1
|
Zhou H, Patel V, Rice R, Lee R, Kim HW, Weintraub NL, Su H, Chen W. Neddylation and Its Target Cullin 3 Are Essential for Adipocyte Differentiation. Cells 2024; 13:1654. [PMID: 39404417 PMCID: PMC11475318 DOI: 10.3390/cells13191654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/03/2024] [Accepted: 10/04/2024] [Indexed: 10/19/2024] Open
Abstract
The ongoing obesity epidemic has raised awareness of the complex physiology of adipose tissue. Abnormal adipocyte differentiation results in the development of systemic metabolic disorders such as insulin resistance and diabetes. The conjugation of NEDD8 (neural precursor cell expressed, developmentally downregulated 8) to target protein, termed neddylation, has been shown to mediate adipogenesis. However, much remains unknown about its role in adipogenesis. Here, we demonstrated that neddylation and its targets, the cullin (CUL) family members, are differentially regulated during mouse and human adipogenesis. Inhibition of neddylation by MLN4924 significantly reduced adipogenesis of 3T3-L1 and human stromal vascular cells. Deletion of NAE1, a subunit of the only NEDD8 E1 enzyme, suppressed neddylation and impaired adipogenesis. Neddylation deficiency did not affect mitotic cell expansion. Instead, it disrupted CREB/CEBPβ/PPARγ signaling, essential for adipogenesis. Interestingly, among the neddylation-targeted CUL family members, deletion of CUL3, but not CUL1, CUL2, or CUL4A, largely replicated the adipogenic defects observed with neddylation deficiency. A PPARγ agonist minimally rescued the adipogenic defects caused by the deletion of NAE1 and CUL3. In conclusion, our study demonstrates that neddylation and its targeted CUL3 are crucial for adipogenesis. These findings provide potential targets for therapeutic intervention in obesity and metabolic disorders.
Collapse
Affiliation(s)
- Hongyi Zhou
- Departments of Physiology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Vijay Patel
- Department of Surgery, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Robert Rice
- Department of Surgery, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Richard Lee
- Department of Surgery, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Ha Won Kim
- Department of Medicine, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Neal L Weintraub
- Department of Medicine, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Huabo Su
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Weiqin Chen
- Departments of Physiology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
2
|
Zenge C, Ordureau A. Ubiquitin system mutations in neurological diseases. Trends Biochem Sci 2024; 49:875-887. [PMID: 38972780 PMCID: PMC11455613 DOI: 10.1016/j.tibs.2024.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/31/2024] [Accepted: 06/12/2024] [Indexed: 07/09/2024]
Abstract
Neuronal ubiquitin balance impacts the fate of countless cellular proteins, and its disruption is associated with various neurological disorders. The ubiquitin system is critical for proper neuronal cell state transitions and the clearance of misfolded or aggregated proteins that threaten cellular integrity. This article reviews the state of and recent advancements in our understanding of the disruptions to components of the ubiquitin system, in particular E3 ligases and deubiquitylases, in neurodevelopmental and neurodegenerative diseases. Specific focus is on enzymes with recent progress in their characterization, including identifying enzyme-substrate pairs, the use of stem cell and animal models, and the development of therapeutics for ubiquitin-related diseases.
Collapse
Affiliation(s)
- Colin Zenge
- Cell Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Louis V. Gerstner, Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Alban Ordureau
- Cell Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
3
|
Maeoka Y, Bradford T, Su XT, Sharma A, Yang CL, Ellison DH, McCormick JA, Cornelius RJ. Distal convoluted tubule-specific disruption of the COP9 signalosome but not its regulatory target cullin 3 causes tubular injury. Am J Physiol Renal Physiol 2024; 327:F667-F682. [PMID: 39205661 PMCID: PMC11483082 DOI: 10.1152/ajprenal.00138.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/07/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024] Open
Abstract
The disease familial hyperkalemic hypertension (FHHt; also known as Gordon syndrome) is caused by aberrant accumulation of with-no-lysine kinase (WNK4) activating the NaCl cotransporter (NCC) in the distal convoluted tubule (DCT) of the kidney. Mutations in cullin 3 (CUL3) cause FHHt by disrupting interaction with the deneddylase COP9 signalosome (CSN). Deletion of Cul3 or Jab1 (the catalytically active CSN subunit) along the entire nephron causes a partial FHHt phenotype with activation of the WNK4-STE20/SPS1-related proline/alanine-rich kinase (SPAK)-NCC pathway. However, progressive kidney injury likely prevents hypertension, hyperkalemia, and hyperchloremic metabolic acidosis associated with FHHt. We hypothesized that DCT-specific deletion would more closely model the disease. We used Slc12a3-Cre-ERT2 mice to delete Cul3 (DCT-Cul3-/-) or Jab1 (DCT-Jab1-/-) only in the DCT and examined the mice after short- and long-term deletion. Short-term DCT-specific knockout of both Cul3 and Jab1 mice caused elevated WNK4, pSPAKS373, and pNCCT53 abundance. However, neither model demonstrated changes in plasma K+, Cl-, or total CO2, even though no injury was present. Long-term DCT-Jab1-/- mice showed significantly lower NCC and parvalbumin abundance and a higher abundance of kidney injury molecule-1, a marker of proximal tubule injury. No injury or reduction in NCC or parvalbumin was observed in long-term DCT-Cul3-/- mice. In summary, the prevention of injury outside the DCT did not lead to a complete FHHt phenotype despite activation of the WNK4-SPAK-NCC pathway, possibly due to insufficient NCC activation. Chronically, only DCT-Jab1-/- mice developed tubule injury and atrophy of the DCT, suggesting a direct JAB1 effect or dysregulation of other cullins as mechanisms for injury.NEW & NOTEWORTHY CUL3 degrades WNK4, which prevents activation of NCC in the DCT. CSN regulation of CUL3 is impaired in the disease FHHt, causing accumulation of WNK4. Short-term DCT-specific disruption of CUL3 or the CSN in mice resulted in activation of the WNK4-SPAK-NCC pathway but not hyperkalemic metabolic acidosis found in FHHt. Tubule injury was observed only after long-term CSN disruption. The data suggest that disruption of other cullins may be the cause for the injury.
Collapse
Affiliation(s)
- Yujiro Maeoka
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, Oregon, United States
| | - Tanner Bradford
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, Oregon, United States
| | - Xiao-Tong Su
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, Oregon, United States
| | - Avika Sharma
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, Oregon, United States
| | - Chao-Ling Yang
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, Oregon, United States
| | - David H Ellison
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, Oregon, United States
- LeDucq Transatlantic Network of Excellence, Boston, Massachusetts, United States
| | - James A McCormick
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, Oregon, United States
| | - Ryan J Cornelius
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, Oregon, United States
| |
Collapse
|
4
|
Blackburn PR, Ebstein F, Hsieh TC, Motta M, Radio FC, Herkert JC, Rinne T, Thiffault I, Rapp M, Alders M, Maas S, Gerard B, Smol T, Vincent-Delorme C, Cogné B, Isidor B, Vincent M, Bachmann-Gagescu R, Rauch A, Joset P, Ferrero GB, Ciolfi A, Husson T, Guerrot AM, Bacino C, Macmurdo C, Thompson SS, Rosenfeld JA, Faivre L, Mau-Them FT, Deb W, Vignard V, Agrawal PB, Madden JA, Goldenberg A, Lecoquierre F, Zech M, Prokisch H, Necpál J, Jech R, Winkelmann J, Koprušáková MT, Konstantopoulou V, Younce JR, Shinawi M, Mighton C, Fung C, Morel CF, Lerner-Ellis J, DiTroia S, Barth M, Bonneau D, Krapels I, Stegmann APA, van der Schoot V, Brunet T, Bußmann C, Mignot C, Zampino G, Wortmann SB, Mayr JA, Feichtinger RG, Courtin T, Ravelli C, Keren B, Ziegler A, Hasadsri L, Pichurin PN, Klee EW, Grand K, Sanchez-Lara PA, Krüger E, Bézieau S, Klinkhammer H, Krawitz PM, Eichler EE, Tartaglia M, Küry S, Wang T. Loss-of-Function Variants in CUL3 Cause a Syndromic Neurodevelopmental Disorder. Ann Neurol 2024. [PMID: 39301775 DOI: 10.1002/ana.27077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 08/27/2024] [Accepted: 08/27/2024] [Indexed: 09/22/2024]
Abstract
OBJECTIVE De novo variants in cullin-3 ubiquitin ligase (CUL3) have been strongly associated with neurodevelopmental disorders (NDDs), but no large case series have been reported so far. Here, we aimed to collect sporadic cases carrying rare variants in CUL3, describe the genotype-phenotype correlation, and investigate the underlying pathogenic mechanism. METHODS Genetic data and detailed clinical records were collected via multicenter collaboration. Dysmorphic facial features were analyzed using GestaltMatcher. Variant effects on CUL3 protein stability were assessed using patient-derived T-cells. RESULTS We assembled a cohort of 37 individuals with heterozygous CUL3 variants presenting a syndromic NDD characterized by intellectual disability with or without autistic features. Of these, 35 have loss-of-function (LoF) and 2 have missense variants. CUL3 LoF variants in patients may affect protein stability leading to perturbations in protein homeostasis, as evidenced by decreased ubiquitin-protein conjugates in vitro. Notably, we show that 4E-BP1 (EIF4EBP1), a prominent substrate of CUL3, fails to be targeted for proteasomal degradation in patient-derived cells. INTERPRETATION Our study further refines the clinical and mutational spectrum of CUL3-associated NDDs, expands the spectrum of cullin RING E3 ligase-associated neuropsychiatric disorders, and suggests haploinsufficiency via LoF variants is the predominant pathogenic mechanism. ANN NEUROL 2024.
Collapse
Affiliation(s)
- Patrick R Blackburn
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Frédéric Ebstein
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, Greifswald, Germany
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du Thorax, Nantes, France
| | - Tzung-Chien Hsieh
- Institute of Genomic Statistics and Bioinformatics, University of Bonn, Bonn, Germany
| | - Marialetizia Motta
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | | | - Johanna C Herkert
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Tuula Rinne
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Isabelle Thiffault
- Center for Pediatric Genomic Medicine, Children's Mercy Hospital, Kansas City, MO, USA
- Department of Pathology and Laboratory Medicine, Children's Mercy Hospitals, Kansas City, MO, USA
| | - Michele Rapp
- Department of Pediatrics-Clinical Genetics and Metabolism, Children's Hospital Colorado, Aurora, CO, USA
| | - Mariel Alders
- Amsterdam University Medical Center, University of Amsterdam, Department of Clinical Genetics, Amsterdam, The Netherlands
| | - Saskia Maas
- Amsterdam University Medical Center, University of Amsterdam, Department of Clinical Genetics, Amsterdam, The Netherlands
| | - Bénédicte Gerard
- Unité de Biologie et de Génétique Moléculaire, Center Hospitalier Universitaire de Strasbourg, Strasbourg, France
| | - Thomas Smol
- Univ Lille, CHU Lille, RADEME Team, Institut de Génétique Médicale, Lille, France
| | | | - Benjamin Cogné
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du Thorax, Nantes, France
- Nantes Université, CHU de Nantes, Service de Génétique Médicale, Nantes, France
| | - Bertrand Isidor
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du Thorax, Nantes, France
- Nantes Université, CHU de Nantes, Service de Génétique Médicale, Nantes, France
| | - Marie Vincent
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du Thorax, Nantes, France
- Nantes Université, CHU de Nantes, Service de Génétique Médicale, Nantes, France
| | - Ruxandra Bachmann-Gagescu
- Institute of Medical Genetics, University of Zurich, Schlieren, Switzerland
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Anita Rauch
- Institute of Medical Genetics, University of Zurich, Schlieren, Switzerland
| | - Pascal Joset
- Medical Genetics, Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Giovanni Battista Ferrero
- Department of Clinical and Biological Sciences, San Luigi Gonzaga University Hospital, University of Torino, Turin, Italy
| | - Andrea Ciolfi
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Thomas Husson
- Department of Research, Center Hospitalier du Rouvray, Rouen, France
- Normandie Univ, UNIROUEN, Inserm U1245 and CHU Rouen, Department of Genetics and Reference Center for Developmental Disorders, Rouen, France
| | - Anne-Marie Guerrot
- Normandie Univ, UNIROUEN, Inserm U1245 and CHU Rouen, Department of Genetics and Reference Center for Developmental Disorders, Rouen, France
| | - Carlos Bacino
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Colleen Macmurdo
- Division of Medical Genetics, Department of Internal Medicine, Baylor Scott and White Medical Center, Temple, TX, USA
| | - Stephanie S Thompson
- Division of Medical Genetics, Department of Internal Medicine, Baylor Scott and White Medical Center, Temple, TX, USA
| | - Jill A Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Baylor Genetics, Houston, TX, USA
| | - Laurence Faivre
- Centre de Génétique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs, FHU TRANSLAD CHU, Dijon, France
- INSERM UMR1231, équipe GAD, Université de Bourgogne-Franche Comté, Dijon, France
| | - Frederic Tran Mau-Them
- INSERM UMR1231, équipe GAD, Université de Bourgogne-Franche Comté, Dijon, France
- Unité Fonctionnelle Innovation en Diagnostic Génomique des Maladies Rares, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France
| | - Wallid Deb
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du Thorax, Nantes, France
- Nantes Université, CHU de Nantes, Service de Génétique Médicale, Nantes, France
| | - Virginie Vignard
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du Thorax, Nantes, France
- Nantes Université, CHU de Nantes, Service de Génétique Médicale, Nantes, France
| | - Pankaj B Agrawal
- Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston, MA, USA
- Division of Neonatology, Department of Pediatrics, University of Miami Miller School of Medicine and Holtz Children's Hospital, Jackson Health System, Miami, FL, USA
| | - Jill A Madden
- Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston, MA, USA
- Division of Neonatology, Department of Pediatrics, University of Miami Miller School of Medicine and Holtz Children's Hospital, Jackson Health System, Miami, FL, USA
| | - Alice Goldenberg
- Normandie Univ, UNIROUEN, Inserm U1245 and CHU Rouen, Department of Genetics and Reference Center for Developmental Disorders, Rouen, France
| | - François Lecoquierre
- Normandie Univ, UNIROUEN, Inserm U1245 and CHU Rouen, Department of Genetics and Reference Center for Developmental Disorders, Rouen, France
| | - Michael Zech
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
- Institute for Advanced Study, Technical University of Munich, Garching, Germany
| | - Holger Prokisch
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
- Institute for Advanced Study, Technical University of Munich, Garching, Germany
| | - Ján Necpál
- Department of Neurology, Zvolen Hospital, Zvolen, Slovakia
- Department of Neurology, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Robert Jech
- Department of Neurology, Charles University, First Faculty of Medicine and General University Hospital, Prague, Czech Republic
| | - Juliane Winkelmann
- Institute of Neurogenomics, Helmholtz Zentrum Muenchen, Neuherberg, Germany
- Neurogenetics, Technische Universitaet Muenchen, Munich, Germany
- Institute of Human Genetics, Klinikum rechts der Isar der TUM, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | | | | | - John R Younce
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Marwan Shinawi
- Division of Genetics and Genomic Medicine, St. Louis Children's Hospital, St. Louis, MO, USA
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Chloe Mighton
- Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, Canada
- Genomics Health Services and Policy Research Program, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, Canada
| | - Charlotte Fung
- The Fred A. Litwin Family Centre in Genetic Medicine, University Health Network and Sinai Health System, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Chantal F Morel
- The Fred A. Litwin Family Centre in Genetic Medicine, University Health Network and Sinai Health System, Toronto, Canada
- Department of Medicine, University of Toronto, Toronto, Canada
| | - Jordan Lerner-Ellis
- Pathology and Laboratory Medicine, Mount Sinai Hospital, Sinai Health, Toronto, Canada
- Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, Canada
| | - Stephanie DiTroia
- Center for Mendelian Genomics, Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Magalie Barth
- Department of Biochemistry and Genetics, University Hospital of Angers, Angers, France
- Mitovasc Unit, UMR CNRS 6015-INSERM 1083, Angers, France
| | - Dominique Bonneau
- Department of Biochemistry and Genetics, University Hospital of Angers, Angers, France
| | - Ingrid Krapels
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
- Department of Clinical Genetics and School for Oncology and Developmental Biology, Maastricht UMC, Maastricht, The Netherlands
| | - Alexander P A Stegmann
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
- Department of Clinical Genetics and School for Oncology and Developmental Biology, Maastricht UMC, Maastricht, The Netherlands
| | - Vyne van der Schoot
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
- Department of Clinical Genetics and School for Oncology and Developmental Biology, Maastricht UMC, Maastricht, The Netherlands
| | - Theresa Brunet
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
- Dr. v. Hauner Children's Hospital, Department of Pediatric Neurology and Developmental Medicine, LMU-University of Munich, Munich, Germany
| | - Cornelia Bußmann
- Department of Neuropediatrics, ATOS Klinik Heidelberg, Heidelberg, Germany
| | - Cyril Mignot
- Département de Génétique, AP-HP-Sorbonne Université, Hôpital Trousseau & Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Giuseppe Zampino
- Center for Rare Diseases and Birth Defects, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Dipartimento di Scienze Della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Saskia B Wortmann
- University Children's Hospital, Paracelsus Medical University (PMU), Salzburg, Austria
| | - Johannes A Mayr
- University Children's Hospital, Paracelsus Medical University (PMU), Salzburg, Austria
| | - René G Feichtinger
- University Children's Hospital, Paracelsus Medical University (PMU), Salzburg, Austria
| | - Thomas Courtin
- Center for Molecular and Chromosomal Genetics, AP-HP-Sorbonne University, Pitié-Salpêtrière Hospital, Paris, France
| | - Claudia Ravelli
- Department of Pediatric Neurology and Neurogenetic Referral Center, AP-HP-Sorbonne Université, Armand Trousseau Hospital, Paris, France
| | - Boris Keren
- Département de Génétique, AP-HP-Sorbonne Université, Hôpital Trousseau & Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Alban Ziegler
- Mitovasc Unit, UMR CNRS 6015-INSERM 1083, Angers, France
- Department of Biochemistry and Genetics, Angers University Hospital and UMR CNRS, Angers, France
| | - Linda Hasadsri
- Division of Laboratory Genetics and Genomics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Pavel N Pichurin
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA
| | - Eric W Klee
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA
- Department of Quantitative Health Sciences Research, Mayo Clinic, Rochester, MN, USA
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Katheryn Grand
- Department of Pediatrics, Guerin Children's at Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Pedro A Sanchez-Lara
- Department of Pediatrics, Guerin Children's at Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Elke Krüger
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, Greifswald, Germany
| | - Stéphane Bézieau
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du Thorax, Nantes, France
- Nantes Université, CHU de Nantes, Service de Génétique Médicale, Nantes, France
| | - Hannah Klinkhammer
- Institute of Genomic Statistics and Bioinformatics, University of Bonn, Bonn, Germany
- Institute of Medical Biometry, Informatics and Epidemiology, University of Bonn, Bonn, Germany
| | - Peter Michael Krawitz
- Institute of Genomic Statistics and Bioinformatics, University of Bonn, Bonn, Germany
| | - Evan E Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| | - Marco Tartaglia
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Sébastien Küry
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du Thorax, Nantes, France
- Nantes Université, CHU de Nantes, Service de Génétique Médicale, Nantes, France
| | - Tianyun Wang
- Department of Medical Genetics, Center for Medical Genetics, School of Basic Medical Sciences, Peking University, Beijing, China
- Neuroscience Research Institute, Peking University, Beijing, China
- Key Laboratory for Neuroscience, Ministry of Education of China & National Health Commission of China, Beijing, China
- Autism Research Center, Peking University Health Science Center, Beijing, China
| |
Collapse
|
5
|
Omage K, McCormick JA. Cullin 3/with No Lysine [K] Kinase/Ste20/SPS-Related Proline Alanine Rich Kinase Signaling: Impact on NaCl Cotransporter Activity in BP Regulation. KIDNEY360 2024; 5:1386-1393. [PMID: 39120943 PMCID: PMC11441819 DOI: 10.34067/kid.0000000000000527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 07/25/2024] [Indexed: 08/11/2024]
Abstract
The sodium chloride cotransporter (NCC) fine-tunes Na + balance and indirectly affects the homeostasis of other ions including K + , Mg 2+ , and Ca 2+ . Owing to its effects on Na + balance, BP is significantly affected by alterations in NCC activity. Several factors have been reported to influence the expression and activity of NCC. One critical factor is NCC phosphorylation/dephosphorylation that occurs at key serine-threonine amino acid residues of the protein. Phosphorylation, which results in increased NCC activity, is mediated by the with no lysine [K] (WNK)-SPS-related proline alanine rich kinase (SPAK)/OSR1 kinases. NCC activation stimulates reabsorption of Na + , increasing extracellular fluid volume and hence BP. On the other hand, proteasomal degradation of WNK kinases after ubiquitination by the Cullin 3-Kelch-like 3 E3 ubiquitin ligase complex and dephosphorylation pathways oppose WNK-SPAK/OSR1-mediated NCC activation. Components of the Cullin 3/Kelch-like 3-WNK-SPAK/OSR1 regulatory pathway may be targets for novel antihypertensive drugs. In this review, we outline the impact of these regulators on the activity of NCC and the consequent effect on BP.
Collapse
Affiliation(s)
- Kingsley Omage
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, Oregon
| | | |
Collapse
|
6
|
Zhao Y, Schubert H, Blakely A, Forbush B, Smith MD, Rinehart J, Cao E. Structural bases for Na +-Cl - cotransporter inhibition by thiazide diuretic drugs and activation by kinases. Nat Commun 2024; 15:7006. [PMID: 39143061 PMCID: PMC11324901 DOI: 10.1038/s41467-024-51381-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 08/06/2024] [Indexed: 08/16/2024] Open
Abstract
The Na+-Cl- cotransporter (NCC) drives salt reabsorption in the kidney and plays a decisive role in balancing electrolytes and blood pressure. Thiazide and thiazide-like diuretics inhibit NCC-mediated renal salt retention and have been cornerstones for treating hypertension and edema since the 1950s. Here we determine NCC co-structures individually complexed with the thiazide drug hydrochlorothiazide, and two thiazide-like drugs chlorthalidone and indapamide, revealing that they fit into an orthosteric site and occlude the NCC ion translocation pathway. Aberrant NCC activation by the WNKs-SPAK kinase cascade underlies Familial Hyperkalemic Hypertension, but it remains unknown whether/how phosphorylation transforms the NCC structure to accelerate ion translocation. We show that an intracellular amino-terminal motif of NCC, once phosphorylated, associates with the carboxyl-terminal domain, and together, they interact with the transmembrane domain. These interactions suggest a phosphorylation-dependent allosteric network that directly influences NCC ion translocation.
Collapse
Affiliation(s)
- Yongxiang Zhao
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, P. R. China
| | - Heidi Schubert
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Alan Blakely
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Biff Forbush
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA
| | - Micholas Dean Smith
- Department of Biochemistry and Cellular and Molecular Biology, The University of Tennessee, Knoxville, Knoxville, TN, 37996, USA
| | - Jesse Rinehart
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA
- Systems Biology Institute, Yale University, New Haven, CT, USA
| | - Erhu Cao
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA.
| |
Collapse
|
7
|
Xiang L, Chen J, Zhao X, Hu J, Yu J, Zeng X, Liu T, Ren J, Zhang S. Synergistic Machine Learning Accelerated Discovery of Nanoporous Inorganic Crystals as Non-Absorbable Oral Drugs. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404688. [PMID: 38815983 DOI: 10.1002/adma.202404688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/21/2024] [Indexed: 06/01/2024]
Abstract
Machine learning (ML) has taken drug discovery to new heights, where effective ML training requires vast quantities of high-quality experimental data as input. Non-absorbable oral drugs (NODs) have unique safety advantage for chronic diseases due to their zero systemic exposure, but their empirical discovery is still time-consuming and costly. Here, a synergistic ML method, integrating small data-driven multi-layer unsupervised learning, in silico quantum-mechanical computations, and minimal wet-lab experiments is devised to identify the finest NODs from massive inorganic materials to achieve multi-objective function (high selectivity, large capacity, and stability). Based on this method, a NH4-form nanoporous zeolite with merlinoite (MER) framework (NH4-MER) is discovered for the treatment of hyperkalemia. In three different animal models, NH4-MER shows a superior safety and efficacy profile in reducing blood K+ without Na+ release, which is an unmet clinical need in chronic kidney disease and Gordon's syndrome. This work provides a synergistic ML method to accelerate the discovery of NODs and other shape-selective materials.
Collapse
Affiliation(s)
- Liang Xiang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Jiangzhi Chen
- School of Physics Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Xin Zhao
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Jinbin Hu
- School of Physics Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Jia Yu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Xiaodong Zeng
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Tianzhi Liu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Jie Ren
- School of Physics Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
- Shanghai Research Institute for Intelligent Autonomous Systems, Tongji University, Shanghai, 200092, P. R. China
| | - Shiyi Zhang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
8
|
Duan XP, Zhang CB, Wang WH, Lin DH. Role of calcineurin in regulating renal potassium (K +) excretion: Mechanisms of calcineurin inhibitor-induced hyperkalemia. Acta Physiol (Oxf) 2024; 240:e14189. [PMID: 38860527 PMCID: PMC11250626 DOI: 10.1111/apha.14189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/12/2024]
Abstract
Calcineurin, protein phosphatase 2B (PP2B) or protein phosphatase 3 (PP3), is a calcium-dependent serine/threonine protein phosphatase. Calcineurin is widely expressed in the kidney and regulates renal Na+ and K+ transport. In the thick ascending limb, calcineurin plays a role in inhibiting NKCC2 function by promoting the dephosphorylation of the cotransporter and an intracellular sorting receptor, called sorting-related-receptor-with-A-type repeats (SORLA), is involved in modulating the effect of calcineurin on NKCC2. Calcineurin also participates in regulating thiazide-sensitive NaCl-cotransporter (NCC) in the distal convoluted tubule. The mechanisms by which calcineurin regulates NCC include directly dephosphorylation of NCC, regulating Kelch-like-3/CUL3 E3 ubiquitin-ligase complex, which is responsible for WNK (with-no-lysin-kinases) ubiquitination, and inhibiting Kir4.1/Kir5.1, which determines NCC expression/activity. Finally, calcineurin is also involved in regulating ROMK (Kir1.1) channels in the cortical collecting duct and Cyp11 2 expression in adrenal zona glomerulosa. In summary, calcineurin is involved in the regulation of NKCC2, NCC, and inwardly rectifying K+ channels in the kidney, and it also plays a role in modulating aldosterone synthesis in adrenal gland, which regulates epithelial-Na+-channel expression/activity. Thus, application of calcineurin inhibitors (CNIs) is expected to abrupt calcineurin-mediated regulation of transepithelial Na+ and K+ transport in the kidney. Consequently, CNIs cause hypertension, compromise renal K+ excretion, and induce hyperkalemia.
Collapse
Affiliation(s)
- Xin-Peng Duan
- Department of Physiology, Xuzhou Medical University, Xuzhou, China
| | - Cheng-Biao Zhang
- Department of Physiology, Xuzhou Medical University, Xuzhou, China
- Department of Pharmacology, New York Medical College, Valhalla, New York, USA
| | - Wen-Hui Wang
- Department of Pharmacology, New York Medical College, Valhalla, New York, USA
| | - Dao-Hong Lin
- Department of Pharmacology, New York Medical College, Valhalla, New York, USA
| |
Collapse
|
9
|
Rioux AV, Nsimba-Batomene TR, Slimani S, Bergeron NAD, Gravel MAM, Schreiber SV, Fiola MJ, Haydock L, Garneau AP, Isenring P. Navigating the multifaceted intricacies of the Na +-Cl - cotransporter, a highly regulated key effector in the control of hydromineral homeostasis. Physiol Rev 2024; 104:1147-1204. [PMID: 38329422 PMCID: PMC11381001 DOI: 10.1152/physrev.00027.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 01/01/2024] [Accepted: 02/03/2024] [Indexed: 02/09/2024] Open
Abstract
The Na+-Cl- cotransporter (NCC; SLC12A3) is a highly regulated integral membrane protein that is known to exist as three splice variants in primates. Its primary role in the kidney is to mediate the cosymport of Na+ and Cl- across the apical membrane of the distal convoluted tubule. Through this role and the involvement of other ion transport systems, NCC allows the systemic circulation to reclaim a fraction of the ultrafiltered Na+, K+, Cl-, and Mg+ loads in exchange for Ca2+ and [Formula: see text]. The physiological relevance of the Na+-Cl- cotransport mechanism in humans is illustrated by several abnormalities that result from NCC inactivation through the administration of thiazides or in the setting of hereditary disorders. The purpose of the present review is to discuss the molecular mechanisms and overall roles of Na+-Cl- cotransport as the main topics of interest. On reading the narrative proposed, one will realize that the knowledge gained in regard to these themes will continue to progress unrelentingly no matter how refined it has now become.
Collapse
Affiliation(s)
- A V Rioux
- Department of Medicine, Nephrology Research Group, Laval University, Quebec City, Quebec, Canada
| | - T R Nsimba-Batomene
- Department of Medicine, Nephrology Research Group, Laval University, Quebec City, Quebec, Canada
| | - S Slimani
- Department of Medicine, Nephrology Research Group, Laval University, Quebec City, Quebec, Canada
| | - N A D Bergeron
- Department of Medicine, Nephrology Research Group, Laval University, Quebec City, Quebec, Canada
| | - M A M Gravel
- Department of Medicine, Nephrology Research Group, Laval University, Quebec City, Quebec, Canada
| | - S V Schreiber
- Department of Medicine, Nephrology Research Group, Laval University, Quebec City, Quebec, Canada
| | - M J Fiola
- Department of Medicine, Nephrology Research Group, Laval University, Quebec City, Quebec, Canada
| | - L Haydock
- Department of Medicine, Nephrology Research Group, Laval University, Quebec City, Quebec, Canada
- Service de Néphrologie-Transplantation Rénale Adultes, Hôpital Necker-Enfants Malades, AP-HP, INSERM U1151, Université Paris Cité, Paris, France
| | - A P Garneau
- Department of Medicine, Nephrology Research Group, Laval University, Quebec City, Quebec, Canada
- Service de Néphrologie-Transplantation Rénale Adultes, Hôpital Necker-Enfants Malades, AP-HP, INSERM U1151, Université Paris Cité, Paris, France
| | - P Isenring
- Department of Medicine, Nephrology Research Group, Laval University, Quebec City, Quebec, Canada
| |
Collapse
|
10
|
Zappa M, Golino M, Verdecchia P, Angeli F. Genetics of Hypertension: From Monogenic Analysis to GETomics. J Cardiovasc Dev Dis 2024; 11:154. [PMID: 38786976 PMCID: PMC11121881 DOI: 10.3390/jcdd11050154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/26/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024] Open
Abstract
Arterial hypertension is the most frequent cardiovascular risk factor all over the world, and it is one of the leading drivers of the risk of cardiovascular events and death. It is a complex trait influenced by heritable and environmental factors. To date, the World Health Organization estimates that 1.28 billion adults aged 30-79 years worldwide have arterial hypertension (defined by European guidelines as office systolic blood pressure ≥ 140 mmHg or office diastolic blood pressure ≥ 90 mmHg), and 7.1 million die from this disease. The molecular genetic basis of primary arterial hypertension is the subject of intense research and has recently yielded remarkable progress. In this review, we will discuss the genetics of arterial hypertension. Recent studies have identified over 900 independent loci associated with blood pressure regulation across the genome. Comprehending these mechanisms not only could shed light on the pathogenesis of the disease but also hold the potential for assessing the risk of developing arterial hypertension in the future. In addition, these findings may pave the way for novel drug development and personalized therapeutic strategies.
Collapse
Affiliation(s)
- Martina Zappa
- Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy
| | - Michele Golino
- Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy
- Pauley Heart Center, Virginia Commonwealth University, Richmond, VA 23223, USA
| | - Paolo Verdecchia
- Fondazione Umbra Cuore e Ipertensione-ONLUS, 06100 Perugia, Italy
- Division of Cardiology, Hospital S. Maria della Misericordia, 06100 Perugia, Italy
| | - Fabio Angeli
- Department of Medicine and Technological Innovation (DiMIT), University of Insubria, 21100 Varese, Italy
- Department of Medicine and Cardiopulmonary Rehabilitation, Maugeri Care and Research Institutes, IRCCS, 21049 Tradate, Italy
| |
Collapse
|
11
|
Panagopoulos I, Andersen K, Stavseth V, Torkildsen S, Heim S, Tandsæther MR. Germline MYOF1::WNK4 and VPS25::MYOF1 Chimeras Generated by the Constitutional Translocation t(17;19)(q21;p13) in Two Siblings With Myelodysplastic Syndrome. Cancer Genomics Proteomics 2024; 21:272-284. [PMID: 38670586 PMCID: PMC11059592 DOI: 10.21873/cgp.20446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/17/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND/AIM Constitutional chromosomal aberrations are rare in hematologic malignancies and their pathogenetic role is mostly poorly understood. We present a comprehensive molecular characterization of a novel constitutional chromosomal translocation found in two siblings - sisters - diagnosed with myelodysplastic syndrome (MDS). MATERIALS AND METHODS Bone marrow and blood cells from the two patients were examined using G-banding, RNA sequencing, PCR, and Sanger sequencing. RESULTS We identified a balanced t(17;19)(q21;p13) translocation in both siblings' bone marrow, blood cells, and phytohemagglutinin-stimulated lymphocytes. The translocation generated a MYO1F::WNK4 chimera on the der(19)t(17;19), encoding a chimeric serine/threonine kinase, and a VPS25::MYO1F on the der(17), potentially resulting in an aberrant VPS25 protein. CONCLUSION The t(17;19)(q21;p13) translocation found in the two sisters probably predisposed them to myelodysplasia. How the MYO1F::WNK4 and/or VPS25::MYO1F chimeras, perhaps especially MYO1F::WNK4 that encodes a chimeric serine/threonine kinase, played a role in MDS pathogenesis, remains incompletely understood.
Collapse
Affiliation(s)
- Ioannis Panagopoulos
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway;
| | - Kristin Andersen
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Vidar Stavseth
- Department of Haematology, Levanger Hospital, Levanger, Norway
| | - Synne Torkildsen
- Department of Haematology, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Sverre Heim
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
- Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Maren Randi Tandsæther
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
12
|
Mani A. Update in genetic and epigenetic causes of hypertension. Cell Mol Life Sci 2024; 81:201. [PMID: 38691164 PMCID: PMC11062952 DOI: 10.1007/s00018-024-05220-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 05/03/2024]
Abstract
Hypertension is a heritable disease that affects one-fourth of the population and accounts for about 50% of cardiovascular deaths. The genetic basis of hypertension is multifaceted, involving both monogenic and most commonly complex polygenic forms. With the advent of the human genome project, genome-wide association studies (GWAS) have identified a plethora of loci linked to hypertension by examining common genetic variations. It's notable, however, that the majority of these genetic variants do not affect the protein-coding sequences, posing a considerable obstacle in pinpointing the actual genes responsible for hypertension. Despite these challenges, precise mapping of GWAS-identified loci is emerging as a promising strategy to reveal novel genes and potential targets for the pharmacological management of blood pressure. This review provides insight into the monogenic and polygenic causes of hypertension. Special attention is given to PRDM6, among the earliest functionally characterized GWAS-identified genes. Moreover, this review delves into the roles of genes contributing to renal and vascular forms of hypertension, offering insights into their genetic and epigenetic mechanisms of action.
Collapse
Affiliation(s)
- Arya Mani
- Department of Internal Medicine, Yale University School of Medicine, Yale Cardiovascular Research Center, 300 George Street, New Haven, CT, 06511, USA.
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
13
|
Gu L, Du Y, Chen J, Hasan MN, Clayton YD, Matye DJ, Friedman JE, Li T. Cullin 3 RING E3 ligase inactivation causes NRF2-dependent NADH reductive stress, hepatic lipodystrophy, and systemic insulin resistance. Proc Natl Acad Sci U S A 2024; 121:e2320934121. [PMID: 38630726 PMCID: PMC11046679 DOI: 10.1073/pnas.2320934121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 03/25/2024] [Indexed: 04/19/2024] Open
Abstract
Cullin RING E3 ligases (CRL) have emerged as key regulators of disease-modifying pathways and therapeutic targets. Cullin3 (Cul3)-containing CRL (CRL3) has been implicated in regulating hepatic insulin and oxidative stress signaling. However, CRL3 function in liver pathophysiology is poorly defined. Here, we report that hepatocyte Cul3 knockout results in rapid resolution of steatosis in obese mice. However, the remarkable resistance of hepatocyte Cul3 knockout mice to developing steatosis does not lead to overall metabolic improvement but causes systemic metabolic disturbances. Liver transcriptomics analysis identifies that CRL3 inactivation causes persistent activation of the nuclear factor erythroid 2-related factor 2 (NRF2) antioxidant defense pathway, which also reprograms the lipid transcriptional network to prevent TG storage. Furthermore, global metabolomics reveals that NRF2 activation induces numerous NAD+-consuming aldehyde dehydrogenases to increase the cellular NADH/NAD+ ratio, a redox imbalance termed NADH reductive stress that inhibits the glycolysis-citrate-lipogenesis axis in Cul3 knockout livers. As a result, this NRF2-induced cellular lipid storage defect promotes hepatic ceramide accumulation, elevates circulating fatty acids, and worsens systemic insulin resistance in a vicious cycle. Hepatic lipid accumulation is restored, and liver injury and hyperglycemia are attenuated when NRF2 activation and NADH reductive stress are abolished in hepatocyte Cul3/Nrf2 double-knockout mice. The resistance to hepatic steatosis, hyperglycemia, and NADH reductive stress are observed in hepatocyte Keap1 knockout mice with NRF2 activation. In summary, our study defines a critical role of CRL3 in hepatic metabolic regulation and demonstrates that the CRL3 downstream NRF2 overactivation causes hepatic metabolic maladaptation to obesity and insulin resistance.
Collapse
Affiliation(s)
- Lijie Gu
- Harold Hamm Diabetes Center, Department of Biochemistry and Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK73104
| | - Yanhong Du
- Harold Hamm Diabetes Center, Department of Biochemistry and Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK73104
| | - Jianglei Chen
- Harold Hamm Diabetes Center, Department of Biochemistry and Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK73104
| | - Mohammad Nazmul Hasan
- Harold Hamm Diabetes Center, Department of Biochemistry and Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK73104
| | - Yung Dai Clayton
- Harold Hamm Diabetes Center, Department of Biochemistry and Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK73104
| | - David J. Matye
- Harold Hamm Diabetes Center, Department of Biochemistry and Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK73104
| | - Jacob E. Friedman
- Harold Hamm Diabetes Center, Department of Biochemistry and Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK73104
| | - Tiangang Li
- Harold Hamm Diabetes Center, Department of Biochemistry and Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK73104
| |
Collapse
|
14
|
Duan H, Li N, Qi J, Li X, Zhou K. Cullin-3 proteins be a novel biomarkers and therapeutic targets for hyperchloremia induced by oral poisoning. Sci Rep 2024; 14:8597. [PMID: 38615119 PMCID: PMC11016057 DOI: 10.1038/s41598-024-59264-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 04/08/2024] [Indexed: 04/15/2024] Open
Abstract
Oral poisoning can trigger diverse physiological reactions, determined by the toxic substance involved. One such consequence is hyperchloremia, characterized by an elevated level of chloride in the blood and leads to kidney damage and impairing chloride ion regulation. Here, we conducted a comprehensive genome-wide analysis to investigate genes or proteins linked to hyperchloremia. Our analysis included functional enrichment, protein-protein interactions, gene expression, exploration of molecular pathways, and the identification of potential shared genetic factors contributing to the development of hyperchloremia. Functional enrichment analysis revealed that oral poisoning owing hyperchloremia is associated with 4 proteins e.g. Kelch-like protein 3, Serine/threonine-protein kinase WNK4, Serine/threonine-protein kinase WNK1 and Cullin-3. The protein-protein interaction network revealed Cullin-3 as an exceptional protein, displaying a maximum connection of 18 nodes. Insufficient data from transcriptomic analysis indicates that there are lack of information having direct associations between these proteins and human-related functions to oral poisoning, hyperchloremia, or metabolic acidosis. The metabolic pathway of Cullin-3 protein revealed that the derivative is Sulfonamide which play role in, increasing urine output, and metabolic acidosis resulted in hypertension. Based on molecular docking results analysis it found that Cullin-3 proteins has the lowest binding energies score and being suitable proteins. Moreover, no major variations were observed in unbound Cullin-3 and all three peptide bound complexes shows that all systems remain compact during 50 ns simulations. The results of our study revealed Cullin-3 proteins be a strong foundation for the development of potential drug targets or biomarker for future studies.
Collapse
Affiliation(s)
- Hui Duan
- Department of Emergency Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Na Li
- Department of Vascular Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Jia Qi
- Department of Hematology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Xi Li
- Department of Ophthalmology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Kun Zhou
- Department of Physical Examination Center, Taihe Hospital, Hubei University of Medicine, Shiyan, China.
| |
Collapse
|
15
|
Zhu D, Liang H, Du Z, Liu Q, Li G, Zhang W, Wu D, Zhou X, Song Y, Yang C. Altered Metabolism and Inflammation Driven by Post-translational Modifications in Intervertebral Disc Degeneration. RESEARCH (WASHINGTON, D.C.) 2024; 7:0350. [PMID: 38585329 PMCID: PMC10997488 DOI: 10.34133/research.0350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 03/18/2024] [Indexed: 04/09/2024]
Abstract
Intervertebral disc degeneration (IVDD) is a prevalent cause of low back pain and a leading contributor to disability. IVDD progression involves pathological shifts marked by low-grade inflammation, extracellular matrix remodeling, and metabolic disruptions characterized by heightened glycolytic pathways, mitochondrial dysfunction, and cellular senescence. Extensive posttranslational modifications of proteins within nucleus pulposus cells and chondrocytes play crucial roles in reshaping the intervertebral disc phenotype and orchestrating metabolism and inflammation in diverse contexts. This review focuses on the pivotal roles of phosphorylation, ubiquitination, acetylation, glycosylation, methylation, and lactylation in IVDD pathogenesis. It integrates the latest insights into various posttranslational modification-mediated metabolic and inflammatory signaling networks, laying the groundwork for targeted proteomics and metabolomics for IVDD treatment. The discussion also highlights unexplored territories, emphasizing the need for future research, particularly in understanding the role of lactylation in intervertebral disc health, an area currently shrouded in mystery.
Collapse
Affiliation(s)
- Dingchao Zhu
- Department of Orthopaedics, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Huaizhen Liang
- Department of Orthopaedics, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Zhi Du
- Department of Orthopaedics, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Qian Liu
- College of Life Sciences,
Wuhan University, Wuhan 430072, Hubei Province, China
| | - Gaocai Li
- Department of Orthopaedics, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Weifeng Zhang
- Department of Orthopaedics, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Di Wu
- Department of Orthopaedics, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Xingyu Zhou
- Department of Orthopaedics, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Yu Song
- Department of Orthopaedics, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Cao Yang
- Department of Orthopaedics, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| |
Collapse
|
16
|
Zhou Y, Zhang Q, Zhao Z, Hu X, You Q, Jiang Z. Targeting kelch-like (KLHL) proteins: achievements, challenges and perspectives. Eur J Med Chem 2024; 269:116270. [PMID: 38490062 DOI: 10.1016/j.ejmech.2024.116270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/07/2024] [Accepted: 02/19/2024] [Indexed: 03/17/2024]
Abstract
Kelch-like proteins (KLHLs) are a large family of BTB-containing proteins. KLHLs function as the substrate adaptor of Cullin 3-RING ligases (CRL3) to recognize substrates. KLHLs play pivotal roles in regulating various physiological and pathological processes by modulating the ubiquitination of their respective substrates. Mounting evidence indicates that mutations or abnormal expression of KLHLs are associated with various human diseases. Targeting KLHLs is a viable strategy for deciphering the KLHLs-related pathways and devising therapies for associated diseases. Here, we comprehensively review the known KLHLs inhibitors to date and the brilliant ideas underlying their development.
Collapse
Affiliation(s)
- Yangguo Zhou
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Qiong Zhang
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Ziquan Zhao
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Xiuqi Hu
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Qidong You
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Zhengyu Jiang
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
17
|
Ferdaus MZ, Koumangoye RB, Welling PA, Delpire E. Kinase Scaffold Cab39 Is Necessary for Phospho-Activation of the Thiazide-Sensitive NCC. Hypertension 2024; 81:801-810. [PMID: 38258567 PMCID: PMC10954405 DOI: 10.1161/hypertensionaha.123.22464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 01/11/2024] [Indexed: 01/24/2024]
Abstract
BACKGROUND Potassium regulates the WNK (with no lysine kinase)-SPAK (STE20/SPS1-related proline/alanine-rich kinase) signaling axis, which in turn controls the phosphorylation and activation of the distal convoluted tubule thiazide-sensitive NCC (sodium-chloride cotransporter) for sodium-potassium balance. Although their roles in the kidney have not been investigated, it has been postulated that Cab39 (calcium-binding protein 39) or Cab39l (Cab39-like) is required for SPAK/OSR1 (oxidative stress response 1) activation. This study demonstrates how they control the WNK-SPAK/OSR1-NCC pathway. METHODS We created a global knockout of Cab39l and a tamoxifen-inducible, NCC-driven, Cab39 knockout. The 2 lines were crossed to generate Cab39-DKO (Cab39 double knockout) animals. Mice were studied under control and low-potassium diet, which activates WNK-SPAK/OSR1-NCC phosphorylation. Western blots were used to assess the expression and phosphorylation of proteins. Blood and urine electrolytes were measured to test for compromised NCC function. Immunofluorescence studies were conducted to localize SPAK and OSR1. RESULTS Both Cab39l and Cab39 are expressed in distal convoluted tubule, and only the elimination of both leads to a striking absence of NCC phosphorylation. Cab39-DKO mice exhibited a loss-of-NCC function, like in Gitelman syndrome. In contrast to the apical membrane colocalization of SPAK with NCC in wild-type mice, SPAK and OSR1 become confined to intracellular puncta in the Cab39-DKO mice. CONCLUSIONS In the absence of Cab39 proteins, NCC cannot be phosphorylated, resulting in a Gitelman-like phenotype. Cab39 proteins function to localize SPAK at the apical membrane with NCC, reminiscent of the Cab39 yeast homolog function, translocating kinases during cytokinesis.
Collapse
Affiliation(s)
- Mohammed Z Ferdaus
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN (M.Z.F, R.B.K., E.D.)
| | - Rainelli B Koumangoye
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN (M.Z.F, R.B.K., E.D.)
| | - Paul A Welling
- Division of Nephrology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD (P.A.W.)
| | - Eric Delpire
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN (M.Z.F, R.B.K., E.D.)
| |
Collapse
|
18
|
Zhang J. Hereditary causes of hypertension due to increased sodium transport. Curr Opin Pediatr 2024; 36:211-218. [PMID: 37909881 DOI: 10.1097/mop.0000000000001304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
PURPOSE OF REVIEW Hypertension, commonly known as high blood pressure, is a widespread health condition affecting a large number of individuals across the globe. Although lifestyle choices and environmental factors are known to have a significant impact on its development, there is growing recognition of the influence of genetic factors in the pathogenesis of hypertension. This review specifically focuses on the hereditary causes of hypertension that are associated with increased sodium transport through the thiazide-sensitive NaCl cotransporter (NCC) or amiloride-sensitive epithelial sodium channel (ENaC), crucial mechanisms involved in regulating blood pressure in the kidneys. By examining genetic mutations and signaling molecules linked to the dysregulation of sodium transport, this review aims to deepen our understanding of the hereditary causes of hypertension and shed light on potential therapeutic targets. RECENT FINDINGS Liddle syndrome (LS) is a genetic disorder that typically manifests early in life and is characterized by hypertension, hypokalemic metabolic alkalosis, hyporeninemia, and suppressed aldosterone secretion. This condition is primarily caused by gain-of-function mutations in ENaC. In contrast, Pseudohypoaldosteronism type II (PHAII) is marked by hyperkalemia and hypertension, alongside other clinical features such as hyperchloremia, metabolic acidosis, and suppressed plasma renin levels. PHAII results from overactivations of NCC, brought about by gain-of-function mutations in its upstream signaling molecules, including WNK1 (with no lysine (K) 1), WNK4, Kelch-like 3 (KLHL3), and cullin3 (CUL3). SUMMARY NCC and ENaC are integral components, and their malfunctions lead to disorders like LS and PHAII, hereditary causes of hypertension. Current treatments for LS involve ENaC blockers (e.g., triamterene and amiloride) in conjunction with low-sodium diets, effectively normalizing blood pressure and potassium levels. In PHAII, thiazide diuretics, which inhibit NCC, are the mainstay treatment, albeit with some limitations and potential side effects. Ongoing research in developing alternative treatments, including small molecules targeting key regulators, holds promise for more effective and tailored hypertension solutions.
Collapse
Affiliation(s)
- Jinwei Zhang
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian
- State Key Laboratory of Chemical Biology, Research Center of Chemical Kinomics, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
- Institute of Biomedical and Clinical Sciences, Medical School, Faculty of Health and Life Sciences, University of Exeter, Hatherly Laboratories, Exeter, UK
| |
Collapse
|
19
|
Wang X, Ling Z, Luo T, Zhou Q, Zhao G, Li B, Xia K, Li J. Severity of Autism Spectrum Disorder Symptoms Associated with de novo Variants and Pregnancy-Induced Hypertension. J Autism Dev Disord 2024; 54:749-764. [PMID: 36445517 DOI: 10.1007/s10803-022-05824-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2022] [Indexed: 11/30/2022]
Abstract
Genetic factors, particularly, de novo variants (DNV), and an environment factor, exposure to pregnancy-induced hypertension (PIH), were reported to be associated with risk of autism spectrum disorder (ASD); however, how they jointly affect the severity of ASD symptom is unclear. We assessed the severity of core ASD symptoms affected by functional de novo variants or PIH. We selected phenotype data from Simon's Simplex Collection database, used genotypes from previous studies, and created linear regression models. We found that ASD patients carrying DNV with PIH exposure had increased adaptive and cognitive ability, decreased social problems, and enhanced repetitive behaviors; however, there was no difference in patients without DNV between those with or without PIH exposure. In addition, the DNV genes carried by patients exposed to PIH were enriched in ubiquitin-dependent proteolytic processes, highlighting how candidate genes in pathways and environments interact. The results indicate the joint contribution of DNV and PIH to ASD.
Collapse
Affiliation(s)
- Xiaomeng Wang
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, 41008, Hunan, China
- Centre for Medical Genetics, Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, 41008, Hunan, China
| | - Zhengbao Ling
- Centre for Medical Genetics, Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, 41008, Hunan, China
| | - Tengfei Luo
- Centre for Medical Genetics, Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, 41008, Hunan, China
| | - Qiao Zhou
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, 41008, Hunan, China
- Bioinformatics Center, National Clinical Research Centre for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Guihu Zhao
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, 41008, Hunan, China
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Bioinformatics Center, National Clinical Research Centre for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Bin Li
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, 41008, Hunan, China
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Bioinformatics Center, National Clinical Research Centre for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Kun Xia
- Centre for Medical Genetics, Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, 41008, Hunan, China.
- University of South China, Hengyang, Hunan, China.
| | - Jinchen Li
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, 41008, Hunan, China.
- Centre for Medical Genetics, Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, 41008, Hunan, China.
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Bioinformatics Center, National Clinical Research Centre for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
20
|
Carbajal-Contreras H, Murillo-de-Ozores AR, Magaña-Avila G, Marquez-Salinas A, Bourqui L, Tellez-Sutterlin M, Bahena-Lopez JP, Cortes-Arroyo E, Behn-Eschenburg SG, Lopez-Saavedra A, Vazquez N, Ellison DH, Loffing J, Gamba G, Castañeda-Bueno M. Arginine vasopressin regulates the renal Na +-Cl - and Na +-K +-Cl - cotransporters through with-no-lysine kinase 4 and inhibitor 1 phosphorylation. Am J Physiol Renal Physiol 2024; 326:F285-F299. [PMID: 38096266 PMCID: PMC11207557 DOI: 10.1152/ajprenal.00343.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/15/2023] [Accepted: 12/03/2023] [Indexed: 01/25/2024] Open
Abstract
Vasopressin regulates water homeostasis via the V2 receptor in the kidney at least in part through protein kinase A (PKA) activation. Vasopressin, through an unknown pathway, upregulates the activity and phosphorylation of Na+-Cl- cotransporter (NCC) and Na+-K+-2Cl- cotransporter 2 (NKCC2) by Ste20-related proline/alanine-rich kinase (SPAK) and oxidative stress-responsive kinase 1 (OSR1), which are regulated by the with-no-lysine kinase (WNK) family. Phosphorylation of WNK4 at PKA consensus motifs may be involved. Inhibitor 1 (I1), a protein phosphatase 1 (PP1) inhibitor, may also play a role. In human embryonic kidney (HEK)-293 cells, we assessed the phosphorylation of WNK4, SPAK, NCC, or NKCC2 in response to forskolin or desmopressin. WNK4 and cotransporter phosphorylation were studied in desmopressin-infused WNK4-/- mice and in tubule suspensions. In HEK-293 cells, only wild-type WNK4 but not WNK1, WNK3, or a WNK4 mutant lacking PKA phosphorylation motifs could upregulate SPAK or cotransporter phosphorylation in response to forskolin or desmopressin. I1 transfection maximized SPAK phosphorylation in response to forskolin in the presence of WNK4 but not of mutant WNK4 lacking PP1 regulation. We observed direct PP1 regulation of NKCC2 dephosphorylation but not of NCC or SPAK in the absence of WNK4. WNK4-/- mice with desmopressin treatment did not increase SPAK/OSR1, NCC, or NKCC2 phosphorylation. In stimulated tubule suspensions from WNK4-/- mice, upregulation of pNKCC2 was reduced, whereas upregulation of SPAK phosphorylation was absent. These findings suggest that WNK4 is a central node in which kinase and phosphatase signaling converge to connect cAMP signaling to the SPAK/OSR1-NCC/NKCC2 pathway.NEW & NOTEWORTHY With-no-lysine kinases regulate the phosphorylation and activity of the Na+-Cl- and Na+-K+-2Cl- cotransporters. This pathway is modulated by arginine vasopressin (AVP). However, the link between AVP and WNK signaling remains unknown. Here, we show that AVP activates WNK4 through increased phosphorylation at putative protein kinase A-regulated sites and decreases its dephosphorylation by protein phosphatase 1. This work increases our understanding of the signaling pathways mediating AVP actions in the kidney.
Collapse
Affiliation(s)
- Hector Carbajal-Contreras
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
- PECEM, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Adrian Rafael Murillo-de-Ozores
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
- Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - German Magaña-Avila
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
- Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Alejandro Marquez-Salinas
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
- PECEM, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Laurent Bourqui
- Institute of Anatomy, University of Zurich, Zurich, Switzerland
| | - Michelle Tellez-Sutterlin
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Jessica P Bahena-Lopez
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, Oregon, United States
- Oregon Clinical and Translational Research Institute, Oregon Health and Science University, Portland, Oregon, United States
| | - Eduardo Cortes-Arroyo
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Sebastián González Behn-Eschenburg
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Alejandro Lopez-Saavedra
- Unidad de Aplicaciones Avanzadas en Microscopía del Instituto Nacional de Cancerología y la Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Norma Vazquez
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - David H Ellison
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, Oregon, United States
- Oregon Clinical and Translational Research Institute, Oregon Health and Science University, Portland, Oregon, United States
- Veterans Affairs Portland Health Care System, Portland, Oregon, United States
| | | | - Gerardo Gamba
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
- PECEM, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Maria Castañeda-Bueno
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| |
Collapse
|
21
|
Sigmund CD. The 2023 Walter B. Cannon Award Lecture: Mechanisms Regulating Vascular Function and Blood Pressure by the PPARγ-RhoBTB1-CUL3 Pathway. FUNCTION 2024; 5:zqad071. [PMID: 38196837 PMCID: PMC10775765 DOI: 10.1093/function/zqad071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 12/08/2023] [Indexed: 01/11/2024] Open
Abstract
Human genetic and clinical trial data suggest that peroxisome proliferator activated receptor γ (PPARγ), a nuclear receptor transcription factor plays an important role in the regulation of arterial blood pressure. The examination of a series of novel animal models, coupled with transcriptomic and proteomic analysis, has revealed that PPARγ and its target genes employ diverse pathways to regulate vascular function and blood pressure. In endothelium, PPARγ target genes promote an antioxidant state, stimulating both nitric oxide (NO) synthesis and bioavailability, essential components of endothelial-smooth muscle communication. In vascular smooth muscle, PPARγ induces the expression of a number of genes that promote an antiinflammatory state and tightly control the level of cGMP, thus promoting responsiveness to endothelial-derived NO. One of the PPARγ targets in smooth muscle, Rho related BTB domain containing 1 (RhoBTB1) acts as a substrate adaptor for proteins to be ubiquitinated by the E3 ubiquitin ligase Cullin-3 and targeted for proteasomal degradation. One of these proteins, phosphodiesterase 5 (PDE5) is a target of the Cullin-3/RhoBTB1 pathway. Phosphodiesterase 5 degrades cGMP to GMP and thus regulates the smooth muscle response to NO. Moreover, expression of RhoBTB1 under condition of RhoBTB1 deficiency reverses established arterial stiffness. In conclusion, the coordinated action of PPARγ in endothelium and smooth muscle is needed to maintain NO bioavailability and activity, is an essential regulator of vasodilator/vasoconstrictor balance, and regulates blood vessel structure and stiffness.
Collapse
Affiliation(s)
- Curt D Sigmund
- Department of Physiology, Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
22
|
Maeoka Y, Nguyen LT, Sharma A, Cornelius RJ, Su XT, Gutierrez MR, Carbajal-Contreras H, Castañeda-Bueno M, Gamba G, McCormick JA. Dysregulation of the WNK4-SPAK/OSR1 pathway has a minor effect on baseline NKCC2 phosphorylation. Am J Physiol Renal Physiol 2024; 326:F39-F56. [PMID: 37881876 DOI: 10.1152/ajprenal.00100.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 10/27/2023] Open
Abstract
The with-no-lysine kinase 4 (WNK4)-sterile 20/SPS-1-related proline/alanine-rich kinase (SPAK)/oxidative stress-responsive kinase 1 (OSR1) pathway mediates activating phosphorylation of the furosemide-sensitive Na+-K+-2Cl- cotransporter (NKCC2) and the thiazide-sensitive NaCl cotransporter (NCC). The commonly used pT96/pT101-pNKCC2 antibody cross-reacts with pT53-NCC in mice on the C57BL/6 background due to a five amino acid deletion. We generated a new C57BL/6-specific pNKCC2 antibody (anti-pT96-NKCC2) and tested the hypothesis that the WNK4-SPAK/OSR1 pathway strongly regulates the phosphorylation of NCC but not NKCC2. In C57BL/6 mice, anti-pT96-NKCC2 detected pNKCC2 and did not cross-react with NCC. Abundances of pT96-NKCC2 and pT53-NCC were evaluated in Wnk4-/-, Osr1-/-, Spak-/-, and Osr1-/-/Spak-/- mice and in several models of the disease familial hyperkalemic hypertension (FHHt) in which the CUL3-KLHL3 ubiquitin ligase complex that promotes WNK4 degradation is dysregulated (Cul3+/-/Δ9, Klhl3-/-, and Klhl3R528H/R528H). All mice were on the C57BL/6 background. In Wnk4-/- mice, pT53-NCC was almost absent but pT96-NKCC2 was only slightly lower. pT53-NCC was almost absent in Spak-/- and Osr1-/-/Spak-/- mice, but pT96-NKCC2 abundance did not differ from controls. pT96-NKCC2/total NKCC2 was slightly lower in Osr1-/- and Osr1-/-/Spak-/- mice. WNK4 expression colocalized not only with NCC but also with NKCC2 in Klhl3-/- mice, but pT96-NKCC2 abundance was unchanged. Consistent with this, furosemide-induced urinary Na+ excretion following thiazide treatment was similar between Klhl3-/- and controls. pT96-NKCC2 abundance was also unchanged in the other FHHt mouse models. Our data show that disruption of the WNK4-SPAK/OSR1 pathway only mildly affects NKCC2 phosphorylation, suggesting a role for other kinases in NKCC2 activation. In FHHt models NKCC2 phosphorylation is unchanged despite higher WNK4 abundance, explaining the thiazide sensitivity of FHHt.NEW & NOTEWORTHY The renal cation cotransporters NCC and NKCC2 are activated following phosphorylation mediated by the WNK4-SPAK/OSR1 pathway. While disruption of this pathway strongly affects NCC activity, effects on NKCC2 activity are unclear since the commonly used phospho-NKCC2 antibody was recently reported to cross-react with phospho-NCC in mice on the C57BL/6 background. Using a new phospho-NKCC2 antibody specific for C57BL/6, we show that inhibition or activation of the WNK4-SPAK/OSR1 pathway in mice only mildly affects NKCC2 phosphorylation.
Collapse
Affiliation(s)
- Yujiro Maeoka
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, Oregon, United States
| | - Luan T Nguyen
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, Oregon, United States
| | - Avika Sharma
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, Oregon, United States
| | - Ryan J Cornelius
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, Oregon, United States
| | - Xiao-Tong Su
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, Oregon, United States
| | - Marissa R Gutierrez
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, Oregon, United States
| | - Héctor Carbajal-Contreras
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - María Castañeda-Bueno
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Gerardo Gamba
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - James A McCormick
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, Oregon, United States
| |
Collapse
|
23
|
Rotin D, Prag G. Physiological Functions of the Ubiquitin Ligases Nedd4-1 and Nedd4-2. Physiology (Bethesda) 2024; 39:18-29. [PMID: 37962894 DOI: 10.1152/physiol.00023.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/13/2023] [Accepted: 11/13/2023] [Indexed: 11/15/2023] Open
Abstract
The Nedd4 family of E3 ubiquitin ligases, consisting of a C2-WW(n)-HECT domain architecture, includes the closely related Nedd4/Nedd4-1 and Nedd4L/Nedd4-2, which play critical roles in human physiology and pathophysiology.This review focuses on the regulation of enzymatic activity of these Nedd4 proteins, as well as on their roles in regulating stability and function of membrane and other signaling proteins, such as ion channels, ion transporters, and growth factor receptors. The diseases caused by impairment of such regulation are discussed, as well as opportunities and challenges for targeting these enzymes for therapy.
Collapse
Affiliation(s)
- Daniela Rotin
- Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- Biochemistry Department, University of Toronto, Ontario, Canada
| | - Gali Prag
- School of Neurobiology, Biochemistry and Biophysics, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Israel
- Sagol School of Neuroscience, Tel Aviv University, Israel
| |
Collapse
|
24
|
Manas F, Singh S. Pseudohypoaldosteronism Type II or Gordon Syndrome: A Rare Syndrome of Hyperkalemia and Hypertension With Normal Renal Function. Cureus 2024; 16:e52594. [PMID: 38374860 PMCID: PMC10874887 DOI: 10.7759/cureus.52594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2023] [Indexed: 02/21/2024] Open
Abstract
Pseudohypoaldosteronism type II (PHA II) or Gordon syndrome is characterized by hyperkalemia, hypertension, hyperchloremic metabolic acidosis, low plasma renin activity, and normal kidney function. We report a rare case of a young adult female patient presenting with abdominal pain, diarrhea, and vomiting. She was hypertensive during the presentation. Blood work showed mild anemia, hyperkalemia, hyperchloremia, and metabolic acidosis, with normal renal function and liver function. Plasma renin activity and aldosterone levels were low-normal. These findings were suggestive of PHA II or Gordon syndrome. It is a rare familial disease, with a non-specific presentation and no specific diagnostic criteria, and physicians should suspect it in patients with hyperkalemia in the setting of normal glomerular filtration, along with hypertension (which can be absent), metabolic acidosis, hyperchloremia, low plasma renin activity, and relatively suppressed aldosterone.
Collapse
Affiliation(s)
- Fnu Manas
- Endocrinology, Henry Ford Health System, Detroit, USA
| | - Sneha Singh
- Internal Medicine, Sunrise Hospital and Medical Center, Las Vegas, USA
| |
Collapse
|
25
|
Singh V, Van Why SK. Monogenic Etiology of Hypertension. Med Clin North Am 2024; 108:157-172. [PMID: 37951648 DOI: 10.1016/j.mcna.2023.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Monogenic hypertension encompasses a group of conditions wherein single gene mutations result in increased renal sodium reabsorption manifesting as low renin hypertension. As these diseases are rare, their contribution to hypertension in children and adolescents is often overlooked. Precise diagnosis is essential in those who have not been found to have more common identifiable causes of hypertension in adolescents, since treatment strategies for these rare conditions are specific and different from antihypertensive regimens for the other more common causes of hypertension in this age group. The objective of this review is to provide insight to the rare, monogenic forms of hypertension.
Collapse
Affiliation(s)
- Vaishali Singh
- Department of Pediatrics, Medical College of Wisconsin, Suite 510, 999 North 92nd Street, Milwaukee, WI 53226, USA.
| | - Scott K Van Why
- Department of Pediatrics, Medical College of Wisconsin, Suite 510, 999 North 92nd Street, Milwaukee, WI 53226, USA
| |
Collapse
|
26
|
Zhang S, Meor Azlan NF, Josiah SS, Zhou J, Zhou X, Jie L, Zhang Y, Dai C, Liang D, Li P, Li Z, Wang Z, Wang Y, Ding K, Wang Y, Zhang J. The role of SLC12A family of cation-chloride cotransporters and drug discovery methodologies. J Pharm Anal 2023; 13:1471-1495. [PMID: 38223443 PMCID: PMC10785268 DOI: 10.1016/j.jpha.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 06/20/2023] [Accepted: 09/05/2023] [Indexed: 09/12/2023] Open
Abstract
The solute carrier family 12 (SLC12) of cation-chloride cotransporters (CCCs) comprises potassium chloride cotransporters (KCCs, e.g. KCC1, KCC2, KCC3, and KCC4)-mediated Cl- extrusion, and sodium potassium chloride cotransporters (N[K]CCs, NKCC1, NKCC2, and NCC)-mediated Cl- loading. The CCCs play vital roles in cell volume regulation and ion homeostasis. Gain-of-function or loss-of-function of these ion transporters can cause diseases in many tissues. In recent years, there have been considerable advances in our understanding of CCCs' control mechanisms in cell volume regulations, with many techniques developed in studying the functions and activities of CCCs. Classic approaches to directly measure CCC activity involve assays that measure the transport of potassium substitutes through the CCCs. These techniques include the ammonium pulse technique, radioactive or nonradioactive rubidium ion uptake-assay, and thallium ion-uptake assay. CCCs' activity can also be indirectly observed by measuring γ-aminobutyric acid (GABA) activity with patch-clamp electrophysiology and intracellular chloride concentration with sensitive microelectrodes, radiotracer 36Cl-, and fluorescent dyes. Other techniques include directly looking at kinase regulatory sites phosphorylation, flame photometry, 22Na+ uptake assay, structural biology, molecular modeling, and high-throughput drug screening. This review summarizes the role of CCCs in genetic disorders and cell volume regulation, current methods applied in studying CCCs biology, and compounds developed that directly or indirectly target the CCCs for disease treatments.
Collapse
Affiliation(s)
- Shiyao Zhang
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 363001, China
| | - Nur Farah Meor Azlan
- Institute of Biomedical and Clinical Sciences, Medical School, Faculty of Health and Life Sciences, University of Exeter, Exeter, EX4 4PS, UK
| | - Sunday Solomon Josiah
- Institute of Biomedical and Clinical Sciences, Medical School, Faculty of Health and Life Sciences, University of Exeter, Exeter, EX4 4PS, UK
| | - Jing Zhou
- Department of Neurology, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute of Biological Science, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xiaoxia Zhou
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 363001, China
| | - Lingjun Jie
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 363001, China
| | - Yanhui Zhang
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 363001, China
| | - Cuilian Dai
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 363001, China
| | - Dong Liang
- Aurora Discovery Inc., Foshan, Guangdong, 528300, China
| | - Peifeng Li
- Institute for Translational Medicine, Qingdao University, Qingdao, Shandong, 266021, China
| | - Zhengqiu Li
- School of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Zhen Wang
- State Key Laboratory of Chemical Biology, Research Center of Chemical Kinomics, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yun Wang
- Department of Neurology, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute of Biological Science, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Ke Ding
- State Key Laboratory of Chemical Biology, Research Center of Chemical Kinomics, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yan Wang
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 363001, China
| | - Jinwei Zhang
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 363001, China
- Institute of Biomedical and Clinical Sciences, Medical School, Faculty of Health and Life Sciences, University of Exeter, Exeter, EX4 4PS, UK
- State Key Laboratory of Chemical Biology, Research Center of Chemical Kinomics, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
27
|
Sharma P, Chatrathi HE. Insights into the diverse mechanisms and effects of variant CUL3-induced familial hyperkalemic hypertension. Cell Commun Signal 2023; 21:286. [PMID: 37845702 PMCID: PMC10577937 DOI: 10.1186/s12964-023-01269-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/12/2023] [Indexed: 10/18/2023] Open
Abstract
Familial hyperkalemic hypertension (FHHt), also known as Pseudohypoaldosteronism type II (PHAII) or Gordon syndrome is a rare Mendelian disease classically characterized by hyperkalemia, hyperchloremic metabolic acidosis, and high systolic blood pressure. The most severe form of the disease is caused by autosomal dominant variants in CUL3 (Cullin 3), a critical subunit of the multimeric CUL3-RING ubiquitin ligase complex. The recent identification of a novel FHHt disease variant of CUL3 revealed intricacies within the underlying disease mechanism. When combined with studies on canonical CUL3 variant-induced FHHt, these findings further support CUL3's role in regulating renal electrolyte transport and maintaining systemic vascular tone. However, the pathophysiological effects of CUL3 variants are often accompanied by diverse systemic disturbances in addition to classical FHHt symptoms. Recent global proteomic analyses provide a rationale for these systemic disturbances, paving the way for future mechanistic studies to reveal how CUL3 variants dysregulate processes outside of the renovascular axis. Video Abstract.
Collapse
Affiliation(s)
- Prashant Sharma
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, Bethesda, MD, USA.
| | - Harish E Chatrathi
- College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|
28
|
Jeong Y, Oh AR, Jung YH, Gi H, Kim YU, Kim K. Targeting E3 ubiquitin ligases and their adaptors as a therapeutic strategy for metabolic diseases. Exp Mol Med 2023; 55:2097-2104. [PMID: 37779139 PMCID: PMC10618535 DOI: 10.1038/s12276-023-01087-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/23/2023] [Accepted: 07/06/2023] [Indexed: 10/03/2023] Open
Abstract
Posttranslational modification of proteins via ubiquitination determines their activation, translocation, dysregulation, or degradation. This process targets a large number of cellular proteins, affecting all biological pathways involved in the cell cycle, development, growth, and differentiation. Thus, aberrant regulation of ubiquitination is likely associated with several diseases, including various types of metabolic diseases. Among the ubiquitin enzymes, E3 ubiquitin ligases are regarded as the most influential ubiquitin enzymes due to their ability to selectively bind and recruit target substrates for ubiquitination. Continued research on the regulatory mechanisms of E3 ligases and their adaptors in metabolic diseases will further stimulate the discovery of new targets and accelerate the development of therapeutic options for metabolic diseases. In this review, based on recent discoveries, we summarize new insights into the roles of E3 ubiquitin ligases and their adaptors in the pathogenesis of metabolic diseases by highlighting recent evidence obtained in both human and animal model studies.
Collapse
Affiliation(s)
- Yelin Jeong
- Department of Biomedical Sciences, College of Medicine, Inha University, Incheon, Republic of Korea
- Program in Biomedical Science & Engineering, Inha University, Incheon, Republic of Korea
- Research Center for Controlling Intercellular Communication (RCIC), College of Medicine, Inha University, Incheon, 22212, Republic of Korea
| | - Ah-Reum Oh
- Department of Biomedical Sciences, College of Medicine, Inha University, Incheon, Republic of Korea
- Program in Biomedical Science & Engineering, Inha University, Incheon, Republic of Korea
- Research Center for Controlling Intercellular Communication (RCIC), College of Medicine, Inha University, Incheon, 22212, Republic of Korea
| | - Young Hoon Jung
- Department of Biomedical Sciences, College of Medicine, Inha University, Incheon, Republic of Korea
- Program in Biomedical Science & Engineering, Inha University, Incheon, Republic of Korea
- Research Center for Controlling Intercellular Communication (RCIC), College of Medicine, Inha University, Incheon, 22212, Republic of Korea
| | - HyunJoon Gi
- Department of Biomedical Sciences, College of Medicine, Inha University, Incheon, Republic of Korea
- Program in Biomedical Science & Engineering, Inha University, Incheon, Republic of Korea
- Research Center for Controlling Intercellular Communication (RCIC), College of Medicine, Inha University, Incheon, 22212, Republic of Korea
| | - Young Un Kim
- Department of Biomedical Sciences, College of Medicine, Inha University, Incheon, Republic of Korea
- Program in Biomedical Science & Engineering, Inha University, Incheon, Republic of Korea
- Research Center for Controlling Intercellular Communication (RCIC), College of Medicine, Inha University, Incheon, 22212, Republic of Korea
| | - KyeongJin Kim
- Department of Biomedical Sciences, College of Medicine, Inha University, Incheon, Republic of Korea.
- Program in Biomedical Science & Engineering, Inha University, Incheon, Republic of Korea.
- Research Center for Controlling Intercellular Communication (RCIC), College of Medicine, Inha University, Incheon, 22212, Republic of Korea.
| |
Collapse
|
29
|
Vorstman JAS, Scherer SW. Contemplating syndromic autism. Genet Med 2023; 25:100919. [PMID: 37330697 DOI: 10.1016/j.gim.2023.100919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/19/2023] Open
Affiliation(s)
- Jacob A S Vorstman
- Department of Psychiatry, Hospital for Sick Children University of Toronto, Toronto, ON, Canada; Program in Genetics and Genome Biology, Hospital for Sick Children, Toronto, ON, Canada; The Centre for Applied Genomics, Hospital for Sick Children, Toronto, ON, Canada.
| | - Stephen W Scherer
- Program in Genetics and Genome Biology, Hospital for Sick Children, Toronto, ON, Canada; The Centre for Applied Genomics, Hospital for Sick Children, Toronto, ON, Canada; McLaughlin Centre and Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
30
|
Gamba G. Thirty years of the NaCl cotransporter: from cloning to physiology and structure. Am J Physiol Renal Physiol 2023; 325:F479-F490. [PMID: 37560773 PMCID: PMC10639029 DOI: 10.1152/ajprenal.00114.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/08/2023] [Accepted: 08/08/2023] [Indexed: 08/11/2023] Open
Abstract
The primary structure of the thiazide-sensitive NaCl cotransporter (NCC) was resolved 30 years ago by the molecular identification of the cDNA encoding this cotransporter, from the winter's flounder urinary bladder, following a functional expression strategy. This review outlines some aspects of how the knowledge about thiazide diuretics and NCC evolved, the history of the cloning process, and the expansion of the SLC12 family of electroneutral cotransporters. The diseases associated with activation or inactivation of NCC are discussed, as well as the molecular model by which the activity of NCC is regulated. The controversies in the field are discussed as well as recent publication of the three-dimensional model of NCC obtained by cryo-electron microscopy, revealing not only the amino acid residues critical for Na+ and Cl- translocation but also the residues critical for polythiazide binding to the transporter, opening the possibility for a new era in thiazide diuretic therapy.
Collapse
Affiliation(s)
- Gerardo Gamba
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| |
Collapse
|
31
|
Peces R, Peces C, Espinosa L, Mena R, Blanco C, Tenorio-Castaño J, Lapunzina P, Nevado J. A Spanish Family with Gordon Syndrome Due to a Variant in the Acidic Motif of WNK1. Genes (Basel) 2023; 14:1878. [PMID: 37895227 PMCID: PMC10606608 DOI: 10.3390/genes14101878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/07/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
(1) Background: Gordon syndrome (GS) or familial hyperkalemic hypertension is caused by pathogenic variants in the genes WNK1, WNK4, KLHL3, and CUL3. Patients presented with hypertension, hyperkalemia despite average glomerular filtration rate, hyperchloremic metabolic acidosis, and suppressed plasma renin (PR) activity with normal plasma aldosterone (PA) and sometimes failure to thrive. GS is a heterogeneous genetic syndrome, ranging from severe cases in childhood to mild and sometimes asymptomatic cases in mid-adulthood. (2) Methods: We report here a sizeable Spanish family of six patients (four adults and two children) with GS. (3) Results: They carry a novel heterozygous missense variant in exon 7 of WNK1 (p.Glu630Gly). The clinical presentation in the four adults consisted of hypertension (superimposed pre-eclampsia in two cases), hyperkalemia, short stature with low body weight, and isolated hyperkalemia in both children. All patients also presented mild hyperchloremic metabolic acidosis and low PR activity with normal PA levels. Abnormal laboratory findings and hypertension were normalized by dietary salt restriction and low doses of thiazide or indapamide retard. (4) Conclusions: This is the first Spanish family with GS with a novel heterozygous missense variant in WNK1 (p.Glu630Gly) in the region containing the highly conserved acidic motif, which is showing a relatively mild phenotype, and adults diagnosed in mild adulthood. These data support the importance of missense variants in the WNK1 acidic domain in electrolyte balance/metabolism. In addition, findings in this family also suggest that indapamide retard or thiazide may be an adequate long-standing treatment for GS.
Collapse
Affiliation(s)
- Ramón Peces
- Department of Nephrology, Hospital Universitario La Paz, IdiPAZ, Universidad Autónoma, 28046 Madrid, Spain
| | - Carlos Peces
- Area de Tecnología de la Información, SESCAM, 45003 Toledo, Spain;
| | - Laura Espinosa
- Department of Pediatric Nephrology, Hospital Universitario La Paz, IdiPAZ, Universidad Autónoma, 28046 Madrid, Spain;
| | - Rocío Mena
- INGEMM, Institute of Medical and Molecular Genetics, La Paz University Hospital, IdiPAZ, 28046 Madrid, Spain; (R.M.); (C.B.); (J.T.-C.); (P.L.)
| | - Carolina Blanco
- INGEMM, Institute of Medical and Molecular Genetics, La Paz University Hospital, IdiPAZ, 28046 Madrid, Spain; (R.M.); (C.B.); (J.T.-C.); (P.L.)
| | - Jair Tenorio-Castaño
- INGEMM, Institute of Medical and Molecular Genetics, La Paz University Hospital, IdiPAZ, 28046 Madrid, Spain; (R.M.); (C.B.); (J.T.-C.); (P.L.)
- ITHACA, European Research Network, La Paz University Hospital, 28046 Madrid, Spain
- Network for Biomedical Research on Rare Diseases (CIBERER), Carlos III Health Institute (ISCIII), 28046 Madrid, Spain
| | - Pablo Lapunzina
- INGEMM, Institute of Medical and Molecular Genetics, La Paz University Hospital, IdiPAZ, 28046 Madrid, Spain; (R.M.); (C.B.); (J.T.-C.); (P.L.)
- ITHACA, European Research Network, La Paz University Hospital, 28046 Madrid, Spain
- Network for Biomedical Research on Rare Diseases (CIBERER), Carlos III Health Institute (ISCIII), 28046 Madrid, Spain
| | - Julián Nevado
- INGEMM, Institute of Medical and Molecular Genetics, La Paz University Hospital, IdiPAZ, 28046 Madrid, Spain; (R.M.); (C.B.); (J.T.-C.); (P.L.)
- ITHACA, European Research Network, La Paz University Hospital, 28046 Madrid, Spain
- Network for Biomedical Research on Rare Diseases (CIBERER), Carlos III Health Institute (ISCIII), 28046 Madrid, Spain
| |
Collapse
|
32
|
Morton A. Gordon's syndrome in pregnancy. Obstet Med 2023; 16:151-155. [PMID: 37720005 PMCID: PMC10504880 DOI: 10.1177/1753495x221146331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 12/04/2022] [Indexed: 09/19/2023] Open
Abstract
Gordon's syndrome, also known as pseudohypoaldosteronism type II and familial hyperkalaemic hypertension, is a rare inherited condition characterised by familial hyperkalaemia, normal anion gap hyperchloraemic metabolic acidosis, low renin with normal glomerular filtration rate and hypertension. The outcome of 11 pregnancies in 3 women with Gordon's syndrome is presented and combined with 13 pregnancies in 7 women previously described. Pregnancy in women with Gordon's syndrome appears to be associated with a significant risk of adverse pregnancy outcomes, particularly where there is maternal hypertension preconception. No pregnancy registry exists for Gordon's syndrome. The available data is limited to case reports and small case series and may be affected by bias. A pregnancy registry would be valuable to assist in preconception counselling and management during pregnancy. The goal of this study was to summarise the available cases describing pregnancy outcomes with maternal Gordon's syndrome.
Collapse
Affiliation(s)
- Adam Morton
- Adam Morton, Obstetric Medicine, Mater Health, Raymond Terrace, 4101 University of Queensland, Herston, QLD 4006, South Brisbane, Australia.
| |
Collapse
|
33
|
Wang Y, Yixiong Z, Wang L, Huang X, Xin HB, Fu M, Qian Y. E3 Ubiquitin Ligases in Endothelial Dysfunction and Vascular Diseases: Roles and Potential Therapies. J Cardiovasc Pharmacol 2023; 82:93-103. [PMID: 37314134 PMCID: PMC10527814 DOI: 10.1097/fjc.0000000000001441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 05/23/2023] [Indexed: 06/15/2023]
Abstract
ABSTRACT Ubiquitin E3 ligases are a structurally conserved family of enzymes that exert a variety of regulatory functions in immunity, cell death, and tumorigenesis through the ubiquitination of target proteins. Emerging evidence has shown that E3 ubiquitin ligases play crucial roles in the pathogenesis of endothelial dysfunction and related vascular diseases. Here, we reviewed the new findings of E3 ubiquitin ligases in regulating endothelial dysfunction, including endothelial junctions and vascular integrity, endothelial activation, and endothelial apoptosis. The critical role and potential mechanism of E3 ubiquitin ligases in vascular diseases, such as atherosclerosis, diabetes, hypertension, pulmonary hypertension, and acute lung injury, were summarized. Finally, the clinical significance and potential therapeutic strategies associated with the regulation of E3 ubiquitin ligases were also proposed.
Collapse
Affiliation(s)
- Yihan Wang
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China
| | - Zhan Yixiong
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China
- Chongqing Research Institute, Nanchang University, Chongqing, 402660, China
| | - Linsiqi Wang
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China
| | - Xuan Huang
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China
| | - Hong-Bo Xin
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China
| | - Mingui Fu
- Department of Biomedical Sciences and Shock/Trauma Research Center, School of Medicine, University of Missouri Kansas City, 2411 Holmes Street, Kansas City, MO 64108, USA
| | - Yisong Qian
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China
- Chongqing Research Institute, Nanchang University, Chongqing, 402660, China
| |
Collapse
|
34
|
Cornelius RJ, Maeoka Y, McCormick JA. Renal effects of cullin 3 mutations causing familial hyperkalemic hypertension. Curr Opin Nephrol Hypertens 2023; 32:335-343. [PMID: 37070483 PMCID: PMC10330058 DOI: 10.1097/mnh.0000000000000891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2023]
Abstract
PURPOSE OF REVIEW Mutations in the E3 ubiquitin ligase scaffold cullin 3 (CUL3) cause the disease familial hyperkalemic hypertension (FHHt) by hyperactivating the NaCl cotransporter (NCC). The effects of these mutations are complex and still being unraveled. This review discusses recent findings revealing the molecular mechanisms underlying the effects of CUL3 mutations in the kidney. RECENT FINDINGS The naturally occurring mutations that cause deletion of exon 9 (CUL3-Δ9) from CUL3 generate an abnormal CUL3 protein. CUL3-Δ9 displays increased interaction with multiple ubiquitin ligase substrate adaptors. However, in-vivo data show that the major mechanism for disease pathogenesis is that CUL3-Δ9 promotes degradation of itself and KLHL3, the specific substrate adaptor for an NCC-activating kinase. CUL3-Δ9 displays dysregulation via impaired binding to the CSN and CAND1, which cause hyperneddylation and compromised adaptor exchange, respectively. A recently discovered CUL3 mutant (CUL3-Δ474-477) displays many similarities to CUL3-Δ9 mutations but some key differences that likely account for the milder FHHt phenotype it elicits. Furthermore, recent work suggests that CUL3 mutations could have unidentified complications in patients and/or a predisposition to renal injury. SUMMARY This review summarizes recent studies highlighting advances in our understanding of the renal mechanisms by which CUL3 mutations modulate blood pressure in FHHt.
Collapse
Affiliation(s)
- Ryan J Cornelius
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, Oregon, USA
| | | | | |
Collapse
|
35
|
Blackburn PR, Ebstein F, Hsieh TC, Motta M, Radio FC, Herkert JC, Rinne T, Thiffault I, Rapp M, Alders M, Maas S, Gerard B, Smol T, Vincent-Delorme C, Cogné B, Isidor B, Vincent M, Bachmann-Gagescu R, Rauch A, Joset P, Ferrero GB, Ciolfi A, Husson T, Guerrot AM, Bacino C, Macmurdo C, Thompson SS, Rosenfeld JA, Faivre L, Mau-Them FT, Deb W, Vignard V, Agrawal PB, Madden JA, Goldenberg A, Lecoquierre F, Zech M, Prokisch H, Necpál J, Jech R, Winkelmann J, Koprušáková MT, Konstantopoulou V, Younce JR, Shinawi M, Mighton C, Fung C, Morel C, Ellis JL, DiTroia S, Barth M, Bonneau D, Krapels I, Stegmann S, van der Schoot V, Brunet T, Bußmann C, Mignot C, Courtin T, Ravelli C, Keren B, Ziegler A, Hasadsri L, Pichurin PN, Klee EW, Grand K, Sanchez-Lara PA, Krüger E, Bézieau S, Klinkhammer H, Krawitz PM, Eichler EE, Tartaglia M, Küry S, Wang T. Loss-of-function variants in CUL3 cause a syndromic neurodevelopmental disorder. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.06.13.23290941. [PMID: 37398376 PMCID: PMC10312857 DOI: 10.1101/2023.06.13.23290941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Purpose De novo variants in CUL3 (Cullin-3 ubiquitin ligase) have been strongly associated with neurodevelopmental disorders (NDDs), but no large case series have been reported so far. Here we aimed to collect sporadic cases carrying rare variants in CUL3, describe the genotype-phenotype correlation, and investigate the underlying pathogenic mechanism. Methods Genetic data and detailed clinical records were collected via multi-center collaboration. Dysmorphic facial features were analyzed using GestaltMatcher. Variant effects on CUL3 protein stability were assessed using patient-derived T-cells. Results We assembled a cohort of 35 individuals with heterozygous CUL3 variants presenting a syndromic NDD characterized by intellectual disability with or without autistic features. Of these, 33 have loss-of-function (LoF) and two have missense variants. CUL3 LoF variants in patients may affect protein stability leading to perturbations in protein homeostasis, as evidenced by decreased ubiquitin-protein conjugates in vitro . Specifically, we show that cyclin E1 (CCNE1) and 4E-BP1 (EIF4EBP1), two prominent substrates of CUL3, fail to be targeted for proteasomal degradation in patient-derived cells. Conclusion Our study further refines the clinical and mutational spectrum of CUL3 -associated NDDs, expands the spectrum of cullin RING E3 ligase-associated neuropsychiatric disorders, and suggests haploinsufficiency via LoF variants is the predominant pathogenic mechanism.
Collapse
|
36
|
Hong X, Lv J, Li Z, Xiong Y, Zhang J, Chen HF. Sequence-based machine learning method for predicting the effects of phosphorylation on protein-protein interactions. Int J Biol Macromol 2023; 243:125233. [PMID: 37290543 DOI: 10.1016/j.ijbiomac.2023.125233] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/02/2023] [Accepted: 06/03/2023] [Indexed: 06/10/2023]
Abstract
Protein phosphorylation, catalyzed by kinases, is an important biochemical process, which plays an essential role in multiple cell signaling pathways. Meanwhile, protein-protein interactions (PPI) constitute the signaling pathways. Abnormal phosphorylation status on protein can regulate protein functions through PPI to evoke severe diseases, such as Cancer and Alzheimer's disease. Due to the limited experimental evidence and high costs to experimentally identify novel evidence of phosphorylation regulation on PPI, it is necessary to develop a high-accuracy and user-friendly artificial intelligence method to predict phosphorylation effect on PPI. Here, we proposed a novel sequence-based machine learning method named PhosPPI, which achieved better identification performance (Accuracy and AUC) than other competing predictive methods of Betts, HawkDock and FoldX. PhosPPI is now freely available in web server (https://phosppi.sjtu.edu.cn/). This tool can help the user to identify functional phosphorylation sites affecting PPI and explore phosphorylation-associated disease mechanism and drug development.
Collapse
Affiliation(s)
- Xiaokun Hong
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, Department of Bioinformatics and Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jiyang Lv
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, Department of Bioinformatics and Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhengxin Li
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, Department of Bioinformatics and Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yi Xiong
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, Department of Bioinformatics and Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jian Zhang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao-Tong University School of Medicine (SJTU-SM), Shanghai 200025, China.
| | - Hai-Feng Chen
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, Department of Bioinformatics and Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
37
|
Wang L, Wu G, Peng JB. Identification of a novel KLHL3-interacting motif in the C-terminal region of WNK4. Biochem Biophys Res Commun 2023; 670:87-93. [PMID: 37285722 DOI: 10.1016/j.bbrc.2023.05.105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 05/25/2023] [Indexed: 06/09/2023]
Abstract
Mutations in with-no-lysine [K] kinase 4 (WNK4) and kelch-like 3 (KLHL3) are linked to pseudohypoaldosteronism type 2 (PHAII, also known as familial hyperkalemic hypertension or Gordon's syndrome). WNK4 is degraded by a ubiquitin E3 ligase with KLHL3 as the substrate adaptor for WNK4. Several PHAII-causing mutations, e.g. those in the acidic motif (AM) of WNK4 and in the Kelch domain of KLHL3, impair the binding between WNK4 and KLHL3. This results in a reduction in WNK4 degradation and an increase in WNK4 activity, leading to PHAII. Although the AM is important in interacting with KLHL3, it is unclear whether this is the only motif in WNK4 responsible for KLHL3-interacting. In this study, a novel motif of WNK4 that is capable of mediating the degradation of the protein by KLHL3 was identified. This C-terminal motif (termed as CM) is located in amino acids 1051-1075 of WNK4 and is rich in negatively charged residues. Both AM and CM responded to the PHAII mutations in the Kelch domain of KLHL3 in a similar manner, but AM is dominant among the two motifs. The presence of this motif likely allows WNK4 protein to respond to the KLHL3-mediated degradation when the AM is dysfunctional due to a PHAII mutation. This may be one of the reasons why PHAII is less severe when WNK4 is mutated compared to KLHL3 is mutated.
Collapse
Affiliation(s)
- Lingyun Wang
- Division of Nephrology, Department of Medicine, Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Guojin Wu
- Division of Nephrology, Department of Medicine, Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Ji-Bin Peng
- Division of Nephrology, Department of Medicine, Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, AL, 35294, USA; Department of Urology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| |
Collapse
|
38
|
Maeoka Y, Cornelius RJ, McCormick JA. Cullin 3 and Blood Pressure Regulation: Insights From Familial Hyperkalemic Hypertension. Hypertension 2023; 80:912-923. [PMID: 36861484 PMCID: PMC10133098 DOI: 10.1161/hypertensionaha.123.20525] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
The study of rare monogenic forms of hypertension has led to the elucidation of important physiological pathways controlling blood pressure. Mutations in several genes cause familial hyperkalemic hypertension (also known as Gordon syndrome or pseudohypoaldosteronism type II). The most severe form of familial hyperkalemic hypertension is caused by mutations in CUL3, encoding CUL3 (Cullin 3)-a scaffold protein in an E3 ubiquitin ligase complex that tags substrates for proteasomal degradation. In the kidney, CUL3 mutations cause accumulation of the substrate WNK (with-no-lysine [K]) kinase and ultimately hyperactivation of the renal NaCl cotransporter-the target of the first-line antihypertensive thiazide diuretics. The precise mechanisms by which mutant CUL3 causes WNK kinase accumulation have been unclear, but several functional defects are likely to contribute. The hypertension seen in familial hyperkalemic hypertension also results from effects exerted by mutant CUL3 on several pathways in vascular smooth muscle and endothelium that modulate vascular tone. This review summarizes the mechanisms by which wild type and mutant CUL3 modulate blood pressure through effects on the kidney and vasculature, potential effects in the central nervous system and heart, and future directions for investigation.
Collapse
Affiliation(s)
- Yujiro Maeoka
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, OR
| | - Ryan J Cornelius
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, OR
| | - James A McCormick
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, OR
| |
Collapse
|
39
|
Tao W, Zhu W, Nabi F, Li Z, Liu J. Penthorum chinense Pursh compound flavonoids supplementation alleviates Aflatoxin B1-induced liver injury via modulation of intestinal barrier and gut microbiota in broiler. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 255:114805. [PMID: 36958264 DOI: 10.1016/j.ecoenv.2023.114805] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/06/2023] [Accepted: 03/16/2023] [Indexed: 06/18/2023]
Abstract
Aflatoxin B1 (AFB1) is a commonly occurring toxicant in animal and human diets, leading to hazardous effects on health. AFB1 is known to be a hepato-toxicant, and the intestinal barrier may play a crucial role in reversing AFB1-induced liver injury. This study aimed to optimize the extraction conditions of Penthorum chinense Pursh Compound Flavonoids (PCPCF) by the response surface method with a Box-Behnken design and investigate the effects of PCPCF on AFB1-induced liver injury in broilers. A total of 164 one-day-old broilers were divided into seven groups, including Control, PCPCF (400 mg PCPCF/kg feed), AFB1 (3 mg AFB1/kg feed), and YCHT (Yin-Chen-Hao-Tang extract, 3 mg AFB1 +10 mL YCHT/kg feed) and low, medium, and high dose groups (PCPCF at 3 mg AFB1 +200, 400, 600 mg respectively). Samples of serum, liver, duodenum, and cecum contents were collected at 14th and 28th days for further analysis. The results showed that the maximum extraction rate of PCPCF was 8.15 %. PCPCF was rich in rutin, quercetin, liquiritin and kaempferol, and significantly inhibited the growth of Aspergillus flavus. The addition of PCPCF improved the growth performance of AFB1-injury broilers, modulated liver function, and increased serum immunoglobulin levels. PCPCF also alleviated liver pathological and oxidative stress damages caused by AFB1 and decreased AFB1-DNA and AFB1-lysine content in the liver. Furthermore, PCPCF supplementation ameliorated intestinal pathological damage, improved intestinal permeability of duodenum in the AFB1-induced broilers, and repaired the intestinal mucosal and mechanical barrier associated with the Notch signaling pathway. Meanwhile, PCPCF improved the intestinal flora structure of AFB1-damaged broilers and increased the abundance of beneficial bacteria. In conclusion, PCPCF ameliorated the adverse effects of AFB1 on growth performance and alleviated liver damage by repairing the intestinal barrier and improving intestinal health of broiler chicken.
Collapse
Affiliation(s)
- Weilai Tao
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China
| | - Wenyan Zhu
- Chongqing Engineering Research Center of Pharmaceutical Sciences, Chongqing Medical and Pharmaceutical College, Chongqing 400030, China
| | - Fazul Nabi
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China
| | - Zhenzhen Li
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China
| | - Juan Liu
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; Immunology Research Center, Medical Research Institute, Southwest University, Chongqing 402460, China.
| |
Collapse
|
40
|
Moreno E, Pacheco-Alvarez D, Chávez-Canales M, Elizalde S, Leyva-Ríos K, Gamba G. Structure-function relationships in the sodium chloride cotransporter. Front Physiol 2023; 14:1118706. [PMID: 36998989 PMCID: PMC10043231 DOI: 10.3389/fphys.2023.1118706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/27/2023] [Indexed: 03/16/2023] Open
Abstract
The thiazide sensitive Na+:Cl− cotransporter (NCC) is the principal via for salt reabsorption in the apical membrane of the distal convoluted tubule (DCT) in mammals and plays a fundamental role in managing blood pressure. The cotransporter is targeted by thiazide diuretics, a highly prescribed medication that is effective in treating arterial hypertension and edema. NCC was the first member of the electroneutral cation-coupled chloride cotransporter family to be identified at a molecular level. It was cloned from the urinary bladder of the Pseudopleuronectes americanus (winter flounder) 30 years ago. The structural topology, kinetic and pharmacology properties of NCC have been extensively studied, determining that the transmembrane domain (TM) coordinates ion and thiazide binding. Functional and mutational studies have discovered residues involved in the phosphorylation and glycosylation of NCC, particularly on the N-terminal domain, as well as the extracellular loop connected to TM7-8 (EL7-8). In the last decade, single-particle cryogenic electron microscopy (cryo-EM) has permitted the visualization of structures at high atomic resolution for six members of the SLC12 family (NCC, NKCC1, KCC1-KCC4). Cryo-EM insights of NCC confirm an inverted conformation of the TM1-5 and TM6-10 regions, a characteristic also found in the amino acid-polyamine-organocation (APC) superfamily, in which TM1 and TM6 clearly coordinate ion binding. The high-resolution structure also displays two glycosylation sites (N-406 and N-426) in EL7-8 that are essential for NCC expression and function. In this review, we briefly describe the studies related to the structure-function relationship of NCC, beginning with the first biochemical/functional studies up to the recent cryo-EM structure obtained, to acquire an overall view enriched with the structural and functional aspects of the cotransporter.
Collapse
Affiliation(s)
- Erika Moreno
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | | | - María Chávez-Canales
- Unidad de Investigación UNAM-INC, Instituto Nacional de Cardiología Ignacio Chávez and Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Stephanie Elizalde
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Karla Leyva-Ríos
- Escuela de Medicina, Universidad Panamericana, Mexico City, Mexico
| | - Gerardo Gamba
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
- Molecular Phisiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
- *Correspondence: Gerardo Gamba,
| |
Collapse
|
41
|
Ares GR. Ubiquitination of NKCC2 by the cullin-RING E3 ubiquitin ligase family in the thick ascending limb of the loop of Henle. Am J Physiol Renal Physiol 2023; 324:F315-F328. [PMID: 36727946 PMCID: PMC9988521 DOI: 10.1152/ajprenal.00079.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The Na+/K+/2Cl- cotransporter (NKCC2) in the thick ascending limb of the loop of Henle (TAL) mediates NaCl reabsorption. cGMP, the second messenger of nitric oxide and atrial natriuretic peptide, inhibits NKCC2 activity by stimulating NKCC2 ubiquitination and decreasing surface NKCC2 levels. Among the E3 ubiquitin ligase families, the cullin-RING E3 ubiquitin ligase (CRL) family is the largest. Cullins are molecular scaffold proteins that recruit multiple subunits to form the CRL complex. We hypothesized that a CRL complex mediates the cGMP-dependent increase in NKCC2 ubiquitination in TALs. Cullin-1, cullin-2, cullin-3, cullin-4A, and cullin-5 were expressed at the protein level, whereas the other members of the cullin family were expressed at the mRNA level, in rat TALs. CRL complex activity is regulated by neuronal precursor cell-expressed developmentally downregulated protein 8 (Nedd8) to cullins, a process called neddylation. Inhibition of cullin neddylation blunted the cGMP-dependent increase in ubiquitinated NKCC2 while increasing the expression of cullin-1 by threefold, but this effect was not seen with other cullins. CRL complex activity is also regulated by cullin-associated Nedd8-dissociated 1 (CAND1). CAND1 binds to cullins and promotes the exchange of substrate-recognition proteins to target different proteins for ubiquitination. CAND1 inhibition exacerbated the cGMP-dependent increase in NKCC2 ubiquitination and decreased surface NKCC2 expression. Finally, cGMP increased neddylation of cullins. We conclude that the cGMP-dependent increase in NKCC2 ubiquitination is mediated by a CRL complex. To the best of our knowledge, this is the first evidence that a CRL complex mediates NKCC2 ubiquitination in native TALs.NEW & NOTEWORTHY The Na+/K+/2Cl- cotransporter (NKCC2) reabsorbs NaCl by the thick ascending limb. Nitric oxide and atrial natriuretic peptide decrease NaCl reabsorption in thick ascending limbs by increasing the second messenger cGMP. The present findings indicate that cGMP increases NKCC2 ubiquitination via a cullin-RING ligase complex and regulates in part surface NKCC2 levels. Identifying the E3 ubiquitin ligases that regulate NKCC2 expression and activity may provide new targets for the development of specific loop diuretics.
Collapse
Affiliation(s)
- Gustavo R Ares
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan, United States.,Department of Physiology, Integrative Bioscience Center, Wayne State University, Detroit, Michigan, United States
| |
Collapse
|
42
|
Gallafassi E, Bezerra M, Rebouças N. Control of sodium and potassium homeostasis by renal distal convoluted tubules. Braz J Med Biol Res 2023; 56:e12392. [PMID: 36790288 PMCID: PMC9925193 DOI: 10.1590/1414-431x2023e12392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/17/2022] [Indexed: 02/12/2023] Open
Abstract
Distal convoluted tubules (DCT), which contain the Na-Cl cotransporter (NCC) inhibited by thiazide diuretics, undergo complex modulation to preserve Na+ and K+ homeostasis. The lysine kinases 1 and 4 (WNK1 and WNK4), identified as hyperactive in the hereditary disease pseudohypoaldosteronism type 2, are responsible for activation of NCC and consequent hypokalemia and hypertension. WNK4, highly expressed in DCT, activates the SPAK/OSR1 kinases, which phosphorylate NCC and other regulatory proteins and transporters in the distal nephron. WNK4 works as a chloride sensor through a Cl- binding site, which acts as an on/off switch at this kinase in response to changes of basolateral membrane electrical potential, the driving force of cellular Cl- efflux. High intracellular Cl- in hyperkalemia decreases NCC phosphorylation and low intracellular Cl- in hypokalemia increases NCC phosphorylation and activity, which makes plasma K+ concentration a central modulator of NCC and of K+ secretion. The WNK4 phosphorylation by cSrc or SGK1, activated by angiotensin II or aldosterone, respectively, is another relevant mechanism of NCC, ENaC, and ROMK modulation in states such as volume reduction, hyperkalemia, and hypokalemia. Loss of NCC function induces upregulation of electroneutral NaCl reabsorption by type B intercalated cells through the combined activity of pendrin and NDCBE, as demonstrated in double knockout mice (KO) animal models, Ncc/pendrin or Ncc/NDCBE. The analysis of ks-Nedd-4-2 KO animal models introduced the modulation of NEDD4-2 by intracellular Mg2+ activity as an important regulator of NCC, explaining the thiazide-induced persistent hypokalemia.
Collapse
Affiliation(s)
- E.A. Gallafassi
- Faculdade Israelita de Ciências da Saúde Albert Einstein, São Paulo, SP, Brasil
| | - M.B. Bezerra
- Faculdade Israelita de Ciências da Saúde Albert Einstein, São Paulo, SP, Brasil
| | - N.A. Rebouças
- Faculdade Israelita de Ciências da Saúde Albert Einstein, São Paulo, SP, Brasil
| |
Collapse
|
43
|
Abstract
The with no lysine (K) (WNK) kinases are an evolutionarily ancient group of kinases with atypical placement of the catalytic lysine and diverse physiological roles. Recent studies have shown that WNKs are directly regulated by chloride, potassium, and osmotic pressure. Here, we review the discovery of WNKs as chloride-sensitive kinases and discuss physiological contexts in which chloride regulation of WNKs has been demonstrated. These include the kidney, pancreatic duct, neurons, and inflammatory cells. We discuss the interdependent relationship of osmotic pressure and intracellular chloride in cell volume regulation. We review the recent demonstration of potassium regulation of WNKs and speculate on possible physiological roles. Finally, structural and mechanistic aspects of intracellular ion and osmotic pressure regulation of WNKs are discussed.
Collapse
Affiliation(s)
- Elizabeth J Goldsmith
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Aylin R Rodan
- Molecular Medicine Program, University of Utah, Salt Lake City, Utah, USA; .,Division of Nephrology and Hypertension, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA.,Department of Human Genetics, University of Utah, Salt Lake City, Utah, USA.,Medical Service, Veterans Affairs Salt Lake City Healthcare System, Salt Lake City, Utah, USA
| |
Collapse
|
44
|
Park SJ, Shin JI. Diagnosis and Treatment of Monogenic Hypertension in Children. Yonsei Med J 2023; 64:77-86. [PMID: 36719014 PMCID: PMC9892546 DOI: 10.3349/ymj.2022.0316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 12/08/2022] [Accepted: 12/26/2022] [Indexed: 01/17/2023] Open
Abstract
Although the majority of individuals with hypertension (HTN) have primary and polygenic HTN, monogenic HTN is a secondary type that is widely thought to play a key role in pediatric HTN, which has the characteristics of early onset, refractory HTN with a positive family history, and electrolyte disorders. Monogenic HTN results from single genetic mutations that contribute to the dysregulation of blood pressure (BP) in the kidneys and adrenal glands. It is pathophysiologically associated with increased sodium reabsorption in the distal tubule, intravascular volume expansion, and HTN, as well as low renin and varying aldosterone levels. Simultaneously increased or decreased potassium levels also provide clues for the diagnosis of monogenic HTN. Discovering the genetic factors that cause an increase in BP has been shown to be related to the choice of and responses to antihypertensive medications. Therefore, early and precise diagnosis with genetic sequencing and effective treatment with accurate antihypertensive agents are critical in the management of monogenic HTN. In addition, understanding the genetic architecture of BP, causative molecular pathways perturbing BP regulation, and pharmacogenomics can help with the selection of precision and personalized medicine, as well as improve morbidity and mortality in adulthood.
Collapse
Affiliation(s)
- Se Jin Park
- Department of Pediatrics, Daejeon Eulji Medical Center, Eulji University School of Medicine, Daejeon, Korea
| | - Jae Il Shin
- Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
45
|
Uchida S, Mori T, Susa K, Sohara E. NCC regulation by WNK signal cascade. Front Physiol 2023; 13:1081261. [PMID: 36685207 PMCID: PMC9845728 DOI: 10.3389/fphys.2022.1081261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/14/2022] [Indexed: 01/06/2023] Open
Abstract
With-no-lysine (K) (WNK) kinases have been identified as the causal genes for pseudohypoaldosteronism type II (PHAII), a rare hereditary hypertension condition characterized by hyperkalemia, hyperchloremic metabolic acidosis, and thiazide-hypersensitivity. We thought that clarifying the link between WNK and NaCl cotransporter (NCC) would bring us new mechanism(s) of NCC regulation. For the first time, we were able to produce a knock-in mouse model of PHAII and anti-phosphorylated NCC antibodies against the putative NCC phosphorylation sites and discover that constitutive activation of NCC and increased phosphorylation of NCC are the primary pathogenesis of the disease in vivo. We have since demonstrated that this regulatory mechanism is mediated by the kinases oxidative stress-response protein 1 (OSR1) and STE20/SPS1-related proline/alanine-rich kinase (SPAK) (WNK-OSR1/SPAK-NCC signaling cascade) and that the signaling is not only important in the pathological condition of PHAII but also plays a crucial physiological role in the regulation of NCC.
Collapse
|
46
|
Bahena-Lopez JP, Rojas-Vega L, Chávez-Canales M, Bazua-Valenti S, Bautista-Pérez R, Lee JH, Madero M, Vazquez-Manjarrez N, Alquisiras-Burgos I, Hernandez-Cruz A, Castañeda-Bueno M, Ellison DH, Gamba G. Glucose/Fructose Delivery to the Distal Nephron Activates the Sodium-Chloride Cotransporter via the Calcium-Sensing Receptor. J Am Soc Nephrol 2023; 34:55-72. [PMID: 36288902 PMCID: PMC10101570 DOI: 10.1681/asn.2021121544] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 08/07/2022] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND The calcium-sensing receptor (CaSR) in the distal convoluted tubule (DCT) activates the NaCl cotransporter (NCC). Glucose acts as a positive allosteric modulator of the CaSR. Under physiologic conditions, no glucose is delivered to the DCT, and fructose delivery depends on consumption. We hypothesized that glucose/fructose delivery to the DCT modulates the CaSR in a positive allosteric way, activating the WNK4-SPAK-NCC pathway and thus increasing salt retention. METHODS We evaluated the effect of glucose/fructose arrival to the distal nephron on the CaSR-WNK4-SPAK-NCC pathway using HEK-293 cells, C57BL/6 and WNK4-knockout mice, ex vivo perfused kidneys, and healthy humans. RESULTS HEK-293 cells exposed to glucose/fructose increased SPAK phosphorylation in a WNK4- and CaSR-dependent manner. C57BL/6 mice exposed to fructose or a single dose of dapagliflozin to induce transient glycosuria showed increased activity of the WNK4-SPAK-NCC pathway. The calcilytic NPS2143 ameliorated this effect, which was not observed in WNK4-KO mice. C57BL/6 mice treated with fructose or dapagliflozin showed markedly increased natriuresis after thiazide challenge. Ex vivo rat kidney perfused with glucose above the physiologic threshold levels for proximal reabsorption showed increased NCC and SPAK phosphorylation. NPS2143 prevented this effect. In healthy volunteers, cinacalcet administration, fructose intake, or a single dose of dapagliflozin increased SPAK and NCC phosphorylation in urinary extracellular vesicles. CONCLUSIONS Glycosuria or fructosuria was associated with increased NCC, SPAK, and WNK4 phosphorylation in a CaSR-dependent manner.
Collapse
Affiliation(s)
- Jessica Paola Bahena-Lopez
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
- MD/PhD (PECEM) program, Faculty of Medicine, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Lorena Rojas-Vega
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
- Intellectual Property Unit, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - María Chávez-Canales
- Unidad de Investigación UNAM-INCICH, Instituto Nacional de Cardiología Ignacio Chávez and Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Silvana Bazua-Valenti
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Rocío Bautista-Pérez
- Department of Molecular Biology, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Ju-Hye Lee
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Magdalena Madero
- Department of Nephrology, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Natalia Vazquez-Manjarrez
- Nutrition Division, Department of Nutrition Physiology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Ivan Alquisiras-Burgos
- Department of Cognitive Neuroscience, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Arturo Hernandez-Cruz
- Department of Cognitive Neuroscience, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - María Castañeda-Bueno
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - David H. Ellison
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, Oregon
- Oregon Clinical and Translational Research Institute, Oregon Health and Science University, Portland, Oregon
- VA Portland Health Care System, Portland, Oregon
| | - Gerardo Gamba
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
- MD/PhD (PECEM) program, Faculty of Medicine, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
47
|
Liu X, Xie Y, Tang J, Zhong J, Zeng D, Lan D. Aldosterone defects in infants and young children with hyperkalemia: A single center retrospective study. Front Pediatr 2023; 11:1092388. [PMID: 36726778 PMCID: PMC9885047 DOI: 10.3389/fped.2023.1092388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/02/2023] [Indexed: 01/18/2023] Open
Abstract
INTRODUCTION Hyperkalemia is a rare but severe condition in young children and usually discovered as a result of hemolysis of the blood samples taken. However, patients with defects in either aldosterone biosynthesis or function can also present with hyperkalemia- as well hyponatremia-associated, and metabolic acidosis. It is a challenge to make an accurate diagnosis of these clinical conditions. We conducted this study to investigate the clinical and genetic features of aldosterone signaling defects associated hyperkalemia in young children. METHOD A retrospective review was conducted at the pediatric department of the First Affiliated Hospital of Guangxi Medical University from 2012 to 2022. RESULTS 47 patients with hyperkalemia were enrolled, of which 80.9% (n = 38) were diagnosed with primary hypoaldosteronism, including congenital adrenal hyperplasia due to 21-hydroxylase deficiency (n = 32), isolated hypoaldosteronism (n = 1) due to CYP11B2 gene mutation and Xp21 contiguous gene deletion syndrome (n = 1). Additionally, 4 patients were clinically-diagnosed with primary adrenal insufficiency. Nine patients were confirmed with aldosterone resistance, of which one child was diagnosed with pseudohypoaldosteronism (PHA) type 1 with a mutation in the NR3C2 gene and 3 children were identified with PHA type 2 due to novel mutations in either the CUL3 or KLHL3 genes. Five patients had PHA type 3 because of pathologies of either the urinary or intestinal tracts. CONCLUSIONS The etiologies of infants with hyperkalemia associated with aldosterone defects were mostly due to primary hypoaldosteronism. An elevated plasma aldosterone level may be a useful biomarker for the diagnosis an aldosterone functional defect in patients presented with hyperkalemia. However, a normal plasma aldosterone level does rule out an aldosterone defect in either its biosynthesis or function, especially in young infants. Molecular genetic analyses can greatly help to clarify the complexity of disorders and can be used to confirm the diagnosis.
Collapse
Affiliation(s)
- Xu Liu
- Department of Pediatrics, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yanshu Xie
- Department of Pediatrics, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jing Tang
- Department of Pediatrics, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jingzi Zhong
- Department of Pediatrics, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Dan Zeng
- Department of Pediatrics, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Dan Lan
- Department of Pediatrics, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
48
|
Castañeda-Bueno M, Ellison DH. Blood pressure effects of sodium transport along the distal nephron. Kidney Int 2022; 102:1247-1258. [PMID: 36228680 PMCID: PMC9754644 DOI: 10.1016/j.kint.2022.09.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/22/2022] [Accepted: 09/01/2022] [Indexed: 11/06/2022]
Abstract
The mammalian distal nephron is a target of highly effective antihypertensive drugs. Genetic variants that alter its transport activity are also inherited causes of high or low blood pressure, clearly establishing its central role in human blood pressure regulation. Much has been learned during the past 25 years about salt transport along this nephron segment, spurred by the cloning of major transport proteins and the discovery of disease-causing genetic variants. Recognition is increasing that substantial cellular and segmental heterogeneity is present along this segment, with electroneutral sodium transport dominating more proximal segments and electrogenic sodium transport dominating more distal segments. Coupled with recent insights into factors that modulate transport along these segments, we now understand one important mechanism by which dietary potassium intake influences sodium excretion and blood pressure. This finding has solved the aldosterone paradox, by demonstrating how aldosterone can be both kaliuretic, when plasma potassium is elevated, and anti-natriuretic, when extracellular fluid volume is low. However, what also has become clear is that aldosterone itself only stimulates a portion of the mineralocorticoid receptors along this segment, with the others being activated by glucocorticoid hormones instead. These recent insights provide an increasingly clear picture of how this short nephron segment contributes to blood pressure homeostasis and have important implications for hypertension prevention and treatment.
Collapse
Affiliation(s)
- María Castañeda-Bueno
- Department of Nephrology and Mineral Metabolism, National Institute of Medical Sciences and Nutrition, Salvador Zubirán, Tlalpan, Mexico City, Mexico
| | - David H Ellison
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, Oregon, USA; Oregon Clinical & Translational Research Institute, Oregon Health & Science University, Portland, Oregon, USA; LeDucq Transatlantic Network of Excellence, Portland, Oregon, USA; Renal Section, VA Portland Healthcare System, Portland, Oregon, USA.
| |
Collapse
|
49
|
Zhao Y, Cao E. Structural Pharmacology of Cation-Chloride Cotransporters. MEMBRANES 2022; 12:1206. [PMID: 36557113 PMCID: PMC9784483 DOI: 10.3390/membranes12121206] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/20/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Loop and thiazide diuretics have been cornerstones of clinical management of hypertension and fluid overload conditions for more than five decades. The hunt for their molecular targets led to the discovery of cation-chloride cotransporters (CCCs) that catalyze electroneutral movement of Cl- together with Na+ and/or K+. CCCs consist of two 1 Na+-1 K+-2 Cl- (NKCC1-2), one 1 Na+-1 Cl- (NCC), and four 1 K+-1 Cl- (KCC1-4) transporters in human. CCCs are fundamental in trans-epithelia ion secretion and absorption, homeostasis of intracellular Cl- concentration and cell volume, and regulation of neuronal excitability. Malfunction of NKCC2 and NCC leads to abnormal salt and water retention in the kidney and, consequently, imbalance in electrolytes and blood pressure. Mutations in KCC2 and KCC3 are associated with brain disorders due to impairments in regulation of excitability and possibly cell volume of neurons. A recent surge of structures of CCCs have defined their dimeric architecture, their ion binding sites, their conformational changes associated with ion translocation, and the mechanisms of action of loop diuretics and small molecule inhibitors. These breakthroughs now set the stage to expand CCC pharmacology beyond loop and thiazide diuretics, developing the next generation of diuretics with improved potency and specificity. Beyond drugging renal-specific CCCs, brain-penetrable therapeutics are sorely needed to target CCCs in the nervous system for the treatment of neurological disorders and psychiatric conditions.
Collapse
|
50
|
Johnston JG, Wingo CS. Potassium Homeostasis and WNK Kinases in the Regulation of the Sodium-Chloride Cotransporter: Hyperaldosteronism and Its Metabolic Consequences. KIDNEY360 2022; 3:1823-1828. [PMID: 36514400 PMCID: PMC9717643 DOI: 10.34067/kid.0005752022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 10/12/2022] [Indexed: 12/05/2022]
Affiliation(s)
- Jermaine G. Johnston
- Department of Medicine, University of Florida, Gainesville, Florida
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida
- Veterans Administration Medical Center, North Florida/South Georgia Veterans Health Administration, Gainesville, Florida
| | - Charles S. Wingo
- Department of Medicine, University of Florida, Gainesville, Florida
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida
- Veterans Administration Medical Center, North Florida/South Georgia Veterans Health Administration, Gainesville, Florida
| |
Collapse
|