1
|
Tatnell HR, Novakovic S, Boag PR, Davis GM. EYA-1 is required for genomic integrity independent of H2AX signalling in Caenorhabditis elegans. Mol Biol Rep 2024; 51:1009. [PMID: 39316168 PMCID: PMC11422256 DOI: 10.1007/s11033-024-09933-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 09/10/2024] [Indexed: 09/25/2024]
Abstract
BACKGROUND Resolving genomic insults is essential for the survival of any species. In the case of eukaryotes, several pathways comprise the DNA damage repair network, and many components have high evolutionary conservation. These pathways ensure that DNA damage is resolved which prevents disease associated mutations from occurring in a de novo manner. In this study, we investigated the role of the Eyes Absent (EYA) homologue in Caenorhabditis elegans and its role in DNA damage repair. Current understanding of mammalian EYA1 suggests that EYA1 is recruited in response to H2AX signalling to dsDNA breaks. C. elegans do not possess a H2AX homologue, although they do possess homologues of the core DNA damage repair proteins. Due to this, we aimed to determine if eya-1 contributes to DNA damage repair independent of H2AX. METHODS AND RESULTS We used a putative null mutant for eya-1 in C. elegans and observed that absence of eya-1 results in abnormal chromosome morphology in anaphase embryos, including chromosomal bridges, missegregated chromosomes, and embryos with abnormal nuclei. Additionally, inducing different types of genomic insults, we show that eya-1 mutants are highly sensitive to induction of DNA damage, yet show little change to induced DNA replication stress and display a mortal germline resulting in sterility over successive generations. CONCLUSIONS Collectively, this study suggests that the EYA family of proteins may have a greater involvement in maintaining genomic integrity than previously thought and unveils novel roles of EYA associated DNA damage repair.
Collapse
Affiliation(s)
- Hannah R Tatnell
- Institute of Innovation, Science and Sustainability, Federation University, Churchill, VIC, Australia
| | - Stevan Novakovic
- Department of Biochemistry and Molecular Biology, Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC, Australia
| | - Peter R Boag
- Department of Biochemistry and Molecular Biology, Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC, Australia
| | - Gregory M Davis
- Institute of Innovation, Science and Sustainability, Federation University, Churchill, VIC, Australia.
- Department of Health Sciences and Biostatistics, Swinburne University of Technology, Hawthorn, Australia.
| |
Collapse
|
2
|
Reshi HA, Medishetti R, Ahuja A, Balasubramanian D, Babu K, Jaiswal M, Chatti K, Maddika S. EYA protein complex is required for Wntless retrograde trafficking from endosomes to Golgi. Dev Cell 2024; 59:2443-2459.e7. [PMID: 38870942 DOI: 10.1016/j.devcel.2024.05.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 12/01/2023] [Accepted: 05/17/2024] [Indexed: 06/15/2024]
Abstract
Retrograde transport of WLS (Wntless) from endosomes to trans-Golgi network (TGN) is required for efficient Wnt secretion during development. However, the molecular players connecting endosomes to TGN during WLS trafficking are limited. Here, we identified a role for Eyes Absent (EYA) proteins during retrograde trafficking of WLS to TGN in human cell lines. By using worm, fly, and zebrafish models, we found that the EYA-secretory carrier-associated membrane protein 3 (SCAMP3) axis is evolved in vertebrates. EYAs form a complex and interact with retromer on early endosomes. Retromer-bound EYA complex recruits SCAMP3 to endosomes, which is necessary for the fusion of WLS-containing endosomes to TGN. Loss of EYA complex or SCAMP3 leads to defective transport of WLS to TGN and failed Wnt secretion. EYA mutations found in patients with hearing loss form a dysfunctional EYA-retromer complex that fails to activate Wnt signaling. These findings identify the EYA complex as a component of retrograde trafficking of WLS from the endosome to TGN.
Collapse
Affiliation(s)
- Hilal Ahmad Reshi
- Laboratory of Cell Death & Cell Survival, Centre for DNA Fingerprinting and Diagnostics (CDFD), Uppal, Hyderabad 500039, India; Graduate Studies, Regional Centre for Biotechnology, Faridabad 121001, India
| | - Raghavender Medishetti
- Dr. Reddy's Institute of Life Sciences (DRILS), University of Hyderabad Campus, Hyderabad 500046, India
| | - Aishwarya Ahuja
- Centre for Neuroscience, Indian Institute of Science (IISc), Bangalore 560012, India
| | | | - Kavita Babu
- Centre for Neuroscience, Indian Institute of Science (IISc), Bangalore 560012, India
| | - Manish Jaiswal
- Tata Institute of Fundamental Research, Hyderabad 500046, India
| | - Kiranam Chatti
- Dr. Reddy's Institute of Life Sciences (DRILS), University of Hyderabad Campus, Hyderabad 500046, India
| | - Subbareddy Maddika
- Laboratory of Cell Death & Cell Survival, Centre for DNA Fingerprinting and Diagnostics (CDFD), Uppal, Hyderabad 500039, India.
| |
Collapse
|
3
|
Rosenbaum SR, Hughes CJ, Fields KM, Purdy SC, Gustafson A, Wolin A, Hampton D, Turner N, Ebmeier C, Costello JC, Ford HL. An EYA3/NF-κB/CCL2 signaling axis suppresses cytotoxic NK cells in the pre-metastatic niche to promote triple negative breast cancer metastasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.31.606072. [PMID: 39211066 PMCID: PMC11360953 DOI: 10.1101/2024.07.31.606072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Patients with Triple Negative Breast Cancer (TNBC) exhibit high rates of metastases and poor prognoses. The Eyes absent (EYA) family of proteins are developmental transcriptional cofactors/phosphatases that are re-expressed and/or upregulated in numerous cancers. Herein, we demonstrate that EYA3 correlates with decreased survival in breast cancer, and that it strongly, and specifically, regulates metastasis via a novel mechanism that involves NF-kB signaling and an altered innate immune profile at the pre-metastatic niche (PMN). Remarkably, restoration of NF-kB signaling downstream of Eya3 knockdown (KD) restores metastasis without restoring primary tumor growth, isolating EYA3/NF-kB effects to the metastatic site. We show that secreted CCL2, regulated downstream of EYA3/NF-kB, specifically decreases cytotoxic NK cells in the PMN and that re-expression of Ccl2 in Eya3 -KD cells is sufficient to rescue activation/levels of cytotoxic NK cells in vitro and at the PMN, where EYA3-mediated decreases in cytotoxic NK cells are required for metastatic outgrowth. Importantly, analysis of public breast cancer datasets uncovers a significant correlation of EYA3 with NF-kB/CCL2, underscoring the relevance of EYA3/NF-kB/CCL2 to human disease. Our findings suggest that inhibition of EYA3 could be a powerful means to re-activate the innate immune response at the PMN, inhibiting TNBC metastasis. Significance EYA3 promotes metastasis of TNBC cells by promoting NF-kB-mediated CCL2 expression and inhibiting cytotoxic NK cells at the pre-metastatic niche, highlighting a potential therapeutic target in this subset of breast cancer.
Collapse
|
4
|
Alderman C, Anderson R, Zhang L, Hughes CJ, Li X, Ebmeier C, Wagley ME, Ahn NG, Ford HL, Zhao R. Biochemical characterization of the Eya and PP2A-B55α interaction. J Biol Chem 2024; 300:107408. [PMID: 38796066 PMCID: PMC11328874 DOI: 10.1016/j.jbc.2024.107408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/22/2024] [Accepted: 05/09/2024] [Indexed: 05/28/2024] Open
Abstract
The eyes absent (Eya) proteins were first identified as co-activators of the six homeobox family of transcription factors and are critical in embryonic development. These proteins are also re-expressed in cancers after development is complete, where they drive tumor progression. We have previously shown that the Eya3 N-terminal domain (NTD) contains Ser/Thr phosphatase activity through an interaction with the protein phosphatase 2A (PP2A)-B55α holoenzyme and that this interaction increases the half-life of Myc through pT58 dephosphorylation. Here, we showed that Eya3 directly interacted with the NTD of Myc, recruiting PP2A-B55α to Myc. We also showed that Eya3 increased the Ser/Thr phosphatase activity of PP2A-B55α but not PP2A-B56α. Furthermore, we demonstrated that the NTD (∼250 amino acids) of Eya3 was completely disordered, and it used a 38-residue segment to interact with B55α. In addition, knockdown and phosphoproteomic analyses demonstrated that Eya3 and B55α affected highly similar phosphosite motifs with a preference for Ser/Thr followed by Pro, consistent with Eya3's apparent Ser/Thr phosphatase activity being mediated through its interaction with PP2A-B55α. Intriguingly, mutating this Pro to other amino acids in a Myc peptide dramatically increased dephosphorylation by PP2A. Not surprisingly, MycP59A, a naturally occurring mutation hotspot in several cancers, enhanced Eya3-PP2A-B55α-mediated dephosphorylation of pT58 on Myc, leading to increased Myc stability and cell proliferation, underscoring the critical role of this phosphosite in regulating Myc stability.
Collapse
Affiliation(s)
- Christopher Alderman
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA; Medical Scientist Training Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA; Molecular Biology Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Ryan Anderson
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Lingdi Zhang
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Connor J Hughes
- Medical Scientist Training Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA; Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Xueni Li
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Chris Ebmeier
- Department of Biochemistry, University of Colorado-Boulder, Boulder, Colorado, USA
| | - Marisa E Wagley
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Natalie G Ahn
- Department of Biochemistry, University of Colorado-Boulder, Boulder, Colorado, USA
| | - Heide L Ford
- Molecular Biology Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA; Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Rui Zhao
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA; Molecular Biology Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.
| |
Collapse
|
5
|
Hughes CJ, Alderman C, Wolin AR, Fields KM, Zhao R, Ford HL. All eyes on Eya: A unique transcriptional co-activator and phosphatase in cancer. Biochim Biophys Acta Rev Cancer 2024; 1879:189098. [PMID: 38555001 PMCID: PMC11111358 DOI: 10.1016/j.bbcan.2024.189098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/02/2024]
Abstract
The Eya family of proteins (consisting of Eyas1-4 in mammals) play vital roles in embryogenesis by regulating processes such as proliferation, migration/invasion, cellular survival and pluripotency/plasticity of epithelial and mesenchymal states. Eya proteins carry out such diverse functions through a unique combination of transcriptional co-factor, Tyr phosphatase, and PP2A/B55α-mediated Ser/Thr phosphatase activities. Since their initial discovery, re-expression of Eyas has been observed in numerous tumor types, where they are known to promote tumor progression through a combination of their transcriptional and enzymatic activities. Eya proteins thus reinstate developmental processes during malignancy and represent a compelling class of therapeutic targets for inhibiting tumor progression.
Collapse
Affiliation(s)
- Connor J Hughes
- Medical Scientist Training Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States of America; Department of Pharmacology, University of Colorado Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO 80045, United States of America
| | - Christopher Alderman
- Medical Scientist Training Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States of America; Molecular Biology Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States of America; Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States of America
| | - Arthur R Wolin
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO 80045, United States of America; Molecular Biology Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States of America
| | - Kaiah M Fields
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO 80045, United States of America; Molecular Biology Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States of America
| | - Rui Zhao
- Medical Scientist Training Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States of America; Molecular Biology Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States of America; Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States of America.
| | - Heide L Ford
- Medical Scientist Training Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States of America; Department of Pharmacology, University of Colorado Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO 80045, United States of America; Molecular Biology Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States of America.
| |
Collapse
|
6
|
Wiltshire E, de Moura MC, Piñeyro D, Joshi RS. Cellular and clinical impact of protein phosphatase enzyme epigenetic silencing in multiple cancer tissues. Hum Genomics 2024; 18:24. [PMID: 38475971 PMCID: PMC10935810 DOI: 10.1186/s40246-024-00592-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND Protein Phosphatase Enzymes (PPE) and protein kinases simultaneously control phosphorylation mechanisms that tightly regulate intracellular signalling pathways and stimulate cellular responses. In human malignancies, PPE and protein kinases are frequently mutated resulting in uncontrolled kinase activity and PPE suppression, leading to cell proliferation, migration and resistance to anti-cancer therapies. Cancer associated DNA hypermethylation at PPE promoters gives rise to transcriptional silencing (epimutations) and is a hallmark of cancer. Despite recent advances in sequencing technologies, data availability and computational capabilities, only a fraction of PPE have been reported as transcriptionally inactive as a consequence of epimutations. METHODS In this study, we examined promoter-associated DNA methylation profiles in Protein Phosphatase Enzymes and their Interacting Proteins (PPEIP) in a cohort of 705 cancer patients in five tissues (Large intestine, Oesophagus, Lung, Pancreas and Stomach) in three cell models (primary tumours, cancer cell lines and 3D embedded cancer cell cultures). As a subset of PPEIP are known tumour suppressor genes, we analysed the impact of PPEIP promoter hypermethylation marks on gene expression, cellular networks and in a clinical setting. RESULTS Here, we report epimutations in PPEIP are a frequent occurrence in the cancer genome and manifest independent of transcriptional activity. We observed that different tumours have varying susceptibility to epimutations and identify specific cellular signalling networks that are primarily affected by epimutations. Additionally, RNA-seq analysis showed the negative impact of epimutations on most (not all) Protein Tyrosine Phosphatase transcription. Finally, we detected novel clinical biomarkers that inform on patient mortality and anti-cancer treatment sensitivity. CONCLUSIONS We propose that DNA hypermethylation marks at PPEIP frequently contribute to the pathogenesis of malignancies and within the precision medicine space, hold promise as biomarkers to inform on clinical features such as patient survival and therapeutic response.
Collapse
Affiliation(s)
- Edward Wiltshire
- Leicester Cancer Research Centre, Department of Genetics and Genome Biology, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester, UK
| | | | - David Piñeyro
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Spain
| | - Ricky S Joshi
- Leicester Cancer Research Centre, Department of Genetics and Genome Biology, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester, UK.
| |
Collapse
|
7
|
de la Peña Avalos B, Paquet N, Tropée R, Coulombe Y, Palacios H, Leung J, Masson JY, Duijf PG, Dray E. The protein phosphatase EYA4 promotes homologous recombination (HR) through dephosphorylation of tyrosine 315 on RAD51. Nucleic Acids Res 2024; 52:1173-1187. [PMID: 38084915 PMCID: PMC10853800 DOI: 10.1093/nar/gkad1177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 11/20/2023] [Accepted: 11/27/2023] [Indexed: 01/07/2024] Open
Abstract
Efficient DNA repair and limitation of genome rearrangements rely on crosstalk between different DNA double-strand break (DSB) repair pathways, and their synchronization with the cell cycle. The selection, timing and efficacy of DSB repair pathways are influenced by post-translational modifications of histones and DNA damage repair (DDR) proteins, such as phosphorylation. While the importance of kinases and serine/threonine phosphatases in DDR have been extensively studied, the role of tyrosine phosphatases in DNA repair remains poorly understood. In this study, we have identified EYA4 as the protein phosphatase that dephosphorylates RAD51 on residue Tyr315. Through its Tyr phosphatase activity, EYA4 regulates RAD51 localization, presynaptic filament formation, foci formation, and activity. Thus, it is essential for homologous recombination (HR) at DSBs. DNA binding stimulates EYA4 phosphatase activity. Depletion of EYA4 decreases single-stranded DNA accumulation following DNA damage and impairs HR, while overexpression of EYA4 in cells promotes dephosphorylation and stabilization of RAD51, and thereby nucleoprotein filament formation. Our data have implications for a pathological version of RAD51 in EYA4-overexpressing cancers.
Collapse
Affiliation(s)
- Bárbara de la Peña Avalos
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Mays Cancer Center at UT Health San Antonio MD Anderson, San Antonio, TX, USA
| | - Nicolas Paquet
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Romain Tropée
- Queensland University of Technology, Translational Research Institute, Brisbane, QLD, Australia
| | - Yan Coulombe
- Genome Stability Laboratory, CHU de Québec Research Center, HDQ Pavilion, Oncology Division, Québec City, QC, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Québec City, QC, Canada
| | - Hannah Palacios
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Justin W Leung
- Department of Radiation Oncology, University of Texas Health and Science Center, San Antonio, TX 78229, USA
| | - Jean-Yves Masson
- Genome Stability Laboratory, CHU de Québec Research Center, HDQ Pavilion, Oncology Division, Québec City, QC, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Québec City, QC, Canada
| | - Pascal H G Duijf
- Centre for Cancer Biology, Clinical and Health Sciences, University of South Australia & SA Pathology, Adelaide SA, Australia
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Eloïse Dray
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Mays Cancer Center at UT Health San Antonio MD Anderson, San Antonio, TX, USA
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| |
Collapse
|
8
|
de la Peña Avalos B, Tropée R, Duijf PHG, Dray E. EYA4 promotes breast cancer progression and metastasis through its role in replication stress avoidance. Mol Cancer 2023; 22:158. [PMID: 37777742 PMCID: PMC10543271 DOI: 10.1186/s12943-023-01861-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 09/13/2023] [Indexed: 10/02/2023] Open
Abstract
The Eyes Absent (EYA) family of proteins is an atypical group of four dual-functioning protein phosphatases (PP), which have been linked to many vital cellular processes and organogenesis pathways. The four family members of this PP family possess transcriptional activation and phosphatase functions, with serine/threonine and tyrosine phosphatase domains. EYA4 has been associated with several human cancers, with tumor-suppressing and tumor-promoting roles. However, EYA4 is the least well-characterized member of this unique family of PP, with its biological functions and molecular mechanisms in cancer progression, particularly in breast cancer, still largely unknown. In the present study, we found that the over-expression of EYA4 in breast tissue leads to an aggressive and invasive breast cancer phenotype, while the inhibition of EYA4 reduced tumorigenic properties of breast cancer cells in vitro and in vivo. Cellular changes downstream of EYA4, including cell proliferation and migration, may explain the increased metastatic power of breast cancer cells over-expressing EYA4. Mechanistically, EYA4 prevents genome instability by inhibiting the accumulation of replication-associated DNA damage. Its depletion results in polyploidy as a consequence of endoreplication, a phenomenon that can occur in response to stress. The absence of EYA4 leads to spontaneous replication stress characterized by the activation of the ATR pathway, sensitivity to hydroxyurea, and accumulation of endogenous DNA damage as indicated by increased γH2AX levels. In addition, we show that EYA4, specifically its serine/threonine phosphatase domain, plays an important and so far, unexpected role in replication fork progression. This phosphatase activity is essential for breast cancer progression and metastasis. Taken together, our data indicate that EYA4 is a novel potential breast cancer oncogene that supports primary tumor growth and metastasis. Developing therapeutics aimed at the serine/threonine phosphatase activity of EYA4 represents a robust strategy for killing breast cancer cells, to limit metastasis and overcome chemotherapy resistance caused by endoreplication and genomic rearrangements.
Collapse
Affiliation(s)
- Bárbara de la Peña Avalos
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Mays Cancer Center at UT Health San Antonio MD Anderson, San Antonio, TX, USA
| | - Romain Tropée
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
- Present Address: Southern RNA, Springfield Central, QLD, 4300, Australia
| | - Pascal H G Duijf
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
- Centre for Cancer Biology, Clinical and Health Sciences, & SA Pathology, University of South Australia, Adelaide, SA, Australia
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Eloïse Dray
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia.
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
- Mays Cancer Center at UT Health San Antonio MD Anderson, San Antonio, TX, USA.
| |
Collapse
|
9
|
Zhang CT, Qin DL, Cao XY, Kan JS, Huang XX, Gao DS, Gao J. Dephosphorylation of Six2Y129 protects tyrosine hydroxylase-positive cells in SNpc by regulating TEA domain 1 expression. iScience 2023; 26:107049. [PMID: 37534182 PMCID: PMC10391717 DOI: 10.1016/j.isci.2023.107049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 04/03/2023] [Accepted: 06/01/2023] [Indexed: 08/04/2023] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disease characterized by selective loss of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNpc). We recently reported that Six2 could reverse the degeneration of DA neurons in a dephosphorylation state. Here we further identified that Eya1 was the phosphatase of Six2 that could dephosphorylate the tyrosine 129 (Y129) site by forming a complex with Six2 in damaged DA cells. Dephosphorylated Six2 then translocates from the cytoplasm to the nucleus. Using ChIP-qPCR and dual luciferase assay, we found that dephosphorylated Six2 down-regulates TEA domain1 (Tead1) expression, thus inhibiting 6-hydroxydopamine (6-OHDA)-induced apoptosis in DA cells. Furthermore, we showed Six2Y129F/Tead1 signaling could protect against the loss of SNpc tyrosine hydroxylase-positive (TH+) cells and improve motor function in PD model rats. Our results demonstrate a dephosphorylation-dependent mechanism of Six2 that restores the degeneration of DA neurons, which could represent a potential therapeutic target for PD.
Collapse
Affiliation(s)
- Can-tang Zhang
- Department of Respiratory and Critical Care, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Deng-li Qin
- Department of Neurobiology and Cell Biology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Xia-yin Cao
- Department of Neurobiology and Cell Biology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Jia-shuo Kan
- Department of Neurobiology and Cell Biology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Xin-xing Huang
- Department of Neurobiology and Cell Biology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Dian-shuai Gao
- Department of Neurobiology and Cell Biology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Jin Gao
- Department of Neurobiology and Cell Biology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| |
Collapse
|
10
|
de la Peña Avalos B, Tropée R, Duijf PHG, Dray E. EYA4 drives breast cancer progression and metastasis through its novel role in replication stress avoidance. RESEARCH SQUARE 2023:rs.3.rs-2917471. [PMID: 37292941 PMCID: PMC10246277 DOI: 10.21203/rs.3.rs-2917471/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The Eyes Absent (EYA) family of proteins is an atypical group of four dual-functioning protein phosphatases, which have been linked to many vital cellular processes and organogenesis pathways. Like the other isoforms, EYA4 possesses transcriptional activation and phosphatase functions, with serine/threonine and tyrosine phosphatase domains. EYA4 has been associated with several human cancers, with tumor-suppressing and tumor-promoting roles. However, EYA4 is the least well-characterized member of this unique family of phosphatases, with its biological functions and molecular mechanisms in cancer progression, particularly in breast cancer, still largely unknown. In the present study, we found that the over-expression of EYA4 in breast tissue leads to an aggressive and invasive breast cancer phenotype, while the inhibition of EYA4 reduced tumorigenic properties of breast cancer cells in vitro and in vivo . Cellular changes downstream of EYA4, including cell proliferation and migration, may explain the increased metastatic power of breast cancer cells over-expressing EYA4. Mechanistically, EYA4 prevents genome instability by inhibiting the accumulation of replication-associated DNA damage. Its depletion results in polyploidy as a consequence of endoreplication, a phenomenon that can occur in response to stress. The absence of EYA4 leads to spontaneous replication stress characterized by the activation of the ATR pathway, sensitivity to hydroxyurea, and accumulation of endogenous DNA damage as indicated by increased γH2AX levels. In addition, we show that EYA4, specifically its serine/threonine phosphatase domain, plays an important and so far, unexpected role in replication fork progression. This phosphatase activity is essential for breast cancer progression and metastasis. Taken together, our data indicate that EYA4 is a novel breast cancer oncogene that supports primary tumor growth and metastasis. Developing therapeutics aimed at the serine/threonine phosphatase activity of EYA4 represents a robust strategy for killing breast cancer cells, to limit metastasis and overcome chemotherapy resistance caused by endoreplication and genomic rearrangements.
Collapse
Affiliation(s)
| | | | | | - Eloïse Dray
- University of Texas Health Science Center at San Antonio
| |
Collapse
|
11
|
Chong ZX, Ho WY, Yeap SK. Delineating the tumour-regulatory roles of EYA4. Biochem Pharmacol 2023; 210:115466. [PMID: 36849065 DOI: 10.1016/j.bcp.2023.115466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/16/2023] [Accepted: 02/21/2023] [Indexed: 02/27/2023]
Abstract
Eyes absent homolog 4 (EYA4) is a protein that regulates many vital cellular processes and organogenesis pathways. It possesses phosphatase, hydrolase, and transcriptional activation functions. Mutations in the Eya4 gene can cause sensorineural hearing loss and heart disease. In most non-nervous system cancers such as those of the gastrointestinal tract (GIT), hematological and respiratory systems, EYA4 acts as a putative tumor suppressor. However, in nervous system tumors such as glioma, astrocytoma, and malignant peripheral nerve sheath tumor (MPNST), it plays a putative tumor-promoting role. EYA4 interacts with various signaling proteins of the PI3K/AKT, JNK/cJUN, Wnt/GSK-3β, and cell cycle pathways to exert its tumor-promoting or tumor-suppressing effect. The tissue expression level and methylation profiles of Eya4 can help predict the prognosis and anti-cancer treatment response among cancer patients. Targeting and altering Eya4 expression and activity could be a potential therapeutic strategy to suppress carcinogenesis. In conclusion, EYA4 may have both putative tumor-promoting and tumor-suppressing roles in different human cancers and has the potential to serve as a prognostic biomarker and therapeutic agent in various cancer types.
Collapse
Affiliation(s)
- Zhi Xiong Chong
- Faculty of Science and Engineering, University of Nottingham Malaysia, 43500 Semenyih, Selangor, Malaysia.
| | - Wan Yong Ho
- Faculty of Science and Engineering, University of Nottingham Malaysia, 43500 Semenyih, Selangor, Malaysia.
| | - Swee Keong Yeap
- China-ASEAN College of Marine Sciences, Xiamen University Malaysia, 43900 Sepang, Selangor, Malaysia.
| |
Collapse
|
12
|
Zhu S, Li W, Zhang H, Yan Y, Mei Q, Wu K. Retinal determination gene networks: from biological functions to therapeutic strategies. Biomark Res 2023; 11:18. [PMID: 36750914 PMCID: PMC9906957 DOI: 10.1186/s40364-023-00459-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 01/28/2023] [Indexed: 02/09/2023] Open
Abstract
The retinal determinant gene network (RDGN), originally discovered as a critical determinator in Drosophila eye specification, has become an important regulatory network in tumorigenesis and progression, as well as organogenesis. This network is not only associated with malignant biological behaviors of tumors, such as proliferation, and invasion, but also regulates the development of multiple mammalian organs. Three members of this conservative network have been extensively investigated, including DACH, SIX, and EYA. Dysregulated RDGN signaling is associated with the initiation and progression of tumors. In recent years, it has been found that the members of this network can be used as prognostic markers for cancer patients. Moreover, they are considered to be potential therapeutic targets for cancer. Here, we summarize the research progress of RDGN members from biological functions to signaling transduction, especially emphasizing their effects on tumors. Additionally, we discuss the roles of RDGN members in the development of organs and tissue as well as their correlations with the pathogenesis of chronic kidney disease and coronary heart disease. By summarizing the roles of RDGN members in human diseases, we hope to promote future investigations into RDGN and provide potential therapeutic strategies for patients.
Collapse
Affiliation(s)
- Shuangli Zhu
- grid.412793.a0000 0004 1799 5032Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Wanling Li
- grid.412793.a0000 0004 1799 5032Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China ,grid.470966.aCancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032 China
| | - Hao Zhang
- grid.412793.a0000 0004 1799 5032Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Yuheng Yan
- grid.412793.a0000 0004 1799 5032Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Qi Mei
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China. .,Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China.
| | - Kongming Wu
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China. .,Cancer Center, Tongji hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
13
|
Li J, Cheng C, Xu J, Zhang T, Tokat B, Dolios G, Ramakrishnan A, Shen L, Wang R, Xu PX. The transcriptional coactivator Eya1 exerts transcriptional repressive activity by interacting with REST corepressors and REST-binding sequences to maintain nephron progenitor identity. Nucleic Acids Res 2022; 50:10343-10359. [PMID: 36130284 PMCID: PMC9561260 DOI: 10.1093/nar/gkac760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/18/2022] [Accepted: 08/27/2022] [Indexed: 11/15/2022] Open
Abstract
Eya1 is critical for establishing and maintaining nephron progenitor cells (NPCs). It belongs to a family of proteins called phosphatase-transcriptional activators but without intrinsic DNA-binding activity. However, the spectrum of the Eya1-centered networks is underexplored. Here, we combined transcriptomic, genomic and proteomic approaches to characterize gene regulation by Eya1 in the NPCs. We identified Eya1 target genes, associated cis-regulatory elements and partner proteins. Eya1 preferentially occupies promoter sequences and interacts with general transcription factors (TFs), RNA polymerases, different types of TFs, chromatin-remodeling factors with ATPase or helicase activity, and DNA replication/repair proteins. Intriguingly, we identified REST-binding motifs in 76% of Eya1-occupied sites without H3K27ac-deposition, which were present in many Eya1 target genes upregulated in Eya1-deficient NPCs. Eya1 copurified REST-interacting chromatin-remodeling factors, histone deacetylase/lysine demethylase, and corepressors. Coimmunoprecipitation validated physical interaction between Eya1 and Rest/Hdac1/Cdyl/Hltf in the kidneys. Collectively, our results suggest that through interactions with chromatin-remodeling factors and specialized DNA-binding proteins, Eya1 may modify chromatin structure to facilitate the assembly of regulatory complexes that regulate transcription positively or negatively. These findings provide a mechanistic basis for how Eya1 exerts its activity by forming unique multiprotein complexes in various biological processes to maintain the cellular state of NPCs.
Collapse
Affiliation(s)
- Jun Li
- Department of Genetics and Genomic Sciences, New York, NY 10029, USA
| | - Chunming Cheng
- Department of Genetics and Genomic Sciences, New York, NY 10029, USA
| | - Jinshu Xu
- Department of Genetics and Genomic Sciences, New York, NY 10029, USA
| | - Ting Zhang
- Department of Genetics and Genomic Sciences, New York, NY 10029, USA
| | - Bengu Tokat
- Department of Genetics and Genomic Sciences, New York, NY 10029, USA
| | - Georgia Dolios
- Department of Genetics and Genomic Sciences, New York, NY 10029, USA
| | | | - Li Shen
- Department of Neurosciences, New York, NY 10029, USA
| | - Rong Wang
- Department of Genetics and Genomic Sciences, New York, NY 10029, USA
| | - Pin-Xian Xu
- Department of Genetics and Genomic Sciences, New York, NY 10029, USA.,Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
14
|
Abstract
Neurodegenerative diseases, including Parkinson’s disease, are linked to the accumulation of defective mitochondria in the brain and to microbial dysbiosis in the gut. However, the interplay between these factors is incompletely understood. Fedele et al. reveal how gut mitochondrial dysfunction activates intestinal inflammation to drive neurodegeneration in a Parkinson’s disease model.
Collapse
Affiliation(s)
- Ricardo Aparicio
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, USA.
| | - Edward T Schmid
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - David W Walker
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, USA.
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
15
|
Rafiq A, Aashaq S, Jan I, Beigh MA. SIX1 transcription factor: A review of cellular functions and regulatory dynamics. Int J Biol Macromol 2021; 193:1151-1164. [PMID: 34742853 DOI: 10.1016/j.ijbiomac.2021.10.133] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 10/17/2021] [Accepted: 10/18/2021] [Indexed: 10/19/2022]
Abstract
Sine Oculis Homeobox 1 (SIX1) is a member of homeobox transcription factor family having pivotal roles in organismal development and differentiation. This protein functionally acts to regulate the expression of different proteins that are involved in organ development during embryogenesis and in disorders like cancer. Aberrant expression of this homeoprotein has therefore been reported in multiple pathological complexities like hearing impairment and renal anomalies during development and tumorigenesis in adult life. Most of the cellular effects mediated by it are mostly due to its role as a transcription factor. This review presents a concise narrative of its structure, interaction partners and cellular functions vis a vis its role in cancer. We thoroughly discuss the reported molecular mechanisms that govern its function in cellular milieu. Its post-translational regulation by phosphorylation and ubiquitination are also discussed with an emphasis on yet to be explored mechanistic insights regulating its molecular dynamics to fully comprehend its role in development and disease.
Collapse
Affiliation(s)
- Asma Rafiq
- Department of Nanotechnology, University of Kashmir, Hazratbal Campus, Srinagar JK-190006, India
| | - Sabreena Aashaq
- Department of Immunology and Molecular Medicine, Sher-i-Kashmir Institute of Medical Sciences, Soura, Srinagar JK-190011, India
| | - Iqra Jan
- Department of Nanotechnology, University of Kashmir, Hazratbal Campus, Srinagar JK-190006, India
| | - Mushtaq A Beigh
- Department of Nanotechnology, University of Kashmir, Hazratbal Campus, Srinagar JK-190006, India.
| |
Collapse
|
16
|
Elhassan RM, Hou X, Fang H. Recent advances in the development of allosteric protein tyrosine phosphatase inhibitors for drug discovery. Med Res Rev 2021; 42:1064-1110. [PMID: 34791703 DOI: 10.1002/med.21871] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 09/26/2021] [Accepted: 10/24/2021] [Indexed: 01/07/2023]
Abstract
Protein tyrosine phosphatases (PTPs) superfamily catalyzes tyrosine de-phosphorylation which affects a myriad of cellular processes. Imbalance in signal pathways mediated by PTPs has been associated with development of many human diseases including cancer, metabolic, and immunological diseases. Several compelling evidence suggest that many members of PTP family are novel therapeutic targets. However, the clinical development of conventional PTP-based active-site inhibitors originally was hampered by the poor selectivity and pharmacokinetic properties. In this regard, PTPs has been widely dismissed as "undruggable." Nonetheless, allosteric modulation has become increasingly an influential and alternative approach that can be exploited for drug development against PTPs. Unlike active-site inhibitors, allosteric inhibitors exhibit a remarkable target-selectivity, drug-likeness, potency, and in vivo activity. Intriguingly, there has been a high interest in novel allosteric PTPs inhibitors within the last years. In this review, we focus on the recent advances of allosteric inhibitors that have been explored in drug discovery and have shown an excellent result in the development of PTPs-based therapeutics. A special emphasis is placed on the structure-activity relationship and molecular mechanistic studies illustrating applications in chemical biology and medicinal chemistry.
Collapse
Affiliation(s)
- Reham M Elhassan
- Department of Medicinal Chemistry and Key Laboratory of Chemical Biology of Natural Products (MOE), School of Pharmacy, Shandong University, Jinan, Shandong, China
| | - Xuben Hou
- Department of Medicinal Chemistry and Key Laboratory of Chemical Biology of Natural Products (MOE), School of Pharmacy, Shandong University, Jinan, Shandong, China
| | - Hao Fang
- Department of Medicinal Chemistry and Key Laboratory of Chemical Biology of Natural Products (MOE), School of Pharmacy, Shandong University, Jinan, Shandong, China
| |
Collapse
|
17
|
Zhang G, Dong Z, Gimple RC, Wolin A, Wu Q, Qiu Z, Wood LM, Shen JZ, Jiang L, Zhao L, Lv D, Prager BC, Kim LJY, Wang X, Zhang L, Anderson RL, Moore JK, Bao S, Keller TH, Lin G, Kang C, Hamerlik P, Zhao R, Ford HL, Rich JN. Targeting EYA2 tyrosine phosphatase activity in glioblastoma stem cells induces mitotic catastrophe. J Exp Med 2021; 218:212685. [PMID: 34617969 PMCID: PMC8504185 DOI: 10.1084/jem.20202669] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 07/11/2021] [Accepted: 08/19/2021] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma ranks among the most lethal of primary brain malignancies, with glioblastoma stem cells (GSCs) at the apex of tumor cellular hierarchies. Here, to discover novel therapeutic GSC targets, we interrogated gene expression profiles from GSCs, differentiated glioblastoma cells (DGCs), and neural stem cells (NSCs), revealing EYA2 as preferentially expressed by GSCs. Targeting EYA2 impaired GSC maintenance and induced cell cycle arrest, apoptosis, and loss of self-renewal. EYA2 displayed novel localization to centrosomes in GSCs, and EYA2 tyrosine (Tyr) phosphatase activity was essential for proper mitotic spindle assembly and survival of GSCs. Inhibition of the EYA2 Tyr phosphatase activity, via genetic or pharmacological means, mimicked EYA2 loss in GSCs in vitro and extended the survival of tumor-bearing mice. Supporting the clinical relevance of these findings, EYA2 portends poor patient prognosis in glioblastoma. Collectively, our data indicate that EYA2 phosphatase function plays selective critical roles in the growth and survival of GSCs, potentially offering a high therapeutic index for EYA2 inhibitors.
Collapse
Affiliation(s)
- Guoxin Zhang
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA
| | - Zhen Dong
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA
| | - Ryan C Gimple
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA.,Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH
| | - Arthur Wolin
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Qiulian Wu
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA
| | - Zhixin Qiu
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA
| | - Lisa M Wood
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO
| | - Jia Z Shen
- Tumor Initiation and Maintenance Program, National Cancer Institute-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA
| | - Li Jiang
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA
| | - Linjie Zhao
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA
| | - Deguan Lv
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA
| | - Briana C Prager
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA.,Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH
| | - Leo J Y Kim
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA.,Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH
| | - Xiuxing Wang
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA
| | - Lingdi Zhang
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Ryan L Anderson
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Jeffrey K Moore
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO
| | - Shideng Bao
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Thomas H Keller
- Experimental Drug Development Centre, Agency for Science, Technology and Research, Singapore
| | - Grace Lin
- Experimental Drug Development Centre, Agency for Science, Technology and Research, Singapore
| | - Congbao Kang
- Experimental Drug Development Centre, Agency for Science, Technology and Research, Singapore
| | - Petra Hamerlik
- Danish Cancer Society Research Center, Copenhagen, Denmark.,Department of Drug Design and Pharmacology, Copenhagen University, Copenhagen, Denmark
| | - Rui Zhao
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Heide L Ford
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Jeremy N Rich
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA.,University of Pittsburgh Medical Center, Hillman Cancer Center, Pittsburgh, PA.,Department of Neurology, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
18
|
Pandit P, Galande S, Iris F. Maternal malnutrition and anaemia in India: dysregulations leading to the 'thin-fat' phenotype in newborns. J Nutr Sci 2021; 10:e91. [PMID: 34733503 PMCID: PMC8532069 DOI: 10.1017/jns.2021.83] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 09/05/2021] [Accepted: 09/10/2021] [Indexed: 12/21/2022] Open
Abstract
Maternal and child malnutrition and anaemia remain the leading factors for health loss in India. Low birth weight (LBW) offspring of women suffering from chronic malnutrition and anaemia often exhibit insulin resistance and infantile stunting and wasting, together with increased risk of developing cardiometabolic disorders in adulthood. The resulting self-perpetuating and highly multifactorial disease burden cannot be remedied through uniform dietary recommendations alone. To inform approaches likely to alleviate this disease burden, we implemented a systems-analytical approach that had already proven its efficacy in multiple published studies. We utilised previously published qualitative and quantitative analytical results of rural and urban field studies addressing maternal and infantile metabolic and nutritional parameters to precisely define the range of pathological phenotypes encountered and their individual biological characteristics. These characteristics were then integrated, via extensive literature searches, into metabolic and physiological mechanisms to identify the maternal and foetal metabolic dysregulations most likely to underpin the 'thin-fat' phenotype in LBW infants and its associated pathological consequences. Our analyses reveal hitherto poorly understood maternal nutrition-dependent mechanisms most likely to promote and sustain the self-perpetuating high disease burden, especially in the Indian population. This work suggests that it most probably is the metabolic consequence of 'ill-nutrition' - the recent and rapid dietary shifts to high salt, high saturated fats and high sugar but low micronutrient diets - over an adaptation to 'thrifty metabolism' which must be addressed in interventions aiming to significantly alleviate the leading risk factors for health deterioration in India.
Collapse
Key Words
- 5-mTHF, 5-methyltetrahydrofolate
- Anaemia
- BAT, brown adipocyte tissue
- EAA, essential amino acids
- FA, fatty acid
- GSH, glutathione
- Hcy, homocysteine
- LBW, low birth weight
- Low birth weight
- Malnutrition
- PE, phosphatidylethanolamine
- Pathological mechanisms
- Physiological programming
- SAM, S-adenosyl methionine
- TG, triacylglycerol
- WAT, white adipocyte tissue
Collapse
Affiliation(s)
| | - Sanjeev Galande
- Arbuza Regenerate Private Limited, Pune, India
- Department of Biology, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune411008, India
- Department of Life Sciences, Shiv Nadar University, Delhi-NCR, India
| | - François Iris
- Arbuza Regenerate Private Limited, Pune, India
- BM-Systems Private Limited, Paris, France
| |
Collapse
|
19
|
The Eyes Absent proteins in development and in developmental disorders. Biochem Soc Trans 2021; 49:1397-1408. [PMID: 34196366 PMCID: PMC8286820 DOI: 10.1042/bst20201302] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/06/2021] [Accepted: 06/07/2021] [Indexed: 11/23/2022]
Abstract
The Eyes Absent (EYA) transactivator-phosphatase proteins are important contributors to cell-fate determination processes and to the development of multiple organs. The transcriptional regulatory activity as well as the protein tyrosine phosphatase activities of the EYA proteins can independently contribute to proliferation, differentiation, morphogenesis and tissue homeostasis in different contexts. Aberrant EYA levels or activity are associated with numerous syndromic and non-syndromic developmental disorders, as well as cancers. Commensurate with the multiplicity of biochemical activities carried out by the EYA proteins, they impact upon a range of cellular signaling pathways. Here, we provide a broad overview of the roles played by EYA proteins in development, and highlight the molecular signaling pathways known to be linked with EYA-associated organ development and developmental disorders.
Collapse
|
20
|
Roychoudhury K, Hegde RS. The Eyes Absent Proteins: Unusual HAD Family Tyrosine Phosphatases. Int J Mol Sci 2021; 22:ijms22083925. [PMID: 33920226 PMCID: PMC8069645 DOI: 10.3390/ijms22083925] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/30/2021] [Accepted: 04/03/2021] [Indexed: 01/21/2023] Open
Abstract
Here, we review the haloacid dehalogenase (HAD) class of protein phosphatases, with a particular emphasis on an unusual group of enzymes, the eyes absent (EYA) family. EYA proteins have the unique distinction of being structurally and mechanistically classified as HAD enzymes, yet, unlike other HAD phosphatases, they are protein tyrosine phosphatases (PTPs). Further, the EYA proteins are unique among the 107 classical PTPs in the human genome because they do not use a Cysteine residue as a nucleophile in the dephosphorylation reaction. We will provide an overview of HAD phosphatase structure-function, describe unique features of the EYA family and their tyrosine phosphatase activity, provide a brief summary of the known substrates and cellular functions of the EYA proteins, and speculate about the evolutionary origins of the EYA family of proteins.
Collapse
|
21
|
Cellular stress signaling activates type-I IFN response through FOXO3-regulated lamin posttranslational modification. Nat Commun 2021; 12:640. [PMID: 33510167 PMCID: PMC7843645 DOI: 10.1038/s41467-020-20839-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 12/19/2020] [Indexed: 01/16/2023] Open
Abstract
Neural stem/progenitor cells (NSPCs) persist over the lifespan while encountering constant challenges from age or injury related brain environmental changes like elevated oxidative stress. But how oxidative stress regulates NSPC and its neurogenic differentiation is less clear. Here we report that acutely elevated cellular oxidative stress in NSPCs modulates neurogenic differentiation through induction of Forkhead box protein O3 (FOXO3)-mediated cGAS/STING and type I interferon (IFN-I) responses. We show that oxidative stress activates FOXO3 and its transcriptional target glycine-N-methyltransferase (GNMT) whose upregulation triggers depletion of s-adenosylmethionine (SAM), a key co-substrate involved in methyl group transfer reactions. Mechanistically, we demonstrate that reduced intracellular SAM availability disrupts carboxymethylation and maturation of nuclear lamin, which induce cytosolic release of chromatin fragments and subsequent activation of the cGAS/STING-IFN-I cascade to suppress neurogenic differentiation. Together, our findings suggest the FOXO3-GNMT/SAM-lamin-cGAS/STING-IFN-I signaling cascade as a critical stress response program that regulates long-term regenerative potential. Neural stem and progenitor cells (NSPCs) encounter constant stresses during aging, such as elevated oxidative stress. Here the authors show that oxidative stress induced reduction in NSPC neural differentiation is mediated by a FOXO3-GNMT/SAM-lamin-cGAS/STING-IFN-I signalling cascade initiated by FOXO3 oxidation.
Collapse
|
22
|
Focusing on the Cell Type Specific Regulatory Actions of NLRX1. Int J Mol Sci 2021; 22:ijms22031316. [PMID: 33525671 PMCID: PMC7865811 DOI: 10.3390/ijms22031316] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/22/2021] [Accepted: 01/25/2021] [Indexed: 12/11/2022] Open
Abstract
Cells utilize a diverse repertoire of cell surface and intracellular receptors to detect exogenous or endogenous danger signals and even the changes of their microenvironment. However, some cytosolic NOD-like receptors (NLR), including NLRX1, serve more functions than just being general pattern recognition receptors. The dynamic translocation between the cytosol and the mitochondria allows NLRX1 to interact with many molecules and thereby to control multiple cellular functions. As a regulatory NLR, NLRX1 fine-tunes inflammatory signaling cascades, regulates mitochondria-associated functions, and controls metabolism, autophagy and cell death. Nevertheless, literature data are inconsistent and often contradictory regarding its effects on individual cellular functions. One plausible explanation might be that the regulatory effects of NLRX1 are highly cell type specific and the features of NLRX1 mediated regulation might be determined by the unique functional activity or metabolic profile of the given cell type. Here we review the cell type specific actions of NLRX1 with a special focus on cells of the immune system. NLRX1 has already emerged as a potential therapeutic target in numerous immune-related diseases, thus we aim to highlight which regulatory properties of NLRX1 are manifested in disease-associated dominant immune cells that presumably offer promising therapeutic solutions to treat these disorders.
Collapse
|
23
|
Merk DJ, Zhou P, Cohen SM, Pazyra-Murphy MF, Hwang GH, Rehm KJ, Alfaro J, Reid CM, Zhao X, Park E, Xu PX, Chan JA, Eck MJ, Nazemi KJ, Harwell CC, Segal RA. The Eya1 Phosphatase Mediates Shh-Driven Symmetric Cell Division of Cerebellar Granule Cell Precursors. Dev Neurosci 2021; 42:170-186. [PMID: 33472197 DOI: 10.1159/000512976] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 11/10/2020] [Indexed: 12/14/2022] Open
Abstract
During neural development, stem and precursor cells can divide either symmetrically or asymmetrically. The transition between symmetric and asymmetric cell divisions is a major determinant of precursor cell expansion and neural differentiation, but the underlying mechanisms that regulate this transition are not well understood. Here, we identify the Sonic hedgehog (Shh) pathway as a critical determinant regulating the mode of division of cerebellar granule cell precursors (GCPs). Using partial gain and loss of function mutations within the Shh pathway, we show that pathway activation determines spindle orientation of GCPs, and that mitotic spindle orientation correlates with the mode of division. Mechanistically, we show that the phosphatase Eya1 is essential for implementing Shh-dependent GCP spindle orientation. We identify atypical protein kinase C (aPKC) as a direct target of Eya1 activity and show that Eya1 dephosphorylates a critical threonine (T410) in the activation loop. Thus, Eya1 inactivates aPKC, resulting in reduced phosphorylation of Numb and other components that regulate the mode of division. This Eya1-dependent cascade is critical in linking spindle orientation, cell cycle exit and terminal differentiation. Together these findings demonstrate that a Shh-Eya1 regulatory axis selectively promotes symmetric cell divisions during cerebellar development by coordinating spindle orientation and cell fate determinants.
Collapse
Affiliation(s)
- Daniel J Merk
- Department of Cancer Biology and Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, USA.,Department of Neurology & Interdisciplinary Neuro-Oncology, University Hospital Tübingen, Hertie Institute for Clinical Brain Research, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Pengcheng Zhou
- Department of Cancer Biology and Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Samuel M Cohen
- Department of Cancer Biology and Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Maria F Pazyra-Murphy
- Department of Cancer Biology and Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Grace H Hwang
- Department of Cancer Biology and Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Kristina J Rehm
- Department of Cancer Biology and Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Jose Alfaro
- Department of Cancer Biology and Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Christopher M Reid
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Xuesong Zhao
- Department of Cancer Biology and Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Eunyoung Park
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Pin-Xian Xu
- Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, New York, USA
| | - Jennifer A Chan
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta, Canada.,Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Michael J Eck
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Kellie J Nazemi
- Department of Cancer Biology and Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, USA.,Department of Pediatrics, Oregon Health & Science University, Portland, Oregon, USA
| | - Corey C Harwell
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, USA,
| | - Rosalind A Segal
- Department of Cancer Biology and Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
24
|
Photoperiod-Specific Expression of Eyes Absent 3 Splice Variant in the Pars Tuberalis of the Japanese Quail. J Poult Sci 2021; 58:64-69. [PMID: 33519288 PMCID: PMC7837804 DOI: 10.2141/jpsa.0190135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The molecular mechanism underlying photoperiodic response in seasonal breeding animals such as the Japanese quail, red jungle fowl, sheep, mouse, and hamster involves thyroid-stimulating hormone beta subunit (TSHβ) mRNA expression in the pars tuberalis stimulated by the extension in day length. Furthermore, this mechanism is regulated by eyes absent 3 (Eya3) in mammals. Even in birds, the expression of both TSHβ and EYA3 is induced in the pars tuberalis by the extension in day length; however, the relationship between the two genes is unknown. To clarify the function of EYA3 in quail photoperiodism, in the present study, we performed mRNA structure analysis of the Japanese quail EYA3 mRNA using reverse transcription-polymerase chain reaction (RT-PCR) and Southern blot analysis. The results revealed that there are four types of splice variants within regions of exons 7, 8, and 9 of quail EYA3 mRNA. Among the four splice variants of quail EYA3, the splice variant containing exon 7 was expressed in the pars tuberalis on the first long day, when quails were transferred from the short-day condition to the long-day condition. The results indicate that EYA3 splice variant containing exon 7 is involved in the photoperiodic response of the pars tuberalis in the Japanese quail.
Collapse
|
25
|
Tian M, Liu W, Zhang Q, Huang Y, Li W, Wang W, Zhao P, Huang S, Song Y, Shereen MA, Qin M, Liu Y, Wu K, Wu J. MYSM1 Represses Innate Immunity and Autoimmunity through Suppressing the cGAS-STING Pathway. Cell Rep 2020; 33:108297. [PMID: 33086059 DOI: 10.1016/j.celrep.2020.108297] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 07/25/2020] [Accepted: 09/30/2020] [Indexed: 12/19/2022] Open
Abstract
The immune system is not only required for preventing threats exerted by pathogens but also essential for developing immune tolerance to avoid tissue damage. This study identifies a distinct mechanism by which MYSM1 suppresses innate immunity and autoimmunity. The expression of MYSM1 is induced upon DNA virus infection and by intracellular DNA stimulation. MYSM1 subsequently interacts with STING and cleaves STING K63-linked ubiquitination to suppress cGAS-STING signaling. Notably, Mysm1-deficient mice exhibit a hyper-inflammatory response, acute tissue damage, and high mortality upon virus infection. Moreover, in the PBMCs of patients with systemic lupus erythematosus (SLE), MYSM1 production decreases, while type I interferons and pro-inflammatory cytokine expressions increase. Importantly, MYSM1 treatment represses the production of IFNs and pro-inflammatory cytokines in the PBMCs of SLE patients. Thus, MYSM1 is a critical repressor of innate immunity and autoimmunity and is thus a potential therapeutic agent for infectious, inflammatory, and autoimmune diseases.
Collapse
Affiliation(s)
- Mingfu Tian
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Weiyong Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Qi Zhang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yuqing Huang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Wen Li
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Wenbiao Wang
- Guangzhou Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou 510632, China
| | - Peiyi Zhao
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Shanyu Huang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yunting Song
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Muhammad Adnan Shereen
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Mengying Qin
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yingle Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Kailang Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | - Jianguo Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China; Guangzhou Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
26
|
Non-del(5q) myelodysplastic syndromes-associated loci detected by SNP-array genome-wide association meta-analysis. Blood Adv 2020; 3:3579-3589. [PMID: 31738830 DOI: 10.1182/bloodadvances.2019000922] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 10/15/2019] [Indexed: 01/01/2023] Open
Abstract
Myelodysplastic syndromes (MDS) are hematopoietic stem cell malignancies. Known predisposing factors to adult MDS include rare germline mutations, cytotoxic therapy, age-related clonal hematopoiesis, and autoimmune or chronic inflammatory disorders. To date, no published studies characterizing MDS-associated germline susceptibility polymorphisms exist. We performed a genome-wide association study of 2 sample sets (555 MDS cases vs 2964 control subjects; 352 MDS cases vs 2640 control subjects) in non-del(5q) MDS cases of European genomic ancestry. Meta-analysis identified 8 MDS-associated loci at 1q31.1 (PLA2G4A), 3p14.1 (FAM19A4), 5q21.3 (EFNA5), 6p21.33, 10q23.1 (GRID1), 12q24.32, 15q26.1, and 20q13.12 (EYA2) that approached genome-wide significance. Gene expression for 5 loci that mapped within or near genes was significantly upregulated in MDS bone marrow cells compared with those of control subjects (P < .01). Higher PLA2G4A expression and lower EYA2 expression were associated with poorer overall survival (P = .039 and P = .037, respectively). Higher PLA2G4A expression is associated with mutations in NRAS (P < .001), RUNX1 (P = .012), ASXL1 (P = .007), and EZH2 (P = .038), all of which are known to contribute to MDS development. EYA2 expression was an independently favorable risk factor irrespective of age, sex, and Revised International Scoring System score (relative risk, 0.67; P = .048). Notably, these genes have regulatory roles in innate immunity, a critical driver of MDS pathogenesis. EYA2 overexpression induced innate immune activation, whereas EYA2 inhibition restored colony-forming potential in primary MDS cells indicative of hematopoietic restoration and possible clinical relevance. In conclusion, among 8 suggestive MDS-associated loci, 5 map to genes upregulated in MDS with functional roles in innate immunity and potential biological relevance to MDS.
Collapse
|
27
|
Hegde RS, Roychoudhury K, Pandey RN. The multi-functional eyes absent proteins. Crit Rev Biochem Mol Biol 2020; 55:372-385. [PMID: 32727223 PMCID: PMC7727457 DOI: 10.1080/10409238.2020.1796922] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/18/2020] [Accepted: 07/14/2020] [Indexed: 12/13/2022]
Abstract
The Eyes Absent (EYA) proteins are the only known instance of a single polypeptide housing the following three separable biochemical activities: tyrosine phosphatase, threonine phosphatase, and transactivation. This uniquely positions the EYAs to participate in both transcriptional regulation and signal transduction pathways. But it also complicates the assignment of biological roles to individual biochemical activities through standard loss-of-function experiments. Nevertheless, there is an emerging literature linking developmental and pathological functions with the various EYA activities, and a growing list of disease states that might benefit from EYA-targeted therapeutics. There also remain multiple unresolved issues with significant implications for our understanding of how the EYAs might impact such ubiquitous signaling cascades as the MYC and Notch pathways. This review will describe the unique juxtaposition of biochemical activities in the EYAs, their interaction with signaling pathways and cellular processes, emerging evidence of roles in disease states, and the feasibility of therapeutic targeting of individual EYA activities. We will focus on the phosphatase activities of the vertebrate EYA proteins and will examine the current state of knowledge regarding: • substrates and signaling pathways affected by the EYA tyrosine phosphatase activity; • modes of regulation of the EYA tyrosine phosphatase activity; • signaling pathways that implicate the threonine phosphatase activity of the EYAs including a potential interaction with PP2A-B55α; • the interplay between the two phosphatase activities and the transactivation function of the EYAs; • disease states associated with the EYAs and the current state of development of EYA-targeted therapeutics.
Collapse
Affiliation(s)
- Rashmi S. Hegde
- Division of Developmental Biology, Cincinnati Children’s Hospital Research Foundation, Department of Pediatrics, University of Cincinnati School of Medicine, 3333 Burnet Avenue, Cincinnati OH 45229
| | - Kaushik Roychoudhury
- Division of Developmental Biology, Cincinnati Children’s Hospital Research Foundation, Department of Pediatrics, University of Cincinnati School of Medicine, 3333 Burnet Avenue, Cincinnati OH 45229
| | - Ram Naresh Pandey
- Division of Developmental Biology, Cincinnati Children’s Hospital Research Foundation, Department of Pediatrics, University of Cincinnati School of Medicine, 3333 Burnet Avenue, Cincinnati OH 45229
| |
Collapse
|
28
|
Wang Y, Pandey RN, York AJ, Mallela J, Nichols WC, Hu YC, Molkentin JD, Wikenheiser-Brokamp KA, Hegde RS. The EYA3 tyrosine phosphatase activity promotes pulmonary vascular remodeling in pulmonary arterial hypertension. Nat Commun 2019; 10:4143. [PMID: 31515519 PMCID: PMC6742632 DOI: 10.1038/s41467-019-12226-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 08/27/2019] [Indexed: 02/06/2023] Open
Abstract
In pulmonary hypertension vascular remodeling leads to narrowing of distal pulmonary arterioles and increased pulmonary vascular resistance. Vascular remodeling is promoted by the survival and proliferation of pulmonary arterial vascular cells in a DNA-damaging, hostile microenvironment. Here we report that levels of Eyes Absent 3 (EYA3) are elevated in pulmonary arterial smooth muscle cells from patients with pulmonary arterial hypertension and that EYA3 tyrosine phosphatase activity promotes the survival of these cells under DNA-damaging conditions. Transgenic mice harboring an inactivating mutation in the EYA3 tyrosine phosphatase domain are significantly protected from vascular remodeling. Pharmacological inhibition of the EYA3 tyrosine phosphatase activity substantially reverses vascular remodeling in a rat model of angio-obliterative pulmonary hypertension. Together these observations establish EYA3 as a disease-modifying target whose function in the pathophysiology of pulmonary arterial hypertension can be targeted by available inhibitors.
Collapse
Affiliation(s)
- Yuhua Wang
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA
| | - Ram Naresh Pandey
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA
| | - Allen J York
- Heart Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA
| | - Jaya Mallela
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA
| | - William C Nichols
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA
| | - Yueh-Chiang Hu
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA
| | - Jeffery D Molkentin
- Heart Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA
| | - Kathryn A Wikenheiser-Brokamp
- Division of Pathology & Laboratory Medicine and Perinatal Institute, Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA
| | - Rashmi S Hegde
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA.
| |
Collapse
|
29
|
Activation of the STING-Dependent Type I Interferon Response Reduces Microglial Reactivity and Neuroinflammation. Neuron 2019; 96:1290-1302.e6. [PMID: 29268096 DOI: 10.1016/j.neuron.2017.11.032] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 09/29/2017] [Accepted: 11/17/2017] [Indexed: 01/07/2023]
Abstract
Brain aging and neurodegeneration are associated with prominent microglial reactivity and activation of innate immune response pathways, commonly referred to as neuroinflammation. One such pathway, the type I interferon response, recognizes viral or mitochondrial DNA in the cytoplasm via activation of the recently discovered cyclic dinucleotide synthetase cGAS and the cyclic dinucleotide receptor STING. Here we show that the FDA-approved antiviral drug ganciclovir (GCV) induces a type I interferon response independent of its canonical thymidine kinase target. Inhibition of components of the STING pathway, including STING, IRF3, Tbk1, extracellular IFNβ, and the Jak-Stat pathway resulted in reduced activity of GCV and its derivatives. Importantly, functional STING was necessary for GCV to inhibit inflammation in cultured myeloid cells and in a mouse model of multiple sclerosis. Collectively, our findings uncover an unexpected new activity of GCV and identify the STING pathway as a regulator of microglial reactivity and neuroinflammation.
Collapse
|
30
|
Poulsen LLC, Englund ALM, Wissing MLM, Yding Andersen C, Borup R, Grøndahl ML. Human granulosa cells function as innate immune cells executing an inflammatory reaction during ovulation: a microarray analysis. Mol Cell Endocrinol 2019; 486:34-46. [PMID: 30802528 DOI: 10.1016/j.mce.2019.02.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/16/2019] [Accepted: 02/18/2019] [Indexed: 02/07/2023]
Abstract
Ovulation has been compared to a local inflammatory reaction. We performed an in silico study on a unique, PCR validated, transcriptome microarray study to evaluate if known inflammatory mechanisms operate during ovulation. The granulosa cells were obtained in paired samples at two different time points during ovulation (just before and 36 hours after ovulation induction) from nine women receiving fertility treatment. A total of 259 genes related to inflammation became significantly upregulated during ovulation (2-80 fold, p<0.05), while specific leukocyte markers were absent. The genes and pathway analysis indicated NF-KB-, MAPK- and JAK/STAT signalling (p<1.0E-10) as the major pathways involved in danger recognition and cytokine signalling to initiate inflammation. Upregulated genes further encoded enzymes in eicosanoid production, chemo-attractants, coagulation factors, cell proliferation factors involved in tissue repair, and anti-inflammatory factors to resolve the inflammation again. We conclude that granulosa cells, without involvement from the innate immune system, can orchestrate ovulation as a complete sterile inflammatory reaction.
Collapse
Affiliation(s)
- Liv la Cour Poulsen
- Zealand Fertility Clinic, Zealand University Hospital, Lykkebækvej 14, 4600, Køge, Denmark.
| | | | | | - Claus Yding Andersen
- Laboratory of Reproductive Biology, University Hospital of Copenhagen, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen Ø, Denmark
| | - Rehannah Borup
- Center for Chromosome Stability, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen N, Denmark
| | - Marie Louise Grøndahl
- Herlev Fertility Clinic, University Hospital of Copenhagen, Herlev and Gentofte Hospital, Herlev Ringvej 75, 2730, Herlev, Denmark
| |
Collapse
|
31
|
Gu F, Yuan S, Liu L, Zhu P, Yang Y, Pan Z, Zhou W. EYA4 serves as a prognostic biomarker in hepatocellular carcinoma and suppresses tumour angiogenesis and metastasis. J Cell Mol Med 2019; 23:4208-4216. [PMID: 30957411 PMCID: PMC6533515 DOI: 10.1111/jcmm.14309] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/27/2019] [Accepted: 03/11/2019] [Indexed: 12/14/2022] Open
Abstract
Eye absent homolog 4 (EYA4) has been demonstrated to be down‐regulated in hepatocellular carcinoma (HCC), but its biological function and the mechanism in HCC angiogenesis and metastasis remain largely unknown. Herein, we showed that EYA4 expression was frequently low in HCC tissue samples compared with matched adjacent non‐tumourous tissues. In the analysis of 302 HCC specimens, we revealed that decreased expression of EYA4 correlated with tumour differentiation status. Univariate and multivariate analyses identified EYA4 as an independent risk factor for recurrence‐free survival (RFS) and overall survival (OS) among the 302 patients. Functional assays showed that forced expression of EYA4 suppressed HCC cell migration, invasion and capillary tube formation of endothelial cells in vitro, as well as in vivo tumour angiogenesis and metastasis in a mouse model. Furthermore, mechanism study exhibited that EYA4 could inhibit HCC angiogenesis and metastasis by inhibiting c‐JUN/VEGFA pathway. Together, we provide proof that EYA4 is a novel tumour suppressor in HCC and a new prognostic biomarker and therapeutic target in HCC.
Collapse
Affiliation(s)
- Fangming Gu
- The Third Department of Hepatic Surgery, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Shengxian Yuan
- The Third Department of Hepatic Surgery, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Lei Liu
- The Third Department of Hepatic Surgery, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Peng Zhu
- The Third Department of Hepatic Surgery, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Yuan Yang
- The Third Department of Hepatic Surgery, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Zeya Pan
- The Third Department of Hepatic Surgery, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Weiping Zhou
- The Third Department of Hepatic Surgery, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| |
Collapse
|
32
|
McRae KM, Rowe SJ, Baird HJ, Bixley MJ, Clarke SM. Genome-wide association study of lung lesions and pleurisy in New Zealand lambs. J Anim Sci 2019; 96:4512-4520. [PMID: 30099550 PMCID: PMC6247835 DOI: 10.1093/jas/sky323] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 08/06/2018] [Indexed: 12/13/2022] Open
Abstract
Pneumonia is an important issue for sheep production, leading to reduced growth rate and a predisposition to pleurisy. The objective of this study was to identify loci associated with pneumonic lesions and pleurisy in New Zealand progeny test lambs. The lungs from 3,572 progeny-test lambs were scored for presence and severity of pneumonic lesions and pleurisy at slaughter. Animals were genotyped using the Illumina Ovine Infinium HD SNP BeadChip (606,006 markers). The heritability of lung lesion score and pleurisy were calculated using the genomic relationship matrix, and genome-wide association analyses were conducted using EMMAX and haplotype trend regression. At slaughter, 35% of lambs had pneumonic lesions, with 9% showing lesions on more than half of any individual lobe. The number of lambs recorded as having pleurisy by the processing plants was 9%. Heritability estimates for pneumonic lesions and pleurisy scores adjusted for heteroscedasticity (CPSa and PLEURa) were 0.16 (± 0.03) and 0.05 (± 0.02), respectively. Five single-nucleotide polymorphisms (SNPs) were significantly associated with pneumonic lesions at the genome-wide level, and additional 37 SNPs were suggestively significant. Four SNPs were significantly associated with pleurisy, with an additional 11 SNPs reaching the suggestive level of significance. There were no regions that overlapped between the 2 traits. Multiple SNPs were in regions that contained genes involved in either the DNA damage response or the innate immune response, including several that had previously been reported to have associations with respiratory disease. Both EMMAX and HTR analyses of pleurisy data showed a significant peak on chromosome 2, located downstream from the transcription factor SP3. SP3 activates or suppresses the expression of numerous genes, including several genes with known functions in the immune system. This study identified several SNPs associated with genes involved in both the innate immune response and the response to DNA damage that are associated with pneumonic lesions and pleurisy in lambs at slaughter. Additionally, the identification in sheep of several SNPs within genes that have previously been associated with the respiratory system in cattle, pigs, rats, and mice indicates that there may be common pathways that underlie the response to invasion by respiratory pathogens in multiple species.
Collapse
|
33
|
Kingsbury TJ, Kim M, Civin CI. Regulation of cancer stem cell properties by SIX1, a member of the PAX-SIX-EYA-DACH network. Adv Cancer Res 2019; 141:1-42. [PMID: 30691681 DOI: 10.1016/bs.acr.2018.12.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The PAX-SIX-EYA-DACH network (PSEDN) is a central developmental transcriptional regulatory network from Drosophila to humans. The PSEDN is comprised of four conserved protein families; including paired box (PAX), sine oculis (SIX), eyes absent (EYA), and dachshund (DACH). Aberrant expression of PSEDN members, particularly SIX1, has been observed in multiple human cancers, where SIX1 expression correlates with increased aggressiveness and poor prognosis. In conjunction with its transcriptional activator EYA, the SIX1 transcription factor increases cancer stem cell (CSC) numbers and induces epithelial-mesenchymal transition (EMT). SIX1 promotes multiple hallmarks and enabling characteristics of cancer via regulation of cell proliferation, senescence, apoptosis, genome stability, and energy metabolism. SIX1 also influences the tumor microenvironment, enhancing recruitment of tumor-associated macrophages and stimulating angiogenesis, to promote tumor development and progression. EYA proteins are multifunctional, possessing a transcriptional activation domain and tyrosine phosphatase activity, that each contributes to cancer stem cell properties. DACH proteins function as tumor suppressors in solid cancers, opposing the actions of SIX-EYA and reducing CSC prevalence. Multiple mechanisms can lead to increased SIX1 expression, including loss of SIX1-targeting tumor suppressor microRNAs (miRs), whose expression correlates inversely with SIX1 expression in cancer patient samples. In this review, we discuss the major mechanisms by which SIX1 confers CSC and EMT features and other important cancer cell characteristics. The roles of EYA and DACH in CSCs and cancer progression are briefly highlighted. Finally, we summarize the clinical significance of SIX1 in cancer to emphasize the potential therapeutic benefits of effective strategies to disrupt PSEDN protein interactions and functions.
Collapse
|
34
|
Gohla A. Do metabolic HAD phosphatases moonlight as protein phosphatases? BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:153-166. [DOI: 10.1016/j.bbamcr.2018.07.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 07/12/2018] [Indexed: 12/14/2022]
|
35
|
Jiang QX. Structural Variability in the RLR-MAVS Pathway and Sensitive Detection of Viral RNAs. Med Chem 2019; 15:443-458. [PMID: 30569868 PMCID: PMC6858087 DOI: 10.2174/1573406415666181219101613] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 10/23/2018] [Accepted: 12/12/2018] [Indexed: 12/25/2022]
Abstract
Cells need high-sensitivity detection of non-self molecules in order to fight against pathogens. These cellular sensors are thus of significant importance to medicinal purposes, especially for treating novel emerging pathogens. RIG-I-like receptors (RLRs) are intracellular sensors for viral RNAs (vRNAs). Their active forms activate mitochondrial antiviral signaling protein (MAVS) and trigger downstream immune responses against viral infection. Functional and structural studies of the RLR-MAVS signaling pathway have revealed significant supramolecular variability in the past few years, which revealed different aspects of the functional signaling pathway. Here I will discuss the molecular events of RLR-MAVS pathway from the angle of detecting single copy or a very low copy number of vRNAs in the presence of non-specific competition from cytosolic RNAs, and review key structural variability in the RLR / vRNA complexes, the MAVS helical polymers, and the adapter-mediated interactions between the active RLR / vRNA complex and the inactive MAVS in triggering the initiation of the MAVS filaments. These structural variations may not be exclusive to each other, but instead may reflect the adaptation of the signaling pathways to different conditions or reach different levels of sensitivity in its response to exogenous vRNAs.
Collapse
Affiliation(s)
- Qiu-Xing Jiang
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, United States
| |
Collapse
|
36
|
Lou H, Pickering MC. Extracellular DNA and autoimmune diseases. Cell Mol Immunol 2018; 15:746-755. [PMID: 29553134 PMCID: PMC6141478 DOI: 10.1038/cmi.2017.136] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 10/23/2017] [Accepted: 10/23/2017] [Indexed: 01/02/2023] Open
Abstract
Extracellular DNA is secreted from various sources including apoptotic cells, NETotic neutrophils and bacterial biofilms. Extracellular DNA can stimulate innate immune responses to induce type-I IFN production after being endocytosed. This process is central in antiviral responses but it also plays important role in the pathogenesis of a range of autoimmune diseases such as systemic lupus erythematosus. We discuss the recent advances in the understanding of the role of extracellular DNA, released from apoptotic and NETotic cells, in autoimmunity.
Collapse
Affiliation(s)
- Hantao Lou
- Molecular Immunology, Imperial College London, London, UK, W12 0NN.
| | - Matthew C Pickering
- Centre for Complement and Inflammation Research, Imperial College London, London, UK, W12 0NN
| |
Collapse
|
37
|
The genetics and molecular pathogenesis of systemic lupus erythematosus (SLE) in populations of different ancestry. Gene 2018; 668:59-72. [DOI: 10.1016/j.gene.2018.05.041] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 05/13/2018] [Indexed: 01/21/2023]
|
38
|
Wang Y, Pandey RN, Riffle S, Chintala H, Wikenheiser-Brokamp KA, Hegde RS. The Protein Tyrosine Phosphatase Activity of Eyes Absent Contributes to Tumor Angiogenesis and Tumor Growth. Mol Cancer Ther 2018; 17:1659-1669. [PMID: 29802120 DOI: 10.1158/1535-7163.mct-18-0057] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 03/28/2018] [Accepted: 05/22/2018] [Indexed: 12/14/2022]
Abstract
DNA damage repair capacity is required for cells to survive catastrophic DNA damage and proliferate under conditions of intratumoral stress. The ability of the minor histone protein H2AX to serve as a hub for the assembly of a productive DNA damage repair complex is a necessary step in preventing DNA damage-induced cell death. The Eyes Absent (EYA) proteins dephosphorylate the terminal tyrosine residue of H2AX, thus permitting assembly of a productive DNA repair complex. Here, we use genetic and chemical biology approaches to separately query the roles of host vascular endothelial cell and tumor cell EYA in tumor growth. Deletion of Eya3 in host endothelial cells significantly reduced tumor angiogenesis and limited tumor growth in xenografts. Deletion of Eya3 in tumor cells reduced tumor cell proliferation and tumor growth without affecting tumor angiogenesis. A chemical inhibitor of the EYA tyrosine phosphatase activity inhibited both tumor angiogenesis and tumor growth. Simultaneously targeting the tumor vasculature and tumor cells is an attractive therapeutic strategy because it could counter the development of the more aggressive phenotype known to emerge from conventional antiangiogenic agents. Mol Cancer Ther; 17(8); 1659-69. ©2018 AACR.
Collapse
Affiliation(s)
- Yuhua Wang
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Ram Naresh Pandey
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Stephen Riffle
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Hemabindu Chintala
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Kathryn A Wikenheiser-Brokamp
- Divisions of Pathology, Laboratory Medicine and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Rashmi S Hegde
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio.
| |
Collapse
|
39
|
Vartuli RL, Zhou H, Zhang L, Powers RK, Klarquist J, Rudra P, Vincent MY, Ghosh D, Costello JC, Kedl RM, Slansky JE, Zhao R, Ford HL. Eya3 promotes breast tumor-associated immune suppression via threonine phosphatase-mediated PD-L1 upregulation. J Clin Invest 2018; 128:2535-2550. [PMID: 29757193 DOI: 10.1172/jci96784] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 03/22/2018] [Indexed: 12/12/2022] Open
Abstract
Eya proteins are critical developmental regulators that are highly expressed in embryogenesis but downregulated after development. Amplification and/or re-expression of Eyas occurs in many tumor types. In breast cancer, Eyas regulate tumor progression by acting as transcriptional cofactors and tyrosine phosphatases. Intriguingly, Eyas harbor a separate threonine (Thr) phosphatase activity, which was previously implicated in innate immunity. Here we describe what we believe to be a novel role for Eya3 in mediating triple-negative breast cancer-associated immune suppression. Eya3 loss decreases tumor growth in immune-competent mice and is associated with increased numbers of infiltrated CD8+ T cells, which, when depleted, reverse the effects of Eya3 knockdown. Mechanistically, Eya3 utilizes its Thr phosphatase activity to dephosphorylate Myc at pT58, resulting in a stabilized form. We show that Myc is required for Eya3-mediated increases in PD-L1, and that rescue of PD-L1 in Eya3-knockdown cells restores tumor progression. Finally, we demonstrate that Eya3 significantly correlates with PD-L1 in human breast tumors, and that tumors expressing high levels of Eya3 have a decreased CD8+ T cell signature. Our data uncover a role for Eya3 in mediating tumor-associated immune suppression, and suggest that its inhibition may enhance checkpoint therapies.
Collapse
Affiliation(s)
- Rebecca L Vartuli
- Department of Pharmacology, University of Colorado Denver, Aurora, Colorado, USA.,Molecular Biology Program
| | - Hengbo Zhou
- Department of Pharmacology, University of Colorado Denver, Aurora, Colorado, USA.,Cancer Biology Program
| | - Lingdi Zhang
- Department of Biochemistry and Molecular Genetics
| | - Rani K Powers
- Department of Pharmacology, University of Colorado Denver, Aurora, Colorado, USA.,Computational Bioscience Graduate Program
| | | | - Pratyaydipta Rudra
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Melanie Y Vincent
- Department of Pharmacology, University of Colorado Denver, Aurora, Colorado, USA
| | - Debashis Ghosh
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - James C Costello
- Department of Pharmacology, University of Colorado Denver, Aurora, Colorado, USA.,Cancer Biology Program.,Computational Bioscience Graduate Program
| | - Ross M Kedl
- Department of Immunology and Microbiology, and
| | - Jill E Slansky
- Cancer Biology Program.,Department of Immunology and Microbiology, and
| | - Rui Zhao
- Molecular Biology Program.,Department of Biochemistry and Molecular Genetics
| | - Heide L Ford
- Department of Pharmacology, University of Colorado Denver, Aurora, Colorado, USA.,Molecular Biology Program.,Cancer Biology Program.,Department of Biochemistry and Molecular Genetics
| |
Collapse
|
40
|
Mo SJ, Hou X, Hao XY, Cai JP, Liu X, Chen W, Chen D, Yin XY. EYA4 inhibits hepatocellular carcinoma growth and invasion by suppressing NF-κB-dependent RAP1 transactivation. Cancer Commun (Lond) 2018; 38:9. [PMID: 29764501 PMCID: PMC5993152 DOI: 10.1186/s40880-018-0276-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 11/08/2017] [Indexed: 01/04/2023] Open
Abstract
Background Our previous studies demonstrated that eyes absent homolog 4 (EYA4), a member of the eye development-related EYA family in Drosophila, is frequently methylated and silenced in hepatocellular carcinoma (HCC) specimens and associated with shorter survival. The current work aimed to explore the mechanisms through which EYA4 functions as a tumor suppressor in HCC. Methods Stable EYA4-expressing plasmid (pEYA4) transfectants of the human HCC cell lines Huh-7 and PLC/PRF/5 (PLC) were established. Xenografts tumors were established via subcutaneous injection of the stable transfectants into BALB/c nude mice. Tissue samples were obtained from 75 pathologically diagnosed HCC patients. Quantitative real-time polymerase chain reaction, Western blotting and immunohistochemistry were performed to determine the expression of EYA4 in cell lines, xenografts and clinical specimens. The cell proliferation, colony formation, invasiveness and tumor formation of stable transfectants were studied. A gene expression microarray was utilized to screen genes regulated by EYA4 expression. The effect of EYA4 on nuclear factor-κB (NF-κB)/RAS-related protein 1 (RAP1) signaling was demonstrated through the co-transfection of pEYA4 and Flag-tagged RAS-related protein 1A gene-expressing plasmid (Flag-RAP1A), functional studies, chromatin immunoprecipitation, immunofluorescence staining and cellular ubiquitination assay. Results The restoration of EYA4 expression in HCC cell lines suppressed cell proliferation, inhibited clonogenic outgrowth, reduced cell invasion and restrained xenograft tumor growth, and Flag-RAP1A reversed the suppressive effects of pEYA4 in vitro. Activation of NF-κB with tumor necrosis factor-α (TNF-α) increased the binding of p65 to the RAP1A gene promoter and up-regulated RAP1 protein expression. The inhibition of NF-κB with BAY 11-7085 and p65 siRNA successfully blocked TNF-α-induced RAP1 up-regulation. EYA4 antagonized the TNF-α-induced phosphorylation and ubiquitination of inhibitor of NF-κBα (IκBα) as well as the nuclear translocation and transactivation of p65, resulting in repressed NF-κB activity and RAP1 expression. Blocking the serine/threonine phosphatase activity of EYA4 with calyculin A notably abrogated its suppressive effect on NF-κB activity. In addition, EYA4 expression was inversely correlated with IκBα/RAP1 activity in clinical HCC specimens. Conclusion Our findings provide a functional and mechanistic basis for identifying EYA4 as a bona fide tumor suppressor that disrupts aberrant activation of the NF-κB/RAP1 signaling pathway and thus orchestrates a physiological impediment to HCC growth and invasion.
Collapse
Affiliation(s)
- Shi-Jing Mo
- Department of Pancreatobiliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, No. 58, Zhongshan Er Road, Guangzhou, 510080, Guangdong, P. R. China
| | - Xun Hou
- Department of Pancreatobiliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, No. 58, Zhongshan Er Road, Guangzhou, 510080, Guangdong, P. R. China
| | - Xiao-Yi Hao
- Department of Pancreatobiliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, No. 58, Zhongshan Er Road, Guangzhou, 510080, Guangdong, P. R. China
| | - Jian-Peng Cai
- Department of Pancreatobiliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, No. 58, Zhongshan Er Road, Guangzhou, 510080, Guangdong, P. R. China
| | - Xin Liu
- Department of Pancreatobiliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, No. 58, Zhongshan Er Road, Guangzhou, 510080, Guangdong, P. R. China
| | - Wei Chen
- Department of Pancreatobiliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, No. 58, Zhongshan Er Road, Guangzhou, 510080, Guangdong, P. R. China
| | - Dong Chen
- Department of Pancreatobiliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, No. 58, Zhongshan Er Road, Guangzhou, 510080, Guangdong, P. R. China
| | - Xiao-Yu Yin
- Department of Pancreatobiliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, No. 58, Zhongshan Er Road, Guangzhou, 510080, Guangdong, P. R. China.
| |
Collapse
|
41
|
Zhang L, Zhou H, Li X, Vartuli RL, Rowse M, Xing Y, Rudra P, Ghosh D, Zhao R, Ford HL. Eya3 partners with PP2A to induce c-Myc stabilization and tumor progression. Nat Commun 2018; 9:1047. [PMID: 29535359 PMCID: PMC5849647 DOI: 10.1038/s41467-018-03327-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 02/02/2018] [Indexed: 12/13/2022] Open
Abstract
Eya genes encode a unique family of multifunctional proteins that serve as transcriptional co-activators and as haloacid dehalogenase-family Tyr phosphatases. Intriguingly, the N-terminal domain of Eyas, which does not share sequence similarity to any known phosphatases, contains a separable Ser/Thr phosphatase activity. Here, we demonstrate that the Ser/Thr phosphatase activity of Eya is not intrinsic, but arises from its direct interaction with the protein phosphatase 2A (PP2A)-B55α holoenzyme. Importantly, Eya3 alters the regulation of c-Myc by PP2A, increasing c-Myc stability by enabling PP2A-B55α to dephosphorylate pT58, in direct contrast to the previously described PP2A-B56α-mediated dephosphorylation of pS62 and c-Myc destabilization. Furthermore, Eya3 and PP2A-B55α promote metastasis in a xenograft model of breast cancer, opposing the canonical tumor suppressive function of PP2A-B56α. Our study identifies Eya3 as a regulator of PP2A, a major cellular Ser/Thr phosphatase, and uncovers a mechanism of controlling the stability of a critical oncogene, c-Myc.
Collapse
Affiliation(s)
- Lingdi Zhang
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver Anschutz Medical Campus, Aurora, 80045, CO, USA
| | - Hengbo Zhou
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, 80045, CO, USA
- Cancer Biology Program, University of Colorado Anschutz Medical Campus, Aurora, 80045, CO, USA
| | - Xueni Li
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver Anschutz Medical Campus, Aurora, 80045, CO, USA
| | - Rebecca L Vartuli
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, 80045, CO, USA
- Molecular Biology Program, University of Colorado Anschutz Medical Campus, Aurora, 80045, CO, USA
| | - Michael Rowse
- McArdle Laboratory for Cancer Research, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, 53705, WI, USA
| | - Yongna Xing
- McArdle Laboratory for Cancer Research, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, 53705, WI, USA
| | - Pratyaydipta Rudra
- Department of Biostatistics and Informatics, University of Colorado Anschutz Medical Campus, Aurora, 80045, CO, USA
| | - Debashis Ghosh
- Department of Biostatistics and Informatics, University of Colorado Anschutz Medical Campus, Aurora, 80045, CO, USA
| | - Rui Zhao
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver Anschutz Medical Campus, Aurora, 80045, CO, USA.
- Molecular Biology Program, University of Colorado Anschutz Medical Campus, Aurora, 80045, CO, USA.
| | - Heide L Ford
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver Anschutz Medical Campus, Aurora, 80045, CO, USA.
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, 80045, CO, USA.
- Cancer Biology Program, University of Colorado Anschutz Medical Campus, Aurora, 80045, CO, USA.
- Molecular Biology Program, University of Colorado Anschutz Medical Campus, Aurora, 80045, CO, USA.
| |
Collapse
|
42
|
Mentel M, Ionescu AE, Puscalau-Girtu I, Helm MS, Badea RA, Rizzoli SO, Szedlacsek SE. WDR1 is a novel EYA3 substrate and its dephosphorylation induces modifications of the cellular actin cytoskeleton. Sci Rep 2018; 8:2910. [PMID: 29440662 PMCID: PMC5811557 DOI: 10.1038/s41598-018-21155-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 01/31/2018] [Indexed: 12/12/2022] Open
Abstract
Eyes absent (EYA) proteins are unusual proteins combining in a single polypeptide chain transactivation, threonine phosphatase, and tyrosine phosphatase activities. They play pivotal roles in organogenesis and are involved in a variety of physiological and pathological processes including innate immunity, DNA damage repair or cancer metastasis. The molecular targets of EYA tyrosine phosphatase activity are still elusive. Therefore, we sought to identify novel EYA substrates and also to obtain further insight into the tyrosine-dephosphorylating role of EYA proteins in various cellular processes. We show here that Src kinase phosphorylates tyrosine residues in two human EYA family members, EYA1 and EYA3. Both can autodephosphorylate these residues and their nuclear and cytoskeletal localization seems to be controlled by Src phosphorylation. Next, using a microarray of phosphotyrosine-containing peptides, we identified a phosphopeptide derived from WD-repeat-containing protein 1 (WDR1) that is dephosphorylated by EYA3. We further demonstrated that several tyrosine residues on WDR1 are phosphorylated by Src kinase, and are efficiently dephosphorylated by EYA3, but not by EYA1. The lack of phosphorylation generates major changes to the cellular actin cytoskeleton. We, therefore, conclude that WDR1 is an EYA3-specific substrate, which implies that EYA3 is a key modulator of the cytoskeletal reorganization.
Collapse
Affiliation(s)
- Mihaela Mentel
- Department of Enzymology, Institute of Biochemistry of the Romanian Academy, Spl. Independentei 296, Bucharest, 060031, Romania
| | - Aura E Ionescu
- Department of Enzymology, Institute of Biochemistry of the Romanian Academy, Spl. Independentei 296, Bucharest, 060031, Romania
| | - Ioana Puscalau-Girtu
- Department of Enzymology, Institute of Biochemistry of the Romanian Academy, Spl. Independentei 296, Bucharest, 060031, Romania
| | - Martin S Helm
- Department for Neuro- and Sensory Physiology, University Medical Center Göttingen, and Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Cluster of Excellence 171, Humboldtalle 23, Göttingen, 37073, Germany.,Max-Planck Research School Molecular Biology, Göttingen, 37077, Germany
| | - Rodica A Badea
- Department of Enzymology, Institute of Biochemistry of the Romanian Academy, Spl. Independentei 296, Bucharest, 060031, Romania
| | - Silvio O Rizzoli
- Department for Neuro- and Sensory Physiology, University Medical Center Göttingen, and Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Cluster of Excellence 171, Humboldtalle 23, Göttingen, 37073, Germany
| | - Stefan E Szedlacsek
- Department of Enzymology, Institute of Biochemistry of the Romanian Academy, Spl. Independentei 296, Bucharest, 060031, Romania.
| |
Collapse
|
43
|
The retinal determination gene network: from developmental regulator to cancer therapeutic target. Oncotarget 2018; 7:50755-50765. [PMID: 27203207 PMCID: PMC5226618 DOI: 10.18632/oncotarget.9394] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Accepted: 04/28/2016] [Indexed: 11/25/2022] Open
Abstract
Although originally identified for its function in Drosophila melanogaster eye specification, the Retinal Determination Gene Network (RDGN) is essential for the development of multiple organs in mammals. The RDGN regulates proliferation, differentiation and autocrine signaling, and interacts with other key signaling pathways. Aberrant expression of RDGN members such as DACH, EYA and SIX contributes to tumor initiation and progression; indeed, the levels of RDGN members are clinically prognostic factors in various cancer types. Stimulation or suppression of the activities of these crucial components can block cancer cell proliferation, prevent cancer stem cell expansion and even reverse the EMT process, thereby attenuating malignant phenotypes. Thus, cancer therapeutic interventions targeting RDGN members should be pursued in future studies.
Collapse
|
44
|
Abstract
In higher eukaryotes, the Tyr phosphorylation status of cellular proteins results from the coordinated action of Protein Tyrosine Kinases (PTKs) and Protein Tyrosine Phosphatases (PTPs). PTPs have emerged as highly regulated enzymes with diverse substrate specificity, and proteins with Tyr-dephosphorylation or Tyr-dephosphorylation-like properties can be clustered as the PTPome. This includes proteins from the PTP superfamily, which display a Cys-based catalytic mechanism, as well as enzymes from other gene families (Asp-based phosphatases, His-based phosphatases) that have converged in protein Tyr-dephosphorylation-related functions by using non-Cys-based catalytic mechanisms. Within the Cys-based members of the PTPome, classical PTPs dephosphorylate specific phosphoTyr (pTyr) residues from protein substrates, whereas VH1-like dual-specificity PTPs dephosphorylate pTyr, pSer, and pThr residues, as well as nonproteinaceous substrates, including phosphoinositides and phosphorylated carbohydrates. In addition, several PTPs have impaired catalytic activity as a result of amino acid substitutions at their active sites, but retain regulatory functions related with pTyr signaling. As a result of their relevant biological activity, many PTPs are linked to human disease, including cancer, neurodevelopmental, and metabolic diseases, making these proteins important drug targets and molecular markers in the clinic. Here, a brief overview on the biochemistry and physiology of the different groups of proteins that belong to the mammalian PTPome is presented.
Collapse
|
45
|
Zhang H, Wang L, Wong EYM, Tsang SL, Xu PX, Lendahl U, Sham MH. An Eya1-Notch axis specifies bipotential epibranchial differentiation in mammalian craniofacial morphogenesis. eLife 2017; 6:30126. [PMID: 29140246 PMCID: PMC5705218 DOI: 10.7554/elife.30126] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 11/13/2017] [Indexed: 01/04/2023] Open
Abstract
Craniofacial morphogenesis requires proper development of pharyngeal arches and epibranchial placodes. We show that the epibranchial placodes, in addition to giving rise to cranial sensory neurons, generate a novel lineage-related non-neuronal cell population for mouse pharyngeal arch development. Eya1 is essential for the development of epibranchial placodes and proximal pharyngeal arches. We identify an Eya1-Notch regulatory axis that specifies both the neuronal and non-neuronal commitment of the epibranchial placode, where Notch acts downstream of Eya1 and promotes the non-neuronal cell fate. Notch is regulated by the threonine phosphatase activity of Eya1. Eya1 dephosphorylates p-threonine-2122 of the Notch1 intracellular domain (Notch1 ICD), which increases the stability of Notch1 ICD and maintains Notch signaling activity in the non-neuronal epibranchial placodal cells. Our data unveil a more complex differentiation program in epibranchial placodes and an important role for the Eya1-Notch axis in craniofacial morphogenesis.
Collapse
Affiliation(s)
- Haoran Zhang
- School of Biomedical sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Li Wang
- School of Biomedical sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Elaine Yee Man Wong
- School of Biomedical sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Sze Lan Tsang
- School of Biomedical sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Pin-Xian Xu
- Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, United States
| | - Urban Lendahl
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Mai Har Sham
- School of Biomedical sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| |
Collapse
|
46
|
Mutations that impair Eyes absent tyrosine phosphatase activity in vitro reduce robustness of retinal determination gene network output in Drosophila. PLoS One 2017; 12:e0187546. [PMID: 29108015 PMCID: PMC5673202 DOI: 10.1371/journal.pone.0187546] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 10/20/2017] [Indexed: 12/01/2022] Open
Abstract
A limited collection of signaling networks and transcriptional effectors directs the full spectrum of cellular behaviors that comprise development. One mechanism to diversify regulatory potential is to combine multiple biochemical activities into the same protein. Exemplifying this principle of modularity, Eyes absent (Eya), originally identified as a transcriptional co-activator within the retinal determination gene network (RDGN), also harbors tyrosine and threonine phosphatase activities. Although mounting evidence argues for the importance of Eya’s phosphatase activities to mammalian biology, genetic rescue experiments in Drosophila have shown that the tyrosine phosphatase function is dispensable for normal development. In this study, we repeated these rescue experiments in genetically sensitized backgrounds in which the dose of one or more RDGN factor was reduced. Heterozygosity for sine oculis or dachshund, both core RDGN members, compromised the ability of phosphatase-dead eya, but not of the control wild type eya transgene, to rescue the retinal defects and reduced viability associated with eya loss. We speculate that Eya’s tyrosine phosphatase activity, although non-essential, confers robustness to RDGN output.
Collapse
|
47
|
The Eya phosphatase: Its unique role in cancer. Int J Biochem Cell Biol 2017; 96:165-170. [PMID: 28887153 DOI: 10.1016/j.biocel.2017.09.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 08/11/2017] [Accepted: 09/04/2017] [Indexed: 12/12/2022]
Abstract
The Eya proteins were originally identified as essential transcriptional co-activators of the Six family of homeoproteins. Subsequently, the highly conserved C-terminal domains of the Eya proteins were discovered to act as a Mg2+-dependent Tyr phosphatases, making Eyas the first transcriptional activators to harbor intrinsic phosphatase activity. Only two direct targets of the Eya Tyr phosphatase have been identified: H2AX, whose dephosphorylation directs cells to the DNA repair instead of the apoptotic pathway upon DNA damage, and ERβ, whose dephosphorylation inhibits its anti-tumor transcriptional activity. The Eya Tyr phosphatase mediates breast cancer cell transformation, migration, invasion, as well as metastasis, through targets not yet identified. Intriguingly, the N-terminal domain of Eya contains a separate Ser/Thr phosphatase activity implicated in innate immunity and in regulating c-Myc stability. Thus, Eya proteins are highly complex, containing two separable phosphatase domains and a transcriptional activation domain, thereby influencing tumor progression through multiple mechanisms.
Collapse
|
48
|
Szondy Z, Sarang Z, Kiss B, Garabuczi É, Köröskényi K. Anti-inflammatory Mechanisms Triggered by Apoptotic Cells during Their Clearance. Front Immunol 2017; 8:909. [PMID: 28824635 PMCID: PMC5539239 DOI: 10.3389/fimmu.2017.00909] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 07/17/2017] [Indexed: 12/19/2022] Open
Abstract
In the human body, billions of cells die by apoptosis every day. The subsequent clearance of apoptotic cells by phagocytosis is normally efficient enough to prevent secondary necrosis and the consequent release of cell contents that would induce inflammation and trigger autoimmunity. In addition, apoptotic cells generally induce an anti-inflammatory response, thus removal of apoptotic cells is usually immunologically silent. Since the first discovery that uptake of apoptotic cells leads to transforming growth factor (TGF)-β and interleukin (IL)-10 release by engulfing macrophages, numerous anti-inflammatory mechanisms triggered by apoptotic cells have been discovered, including release of anti-inflammatory molecules from the apoptotic cells, triggering immediate anti-inflammatory signaling pathways by apoptotic cell surface molecules via phagocyte receptors, activating phagocyte nuclear receptors following uptake and inducing the production of anti-inflammatory soluble mediators by phagocytes that may act via paracrine or autocrine mechanisms to amplify and preserve the anti-inflammatory state. Here, we summarize our present knowledge about how these anti-inflammatory mechanisms operate during the clearance of apoptotic cells.
Collapse
Affiliation(s)
- Zsuzsa Szondy
- Department of Biochemistry and Molecular Biology of Medical Faculty, University of Debrecen, Debrecen, Hungary.,Department of Basic Medical Sciences of Dental Faculty, University of Debrecen, Debrecen, Hungary
| | - Zsolt Sarang
- Department of Biochemistry and Molecular Biology of Medical Faculty, University of Debrecen, Debrecen, Hungary
| | - Beáta Kiss
- Department of Biochemistry and Molecular Biology of Medical Faculty, University of Debrecen, Debrecen, Hungary
| | - Éva Garabuczi
- Department of Biochemistry and Molecular Biology of Medical Faculty, University of Debrecen, Debrecen, Hungary
| | - Krisztina Köröskényi
- Department of Biochemistry and Molecular Biology of Medical Faculty, University of Debrecen, Debrecen, Hungary.,Department of Basic Medical Sciences of Dental Faculty, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
49
|
Eya2, a Target Activated by Plzf, Is Critical for PLZF-RARA-Induced Leukemogenesis. Mol Cell Biol 2017; 37:MCB.00585-16. [PMID: 28416638 DOI: 10.1128/mcb.00585-16] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 04/11/2017] [Indexed: 12/27/2022] Open
Abstract
PLZF is a transcription factor that confers aberrant self-renewal in leukemogenesis, and the PLZF-RARA fusion gene causes acute promyelocytic leukemia (APL) through differentiation block. However, the molecular mechanisms of aberrant self-renewal underlying PLZF-mediated leukemogenesis are poorly understood. To investigate these mechanisms, comprehensive expression profiling of mouse hematopoietic stem/progenitor cells transduced with Plzf was performed, which revealed the involvement of a key transcriptional coactivator, Eya2, a target molecule shared by Plzf and PLZF-RARA, in the aberrant self-renewal. Indeed, PLZF-RARA as well as Plzf rendered those cells immortalized through upregulation of Eya2. Eya2 also led to immortalization without differentiation block, while depletion of Eya2 suppressed clonogenicity in cells immortalized by PLZF-RARA without influence on differentiation and apoptosis. Interestingly, cancer outlier profile analysis of human samples of acute myeloid leukemia (AML) in The Cancer Genome Atlas (TCGA) revealed a subtype of AML that strongly expressed EYA2 In addition, gene set enrichment analysis of human AML samples, including TCGA data, showed that this subtype of AML was more closely associated with the properties of leukemic stem cells in its gene expression signature than other AMLs. Therefore, EYA2 may be a target for molecular therapy in this subtype of AML, including PLZF-RARA APL.
Collapse
|
50
|
Soonthornvacharin S, Rodriguez-Frandsen A, Zhou Y, Galvez F, Huffmaster NJ, Tripathi S, Balasubramaniam VRMT, Inoue A, de Castro E, Moulton H, Stein DA, Sánchez-Aparicio MT, De Jesus PD, Nguyen Q, König R, Krogan NJ, García-Sastre A, Yoh SM, Chanda SK. Systems-based analysis of RIG-I-dependent signalling identifies KHSRP as an inhibitor of RIG-I receptor activation. Nat Microbiol 2017; 2:17022. [PMID: 28248290 PMCID: PMC5338947 DOI: 10.1038/nmicrobiol.2017.22] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 01/23/2017] [Indexed: 01/05/2023]
Abstract
Retinoic acid-inducible gene I (RIG-I) receptor recognizes 5'-triphosphorylated RNA and triggers a signalling cascade that results in the induction of type-I interferon (IFN)-dependent responses. Its precise regulation represents a pivotal balance between antiviral defences and autoimmunity. To elucidate the cellular cofactors that regulate RIG-I signalling, we performed two global RNA interference analyses to identify both positive and negative regulatory nodes operating on the signalling pathway during virus infection. These factors were integrated with experimentally and computationally derived interactome data to build a RIG-I protein interaction network. Our analysis revealed diverse cellular processes, including the unfolded protein response, Wnt signalling and RNA metabolism, as critical cellular components governing innate responses to non-self RNA species. Importantly, we identified K-Homology Splicing Regulatory Protein (KHSRP) as a negative regulator of this pathway. We find that KHSRP associates with the regulatory domain of RIG-I to maintain the receptor in an inactive state and attenuate its sensing of viral RNA (vRNA). Consistent with increased RIG-I antiviral signalling in the absence of KHSRP, viral replication is reduced when KHSRP expression is knocked down both in vitro and in vivo. Taken together, these data indicate that KHSRP functions as a checkpoint regulator of the innate immune response to pathogen challenge.
Collapse
Affiliation(s)
- Stephen Soonthornvacharin
- Immunity and Pathogenesis Program, Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, California 92037, USA
- The San Diego Center for Systems Biology (SDCSB), La Jolla, California 92093, USA
- Graduate School of Biomedical Sciences, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, California 92037, USA
| | - Ariel Rodriguez-Frandsen
- Immunity and Pathogenesis Program, Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, California 92037, USA
- The San Diego Center for Systems Biology (SDCSB), La Jolla, California 92093, USA
| | - Yingyao Zhou
- Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, USA
| | - Felipe Galvez
- Immunity and Pathogenesis Program, Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, California 92037, USA
- The San Diego Center for Systems Biology (SDCSB), La Jolla, California 92093, USA
| | - Nicholas J Huffmaster
- Immunity and Pathogenesis Program, Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, California 92037, USA
- The San Diego Center for Systems Biology (SDCSB), La Jolla, California 92093, USA
| | - Shashank Tripathi
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, New York, New York 10029, USA
- Global Health and Emerging Pathogen Institute, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, New York, New York 10029, USA
| | - Vinod R M T Balasubramaniam
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, New York, New York 10029, USA
- Global Health and Emerging Pathogen Institute, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, New York, New York 10029, USA
| | - Atsushi Inoue
- Immunity and Pathogenesis Program, Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, California 92037, USA
| | - Elisa de Castro
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, New York, New York 10029, USA
- Global Health and Emerging Pathogen Institute, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, New York, New York 10029, USA
| | - Hong Moulton
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University Corvallis, 450 SW 30th Street, Oregon 97331, USA
| | - David A Stein
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University Corvallis, 450 SW 30th Street, Oregon 97331, USA
| | - María Teresa Sánchez-Aparicio
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, New York, New York 10029, USA
- Global Health and Emerging Pathogen Institute, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, New York, New York 10029, USA
| | - Paul D De Jesus
- Immunity and Pathogenesis Program, Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, California 92037, USA
- The San Diego Center for Systems Biology (SDCSB), La Jolla, California 92093, USA
| | - Quy Nguyen
- Immunity and Pathogenesis Program, Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, California 92037, USA
- The San Diego Center for Systems Biology (SDCSB), La Jolla, California 92093, USA
| | - Renate König
- Immunity and Pathogenesis Program, Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, California 92037, USA
- Host-Pathogen-Interactions, Paul-Ehrlich-Institute, German Center for Infection Research (DZIF), Paul-Ehrlich-Straße 51-59, 63225 Langen, Germany
| | - Nevan J Krogan
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, 1700 4th Street, Byers Hall 308D, Box 2530, San Francisco, California 94158, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, New York, New York 10029, USA
- Global Health and Emerging Pathogen Institute, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, New York, New York 10029, USA
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, New York, New York 10029, USA
| | - Sunnie M Yoh
- Immunity and Pathogenesis Program, Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, California 92037, USA
- The San Diego Center for Systems Biology (SDCSB), La Jolla, California 92093, USA
| | - Sumit K Chanda
- Immunity and Pathogenesis Program, Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, California 92037, USA
- The San Diego Center for Systems Biology (SDCSB), La Jolla, California 92093, USA
| |
Collapse
|