Institute , Beijing 100142 , China
| | - Wenbing Dai
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences , Peking University , Beijing 100191 , China
- State Key Laboratory of Natural and Biomimetic Drugs , Peking University , Beijing 100191 , China
| | - Hua Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences , Peking University , Beijing 100191 , China
- State Key Laboratory of Natural and Biomimetic Drugs , Peking University , Beijing 100191 , China
| | - Xueqing Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences , Peking University , Beijing 100191 , China
- State Key Laboratory of Natural and Biomimetic Drugs , Peking University , Beijing 100191 , China
| | - Bing He
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences , Peking University , Beijing 100191 , China
- State Key Laboratory of Natural and Biomimetic Drugs , Peking University , Beijing 100191 , China
| | - Xing Tang
- School of Pharmacy , Shenyang Pharmaceutical University , Shenyang 110016 , China
| | - Qiang Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences , Peking University , Beijing 100191 , China
- School of Pharmacy , Shenyang Pharmaceutical University , Shenyang 110016 , China
- State Key Laboratory of Natural and Biomimetic Drugs , Peking University , Beijing 100191 , China
| |
Collapse
|
21
|
Gravotta D, Perez Bay A, Jonker CTH, Zager PJ, Benedicto I, Schreiner R, Caceres PS, Rodriguez-Boulan E. Clathrin and clathrin adaptor AP-1 control apical trafficking of megalin in the biosynthetic and recycling routes. Mol Biol Cell 2019; 30:1716-1728. [PMID: 31091172 PMCID: PMC6727755 DOI: 10.1091/mbc.e18-12-0811] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Megalin (gp330, LRP-2) is a protein structurally related to the low-density lipoprotein receptor family that displays a large luminal domain with multiligand binding properties. Megalin localizes to the apical surface of multiple epithelia, where it participates in endocytosis of a variety of ligands performing roles important for development or homeostasis. We recently described the apical recycling pathway of megalin in Madin–Darby canine kidney (MDCK) cells and found that it is a long-lived, fast recycling receptor with a recycling turnover of 15 min and a half-life of 4.8 h. Previous work implicated clathrin and clathrin adaptors in the polarized trafficking of fast recycling basolateral receptors. Hence, here we study the role of clathrin and clathrin adaptors in megalin’s apical localization and trafficking. Targeted silencing of clathrin or the γ1 subunit of clathrin adaptor AP-1 by RNA interference in MDCK cells disrupted apical localization of megalin, causing its redistribution to the basolateral membrane. In contrast, silencing of the γ2 subunit of AP-1 had no effect on megalin polarity. Trafficking assays we developed using FM4-HA-miniMegalin-GFP, a reversible conditional endoplasmic reticulum–retained chimera, revealed that clathrin and AP-1 silencing disrupted apical sorting of megalin in both biosynthetic and recycling routes. Our experiments demonstrate that clathrin and AP-1 control the sorting of an apical transmembrane protein.
Collapse
Affiliation(s)
- Diego Gravotta
- Margaret Dyson Vision Research Institute, Weill Cornell Medicine, New York, NY 10065
| | - Andres Perez Bay
- Margaret Dyson Vision Research Institute, Weill Cornell Medicine, New York, NY 10065
| | - Caspar T H Jonker
- Margaret Dyson Vision Research Institute, Weill Cornell Medicine, New York, NY 10065
| | - Patrick J Zager
- Margaret Dyson Vision Research Institute, Weill Cornell Medicine, New York, NY 10065
| | - Ignacio Benedicto
- Margaret Dyson Vision Research Institute, Weill Cornell Medicine, New York, NY 10065
| | - Ryan Schreiner
- Margaret Dyson Vision Research Institute, Weill Cornell Medicine, New York, NY 10065
| | - Paulo S Caceres
- Margaret Dyson Vision Research Institute, Weill Cornell Medicine, New York, NY 10065
| | | |
Collapse
|
22
|
Lambert L, Dubayle D, Fafouri A, Herzog E, Csaba Z, Dournaud P, El Mestikawy S, Bernard V. Endocytosis of Activated Muscarinic m2 Receptor (m2R) in Live Mouse Hippocampal Neurons Occurs via a Clathrin-Dependent Pathway. Front Cell Neurosci 2018; 12:450. [PMID: 30555302 PMCID: PMC6283979 DOI: 10.3389/fncel.2018.00450] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 11/07/2018] [Indexed: 02/02/2023] Open
Abstract
Our aim was to examine the dynamics of the muscarinic m2 receptor (m2R), a G-protein coupled receptor (GPCR), after agonist activation in living hippocampal neurons, and especially clathrin dependency endocytosis. We have previously shown that the m2R undergoes agonist-induced internalization in vivo. However, the nature of the endocytotic pathway used by m2R after activation is still unknown in living neurons. Using live cell imaging and quantitative analyses, we have monitored the effect of stimulation on the fate of the membrane-bound m2R and on its redistribution in intraneuronal compartments. Shortly (6 min) after activation, m2R is internalized into clathrin immunopositive structures. Furthermore, after clathrin-dependent endocytosis, m2R associates with early and late endosomes and with subcellular organelles involved in degradation. Together, these results provide, for the first time, a description of m2R trafficking in living neurons and prove that m2R undergoes clathrin-dependent endocytosis before being degraded.
Collapse
Affiliation(s)
- Lisa Lambert
- Sorbonne Université, Université Pierre et Marie Curie UM 119 - CNRS UMR 8246 - INSERM U1130, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), Paris, France
| | - David Dubayle
- Sorbonne Université, Université Pierre et Marie Curie UM 119 - CNRS UMR 8246 - INSERM U1130, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), Paris, France.,Université Paris Descartes - CNRS UMR 8119, Centre de Neurophysique, Physiologie et Pathologie, Paris, France
| | - Assia Fafouri
- PROTECT, INSERM U1141, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Etienne Herzog
- Sorbonne Université, Université Pierre et Marie Curie UM 119 - CNRS UMR 8246 - INSERM U1130, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), Paris, France.,Interdisciplinary Institute for Neuroscience, University Bordeaux, UMR 5297, Bordeaux, France.,Interdisciplinary Institute for Neuroscience, CNRS, UMR 5297, Bordeaux, France
| | - Zsolt Csaba
- PROTECT, INSERM U1141, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Pascal Dournaud
- PROTECT, INSERM U1141, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Salah El Mestikawy
- Sorbonne Université, Université Pierre et Marie Curie UM 119 - CNRS UMR 8246 - INSERM U1130, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), Paris, France.,Department of Psychiatry, Douglas Hospital Research Center, McGill University, Montréal, QC, Canada
| | - Véronique Bernard
- Sorbonne Université, Université Pierre et Marie Curie UM 119 - CNRS UMR 8246 - INSERM U1130, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), Paris, France
| |
Collapse
|
23
|
Ma T, Li B, Wang R, Lau PK, Huang Y, Jiang L, Schekman R, Guo Y. A mechanism for differential sorting of the planar cell polarity proteins Frizzled6 and Vangl2 at the trans-Golgi network. J Biol Chem 2018; 293:8410-8427. [PMID: 29666182 DOI: 10.1074/jbc.ra118.001906] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 03/12/2018] [Indexed: 01/14/2023] Open
Abstract
In planar cell polarity (PCP), the epithelial cells are polarized along the plane of the cell surface perpendicular to the classical apical-basal axis, a process mediated by several conserved signaling receptors. Two PCP-signaling proteins, VANGL planar cell polarity protein 2 (Vangl2) and Frizzled6 (Fzd6), are located asymmetrically on opposite boundaries of the cell. Examining sorting of these two proteins at the trans-Golgi network (TGN), we demonstrated previously that the GTP-binding protein ADP-ribosylation factor-related protein 1 (Arfrp1) and the clathrin-associated adaptor protein complex 1 (AP-1) are required for Vangl2 transport from the TGN. In contrast, TGN export of Frizzled6 does not depend on Arfrp1 or AP-1. Here, to further investigate the TGN sorting process in mammalian cells, we reconstituted release of Vangl2 and Frizzled6 from the TGN into vesicles in vitro Immunoblotting of released vesicles indicated that Vangl2 and Frizzled6 exit the TGN in separate compartments. Knockdown analysis revealed that a clathrin adaptor, epsinR, regulates TGN export of Frizzled6 but not of Vangl2. Protein interaction analysis suggested that epsinR forms a stable complex with clathrin and that this complex interacts with a conserved polybasic motif in the Frizzled6 cytosolic domain to package Frizzled6 into transport vesicles. Moreover, we found that Frizzled6-epsinR binding dissociates epsinR from AP-1, which may separate these two cargo adaptors from each other to perform distinct cargo-sorting functions. Our results suggest that Vangl2 and Frizzled6 are packaged into separate vesicles that are regulated by different clathrin adaptors at the TGN, which may contribute to their asymmetric localizations.
Collapse
Affiliation(s)
- Tianji Ma
- From the Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Baiying Li
- the Centre for Cell and Developmental Biology, State Key Laboratory of Agrobiotechnology, School of Life Sciences, Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Ryan Wang
- the Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, and
| | - Pik Ki Lau
- From the Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Yan Huang
- From the Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Liwen Jiang
- the Centre for Cell and Developmental Biology, State Key Laboratory of Agrobiotechnology, School of Life Sciences, Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Randy Schekman
- the Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, and
| | - Yusong Guo
- From the Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China,
| |
Collapse
|
24
|
Castillon GA, Burriat‐Couleru P, Abegg D, Criado Santos N, Watanabe R. Clathrin and AP1 are required for apical sorting of glycosyl phosphatidyl inositol‐anchored proteins in biosynthetic and recycling routes in Madin‐Darby canine kidney cells. Traffic 2018; 19:215-228. [DOI: 10.1111/tra.12548] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 01/16/2018] [Accepted: 01/16/2018] [Indexed: 01/12/2023]
Affiliation(s)
| | | | - Daniel Abegg
- Department of Biochemistry, Sciences IIUniversity of Geneva Geneva Switzerland
| | - Nina Criado Santos
- Department of Biochemistry, Sciences IIUniversity of Geneva Geneva Switzerland
| | - Reika Watanabe
- Department of Biochemistry, Sciences IIUniversity of Geneva Geneva Switzerland
| |
Collapse
|
25
|
Internalized TSH receptors en route to the TGN induce local G s-protein signaling and gene transcription. Nat Commun 2017; 8:443. [PMID: 28874659 PMCID: PMC5585343 DOI: 10.1038/s41467-017-00357-2] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 06/15/2017] [Indexed: 12/31/2022] Open
Abstract
A new paradigm of G-protein-coupled receptor (GPCR) signaling at intracellular sites has recently emerged, but the underlying mechanisms and functional consequences are insufficiently understood. Here, we show that upon internalization in thyroid cells, endogenous TSH receptors traffic retrogradely to the trans-Golgi network (TGN) and activate endogenous Gs-proteins in the retromer-coated compartment that brings them to the TGN. Receptor internalization is associated with a late cAMP/protein kinase A (PKA) response at the Golgi/TGN. Blocking receptor internalization, inhibiting PKA II/interfering with its Golgi/TGN localization, silencing retromer or disrupting Golgi/TGN organization all impair efficient TSH-dependent cAMP response element binding protein (CREB) phosphorylation. These results suggest that retrograde trafficking to the TGN induces local Gs-protein activation and cAMP/PKA signaling at a critical position near the nucleus, which appears required for efficient CREB phosphorylation and gene transcription. This provides a new mechanism to explain the functional consequences of GPCR signaling at intracellular sites and reveals a critical role for the TGN in GPCR signaling. Recent investigations suggest that G-protein-coupled receptors (GPCRs) can signal during intracellular trafficking. Here the authors use fluorescence microscopy approaches to directly visualize and investigate functional consequences of GPCR-mediated signaling at the Golgi/trans-Golgi network.
Collapse
|
26
|
Yamamoto H, Sato A, Kikuchi A. Apical secretion of Wnt1 in polarized epithelial cells is regulated by exocyst-mediated trafficking. J Biochem 2017; 162:317-326. [DOI: 10.1093/jb/mvx035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Accepted: 06/01/2017] [Indexed: 01/11/2023] Open
|
27
|
Abstract
Recent studies have demonstrated a critical role for nerves in enabling tumor progression. The association of nerves with cancer cells is well established for a variety of malignant tumors, including pancreatic, prostate and the head and neck cancers. This association is often correlated with poor prognosis. A strong partnership between cancer cells and nerve cells leads to both cancer progression and expansion of the nerve network. This relationship is supported by molecular pathways related to nerve growth and repair. Peripheral nerves form complex tumor microenvironments, which are made of several cell types including Schwann cells. Recent studies have revealed that Schwann cells enable cancer progression by adopting a de-differentiated phenotype, similar to the Schwann cell response to nerve trauma. A detailed understanding of the molecular and cellular mechanisms involved in the regulation of cancer progression by the nerves is essential to design strategies to inhibit tumor progression.
Collapse
|
28
|
Bottanelli F, Kilian N, Ernst AM, Rivera-Molina F, Schroeder LK, Kromann EB, Lessard MD, Erdmann RS, Schepartz A, Baddeley D, Bewersdorf J, Toomre D, Rothman JE. A novel physiological role for ARF1 in the formation of bidirectional tubules from the Golgi. Mol Biol Cell 2017; 28:1676-1687. [PMID: 28428254 PMCID: PMC5469610 DOI: 10.1091/mbc.e16-12-0863] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 04/11/2017] [Accepted: 04/14/2017] [Indexed: 11/11/2022] Open
Abstract
Capitalizing on CRISPR/Cas9 gene-editing techniques and super-resolution nanoscopy, we explore the role of the small GTPase ARF1 in mediating transport steps at the Golgi. Besides its well-established role in generating COPI vesicles, we find that ARF1 is also involved in the formation of long (∼3 µm), thin (∼110 nm diameter) tubular carriers. The anterograde and retrograde tubular carriers are both largely free of the classical Golgi coat proteins coatomer (COPI) and clathrin. Instead, they contain ARF1 along their entire length at a density estimated to be in the range of close packing. Experiments using a mutant form of ARF1 affecting GTP hydrolysis suggest that ARF1[GTP] is functionally required for the tubules to form. Dynamic confocal and stimulated emission depletion imaging shows that ARF1-rich tubular compartments fall into two distinct classes containing 1) anterograde cargoes and clathrin clusters or 2) retrograde cargoes and coatomer clusters.
Collapse
Affiliation(s)
- Francesca Bottanelli
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520
| | - Nicole Kilian
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520
| | - Andreas M Ernst
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520
| | - Felix Rivera-Molina
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520
| | - Lena K Schroeder
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520
| | - Emil B Kromann
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520.,Department of Biomedical Engineering, Yale University, New Haven, CT 06520
| | - Mark D Lessard
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520
| | - Roman S Erdmann
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520.,Department of Chemistry, Yale University, New Haven, CT 06520
| | - Alanna Schepartz
- Department of Chemistry, Yale University, New Haven, CT 06520.,Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520
| | - David Baddeley
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520.,Nanobiology Institute, Yale University, West Haven, CT 06516
| | - Joerg Bewersdorf
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520.,Department of Biomedical Engineering, Yale University, New Haven, CT 06520.,Nanobiology Institute, Yale University, West Haven, CT 06516
| | - Derek Toomre
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520.,Nanobiology Institute, Yale University, West Haven, CT 06516
| | - James E Rothman
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520 .,Nanobiology Institute, Yale University, West Haven, CT 06516
| |
Collapse
|
29
|
Different Golgi ultrastructure across species and tissues: Implications under functional and pathological conditions, and an attempt at classification. Tissue Cell 2017; 49:186-201. [DOI: 10.1016/j.tice.2016.12.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 12/05/2016] [Accepted: 12/05/2016] [Indexed: 02/08/2023]
|
30
|
Caceres PS, Benedicto I, Lehmann GL, Rodriguez-Boulan EJ. Directional Fluid Transport across Organ-Blood Barriers: Physiology and Cell Biology. Cold Spring Harb Perspect Biol 2017; 9:a027847. [PMID: 28003183 PMCID: PMC5334253 DOI: 10.1101/cshperspect.a027847] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Directional fluid flow is an essential process for embryo development as well as for organ and organism homeostasis. Here, we review the diverse structure of various organ-blood barriers, the driving forces, transporters, and polarity mechanisms that regulate fluid transport across them, focusing on kidney-, eye-, and brain-blood barriers. We end by discussing how cross talk between barrier epithelial and endothelial cells, perivascular cells, and basement membrane signaling contribute to generate and maintain organ-blood barriers.
Collapse
Affiliation(s)
- Paulo S Caceres
- Margaret Dyson Vision Research Institute, Department of Ophthalmology, Weill Cornell Medical College, New York, New York 10065
| | - Ignacio Benedicto
- Margaret Dyson Vision Research Institute, Department of Ophthalmology, Weill Cornell Medical College, New York, New York 10065
| | - Guillermo L Lehmann
- Margaret Dyson Vision Research Institute, Department of Ophthalmology, Weill Cornell Medical College, New York, New York 10065
| | - Enrique J Rodriguez-Boulan
- Margaret Dyson Vision Research Institute, Department of Ophthalmology, Weill Cornell Medical College, New York, New York 10065
| |
Collapse
|
31
|
Kyung JW, Cho IH, Lee S, Song WK, Ryan TA, Hoppa MB, Kim SH. Adaptor Protein 2 (AP-2) complex is essential for functional axogenesis in hippocampal neurons. Sci Rep 2017; 7:41620. [PMID: 28139716 PMCID: PMC5282494 DOI: 10.1038/srep41620] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 12/21/2016] [Indexed: 11/18/2022] Open
Abstract
The complexity and diversity of a neural network requires regulated elongation and branching of axons, as well as the formation of synapses between neurons. In the present study we explore the role of AP-2, a key endocytic adaptor protein complex, in the development of rat hippocampal neurons. We found that the loss of AP-2 during the early stage of development resulted in impaired axon extension and failed maturation of the axon initial segment (AIS). Normally the AIS performs two tasks in concert, stabilizing neural polarity and generating action potentials. In AP-2 silenced axons polarity is established, however there is a failure to establish action potential firing. Consequently, this impairs activity-driven Ca2+ influx and exocytosis at nerve terminals. In contrast, removal of AP-2 from older neurons does not impair axonal growth or signaling and synaptic function. Our data reveal that AP-2 has important roles in functional axogenesis by proper extension of axon as well as the formation of AIS during the early step of neurodevelopment.
Collapse
Affiliation(s)
- Jae Won Kyung
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, 02447, South Korea
| | - In Ha Cho
- Department of Biology, Molecular Cellular Biology Program, Dartmouth College, Hanover, NH, 03755, USA
| | - Sukmook Lee
- Laboratory of Molecular Cancer Therapeutics, Scripps Korea Antibody Institute, Chuncheon, 24341, South Korea
| | - Woo Keun Song
- School of Life Science, Bioimaging Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, South Korea
| | - Timothy A Ryan
- Department of Biochemistry, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Michael B Hoppa
- Department of Biology, Molecular Cellular Biology Program, Dartmouth College, Hanover, NH, 03755, USA
| | - Sung Hyun Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, 02447, South Korea.,Department of Physiology, Neurodegeneration Control Research Center, School of Medicine, Kyung Hee University, Seoul, 02447, South Korea
| |
Collapse
|
32
|
Lobato-Álvarez JA, Roldán ML, López-Murillo TDC, González-Ramírez R, Bonilla-Delgado J, Shoshani L. The Apical Localization of Na +, K +-ATPase in Cultured Human Retinal Pigment Epithelial Cells Depends on Expression of the β 2 Subunit. Front Physiol 2016; 7:450. [PMID: 27774068 PMCID: PMC5054689 DOI: 10.3389/fphys.2016.00450] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 09/20/2016] [Indexed: 11/28/2022] Open
Abstract
Na+, K+-ATPase, or the Na+ pump, is a key component in the maintenance of the epithelial phenotype. In most epithelia, the pump is located in the basolateral domain. Studies from our laboratory have shown that the β1 subunit of Na+, K+-ATPase plays an important role in this mechanism because homotypic β1-β1 interactions between neighboring cells stabilize the pump in the lateral membrane. However, in the retinal pigment epithelium (RPE), the Na+ pump is located in the apical domain. The mechanism of polarization in this epithelium is unclear. We hypothesized that the apical polarization of the pump in RPE cells depends on the expression of its β2 subunit. ARPE-19 cells cultured for up to 8 weeks on inserts did not polarize, and Na+, K+-ATPase was expressed in the basolateral membrane. In the presence of insulin, transferrin and selenic acid (ITS), ARPE-19 cells cultured for 4 weeks acquired an RPE phenotype, and the Na+ pump was visible in the apical domain. Under these conditions, Western blot analysis was employed to detect the β2 isoform and immunofluorescence analysis revealed an apparent apical distribution of the β2 subunit. qPCR results showed a time-dependent increase in the level of β2 isoform mRNA, suggesting regulation at the transcriptional level. Moreover, silencing the expression of the β2 isoform in ARPE-19 cells resulted in a decrease in the apical localization of the pump, as assessed by the mislocalization of the α2 subunit in that domain. Our results demonstrate that the apical polarization of Na+, K+-ATPase in RPE cells depends on the expression of the β2 subunit.
Collapse
Affiliation(s)
- Jorge A Lobato-Álvarez
- Laboratory of Epithelial Research, Department of Physiology, Biophysics and Neurosciences, CINVESTAV-IPN México City, Mexico
| | - María L Roldán
- Laboratory of Epithelial Research, Department of Physiology, Biophysics and Neurosciences, CINVESTAV-IPN México City, Mexico
| | - Teresa Del Carmen López-Murillo
- Laboratory of Epithelial Research, Department of Physiology, Biophysics and Neurosciences, CINVESTAV-IPN México City, Mexico
| | - Ricardo González-Ramírez
- Department of Molecular Biology and Histocompatibility, Hospital General Dr. Manuel Gea González México City, Mexico
| | - José Bonilla-Delgado
- Research Unit, Laboratory of Genetics and Molecular Diagnosis, Hospital Juárez de México México City, Mexico
| | - Liora Shoshani
- Laboratory of Epithelial Research, Department of Physiology, Biophysics and Neurosciences, CINVESTAV-IPN México City, Mexico
| |
Collapse
|
33
|
Li X, Ortega B, Kim B, Welling PA. A Common Signal Patch Drives AP-1 Protein-dependent Golgi Export of Inwardly Rectifying Potassium Channels. J Biol Chem 2016; 291:14963-72. [PMID: 27226616 PMCID: PMC4946915 DOI: 10.1074/jbc.m116.729822] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 05/12/2016] [Indexed: 12/30/2022] Open
Abstract
Nearly all members of the inwardly rectifying potassium (Kir) channel family share a cytoplasmic domain structure that serves as an unusual AP-1 clathrin adaptor-dependent Golgi export signal in one Kir channel, Kir2.1 (KCNJ2), raising the question whether Kir channels share a common Golgi export mechanism. Here we explore this idea, focusing on two structurally and functionally divergent Kir family members, Kir2.3 (KCNJ4) and Kir4.1/5.1 (KCNJ10/16), which have ∼50% amino identity. We found that Golgi export of both channels is blocked upon siRNA-mediated knockdown of the AP-1 γ subunit, as predicted for the common AP-1-dependent trafficking process. A comprehensive mutagenic analysis, guided by homology mapping in atomic resolution models of Kir2.1, Kir2.3, and Kir4.1/5.1, identified a common structure that serves as a recognition site for AP-1 binding and governs Golgi export. Larger than realized from previous studies with Kir2.1, the signal is created by a patch of residues distributed at the confluence of cytoplasmic N and C termini. The signal involves a stretch of hydrophobic residues from the C-terminal region that form a hydrophobic cleft, an adjacent cluster of basic residues within the N terminus, and a potential network of salt bridges that join the N- and C-terminal poles together. Because patch formation and AP-1 binding are dependent on proper folding of the cytoplasmic domains, the signal provides a common quality control mechanism at the Golgi for Kir channels. These findings identify a new proteostatic mechanism that couples protein folding of channels to forward trafficking in the secretory pathway.
Collapse
Affiliation(s)
- Xiangming Li
- From the Department of Physiology, School of Medicine, University of Maryland, Baltimore, Maryland 21201 and
| | - Bernardo Ortega
- the Department of Biology, The College at Brockport, State University of New York, Brockport, New York 14420-2973
| | - Boyoung Kim
- From the Department of Physiology, School of Medicine, University of Maryland, Baltimore, Maryland 21201 and
| | - Paul A Welling
- From the Department of Physiology, School of Medicine, University of Maryland, Baltimore, Maryland 21201 and
| |
Collapse
|
34
|
The fast-recycling receptor Megalin defines the apical recycling pathway of epithelial cells. Nat Commun 2016; 7:11550. [PMID: 27180806 PMCID: PMC4873671 DOI: 10.1038/ncomms11550] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 04/08/2016] [Indexed: 01/14/2023] Open
Abstract
The basolateral recycling and transcytotic pathways of epithelial cells were previously defined using markers such as transferrin (TfR) and polymeric IgA (pIgR) receptors. In contrast, our knowledge of the apical recycling pathway remains fragmentary. Here we utilize quantitative live-imaging and mathematical modelling to outline the recycling pathway of Megalin (LRP-2), an apical receptor with key developmental and renal functions, in MDCK cells. We show that, like TfR, Megalin is a long-lived and fast-recycling receptor. Megalin enters polarized MDCK cells through segregated apical sorting endosomes and subsequently intersects the TfR and pIgR pathways at a perinuclear Rab11-negative compartment termed common recycling endosomes (CRE). Whereas TfR recycles to the basolateral membrane from CRE, Megalin, like pIgR, traffics to subapical Rab11-positive apical recycling endosomes (ARE) and reaches the apical membrane in a microtubule- and Rab11-dependent manner. Hence, Megalin defines the apical recycling pathway of epithelia, with CRE as its apical sorting station.
Collapse
|
35
|
Deborde S, Omelchenko T, Lyubchik A, Zhou Y, He S, McNamara WF, Chernichenko N, Lee SY, Barajas F, Chen CH, Bakst RL, Vakiani E, He S, Hall A, Wong RJ. Schwann cells induce cancer cell dispersion and invasion. J Clin Invest 2016; 126:1538-54. [PMID: 26999607 DOI: 10.1172/jci82658] [Citation(s) in RCA: 167] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 01/26/2016] [Indexed: 12/23/2022] Open
Abstract
Nerves enable cancer progression, as cancers have been shown to extend along nerves through the process of perineural invasion, which carries a poor prognosis. Furthermore, the innervation of some cancers promotes growth and metastases. It remains unclear, however, how nerves mechanistically contribute to cancer progression. Here, we demonstrated that Schwann cells promote cancer invasion through direct cancer cell contact. Histological evaluation of murine and human cancer specimens with perineural invasion uncovered a subpopulation of Schwann cells that associates with cancer cells. Coculture of cancer cells with dorsal root ganglion extracts revealed that Schwann cells direct cancer cells to migrate toward nerves and promote invasion in a contact-dependent manner. Upon contact, Schwann cells induced the formation of cancer cell protrusions in their direction and intercalated between the cancer cells, leading to cancer cell dispersion. The formation of these processes was dependent on Schwann cell expression of neural cell adhesion molecule 1 (NCAM1) and ultimately promoted perineural invasion. Moreover, NCAM1-deficient mice showed decreased neural invasion and less paralysis. Such Schwann cell behavior reflects normal Schwann cell programs that are typically activated in nerve repair but are instead exploited by cancer cells to promote perineural invasion and cancer progression.
Collapse
|
36
|
Iwanami N, Nakamura Y, Satoh T, Liu Z, Satoh AK. Rab6 Is Required for Multiple Apical Transport Pathways but Not the Basolateral Transport Pathway in Drosophila Photoreceptors. PLoS Genet 2016; 12:e1005828. [PMID: 26890939 PMCID: PMC4758697 DOI: 10.1371/journal.pgen.1005828] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Accepted: 01/05/2016] [Indexed: 11/30/2022] Open
Abstract
Polarized membrane trafficking is essential for the construction and maintenance of multiple plasma membrane domains of cells. Highly polarized Drosophila photoreceptors are an excellent model for studying polarized transport. A single cross-section of Drosophila retina contains many photoreceptors with 3 clearly differentiated plasma membrane domains: a rhabdomere, stalk, and basolateral membrane. Genome-wide high-throughput ethyl methanesulfonate screening followed by precise immunohistochemical analysis identified a mutant with a rare phenotype characterized by a loss of 2 apical transport pathways with normal basolateral transport. Rapid gene identification using whole-genome resequencing and single nucleotide polymorphism mapping identified a nonsense mutation of Rab6 responsible for the apical-specific transport deficiency. Detailed analysis of the trafficking of a major rhabdomere protein Rh1 using blue light-induced chromophore supply identified Rab6 as essential for Rh1 to exit the Golgi units. Rab6 is mostly distributed from the trans-Golgi network to a Golgi-associated Rab11-positive compartment that likely recycles endosomes or transport vesicles going to recycling endosomes. Furthermore, the Rab6 effector, Rich, is required for Rab6 recruitment in the trans-Golgi network. Moreover, a Rich null mutation phenocopies the Rab6 null mutant, indicating that Rich functions as a guanine nucleotide exchange factor for Rab6. The results collectively indicate that Rab6 and Rich are essential for the trans-Golgi network–recycling endosome transport of cargoes destined for 2 apical domains. However, basolateral cargos are sorted and exported from the trans-Golgi network in a Rab6-independent manner. Cells in animal bodies have multiple plasma membrane domains; this polarized characteristic of cells is essential for their specific functions. Selective membrane transport pathways play key roles in the construction and maintenance of polarized structures. Drosophila photoreceptors with multiple plasma membrane domains are an excellent model of polarized transport. We performed genetic screening and identified a Rab6 null mutant with a rare phenotype characterized by a loss of 2 apical transport pathways with normal basolateral transport. Although Rab6 functions in the Golgi are well known, its function in polarized transport was unexpected. Here, we found that Rab6 and its effector, Rich, are required for multiple apical transport pathways but not the basolateral transport pathway. Our findings strongly indicate that the membrane proteins delivered to multiple polarized domains are not sorted simultaneously: basolateral cargos are segregated before the Rab6-dependent process, and cargos going to multiple apical domains are sorted after Rab6-dependent transport from the trans-Golgi network to the Golgi-associated Rab11-positive compartment, which presumably recycles endosomes. Our finding of the function of Rab6 in polarized transport will elucidate the molecular mechanisms of polarized transport.
Collapse
Affiliation(s)
- Nozomi Iwanami
- Division of Life Science, Graduate School of Integral Arts and Science, Hiroshima University, Higashi-Hiroshima, Japan
| | - Yuri Nakamura
- Division of Life Science, Graduate School of Integral Arts and Science, Hiroshima University, Higashi-Hiroshima, Japan
| | - Takunori Satoh
- Division of Life Science, Graduate School of Integral Arts and Science, Hiroshima University, Higashi-Hiroshima, Japan
| | - Ziguang Liu
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Akiko K. Satoh
- Division of Life Science, Graduate School of Integral Arts and Science, Hiroshima University, Higashi-Hiroshima, Japan
- * E-mail:
| |
Collapse
|
37
|
Baratchi S, Almazi JG, Darby W, Tovar-Lopez FJ, Mitchell A, McIntyre P. Shear stress mediates exocytosis of functional TRPV4 channels in endothelial cells. Cell Mol Life Sci 2016; 73:649-66. [PMID: 26289129 PMCID: PMC11108432 DOI: 10.1007/s00018-015-2018-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 07/25/2015] [Accepted: 08/06/2015] [Indexed: 02/07/2023]
Abstract
Mechanosensitive ion channels are implicated in the biology of touch, pain, hearing and vascular reactivity; however, the identity of these ion channels and the molecular basis of their activation is poorly understood. We previously found that transient receptor potential vanilloid 4 (TRPV4) is a receptor operated ion channel that is sensitised and activated by mechanical stress. Here, we investigated the effects of mechanical stimulation on TRPV4 localisation and activation in native and recombinant TRPV4-expressing cells. We used a combination of total internal reflection fluorescence microscopy, cell surface biotinylation assay and Ca(2+) imaging with laser scanning confocal microscope to show that TRPV4 is expressed in primary vascular endothelial cells and that shear stress sensitises the response of TRPV4 to its agonist, GSK1016790A. The sensitisation was attributed to the recruitment of intracellular pools of TRPV4 to the plasma membrane, through the clathrin and dynamin-mediated exocytosis. The translocation was dependent on ILK/Akt signalling pathway, release of Ca(2+) from intracellular stores and we demonstrated that shear stress stimulated phosphorylation of TRPV4 at tyrosine Y110. Our findings implicate calcium-sensitive TRPV4 translocation in the regulation of endothelial responses to mechanical stimulation.
Collapse
Affiliation(s)
- Sara Baratchi
- School of Medical Sciences and Health Innovations Research Institute, RMIT University, Melbourne, VIC, 3083, Australia
| | - Juhura G Almazi
- School of Medical Sciences and Health Innovations Research Institute, RMIT University, Melbourne, VIC, 3083, Australia
| | - William Darby
- School of Medical Sciences and Health Innovations Research Institute, RMIT University, Melbourne, VIC, 3083, Australia
| | - Francisco J Tovar-Lopez
- School of Electrical and Computer Engineering, RMIT University, Melbourne, VIC, 3001, Australia
| | - Arnan Mitchell
- School of Electrical and Computer Engineering, RMIT University, Melbourne, VIC, 3001, Australia
| | - Peter McIntyre
- School of Medical Sciences and Health Innovations Research Institute, RMIT University, Melbourne, VIC, 3083, Australia.
| |
Collapse
|
38
|
How, with whom and when: an overview of CD147-mediated regulatory networks influencing matrix metalloproteinase activity. Biosci Rep 2015; 36:e00283. [PMID: 26604323 PMCID: PMC4718507 DOI: 10.1042/bsr20150256] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 11/24/2015] [Indexed: 12/11/2022] Open
Abstract
Matrix metalloproteinases (MMPs) comprise a family of 23 zinc-dependent enzymes involved in various pathologic and physiologic processes. In cancer, MMPs contribute to processes from tumour initiation to establishment of distant metastases. Complex signalling and protein transport networks regulate MMP synthesis, cell surface presentation and release. Earlier attempts to disrupt MMP activity in patients have proven to be intolerable and with underwhelming clinical efficacy; thus targeting ancillary proteins that regulate MMP activity may be a useful therapeutic approach. Extracellular matrix metalloproteinase inducer (EMMPRIN) was originally characterized as a factor present on lung cancer cells, which stimulated collagenase (MMP-1) production in fibroblasts. Subsequent studies demonstrated that EMMPRIN was identical with several other protein factors, including basigin (Bsg), all of which are now commonly termed CD147. CD147 modulates the synthesis and activity of soluble and membrane-bound [membrane-type MMPs (MT-MMPs)] in various contexts via homophilic/heterophilic cell interactions, vesicular shedding or cell-autonomous processes. CD147 also participates in inflammation, nutrient and drug transporter activity, microbial pathology and developmental processes. Despite the hundreds of manuscripts demonstrating CD147-mediated MMP regulation, the molecular underpinnings governing this process have not been fully elucidated. The present review summarizes our present knowledge of the complex regulatory systems influencing CD147 biology and provides a framework to understand how CD147 may influence MMP activity.
Collapse
|
39
|
Mruk DD, Cheng CY. The Mammalian Blood-Testis Barrier: Its Biology and Regulation. Endocr Rev 2015; 36:564-91. [PMID: 26357922 PMCID: PMC4591527 DOI: 10.1210/er.2014-1101] [Citation(s) in RCA: 414] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 09/03/2015] [Indexed: 12/31/2022]
Abstract
Spermatogenesis is the cellular process by which spermatogonia develop into mature spermatids within seminiferous tubules, the functional unit of the mammalian testis, under the structural and nutritional support of Sertoli cells and the precise regulation of endocrine factors. As germ cells develop, they traverse the seminiferous epithelium, a process that involves restructuring of Sertoli-germ cell junctions, as well as Sertoli-Sertoli cell junctions at the blood-testis barrier. The blood-testis barrier, one of the tightest tissue barriers in the mammalian body, divides the seminiferous epithelium into 2 compartments, basal and adluminal. The blood-testis barrier is different from most other tissue barriers in that it is not only comprised of tight junctions. Instead, tight junctions coexist and cofunction with ectoplasmic specializations, desmosomes, and gap junctions to create a unique microenvironment for the completion of meiosis and the subsequent development of spermatids into spermatozoa via spermiogenesis. Studies from the past decade or so have identified the key structural, scaffolding, and signaling proteins of the blood-testis barrier. More recent studies have defined the regulatory mechanisms that underlie blood-testis barrier function. We review here the biology and regulation of the mammalian blood-testis barrier and highlight research areas that should be expanded in future studies.
Collapse
Affiliation(s)
- Dolores D Mruk
- Center for Biomedical Research, Population Council, New York, New York 10065
| | - C Yan Cheng
- Center for Biomedical Research, Population Council, New York, New York 10065
| |
Collapse
|
40
|
Farr GA, Hull M, Stoops EH, Bateson R, Caplan MJ. Dual pulse-chase microscopy reveals early divergence in the biosynthetic trafficking of the Na,K-ATPase and E-cadherin. Mol Biol Cell 2015; 26:4401-11. [PMID: 26424804 PMCID: PMC4666135 DOI: 10.1091/mbc.e14-09-1385] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 09/24/2015] [Indexed: 11/14/2022] Open
Abstract
The trafficking of newly synthesized Na,K-ATPase and E-cadherin is observed in polarized epithelial cells. E-cadherin’s exit from the Golgi complex is not susceptible to 19°C temperature block. Furthermore, these proteins exit the Golgi and are delivered to the basolateral cell surface in separate vascular carriers. Recent evidence indicates that newly synthesized membrane proteins that share the same distributions in the plasma membranes of polarized epithelial cells can pursue a variety of distinct trafficking routes as they travel from the Golgi complex to their common destination at the cell surface. In most polarized epithelial cells, both the Na,K-ATPase and E-cadherin are localized to the basolateral domains of the plasma membrane. To examine the itineraries pursued by newly synthesized Na,K-ATPase and E-cadherin in polarized MDCK epithelial cells, we used the SNAP and CLIP labeling systems to fluorescently tag temporally defined cohorts of these proteins and observe their behaviors simultaneously as they traverse the secretory pathway. These experiments reveal that E-cadherin is delivered to the cell surface substantially faster than is the Na,K-ATPase. Furthermore, the surface delivery of newly synthesized E-cadherin to the plasma membrane was not prevented by the 19°C temperature block that inhibits the trafficking of most proteins, including the Na,K-ATPase, out of the trans-Golgi network. Consistent with these distinct behaviors, populations of newly synthesized E-cadherin and Na,K-ATPase become separated from one another within the trans-Golgi network, suggesting that they are sorted into different carrier vesicles that mediate their post-Golgi trafficking.
Collapse
Affiliation(s)
- Glen A Farr
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520-8026
| | - Michael Hull
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520-8026
| | - Emily H Stoops
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520-8026
| | - Rosalie Bateson
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520-8026
| | - Michael J Caplan
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520-8026 )
| |
Collapse
|
41
|
Jenkins PM, He M, Bennett V. Dynamic spectrin/ankyrin-G microdomains promote lateral membrane assembly by opposing endocytosis. SCIENCE ADVANCES 2015; 1:e1500301. [PMID: 26523289 PMCID: PMC4624203 DOI: 10.1126/sciadv.1500301] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Current physical models for plasma membranes emphasize dynamic 10- to 300-nm compartments at thermodynamic equilibrium but subject to thermal fluctuations. However, epithelial lateral membranes contain micrometer-sized domains defined by an underlying membrane skeleton composed of spectrin and its partner ankyrin-G. We demonstrate that these spectrin/ankyrin-G domains exhibit local microtubule-dependent movement on a time scale of minutes and encounter most of the lateral membranes within an hour. Spectrin/ankyrin-G domains exclude clathrin and clathrin-dependent cargo, and inhibit both receptor-mediated and bulk endocytosis. Moreover, inhibition of endocytosis fully restores lateral membrane height in spectrin- or ankyrin-G-depleted cells. These findings support a non-equilibrium cellular-scale model for epithelial lateral membranes, where spectrin/ankyrin-G domains actively patrol the plasma membrane, analogous to "window washers," and promote columnar morphology by blocking membrane uptake.
Collapse
Affiliation(s)
- Paul M. Jenkins
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | - Meng He
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Vann Bennett
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
- Howard Hughes Medical Institute, Durham, NC 27710, USA
- Corresponding author. E-mail:
| |
Collapse
|
42
|
Jane-wit D, Surovtseva YV, Qin L, Li G, Liu R, Clark P, Manes TD, Wang C, Kashgarian M, Kirkiles-Smith NC, Tellides G, Pober JS. Complement membrane attack complexes activate noncanonical NF-κB by forming an Akt+ NIK+ signalosome on Rab5+ endosomes. Proc Natl Acad Sci U S A 2015; 112:9686-91. [PMID: 26195760 PMCID: PMC4534258 DOI: 10.1073/pnas.1503535112] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Complement membrane attack complexes (MACs) promote inflammatory functions in endothelial cells (ECs) by stabilizing NF-κB-inducing kinase (NIK) and activating noncanonical NF-κB signaling. Here we report a novel endosome-based signaling complex induced by MACs to stabilize NIK. We found that, in contrast to cytokine-mediated activation, NIK stabilization by MACs did not involve cIAP2 or TRAF3. Informed by a genome-wide siRNA screen, instead this response required internalization of MACs in a clathrin-, AP2-, and dynamin-dependent manner into Rab5(+)endosomes, which recruited activated Akt, stabilized NIK, and led to phosphorylation of IκB kinase (IKK)-α. Active Rab5 was required for recruitment of activated Akt to MAC(+) endosomes, but not for MAC internalization or for Akt activation. Consistent with these in vitro observations, MAC internalization occurred in human coronary ECs in vivo and was similarly required for NIK stabilization and EC activation. We conclude that MACs activate noncanonical NF-κB by forming a novel Akt(+)NIK(+) signalosome on Rab5(+) endosomes.
Collapse
Affiliation(s)
- Dan Jane-wit
- Division of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT 06520
| | - Yulia V Surovtseva
- Yale Center for Molecular Discovery, Yale University, New Haven, CT 06516
| | - Lingfeng Qin
- Department of Surgery, Yale University School of Medicine, New Haven, CT 06520
| | - Guangxin Li
- Department of Surgery, Yale University School of Medicine, New Haven, CT 06520
| | - Rebecca Liu
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520
| | - Pamela Clark
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520
| | - Thomas D Manes
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520
| | - Chen Wang
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520
| | - Michael Kashgarian
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06520
| | | | - George Tellides
- Department of Surgery, Yale University School of Medicine, New Haven, CT 06520
| | - Jordan S Pober
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520; Department of Pathology, Yale University School of Medicine, New Haven, CT 06520
| |
Collapse
|
43
|
Fölsch H. Role of the epithelial cell-specific clathrin adaptor complex AP-1B in cell polarity. CELLULAR LOGISTICS 2015; 5:e1074331. [PMID: 27057418 DOI: 10.1080/21592799.2015.1074331] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 07/07/2015] [Accepted: 07/09/2015] [Indexed: 10/23/2022]
Abstract
Epithelial cells are important for organ development and function. To this end, they polarize their plasma membrane into biochemically and physically distinct membrane domains. The apical membrane faces the luminal site of an organ and the basolateral domain is in contact with the basement membrane and neighboring cells. To establish and maintain this polarity it is important that newly synthesized and endocytic cargos are correctly sorted according to their final destinations at either membrane. Sorting takes place at one of 2 major sorting stations in the cells, the trans-Golgi network (TGN) and recycling endosomes (REs). Polarized sorting may involve epithelial cell-specific sorting adaptors like the AP-1B clathrin adaptor complex. AP-1B facilitates basolateral sorting from REs. This review will discuss various aspects of basolateral sorting in epithelial cells with a special emphasis on AP-1B.
Collapse
Affiliation(s)
- Heike Fölsch
- Department of Cell and Molecular Biology; Northwestern University; Feinberg School of Medicine ; Chicago, IL USA
| |
Collapse
|
44
|
Abstract
Epithelial cells display segregated early endosomal compartments, termed apical sorting endosomes and basolateral sorting endosomes, that converge into a common late endosomal-lysosomal degradative compartment and common recycling endosomes (CREs). Unlike recycling endosomes of nonpolarized cells, CREs have the ability to sort apical and basolateral plasma membrane proteins into distinct apical and basolateral recycling routes, utilizing mechanisms similar to those employed by the trans Golgi network in the biosynthetic pathway. The apical recycling route includes an additional compartment, the apical recycling endosomes, consisting of multiple vesicles bundled around the basal body. Recent evidence indicates that, in addition to their role in internalizing ligands and recycling their receptors back to the cell surface, endosomal compartments act as intermediate stations in the biosynthetic routes to the plasma membrane. Here we review methods employed by our laboratory to study the endosomal compartments of epithelial cells and their multiple trafficking roles.
Collapse
|
45
|
Fu L, Rab A, Tang LP, Bebok Z, Rowe SM, Bartoszewski R, Collawn JF. ΔF508 CFTR surface stability is regulated by DAB2 and CHIP-mediated ubiquitination in post-endocytic compartments. PLoS One 2015; 10:e0123131. [PMID: 25879443 PMCID: PMC4399842 DOI: 10.1371/journal.pone.0123131] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 02/16/2015] [Indexed: 01/05/2023] Open
Abstract
The ΔF508 mutant form of the cystic fibrosis transmembrane conductance regulator (ΔF508 CFTR) that is normally degraded by the ER-associated degradative pathway can be rescued to the cell surface through low-temperature (27°C) culture or small molecular corrector treatment. However, it is unstable on the cell surface, and rapidly internalized and targeted to the lysosomal compartment for degradation. To understand the mechanism of this rapid turnover, we examined the role of two adaptor complexes (AP-2 and Dab2) and three E3 ubiquitin ligases (c-Cbl, CHIP, and Nedd4-2) on low-temperature rescued ΔF508 CFTR endocytosis and degradation in human airway epithelial cells. Our results demonstrate that siRNA depletion of either AP-2 or Dab2 inhibits ΔF508 CFTR endocytosis by 69% and 83%, respectively. AP-2 or Dab2 depletion also increases the rescued protein half-life of ΔF508 CFTR by ~18% and ~91%, respectively. In contrast, the depletion of each of the E3 ligases had no effect on ΔF508 CFTR endocytosis, whereas CHIP depletion significantly increased the surface half-life of ΔF508 CFTR. To determine where and when the ubiquitination occurs during ΔF508 CFTR turnover, we monitored the ubiquitination of rescued ΔF508 CFTR during the time course of CFTR endocytosis. Our results indicate that ubiquitination of the surface pool of ΔF508 CFTR begins to increase 15 min after internalization, suggesting that CFTR is ubiquitinated in a post-endocytic compartment. This post-endocytic ubiquination of ΔF508 CFTR could be blocked by either inhibiting endocytosis, by siRNA knockdown of CHIP, or by treating cells with the CFTR corrector, VX-809. Our results indicate that the post-endocytic ubiquitination of CFTR by CHIP is a critical step in the peripheral quality control of cell surface ΔF508 CFTR.
Collapse
Affiliation(s)
- Lianwu Fu
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- * E-mail: (LF); (JFC)
| | - Andras Rab
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Li ping Tang
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Zsuzsa Bebok
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Steven M. Rowe
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Rafal Bartoszewski
- Department of Biology and Pharmaceutical Botany, Medical University of Gdansk, Gdansk, Poland
| | - James F. Collawn
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- * E-mail: (LF); (JFC)
| |
Collapse
|
46
|
Gillard G, Shafaq-Zadah M, Nicolle O, Damaj R, Pécréaux J, Michaux G. Control of E-cadherin apical localisation and morphogenesis by a SOAP-1/AP-1/clathrin pathway in C. elegans epidermal cells. Development 2015; 142:1684-94. [PMID: 25858456 DOI: 10.1242/dev.118216] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Accepted: 03/02/2015] [Indexed: 01/05/2023]
Abstract
E-cadherin (E-cad) is the main component of epithelial junctions in multicellular organisms, where it is essential for cell-cell adhesion. The localisation of E-cad is often strongly polarised in the apico-basal axis. However, the mechanisms required for its polarised distribution are still largely unknown. We performed a systematic RNAi screen in vivo to identify genes required for the strict E-cad apical localisation in C. elegans epithelial epidermal cells. We found that the loss of clathrin, its adaptor AP-1 and the AP-1 interactor SOAP-1 induced a basolateral localisation of E-cad without affecting the apico-basal diffusion barrier. We further found that SOAP-1 controls AP-1 localisation, and that AP-1 is required for clathrin recruitment. Finally, we also show that AP-1 controls E-cad apical delivery and actin organisation during embryonic elongation, the final morphogenetic step of embryogenesis. We therefore propose that a molecular pathway, containing SOAP-1, AP-1 and clathrin, controls the apical delivery of E-cad and morphogenesis.
Collapse
Affiliation(s)
- Ghislain Gillard
- CNRS, UMR6290, Institut de Génétique et Développement de Rennes, Rennes F-35043, France Université de Rennes 1, UEB, SFR Biosit, Faculté de Médecine, Rennes F-35043, France
| | - Massiullah Shafaq-Zadah
- CNRS, UMR6290, Institut de Génétique et Développement de Rennes, Rennes F-35043, France Université de Rennes 1, UEB, SFR Biosit, Faculté de Médecine, Rennes F-35043, France
| | - Ophélie Nicolle
- CNRS, UMR6290, Institut de Génétique et Développement de Rennes, Rennes F-35043, France Université de Rennes 1, UEB, SFR Biosit, Faculté de Médecine, Rennes F-35043, France
| | - Raghida Damaj
- CNRS, UMR6290, Institut de Génétique et Développement de Rennes, Rennes F-35043, France Université de Rennes 1, UEB, SFR Biosit, Faculté de Médecine, Rennes F-35043, France
| | - Jacques Pécréaux
- CNRS, UMR6290, Institut de Génétique et Développement de Rennes, Rennes F-35043, France Université de Rennes 1, UEB, SFR Biosit, Faculté de Médecine, Rennes F-35043, France
| | - Grégoire Michaux
- CNRS, UMR6290, Institut de Génétique et Développement de Rennes, Rennes F-35043, France Université de Rennes 1, UEB, SFR Biosit, Faculté de Médecine, Rennes F-35043, France
| |
Collapse
|
47
|
de la Fuente-Ortega E, Gravotta D, Perez Bay A, Benedicto I, Carvajal-Gonzalez JM, Lehmann GL, Lagos CF, Rodríguez-Boulan E. Basolateral sorting of chloride channel 2 is mediated by interactions between a dileucine motif and the clathrin adaptor AP-1. Mol Biol Cell 2015; 26:1728-42. [PMID: 25739457 PMCID: PMC4436783 DOI: 10.1091/mbc.e15-01-0047] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 02/25/2015] [Indexed: 01/03/2023] Open
Abstract
ClC-2 is a ubiquitous chloride channel that regulates cell volume, ion transport, and acid-base balance. Mice knocked out for ClC-2 are blind and sterile. Basolateral localization of ClC-2 in epithelia is mediated by the interaction of a dileucine motif with a highly conserved pocket in the γ1-σ1A hemicomplex of AP-1. In spite of the many key cellular functions of chloride channels, the mechanisms that mediate their subcellular localization are largely unknown. ClC-2 is a ubiquitous chloride channel usually localized to the basolateral domain of epithelia that regulates cell volume, ion transport, and acid–base balance; mice knocked out for ClC-2 are blind and sterile. Previous work suggested that CLC-2 is sorted basolaterally by TIFS812LL, a dileucine motif in CLC-2's C-terminal domain. However, our in silico modeling of ClC-2 suggested that this motif was buried within the channel's dimerization interface and identified two cytoplasmically exposed dileucine motifs, ESMI623LL and QVVA635LL, as candidate sorting signals. Alanine mutagenesis and trafficking assays support a scenario in which ESMI623LL acts as the authentic basolateral signal of ClC-2. Silencing experiments and yeast three-hybrid assays demonstrated that both ubiquitous (AP-1A) and epithelium-specific (AP-1B) forms of the tetrameric clathrin adaptor AP-1 are capable of carrying out basolateral sorting of ClC-2 through interactions of ESMI623LL with a highly conserved pocket in their γ1-σ1A hemicomplex.
Collapse
Affiliation(s)
- Erwin de la Fuente-Ortega
- Dyson Vision Research Institute, Department of Ophthalmology, Weill Cornell Medical College, New York, NY 10065
| | - Diego Gravotta
- Dyson Vision Research Institute, Department of Ophthalmology, Weill Cornell Medical College, New York, NY 10065
| | - Andres Perez Bay
- Dyson Vision Research Institute, Department of Ophthalmology, Weill Cornell Medical College, New York, NY 10065
| | - Ignacio Benedicto
- Dyson Vision Research Institute, Department of Ophthalmology, Weill Cornell Medical College, New York, NY 10065
| | | | - Guillermo L Lehmann
- Dyson Vision Research Institute, Department of Ophthalmology, Weill Cornell Medical College, New York, NY 10065
| | - Carlos F Lagos
- Department of Endocrinology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago Centro 8330074, Santiago, Chile Facultad de Ciencia, Universidad San Sebastián, Providencia 7510157, Santiago, Chile
| | - Enrique Rodríguez-Boulan
- Dyson Vision Research Institute, Department of Ophthalmology, Weill Cornell Medical College, New York, NY 10065
| |
Collapse
|
48
|
Abstract
UNLABELLED Although it is well established that hepatitis C virus (HCV) entry into hepatocytes depends on clathrin-mediated endocytosis, the possible roles of clathrin in other steps of the viral cycle remain unexplored. Thus, we studied whether cell culture-derived HCV (HCVcc) exocytosis was altered after clathrin interference. Knockdown of clathrin or the clathrin adaptor AP-1 in HCVcc-infected human hepatoma cell cultures impaired viral secretion without altering intracellular HCVcc levels or apolipoprotein B (apoB) and apoE exocytosis. Similar reductions in HCVcc secretion were observed after treatment with specific clathrin and dynamin inhibitors. Furthermore, detergent-free immunoprecipitation assays, neutralization experiments, and immunofluorescence analyses suggested that whereas apoE associated with infectious intracellular HCV precursors in endoplasmic reticulum (ER)-related structures, AP-1 participated in HCVcc egress in a post-ER compartment. Finally, we observed that clathrin and AP-1 knockdown altered the endosomal distribution of HCV core, reducing and increasing its colocalization with early endosome and lysosome markers, respectively. Our data support a model in which nascent HCV particles associate with apoE in the ER and exit cells following a clathrin-dependent transendosomal secretory route. IMPORTANCE HCV entry into hepatocytes depends on clathrin-mediated endocytosis. Here we demonstrate for the first time that clathrin also participates in HCV exit from infected cells. Our data uncover important features of HCV egress, which may lead to the development of new therapeutic interventions. Interestingly, we show that secretion of the very-low-density lipoprotein (VLDL) components apoB and apoE is not impaired after clathrin interference. This is a significant finding, since, to date, it has been proposed that HCV and VLDL follow similar exocytic routes. Given that lipid metabolism recently emerged as a potential target for therapies against HCV infection, our data may help in the design of new strategies to interfere specifically with HCV exocytosis without perturbing cellular lipid homeostasis, with the aim of achieving more efficient, selective, and safe antivirals.
Collapse
|
49
|
Zhang Y, Moeini-Naghani I, Bai J, Santos-Sacchi J, Navaratnam DS. Tyrosine motifs are required for prestin basolateral membrane targeting. Biol Open 2015; 4:197-205. [PMID: 25596279 PMCID: PMC4365488 DOI: 10.1242/bio.201410629] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Prestin is targeted to the lateral wall of outer hair cells (OHCs) where its electromotility is critical for cochlear amplification. Using MDCK cells as a model system for polarized epithelial sorting, we demonstrate that prestin uses tyrosine residues, in a YXXΦ motif, to target the basolateral surface. Both Y520 and Y667 are important for basolateral targeting of prestin. Mutation of these residues to glutamine or alanine resulted in retention within the Golgi and delayed egress from the Golgi in Y667Q. Basolateral targeting is restored upon mutation to phenylalanine suggesting the importance of a phenol ring in the tyrosine side chain. We also demonstrate that prestin targeting to the basolateral surface is dependent on AP1B (μ1B), and that prestin uses transferrin containing early endosomes in its passage from the Golgi to the basolateral plasma membrane. The presence of AP1B (μ1B) in OHCs, and parallels between prestin targeting to the basolateral surface of OHCs and polarized epithelial cells suggest that outer hair cells resemble polarized epithelia rather than neurons in this important phenotypic measure.
Collapse
Affiliation(s)
- Yifan Zhang
- Department of Neurology, Yale School of Medicine, New Haven, CT 06510, USA
| | | | - JunPing Bai
- Department of Neurology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Joseph Santos-Sacchi
- Department of Surgery, Yale School of Medicine, New Haven, CT 06510, USA Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Dhasakumar S Navaratnam
- Department of Neurology, Yale School of Medicine, New Haven, CT 06510, USA Department of Neurobiology, Yale School of Medicine, New Haven, CT 06510, USA Department of Surgery, Yale School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
50
|
Yamamoto H, Awada C, Matsumoto S, Kaneiwa T, Sugimoto T, Takao T, Kikuchi A. Basolateral secretion of Wnt5a in polarized epithelial cells is required for apical lumen formation. J Cell Sci 2015; 128:1051-63. [PMID: 25593127 DOI: 10.1242/jcs.163683] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Wnt5a regulates planar cell polarity in epithelial cells, but it remains to be determined whether Wnt5a and its receptors are sorted apically or basolaterally, and how Wnt5a signaling is involved in apical and basolateral polarization. We found that Wnt5a was secreted basolaterally in polarized kidney epithelial cells. The basolateral secretion of Wnt5a required Wntless (Wls), clathrin and adaptor protein 1 (AP-1). Wnt5a receptors were also localized to the basolateral membranes, but their sorting did not require Wls. Wnt5a-induced signaling was stimulated more efficiently at the basolateral side than the apical side of epithelial cells. Knockdown of Wnt5a delayed apical lumen formation of the epithelial cyst, and these phenotypes were rescued by wild-type Wnt5a, but not by a Wnt5a mutant that is secreted apically. Although apoptosis was not required for apical lumen formation in a wild-type cyst, apoptosis was necessary for eliminating luminal cells in a Wnt5a-depleted cyst. These results suggest that Wnt5a and its receptors are sorted to their correct destination by different mechanisms and that the basolateral secretion of Wnt5a is necessary for apical lumen formation in the epithelial cyst.
Collapse
Affiliation(s)
- Hideki Yamamoto
- Department of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Chihiro Awada
- Laboratory of Protein Profiling and Functional Proteomics, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shinji Matsumoto
- Department of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tomoyuki Kaneiwa
- Department of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takayuki Sugimoto
- Department of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Toshifumi Takao
- Laboratory of Protein Profiling and Functional Proteomics, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Akira Kikuchi
- Department of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|