1
|
Contarini PE, Emboule E, Jean-Louis P, Woyke T, Date SV, Gros O, Volland JM. A novel open-source cultivation system helps establish the first full cycle chemosynthetic symbiosis model system involving the giant ciliate Zoothamnium niveum. Front Microbiol 2024; 15:1491485. [PMID: 39726965 PMCID: PMC11669664 DOI: 10.3389/fmicb.2024.1491485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 11/25/2024] [Indexed: 12/28/2024] Open
Abstract
Symbiotic interactions drive species evolution, with nutritional symbioses playing vital roles across ecosystems. Chemosynthetic symbioses are globally distributed and ecologically significant, yet the lack of model systems has hindered research progress. The giant ciliate Zoothamnium niveum and its sulfur-oxidizing symbionts represent the only known chemosynthetic symbiosis with a short life span that has been transiently cultivated in the laboratory. While it is experimentally tractable and presents a promising model system, it currently lacks an open-source, simple, and standardized cultivation setup. Following the FABricated Ecosystems (EcoFABs) model, we leveraged 3D printing and polydimethylsiloxane (PDMS) casting to develop simple flow-through cultivation chambers that can be produced and adopted by any laboratory. The streamlined manufacturing process reduces production time by 86% and cuts cost by tenfold compared to the previous system. Benchmarking using previously established optimal growth conditions, the new open-source cultivation system proves stable, efficient, more autonomous, and promotes a more prolific growth of the symbiosis. For the first time, starting from single cells, we successfully cultivated the symbiosis in flow-through chambers for 20 days, spanning multiple generations of colonies that remained symbiotic. They were transferred from chamber to chamber enabling long-term cultivation and eliminating the need for continuous field sampling. The chambers, optimized for live imaging, allowed detailed observation of the synchronized growth between the host and symbiont. Highlighting the benefit of this new system, we here describe a new step in the first hours of development where the host pauses growth, expels a coat, before resuming growth, hinting at a putative symbiont selection mechanism early in the colony life cycle. With this simple, open-source, cultivation setup, Z. niveum holds promises for comparative studies, standardization of research and wide adoption by the symbiosis research community.
Collapse
Affiliation(s)
- P. E. Contarini
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d’Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, Pointe-à-Pitre, France
| | - E. Emboule
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d’Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, Pointe-à-Pitre, France
| | - P. Jean-Louis
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d’Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, Pointe-à-Pitre, France
| | - T. Woyke
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - S. V. Date
- Laboratory for Research in Complex Systems, Menlo Park, CA, United States
| | - O. Gros
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d’Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, Pointe-à-Pitre, France
| | - J-M. Volland
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, United States
- Laboratory for Research in Complex Systems, Menlo Park, CA, United States
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| |
Collapse
|
2
|
Wegener G, Molari M, Purser A, Diehl A, Albers E, Walter M, Mertens C, German CR, Boetius A. Hydrothermal vents supporting persistent plumes and microbial chemoautotrophy at Gakkel Ridge (Arctic Ocean). Front Microbiol 2024; 15:1473822. [PMID: 39421557 PMCID: PMC11484012 DOI: 10.3389/fmicb.2024.1473822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/11/2024] [Indexed: 10/19/2024] Open
Abstract
Hydrothermal vents emit hot fluids enriched in energy sources for microbial life. Here, we compare the ecological and biogeochemical effects of hydrothermal venting of two recently discovered volcanic seamounts, Polaris and Aurora of the Gakkel Ridge, in the ice-covered Central Arctic Ocean. At both sites, persistent hydrothermal plumes increased up to 800 m into the deep Arctic Ocean. In the two non-buoyant plumes, rates of microbial carbon fixation were strongly elevated compared to background values of 0.5-1 μmol m-3 day-1 in the Arctic deep water, which suggests increased chemoautotrophy on vent-derived energy sources. In the Polaris plume, free sulfide and up to 360 nM hydrogen enabled microorganisms to fix up to 46 μmol inorganic carbon (IC) m-3 day-1. This energy pulse resulted in a strong increase in the relative abundance of SUP05 by 25% and Candidatus Sulfurimonas pluma by 7% of all bacteria. At Aurora, microorganisms fixed up to 35 μmol IC m-3 day-1. Here, metal sulfides limited the bioavailability of reduced sulfur species, and the putative hydrogen oxidizer Ca. S. pluma constituted 35% and SUP05 10% of all bacteria. In accordance with this data, transcriptomic analysis showed a high enrichment of hydrogenase-coding transcripts in Aurora and an enrichment of transcripts coding for sulfur oxidation in Polaris. There was neither evidence for methane consumption nor a substantial increase in the abundance of putative methanotrophs or their transcripts in either plume. Together, our results demonstrate the dominance of hydrogen and sulfide as energy sources in Arctic hydrothermal vent plumes.
Collapse
Affiliation(s)
- Gunter Wegener
- MARUM, Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
- Max Planck Institute for Marine Microbiology, Bremen, Germany
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | - Massimiliano Molari
- Max Planck Institute for Marine Microbiology, Bremen, Germany
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | - Autun Purser
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | - Alexander Diehl
- MARUM, Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
- Department of Geosciences, University of Bremen, Bremen, Germany
| | - Elmar Albers
- MARUM, Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
- Department of Geosciences, University of Bremen, Bremen, Germany
- Woods Hole Oceanographic Institution, Woods Hole, MA, United States
| | - Maren Walter
- MARUM, Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
- Institute of Environmental Physics, University of Bremen, Bremen, Germany
| | - Christian Mertens
- Institute of Environmental Physics, University of Bremen, Bremen, Germany
| | | | - Antje Boetius
- MARUM, Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
- Max Planck Institute for Marine Microbiology, Bremen, Germany
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| |
Collapse
|
3
|
Hernández JC, González-Delgado S, Aliende-Hernández M, Alfonso B, Rufino-Navarro A, Hernández CA. Natural acidified marine systems: Lessons and predictions. ADVANCES IN MARINE BIOLOGY 2024; 97:59-78. [PMID: 39307559 DOI: 10.1016/bs.amb.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Natural acidified marine systems (ASs) are environments with relatively low pH levels due to natural causes such as volcanic activity, geochemical reactions, and biological processes. These systems act as natural laboratories for the study of the effects of ocean acidification, allowing for the observation of long-term ecological and evolutionary responses. Understanding these systems is crucial for predicting the effects of anthropogenic ocean acidification (OA) on marine ecosystems. There are 23 ASs in which scientific research has shown significant parallelisms in their results worldwide, such as the disappearance of calcareous organisms and the loss of species with key ecological functions under OA conditions. Future research should emphasize continuous collaboration among teams, as well as public access to oceanographic and biological data along with the monitoring of environmental variables at each AS. To preserve these areas, it is imperative to employ non-destructive methods and protect them as human heritage sites.
Collapse
Affiliation(s)
- José Carlos Hernández
- Observatorio Marino de Cambio Climático - Punta de Fuencaliente, La Palma Island, Marine Community Ecology and Conservation, Dpto. Biología Animal, Edafología y Geología, Universidad de La Laguna, Tenerife, Canary Islands, Spain.
| | - Sara González-Delgado
- Observatorio Marino de Cambio Climático - Punta de Fuencaliente, La Palma Island, Marine Community Ecology and Conservation, Dpto. Biología Animal, Edafología y Geología, Universidad de La Laguna, Tenerife, Canary Islands, Spain
| | - M Aliende-Hernández
- Observatorio Marino de Cambio Climático - Punta de Fuencaliente, La Palma Island, Marine Community Ecology and Conservation, Dpto. Biología Animal, Edafología y Geología, Universidad de La Laguna, Tenerife, Canary Islands, Spain
| | - B Alfonso
- Observatorio Marino de Cambio Climático - Punta de Fuencaliente, La Palma Island, Marine Community Ecology and Conservation, Dpto. Biología Animal, Edafología y Geología, Universidad de La Laguna, Tenerife, Canary Islands, Spain
| | - A Rufino-Navarro
- Observatorio Marino de Cambio Climático - Punta de Fuencaliente, La Palma Island, Marine Community Ecology and Conservation, Dpto. Biología Animal, Edafología y Geología, Universidad de La Laguna, Tenerife, Canary Islands, Spain
| | - C A Hernández
- Observatorio Marino de Cambio Climático - Punta de Fuencaliente, La Palma Island, Marine Community Ecology and Conservation, Dpto. Biología Animal, Edafología y Geología, Universidad de La Laguna, Tenerife, Canary Islands, Spain
| |
Collapse
|
4
|
Jiao JY, Ma SC, Salam N, Zhou Z, Lian ZH, Fu L, Chen Y, Peng CH, OuYang YT, Fan H, Li L, Yi Y, Zhang JY, Wang JY, Liu L, Gao L, Oren A, Woyke T, Dodsworth JA, Hedlund BP, Li WJ, Cheng L. Cultivation of novel Atribacterota from oil well provides new insight into their diversity, ecology, and evolution in anoxic, carbon-rich environments. MICROBIOME 2024; 12:123. [PMID: 38971798 PMCID: PMC11227167 DOI: 10.1186/s40168-024-01836-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 05/13/2024] [Indexed: 07/08/2024]
Abstract
BACKGROUND The Atribacterota are widely distributed in the subsurface biosphere. Recently, the first Atribacterota isolate was described and the number of Atribacterota genome sequences retrieved from environmental samples has increased significantly; however, their diversity, physiology, ecology, and evolution remain poorly understood. RESULTS We report the isolation of the second member of Atribacterota, Thermatribacter velox gen. nov., sp. nov., within a new family Thermatribacteraceae fam. nov., and the short-term laboratory cultivation of a member of the JS1 lineage, Phoenicimicrobium oleiphilum HX-OS.bin.34TS, both from a terrestrial oil reservoir. Physiological and metatranscriptomics analyses showed that Thermatribacter velox B11T and Phoenicimicrobium oleiphilum HX-OS.bin.34TS ferment sugars and n-alkanes, respectively, producing H2, CO2, and acetate as common products. Comparative genomics showed that all members of the Atribacterota lack a complete Wood-Ljungdahl Pathway (WLP), but that the Reductive Glycine Pathway (RGP) is widespread, indicating that the RGP, rather than WLP, is a central hub in Atribacterota metabolism. Ancestral character state reconstructions and phylogenetic analyses showed that key genes encoding the RGP (fdhA, fhs, folD, glyA, gcvT, gcvPAB, pdhD) and other central functions were gained independently in the two classes, Atribacteria (OP9) and Phoenicimicrobiia (JS1), after which they were inherited vertically; these genes included fumarate-adding enzymes (faeA; Phoenicimicrobiia only), the CODH/ACS complex (acsABCDE), and diverse hydrogenases (NiFe group 3b, 4b and FeFe group A3, C). Finally, we present genome-resolved community metabolic models showing the central roles of Atribacteria (OP9) and Phoenicimicrobiia (JS1) in acetate- and hydrocarbon-rich environments. CONCLUSION Our findings expand the knowledge of the diversity, physiology, ecology, and evolution of the phylum Atribacterota. This study is a starting point for promoting more incisive studies of their syntrophic biology and may guide the rational design of strategies to cultivate them in the laboratory. Video Abstract.
Collapse
Affiliation(s)
- Jian-Yu Jiao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Shi-Chun Ma
- Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, 610000, People's Republic of China
| | - Nimaichand Salam
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
- National Agri-Food Biotechnology Institute, Sector-81 (Knowledge City), Mohali, 140306, Punjab, India
| | - Zhuo Zhou
- Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, 610000, People's Republic of China
| | - Zheng-Han Lian
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Li Fu
- Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, 610000, People's Republic of China
| | - Ying Chen
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Cheng-Hui Peng
- Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, 610000, People's Republic of China
| | - Yu-Ting OuYang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Hui Fan
- Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, 610000, People's Republic of China
| | - Ling Li
- Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, 610000, People's Republic of China
| | - Yue Yi
- Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, 610000, People's Republic of China
| | - Jing-Yi Zhang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Jing-Yuan Wang
- Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, 610000, People's Republic of China
| | - Lan Liu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Lei Gao
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, People's Republic of China
| | - Aharon Oren
- Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Tanja Woyke
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- University of California Merced, Life and Environmental Sciences, Merced, CA, USA
| | | | - Brian P Hedlund
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, 89154, USA.
- Nevada Institute of Personalized Medicine, University of Nevada Las Vegas, Las Vegas, NV, 89154, USA.
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China.
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, People's Republic of China.
| | - Lei Cheng
- Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, 610000, People's Republic of China.
| |
Collapse
|
5
|
Ricci F, Greening C. Chemosynthesis: a neglected foundation of marine ecology and biogeochemistry. Trends Microbiol 2024; 32:631-639. [PMID: 38296716 DOI: 10.1016/j.tim.2023.11.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/06/2023] [Accepted: 11/28/2023] [Indexed: 02/02/2024]
Abstract
Chemosynthesis is a metabolic process that transfers carbon to the biosphere using reduced compounds. It is well recognised that chemosynthesis occurs in much of the ocean, but it is often thought to be a negligible process compared to photosynthesis. Here we propose that chemosynthesis is the underlying process governing primary production in much of the ocean and suggest that it extends to a much wider range of compounds, microorganisms, and ecosystems than previously thought. In turn, this process has had a central role in controlling marine biogeochemistry, ecology, and carbon budgets across the vast realms of the ocean, from the dawn of life to contemporary times.
Collapse
Affiliation(s)
- Francesco Ricci
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Securing Antarctica's Environmental Future, Monash University, Clayton, VIC 3800, Australia.
| | - Chris Greening
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Securing Antarctica's Environmental Future, Monash University, Clayton, VIC 3800, Australia; Centre to Impact AMR, Monash University, Melbourne, Victoria, Australia.
| |
Collapse
|
6
|
Rizzo C, Arcadi E, Calogero R, Ciro Rappazzo A, Caruso G, Maimone G, Lo Giudice A, Romeo T, Andaloro F. Deciphering the evolvement of microbial communities from hydrothermal vent sediments in a global change perspective. ENVIRONMENTAL RESEARCH 2024; 240:117514. [PMID: 37890823 DOI: 10.1016/j.envres.2023.117514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/17/2023] [Accepted: 10/24/2023] [Indexed: 10/29/2023]
Abstract
Microbial communities first respond to changes of external environmental conditions. Observing the microbial responses to environmental changes in terms of taxonomic and functional biodiversity is therefore of great interest, particularly in extreme environments, where the already extreme conditions can become even harsher. In this study, sediment samples from three different shallow hydrothermal vents in Levante Bay (Vulcano Island, Aeolian Islands, Italy) were used to set up microcosm experiments with the aim to explore the microbial dynamics under changing conditions of pH and redox potential over a 90-days period. The leading hypothesis was to establish under microcosm conditions whether the starting microbial communities of the sediments evolved differently depending on their origin. To profile the dynamics of microbial populations over time, biodiversity, enzymatic profile, total cell abundance estimations, total/respiring cell ratio were estimated by using different approaches. An evident change in the microbial community structure was observed, mainly in the microcosm containing the sediment from the most acidified site, which was characterized by a highly diversified microbial community (in prevalence composed of Thermotoga, Desulfobacterota, Planctomycetota, Synergistota and Deferribacterota). An increase in microbial resistant forms (e.g., spore-forming species) with anaerobic metabolism was detected in all experimental conditions. Differential physiological responses characterized the sedimentary microbial communities. Proteolytic activity appeared to be stimulated under microcosm conditions, whereas the alkaline phosphatase activity was significantly depressed at low pH values, like those that were measured at the station showing intermediate pH-conditions. The results confirmed a differential response of microbial communities depending on the starting environmental conditions.
Collapse
Affiliation(s)
- Carmen Rizzo
- Marine Biotechnology Department, Stazione Zoologica Anton Dohrn-, Sicily Marine Centre, Villa Pace, Contrada Porticatello 29, 98167, Messina, Italy; Institute of Polar Sciences, National Research Council (CNR-ISP), Spianata S. Raineri 86, 98122, Messina, Italy.
| | - Erika Arcadi
- StazioneZoologica Anton Dohrn, Sicily Marine Centre, Department of Biology and Evolution of Marine Organisms, Villa Pace, Contrada Porticatello 29, 98167, Messina, Italy.
| | - Rosario Calogero
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Sicily Marine Centre, Contrada Porticatello, 29, 98167 Messina, Italy
| | - Alessandro Ciro Rappazzo
- Institute of Polar Sciences, National Research Council (CNR-ISP), Spianata S. Raineri 86, 98122, Messina, Italy; Campus Scientifico, Ca' Foscari University of Venice, Italy
| | - Gabriella Caruso
- Institute of Polar Sciences, National Research Council (CNR-ISP), Spianata S. Raineri 86, 98122, Messina, Italy
| | - Giovanna Maimone
- Institute of Polar Sciences, National Research Council (CNR-ISP), Spianata S. Raineri 86, 98122, Messina, Italy
| | - Angelina Lo Giudice
- Institute of Polar Sciences, National Research Council (CNR-ISP), Spianata S. Raineri 86, 98122, Messina, Italy
| | - Teresa Romeo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Sicily Marine Centre, Contrada Porticatello, 29, 98167, Messina, Italy; National Institute for Environmental Protection and Research, Via Dei Mille 46, 98057, Milazzo, Italy
| | - Franco Andaloro
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Sicily Marine Centre, Lungomare Cristoforo Colombo, 4521 Palermo, Italy
| |
Collapse
|
7
|
Ratinskaia L, Malavin S, Zvi-Kedem T, Vintila S, Kleiner M, Rubin-Blum M. Metabolically-versatile Ca. Thiodiazotropha symbionts of the deep-sea lucinid clam Lucinoma kazani have the genetic potential to fix nitrogen. ISME COMMUNICATIONS 2024; 4:ycae076. [PMID: 38873029 PMCID: PMC11171427 DOI: 10.1093/ismeco/ycae076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/06/2024] [Accepted: 05/31/2024] [Indexed: 06/15/2024]
Abstract
Lucinid clams are one of the most diverse and widespread symbiont-bearing animal groups in both shallow and deep-sea chemosynthetic habitats. Lucinids harbor Ca. Thiodiazotropha symbionts that can oxidize inorganic and organic substrates such as hydrogen sulfide and formate to gain energy. The interplay between these key metabolic functions, nutrient uptake and biotic interactions in Ca. Thiodiazotropha is not fully understood. We collected Lucinoma kazani individuals from next to a deep-sea brine pool in the eastern Mediterranean Sea, at a depth of 1150 m and used Oxford Nanopore and Illumina sequencing to obtain high-quality genomes of their Ca. Thiodiazotropha gloverae symbiont. The genomes served as the basis for transcriptomic and proteomic analyses to characterize the in situ gene expression, metabolism and physiology of the symbionts. We found genes needed for N2 fixation in the deep-sea symbiont's genome, which, to date, were only found in shallow-water Ca. Thiodiazotropha. However, we did not detect the expression of these genes and thus the potential role of nitrogen fixation in this symbiosis remains to be determined. We also found the high expression of carbon fixation and sulfur oxidation genes, which indicate chemolithoautotrophy as the key physiology of Ca. Thiodiazotropha. However, we also detected the expression of pathways for using methanol and formate as energy sources. Our findings highlight the key traits these microbes maintain to support the nutrition of their hosts and interact with them.
Collapse
Affiliation(s)
- Lina Ratinskaia
- Biology Department, National Institute of Oceanography, Israel Oceanographic and Limnological Research (IOLR), Haifa 3108000Israel
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa 3498838Israel
| | - Stas Malavin
- Biology Department, National Institute of Oceanography, Israel Oceanographic and Limnological Research (IOLR), Haifa 3108000Israel
- Department of Environmental Hydrology and Microbiology, Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sde Boker 8499000, Israel
| | - Tal Zvi-Kedem
- Biology Department, National Institute of Oceanography, Israel Oceanographic and Limnological Research (IOLR), Haifa 3108000Israel
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa 3498838Israel
| | - Simina Vintila
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695, United States
| | - Manuel Kleiner
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695, United States
| | - Maxim Rubin-Blum
- Biology Department, National Institute of Oceanography, Israel Oceanographic and Limnological Research (IOLR), Haifa 3108000Israel
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa 3498838Israel
| |
Collapse
|
8
|
Woern C, Grossmann L. Microbial gas fermentation technology for sustainable food protein production. Biotechnol Adv 2023; 69:108240. [PMID: 37647973 DOI: 10.1016/j.biotechadv.2023.108240] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 08/16/2023] [Accepted: 08/21/2023] [Indexed: 09/01/2023]
Abstract
The development of novel, sustainable, and robust food production technologies represents one of the major pillars to address the most significant challenges humanity is going to face on earth in the upcoming decades - climate change, population growth, and resource depletion. The implementation of microfoods, i.e., foods formulated with ingredients from microbial cultivation, into the food supply chain has a huge potential to contribute towards energy-efficient and nutritious food manufacturing and represents a means to sustainably feed a growing world population. This review recapitulates and assesses the current state in the establishment and usage of gas fermenting bacteria as an innovative feedstock for protein production. In particular, we focus on the most promising representatives of this taxon: the hydrogen-oxidizing bacteria (hydrogenotrophs) and the methane-oxidizing bacteria (methanotrophs). These unicellular microorganisms can aerobically metabolize gaseous hydrogen and methane, respectively, to provide the required energy for building up cell material. A protein yield over 70% in the dry matter cell mass can be reached with no need for arable land and organic substrates making it a promising alternative to plant- and animal-based protein sources. We illuminate the holistic approach to incorporate protein extracts obtained from the cultivation of gas fermenting bacteria into microfoods. Herein, the fundamental properties of the bacteria, cultivation methods, downstream processing, and potential food applications are discussed. Moreover, this review covers existing and future challenges as well as sustainability aspects associated with the production of microbial protein through gas fermentation.
Collapse
Affiliation(s)
- Carlos Woern
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | - Lutz Grossmann
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA.
| |
Collapse
|
9
|
Robak MJ, Saenz V, de Cortie E, Richards-Zawacki CL. Effects of temperature on the interaction between amphibian skin bacteria and Batrachochytrium dendrobatidis. Front Microbiol 2023; 14:1253482. [PMID: 37942072 PMCID: PMC10628663 DOI: 10.3389/fmicb.2023.1253482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 10/06/2023] [Indexed: 11/10/2023] Open
Abstract
Symbiotic relationships between animals and microbes are important for a range of functions, from digestion to protection from pathogens. However, the impact of temperature variation on these animal-microbe interactions remains poorly understood. Amphibians have experienced population declines and even extinctions on a global scale due to chytridiomycosis, a disease caused by chytrid fungi in the genus Batrachochytrium. Variation in susceptibility to this disease exists within and among host species. While the mechanisms generating differences in host susceptibility remain elusive, differences in immune system components, as well as variation in host and environmental temperatures, have been associated with this variation. The symbiotic cutaneous bacteria of amphibians are another potential cause for variation in susceptibility to chytridiomycosis, with some bacterial species producing antifungal metabolites that prevent the growth of Bd. The growth of both Bd and bacteria are affected by temperature, and thus we hypothesized that amphibian skin bacteria may be more effective at preventing Bd growth at certain temperatures. To test this, we collected bacteria from the skins of frogs, harvested the metabolites they produced when grown at three different temperatures, and then grew Bd in the presence of those metabolites under those same three temperatures in a three-by-three fully crossed design. We found that both the temperature at which cutaneous bacteria were grown (and metabolites produced) as well as the temperature at which Bd is grown can impact the ability of cutaneous bacteria to inhibit the growth of Bd. While some bacterial isolates showed the ability to inhibit Bd growth across multiple temperature treatments, no isolate was found to be inhibitive across all combinations of bacterial incubation or Bd challenge temperatures, suggesting that temperature affects both the metabolites produced and the effectiveness of those metabolites against the Bd pathogen. These findings move us closer to a mechanistic understanding of why chytridiomycosis outbreaks and related amphibian declines are often limited to certain climates and seasons.
Collapse
Affiliation(s)
- Matthew J. Robak
- Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, LA, United States
| | - Veronica Saenz
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Biology, The Pennsylvania State University, State College, PA, United States
| | - Esmee de Cortie
- Falk School of Sustainability and Environment, Chatham University, Pittsburgh, PA, United States
| | | |
Collapse
|
10
|
Sun QL, Xu K, Cao L, Du Z, Wang M, Sun L. Nitrogen and sulfur cycling driven by Campylobacterota in the sediment-water interface of deep-sea cold seep: a case in the South China Sea. mBio 2023; 14:e0011723. [PMID: 37409803 PMCID: PMC10470523 DOI: 10.1128/mbio.00117-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 05/11/2023] [Indexed: 07/07/2023] Open
Abstract
Chemoautotrophs within Campylobacterota, especially Sulfurovum and Sulfurimonas, are abundant in the seawater-sediment interface of the Formosa cold seep in the South China Sea. However, the in situ activity and function of Campylobacterota are unknown. In this study, the geochemical role of Campylobacterota in the Formosa cold seep was investigated with multiple means. Two members of Sulfurovum and Sulfurimonas were isolated for the first time from deep-sea cold seep. These isolates are new chemoautotrophic species that can use molecular hydrogen as an energy source and CO2 as a sole carbon source. Comparative genomics identified an important hydrogen-oxidizing cluster in Sulfurovum and Sulfurimonas. Metatranscriptomic analysis detected high expression of hydrogen-oxidizing gene in the RS, suggesting that H2 was likely an energy source in the cold seep. Genomic analysis indicated that the Sulfurovum and Sulfurimonas isolates possess a truncated sulfur-oxidizing system, and metatranscriptomic analysis revealed that Sulfurovum and Sulfurimonas with this genotype were active in the surface of RS and likely contributed to thiosulfate production. Furthermore, geochemical and in situ analyses revealed sharply decreased nitrate concentration in the sediment-water interface due to microbial consumption. Consistently, the denitrification genes of Sulfurimonas and Sulfurovum were highly expressed, suggesting an important contribution of these bacteria to nitrogen cycling. Overall, this study demonstrated that Campylobacterota played a significant role in the cycling of nitrogen and sulfur in a deep-sea cold seep. IMPORTANCE Chemoautotrophs within Campylobacterota, in particular Sulfurovum and Sulfurimonas, are ubiquitous in deep-sea cold seeps and hydrothermal vents. However, to date, no Sulfurovum or Sulfurimonas has been isolated from cold seeps, and the ecological roles of these bacteria in cold seeps remain to be investigated. In this study, we obtained two isolates of Sulfurovum and Sulfurimonas from Formosa cold seep, South China Sea. Comparative genomics, metatranscriptomics, geochemical analysis, and in situ experimental study indicated collectively that Campylobacterota played a significant part in nitrogen and sulfur cycling in cold seep and was the cause of thiosulfate accumulation and sharp reduction of nitrate level in the sediment-water interface. The findings of this study promoted our understanding of the in situ function and ecological role of deep-sea Campylobacterota.
Collapse
Affiliation(s)
- Qing-lei Sun
- College of Life Science, Qingdao Agricultural University, Qingdao, China
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao, China.
| | - Ke Xu
- College of Life Science, Qingdao Agricultural University, Qingdao, China
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Lei Cao
- Deep Sea Research Center, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Zengfeng Du
- Deep Sea Research Center, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Key Laboratory of Marine Geology and Environment, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Minxiao Wang
- Deep Sea Research Center, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- CAS Key Laboratory of Marine Ecology and Environmental Science, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Li Sun
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao, China.
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
11
|
Shu Y, Wang Y, Wei Z, Gao N, Wang S, Li C, Xing Q, Hu X, Zhang X, Zhang Y, Zhang W, Bao Z, Ding W. A bacterial symbiont in the gill of the marine scallop Argopecten irradians irradians metabolizes dimethylsulfoniopropionate. MLIFE 2023; 2:178-189. [PMID: 38817626 PMCID: PMC10989825 DOI: 10.1002/mlf2.12072] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 04/23/2023] [Accepted: 05/15/2023] [Indexed: 06/01/2024]
Abstract
Microbial lysis of dimethylsulfoniopropionate (DMSP) is a key step in marine organic sulfur cycling and has been recently demonstrated to play an important role in mediating interactions between bacteria, algae, and zooplankton. To date, microbes that have been found to lyse DMSP are largely confined to free-living and surface-attached bacteria. In this study, we report for the first time that a symbiont (termed "Rhodobiaceae bacterium HWgs001") in the gill of the marine scallop Argopecten irradians irradians can lyse and metabolize DMSP. Analysis of 16S rRNA gene sequences suggested that HWgs001 accounted for up to 93% of the gill microbiota. Microscopic observations suggested that HWgs001 lived within the gill tissue. Unlike symbionts of other bivalves, HWgs001 belongs to Alphaproteobacteria rather than Gammaproteobacteria, and no genes for carbon fixation were identified in its small genome. Moreover, HWgs001 was found to possess a dddP gene, responsible for the lysis of DMSP to acrylate. The enzymatic activity of dddP was confirmed using the heterologous expression, and in situ transcription of the gene in scallop gill tissues was demonstrated using reverse-transcription PCR. Together, these results revealed a taxonomically and functionally unique symbiont, which represents the first-documented DMSP-metabolizing symbiont likely to play significant roles in coastal marine ecosystems.
Collapse
Affiliation(s)
- Yi Shu
- MOE Key Laboratory of Marine Genetics and BreedingOcean University of ChinaQingdaoChina
- Laboratory of Tropical Marine Germplasm Resources and Breeding Engineering, Sanya Oceanographic InstitutionOcean University of ChinaSanyaChina
| | - Yongming Wang
- MOE Key Laboratory of Marine Genetics and BreedingOcean University of ChinaQingdaoChina
- Laboratory of Tropical Marine Germplasm Resources and Breeding Engineering, Sanya Oceanographic InstitutionOcean University of ChinaSanyaChina
| | - Zhongcheng Wei
- MOE Key Laboratory of Marine Genetics and BreedingOcean University of ChinaQingdaoChina
| | - Ning Gao
- MOE Key Laboratory of Marine Genetics and BreedingOcean University of ChinaQingdaoChina
- Laboratory of Tropical Marine Germplasm Resources and Breeding Engineering, Sanya Oceanographic InstitutionOcean University of ChinaSanyaChina
| | - Shuyan Wang
- College of Marine Life SciencesOcean University of ChinaQingdaoChina
| | - Chun‐Yang Li
- College of Marine Life SciencesOcean University of ChinaQingdaoChina
| | - Qiang Xing
- MOE Key Laboratory of Marine Genetics and BreedingOcean University of ChinaQingdaoChina
- College of Marine Life SciencesOcean University of ChinaQingdaoChina
| | - Xiaoli Hu
- MOE Key Laboratory of Marine Genetics and BreedingOcean University of ChinaQingdaoChina
- Laboratory of Tropical Marine Germplasm Resources and Breeding Engineering, Sanya Oceanographic InstitutionOcean University of ChinaSanyaChina
| | - Xiao‐Hua Zhang
- College of Marine Life SciencesOcean University of ChinaQingdaoChina
| | - Yu‐Zhong Zhang
- College of Marine Life SciencesOcean University of ChinaQingdaoChina
| | - Weipeng Zhang
- Institute of Evolution & Marine BiodiversityOcean University of ChinaQingdaoChina
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and BreedingOcean University of ChinaQingdaoChina
- Laboratory of Tropical Marine Germplasm Resources and Breeding Engineering, Sanya Oceanographic InstitutionOcean University of ChinaSanyaChina
| | - Wei Ding
- MOE Key Laboratory of Marine Genetics and BreedingOcean University of ChinaQingdaoChina
- College of Marine Life SciencesOcean University of ChinaQingdaoChina
| |
Collapse
|
12
|
Shi H, Ruan L, Chen Z, Liao Y, Wu W, Liu L, Xu X. Sulfur, sterol and trehalose metabolism in the deep-sea hydrocarbon seep tubeworm Lamellibrachia luymesi. BMC Genomics 2023; 24:175. [PMID: 37020304 PMCID: PMC10077716 DOI: 10.1186/s12864-023-09267-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 03/20/2023] [Indexed: 04/07/2023] Open
Abstract
BACKGROUND Lamellibrachia luymesi dominates cold sulfide-hydrocarbon seeps and is known for its ability to consume bacteria for energy. The symbiotic relationship between tubeworms and bacteria with particular adaptations to chemosynthetic environments has received attention. However, metabolic studies have primarily focused on the mechanisms and pathways of the bacterial symbionts, while studies on the animal hosts are limited. RESULTS Here, we sequenced the transcriptome of L. luymesi and generated a transcriptomic database containing 79,464 transcript sequences. Based on GO and KEGG annotations, we identified transcripts related to sulfur metabolism, sterol biosynthesis, trehalose synthesis, and hydrolysis. Our in-depth analysis identified sulfation pathways in L. luymesi, and sulfate activation might be an important detoxification pathway for promoting sulfur cycling, reducing byproducts of sulfide metabolism, and converting sulfur compounds to sulfur-containing organics, which are essential for symbiotic survival. Moreover, sulfide can serve directly as a sulfur source for cysteine synthesis in L. luymesi. The existence of two pathways for cysteine synthesis might ensure its participation in the formation of proteins, heavy metal detoxification, and the sulfide-binding function of haemoglobin. Furthermore, our data suggested that cold-seep tubeworm is capable of de novo sterol biosynthesis, as well as incorporation and transformation of cycloartenol and lanosterol into unconventional sterols, and the critical enzyme involved in this process might have properties similar to those in the enzymes from plants or fungi. Finally, trehalose synthesis in L. luymesi occurs via the trehalose-6-phosphate synthase (TPS) and trehalose-6-phosphate phosphatase (TPP) pathways. The TPP gene has not been identified, whereas the TPS gene encodes a protein harbouring conserved TPS/OtsA and TPP/OtsB domains. The presence of multiple trehalases that catalyse trehalose hydrolysis could indicate the different roles of trehalase in cold-seep tubeworms. CONCLUSIONS We elucidated several molecular pathways of sulfate activation, cysteine and cholesterol synthesis, and trehalose metabolism. Contrary to the previous analysis, two pathways for cysteine synthesis and the cycloartenol-C-24-methyltransferase gene were identified in animals for the first time. The present study provides new insights into particular adaptations to chemosynthetic environments in L. luymesi and can serve as the basis for future molecular studies on host-symbiont interactions and biological evolution.
Collapse
Affiliation(s)
- Hong Shi
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of Ministry of Natural Resources, Third Institute of Oceanography, Ministry of Natural Resources, Fujian Key Laboratory of Marine Genetic Resources, No. 178 Daxue Road, Xiamen, Fujian, 361005, People's Republic of China.
| | - Lingwei Ruan
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of Ministry of Natural Resources, Third Institute of Oceanography, Ministry of Natural Resources, Fujian Key Laboratory of Marine Genetic Resources, No. 178 Daxue Road, Xiamen, Fujian, 361005, People's Republic of China.
- College of Marine Biology, Xiamen ocean vocational college, 361100, Xiamen, People's Republic of China.
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, 222005, People's Republic of China.
| | - Zimeng Chen
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of Ministry of Natural Resources, Third Institute of Oceanography, Ministry of Natural Resources, Fujian Key Laboratory of Marine Genetic Resources, No. 178 Daxue Road, Xiamen, Fujian, 361005, People's Republic of China
| | - Yifei Liao
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of Ministry of Natural Resources, Third Institute of Oceanography, Ministry of Natural Resources, Fujian Key Laboratory of Marine Genetic Resources, No. 178 Daxue Road, Xiamen, Fujian, 361005, People's Republic of China
- School of Advanced Manufacturing, Fuzhou University, Fuzhou, 362200, People's Republic of China
| | - Wenhao Wu
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of Ministry of Natural Resources, Third Institute of Oceanography, Ministry of Natural Resources, Fujian Key Laboratory of Marine Genetic Resources, No. 178 Daxue Road, Xiamen, Fujian, 361005, People's Republic of China
- Department of Biology and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, People's Republic of China
| | - Linmin Liu
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of Ministry of Natural Resources, Third Institute of Oceanography, Ministry of Natural Resources, Fujian Key Laboratory of Marine Genetic Resources, No. 178 Daxue Road, Xiamen, Fujian, 361005, People's Republic of China
| | - Xun Xu
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of Ministry of Natural Resources, Third Institute of Oceanography, Ministry of Natural Resources, Fujian Key Laboratory of Marine Genetic Resources, No. 178 Daxue Road, Xiamen, Fujian, 361005, People's Republic of China
| |
Collapse
|
13
|
Wang M, Ruan L, Liu M, Liu Z, He J, Zhang L, Wang Y, Shi H, Chen M, Yang F, Zeng R, He J, Guo C, Chen J. The genome of a vestimentiferan tubeworm (Ridgeia piscesae) provides insights into its adaptation to a deep-sea environment. BMC Genomics 2023; 24:72. [PMID: 36774470 PMCID: PMC9921365 DOI: 10.1186/s12864-023-09166-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 02/03/2023] [Indexed: 02/13/2023] Open
Abstract
BACKGROUND Vestimentifera (Polychaeta, Siboglinidae) is a taxon of deep-sea worm-like animals living in deep-sea hydrothermal vents, cold seeps, and organic falls. The morphology and lifespan of Ridgeia piscesae, which is the only vestimentiferan tubeworm species found in the hydrothermal vents on the Juan de Fuca Ridge, vary greatly according to endemic environment. Recent analyses have revealed the genomic basis of adaptation in three vent- and seep-dwelling vestimentiferan tubeworms. However, the evolutionary history and mechanism of adaptation in R. piscesae, a unique species in the family Siboglinidae, remain to be investigated. RESULT We assembled a draft genome of R. piscesae collected at the Cathedral vent of the Juan de Fuca Ridge. Comparative genomic analysis showed that vent-dwelling tubeworms with a higher growth rate had smaller genome sizes than seep-dwelling tubeworms that grew much slower. A strong positive correlation between repeat content and genome size but not intron size and the number of protein-coding genes was identified in these deep-sea tubeworm species. Evolutionary analysis revealed that Ridgeia pachyptila and R. piscesae, the two tubeworm species that are endemic to hydrothermal vents of the eastern Pacific, started to diverge between 28.5 and 35 million years ago. Four genes involved in cell proliferation were found to be subject to positive selection in the genome of R. piscesae. CONCLUSION Ridgeia pachyptila and R. piscesae started to diverge after the formation of the Gorda/Juan de Fuca/Explorer ridge systems and the East Pacific Rise. The high growth rates of vent-dwelling tubeworms might be derived from their small genome sizes. Cell proliferation is important for regulating the growth rate in R. piscesae.
Collapse
Affiliation(s)
- Muhua Wang
- grid.12981.330000 0001 2360 039XState Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082 China ,grid.12981.330000 0001 2360 039XChina-ASEAN Belt and Road Joint Laboratory On Mariculture Technology, Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275 China
| | - Lingwei Ruan
- grid.453137.70000 0004 0406 0561State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of Ministry of Natural Resources, Fujian Key Laboratory of Marine Genetic Resources, Ministry of Natural Resources, Third Institute of Oceanography, Xiamen, 361005 China
| | - Meng Liu
- grid.410753.4Novogene Bioinformatics Institute, Beijing, 100083 China
| | - Zixuan Liu
- grid.12981.330000 0001 2360 039XState Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082 China
| | - Jian He
- grid.12981.330000 0001 2360 039XState Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082 China ,grid.12981.330000 0001 2360 039XChina-ASEAN Belt and Road Joint Laboratory On Mariculture Technology, Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275 China
| | - Long Zhang
- grid.12981.330000 0001 2360 039XState Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082 China
| | - Yuanyuan Wang
- grid.12981.330000 0001 2360 039XState Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082 China
| | - Hong Shi
- grid.453137.70000 0004 0406 0561State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of Ministry of Natural Resources, Fujian Key Laboratory of Marine Genetic Resources, Ministry of Natural Resources, Third Institute of Oceanography, Xiamen, 361005 China
| | - Mingliang Chen
- grid.453137.70000 0004 0406 0561State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of Ministry of Natural Resources, Fujian Key Laboratory of Marine Genetic Resources, Ministry of Natural Resources, Third Institute of Oceanography, Xiamen, 361005 China
| | - Feng Yang
- grid.453137.70000 0004 0406 0561State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of Ministry of Natural Resources, Fujian Key Laboratory of Marine Genetic Resources, Ministry of Natural Resources, Third Institute of Oceanography, Xiamen, 361005 China
| | - Runying Zeng
- grid.453137.70000 0004 0406 0561State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of Ministry of Natural Resources, Fujian Key Laboratory of Marine Genetic Resources, Ministry of Natural Resources, Third Institute of Oceanography, Xiamen, 361005 China
| | - Jianguo He
- State Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082, China. .,China-ASEAN Belt and Road Joint Laboratory On Mariculture Technology, Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Changjun Guo
- State Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082, China. .,China-ASEAN Belt and Road Joint Laboratory On Mariculture Technology, Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Jianming Chen
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of Ministry of Natural Resources, Fujian Key Laboratory of Marine Genetic Resources, Ministry of Natural Resources, Third Institute of Oceanography, Xiamen, 361005, China. .,Fujian Key Laboratory On Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, 350108, China.
| |
Collapse
|
14
|
Molecular hydrogen in seawater supports growth of diverse marine bacteria. Nat Microbiol 2023; 8:581-595. [PMID: 36747116 DOI: 10.1038/s41564-023-01322-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 01/05/2023] [Indexed: 02/08/2023]
Abstract
Molecular hydrogen (H2) is an abundant and readily accessible energy source in marine systems, but it remains unknown whether marine microbial communities consume this gas. Here we use a suite of approaches to show that marine bacteria consume H2 to support growth. Genes for H2-uptake hydrogenases are prevalent in global ocean metagenomes, highly expressed in metatranscriptomes and found across eight bacterial phyla. Capacity for H2 oxidation increases with depth and decreases with oxygen concentration, suggesting that H2 is important in environments with low primary production. Biogeochemical measurements of tropical, temperate and subantarctic waters, and axenic cultures show that marine microbes consume H2 supplied at environmentally relevant concentrations, yielding enough cell-specific power to support growth in bacteria with low energy requirements. Conversely, our results indicate that oxidation of carbon monoxide (CO) primarily supports survival. Altogether, H2 is a notable energy source for marine bacteria and may influence oceanic ecology and biogeochemistry.
Collapse
|
15
|
Sun Y, Wang M, Chen H, Wang H, Zhong Z, Zhou L, Fu L, Li C, Sun S. Insights into symbiotic interactions from metatranscriptome analysis of deep-sea mussel Gigantidas platifrons under long-term laboratory maintenance. Mol Ecol 2023; 32:444-459. [PMID: 36326559 DOI: 10.1111/mec.16765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 09/23/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022]
Abstract
Symbioses between invertebrates and chemosynthetic bacteria are of fundamental importance in deep-sea ecosystems, but the mechanisms that enable their symbiont associations are still largely undescribed, owing to the culturable difficulties of deep-sea lives. Bathymodiolinae mussels are remarkable in their ability to overcome decompression and can be maintained successfully for an extended period under atmospheric pressure, thus providing a model for investigating the molecular basis of symbiotic interactions. Herein, we conducted metatranscriptome sequencing and gene co-expression network analysis of Gigantidas platifrons under laboratory maintenance with gradual loss of symbionts. The results revealed that one-day short-term maintenance triggered global transcriptional perturbation in symbionts, but little gene expression changes in mussel hosts, which were mainly involved in responses to environmental changes. Long-term maintenance with depleted symbionts induced a metabolic shift in the mussel host. The most notable changes were the suppression of sterol biosynthesis and the complementary activation of terpenoid backbone synthesis in response to the reduction of bacteria-derived terpenoid sources. In addition, we detected the upregulation of host proteasomes responsible for amino acid deprivation caused by symbiont depletion. Additionally, a significant correlation between host microtubule motor activity and symbiont abundance was revealed, suggesting the possible function of microtubule-based intracellular trafficking in the nutritional interaction of symbiosis. Overall, by analyzing the dynamic transcriptomic changes during the loss of symbionts, our study highlights the nutritional importance of symbionts in supplementing terpenoid compounds and essential amino acids and provides insight into the molecular mechanisms and strategies underlying the symbiotic interactions in deep-sea ecosystems.
Collapse
Affiliation(s)
- Yan Sun
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, and Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Centre for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Minxiao Wang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, and Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Centre for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Hao Chen
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, and Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Centre for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Hao Wang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, and Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Centre for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Zhaoshan Zhong
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, and Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Centre for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Li Zhou
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, and Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Centre for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Lulu Fu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, and Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Centre for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Chaolun Li
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, and Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Centre for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Song Sun
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, and Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Centre for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
16
|
Zhou Z, St John E, Anantharaman K, Reysenbach AL. Global patterns of diversity and metabolism of microbial communities in deep-sea hydrothermal vent deposits. MICROBIOME 2022; 10:241. [PMID: 36572924 PMCID: PMC9793634 DOI: 10.1186/s40168-022-01424-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 11/11/2022] [Indexed: 05/16/2023]
Abstract
BACKGROUND When deep-sea hydrothermal fluids mix with cold oxygenated fluids, minerals precipitate out of solution and form hydrothermal deposits. These actively venting deep-sea hydrothermal deposits support a rich diversity of thermophilic microorganisms which are involved in a range of carbon, sulfur, nitrogen, and hydrogen metabolisms. Global patterns of thermophilic microbial diversity in deep-sea hydrothermal ecosystems have illustrated the strong connectivity between geological processes and microbial colonization, but little is known about the genomic diversity and physiological potential of these novel taxa. Here we explore this genomic diversity in 42 metagenomes from four deep-sea hydrothermal vent fields and a deep-sea volcano collected from 2004 to 2018 and document their potential implications in biogeochemical cycles. RESULTS Our dataset represents 3635 metagenome-assembled genomes encompassing 511 novel and recently identified genera from deep-sea hydrothermal settings. Some of the novel bacterial (107) and archaeal genera (30) that were recently reported from the deep-sea Brothers volcano were also detected at the deep-sea hydrothermal vent fields, while 99 bacterial and 54 archaeal genera were endemic to the deep-sea Brothers volcano deposits. We report some of the first examples of medium- (≥ 50% complete, ≤ 10% contaminated) to high-quality (> 90% complete, < 5% contaminated) MAGs from phyla and families never previously identified, or poorly sampled, from deep-sea hydrothermal environments. We greatly expand the novel diversity of Thermoproteia, Patescibacteria (Candidate Phyla Radiation, CPR), and Chloroflexota found at deep-sea hydrothermal vents and identify a small sampling of two potentially novel phyla, designated JALSQH01 and JALWCF01. Metabolic pathway analysis of metagenomes provides insights into the prevalent carbon, nitrogen, sulfur, and hydrogen metabolic processes across all sites and illustrates sulfur and nitrogen metabolic "handoffs" in community interactions. We confirm that Campylobacteria and Gammaproteobacteria occupy similar ecological guilds but their prevalence in a particular site is driven by shifts in the geochemical environment. CONCLUSION Our study of globally distributed hydrothermal vent deposits provides a significant expansion of microbial genomic diversity associated with hydrothermal vent deposits and highlights the metabolic adaptation of taxonomic guilds. Collectively, our results illustrate the importance of comparative biodiversity studies in establishing patterns of shared phylogenetic diversity and physiological ecology, while providing many targets for enrichment and cultivation of novel and endemic taxa. Video Abstract.
Collapse
Affiliation(s)
- Zhichao Zhou
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Emily St John
- Center for Life in Extreme Environments, Biology Department, Portland State University, Portland, OR, 97201, USA
| | - Karthik Anantharaman
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| | - Anna-Louise Reysenbach
- Center for Life in Extreme Environments, Biology Department, Portland State University, Portland, OR, 97201, USA.
| |
Collapse
|
17
|
A regulatory hydrogenase gene cluster observed in the thioautotrophic symbiont of Bathymodiolus mussel in the East Pacific Rise. Sci Rep 2022; 12:22232. [PMID: 36564432 PMCID: PMC9789115 DOI: 10.1038/s41598-022-26669-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
The mytilid mussel Bathymodiolus thermophilus lives in the deep-sea hydrothermal vent regions due to its relationship with chemosynthetic symbiotic bacteria. It is well established that symbionts reside in the gill bacteriocytes of the mussel and can utilize hydrogen sulfide, methane, and hydrogen from the surrounding environment. However, it is observed that some mussel symbionts either possess or lack genes for hydrogen metabolism within the single-ribotype population and host mussel species level. Here, we found a hydrogenase cluster consisting of additional H2-sensing hydrogenase subunits in a complete genome of B. thermophilus symbiont sampled from an individual mussel from the East Pacific Rise (EPR9N). Also, we found methylated regions sparsely distributed throughout the EPR9N genome, mainly in the transposase regions and densely present in the rRNA gene regions. CRISPR diversity analysis confirmed that this genome originated from a single symbiont strain. Furthermore, from the comparative analysis, we observed variation in genome size, gene content, and genome re-arrangements across individual hosts suggesting multiple symbiont strains can associate with B. thermophilus. The ability to acquire locally adaptive various symbiotic strains may serve as an effective mechanism for successfully colonizing different chemosynthetic environments across the global oceans by host mussels.
Collapse
|
18
|
Cárdenas A, Raina JB, Pogoreutz C, Rädecker N, Bougoure J, Guagliardo P, Pernice M, Voolstra CR. Greater functional diversity and redundancy of coral endolithic microbiomes align with lower coral bleaching susceptibility. THE ISME JOURNAL 2022; 16:2406-2420. [PMID: 35840731 PMCID: PMC9478130 DOI: 10.1038/s41396-022-01283-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 06/14/2022] [Accepted: 06/28/2022] [Indexed: 04/14/2023]
Abstract
The skeleton of reef-building coral harbors diverse microbial communities that could compensate for metabolic deficiencies caused by the loss of algal endosymbionts, i.e., coral bleaching. However, it is unknown to what extent endolith taxonomic diversity and functional potential might contribute to thermal resilience. Here we exposed Goniastrea edwardsi and Porites lutea, two common reef-building corals from the central Red Sea to a 17-day long heat stress. Using hyperspectral imaging, marker gene/metagenomic sequencing, and NanoSIMS, we characterized their endolithic microbiomes together with 15N and 13C assimilation of two skeletal compartments: the endolithic band directly below the coral tissue and the deep skeleton. The bleaching-resistant G. edwardsi was associated with endolithic microbiomes of greater functional diversity and redundancy that exhibited lower N and C assimilation than endoliths in the bleaching-sensitive P. lutea. We propose that the lower endolithic primary productivity in G. edwardsi can be attributed to the dominance of chemolithotrophs. Lower primary production within the skeleton may prevent unbalanced nutrient fluxes to coral tissues under heat stress, thereby preserving nutrient-limiting conditions characteristic of a stable coral-algal symbiosis. Our findings link coral endolithic microbiome structure and function to bleaching susceptibility, providing new avenues for understanding and eventually mitigating reef loss.
Collapse
Affiliation(s)
- Anny Cárdenas
- Department of Biology, University of Konstanz, Konstanz, 78457, Germany.
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia.
| | - Jean-Baptiste Raina
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
| | - Claudia Pogoreutz
- Department of Biology, University of Konstanz, Konstanz, 78457, Germany
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
- Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, 1015, Switzerland
| | - Nils Rädecker
- Department of Biology, University of Konstanz, Konstanz, 78457, Germany
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
- Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, 1015, Switzerland
| | - Jeremy Bougoure
- Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, Perth, WA, 6009, Australia
| | - Paul Guagliardo
- Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, Perth, WA, 6009, Australia
| | - Mathieu Pernice
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Christian R Voolstra
- Department of Biology, University of Konstanz, Konstanz, 78457, Germany.
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia.
| |
Collapse
|
19
|
Hui M, Wang A, Cheng J, Sha Z. Full-length 16S rRNA amplicon sequencing reveals the variation of epibiotic microbiota associated with two shrimp species of Alvinocarididae: possibly co-determined by environmental heterogeneity and specific recognition of hosts. PeerJ 2022; 10:e13758. [PMID: 35966925 PMCID: PMC9368993 DOI: 10.7717/peerj.13758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 06/29/2022] [Indexed: 01/17/2023] Open
Abstract
Shrimps of the family Alvinocarididae, endemic species to deep sea chemosynthetic ecosystems, harbor epibiotic microbes on gills which probably play important roles in the survival of the shrimps. Among them, Alvinocaris longirostris and Shinkaicaris leurokolos occupy different ecological niches within the same hydrothermal vent in Okinawa Trough, and A. longirostris also exists in a methane seep of the South China Sea. In this study, full-length 16S rRNA sequences of the gill associated bacteria of two alvinocaridid species from different chemosynthetically ecological niches were first captured by single-molecule real-time sequencing. Totally, 120,792 optimized circular consensus sequences with ∼1,450 bp in length were obtained and clustered into 578 operational taxonomic units. Alpha diversity analysis showed seep A. longirostris had the highest species richness and evenness (average Chao1 = 213.68, Shannon = 3.39). Beta diversity analysis revealed that all samples were clearly divided into three groups, and microbial community of A. longirostris from seep and vent were more related than the other comparisons. By permutational multivariate analysis of variance, the most significant community compositional variance was detected between seep A. longirostris and vent S. leurokolos (R 2 = 0.731, P = 0.001). The taxon tags were further classified into 21 phyla, 40 classes, 89 orders, 124 families and 135 genera. Overall, the microbial communities were dominated by Campylobacteria and Gammaproteobacteria. Alphaproteobacteria, Bacteroidia, Verrucomicrobiae, Bacilli and other minor groups were also detected at lower abundance. Taxonomic groups recovered from the vent S. leurokolos samples were only dominated by Sulfurovaceae (94.06%). In comparison, gill-associated microbiota of vent A. longirostris consisted of more diverse sulfur-oxidizing bacteria, including Sulfurovaceae (69.21%), Thiotrichaceae (6.77%) and a putative novel Gammaproteobacteria group (14.37%), while in seep A. longirostris, Gammaproteobacteria un-group (44.01%) constituted the major component, following the methane-oxidizing bacteria Methylomonadaceae (19.38%), and Sulfurovaceae (18.66%). Therefore, the gill associated bacteria composition and abundance of alvinocaridid shrimps are closely related to the habitat heterogeneity and the selection of microbiota by the host. However, the interaction between these alvinocaridid shrimps and the epibiotic communities requires further study based on metagenome sequencing and fluorescence in situ hybridization.
Collapse
Affiliation(s)
- Min Hui
- Department of Marine Organism Taxonomy & Phylogeny, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China,,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Aiyang Wang
- Department of Marine Organism Taxonomy & Phylogeny, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China,,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China,,Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China,,University of Chinese Academy of Sciences, Beijing, China
| | - Jiao Cheng
- Department of Marine Organism Taxonomy & Phylogeny, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China,,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Zhongli Sha
- Department of Marine Organism Taxonomy & Phylogeny, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China,,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China,,Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China,,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
20
|
Patra AK, Kwon YM, Yang Y. Complete gammaproteobacterial endosymbiont genome assembly from a seep tubeworm Lamellibrachia satsuma. J Microbiol 2022; 60:916-927. [DOI: 10.1007/s12275-022-2057-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 05/09/2022] [Accepted: 05/24/2022] [Indexed: 11/27/2022]
|
21
|
An Accurate Model for Estimating H2 Solubility in Pure Water and Aqueous NaCl Solutions. ENERGIES 2022. [DOI: 10.3390/en15145021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
By employing a specific particle interaction theory and a high-precision equation of states for the liquid and vapor phases of H2, respectively, a new H2 solubility model in pure water and aqueous NaCl solutions is proposed in this study. The model established by fitting the experimental data of H2 solubility can be used to estimate H2 solubility in pure water at temperatures and pressures of 273.15–423.15 K and 0–1100 bar, respectively, and in salt solutions (NaCl concentration = 0–5 mol/kg) at temperatures and pressures of 273.15–373.15 K and 0–230 bar, respectively. By adopting the theory of liquid electrolyte solutions, the model can also be used to predict H2 solubility in seawater without fitting the experimental data of a seawater system. Within or close to experimental data uncertainty, the mean absolute percentage error between the model-predicted and experimentally obtained H2 solubilities was less than 1.14%.
Collapse
|
22
|
Symbiont Community Composition in Rimicaris kairei Shrimps from Indian Ocean Vents with Notes on Mineralogy. Appl Environ Microbiol 2022; 88:e0018522. [PMID: 35404070 PMCID: PMC9040608 DOI: 10.1128/aem.00185-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Hydrothermal vent ecosystems are home to a wide array of symbioses between animals and chemosynthetic microbes, among which shrimps in the genus Rimicaris is one of the most iconic. So far, studies of Rimicaris symbioses have been restricted to Atlantic species, including Rimicaris exoculata, which is totally reliant on the symbionts for nutrition, and the mixotrophic species Rimicaris chacei. Here, we expand this by investigating and characterizing the symbiosis of the Indian Ocean species Rimicaris kairei using specimens from two vent fields, Kairei and Edmond. We also aimed to evaluate the differences in mineralogy and microbial communities between two cephalothorax color morphs, black and brown, through a combination of 16S metabarcoding, scanning electron microscopy, fluorescent in situ hybridization, energy-dispersive X-ray spectroscopy, and synchrotron near-edge X-ray absorption structure analyses. Overall, our results highlight that R. kairei exhibits similar symbiont lineages to those of its Atlantic congeners, although with a few differences, such as the lack of Zetaproteobacteria. We found distinct mineralization processes behind the two color morphs that were linked to differences in the vent fluid composition, but the symbiotic community composition was surprisingly similar. In R. exoculata, such mineralogical differences have been shown to stem from disparity in the microbial communities, but our results indicate that in R. kairei this is instead due to the shift of dominant metabolisms by the same symbiotic partners. We suggest that a combination of local environmental factors and biogeographic barriers likely contribute to the differences between Atlantic and Indian Ocean Rimicaris symbioses. IMPORTANCE Hydrothermal vent shrimps in the genus Rimicaris are among the most charismatic deep-sea animals of Atlantic and Indian Oceans, often occurring on towering black smokers in dense aggregates of thousands of individuals. Although this dominance is only possible because of symbiosis, no study on the symbiosis of Indian Ocean Rimicaris species has been conducted. Here, we characterize the Rimicaris kairei symbiosis by combining molecular, microscopic, and elemental analyses, making comparisons with those of the Atlantic species possible for the first time. Although most symbiotic partners remained consistent across the two oceans, some differences were recognized in symbiont lineages, as well as in the mechanisms behind the formation of two color morphs with distinct mineralogies. Our results shed new light on relationships among mineralogy, environmental factors, and microbial communities that are useful for understanding other deep-sea symbioses in the future.
Collapse
|
23
|
Böhnke S, Perner M. Approaches to Unmask Functioning of the Uncultured Microbial Majority From Extreme Habitats on the Seafloor. Front Microbiol 2022; 13:845562. [PMID: 35422772 PMCID: PMC9002263 DOI: 10.3389/fmicb.2022.845562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/07/2022] [Indexed: 11/30/2022] Open
Abstract
Researchers have recognized the potential of enzymes and metabolic pathways hidden among the unseen majority of Earth's microorganisms for decades now. Most of the microbes expected to colonize the seafloor and its subsurface are currently uncultured. Thus, their ability and contribution to element cycling remain enigmatic. Given that the seafloor covers ∼70% of our planet, this amounts to an uncalled potential of unrecognized metabolic properties and interconnections catalyzed by this microbial dark matter. Consequently, a tremendous black box awaits discovery of novel enzymes, catalytic abilities, and metabolic properties in one of the largest habitats on Earth. This mini review summarizes the current knowledge of cultivation-dependent and -independent techniques applied to seafloor habitats to unravel the role of the microbial dark matter. It highlights the great potential that combining microbiological and biogeochemical data from in situ experiments with molecular tools has for providing a holistic understanding of bio-geo-coupling in seafloor habitats and uses hydrothermal vent systems as a case example.
Collapse
Affiliation(s)
- Stefanie Böhnke
- Geomicrobiology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Mirjam Perner
- Geomicrobiology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| |
Collapse
|
24
|
Pereira AC, Tenreiro A, Cunha MV. When FLOW-FISH met FACS: Combining multiparametric, dynamic approaches for microbial single-cell research in the total environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150682. [PMID: 34600998 DOI: 10.1016/j.scitotenv.2021.150682] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/22/2021] [Accepted: 09/26/2021] [Indexed: 06/13/2023]
Abstract
In environmental microbiology, the ability to assess, in a high-throughput way, single-cells within microbial communities is key to understand their heterogeneity. Fluorescence in situ hybridization (FISH) uses fluorescently labeled oligonucleotide probes to detect, identify, and quantify single cells of specific taxonomic groups. The combination of Flow Cytometry (FLOW) with FISH (FLOW-FISH) enables high-throughput quantification of complex whole cell populations, which when associated with fluorescence-activated cell sorting (FACS) enables sorting of target microorganisms. These sorted cells may be investigated in many ways, for instance opening new avenues for cytomics at a single-cell scale. In this review, an overview of FISH and FLOW methodologies is provided, addressing conventional methods, signal amplification approaches, common fluorophores for cell physiology parameters evaluation, and model variation techniques as well. The coupling of FLOW-FISH-FACS is explored in the context of different downstream applications of sorted cells. Current and emerging applications in environmental microbiology to outline the interactions and processes of complex microbial communities within soil, water, animal microbiota, polymicrobial biofilms, and food samples, are described.
Collapse
Affiliation(s)
- André C Pereira
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal; Biosystems & Integrative Sciences Institute (BioISI), Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal
| | - Ana Tenreiro
- Biosystems & Integrative Sciences Institute (BioISI), Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal
| | - Mónica V Cunha
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal; Biosystems & Integrative Sciences Institute (BioISI), Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal.
| |
Collapse
|
25
|
Sun X, Li F, Wang Z, An H, Xue W, Wang Y. AgPd Nanoparticles Anchored on TiO
2
Derived from a Titanium Metal–Organic Framework for Efficient Dehydrogenation of Formic Acid. ChemCatChem 2021. [DOI: 10.1002/cctc.202101528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Xue Sun
- Hebei Provincial Key Laboratory of Green Chemical Technology and High Efficient Energy Saving School of Chemical Engineering and Technology Hebei University of Technology Tianjin 300130 P. R. China
| | - Fang Li
- Hebei Provincial Key Laboratory of Green Chemical Technology and High Efficient Energy Saving School of Chemical Engineering and Technology Hebei University of Technology Tianjin 300130 P. R. China
- Tianjin Key Laboratory of Chemical Process Safety Tianjin 300130 P. R. China
| | - Zhimiao Wang
- Hebei Provincial Key Laboratory of Green Chemical Technology and High Efficient Energy Saving School of Chemical Engineering and Technology Hebei University of Technology Tianjin 300130 P. R. China
- Tianjin Key Laboratory of Chemical Process Safety Tianjin 300130 P. R. China
| | - Hualiang An
- Hebei Provincial Key Laboratory of Green Chemical Technology and High Efficient Energy Saving School of Chemical Engineering and Technology Hebei University of Technology Tianjin 300130 P. R. China
- Tianjin Key Laboratory of Chemical Process Safety Tianjin 300130 P. R. China
| | - Wei Xue
- Hebei Provincial Key Laboratory of Green Chemical Technology and High Efficient Energy Saving School of Chemical Engineering and Technology Hebei University of Technology Tianjin 300130 P. R. China
- Tianjin Key Laboratory of Chemical Process Safety Tianjin 300130 P. R. China
| | - Yanji Wang
- Hebei Provincial Key Laboratory of Green Chemical Technology and High Efficient Energy Saving School of Chemical Engineering and Technology Hebei University of Technology Tianjin 300130 P. R. China
- Tianjin Key Laboratory of Chemical Process Safety Tianjin 300130 P. R. China
- Hebei Industrial Technology Research Institute of Green Chemical Industry Huanghua 061100, Hebei P. R. China
| |
Collapse
|
26
|
Hourdez S, Boidin-Wichlacz C, Jollivet D, Massol F, Rayol MC, Bruno R, Zeppilli D, Thomas F, Lesven L, Billon G, Duperron S, Tasiemski A. Investigation of Capitella spp. symbionts in the context of varying anthropic pressures: First occurrence of a transient advantageous epibiosis with the giant bacteria Thiomargarita sp. to survive seasonal increases of sulfides in sediments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 798:149149. [PMID: 34375231 DOI: 10.1016/j.scitotenv.2021.149149] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/15/2021] [Accepted: 07/15/2021] [Indexed: 06/13/2023]
Abstract
Capitella spp. is considered as an important ecological indicator of eutrophication due to its high densities in organic-rich, reduced, and sometimes polluted coastal ecosystems. We investigated whether such ability to cope with adverse ecological contexts might be a response to the microorganisms these worms are associated with. In populations from the French Atlantic coast (Roscoff, Brittany), we observed an epibiotic association covering the tegument of 20-30% specimens from an anthropized site while individuals from a reference, non-anthropized site were devoid of any visible epibionts. Using RNAseq, molecular and microscopic analyses, we described and compared the microbial communities associated with the epibiotic versus the non-epibiotic specimens at both locations. Interestingly, data showed that the epibiosis is characterized by sulfur-oxidizing bacteria among which the giant bacterium Thiomargarita sp., to date only described in deep sea habitats. Survey of Capitella combined with the geochemical analysis of their sediment revealed that epibiotic specimens are always found in muds with the highest concentration of sulfides, mostly during the summer. Concomitantly, tolerance tests demonstrated that the acquisition of epibionts increased survival against toxic level of sulfides. Overall, the present data highlight for the first time a peculiar plastic adaptation to seasonal variations of the habitat based on a transcient epibiosis allowing a coastal species to survive temporary harsher conditions.
Collapse
Affiliation(s)
- Stéphane Hourdez
- Observatoire Océanologique de Banyuls-sur-Mer, UMR 8222 CNRS-SU, avenue Pierre Fabre, 66650 Banyuls-sur-Mer, France
| | - Céline Boidin-Wichlacz
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR9017-CIIL-Centre d'Infection et d'Immunité de Lille, Lille, France; Univ. Lille, CNRS, UMR 8198 - Evo-Eco-Paleo, F-59000 Lille, France
| | - Didier Jollivet
- Sorbonne Université, CNRS UMR 7144 'Adaptation et Diversité en Milieux Marins' (AD2M), Team 'Dynamique de la Diversité Marine' (DyDiv), Station biologique de Roscoff, Place G. Teissier, 29680 Roscoff, France
| | - François Massol
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR9017-CIIL-Centre d'Infection et d'Immunité de Lille, Lille, France; Univ. Lille, CNRS, UMR 8198 - Evo-Eco-Paleo, F-59000 Lille, France
| | - Maria Claudia Rayol
- Centro Interdisciplinar em Energia e Ambiente - CIEnAm, Universidade Federal da Bahia, 40170-115 Salvador, BA, Brazil
| | - Renato Bruno
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR9017-CIIL-Centre d'Infection et d'Immunité de Lille, Lille, France; Univ. Lille, CNRS, UMR 8198 - Evo-Eco-Paleo, F-59000 Lille, France
| | - Daniela Zeppilli
- IFREMER, Centre Brest, REM/EEP/LEP, ZI de la Pointe du Diable, CS10070, 29280 Plouzané, France
| | - Frédéric Thomas
- CREEC/CREES, UMR IRD-Université de Montpellier, Montpellier, France
| | - Ludovic Lesven
- Univ. Lille, CNRS, UMR 8516 - LASIRE, Laboratoire Avancé de Spectroscopie pour les Interactions, la Réactivité et l'Environnement, F-59000 Lille, France
| | - Gabriel Billon
- Univ. Lille, CNRS, UMR 8516 - LASIRE, Laboratoire Avancé de Spectroscopie pour les Interactions, la Réactivité et l'Environnement, F-59000 Lille, France
| | - Sébastien Duperron
- Muséum National d'Histoire Naturelle, CNRS UMR7245 Mécanismes de Communication et Adaptation des Micro-organismes, 12 rue Buffon, 75005 Paris, France
| | - Aurélie Tasiemski
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR9017-CIIL-Centre d'Infection et d'Immunité de Lille, Lille, France; Univ. Lille, CNRS, UMR 8198 - Evo-Eco-Paleo, F-59000 Lille, France.
| |
Collapse
|
27
|
Lin G, Lu J, Sun Z, Xie J, Huang J, Su M, Wu N. Characterization of tissue-associated bacterial community of two Bathymodiolus species from the adjacent cold seep and hydrothermal vent environments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 796:149046. [PMID: 34328889 DOI: 10.1016/j.scitotenv.2021.149046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/08/2021] [Accepted: 07/10/2021] [Indexed: 06/13/2023]
Abstract
Deep-sea mussels are widely distributed in marine chemosynthetic ecosystems. Bathymodiolus platifrons and B. japonicus, occurring at both cold seeps and hydrothermal vents, have been reported to house exclusively methanotrophic symbionts in the gill. However, the comparison of microbiota associated with different tissues between these two species from two contrasting habitats is still limited. In this study, using B. platifrons and B. japonicus collected from the adjacent cold seep and hydrothermal vent environments, we sampled different tissues (gill, adductor muscle, mantle, foot, and visceral mass including the gut) to decipher the microbial community structure at the tissue scale by employing 16S rRNA gene sequencing strategy. In the gill of both seep mussels and vent mussels, the symbiont gammaproteobacterial Methylomonaceae was the predominant lineage, and methane oxidation was identified as one of the most abundant putative function. In comparison, abundant families in other tissues were Pseudomonadaceae and Enterobacteriaceae in seep mussels and vent mussels, respectively, which may get involved in element cycling. The results revealed high similarity of community structure between two mussel species from the same habitat. The gill showed distinctive bacterial community structure compared with other tissues within the same environment, while the gill communities from two environments were more similar. Remarkably structural variations of adductor muscle, mantle, foot, and visceral mass were observed between two environments. This study can extend the understanding on the characteristics of tissue-associated microbiota of deep-sea mussels from the adjacent cold seep and hydrothermal vent environments.
Collapse
Affiliation(s)
- Genmei Lin
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China
| | - Jianguo Lu
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China.
| | - Zhilei Sun
- Key Laboratory of Gas Hydrate, Ministry of Natural Resources, Institute of Marine Geology, China Geological Survey, Qingdao 266071, China; Laboratory for Mineral Resources, Qingdao Pilot National Laboratory for Marine Sciences and Technology, Qingdao 266071, China
| | - Jingui Xie
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China
| | - Junrou Huang
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China
| | - Ming Su
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China
| | - Nengyou Wu
- Key Laboratory of Gas Hydrate, Ministry of Natural Resources, Institute of Marine Geology, China Geological Survey, Qingdao 266071, China; Laboratory for Mineral Resources, Qingdao Pilot National Laboratory for Marine Sciences and Technology, Qingdao 266071, China.
| |
Collapse
|
28
|
Ücker M, Ansorge R, Sato Y, Sayavedra L, Breusing C, Dubilier N. Deep-sea mussels from a hybrid zone on the Mid-Atlantic Ridge host genetically indistinguishable symbionts. THE ISME JOURNAL 2021; 15:3076-3083. [PMID: 33972724 PMCID: PMC8443746 DOI: 10.1038/s41396-021-00927-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 01/26/2021] [Accepted: 02/03/2021] [Indexed: 02/04/2023]
Abstract
The composition and diversity of animal microbiomes is shaped by a variety of factors, many of them interacting, such as host traits, the environment, and biogeography. Hybrid zones, in which the ranges of two host species meet and hybrids are found, provide natural experiments for determining the drivers of microbiome communities, but have not been well studied in marine environments. Here, we analysed the composition of the symbiont community in two deep-sea, Bathymodiolus mussel species along their known distribution range at hydrothermal vents on the Mid-Atlantic Ridge, with a focus on the hybrid zone where they interbreed. In-depth metagenomic analyses of the sulphur-oxidising symbionts of 30 mussels from the hybrid zone, at a resolution of single nucleotide polymorphism analyses of ~2500 orthologous genes, revealed that parental and hybrid mussels (F2-F4 generation) have genetically indistinguishable symbionts. While host genetics does not appear to affect symbiont composition in these mussels, redundancy analyses showed that geographic location of the mussels on the Mid-Atlantic Ridge explained most of the symbiont genetic variability compared to the other factors. We hypothesise that geographic structuring of the free-living symbiont population plays a major role in driving the composition of the microbiome in these deep-sea mussels.
Collapse
Affiliation(s)
- Merle Ücker
- grid.419529.20000 0004 0491 3210Max Planck Institute for Marine Microbiology, Bremen, Germany ,grid.7704.40000 0001 2297 4381MARUM—Center for Marine Environmental Sciences of the University of Bremen, Bremen, Germany
| | - Rebecca Ansorge
- grid.419529.20000 0004 0491 3210Max Planck Institute for Marine Microbiology, Bremen, Germany ,grid.40368.390000 0000 9347 0159Quadram Institute Bioscience, Norwich, Norfolk UK
| | - Yui Sato
- grid.419529.20000 0004 0491 3210Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Lizbeth Sayavedra
- grid.419529.20000 0004 0491 3210Max Planck Institute for Marine Microbiology, Bremen, Germany ,grid.40368.390000 0000 9347 0159Quadram Institute Bioscience, Norwich, Norfolk UK
| | - Corinna Breusing
- grid.20431.340000 0004 0416 2242University of Rhode Island, Graduate School of Oceanography, Narragansett, RI USA
| | - Nicole Dubilier
- grid.419529.20000 0004 0491 3210Max Planck Institute for Marine Microbiology, Bremen, Germany ,grid.7704.40000 0001 2297 4381MARUM—Center for Marine Environmental Sciences of the University of Bremen, Bremen, Germany
| |
Collapse
|
29
|
Zhou K, Xu Y, Zhang R, Qian PY. Arms race in a cell: genomic, transcriptomic, and proteomic insights into intracellular phage-bacteria interplay in deep-sea snail holobionts. MICROBIOME 2021; 9:182. [PMID: 34479645 PMCID: PMC8418041 DOI: 10.1186/s40168-021-01099-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 05/20/2021] [Indexed: 05/12/2023]
Abstract
BACKGROUND Deep-sea animals in hydrothermal vents often form endosymbioses with chemosynthetic bacteria. Endosymbionts serve essential biochemical and ecological functions, but the prokaryotic viruses (phages) that determine their fate are unknown. RESULTS We conducted metagenomic analysis of a deep-sea vent snail. We assembled four genome bins for Caudovirales phages that had developed dual endosymbiosis with sulphur-oxidising bacteria (SOB) and methane-oxidising bacteria (MOB). Clustered regularly interspaced short palindromic repeat (CRISPR) spacer mapping, genome comparison, and transcriptomic profiling revealed that phages Bin1, Bin2, and Bin4 infected SOB and MOB. The observation of prophages in the snail endosymbionts and expression of the phage integrase gene suggested the presence of lysogenic infection, and the expression of phage structural protein and lysozyme genes indicated active lytic infection. Furthermore, SOB and MOB appear to employ adaptive CRISPR-Cas systems to target phage DNA. Additional expressed defence systems, such as innate restriction-modification systems and dormancy-inducing toxin-antitoxin systems, may co-function and form multiple lines for anti-viral defence. To counter host defence, phages Bin1, Bin2, and Bin3 appear to have evolved anti-restriction mechanisms and expressed methyltransferase genes that potentially counterbalance host restriction activity. In addition, the high-level expression of the auxiliary metabolic genes narGH, which encode nitrate reductase subunits, may promote ATP production, thereby benefiting phage DNA packaging for replication. CONCLUSIONS This study provides new insights into phage-bacteria interplay in intracellular environments of a deep-sea vent snail. Video Abstract.
Collapse
Affiliation(s)
- Kun Zhou
- Department of Ocean Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Hong Kong University of Science and Technology, Hong Kong, China
- Shenzhen University-HKUST Joint Marine Science Ph.D. Program, Shenzhen University, Shenzhen, 518060, China
| | - Ying Xu
- Shenzhen University-HKUST Joint Marine Science Ph.D. Program, Shenzhen University, Shenzhen, 518060, China.
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China.
| | - Rui Zhang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University (Xiang'an), Xiamen, Fujian, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519080, China.
| | - Pei-Yuan Qian
- Department of Ocean Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Hong Kong University of Science and Technology, Hong Kong, China.
| |
Collapse
|
30
|
Ge M, Li L, Zhang X, Luan Z, Du Z, Xi S, Yan J. A Piecewise Model for In Situ Raman Measurement of the Chlorinity of Deep-Sea High-Temperature Hydrothermal Fluids. APPLIED SPECTROSCOPY 2021; 75:1178-1188. [PMID: 33599538 DOI: 10.1177/0003702821999114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The chlorinity of deep-sea hydrothermal fluids, representing one of the crucial deep-sea hydrothermal indicators, indicates the degree of deep phase separation of hydrothermal fluids and water/rock reactions. However, accurately measuring the chlorinity of high-temperature hydrothermal fluids is still a significant challenge. In this paper, a piecewise chlorinity model to measure the chlorinity of high-temperature hydrothermal fluids was developed based on the OH stretching band of water, exhibiting an accuracy of 96.20%. The peak position, peak area ratio, and F value were selected to establish the chlorinity piecewise calibration model within the temperature ranges of 0-50 ℃, 50-200 ℃, and 200-300 ℃. Compared with that of the chlorinity calibration model built based on a single parameter, the accuracy of this piecewise model increased by approximately 4.83-12.33%. This chlorinity calibration model was applied to determine the concentrations of Cl for high-temperature hydrothermal fluids in the Okinawa Trough hydrothermal field.
Collapse
Affiliation(s)
- Meng Ge
- CAS Key Laboratory of Marine Geology and Environment & Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Lianfu Li
- CAS Key Laboratory of Marine Geology and Environment & Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Xin Zhang
- CAS Key Laboratory of Marine Geology and Environment & Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Zhendong Luan
- CAS Key Laboratory of Marine Geology and Environment & Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Zengfeng Du
- CAS Key Laboratory of Marine Geology and Environment & Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Shichuan Xi
- CAS Key Laboratory of Marine Geology and Environment & Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Jun Yan
- CAS Key Laboratory of Marine Geology and Environment & Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| |
Collapse
|
31
|
Sogin EM, Kleiner M, Borowski C, Gruber-Vodicka HR, Dubilier N. Life in the Dark: Phylogenetic and Physiological Diversity of Chemosynthetic Symbioses. Annu Rev Microbiol 2021; 75:695-718. [PMID: 34351792 DOI: 10.1146/annurev-micro-051021-123130] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Possibly the last discovery of a previously unknown major ecosystem on Earth was made just over half a century ago, when researchers found teaming communities of animals flourishing two and a half kilometers below the ocean surface at hydrothermal vents. We now know that these highly productive ecosystems are based on nutritional symbioses between chemosynthetic bacteria and eukaryotes and that these chemosymbioses are ubiquitous in both deep-sea and shallow-water environments. The symbionts are primary producers that gain energy from the oxidation of reduced compounds, such as sulfide and methane, to fix carbon dioxide or methane into biomass to feed their hosts. This review outlines how the symbiotic partners have adapted to living together. We first focus on the phylogenetic and metabolic diversity of these symbioses and then highlight selected research directions that could advance our understanding of the processes that shaped the evolutionary and ecological success of these associations. Expected final online publication date for the Annual Review of Microbiology, Volume 75 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- E Maggie Sogin
- Max Planck Institute for Marine Microbiology, 28359, Bremen, Germany; ,
| | - Manuel Kleiner
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina 27607, USA
| | - Christian Borowski
- Max Planck Institute for Marine Microbiology, 28359, Bremen, Germany; , .,MARUM-Center for Marine Environmental Sciences, University of Bremen, 28359, Bremen, Germany
| | | | - Nicole Dubilier
- Max Planck Institute for Marine Microbiology, 28359, Bremen, Germany; , .,MARUM-Center for Marine Environmental Sciences, University of Bremen, 28359, Bremen, Germany
| |
Collapse
|
32
|
Zeng X, Alain K, Shao Z. Microorganisms from deep-sea hydrothermal vents. MARINE LIFE SCIENCE & TECHNOLOGY 2021; 3:204-230. [PMID: 37073341 PMCID: PMC10077256 DOI: 10.1007/s42995-020-00086-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 11/17/2020] [Indexed: 05/03/2023]
Abstract
With a rich variety of chemical energy sources and steep physical and chemical gradients, hydrothermal vent systems offer a range of habitats to support microbial life. Cultivation-dependent and independent studies have led to an emerging view that diverse microorganisms in deep-sea hydrothermal vents live their chemolithoautotrophic, heterotrophic, or mixotrophic life with versatile metabolic strategies. Biogeochemical processes are mediated by microorganisms, and notably, processes involving or coupling the carbon, sulfur, hydrogen, nitrogen, and metal cycles in these unique ecosystems. Here, we review the taxonomic and physiological diversity of microbial prokaryotic life from cosmopolitan to endemic taxa and emphasize their significant roles in the biogeochemical processes in deep-sea hydrothermal vents. According to the physiology of the targeted taxa and their needs inferred from meta-omics data, the media for selective cultivation can be designed with a wide range of physicochemical conditions such as temperature, pH, hydrostatic pressure, electron donors and acceptors, carbon sources, nitrogen sources, and growth factors. The application of novel cultivation techniques with real-time monitoring of microbial diversity and metabolic substrates and products are also recommended. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-020-00086-4.
Collapse
Affiliation(s)
- Xiang Zeng
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005 China
- LIA/IRP 1211 MicrobSea, Sino-French International Laboratory of Deep-Sea Microbiology, 29280 Plouzané, France
| | - Karine Alain
- Laboratoire de Microbiologie des Environnements Extrêmes LM2E UMR6197, Univ Brest, CNRS, IFREMER, F-29280 Plouzané, France
- LIA/IRP 1211 MicrobSea, Sino-French International Laboratory of Deep-Sea Microbiology, 29280 Plouzané, France
| | - Zongze Shao
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005 China
- LIA/IRP 1211 MicrobSea, Sino-French International Laboratory of Deep-Sea Microbiology, 29280 Plouzané, France
| |
Collapse
|
33
|
Igawa-Ueda K, Ikuta T, Tame A, Yamaguchi K, Shigenobu S, Hongo Y, Takaki Y, Fujikura K, Maruyama T, Yoshida T. Symbiont Transmission onto the Cell Surface of Early Oocytes in the Deep-Sea Clam Phreagena okutanii. Zoolog Sci 2021; 38:140-147. [PMID: 33812353 DOI: 10.2108/zs200129] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 11/21/2020] [Indexed: 11/17/2022]
Abstract
Symbiotic associations with beneficial microorganisms endow a variety of host animals with adaptability to the environment. Stable transmission of symbionts across host generations is a key event in the maintenance of symbiotic associations through evolutionary time. However, our understanding of the mechanisms of symbiont transmission remains fragmentary. The deep-sea clam Phreagena okutanii harbors chemoautotrophic intracellular symbiotic bacteria in gill epithelial cells, and depends on these symbionts for nutrition. In this study, we focused on the association of these maternally transmitted symbionts with ovarian germ cells in juvenile female clams. First, we established a sex identification method for small P. okutanii individuals, and morphologically classified female germ cells observed in the ovary. Then, we investigated the association of the endosymbiotic bacteria with germ cells. We found that the symbionts were localized on the outer surface of the cell membrane of primary oocytes and not within the cluster of oogonia. Based on our findings, we discuss the processes and mechanisms of symbiont vertical transmission in P. okutanii.
Collapse
Affiliation(s)
- Kanae Igawa-Ueda
- Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa 237-0061, Japan.,Tokyo University of Marine Science and Technology (TUMSAT), Minato-ku, Tokyo 108-8477, Japan
| | - Tetsuro Ikuta
- Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa 237-0061, Japan, .,Tokyo University of Marine Science and Technology (TUMSAT), Minato-ku, Tokyo 108-8477, Japan
| | - Akihiro Tame
- Marine Works Japan, Ltd., Yokosuka, Kanagawa 237-0063, Japan
| | - Katsushi Yamaguchi
- National Institute for Basic Biology, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Shuji Shigenobu
- National Institute for Basic Biology, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Yuki Hongo
- Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa 237-0061, Japan
| | - Yoshihiro Takaki
- Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa 237-0061, Japan
| | - Katsunori Fujikura
- Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa 237-0061, Japan
| | - Tadashi Maruyama
- Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa 237-0061, Japan
| | - Takao Yoshida
- Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa 237-0061, Japan.,Tokyo University of Marine Science and Technology (TUMSAT), Minato-ku, Tokyo 108-8477, Japan
| |
Collapse
|
34
|
Cambon-Bonavita MA, Aubé J, Cueff-Gauchard V, Reveillaud J. Niche partitioning in the Rimicaris exoculata holobiont: the case of the first symbiotic Zetaproteobacteria. MICROBIOME 2021; 9:87. [PMID: 33845886 PMCID: PMC8042907 DOI: 10.1186/s40168-021-01045-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 03/09/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Free-living and symbiotic chemosynthetic microbial communities support primary production and higher trophic levels in deep-sea hydrothermal vents. The shrimp Rimicaris exoculata, which dominates animal communities along the Mid-Atlantic Ridge, houses a complex bacterial community in its enlarged cephalothorax. The dominant bacteria present are from the taxonomic groups Campylobacteria, Desulfobulbia (formerly Deltaproteobacteria), Alphaproteobacteria, Gammaproteobacteria, and some recently discovered iron oxyhydroxide-coated Zetaproteobacteria. This epibiotic consortium uses iron, sulfide, methane, and hydrogen as energy sources. Here, we generated shotgun metagenomes from Rimicaris exoculata cephalothoracic epibiotic communities to reconstruct and investigate symbiotic genomes. We collected specimens from three geochemically contrasted vent fields, TAG, Rainbow, and Snake Pit, to unravel the specificity, variability, and adaptation of Rimicaris-microbe associations. RESULTS Our data enabled us to reconstruct 49 metagenome-assembled genomes (MAGs) from the TAG and Rainbow vent fields, including 16 with more than 90% completion and less than 5% contamination based on single copy core genes. These MAGs belonged to the dominant Campylobacteria, Desulfobulbia, Thiotrichaceae, and some novel candidate phyla radiation (CPR) lineages. In addition, most importantly, two MAGs in our collection were affiliated to Zetaproteobacteria and had no close relatives (average nucleotide identity ANI < 77% with the closest relative Ghiorsea bivora isolated from TAG, and 88% with each other), suggesting potential novel species. Genes for Calvin-Benson Bassham (CBB) carbon fixation, iron, and sulfur oxidation, as well as nitrate reduction, occurred in both MAGs. However, genes for hydrogen oxidation and multicopper oxidases occurred in one MAG only, suggesting shared and specific potential functions for these two novel Zetaproteobacteria symbiotic lineages. Overall, we observed highly similar symbionts co-existing in a single shrimp at both the basaltic TAG and ultramafic Rainbow vent sites. Nevertheless, further examination of the seeming functional redundancy among these epibionts revealed important differences. CONCLUSION These data highlight microniche partitioning in the Rimicaris holobiont and support recent studies showing that functional diversity enables multiple symbiont strains to coexist in animals colonizing hydrothermal vents. Video Abstract.
Collapse
Affiliation(s)
- Marie-Anne Cambon-Bonavita
- Univ Brest, CNRS, IFREMER, Laboratoire de Microbiologie des Environnements Extrêmes, 29280 Plouzané, France
| | - Johanne Aubé
- Univ Brest, CNRS, IFREMER, Laboratoire de Microbiologie des Environnements Extrêmes, 29280 Plouzané, France
| | - Valérie Cueff-Gauchard
- Univ Brest, CNRS, IFREMER, Laboratoire de Microbiologie des Environnements Extrêmes, 29280 Plouzané, France
| | - Julie Reveillaud
- Univ Brest, CNRS, IFREMER, Laboratoire de Microbiologie des Environnements Extrêmes, 29280 Plouzané, France
- MIVEGEC, Univ. Montpellier, INRAe, CNRS, IRD, Montpellier, France
| |
Collapse
|
35
|
Petersen JM, Yuen B. The symbiotic 'all-rounders': Partnerships between marine animals and chemosynthetic nitrogen-fixing bacteria. Appl Environ Microbiol 2021; 87:AEM.02129-20. [PMID: 33355107 PMCID: PMC8090883 DOI: 10.1128/aem.02129-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nitrogen fixation is a widespread metabolic trait in certain types of microorganisms called diazotrophs. Bioavailable nitrogen is limited in various habitats on land and in the sea, and accordingly, a range of plant, animal, and single-celled eukaryotes have evolved symbioses with diverse diazotrophic bacteria, with enormous economic and ecological benefits. Until recently, all known nitrogen-fixing symbionts were heterotrophs such as nodulating rhizobia, or photoautotrophs such as cyanobacteria. In 2016, the first chemoautotrophic nitrogen-fixing symbionts were discovered in a common family of marine clams, the Lucinidae. Chemosynthetic nitrogen-fixing symbionts use the chemical energy stored in reduced sulfur compounds to power carbon and nitrogen fixation, making them metabolic 'all-rounders' with multiple functions in the symbiosis. This distinguishes them from heterotrophic symbionts that require a source of carbon from their host, and their chemosynthetic metabolism distinguishes them from photoautotrophic symbionts that produce oxygen, a potent inhibitor of nitrogenase. In this review, we consider evolutionary aspects of this discovery, by comparing strategies that have evolved for hosting intracellular nitrogen-fixing symbionts in plants and animals. The symbiosis between lucinid clams and chemosynthetic nitrogen-fixing bacteria also has important ecological impacts, as they form a nested symbiosis with endangered marine seagrasses. Notably, nitrogen fixation by lucinid symbionts may help support seagrass health by providing a source of nitrogen in seagrass habitats. These discoveries were enabled by new techniques for understanding the activity of microbial populations in natural environments. However, an animal (or plant) host represents a diverse landscape of microbial niches due to its structural, chemical, immune and behavioural properties. In future, methods that resolve microbial activity at the single cell level will provide radical new insights into the regulation of nitrogen fixation in chemosynthetic symbionts, shedding new light on the evolution of nitrogen-fixing symbioses in contrasting hosts and environments.
Collapse
Affiliation(s)
- Jillian M Petersen
- Centre for Microbiology and Environmental Systems Science, University of Vienna
| | - Benedict Yuen
- Centre for Microbiology and Environmental Systems Science, University of Vienna
| |
Collapse
|
36
|
Lan Y, Sun J, Chen C, Sun Y, Zhou Y, Yang Y, Zhang W, Li R, Zhou K, Wong WC, Kwan YH, Cheng A, Bougouffa S, Van Dover CL, Qiu JW, Qian PY. Hologenome analysis reveals dual symbiosis in the deep-sea hydrothermal vent snail Gigantopelta aegis. Nat Commun 2021; 12:1165. [PMID: 33608555 PMCID: PMC7895826 DOI: 10.1038/s41467-021-21450-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 01/07/2021] [Indexed: 01/31/2023] Open
Abstract
Animals endemic to deep-sea hydrothermal vents often form obligatory symbioses with bacteria, maintained by intricate host-symbiont interactions. Most genomic studies on holobionts have not investigated both sides to similar depths. Here, we report dual symbiosis in the peltospirid snail Gigantopelta aegis with two gammaproteobacterial endosymbionts: a sulfur oxidiser and a methane oxidiser. We assemble high-quality genomes for all three parties, including a chromosome-level host genome. Hologenomic analyses reveal mutualism with nutritional complementarity and metabolic co-dependency, highly versatile in transporting and using chemical energy. Gigantopelta aegis likely remodels its immune system to facilitate dual symbiosis. Comparisons with Chrysomallon squamiferum, a confamilial snail with a single sulfur-oxidising gammaproteobacterial endosymbiont, show that their sulfur-oxidising endosymbionts are phylogenetically distant. This is consistent with previous findings that they evolved endosymbiosis convergently. Notably, the two sulfur-oxidisers share the same capabilities in biosynthesising nutrients lacking in the host genomes, potentially a key criterion in symbiont selection.
Collapse
Affiliation(s)
- Yi Lan
- Department of Ocean Science, Division of Life Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Jin Sun
- Department of Ocean Science, Division of Life Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Chong Chen
- X-STAR, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa Prefecture, Japan
| | - Yanan Sun
- Department of Ocean Science, Division of Life Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, China
| | - Yadong Zhou
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
| | - Yi Yang
- Department of Ocean Science, Division of Life Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Weipeng Zhang
- College of Marine Life Science, Ocean University of China, Qingdao, China
| | - Runsheng Li
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China
| | - Kun Zhou
- Department of Ocean Science, Division of Life Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, China
| | - Wai Chuen Wong
- Department of Ocean Science, Division of Life Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Yick Hang Kwan
- Department of Ocean Science, Division of Life Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Aifang Cheng
- Department of Ocean Science, Division of Life Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Salim Bougouffa
- Computational Bioscience Research Centre, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- King Abdullah University of Science and Technology (KAUST), Core Labs, Thuwal, Saudi Arabia
| | - Cindy Lee Van Dover
- Division of Marine Science and Conservation, Nicholas School of the Environment, Duke University, Beaufort, NC, United States
| | - Jian-Wen Qiu
- Department of Biology and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Hong Kong Baptist University, Hong Kong, China
| | - Pei-Yuan Qian
- Department of Ocean Science, Division of Life Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China.
| |
Collapse
|
37
|
Kuroda M, Nagasaki T, Koito T, Hongo Y, Yoshida T, Maruyama T, Tsuchida S, Nemoto S, Inoue K. Possible Roles of Hypotaurine and Thiotaurine in the Vesicomyid Clam Phreagena okutanii. THE BIOLOGICAL BULLETIN 2021; 240:34-40. [PMID: 33730534 DOI: 10.1086/712396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
AbstractVesicomyid clams, which inhabit deep-sea hydrothermal vents and hydrocarbon seeps, are nutritionally dependent on symbiotic, chemoautotrophic bacteria that produce organic matter by using hydrogen sulfide. Vesicomyid clams absorb hydrogen sulfide from the foot and transport it in their hemolymph to symbionts in the gill. However, mechanisms to cope with hydrogen sulfide toxicity are not fully understood. Previous studies on vent-specific invertebrates, including bathymodiolin mussels, suggest that hypotaurine, a precursor of taurine, mitigates hydrogen sulfide toxicity by binding it to bisulfide ion, so as to synthesize thiotaurine. In this study, we cloned cDNAs from the vesicomyid clam Phreagena okutanii for the taurine transporter that transports hypotaurine into cells and for cysteine dioxygenase and cysteine-sulfinate decarboxylase, major enzymes involved in hypotaurine synthesis. Results of reverse-transcription polymerase chain reaction indicate that mRNAs of these three genes are most abundant in the foot, followed by the gill. However, hypotaurine and thiotaurine levels, measured by reverse-phase high-performance liquid chromatography, were low in the foot and high in the gill. In addition, thiotaurine was detected in hemolymph cells. Hypotaurine synthesized in the foot may be transported to the gill after binding to bisulfide ion, possibly by hemolymph cells.
Collapse
|
38
|
Hinzke T, Kleiner M, Meister M, Schlüter R, Hentschker C, Pané-Farré J, Hildebrandt P, Felbeck H, Sievert SM, Bonn F, Völker U, Becher D, Schweder T, Markert S. Bacterial symbiont subpopulations have different roles in a deep-sea symbiosis. eLife 2021; 10:58371. [PMID: 33404502 PMCID: PMC7787665 DOI: 10.7554/elife.58371] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 12/05/2020] [Indexed: 12/13/2022] Open
Abstract
The hydrothermal vent tubeworm Riftia pachyptila hosts a single 16S rRNA phylotype of intracellular sulfur-oxidizing symbionts, which vary considerably in cell morphology and exhibit a remarkable degree of physiological diversity and redundancy, even in the same host. To elucidate whether multiple metabolic routes are employed in the same cells or rather in distinct symbiont subpopulations, we enriched symbionts according to cell size by density gradient centrifugation. Metaproteomic analysis, microscopy, and flow cytometry strongly suggest that Riftia symbiont cells of different sizes represent metabolically dissimilar stages of a physiological differentiation process: While small symbionts actively divide and may establish cellular symbiont-host interaction, large symbionts apparently do not divide, but still replicate DNA, leading to DNA endoreduplication. Moreover, in large symbionts, carbon fixation and biomass production seem to be metabolic priorities. We propose that this division of labor between smaller and larger symbionts benefits the productivity of the symbiosis as a whole.
Collapse
Affiliation(s)
- Tjorven Hinzke
- Institute of Pharmacy, University of Greifswald, Greifswald, Germany.,Institute of Marine Biotechnology, Greifswald, Germany.,Energy Bioengineering Group, University of Calgary, Calgary, Canada
| | - Manuel Kleiner
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, United States
| | - Mareike Meister
- Institute of Microbiology, University of Greifswald, Greifswald, Germany.,Leibniz Institute for Plasma Science and Technology, Greifswald, Germany
| | - Rabea Schlüter
- Imaging Center of the Department of Biology, University of Greifswald, Greifswald, Germany
| | - Christian Hentschker
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Jan Pané-Farré
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Marburg, Germany
| | - Petra Hildebrandt
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Horst Felbeck
- Scripps Institution of Oceanography, University of California San Diego, San Diego, United States
| | - Stefan M Sievert
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, United States
| | - Florian Bonn
- Institute of Biochemistry, University Hospital, Goethe University School of Medicine Frankfurt, Frankfurt, Germany
| | - Uwe Völker
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Dörte Becher
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Thomas Schweder
- Institute of Pharmacy, University of Greifswald, Greifswald, Germany.,Institute of Marine Biotechnology, Greifswald, Germany
| | - Stephanie Markert
- Institute of Pharmacy, University of Greifswald, Greifswald, Germany.,Institute of Marine Biotechnology, Greifswald, Germany
| |
Collapse
|
39
|
Metatranscriptomics by
In Situ
RNA Stabilization Directly and Comprehensively Revealed Episymbiotic Microbial Communities of Deep-Sea Squat Lobsters. mSystems 2020; 5:5/5/e00551-20. [PMID: 33024051 PMCID: PMC8534475 DOI: 10.1128/msystems.00551-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Shinkaia crosnieri is an invertebrate that inhabits an area around deep-sea hydrothermal vents in the Okinawa Trough in Japan by harboring episymbiotic microbes as the primary nutrition. To reveal physiology and phylogenetic composition of the active episymbiotic populations, metatranscriptomics is expected to be a powerful approach. However, this has been hindered by substantial perturbation (e.g., RNA degradation) during time-consuming retrieval from the deep sea. Here, we conducted direct metatranscriptomic analysis of S. crosnieri episymbionts by applying in situ RNA stabilization equipment. As expected, we obtained RNA expression profiles that were substantially different from those obtained by conventional metatranscriptomics (i.e., stabilization after retrieval). The episymbiotic community members were dominated by three orders, namely, Thiotrichales, Methylococcales, and Campylobacterales, and the Campylobacterales members were mostly dominated by the Sulfurovum genus. At a finer phylogenetic scale, the episymbiotic communities on different host individuals shared many species, indicating that the episymbionts on each host individual are not descendants of a few founder cells but are horizontally exchanged. Furthermore, our analysis revealed the key metabolisms of the community: two carbon fixation pathways, a formaldehyde assimilation pathway, and utilization of five electron donors (sulfide, thiosulfate, sulfur, methane, and ammonia) and two electron accepters (oxygen and nitrate/nitrite). Importantly, it was suggested that Thiotrichales episymbionts can utilize intercellular sulfur globules even when sulfur compounds are not usable, possibly also in a detached and free-living state. IMPORTANCE Deep-sea hydrothermal vent ecosystems remain mysterious. To depict in detail the enigmatic life of chemosynthetic microbes, which are key primary producers in these ecosystems, metatranscriptomic analysis is expected to be a promising approach. However, this has been hindered by substantial perturbation (e.g., RNA degradation) during time-consuming retrieval from the deep sea. In this study, we conducted direct metatranscriptome analysis of microbial episymbionts of deep-sea squat lobsters (Shinkaia crosnieri) by applying in situ RNA stabilization equipment. Compared to conventional metatranscriptomics (i.e., RNA stabilization after retrieval), our method provided substantially different RNA expression profiles. Moreover, we discovered that S. crosnieri and its episymbiotic microbes constitute complex and resilient ecosystems, where closely related but various episymbionts are stably maintained by horizontal exchange and partly by their sulfur storage ability for survival even when sulfur compounds are not usable, likely also in a detached and free-living state.
Collapse
|
40
|
Sass K, Güllert S, Streit WR, Perner M. A hydrogen-oxidizing bacterium enriched from the open ocean resembling a symbiont. ENVIRONMENTAL MICROBIOLOGY REPORTS 2020; 12:396-405. [PMID: 32338395 DOI: 10.1111/1758-2229.12847] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 03/31/2020] [Accepted: 04/21/2020] [Indexed: 06/11/2023]
Abstract
A new autotrophic hydrogen-oxidizing Chromatiaceae bacterium, namely bacterium CTD079, was enriched from a water column sample at 1500 m water depth in the southern Pacific Ocean. Based on the phylogeny of 16S rRNA genes, it was closely related to a scaly snail endosymbiont (99.2% DNA sequence identity) whose host so far is only known to colonize hydrothermal vents along the Indian ridge. The average nucleotide identity between the genomes of CTD079 and the snail endosymbiont was 91%. The observed differences likely reflect adaptations to their specific habitats. For example, CTD079 encodes additional enzymes like the formate dehydrogenase increasing the organism's spectrum of energy generation pathways. Other additional physiological features of CTD079 included the increase of viral defence strategies, secretion systems and specific transporters for essential elements. These important genome characteristics suggest an adaptation to life in the open ocean.
Collapse
Affiliation(s)
- Katharina Sass
- Molecular Biology of Microbial Consortia, Universität Hamburg, Hamburg, Germany
- Microbiology and Biotechnology, Universität Hamburg, Hamburg, Germany
| | - Simon Güllert
- Microbiology and Biotechnology, Universität Hamburg, Hamburg, Germany
| | - Wolfgang R Streit
- Microbiology and Biotechnology, Universität Hamburg, Hamburg, Germany
| | - Mirjam Perner
- Molecular Biology of Microbial Consortia, Universität Hamburg, Hamburg, Germany
| |
Collapse
|
41
|
Breusing C, Schultz DT, Sudek S, Worden AZ, Young CR. High‐contiguity genome assembly of the chemosynthetic gammaproteobacterial endosymbiont of the cold seep tubeworm
Lamellibrachia barhami. Mol Ecol Resour 2020. [PMCID: PMC7540712 DOI: 10.1111/1755-0998.13220] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Symbiotic relationships between vestimentiferan tubeworms and chemosynthetic Gammaproteobacteria build the foundations of many hydrothermal vent and hydrocarbon seep ecosystems in the deep sea. The association between the vent tubeworm Riftia pachyptila and its endosymbiont Candidatus Endoriftia persephone has become a model system for symbiosis research in deep‐sea vestimentiferans, while markedly fewer studies have investigated symbiotic relationships in other tubeworm species, especially at cold seeps. Here we sequenced the endosymbiont genome of the tubeworm Lamellibrachia barhami from a cold seep in the Gulf of California, using short‐ and long‐read sequencing technologies in combination with Hi‐C and Dovetail Chicago libraries. Our final assembly had a size of ~4.17 MB, a GC content of 54.54%, 137X coverage, 4153 coding sequences, and a checkm completeness score of 97.19%. A single scaffold contained 99.51% of the genome. Comparative genomic analyses indicated that the L. barhami symbiont shares a set of core genes and many metabolic pathways with other vestimentiferan symbionts, while containing 433 unique gene clusters that comprised a variety of transposases, defence‐related genes and a lineage‐specific CRISPR/Cas3 system. This assembly represents the most contiguous tubeworm symbiont genome resource to date and will be particularly valuable for future comparative genomic studies investigating structural genome evolution, physiological adaptations and host‐symbiont communication in chemosynthetic animal‐microbe symbioses.
Collapse
Affiliation(s)
- Corinna Breusing
- Monterey Bay Aquarium Research Institute Moss Landing CA USA
- National Oceanography Centre Southampton UK
| | - Darrin T. Schultz
- Monterey Bay Aquarium Research Institute Moss Landing CA USA
- Department of Biomolecular Engineering and Bioinformatics University of California Santa Cruz Santa Cruz CA USA
| | - Sebastian Sudek
- Monterey Bay Aquarium Research Institute Moss Landing CA USA
| | - Alexandra Z. Worden
- Monterey Bay Aquarium Research Institute Moss Landing CA USA
- GEOMAR Helmholtz Centre for Ocean Research Kiel Germany
| | | |
Collapse
|
42
|
Geier B, Sogin EM, Michellod D, Janda M, Kompauer M, Spengler B, Dubilier N, Liebeke M. Spatial metabolomics of in situ host-microbe interactions at the micrometre scale. Nat Microbiol 2020; 5:498-510. [PMID: 32015496 DOI: 10.1038/s41564-019-0664-6] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 12/16/2019] [Indexed: 11/09/2022]
Abstract
Spatial metabolomics describes the location and chemistry of small molecules involved in metabolic phenotypes, defence molecules and chemical interactions in natural communities. Most current techniques are unable to spatially link the genotype and metabolic phenotype of microorganisms in situ at a scale relevant to microbial interactions. Here, we present a spatial metabolomics pipeline (metaFISH) that combines fluorescence in situ hybridization (FISH) microscopy and high-resolution atmospheric-pressure matrix-assisted laser desorption/ionization mass spectrometry to image host-microbe symbioses and their metabolic interactions. The metaFISH pipeline aligns and integrates metabolite and fluorescent images at the micrometre scale to provide a spatial assignment of host and symbiont metabolites on the same tissue section. To illustrate the advantages of metaFISH, we mapped the spatial metabolome of a deep-sea mussel and its intracellular symbiotic bacteria at the scale of individual epithelial host cells. Our analytical pipeline revealed metabolic adaptations of the epithelial cells to the intracellular symbionts and variation in metabolic phenotypes within a single symbiont 16S rRNA phylotype, and enabled the discovery of specialized metabolites from the host-microbe interface. metaFISH provides a culture-independent approach to link metabolic phenotypes to community members in situ and is a powerful tool for microbiologists across fields.
Collapse
Affiliation(s)
- Benedikt Geier
- Max Planck Institute for Marine Microbiology, Bremen, Germany.
| | - Emilia M Sogin
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Dolma Michellod
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Moritz Janda
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Mario Kompauer
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, Giessen, Germany
| | - Bernhard Spengler
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, Giessen, Germany
| | - Nicole Dubilier
- Max Planck Institute for Marine Microbiology, Bremen, Germany
- MARUM, University of Bremen, Bremen, Germany
| | - Manuel Liebeke
- Max Planck Institute for Marine Microbiology, Bremen, Germany.
| |
Collapse
|
43
|
Miyazaki J, Ikuta T, Watsuji TO, Abe M, Yamamoto M, Nakagawa S, Takaki Y, Nakamura K, Takai K. Dual energy metabolism of the Campylobacterota endosymbiont in the chemosynthetic snail Alviniconcha marisindica. ISME JOURNAL 2020; 14:1273-1289. [PMID: 32051527 PMCID: PMC7174374 DOI: 10.1038/s41396-020-0605-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 01/16/2020] [Accepted: 01/30/2020] [Indexed: 11/09/2022]
Abstract
Some deep-sea chemosynthetic invertebrates and their symbiotic bacteria can use molecular hydrogen (H2) as their energy source. However, how much the chemosynthetic holobiont (endosymbiont-host association) physiologically depends on H2 oxidation has not yet been determined. Here, we demonstrate that the Campylobacterota endosymbionts of the gastropod Alviniconcha marisindica in the Kairei and Edmond fields (kAlv and eAlv populations, respectively) of the Indian Ocean, utilize H2 in response to their physical and environmental H2 conditions, although the 16S rRNA gene sequence of both the endosymbionts shared 99.6% identity. A thermodynamic calculation using in situ H2 and hydrogen sulfide (H2S) concentrations indicated that chemosynthetic symbiosis could be supported by metabolic energy via H2 oxidation, particularly for the kAlv holobiont. Metabolic activity measurements showed that both the living individuals and the gill tissues consumed H2 and H2S at similar levels. Moreover, a combination of fluorescence in situ hybridization, quantitative transcript analyses, and enzymatic activity measurements showed that the kAlv endosymbiont expressed the genes and enzymes for both H2- and sulfur-oxidations. These results suggest that both H2 and H2S could serve as the primary energy sources for the kAlv holobiont. The eAlv holobiont had the ability to utilize H2, but the gene expression and enzyme activity for hydrogenases were much lower than for sulfur-oxidation enzymes. These results suggest that the energy acquisitions of A. marisindica holobionts are dependent on H2- and sulfur-oxidation in the H2-enriched Kairei field and that the mechanism of dual metabolism is controlled by the in situ H2 concentration.
Collapse
Affiliation(s)
- Junichi Miyazaki
- Super-cutting-edge Grand and Advanced Research (SUGAR) Program, Japan Agency for Marine-Earth Science & Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, 237-0061, Japan.
| | - Tetsuro Ikuta
- Marine Biodiversity and Environmental Assessment Research Center (BioEnv), Research Institute for Global Change (RIGC), Japan Agency for Marine-Earth Science & Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, 237-0061, Japan
| | - Tomo-O Watsuji
- Super-cutting-edge Grand and Advanced Research (SUGAR) Program, Japan Agency for Marine-Earth Science & Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, 237-0061, Japan.,Department of Food and Nutrition, Higashi-Chikushi Junior College, 5-1-1 Shimoitozu, Kitakyusyu, 803-0846, Japan
| | - Mariko Abe
- Super-cutting-edge Grand and Advanced Research (SUGAR) Program, Japan Agency for Marine-Earth Science & Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, 237-0061, Japan
| | - Masahiro Yamamoto
- Super-cutting-edge Grand and Advanced Research (SUGAR) Program, Japan Agency for Marine-Earth Science & Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, 237-0061, Japan
| | - Satoshi Nakagawa
- Super-cutting-edge Grand and Advanced Research (SUGAR) Program, Japan Agency for Marine-Earth Science & Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, 237-0061, Japan.,Laboratory of Marine Environmental Microbiology, Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Oiwake-cho, Kitashirakawa, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Yoshihiro Takaki
- Super-cutting-edge Grand and Advanced Research (SUGAR) Program, Japan Agency for Marine-Earth Science & Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, 237-0061, Japan
| | - Kentaro Nakamura
- Department of Systems Innovation, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Ken Takai
- Super-cutting-edge Grand and Advanced Research (SUGAR) Program, Japan Agency for Marine-Earth Science & Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, 237-0061, Japan
| |
Collapse
|
44
|
Greening C, Boyd E. Editorial: Microbial Hydrogen Metabolism. Front Microbiol 2020; 11:56. [PMID: 32082284 PMCID: PMC7002543 DOI: 10.3389/fmicb.2020.00056] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 01/13/2020] [Indexed: 11/14/2022] Open
Affiliation(s)
- Chris Greening
- School of Biological Sciences, Monash University, Clayton, VIC, Australia
| | - Eric Boyd
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, United States
| |
Collapse
|
45
|
Dick GJ. The microbiomes of deep-sea hydrothermal vents: distributed globally, shaped locally. Nat Rev Microbiol 2020; 17:271-283. [PMID: 30867583 DOI: 10.1038/s41579-019-0160-2] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The discovery of chemosynthetic ecosystems at deep-sea hydrothermal vents in 1977 changed our view of biology. Chemosynthetic bacteria and archaea form the foundation of vent ecosystems by exploiting the chemical disequilibrium between reducing hydrothermal fluids and oxidizing seawater, harnessing this energy to fix inorganic carbon into biomass. Recent research has uncovered fundamental aspects of these microbial communities, including their relationships with underlying geology and hydrothermal geochemistry, interactions with animals via symbiosis and distribution both locally in various habitats within vent fields and globally across hydrothermal systems in diverse settings. Although 'black smokers' and symbioses between microorganisms and macrofauna attract much attention owing to their novelty and the insights they provide into life under extreme conditions, habitats such as regions of diffuse flow, subseafloor aquifers and hydrothermal plumes have important roles in the global cycling of elements through hydrothermal systems. Owing to sharp contrasts in physical and chemical conditions between these various habitats and their dynamic, extreme and geographically isolated nature, hydrothermal vents provide a valuable window into the environmental and ecological forces that shape microbial communities and insights into the limits, origins and evolution of microbial life.
Collapse
Affiliation(s)
- Gregory J Dick
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
46
|
Abstract
All animals are associated with microorganisms; hence, host-microbe interactions are of fundamental importance for life on earth. However, we know little about the molecular basis of these interactions. Therefore, we studied the deep-sea Riftia pachyptila symbiosis, a model association in which the tubeworm host is associated with only one phylotype of endosymbiotic bacteria and completely depends on this sulfur-oxidizing symbiont for nutrition. Using a metaproteomics approach, we identified both metabolic interaction processes, such as substrate transfer between the two partners, and interactions that serve to maintain the symbiotic balance, e.g., host efforts to control the symbiont population or symbiont strategies to modulate these host efforts. We suggest that these interactions are essential principles of mutualistic animal-microbe associations. The deep-sea tubeworm Riftia pachyptila lacks a digestive system but completely relies on bacterial endosymbionts for nutrition. Although the symbiont has been studied in detail on the molecular level, such analyses were unavailable for the animal host, because sequence information was lacking. To identify host-symbiont interaction mechanisms, we therefore sequenced the Riftia transcriptome, which served as a basis for comparative metaproteomic analyses of symbiont-containing versus symbiont-free tissues, both under energy-rich and energy-limited conditions. Our results suggest that metabolic interactions include nutrient allocation from symbiont to host by symbiont digestion and substrate transfer to the symbiont by abundant host proteins. We furthermore propose that Riftia maintains its symbiont by protecting the bacteria from oxidative damage while also exerting symbiont population control. Eukaryote-like symbiont proteins might facilitate intracellular symbiont persistence. Energy limitation apparently leads to reduced symbiont biomass and increased symbiont digestion. Our study provides unprecedented insights into host-microbe interactions that shape this highly efficient symbiosis.
Collapse
|
47
|
Hydrogen Does Not Appear To Be a Major Electron Donor for Symbiosis with the Deep-Sea Hydrothermal Vent Tubeworm Riftia pachyptila. Appl Environ Microbiol 2019; 86:AEM.01522-19. [PMID: 31628148 DOI: 10.1128/aem.01522-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 10/09/2019] [Indexed: 12/23/2022] Open
Abstract
Use of hydrogen gas (H2) as an electron donor is common among free-living chemolithotrophic microorganisms. Given the presence of this dissolved gas at deep-sea hydrothermal vents, it has been suggested that it may also be a major electron donor for the free-living and symbiotic chemolithoautotrophic bacteria that are the primary producers at these sites. Giant Riftia pachyptila siboglinid tubeworms and their symbiotic bacteria ("Candidatus Endoriftia persephone") dominate many vents in the Eastern Pacific, and their use of sulfide as a major electron donor has been documented. Genes encoding hydrogenase are present in the "Ca Endoriftia persephone" genome, and proteome data suggest that these genes are expressed. In this study, high-pressure respirometry of intact R. pachyptila and incubations of trophosome homogenate were used to determine whether this symbiotic association could also use H2 as a major electron donor. Measured rates of H2 uptake by intact R. pachyptila in high-pressure respirometers were similar to rates measured in the absence of tubeworms. Oxygen uptake rates in the presence of H2 were always markedly lower than those measured in the presence of sulfide, as was the incorporation of 13C-labeled dissolved inorganic carbon. Carbon fixation by trophosome homogenate was not stimulated by H2, nor was hydrogenase activity detectable in these samples. Though genes encoding [NiFe] group 1e and [NiFe] group 3b hydrogenases are present in the genome and transcribed, it does not appear that H2 is a major electron donor for this system, and it may instead play a role in intracellular redox homeostasis.IMPORTANCE Despite the presence of hydrogenase genes, transcripts, and proteins in the "Ca Endoriftia persephone" genome, transcriptome, and proteome, it does not appear that R. pachyptila can use H2 as a major electron donor. For many uncultivable microorganisms, omic analyses are the basis for inferences about their activities in situ However, as is apparent from the study reported here, there are dangers in extrapolating from omics data to function, and it is essential, whenever possible, to verify functions predicted from omics data with physiological and biochemical measurements.
Collapse
|
48
|
Ponnudurai R, Heiden SE, Sayavedra L, Hinzke T, Kleiner M, Hentschker C, Felbeck H, Sievert SM, Schlüter R, Becher D, Schweder T, Markert S. Comparative proteomics of related symbiotic mussel species reveals high variability of host-symbiont interactions. ISME JOURNAL 2019; 14:649-656. [PMID: 31680119 PMCID: PMC6976577 DOI: 10.1038/s41396-019-0517-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 06/19/2019] [Accepted: 08/25/2019] [Indexed: 11/09/2022]
Abstract
Deep-sea Bathymodiolus mussels and their chemoautotrophic symbionts are well-studied representatives of mutualistic host-microbe associations. However, how host-symbiont interactions vary on the molecular level between related host and symbiont species remains unclear. Therefore, we compared the host and symbiont metaproteomes of Pacific B. thermophilus, hosting a thiotrophic symbiont, and Atlantic B. azoricus, containing two symbionts, a thiotroph and a methanotroph. We identified common strategies of metabolic support between hosts and symbionts, such as the oxidation of sulfide by the host, which provides a thiosulfate reservoir for the thiotrophic symbionts, and a cycling mechanism that could supply the host with symbiont-derived amino acids. However, expression levels of these processes differed substantially between both symbioses. Backed up by genomic comparisons, our results furthermore revealed an exceptionally large repertoire of attachment-related proteins in the B. thermophilus symbiont. These findings imply that host-microbe interactions can be quite variable, even between closely related systems.
Collapse
Affiliation(s)
- Ruby Ponnudurai
- Institute of Pharmacy, University of Greifswald, Greifswald, Germany.,European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117, Heidelberg, Germany
| | - Stefan E Heiden
- Institute of Pharmacy, University of Greifswald, Greifswald, Germany
| | - Lizbeth Sayavedra
- Max Planck Institute for Marine Microbiology, Bremen, Germany.,Quadram Institute of Bioscience, Norwich, UK
| | - Tjorven Hinzke
- Institute of Pharmacy, University of Greifswald, Greifswald, Germany.,Institute of Marine Biotechnology, Greifswald, Germany
| | - Manuel Kleiner
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA
| | | | - Horst Felbeck
- Scripps Institution of Oceanography, La Jolla, CA, USA
| | | | - Rabea Schlüter
- Imaging Center of the Department of Biology, University of Greifswald, Greifswald, Germany
| | - Dörte Becher
- Institute of Marine Biotechnology, Greifswald, Germany.,Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Thomas Schweder
- Institute of Pharmacy, University of Greifswald, Greifswald, Germany.,Institute of Marine Biotechnology, Greifswald, Germany
| | - Stephanie Markert
- Institute of Pharmacy, University of Greifswald, Greifswald, Germany. .,Institute of Marine Biotechnology, Greifswald, Germany.
| |
Collapse
|
49
|
Yang YK, Chen S, Yang DS, Zhang W, Wang HJ, Zeng RJ. Anaerobic reductive bio-dissolution of jarosites by Acidithiobacillus ferrooxidans using hydrogen as electron donor. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 686:869-877. [PMID: 31200307 DOI: 10.1016/j.scitotenv.2019.06.071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 06/04/2019] [Accepted: 06/04/2019] [Indexed: 06/09/2023]
Abstract
Jarosites are secondary iron-hydroxyl-sulfate minerals and widely occur in bioleaching, acid mine drainage, and acid sulfate soil environments. Anaerobic reductive dissolution of jarosites is yet to be methodically examined. In this study, we explored the bio-dissolution of jarosites by Acidithiobacillus ferrooxidans (At. ferrooxidans) by using hydrogen in batch experiments. After bio-dissolution by At. ferrooxidans for 22 d, ferrous ion concentrations reached 10.07 mM (biologically produced jarosites), 7.68 mM (potassium jarosite), and 1.45 mM (lead jarosite). Strengthening the dissolved jarosites by decreasing the initial pH (pH < 2.0) or by adding citric acid (1, 5, and 10 mM) was inefficient for bio-dissolution owing to restricted cellular activity. The pathways of bio-dissolution should include direct contact bio-dissolution and indirect bio-dissolution and relate to the solubility of jarosites in a bio-dissolution system. The results demonstrate that anaerobic reductive bio-dissolution of jarosites by At. ferrooxidans using hydrogen shows potential. This study also provides opportunities to contribute to the development of the bioleaching field via the aerobic/anaerobic cycle using a single strain to control and reuse jarosites in situ.
Collapse
Affiliation(s)
- Yuan-Kun Yang
- CAS Key Laboratory for Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China; Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, China
| | - Shu Chen
- Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, China
| | - Dong-Sheng Yang
- Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, China
| | - Wei Zhang
- CAS Key Laboratory for Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Hua-Jie Wang
- CAS Key Laboratory for Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Raymond Jianxiong Zeng
- CAS Key Laboratory for Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China; Centre of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| |
Collapse
|
50
|
Ikuta T, Tame A, Saito M, Aoki Y, Nagai Y, Sugimura M, Inoue K, Fujikura K, Ohishi K, Maruyama T, Yoshida T. Identification of cells expressing two peptidoglycan recognition proteins in the gill of the vent mussel, Bathymodiolus septemdierum. FISH & SHELLFISH IMMUNOLOGY 2019; 93:815-822. [PMID: 31419535 DOI: 10.1016/j.fsi.2019.08.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 08/06/2019] [Accepted: 08/09/2019] [Indexed: 06/10/2023]
Abstract
In symbiotic systems in which symbionts are transmitted horizontally, hosts must accept symbionts from the environment while defending themselves against invading pathogenic microorganisms. How they distinguish pathogens from symbionts and how the latter evade host immune defences are not clearly understood. Recognition of foreign materials is one of the most critical steps in stimulating immune responses, and pattern recognition receptors (PRRs) play vital roles in this process. In this study, we focused on a group of highly conserved PRRs, peptidoglycan recognition proteins (PGRPs), in the deep-sea mussel, Bathymodiolus septemdierum, which harbours chemosynthetic bacteria in their gill epithelial cells. We isolated B. septemdierum PGRP genes BsPGRP-S and BsPGRP-L, which encode a short- and a long-type PGRP, respectively. The short-type PGRP has a signal peptide and was expressed in the asymbiotic goblet mucous cells in the gill epithelium, whereas the long-type PGRP was predicted to include a transmembrane domain and was expressed in gill bacteriocytes. Based on these findings, we hypothesize that the secreted and transmembrane PGRPs are engaged in host defence against pathogenic bacteria and/or in the regulation of symbiosis via different cellular localizations and mechanisms.
Collapse
Affiliation(s)
- Tetsuro Ikuta
- Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima, Yokosuka, Kanagawa, 237-0061, Japan.
| | - Akihiro Tame
- Marine Works Japan, Ltd., 3-54-1 Oppamahigashi, Yokosuka, Kanagawa, 237-0063, Japan
| | - Masaki Saito
- Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima, Yokosuka, Kanagawa, 237-0061, Japan
| | - Yui Aoki
- Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima, Yokosuka, Kanagawa, 237-0061, Japan
| | - Yukiko Nagai
- Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima, Yokosuka, Kanagawa, 237-0061, Japan
| | - Makoto Sugimura
- Enoshima Aquarium, 2-19-1 Katasekaigan, Fujisawa, Kanagawa, 251-0035, Japan
| | - Koji Inoue
- Department of Marine Bioscience, Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8564, Japan
| | - Katsunori Fujikura
- Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima, Yokosuka, Kanagawa, 237-0061, Japan
| | - Kazue Ohishi
- Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima, Yokosuka, Kanagawa, 237-0061, Japan
| | - Tadashi Maruyama
- Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima, Yokosuka, Kanagawa, 237-0061, Japan
| | - Takao Yoshida
- Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima, Yokosuka, Kanagawa, 237-0061, Japan
| |
Collapse
|