1
|
Plön S, Andra K, Auditore L, Gegout C, Hale PJ, Hampe O, Ramilo-Henry M, Burkhardt-Holm P, Jaigirdar AM, Klein L, Maewashe MK, Müssig J, Ramsarup N, Roussouw N, Sabin R, Shongwe TC, Tuddenham P. Marine mammals as indicators of Anthropocene Ocean Health. NPJ BIODIVERSITY 2024; 3:24. [PMID: 39256530 PMCID: PMC11387633 DOI: 10.1038/s44185-024-00055-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 07/19/2024] [Indexed: 09/12/2024]
Abstract
The current state of marine mammal populations reflects increasing anthropogenic impacts on the global Ocean. Adopting a holistic approach towards marine mammal health, incorporating healthy individuals and healthy populations, these taxa present indicators of the health of the overall Ocean system. Their present deterioration at the animal, population and ecosystem level has implications for human health and the global system. In the Anthropocene, multiple planetary boundaries have already been exceeded, and quiet tipping points in the Ocean may present further uncertainties. Long and short-term monitoring of marine mammal health in the holistic sense is urgently required to assist in evaluating and reversing the impact on Ocean Health and aid in climate change mitigation.
Collapse
Affiliation(s)
- S Plön
- Stellenbosch Institute for Advanced Study (STIAS), Stellenbosch, South Africa.
- Forschungsinstitut für Philosophie Hannover (FIPH), Hannover, Germany.
- Hanse Wissenschaftskolleg (HWK), Delmenhorst, Germany.
| | - K Andra
- Department of Biological Sciences, University of Cape Town, Cape Town, South Africa
| | - L Auditore
- Department of Biological Sciences, University of Cape Town, Cape Town, South Africa
| | - C Gegout
- School of Politics and International Relations, University of Nottingham, Nottingham, UK
| | - P J Hale
- Department for the History of Science, Technology & Medicine, University of Oklahoma, Norman, OK, USA
- Hanse-Wissenschaftskolleg, Institute for Advanced Study, Delmenhorst, Germany
| | - O Hampe
- Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung, Berlin, Germany, Invalidenstraße 43
- Institut für Geologische Wissenschaften, Fachrichtung Paläontologie, Freie Universität Berlin, Berlin, Germany, Malteserstr. 74-100
| | - M Ramilo-Henry
- Department of Biological Sciences, University of Cape Town, Cape Town, South Africa
| | - P Burkhardt-Holm
- Department of Environmental Sciences, MGU, University of Basel, Basel, Switzerland
| | - A M Jaigirdar
- Department of Biological Sciences, University of Cape Town, Cape Town, South Africa
| | - L Klein
- European School of Governance (EUSG), Berlin, Germany
- International Federation for Systems Research, Vienna, Austria
| | - M K Maewashe
- Department of Oceanography, University of Cape Town, Cape Town, South Africa
| | - J Müssig
- The Biological Materials Group, Department of Biomimetics, HSB - City University of Applied Sciences, Bremen, Germany
| | - N Ramsarup
- Department of Oceanography, University of Cape Town, Cape Town, South Africa
| | - N Roussouw
- Bayworld Centre for Research and Education (BCRE), Gqeberha, South Africa
| | - R Sabin
- Natural History Museum (NHM), London, UK
| | - T C Shongwe
- Department of Biological Sciences, University of Cape Town, Cape Town, South Africa
| | | |
Collapse
|
2
|
Bukhari SA. In what ways might the concept of 'planetary health' lead us to think differently about contemporary global challenges? How could the resulting insights promote the changing of current practices? Med Confl Surviv 2024; 40:306-315. [PMID: 39092931 DOI: 10.1080/13623699.2024.2382825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Affiliation(s)
- Sayed Adam Bukhari
- Faculty of Life Sciences & Medicine, King's College London, London, England
| |
Collapse
|
3
|
Ma D, Abrahms B, Allgeier J, Newbold T, Weeks BC, Carter NH. Global expansion of human-wildlife overlap in the 21st century. SCIENCE ADVANCES 2024; 10:eadp7706. [PMID: 39167651 PMCID: PMC11338222 DOI: 10.1126/sciadv.adp7706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 07/11/2024] [Indexed: 08/23/2024]
Abstract
Understanding the extent to which people and wildlife overlap in space and time is critical for the conservation of biodiversity and ecological services. Yet, how global change will reshape the future of human-wildlife overlap has not been assessed. We show that the potential spatial overlap of global human populations and 22,374 terrestrial vertebrate species will increase across ~56.6% and decrease across only ~11.8% of the Earth's terrestrial surface by 2070. Increases are driven primarily by intensification of human population densities, not change in wildlife distributions caused by climate change. The strong spatial heterogeneity of future human-wildlife overlap found in our study makes it clear that local context is imperative to consider, and more targeted area-based land-use planning should be integrated into systematic conservation planning.
Collapse
Affiliation(s)
- Deqiang Ma
- Institute for Global Change Biology, School for Environment and Sustainability, University of Michigan, Ann Arbor, MI, USA
| | - Briana Abrahms
- Department of Biology, Center for Ecosystem Sentinels, University of Washington, Seattle, WA, USA
| | - Jacob Allgeier
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| | - Tim Newbold
- Centre for Biodiversity and Environment Research, Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Brian C. Weeks
- Institute for Global Change Biology, School for Environment and Sustainability, University of Michigan, Ann Arbor, MI, USA
| | - Neil H. Carter
- Institute for Global Change Biology, School for Environment and Sustainability, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
4
|
Janko Š, Rok Š, Blaž K, Danilo B, Andrej G, Denis K, Klemen Č, Matjaž G. DNA barcoding insufficiently identifies European wild bees (Hymenoptera, Anthophila) due to undefined species diversity, genus-specific barcoding gaps and database errors. Mol Ecol Resour 2024; 24:e13953. [PMID: 38523561 DOI: 10.1111/1755-0998.13953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/08/2024] [Accepted: 03/13/2024] [Indexed: 03/26/2024]
Abstract
Recent declines in insect abundances, especially populations of wild pollinators, pose a threat to many natural and agricultural ecosystems. Traditional species monitoring relies on morphological character identification and is inadequate for efficient and standardized surveys. DNA barcoding has become a standard approach for molecular identification of organisms, aiming to overcome the shortcomings of traditional biodiversity monitoring. However, its efficacy depends on the completeness of reference databases. Large DNA barcoding efforts are (almost entirely) lacking in many European countries and such patchy data limit Europe-wide analyses of precisely how to apply DNA barcoding in wild bee identification. Here, we advance towards an effective molecular identification of European wild bees. We conducted a high-effort survey of wild bees at the junction of central and southern Europe and DNA barcoded all collected morphospecies. For global analyses, we complemented our DNA barcode dataset with all relevant European species and conducted global analyses of species delimitation, general and genus-specific barcoding gaps and examined the error rate in DNA data repositories. We found that (i) a sixth of all specimens from Slovenia could not be reliably identified, (ii) species delimitation methods show numerous systematic discrepancies, (iii) there is no general barcoding gap across all bees and (iv) the barcoding gap is genus specific, but only after curating for errors in DNA data repositories. Intense sampling and barcoding efforts in underrepresented regions and strict curation of DNA barcode repositories are needed to enhance the use of DNA barcoding for the identification of wild bees.
Collapse
Affiliation(s)
- Šet Janko
- Jovan Hadži Institute of Biology, Scientific Research Centre of the Slovenian Academy of Sciences and Arts, Ljubljana, Slovenia
- Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Šturm Rok
- Department of Organisms and Ecosystems Research, National Institute of Biology, Ljubljana, Slovenia
| | - Koderman Blaž
- Department of Organisms and Ecosystems Research, National Institute of Biology, Ljubljana, Slovenia
| | - Bevk Danilo
- Department of Organisms and Ecosystems Research, National Institute of Biology, Ljubljana, Slovenia
| | - Gogala Andrej
- Slovenian Museum of Natural History, Ljubljana, Slovenia
| | - Kutnjak Denis
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Čandek Klemen
- Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
- Department of Organisms and Ecosystems Research, National Institute of Biology, Ljubljana, Slovenia
| | - Gregorič Matjaž
- Jovan Hadži Institute of Biology, Scientific Research Centre of the Slovenian Academy of Sciences and Arts, Ljubljana, Slovenia
| |
Collapse
|
5
|
Lambre ME, López C, Acha-Araico B, Clemente S. Effects of macroalgae and sea urchin grazing pressure on zoantharians growth under laboratory conditions. MARINE ENVIRONMENTAL RESEARCH 2024; 198:106534. [PMID: 38744166 DOI: 10.1016/j.marenvres.2024.106534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/25/2024] [Accepted: 04/29/2024] [Indexed: 05/16/2024]
Abstract
In the context of ocean warming, thermophilic organisms such as zoantharians are expanding and altering shallow benthic habitats. Here, a four-month laboratory experiment was performed to examine the influence of three types of macroalgae morphotypes common in the Canary Islands (turf algae, Lobophora spp., and crustose coralline algae) on the growth of two zoantharian species, Palythoa caribaeorum and Zoanthus pulchellus. Additionally, the grazing effects of echinoids Diadema africanum and Paracentrotus lividus were assessed as facilitators of substrate colonization by means of controlling macroalgae cover. Colony and algal coverages were measured at the beginning, middle and end of the experiment, and increments were calculated. Results indicated a general decrease in zoantharian colony sizes in contact with different algal types in the absence of sea urchins. However, P. caribaeorum colonies showed significant growth in the presence of D. africanum, highlighting the ecological importance of sea urchins in zoantharian population proliferation and subsequent community modification. This study represents the first investigation into zoantharian-macroalgae interactions under controlled conditions.
Collapse
Affiliation(s)
- María Elisa Lambre
- Departamento de Biología Animal, Edafología y Geología, Facultad de Ciencias, Universidad de La Laguna, San Cristóbal de La Laguna, Spain.
| | - Cataixa López
- Departamento de Biología Animal, Edafología y Geología, Facultad de Ciencias, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - Belén Acha-Araico
- Departamento de Biología Animal, Edafología y Geología, Facultad de Ciencias, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - Sabrina Clemente
- Departamento de Biología Animal, Edafología y Geología, Facultad de Ciencias, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| |
Collapse
|
6
|
Maull V, Solé R. Biodiversity as a firewall to engineered microbiomes for restoration and conservation. ROYAL SOCIETY OPEN SCIENCE 2024; 11:231526. [PMID: 39100153 PMCID: PMC11296081 DOI: 10.1098/rsos.231526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/21/2024] [Accepted: 04/12/2024] [Indexed: 08/06/2024]
Abstract
The possibility of abrupt transitions threatens to poise ecosystems into irreversibly degraded states. Synthetic biology has recently been proposed to prevent them from crossing tipping points. However, there is little understanding of the impact of such intervention on the resident communities. Can such modification have 'unintended consequences', such as loss of species? Here, we address this problem by using a mathematical model that allows us to simulate this intervention scenario explicitly. We show how the indirect effect of damping the decay of shared resources results in biodiversity increase, and last but not least, the successful incorporation of the synthetic within the ecological network and very small-positive changes in the population size of the resident community. Furthermore, extensions and implications for future restoration and terraformation strategies are discussed.
Collapse
Affiliation(s)
- Victor Maull
- ICREA-Complex Systems Lab, UPF-PRBB, Dr. Aiguader 80, Barcelona08003, Spain
- Institut de Biologia Evolutiva, CSIC-UPF, Passeig Maritim de la Barceloneta 37, Barcelona08003, Spain
| | - Ricard Solé
- ICREA-Complex Systems Lab, UPF-PRBB, Dr. Aiguader 80, Barcelona08003, Spain
- Institut de Biologia Evolutiva, CSIC-UPF, Passeig Maritim de la Barceloneta 37, Barcelona08003, Spain
- Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM87501, USA
| |
Collapse
|
7
|
Deb S, Mahendru E, Goyal P, Guttal V, Dutta PS, Krishnan NC. Optimal sampling of spatial patterns improves deep learning-based early warning signals of critical transitions. ROYAL SOCIETY OPEN SCIENCE 2024; 11:231767. [PMID: 39100181 PMCID: PMC11296079 DOI: 10.1098/rsos.231767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 02/15/2024] [Accepted: 04/09/2024] [Indexed: 08/06/2024]
Abstract
Complex spatio-temporal systems like lakes, forests and climate systems exhibit alternative stable states. In such systems, as the threshold value of the driver is crossed, the system may experience a sudden (discontinuous) transition or smooth (continuous) transition to an undesired steady state. Theories predict that changes in the structure of the underlying spatial patterns precede such transitions. While there has been a large body of research on identifying early warning signals of critical transitions, the problem of forecasting the type of transitions (sudden versus smooth) remains an open challenge. We address this gap by developing an advanced machine learning (ML) toolkit that serves as an early warning indicator of spatio-temporal critical transitions, Spatial Early Warning Signal Network (S-EWSNet). ML models typically resemble a black box and do not allow envisioning what the model learns in discerning the labels. Here, instead of naively relying upon the deep learning model, we let the deep neural network learn the latent features characteristic of transitions via an optimal sampling strategy (OSS) of spatial patterns. The S-EWSNet is trained on data from a stochastic cellular automata model deploying the OSS, providing an early warning indicator of transitions while detecting its type in simulated and empirical samples.
Collapse
Affiliation(s)
- Smita Deb
- Department of Mathematics, Indian Institute of Technology Ropar, Rupnagar, Punjab140001, India
| | - Ekansh Mahendru
- Department of Computer Science, Indian Institute of Technology Ropar, Rupnagar, Punjab140001, India
| | - Paras Goyal
- Department of Computer Science, Indian Institute of Technology Ropar, Rupnagar, Punjab140001, India
| | - Vishwesha Guttal
- Centre for Ecological Sciences, Indian Institute of Science Campus, Bengaluru, Karnataka560012, India
| | - Partha Sharathi Dutta
- Department of Mathematics, Indian Institute of Technology Ropar, Rupnagar, Punjab140001, India
| | - Narayanan C. Krishnan
- Department of Data Science, Indian Institute of Technology Palakkad, Palakkad, Kerala678623, India
| |
Collapse
|
8
|
Gravem SA, Poirson BN, Robinson JW, Menge BA. Resistance of rocky intertidal communities to oceanic climate fluctuations. PLoS One 2024; 19:e0297697. [PMID: 38809830 PMCID: PMC11135789 DOI: 10.1371/journal.pone.0297697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 01/11/2024] [Indexed: 05/31/2024] Open
Abstract
A powerful way to predict how ecological communities will respond to future climate change is to test how they have responded to the climate of the past. We used climate oscillations including the Pacific Decadal Oscillation (PDO), North Pacific Gyre Oscillation, and El Niño Southern Oscillation (ENSO) and variation in upwelling, air temperature, and sea temperatures to test the sensitivity of nearshore rocky intertidal communities to climate variability. Prior research shows that multiple ecological processes of key taxa (growth, recruitment, and physiology) were sensitive to environmental variation during this time frame. We also investigated the effect of the concurrent sea star wasting disease outbreak in 2013-2014. We surveyed nearly 150 taxa from 11 rocky intertidal sites in Oregon and northern California annually for up to 14-years (2006-2020) to test if community structure (i.e., the abundance of functional groups) and diversity were sensitive to past environmental variation. We found little to no evidence that these communities were sensitive to annual variation in any of the environmental measures, and that each metric was associated with < 8.6% of yearly variation in community structure. Only the years elapsed since the outbreak of sea star wasting disease had a substantial effect on community structure, but in the mid-zone only where spatially dominant mussels are a main prey of the keystone predator sea star, Pisaster ochraceus. We conclude that the established sensitivity of multiple ecological processes to annual fluctuations in climate has not yet scaled up to influence community structure. Hence, the rocky intertidal system along this coastline appears resistant to the range of oceanic climate fluctuations that occurred during the study. However, given ongoing intensification of climate change and increasing frequencies of extreme events, future responses to climate change seem likely.
Collapse
Affiliation(s)
- Sarah A. Gravem
- Department of Integrative Biology, Partnership for Interdisciplinary Studies of Coastal Oceans (PISCO), Oregon State University, Corvallis, Oregon, United States of America
| | - Brittany N. Poirson
- Department of Integrative Biology, Partnership for Interdisciplinary Studies of Coastal Oceans (PISCO), Oregon State University, Corvallis, Oregon, United States of America
| | - Jonathan W. Robinson
- Department of Integrative Biology, Partnership for Interdisciplinary Studies of Coastal Oceans (PISCO), Oregon State University, Corvallis, Oregon, United States of America
| | - Bruce A. Menge
- Department of Integrative Biology, Partnership for Interdisciplinary Studies of Coastal Oceans (PISCO), Oregon State University, Corvallis, Oregon, United States of America
| |
Collapse
|
9
|
Chang KF, Lin CT, Bin YQ. Harmony with nature: Disentanglement the influence of ecological perception and adaptation on sustainable development and circular economy goals in country. Heliyon 2024; 10:e26034. [PMID: 38370265 PMCID: PMC10874742 DOI: 10.1016/j.heliyon.2024.e26034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 01/30/2024] [Accepted: 02/06/2024] [Indexed: 02/20/2024] Open
Abstract
From the perspective of ecosystem attributes, this research was conducted to explore the impact of people's adaptation and response to their perception of environmental risks on their preference for sustainable development strategies and the realization of a circular economy based on Social Judgment Theory and the Value-Belief-Norm (VBN) theory. To achieve the goal, three substudies were conducted using questionnaire surveys-the first substudy aimed to examine the influence of ecological attributes on environmental risk perception (ERP). The second substudy attempted to understand the intricate connection between ERP and justice, while the third study explored the relationship between justice and SDS (sustainable development strategies) and CEG (realization of a circular economy). The results indicate the following: (1) The first substudy reveals that ecological attributes impact environmental risk perception (ERP), with different environmental values exerting distinct influences. (2) The second substudy suggests that ERP facilitates the realization of social, environmental, and ecological justice, but people's preference for a specific economic growth strategy will affect their tendency to realize justice. (3) The third substudy shows that sustainability strategies (i.e., sustainable production, consumption, and use) mediate the relationship between justice and circular economy goals (CEG). Among the three strategies, sustainable use plays the most significant mediating role. The research outcomes underscore the importance of prioritizing sustainable use in future research in theory and practice.
Collapse
Affiliation(s)
- Kuei-Feng Chang
- Management College, Guangdong Polytechnic Normal University, PR China
| | - Cheng-To Lin
- International College, Renmin University of China, Beijing, PR China
| | - Ye-Qi Bin
- School of Management, Guangzhou University, Guangzhou, PR China
| |
Collapse
|
10
|
Weinberger VP, Zalaquett N, Abades S. How greedy is too greedy? A network toy model for evaluating the sustainability of biased evolutionary dynamics. Philos Trans R Soc Lond B Biol Sci 2024; 379:20220260. [PMID: 37952630 PMCID: PMC10645075 DOI: 10.1098/rstb.2022.0260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 09/12/2023] [Indexed: 11/14/2023] Open
Abstract
Modern humanity has changed the biosphere at a global scale, threatening its own sustainability. It is claimed that through technology humans maximize the extraction of energy from the natural system towards their own benefit, with rates of appropriation that surpass the time-scales for systemic adaptation. This time-decoupled coevolutionary dynamic is at the core of human societal unsustainability. Here, we developed in silico experiments of an open energy-based flowing network toy model of natural systems and study the effects that greedy evolutionary strategies, resembling human societal demands, have upon the performance and scarcity tolerance of the system. We aim to determine the flexibility that those biased evolutionary dynamics have for matching or surpassing natural evolution outcomes. We studied four different indexes of system's growth and development (total system throughflow (TST), average mutual information, ascendency and entropy difference) and compare their scarcity tolerance and performance outcomes with respect to four different greedy scenarios. The results showed that greedy strategies rarely surpassed the tolerance and performance achieved by natural systemic evolution. The nature of the greedy scenarios developed were closely related to increases in TST and therefore, we emphasized this comparison. Here, the maximum percentage of greedy networks capable of surpassing natural dynamics was around one-third (approx. [Formula: see text]). However, results suggest the existence of a space parameter where local increases of energy flow can outperform the outcomes of natural systemic evolution, but no evident network property seems to characterize those greedy networks. A mild inverse relationship was found between the number of links that greedy nodes have towards the output and their capacity to outpass the control evolution. As many of the human societal effect upon biospheric processes have dissipative byproducts, knowing that such dynamics might diminish the systems tolerance and performance suggest care in their (ab)use. This article is part of the theme issue 'Evolution and sustainability: gathering the strands for an Anthropocene synthesis'.
Collapse
Affiliation(s)
- V. P. Weinberger
- Center for Resilience, Adaptation and Mitigation (CReAM), Universidad Mayor, Temuco, 4801043, Chile
| | - N. Zalaquett
- PLR Physics Ludique Research, Santiago, 9761013, Chile
| | - S. Abades
- GEMA Center for Genomics, Ecology & Environment, Universidad Mayor, Santiago, 8580745, Chile
| |
Collapse
|
11
|
Ohenhen LO, Shirzaei M, Barnard PL. Slowly but surely: Exposure of communities and infrastructure to subsidence on the US east coast. PNAS NEXUS 2024; 3:pgad426. [PMID: 38169952 PMCID: PMC10759798 DOI: 10.1093/pnasnexus/pgad426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024]
Abstract
Coastal communities are vulnerable to multihazards, which are exacerbated by land subsidence. On the US east coast, the high density of population and assets amplifies the region's exposure to coastal hazards. We utilized measurements of vertical land motion rates obtained from analysis of radar datasets to evaluate the subsidence-hazard exposure to population, assets, and infrastructure systems/facilities along the US east coast. Here, we show that 2,000 to 74,000 km2 land area, 1.2 to 14 million people, 476,000 to 6.3 million properties, and >50% of infrastructures in major cities such as New York, Baltimore, and Norfolk are exposed to subsidence rates between 1 and 2 mm per year. Additionally, our analysis indicates a notable trend: as subsidence rates increase, the extent of area exposed to these hazards correspondingly decreases. Our analysis has far-reaching implications for community and infrastructure resilience planning, emphasizing the need for a targeted approach in transitioning from reactive to proactive hazard mitigation strategies in the era of climate change.
Collapse
Affiliation(s)
- Leonard O Ohenhen
- Department of Geosciences, Virginia Tech, Blacksburg, VA 204061, USA
- Virginia Tech National Security Institute, Virginia Tech, Blacksburg, VA 24061, USA
| | - Manoochehr Shirzaei
- Department of Geosciences, Virginia Tech, Blacksburg, VA 204061, USA
- Virginia Tech National Security Institute, Virginia Tech, Blacksburg, VA 24061, USA
- Institute for Water, Environment and Health, United Nations University, Hamilton, ON L8P 0A1, CA
| | - Patrick L Barnard
- U.S. Geological Survey, Pacific Coastal and Marine Science Center, Santa Cruz, CA 95060, USA
| |
Collapse
|
12
|
Suraweera C, Gallo J, Vacek Z, Cukor J, Vacek S, Baláš M. Silvicultural Practices for Diversity Conservation and Invasive Species Suppression in Forest Ecosystems of the Bundala National Park, Sri Lanka. PLANTS (BASEL, SWITZERLAND) 2023; 13:121. [PMID: 38202429 PMCID: PMC10780521 DOI: 10.3390/plants13010121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/26/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024]
Abstract
Forest ecosystems in Sri Lanka are under pressure from intensive human activity and climate change. Invasive species are one of the greatest threats to autochthonous species and ecosystems. In Bundala National Park of Sri Lanka, there are efforts to control and limit the spreading of unwanted invasive Prosopis juliflora (Sw.) DC. and Opuntia dillenii (Ker-Gawl.) Haw., which poses a significant risk to natural ecosystem conservation. Nine different treatment variants (four replications) were used to test which management approach provides the control of Prosopis juliflora. This research is based on nine repeated measurements from 2017 to 2021 on 36 permanent research plots (each 625 m2) with 27 observed plant species and a total of 90,651 recorded plant individuals. The results confirmed that the dynamics of species richness, heterogeneity, and evenness showed significant differences between treatments during the five years of dynamics. The lowest species diversity was found in the control variant, followed by treatments based on the hard pruning and thinning of Prosopis juliflora trees. In contrast, strategies emphasizing the complete uprooting of Prosopis juliflora trees, replanting, and support of the natural regeneration of native species showed high species diversity and a high overall number of plant species. Generally, treatments had a significant effect on species diversity and the number of individuals of Prosopis juliflora, while changes in the overall number of plant species were more affected by time and succession. Silvicultural treatments including pruning, uprooting, and thinning have proven to be essential tools for nature conservation across various sites, aimed at enhancing habitat diversity in the face of ongoing climate change.
Collapse
Affiliation(s)
- Channa Suraweera
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Suchdol, 165 00 Prague, Czech Republic; (C.S.); (Z.V.); (J.C.); (S.V.); (M.B.)
| | - Josef Gallo
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Suchdol, 165 00 Prague, Czech Republic; (C.S.); (Z.V.); (J.C.); (S.V.); (M.B.)
| | - Zdeněk Vacek
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Suchdol, 165 00 Prague, Czech Republic; (C.S.); (Z.V.); (J.C.); (S.V.); (M.B.)
| | - Jan Cukor
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Suchdol, 165 00 Prague, Czech Republic; (C.S.); (Z.V.); (J.C.); (S.V.); (M.B.)
- Forestry and Game Management Research Institute, v.v.i., Strnady 136, 252 02 Jíloviště, Czech Republic
| | - Stanislav Vacek
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Suchdol, 165 00 Prague, Czech Republic; (C.S.); (Z.V.); (J.C.); (S.V.); (M.B.)
| | - Martin Baláš
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Suchdol, 165 00 Prague, Czech Republic; (C.S.); (Z.V.); (J.C.); (S.V.); (M.B.)
| |
Collapse
|
13
|
Panahi S, Do Y, Hastings A, Lai YC. Rate-induced tipping in complex high-dimensional ecological networks. Proc Natl Acad Sci U S A 2023; 120:e2308820120. [PMID: 38091288 PMCID: PMC10743502 DOI: 10.1073/pnas.2308820120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 11/15/2023] [Indexed: 12/24/2023] Open
Abstract
In an ecosystem, environmental changes as a result of natural and human processes can cause some key parameters of the system to change with time. Depending on how fast such a parameter changes, a tipping point can occur. Existing works on rate-induced tipping, or R-tipping, offered a theoretical way to study this phenomenon but from a local dynamical point of view, revealing, e.g., the existence of a critical rate for some specific initial condition above which a tipping point will occur. As ecosystems are subject to constant disturbances and can drift away from their equilibrium point, it is necessary to study R-tipping from a global perspective in terms of the initial conditions in the entire relevant phase space region. In particular, we introduce the notion of the probability of R-tipping defined for initial conditions taken from the whole relevant phase space. Using a number of real-world, complex mutualistic networks as a paradigm, we find a scaling law between this probability and the rate of parameter change and provide a geometric theory to explain the law. The real-world implication is that even a slow parameter change can lead to a system collapse with catastrophic consequences. In fact, to mitigate the environmental changes by merely slowing down the parameter drift may not always be effective: Only when the rate of parameter change is reduced to practically zero would the tipping be avoided. Our global dynamics approach offers a more complete and physically meaningful way to understand the important phenomenon of R-tipping.
Collapse
Affiliation(s)
- Shirin Panahi
- School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ85287
| | - Younghae Do
- Department of Mathematics, Nonlinear Dynamics Mathematical Application Center, Kyungpook National University, Daegu41566, Republic of Korea
| | - Alan Hastings
- Department of Environmental Science and Policy, University of California, Davis, CA95616
- Santa Fe Institute, Santa Fe, NM87501
| | - Ying-Cheng Lai
- School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ85287
- Department of Physics, Arizona State University, Tempe, AZ85287
| |
Collapse
|
14
|
Petkovic N, Colegrave N. The effects of sex on extinction dynamics of Chlamydomonas reinhardtii depend on the rate of environmental change. J Evol Biol 2023; 36:1783-1795. [PMID: 37897099 DOI: 10.1111/jeb.14237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 08/18/2023] [Accepted: 09/01/2023] [Indexed: 10/29/2023]
Abstract
The continued existence of sex, despite many the costs it entails, still lacks an adequate explanation, as previous studies demonstrated that the effects of sex are environment-dependent: sex enhances the rate of adaptation in changing environments, but the benefits level off in benign conditions. To the best of our knowledge, the potential impact of different patterns of environmental change on the magnitude of these benefits received less attention in theoretical studies. In this paper, we begin to explore this issue by examining the effect of the rate of environmental deterioration (negatively correlated with population survival rate), on the benefits of sex. To investigate the interplay of sex and the rate of environmental deterioration, we carried out a long-term selection experiment with a unicellular alga (Chlamydomonas reinhardtii), by manipulating mode of reproduction (asexual, facultative or obligate sexual) and the rate of environmental deterioration (an increase of salt concentration). We monitored both the population size and extinction dynamics. The results revealed that the relative advantage of sex increased at the intermediate rate and plateaued at the highest rate of environmental deterioration. Obligate sexual populations had the slowest extinction rate under the intermediate rate of environmental deterioration, while facultative sexuality was favoured under the high rate-treatment. To the best of our knowledge, our study is the first to demonstrate that the interplay of sex and the rate of environmental deterioration affects the probability of survival, which indicates that mode of reproduction may be an important determinant of survival of the anthropogenic-induced environmental change.
Collapse
Affiliation(s)
- Nikola Petkovic
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Nick Colegrave
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
15
|
Harris GM, Sesnie SE, Stewart DR. Climate change and ecosystem shifts in the southwestern United States. Sci Rep 2023; 13:19964. [PMID: 37968297 PMCID: PMC10651835 DOI: 10.1038/s41598-023-46371-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 10/31/2023] [Indexed: 11/17/2023] Open
Abstract
Climate change shifts ecosystems, altering their compositions and instigating transitions, making climate change the predominant driver of ecosystem instability. Land management agencies experience these climatic effects on ecosystems they administer yet lack applied information to inform mitigation. We address this gap, explaining ecosystem shifts by building relationships between the historical locations of 22 ecosystems (c. 2000) and abiotic data (1970-2000; bioclimate, terrain) within the southwestern United States using 'ensemble' machine learning models. These relationships identify the conditions required for establishing and maintaining southwestern ecosystems (i.e., ecosystem suitability). We projected these historical relationships to mid (2041-2060) and end-of-century (2081-2100) periods using CMIP6 generation BCC-CSM2-MR and GFDL-ESM4 climate models with SSP3-7.0 and SSP5-8.5 emission scenarios. This procedure reveals how ecosystems shift, as suitability typically increases in area (~ 50% (~ 40% SD)), elevation (12-15%) and northing (4-6%) by mid-century. We illustrate where and when ecosystems shift, by mapping suitability predictions temporally and within 52,565 properties (e.g., Federal, State, Tribal). All properties had ≥ 50% changes in suitability for ≥ 1 ecosystem within them, irrespective of size (≥ 16.7 km2). We integrated 9 climate models to quantify predictive uncertainty and exemplify its relevance. Agencies must manage ecosystem shifts transcending jurisdictions. Effective mitigation requires collective action heretofore rarely instituted. Our procedure supplies the climatic context to inform their decisions.
Collapse
Affiliation(s)
- Grant M Harris
- United States Fish and Wildlife Service, Albuquerque, NM, USA.
| | - Steven E Sesnie
- United States Fish and Wildlife Service, Albuquerque, NM, USA
| | - David R Stewart
- United States Fish and Wildlife Service, Albuquerque, NM, USA
| |
Collapse
|
16
|
Wang SH, Siebenhühner F, Arnulfo G, Myrov V, Nobili L, Breakspear M, Palva S, Palva JM. Critical-like Brain Dynamics in a Continuum from Second- to First-Order Phase Transition. J Neurosci 2023; 43:7642-7656. [PMID: 37816599 PMCID: PMC10634584 DOI: 10.1523/jneurosci.1889-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 06/07/2023] [Accepted: 09/25/2023] [Indexed: 10/12/2023] Open
Abstract
The classic brain criticality hypothesis postulates that the brain benefits from operating near a continuous second-order phase transition. Slow feedback regulation of neuronal activity could, however, lead to a discontinuous first-order transition and thereby bistable activity. Observations of bistability in awake brain activity have nonetheless remained scarce and its functional significance unclear. Moreover, there is no empirical evidence to support the hypothesis that the human brain could flexibly operate near either a first- or second-order phase transition despite such a continuum being common in models. Here, using computational modeling, we found bistable synchronization dynamics to emerge through elevated positive feedback and occur exclusively in a regimen of critical-like dynamics. We then assessed bistability in vivo with resting-state MEG in healthy adults (7 females, 11 males) and stereo-electroencephalography in epilepsy patients (28 females, 36 males). This analysis revealed that a large fraction of the neocortices exhibited varying degrees of bistability in neuronal oscillations from 3 to 200 Hz. In line with our modeling results, the neuronal bistability was positively correlated with classic assessment of brain criticality across narrow-band frequencies. Excessive bistability was predictive of epileptic pathophysiology in the patients, whereas moderate bistability was positively correlated with task performance in the healthy subjects. These empirical findings thus reveal the human brain as a one-of-a-kind complex system that exhibits critical-like dynamics in a continuum between continuous and discontinuous phase transitions.SIGNIFICANCE STATEMENT In the model, while synchrony per se was controlled by connectivity, increasing positive local feedback led to gradually emerging bistable synchrony with scale-free dynamics, suggesting a continuum between second- and first-order phase transitions in synchrony dynamics inside a critical-like regimen. In resting-state MEG and SEEG, bistability of ongoing neuronal oscillations was pervasive across brain areas and frequency bands and was observed only with concurring critical-like dynamics as the modeling predicted. As evidence for functional relevance, moderate bistability was positively correlated with executive functioning in the healthy subjects, and excessive bistability was associated with epileptic pathophysiology. These findings show that critical-like neuronal dynamics in vivo involves both continuous and discontinuous phase transitions in a frequency-, neuroanatomy-, and state-dependent manner.
Collapse
Affiliation(s)
- Sheng H Wang
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland
- Doctoral Programme Brain & Mind, University of Helsinki, 00014 Helsinki, Finland
- BioMag Laboratory, HUS Medical Imaging Center, 00290 Helsinki, Finland
- Department of Neuroscience and Biomedical Engineering, Aalto University, 00076 Espoo, Finland
| | - Felix Siebenhühner
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland
- BioMag Laboratory, HUS Medical Imaging Center, 00290 Helsinki, Finland
| | - Gabriele Arnulfo
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland
- Department of Informatics, Bioengineering, Robotics and System Engineering, University of Genoa, 16136 Genoa, Italy
| | - Vladislav Myrov
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland
- Department of Neuroscience and Biomedical Engineering, Aalto University, 00076 Espoo, Finland
| | - Lino Nobili
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics and Maternal and Children's Sciences, University of Genoa, 16136 Genoa, Italy
- Child Neuropsychiatry Unit, Istituto Di Ricovero e Cura a Carattere Scientifico Istituto Giannina Gaslini, 16147 Genoa, Italy
- Centre of Epilepsy Surgery "C. Munari," Department of Neuroscience, Niguarda Hospital, 20162 Milan, Italy
| | - Michael Breakspear
- College of Engineering, Science and Environment, College of Health and Medicine, University of Newcastle, Callaghan, 2308 Australia
| | - Satu Palva
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland
- Centre for Cognitive Neuroimaging, Institute of Neuroscience & Psychology, University of Glasgow, Glasgow G12 8QB, United Kingdom
| | - J Matias Palva
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland
- Department of Neuroscience and Biomedical Engineering, Aalto University, 00076 Espoo, Finland
- Centre for Cognitive Neuroimaging, Institute of Neuroscience & Psychology, University of Glasgow, Glasgow G12 8QB, United Kingdom
| |
Collapse
|
17
|
Vicente-Santos A, Willink B, Nowak K, Civitello DJ, Gillespie TR. Host-pathogen interactions under pressure: A review and meta-analysis of stress-mediated effects on disease dynamics. Ecol Lett 2023; 26:2003-2020. [PMID: 37804128 PMCID: PMC10874615 DOI: 10.1111/ele.14319] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 09/07/2023] [Accepted: 09/12/2023] [Indexed: 10/08/2023]
Abstract
Human activities have increased the intensity and frequency of natural stressors and created novel stressors, altering host-pathogen interactions and changing the risk of emerging infectious diseases. Despite the ubiquity of such anthropogenic impacts, predicting the directionality of outcomes has proven challenging. Here, we conduct a review and meta-analysis to determine the primary mechanisms through which stressors affect host-pathogen interactions and to evaluate the impacts stress has on host fitness (survival and fecundity) and pathogen infectivity (prevalence and intensity). We assessed 891 effect sizes from 71 host species (representing seven taxonomic groups) and 78 parasite taxa from 98 studies. We found that infected and uninfected hosts had similar sensitivity to stressors and that responses varied according to stressor type. Specifically, limited resources compromised host fecundity and decreased pathogen intensity, while abiotic environmental stressors (e.g., temperature and salinity) decreased host survivorship and increased pathogen intensity, and pollution increased mortality but decreased pathogen prevalence. We then used our meta-analysis results to develop susceptible-infected theoretical models to illustrate scenarios where infection rates are expected to increase or decrease in response to resource limitations or environmental stress gradients. Our results carry implications for conservation and disease emergence and reveal areas for future work.
Collapse
Affiliation(s)
- Amanda Vicente-Santos
- Population Biology, Ecology, and Evolution Program, Emory University, Atlanta, GA 30322, USA
| | - Beatriz Willink
- Department of Zoology, Stockholm University, Stockholm 106-91, Sweden
- Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore
- School of Biology, University of Costa Rica, San José 11501-2060, Costa Rica
| | - Kacy Nowak
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - David J. Civitello
- Population Biology, Ecology, and Evolution Program, Emory University, Atlanta, GA 30322, USA
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| | - Thomas R. Gillespie
- Population Biology, Ecology, and Evolution Program, Emory University, Atlanta, GA 30322, USA
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
- Department of Environmental Sciences, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
18
|
Chen K, Midway SR, Peoples BK, Wang B, Olden JD. Shifting taxonomic and functional community composition of rivers under land use change. Ecology 2023; 104:e4155. [PMID: 37611172 DOI: 10.1002/ecy.4155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 06/15/2023] [Indexed: 08/25/2023]
Abstract
Land use intensification has led to conspicuous changes in plant and animal communities across the world. Shifts in trait-based functional composition have recently been hypothesized to manifest at lower levels of environmental change when compared to species-based taxonomic composition; however, little is known about the commonalities in these responses across taxonomic groups and geographic regions. We investigated this hypothesis by testing for taxonomic and geographic similarities in the composition of riverine fish and insect communities across gradients of land use in major hydrological regions of the conterminous United States. We analyzed an extensive data set representing 556 species and 33 functional trait modalities from 8023 fish communities and 1434 taxa and 50 trait modalities from 5197 aquatic insect communities. Our results demonstrate abrupt threshold changes in both taxonomic and functional community composition due to land use conversion. Functional composition consistently demonstrated lower land use threshold responses compared to taxonomic composition for both fish (urban p = 0.069; agriculture p = 0.029) and insect (urban p = 0.095; agriculture p = 0.043) communities according to gradient forest models. We found significantly lower thresholds for urban versus agricultural land use for fishes (taxonomic and functional p < 0.001) and insects (taxonomic p = 0.001; functional p = 0.033). We further revealed that threshold responses in functional composition were more geographically consistent than for taxonomic composition to both urban and agricultural land use change. Traits contributing the most to overall functional composition change differed along urban and agricultural land gradients and conformed to predicted ecological mechanisms underpinning community change. This study points to reliable early-warning thresholds that accurately forecast compositional shifts in riverine communities to land use conversion, and highlight the importance of considering trait-based indicators of community change to inform large-scale land use management strategies and policies.
Collapse
Affiliation(s)
- Kai Chen
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Stephen R Midway
- Department of Oceanography and Coastal Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Brandon K Peoples
- Department of Forestry and Environmental Conservation, Clemson University, Clemson, South Carolina, USA
| | - Beixin Wang
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Julian D Olden
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, Washington, USA
| |
Collapse
|
19
|
Mäyrä J, Kivinen S, Keski-Saari S, Poikolainen L, Kumpula T. Utilizing historical maps in identification of long-term land use and land cover changes. AMBIO 2023; 52:1777-1792. [PMID: 36840866 PMCID: PMC10562305 DOI: 10.1007/s13280-023-01838-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/27/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
Knowledge in the magnitude and historical trends in land use and land cover (LULC) is needed to understand the changing status of the key elements of the landscape and to better target management efforts. However, this information is not easily available before the start of satellite campaign missions. Scanned historical maps are a valuable but underused source of LULC information. As a case study, we used U-Net to automatically extract fields, mires, roads, watercourses, and water bodies from scanned historical maps, dated 1965, 1984 and 1985 for our 900 km[Formula: see text] study area in Southern Finland. We then used these data, along with the topographic databases from 2005 and 2022, to quantify the LULC changes for the past 57 years. For example, the total area of fields decreased by around 27 km[Formula: see text], and the total length of watercourses increased by around 2250 km in our study area.
Collapse
Affiliation(s)
- Janne Mäyrä
- Quality of information, Finnish Environment Institute (Syke), Latokartanonkaari 11, Helsinki, 00790 Finland
| | - Sonja Kivinen
- Department of Geographical and Historical Studies, University of Eastern Finland, Yliopistonkatu 7, Joensuu, 80101 Finland
| | - Sarita Keski-Saari
- Department of Geographical and Historical Studies, University of Eastern Finland, Yliopistonkatu 7, Joensuu, 80101 Finland
- Department of Environmental and Biological Sciences, University of Eastern Finland, Yliopistonkatu 7, Joensuu, 80101 Finland
| | - Laura Poikolainen
- Department of Geographical and Historical Studies, University of Eastern Finland, Yliopistonkatu 7, Joensuu, 80101 Finland
| | - Timo Kumpula
- Department of Geographical and Historical Studies, University of Eastern Finland, Yliopistonkatu 7, Joensuu, 80101 Finland
| |
Collapse
|
20
|
Richardson K, Steffen W, Lucht W, Bendtsen J, Cornell SE, Donges JF, Drüke M, Fetzer I, Bala G, von Bloh W, Feulner G, Fiedler S, Gerten D, Gleeson T, Hofmann M, Huiskamp W, Kummu M, Mohan C, Nogués-Bravo D, Petri S, Porkka M, Rahmstorf S, Schaphoff S, Thonicke K, Tobian A, Virkki V, Wang-Erlandsson L, Weber L, Rockström J. Earth beyond six of nine planetary boundaries. SCIENCE ADVANCES 2023; 9:eadh2458. [PMID: 37703365 PMCID: PMC10499318 DOI: 10.1126/sciadv.adh2458] [Citation(s) in RCA: 125] [Impact Index Per Article: 125.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 07/12/2023] [Indexed: 09/15/2023]
Abstract
This planetary boundaries framework update finds that six of the nine boundaries are transgressed, suggesting that Earth is now well outside of the safe operating space for humanity. Ocean acidification is close to being breached, while aerosol loading regionally exceeds the boundary. Stratospheric ozone levels have slightly recovered. The transgression level has increased for all boundaries earlier identified as overstepped. As primary production drives Earth system biosphere functions, human appropriation of net primary production is proposed as a control variable for functional biosphere integrity. This boundary is also transgressed. Earth system modeling of different levels of the transgression of the climate and land system change boundaries illustrates that these anthropogenic impacts on Earth system must be considered in a systemic context.
Collapse
Affiliation(s)
- Katherine Richardson
- Globe Institute, Faculty of Health, University of Copenhagen, Copenhagen, Denmark
| | - Will Steffen
- Australian National University, Canberra, Australia
| | - Wolfgang Lucht
- Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association, Potsdam, Germany
- Department of Geography, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Jørgen Bendtsen
- Globe Institute, Faculty of Health, University of Copenhagen, Copenhagen, Denmark
| | - Sarah E. Cornell
- Stockholm Resilience Centre, Stockholm University, Stockholm, Sweden
| | - Jonathan F. Donges
- Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association, Potsdam, Germany
- Stockholm Resilience Centre, Stockholm University, Stockholm, Sweden
| | - Markus Drüke
- Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association, Potsdam, Germany
| | - Ingo Fetzer
- Stockholm Resilience Centre, Stockholm University, Stockholm, Sweden
- Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden
| | - Govindasamy Bala
- Centre for Atmospheric and Oceanic Sciences, Indian Institute of Science, Bangalore, Karnataka – 560012, India
| | - Werner von Bloh
- Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association, Potsdam, Germany
| | - Georg Feulner
- Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association, Potsdam, Germany
| | - Stephanie Fiedler
- GEOMAR Helmholtz Centre for Ocean Research Kiel and Faculty for Mathematics and Natural Sciences, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Dieter Gerten
- Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association, Potsdam, Germany
- Department of Geography, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Tom Gleeson
- Department of Civil Engineering, University of Victoria, Victoria, British Columbia, Canada
- School of Earth and Ocean Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Matthias Hofmann
- Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association, Potsdam, Germany
| | - Willem Huiskamp
- Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association, Potsdam, Germany
| | - Matti Kummu
- Water and Development Research Group, Aalto University, Espoo, Finland
| | - Chinchu Mohan
- GEOMAR Helmholtz Centre for Ocean Research Kiel and Faculty for Mathematics and Natural Sciences, Christian-Albrechts-University Kiel, Kiel, Germany
- Global Institute for Water Security, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Waterplan (YC S21), San Francisco, CA, USA
| | - David Nogués-Bravo
- Globe Institute, Faculty of Health, University of Copenhagen, Copenhagen, Denmark
| | - Stefan Petri
- Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association, Potsdam, Germany
| | - Miina Porkka
- Water and Development Research Group, Aalto University, Espoo, Finland
| | - Stefan Rahmstorf
- Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association, Potsdam, Germany
- Institute of Physics and Astronomy, University of Potsdam, Potsdam, Germany
| | - Sibyll Schaphoff
- Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association, Potsdam, Germany
| | - Kirsten Thonicke
- Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association, Potsdam, Germany
| | - Arne Tobian
- Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association, Potsdam, Germany
- Stockholm Resilience Centre, Stockholm University, Stockholm, Sweden
| | - Vili Virkki
- Water and Development Research Group, Aalto University, Espoo, Finland
| | - Lan Wang-Erlandsson
- Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association, Potsdam, Germany
- Stockholm Resilience Centre, Stockholm University, Stockholm, Sweden
- Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden
| | - Lisa Weber
- GEOMAR Helmholtz Centre for Ocean Research Kiel and Faculty for Mathematics and Natural Sciences, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Johan Rockström
- Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association, Potsdam, Germany
- Stockholm Resilience Centre, Stockholm University, Stockholm, Sweden
- Institute for Environmental Science and Geography, University of Potsdam, Potsdam, Germany
| |
Collapse
|
21
|
Ellis-Soto D, Oliver RY, Brum-Bastos V, Demšar U, Jesmer B, Long JA, Cagnacci F, Ossi F, Queiroz N, Hindell M, Kays R, Loretto MC, Mueller T, Patchett R, Sims DW, Tucker MA, Ropert-Coudert Y, Rutz C, Jetz W. A vision for incorporating human mobility in the study of human-wildlife interactions. Nat Ecol Evol 2023; 7:1362-1372. [PMID: 37550509 DOI: 10.1038/s41559-023-02125-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 06/19/2023] [Indexed: 08/09/2023]
Abstract
As human activities increasingly shape land- and seascapes, understanding human-wildlife interactions is imperative for preserving biodiversity. Habitats are impacted not only by static modifications, such as roads, buildings and other infrastructure, but also by the dynamic movement of people and their vehicles occurring over shorter time scales. Although there is increasing realization that both components of human activity substantially affect wildlife, capturing more dynamic processes in ecological studies has proved challenging. Here we propose a conceptual framework for developing a 'dynamic human footprint' that explicitly incorporates human mobility, providing a key link between anthropogenic stressors and ecological impacts across spatiotemporal scales. Specifically, the dynamic human footprint integrates a range of metrics to fully acknowledge the time-varying nature of human activities and to enable scale-appropriate assessments of their impacts on wildlife behaviour, demography and distributions. We review existing terrestrial and marine human-mobility data products and provide a roadmap for how these could be integrated and extended to enable more comprehensive analyses of human impacts on biodiversity in the Anthropocene.
Collapse
Affiliation(s)
- Diego Ellis-Soto
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA.
- Center for Biodiversity and Global Change, Yale University, New Haven, CT, USA.
| | - Ruth Y Oliver
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA.
- Center for Biodiversity and Global Change, Yale University, New Haven, CT, USA.
- Bren School of Environmental Science and Management, University of California, Santa Barbara, CA, USA.
| | - Vanessa Brum-Bastos
- School of Geography and Sustainable Development, University of St Andrews, St Andrews, UK
- Institute of Geodesy and Geoinformatics, Wroclaw University of Environmental Sciences, Wroclaw, Poland
- School of Earth and Environment, University of Canterbury, Christchurch, New Zealand
| | - Urška Demšar
- School of Geography and Sustainable Development, University of St Andrews, St Andrews, UK
| | - Brett Jesmer
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
- Center for Biodiversity and Global Change, Yale University, New Haven, CT, USA
- Department of Fish and Wildlife Conservation, Virginia Tech, Blacksburg, VA, USA
| | - Jed A Long
- Department of Geography & Environment, Centre for Animals on the Move, Western University, London, Ontario, Canada
| | - Francesca Cagnacci
- Animal Ecology Unit, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
- National Biodiversity Future Center S.C.A.R.L., Palermo, Italy
| | - Federico Ossi
- Animal Ecology Unit, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Nuno Queiroz
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado/BIOPOLIS Program in Genomics, Biodiversity and Land Planning, Universidade do Porto, Vairão, Portugal
- Marine Biological Association, Plymouth, UK
| | - Mark Hindell
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
- Antarctic Climate and Ecosystems Cooperative Research Centre, University of Tasmania, Hobart, Tasmania, Australia
| | - Roland Kays
- North Carolina Museum of Natural Sciences, Raleigh, NC, USA
- Dept Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, USA
| | - Matthias-Claudio Loretto
- Ecosystem Dynamics and Forest Management Group, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
- Berchtesgaden National Park, Berchtesgaden, Germany
- Department of Migration, Max-Planck Institute of Animal Behavior, Radolfzell, Germany
| | - Thomas Mueller
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Frankfurt (Main), Germany
- Department of Biological Sciences, Goethe University, Frankfurt (Main), Germany
| | - Robert Patchett
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews, UK
| | - David W Sims
- Marine Biological Association, Plymouth, UK
- Ocean and Earth Science, National Oceanography Centre Southampton, University of Southampton, Southampton, UK
- Centre for Biological Sciences, University of Southampton, Southampton, UK
| | - Marlee A Tucker
- Department of Environmental Science, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, The Netherlands
| | - Yan Ropert-Coudert
- Centre d'Etudes Biologiques de Chizé, La Rochelle Université - CNRS, Villiers en Bois, France
| | - Christian Rutz
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews, UK
| | - Walter Jetz
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
- Center for Biodiversity and Global Change, Yale University, New Haven, CT, USA
| |
Collapse
|
22
|
Schäfer RB, Jackson M, Juvigny-Khenafou N, Osakpolor SE, Posthuma L, Schneeweiss A, Spaak J, Vinebrooke R. Chemical Mixtures and Multiple Stressors: Same but Different? ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:1915-1936. [PMID: 37036219 DOI: 10.1002/etc.5629] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/01/2023] [Accepted: 04/04/2023] [Indexed: 05/19/2023]
Abstract
Ecosystems are strongly influenced by multiple anthropogenic stressors, including a wide range of chemicals and their mixtures. Studies on the effects of multiple stressors have largely focussed on nonchemical stressors, whereas studies on chemical mixtures have largely ignored other stressors. However, both research areas face similar challenges and require similar tools and methods to predict the joint effects of chemicals or nonchemical stressors, and frameworks to integrate multiple chemical and nonchemical stressors are missing. We provide an overview of the research paradigms, tools, and methods commonly used in multiple stressor and chemical mixture research and discuss potential domains of cross-fertilization and joint challenges. First, we compare the general paradigms of ecotoxicology and (applied) ecology to explain the historical divide. Subsequently, we compare methods and approaches for the identification of interactions, stressor characterization, and designing experiments. We suggest that both multiple stressor and chemical mixture research are too focused on interactions and would benefit from integration regarding null model selection. Stressor characterization is typically more costly for chemical mixtures. While for chemical mixtures comprehensive classification systems at suborganismal level have been developed, recent classification systems for multiple stressors account for environmental context. Both research areas suffer from rather simplified experimental designs that focus on only a limited number of stressors, chemicals, and treatments. We discuss concepts that can guide more realistic designs capturing spatiotemporal stressor dynamics. We suggest that process-based and data-driven models are particularly promising to tackle the challenge of prediction of effects of chemical mixtures and nonchemical stressors on (meta-)communities and (meta-)food webs. We propose a framework to integrate the assessment of effects for multiple stressors and chemical mixtures. Environ Toxicol Chem 2023;42:1915-1936. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Ralf B Schäfer
- Institute for Environmental Sciences, Rheinland-Pfälzische Technische Univerität Kaiserslautern-Landau, Landau, Germany
| | | | - Noel Juvigny-Khenafou
- Institute for Environmental Sciences, Rheinland-Pfälzische Technische Univerität Kaiserslautern-Landau, Landau, Germany
| | - Stephen E Osakpolor
- Institute for Environmental Sciences, Rheinland-Pfälzische Technische Univerität Kaiserslautern-Landau, Landau, Germany
| | - Leo Posthuma
- Centre for Sustainability, Environment and Health, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
- Department of Environmental Science, Radboud University, Nijmegen, The Netherlands
| | - Anke Schneeweiss
- Institute for Environmental Sciences, Rheinland-Pfälzische Technische Univerität Kaiserslautern-Landau, Landau, Germany
| | - Jürg Spaak
- Institute for Environmental Sciences, Rheinland-Pfälzische Technische Univerität Kaiserslautern-Landau, Landau, Germany
| | - Rolf Vinebrooke
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
23
|
Thorogood R, Mustonen V, Aleixo A, Aphalo PJ, Asiegbu FO, Cabeza M, Cairns J, Candolin U, Cardoso P, Eronen JT, Hällfors M, Hovatta I, Juslén A, Kovalchuk A, Kulmuni J, Kuula L, Mäkipää R, Ovaskainen O, Pesonen AK, Primmer CR, Saastamoinen M, Schulman AH, Schulman L, Strona G, Vanhatalo J. Understanding and applying biological resilience, from genes to ecosystems. NPJ BIODIVERSITY 2023; 2:16. [PMID: 39242840 PMCID: PMC11332022 DOI: 10.1038/s44185-023-00022-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 08/07/2023] [Indexed: 09/09/2024]
Abstract
The natural world is under unprecedented and accelerating pressure. Much work on understanding resilience to local and global environmental change has, so far, focussed on ecosystems. However, understanding a system's behaviour requires knowledge of its component parts and their interactions. Here we call for increased efforts to understand 'biological resilience', or the processes that enable components across biological levels, from genes to communities, to resist or recover from perturbations. Although ecologists and evolutionary biologists have the tool-boxes to examine form and function, efforts to integrate this knowledge across biological levels and take advantage of big data (e.g. ecological and genomic) are only just beginning. We argue that combining eco-evolutionary knowledge with ecosystem-level concepts of resilience will provide the mechanistic basis necessary to improve management of human, natural and agricultural ecosystems, and outline some of the challenges in achieving an understanding of biological resilience.
Collapse
Affiliation(s)
- Rose Thorogood
- HiLIFE Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland.
- Research Programme in Organismal & Evolutionary Biology, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.
| | - Ville Mustonen
- Research Programme in Organismal & Evolutionary Biology, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Department of Computer Science, Faculty of Science, University of Helsinki, Helsinki, Finland
- Helsinki Institute for Information Technology, University of Helsinki, Helsinki, Finland
- Institute of Biotechnology, HiLIFE Helsinki Institute for Life Science, University of Helsinki, Helsinki, Finland
| | - Alexandre Aleixo
- LUOMUS Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
| | - Pedro J Aphalo
- Research Programme in Organismal & Evolutionary Biology, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Fred O Asiegbu
- Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
- Department of Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| | - Mar Cabeza
- Research Programme in Organismal & Evolutionary Biology, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- HELSUS Helsinki Institute of Sustainability Science, University of Helsinki, Helsinki, Finland
| | - Johannes Cairns
- Research Programme in Organismal & Evolutionary Biology, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Helsinki Institute for Information Technology, University of Helsinki, Helsinki, Finland
| | - Ulrika Candolin
- Research Programme in Organismal & Evolutionary Biology, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Pedro Cardoso
- LUOMUS Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
- CE3C - Centre for Ecology, Evolution and Environmental Changes, CHANGE-Global Change and Sustainability Institute, Faculty of Sciences, University of Lisbon, 1749-016, Lisbon, Portugal
| | - Jussi T Eronen
- HELSUS Helsinki Institute of Sustainability Science, University of Helsinki, Helsinki, Finland
- Research Programme in Ecosystems and Environment, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- BIOS Research Unit, Helsinki, Finland
| | - Maria Hällfors
- Research Programme in Organismal & Evolutionary Biology, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Research Centre for Ecological Change, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Syke Finnish Environment Institute, Helsinki, Finland
| | - Iiris Hovatta
- SleepWell Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Neuroscience Center, HiLIFE Helsinki Institute for Life Science, University of Helsinki, Helsinki, Finland
| | - Aino Juslén
- LUOMUS Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
- Syke Finnish Environment Institute, Helsinki, Finland
| | - Andriy Kovalchuk
- Department of Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
- VTT Technical Research Centre of Finland Ltd, Espoo, Finland
- Onego Bio Ltd, Helsinki, Finland
| | - Jonna Kulmuni
- Research Programme in Organismal & Evolutionary Biology, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Liisa Kuula
- SleepWell Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Raisa Mäkipää
- Natural Resources Institute Finland (Luke), Helsinki, Finland
| | - Otso Ovaskainen
- Research Programme in Organismal & Evolutionary Biology, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Anu-Katriina Pesonen
- SleepWell Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Craig R Primmer
- Research Programme in Organismal & Evolutionary Biology, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Institute of Biotechnology, HiLIFE Helsinki Institute for Life Science, University of Helsinki, Helsinki, Finland
| | - Marjo Saastamoinen
- HiLIFE Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
- Research Programme in Organismal & Evolutionary Biology, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Research Centre for Ecological Change, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Alan H Schulman
- Institute of Biotechnology, HiLIFE Helsinki Institute for Life Science, University of Helsinki, Helsinki, Finland
- Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
- Natural Resources Institute Finland (Luke), Helsinki, Finland
| | - Leif Schulman
- LUOMUS Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
- Syke Finnish Environment Institute, Helsinki, Finland
| | - Giovanni Strona
- Research Programme in Organismal & Evolutionary Biology, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Research Centre for Ecological Change, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- European Commission, Joint Research Centre, Directorate D - Sustainable Resources, Ispra, Italy
| | - Jarno Vanhatalo
- Research Programme in Organismal & Evolutionary Biology, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Research Centre for Ecological Change, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Department of Mathematics and Statistics, Faculty of Science, University of Helsinki, Helsinki, Finland
| |
Collapse
|
24
|
O'Keefe FR, Dunn RE, Weitzel EM, Waters MR, Martinez LN, Binder WJ, Southon JR, Cohen JE, Meachen JA, DeSantis LRG, Kirby ME, Ghezzo E, Coltrain JB, Fuller BT, Farrell AB, Takeuchi GT, MacDonald G, Davis EB, Lindsey EL. Pre-Younger Dryas megafaunal extirpation at Rancho La Brea linked to fire-driven state shift. Science 2023; 381:eabo3594. [PMID: 37590347 DOI: 10.1126/science.abo3594] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 07/12/2023] [Indexed: 08/19/2023]
Abstract
The cause, or causes, of the Pleistocene megafaunal extinctions have been difficult to establish, in part because poor spatiotemporal resolution in the fossil record hinders alignment of species disappearances with archeological and environmental data. We obtained 172 new radiocarbon dates on megafauna from Rancho La Brea in California spanning 15.6 to 10.0 thousand calendar years before present (ka). Seven species of extinct megafauna disappeared by 12.9 ka, before the onset of the Younger Dryas. Comparison with high-resolution regional datasets revealed that these disappearances coincided with an ecological state shift that followed aridification and vegetation changes during the Bølling-Allerød (14.69 to 12.89 ka). Time-series modeling implicates large-scale fires as the primary cause of the extirpations, and the catalyst of this state shift may have been mounting human impacts in a drying, warming, and increasingly fire-prone ecosystem.
Collapse
Affiliation(s)
- F Robin O'Keefe
- Department of Biological Sciences, Marshall University, Huntington, WV, USA
- La Brea Tar Pits and Museum, Natural History Museums of Los Angeles County, Los Angeles, CA, USA
| | - Regan E Dunn
- La Brea Tar Pits and Museum, Natural History Museums of Los Angeles County, Los Angeles, CA, USA
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, USA
| | - Elic M Weitzel
- Department of Anthropology, University of Connecticut, Storrs, CT, USA
| | - Michael R Waters
- Center for the Study of the First Americans, Department of Anthropology, Texas A&M University, College Station, TX, USA
| | - Lisa N Martinez
- Department of Geography, University of California, Los Angeles, Los Angeles, CA, USA
| | - Wendy J Binder
- La Brea Tar Pits and Museum, Natural History Museums of Los Angeles County, Los Angeles, CA, USA
- Department of Biology, Loyola Marymount University, Los Angeles, CA, USA
| | - John R Southon
- Department of Earth System Science, University California, Irvine, Irvine, CA, USA
| | - Joshua E Cohen
- La Brea Tar Pits and Museum, Natural History Museums of Los Angeles County, Los Angeles, CA, USA
- Department of Biology, Loyola Marymount University, Los Angeles, CA, USA
- Department of Biology, Pace University, New York, NY, USA
| | - Julie A Meachen
- La Brea Tar Pits and Museum, Natural History Museums of Los Angeles County, Los Angeles, CA, USA
- Department of Anatomy, Des Moines University, Des Moines, IA, USA
| | - Larisa R G DeSantis
- La Brea Tar Pits and Museum, Natural History Museums of Los Angeles County, Los Angeles, CA, USA
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
- Department of Earth and Environmental Science, Vanderbilt University, Nashville, TN, USA
| | - Matthew E Kirby
- Department of Geological Sciences, California State University, Fullerton, Fullerton, CA, USA
| | - Elena Ghezzo
- Department of Environmental Sciences, Informatics, and Statistics, Università Ca' Foscari Venezia, Venice, Italy
- Department of Earth Sciences, University Oregon, Eugene, OR, USA
| | - Joan B Coltrain
- Department of Anthropology, University of Utah, Salt Lake City, UT, USA
| | - Benjamin T Fuller
- Géosciences Environnement Toulouse, UMR 5563, CNRS, Observatoire Midi-Pyrénées, Toulouse, France
| | - Aisling B Farrell
- La Brea Tar Pits and Museum, Natural History Museums of Los Angeles County, Los Angeles, CA, USA
| | - Gary T Takeuchi
- La Brea Tar Pits and Museum, Natural History Museums of Los Angeles County, Los Angeles, CA, USA
| | - Glen MacDonald
- Department of Geography, University of California, Los Angeles, Los Angeles, CA, USA
| | - Edward B Davis
- Department of Environmental Sciences, Informatics, and Statistics, Università Ca' Foscari Venezia, Venice, Italy
- Department of Earth Sciences, University Oregon, Eugene, OR, USA
| | - Emily L Lindsey
- La Brea Tar Pits and Museum, Natural History Museums of Los Angeles County, Los Angeles, CA, USA
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, USA
- Institute of the Environment and Sustainability, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
25
|
Riva F, Graco-Roza C, Daskalova GN, Hudgins EJ, Lewthwaite JM, Newman EA, Ryo M, Mammola S. Toward a cohesive understanding of ecological complexity. SCIENCE ADVANCES 2023; 9:eabq4207. [PMID: 37343095 PMCID: PMC10284553 DOI: 10.1126/sciadv.abq4207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/17/2023] [Indexed: 06/23/2023]
Abstract
Ecological systems are quintessentially complex systems. Understanding and being able to predict phenomena typical of complex systems is, therefore, critical to progress in ecology and conservation amidst escalating global environmental change. However, myriad definitions of complexity and excessive reliance on conventional scientific approaches hamper conceptual advances and synthesis. Ecological complexity may be better understood by following the solid theoretical basis of complex system science (CSS). We review features of ecological systems described within CSS and conduct bibliometric and text mining analyses to characterize articles that refer to ecological complexity. Our analyses demonstrate that the study of complexity in ecology is a highly heterogeneous, global endeavor that is only weakly related to CSS. Current research trends are typically organized around basic theory, scaling, and macroecology. We leverage our review and the generalities identified in our analyses to suggest a more coherent and cohesive way forward in the study of complexity in ecology.
Collapse
Affiliation(s)
- Federico Riva
- Geomatics and Landscape Ecology Laboratory, Department of Biology, Carleton University, 1125 Colonel By Dr, Ottawa, Ontario K1S 5B6, Canada
- Insectarium, Montreal Space for Life, 4581 Sherbrooke St E, Montreal, Quebec H1X 2B2, Canada
- Spatial Ecology Group, Department of Ecology and Evolution, Université de Lausanne, Lausanne, Switzerland
| | - Caio Graco-Roza
- Aquatic Community Ecology Group, Department of Geosciences and Geography, University of Helsinki, Gustaf Hällströmin katu 2, 00560 Helsinki, Finland
- Laboratory of Ecology and Physiology of Phytoplankton, Department of Plant Biology, State University of Rio de Janeiro, Rua São Francisco Xavier 524, PHLC, Sala 511a, 20550-900 Rio de Janeiro, Brazil
| | - Gergana N. Daskalova
- Biodiversity and Ecology Group, International Institute for Applied Systems Analysis, Laxenburg, Austria
| | - Emma J. Hudgins
- Geomatics and Landscape Ecology Laboratory, Department of Biology, Carleton University, 1125 Colonel By Dr, Ottawa, Ontario K1S 5B6, Canada
| | - Jayme M. M. Lewthwaite
- Marine and Environmental Biology, University of Southern California, 3616 Trousdale Pkwy, Los Angeles, CA 90089-0371, USA
| | - Erica A. Newman
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Masahiro Ryo
- Leibniz Centre for Agricultural Landscape Research (ZALF), Eberswalder Str. 84, 15374 Muencheberg, Germany
- Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, 03046 Cottbus, Germany
| | - Stefano Mammola
- Laboratory for Integrative Biodiversity Research (LIBRe), Finnish Museum of Natural History (LUOMUS), University of Helsinki, Pohjoinen Rautatiekatu 13, Helsinki 00100, Finland
- Molecular Ecology Group (MEG), Water Research Institute (IRSA), National Research Council (CNR), Corso Tonolli, 50, Pallanza 28922, Italy
- National Biodiversity Future Center, Palermo, Italy
| |
Collapse
|
26
|
Meira VH, Barros F, Leão ZMAN, Cruz ICS. Heatwave hit phase shifted coral reefs: Zoantharian mass mortality record. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 873:162223. [PMID: 36801402 DOI: 10.1016/j.scitotenv.2023.162223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 01/30/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
Phase shift is characterized by an abrupt change in the structure of a community in response to a disturbance that can break its resistance, displacing it from its natural variation. This phenomenon has been recognized in several ecosystems and often points to human activities as the main cause. However, reactions of shifted communities to anthropogenic impacts have been less studied. In recent decades, heatwaves resulting from climate change have strongly affected coral reefs. Mass coral bleaching events are recognized as the main cause of coral reef phase shifts on a global scale. In 2019, an unprecedented heatwave hit the southwest Atlantic Ocean causing mass coral bleaching in non-degraded and phase-shifted reefs of Todos os Santos Bay, at an intensity never recorded in a 34-year historical series. We analyzed the effects of this event on the resistance of phase-shifted reefs, dominated by the zoantharian Palythoa cf. variabilis. Using benthic coverage data from 2003, 2007, 2011, 2017, and 2019, we analyzed three non-degraded reefs and three phase-shifted reefs. We estimated the coverage and bleaching of corals and P. cf. variabilis on each reef. There was a reduction in coral coverage in non-degraded reefs before the 2019 mass bleaching event (i.e., heatwave). However, there was no significant coral coverage variation after the event and the structure of non-degraded reef communities did not change. In phase-shifted reefs the coverage of zoantharians did not change significantly before the 2019 event, however, after the mass bleaching, there was a significant reduction in the coverage of these organisms. Here we revealed that the resistance of the shifted community was broken, and its structure was altered, indicating that reefs in this condition were more susceptible to bleaching disturbance than non-degraded reefs.
Collapse
Affiliation(s)
- Verena Henschen Meira
- Programa de Pós-Graduação em Ecologia: Teoria, Aplicação e Valores, Universidade Federal da Bahia, Salvador, Brazil
| | - Francisco Barros
- Laboratório de Ecologia Bentônica, CIENAM, Instituto de Biologia & INCT Estudos Interdisciplinares e Transdisciplinares em Ecologia e Evolução, Universidade Federal da Bahia, Salvador, Brazil
| | - Zelinda M A N Leão
- Universidade Federal da Bahia, Instituto de Geociências, Rua Barão de Jeremoabo s/n, Campus Universitário de Ondina, Salvador, Bahia, Brazil
| | - Igor Cristino Silva Cruz
- Departamento de Oceanografia, Instituto de Geociências, Universidade Federal da Bahia, Rua Barão de Jeremoabo, s/n, Campus Universitário de Ondina, Sala 403D.6, Salvador, Bahia CEP: 40170-115, Brazil.
| |
Collapse
|
27
|
Ortiz-Sepulveda CM, Genete M, Blassiau C, Godé C, Albrecht C, Vekemans X, Van Bocxlaer B. Target enrichment of long open reading frames and ultraconserved elements to link microevolution and macroevolution in non-model organisms. Mol Ecol Resour 2023; 23:659-679. [PMID: 36349833 DOI: 10.1111/1755-0998.13735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 10/09/2022] [Accepted: 10/19/2022] [Indexed: 11/10/2022]
Abstract
Despite the increasing accessibility of high-throughput sequencing, obtaining high-quality genomic data on non-model organisms without proximate well-assembled and annotated genomes remains challenging. Here, we describe a workflow that takes advantage of distant genomic resources and ingroup transcriptomes to select and jointly enrich long open reading frames (ORFs) and ultraconserved elements (UCEs) from genomic samples for integrative studies of microevolutionary and macroevolutionary dynamics. This workflow is applied to samples of the African unionid bivalve tribe Coelaturini (Parreysiinae) at basin and continent-wide scales. Our results indicate that ORFs are efficiently captured without prior identification of intron-exon boundaries. The enrichment of UCEs was less successful, but nevertheless produced substantial data sets. Exploratory continent-wide phylogenetic analyses with ORF supercontigs (>515,000 parsimony informative sites) resulted in a fully resolved phylogeny, the backbone of which was also retrieved with UCEs (>11,000 informative sites). Variant calling on ORFs and UCEs of Coelaturini from the Malawi Basin produced ~2000 SNPs per population pair. Estimates of nucleotide diversity and population differentiation were similar for ORFs and UCEs. They were low compared to previous estimates in molluscs, but comparable to those in recently diversifying Malawi cichlids and other taxa at an early stage of speciation. Skimming off-target sequence data from the same enriched libraries of Coelaturini from the Malawi Basin, we reconstructed the maternally-inherited mitogenome, which displays the gene order inferred for the most recent common ancestor of Unionidae. Overall, our workflow and results provide exciting perspectives for integrative genomic studies of microevolutionary and macroevolutionary dynamics in non-model organisms.
Collapse
Affiliation(s)
| | - Mathieu Genete
- CNRS, Univ. Lille, UMR 8198 - Evo-Eco-Paleo, F-59000 Lille, France
| | | | - Cécile Godé
- CNRS, Univ. Lille, UMR 8198 - Evo-Eco-Paleo, F-59000 Lille, France
| | - Christian Albrecht
- Department of Animal Ecology and Systematics, Justus Liebig University, D-35392 Giessen, Germany.,Department of Biology, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Xavier Vekemans
- CNRS, Univ. Lille, UMR 8198 - Evo-Eco-Paleo, F-59000 Lille, France
| | | |
Collapse
|
28
|
Dylewsky D, Lenton TM, Scheffer M, Bury TM, Fletcher CG, Anand M, Bauch CT. Universal early warning signals of phase transitions in climate systems. J R Soc Interface 2023; 20:20220562. [PMID: 37015262 PMCID: PMC10072946 DOI: 10.1098/rsif.2022.0562] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2023] Open
Abstract
The potential for complex systems to exhibit tipping points in which an equilibrium state undergoes a sudden and often irreversible shift is well established, but prediction of these events using standard forecast modelling techniques is quite difficult. This has led to the development of an alternative suite of methods that seek to identify signatures of critical phenomena in data, which are expected to occur in advance of many classes of dynamical bifurcation. Crucially, the manifestations of these critical phenomena are generic across a variety of systems, meaning that data-intensive deep learning methods can be trained on (abundant) synthetic data and plausibly prove effective when transferred to (more limited) empirical datasets. This paper provides a proof of concept for this approach as applied to lattice phase transitions: a deep neural network trained exclusively on two-dimensional Ising model phase transitions is tested on a number of real and simulated climate systems with considerable success. Its accuracy frequently surpasses that of conventional statistical indicators, with performance shown to be consistently improved by the inclusion of spatial indicators. Tools such as this may offer valuable insight into climate tipping events, as remote sensing measurements provide increasingly abundant data on complex geospatially resolved Earth systems.
Collapse
Affiliation(s)
- Daniel Dylewsky
- Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | - Timothy M Lenton
- Global Systems Institute, University of Exeter, Exeter EX4 4PY, UK
| | - Marten Scheffer
- Department of Environmental Sciences, Wageningen University, Wageningen 6708 PB, The Netherlands
| | - Thomas M Bury
- Department of Physiology, McGill University, Montreal, Quebec, Canada H3A 0G4
| | - Christopher G Fletcher
- Department of Geography and Environmental Management, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | - Madhur Anand
- School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | - Chris T Bauch
- Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| |
Collapse
|
29
|
Ardichvili AN, Loeuille N, Dakos V. Evolutionary emergence of alternative stable states in shallow lakes. Ecol Lett 2023; 26:692-705. [PMID: 36893479 DOI: 10.1111/ele.14180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 12/16/2022] [Accepted: 12/21/2022] [Indexed: 03/11/2023]
Abstract
Ecosystems under stress may respond abruptly and irreversibly through tipping points. Although mechanisms leading to alternative stable states are much studied, little is known about how such ecosystems could have emerged in the first place. We investigate whether evolution by natural selection along resource gradients leads to bistability, using shallow lakes as an example. There, tipping points occur between two alternative states dominated by either submersed or floating macrophytes depending on nutrient loading. We model the evolution of macrophyte depth in the lake, identify the conditions under which the ancestor population diversifies and investigate whether alternative stable states dominated by different macrophyte phenotypes occur. We find that eco-evolutionary dynamics may lead to alternative stable states, but under restrictive conditions. Such dynamics require sufficient asymmetries in the acquisition of both light and nutrient. Our analysis suggests that competitive asymmetries along opposing resource gradients may allow bistability to emerge by natural selection.
Collapse
Affiliation(s)
- Alice Nadia Ardichvili
- Sorbonne Université, Université de Paris-Cité, UPEC, CNRS, INRA, IRD, Institute of Ecology and Environmental Sciences, Paris, France
| | - Nicolas Loeuille
- Sorbonne Université, Université de Paris-Cité, UPEC, CNRS, INRA, IRD, Institute of Ecology and Environmental Sciences, Paris, France
| | - Vasilis Dakos
- Sorbonne Université, Université de Paris-Cité, UPEC, CNRS, INRA, IRD, Institute of Ecology and Environmental Sciences, Paris, France.,Université de Montpellier, IRD, EPHE, CNRS, Institut des Sciences de l'Evolution de Montpellier, Montpellier, France
| |
Collapse
|
30
|
Hamant O. The 1972 Meadows report: A wake-up call for plant science. QUANTITATIVE PLANT BIOLOGY 2023; 4:e3. [PMID: 37077701 PMCID: PMC10095848 DOI: 10.1017/qpb.2023.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/22/2023] [Accepted: 01/24/2023] [Indexed: 05/03/2023]
Abstract
The 1972 Meadows report, 'the limits to growth', predicted a global socio-economic tipping point during the twenty-first century. Now supported by 50 years of empirical evidence, this work is a tribute to systems thinking and an invitation to take the current environmental crisis for what it is: neither a transition nor a bifurcation, but an inversion. For instance, we used matter (e.g., fossil fuel) to save time; we will use time to preserve matter (e.g., bioeconomy). We were exploiting ecosystems to fuel production; production will feed ecosystems. We centralised to optimise; we will decentralise to support resilience. In plant science, this new context calls for new research on plant complexity (e.g., multiscale robustness and benefits of variability), also extending to new scientific approaches (e.g., participatory research, art and science). Taking this turn reverses many paradigms and becomes a new responsibility for plant scientists as the world becomes increasingly turbulent.
Collapse
Affiliation(s)
- Olivier Hamant
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRAE, CNRS, Lyon, France
| |
Collapse
|
31
|
Fernández-Martínez M, Peñuelas J, Chevallier F, Ciais P, Obersteiner M, Rödenbeck C, Sardans J, Vicca S, Yang H, Sitch S, Friedlingstein P, Arora VK, Goll DS, Jain AK, Lombardozzi DL, McGuire PC, Janssens IA. Diagnosing destabilization risk in global land carbon sinks. Nature 2023; 615:848-853. [PMID: 36813960 DOI: 10.1038/s41586-023-05725-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 01/11/2023] [Indexed: 02/24/2023]
Abstract
Global net land carbon uptake or net biome production (NBP) has increased during recent decades1. Whether its temporal variability and autocorrelation have changed during this period, however, remains elusive, even though an increase in both could indicate an increased potential for a destabilized carbon sink2,3. Here, we investigate the trends and controls of net terrestrial carbon uptake and its temporal variability and autocorrelation from 1981 to 2018 using two atmospheric-inversion models, the amplitude of the seasonal cycle of atmospheric CO2 concentration derived from nine monitoring stations distributed across the Pacific Ocean and dynamic global vegetation models. We find that annual NBP and its interdecadal variability increased globally whereas temporal autocorrelation decreased. We observe a separation of regions characterized by increasingly variable NBP, associated with warm regions and increasingly variable temperatures, lower and weaker positive trends in NBP and regions where NBP became stronger and less variable. Plant species richness presented a concave-down parabolic spatial relationship with NBP and its variability at the global scale whereas nitrogen deposition generally increased NBP. Increasing temperature and its increasing variability appear as the most important drivers of declining and increasingly variable NBP. Our results show increasing variability of NBP regionally that can be mostly attributed to climate change and that may point to destabilization of the coupled carbon-climate system.
Collapse
Affiliation(s)
- Marcos Fernández-Martínez
- PLECO (Plants and Ecosystems), Department of Biology, University of Antwerp, Wilrijk, Belgium.
- CREAF, Campus de Bellaterra (UAB), Cerdanyola del Vallès, Spain.
- BEECA-UB, Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Barcelona, Spain.
| | - Josep Peñuelas
- CREAF, Campus de Bellaterra (UAB), Cerdanyola del Vallès, Spain
- CSIC, Global Ecology Unit, CREAF-CSIC-UAB, Bellaterra, Barcelona, Spain
| | - Frederic Chevallier
- Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Philippe Ciais
- Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Michael Obersteiner
- International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria
- School of Geography and the Environment, University of Oxford, Oxford, UK
| | - Christian Rödenbeck
- Department of Biogeochmical Systems, Max Planck Institute for Biogeochemistry, Jena, Germany
| | - Jordi Sardans
- CREAF, Campus de Bellaterra (UAB), Cerdanyola del Vallès, Spain
- CSIC, Global Ecology Unit, CREAF-CSIC-UAB, Bellaterra, Barcelona, Spain
| | - Sara Vicca
- PLECO (Plants and Ecosystems), Department of Biology, University of Antwerp, Wilrijk, Belgium
| | - Hui Yang
- Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Stephen Sitch
- College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - Pierre Friedlingstein
- College of Engineering, Mathematics, and Physical Sciences, University of Exeter, Exeter, UK
| | - Vivek K Arora
- Canadian Centre for Climate Modelling and Analysis, Climate Research Division, Environment and Climate Change Canada, Victoria, BC, Canada
| | - Daniel S Goll
- Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Atul K Jain
- Department of Atmospheric Sciences, University of Illinois, Urbana, IL, USA
| | - Danica L Lombardozzi
- Climate and Global Dynamics Laboratory, National Center for Atmospheric Research, Boulder, CO, USA
| | - Patrick C McGuire
- Department of Meteorology, Department of Geography & Environmental Science, National Centre for Atmospheric Science, University of Reading, Reading, UK
| | - Ivan A Janssens
- PLECO (Plants and Ecosystems), Department of Biology, University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
32
|
Lawrence A, Beierkuhnlein C. Detecting low fragmented sites surrounding European protected areas - implications for expansion of the Natura 2000 network. J Nat Conserv 2023. [DOI: 10.1016/j.jnc.2023.126398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
33
|
Singh P, Lu W, Lu Z, Jost AB, Lau K, Bachan A, van de Schootbrugge B, Payne JL. Reduction in animal abundance and oxygen availability during and after the end-Triassic mass extinction. GEOBIOLOGY 2023; 21:175-192. [PMID: 36329603 DOI: 10.1111/gbi.12533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 09/27/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
The end-Triassic biodiversity crisis was one of the most severe mass extinctions in the history of animal life. However, the extent to which the loss of taxonomic diversity was coupled with a reduction in organismal abundance remains to be quantified. Further, the temporal relationship between organismal abundance and local marine redox conditions is lacking in carbonate sections. To address these questions, we measured skeletal grain abundance in shallow-marine limestones by point counting 293 thin sections from four stratigraphic sections across the Triassic/Jurassic boundary in the Lombardy Basin and Apennine Platform of western Tethys. Skeletal abundance decreased abruptly across the Triassic/Jurassic boundary in all stratigraphic sections. The abundance of skeletal organisms remained low throughout the lower-middle Hettangian strata and began to rebound during the late Hettangian and early Sinemurian. A two-way ANOVA indicates that sample age (p < .01, η2 = 0.30) explains more of the variation in skeletal abundance than the depositional environment or paleobathymetry (p < .01, η2 = 0.15). Measured I/Ca ratios, a proxy for local shallow-marine redox conditions, show this same pattern with the lowest I/Ca ratios occurring in the early Hettangian. The close correspondence between oceanic water column oxygen levels and skeletal abundance indicates a connection between redox conditions and benthic organismal abundance across the Triassic/Jurassic boundary. These findings indicate that the end-Triassic mass extinction reduced not only the biodiversity but also the carrying capacity for skeletal organisms in early Hettangian ecosystems, adding to evidence that mass extinction of species generally leads to mass rarity among survivors.
Collapse
Affiliation(s)
- Pulkit Singh
- Department of Geological Sciences, Stanford University, Stanford, California, USA
| | - Wanyi Lu
- Department of Earth and Environmental Sciences, Syracuse University, Syracuse, New York, USA
- Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
| | - Zunli Lu
- Department of Earth and Environmental Sciences, Syracuse University, Syracuse, New York, USA
| | - Adam B Jost
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Kimberly Lau
- Department of Geosciences and Earth and Environmental Systems Institute, Penn State University, University Park, Pennsylvania, USA
| | | | | | - Jonathan L Payne
- Department of Geological Sciences, Stanford University, Stanford, California, USA
| |
Collapse
|
34
|
Furusawa J, Makoto K, Utsumi S. A large-scale field experiment of artificially caused landslides with replications revealed the response of the ground-dwelling beetle community to landslides. Ecol Evol 2023; 13:e9939. [PMID: 36969925 PMCID: PMC10037431 DOI: 10.1002/ece3.9939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 03/03/2023] [Accepted: 03/08/2023] [Indexed: 03/26/2023] Open
Abstract
Precipitation-induced landslides, which are predicted to increase under the changing climate, may have large impacts on insect community properties. However, understanding of how insect community properties shift following landslides remains limited because replicated research involving landslides, which are large-scale disturbances with stochastic natural causes, is difficult. To tackle this issue, we conducted a large-scale field experiment by artificially causing landslides at multiple sites. We established 12 landslide sites, each 35 m × 35 m, and 6 undisturbed sites in both planted and natural forests and collected ground-dwelling beetles 1 year later. We found that forest type (i.e., pre-disturbance vegetation) did not affect the structure of a ground-dwelling beetle community disturbed by a landslide (landslide community), but the structure of an undisturbed community was affected by forest type. Moreover, the structures of landslide and undisturbed communities were completely different, possibly because landslides create harsh environments that act as an ecological filter. Thus, a niche-selection process may have a critical role in community assembly at landslide sites. There were no significant differences in species diversity between undisturbed and landslide communities, suggesting that landslides to not reduce species richness overall. However, among-site variability in species composition was much greater at landslide sites than at undisturbed sites. This result suggests that stochastic colonization predominated at the landslide sites more than undisturbed sites. Synthesis and applications. Overall, our results suggest that both deterministic and stochastic processes are critical in community assembly, at least in the early post-landslide stage. Our large-scale manipulative field experiment with replications has thus resulted in new insights into biological community properties after a landslide.
Collapse
Affiliation(s)
- Jumpei Furusawa
- Graduate School of Environmental ScienceHokkaido UniversitySapporoJapan
| | - Kobayashi Makoto
- Nayoro Research Office, Field Science Center for Northern BiosphereHokkaido UniversityNayoroJapan
| | - Shunsuke Utsumi
- Field Science Center for Northern BiosphereHokkaido UniversitySapporoJapan
| |
Collapse
|
35
|
Huang Y, Chen ZQ, Roopnarine PD, Benton MJ, Zhao L, Feng X, Li Z. The stability and collapse of marine ecosystems during the Permian-Triassic mass extinction. Curr Biol 2023; 33:1059-1070.e4. [PMID: 36841237 DOI: 10.1016/j.cub.2023.02.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 11/20/2022] [Accepted: 02/01/2023] [Indexed: 02/27/2023]
Abstract
The history of Earth's biodiversity is punctuated episodically by mass extinctions. These are characterized by major declines of taxon richness, but the accompanying ecological collapse has rarely been evaluated quantitatively. The Permian-Triassic mass extinction (PTME; ∼252 mya), as the greatest known extinction, permanently altered marine ecosystems and paved the way for the transition from Paleozoic to Mesozoic evolutionary faunas. Thus, the PTME offers a window into the relationship between taxon richness and ecological dynamics of ecosystems during a severe extinction. However, the accompanying ecological collapse through the PTME has not been evaluated in detail. Here, using food-web models and a marine paleocommunity dataset spanning the PTME, we show that after the first extinction phase, community stability decreased only slightly despite the loss of more than half of taxonomic diversity, while community stability significantly decreased in the second phase. Thus, taxonomic and ecological changes were unequivocally decoupled, with species richness declining severely ∼61 ka earlier than the collapse of marine ecosystem stability, implying that in major catastrophes, a biodiversity crash may be the harbinger of a more devastating ecosystem collapse.
Collapse
Affiliation(s)
- Yuangeng Huang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Wuhan), 68 Jincheng Street, Wuhan 430078, China; Department of Invertebrate Zoology and Geology, California Academy of Sciences, 55 Music Concourse Drive, San Francisco, CA 94118, USA
| | - Zhong-Qiang Chen
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Wuhan), 68 Jincheng Street, Wuhan 430078, China.
| | - Peter D Roopnarine
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Wuhan), 68 Jincheng Street, Wuhan 430078, China; Department of Invertebrate Zoology and Geology, California Academy of Sciences, 55 Music Concourse Drive, San Francisco, CA 94118, USA
| | - Michael J Benton
- School of Earth Sciences, University of Bristol, Queens Road, Bristol BS8 1RJ, UK
| | - Laishi Zhao
- State Key Laboratory of Geological Processes and Resource Geology, China University of Geosciences (Wuhan), 68 Jincheng Street, Wuhan 430078, China
| | - Xueqian Feng
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Wuhan), 68 Jincheng Street, Wuhan 430078, China
| | - Zhenhua Li
- School of Computer Science, China University of Geosciences (Wuhan), 68 Jincheng Street, Wuhan 430078, China
| |
Collapse
|
36
|
Zhang J, Santema P, Li J, Deng W, Kempenaers B. Brood parasitism risk drives birds to breed near humans. Curr Biol 2023; 33:1125-1129.e3. [PMID: 36805848 DOI: 10.1016/j.cub.2023.01.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 10/24/2022] [Accepted: 01/20/2023] [Indexed: 02/19/2023]
Abstract
Urbanization is transforming ecosystems at a global scale and at an increasing rate,1,2 and its profound consequences for wildlife have been well documented.3,4,5,6 Understanding how animals thrive in the urban environment and how this environment affects (co-)evolutionary processes remains an important challenge.7 Urban environments can provide resources such as food or nest sites (e.g., cavities)10,8,9 and also reduce exposure to predators.11,12 For some species, urban environments may also affect susceptibility to brood parasitism,13,14 but this has never been tested experimentally. Here, we use a combination of field observations and experimental manipulations to show that Daurian redstarts, Phoenicurus auroreus, a common host of the common cuckoo, Cuculus canorus, nest in proximity to humans to avoid brood parasitism. First, redstarts were more likely to be parasitized with increasing distance to the nearest building. Second, redstarts adjusted their nesting location in response to a seasonally predictable change in the risk of brood parasitism. Third, experimentally simulating the presence of cuckoos during a period when they are naturally absent increased the likelihood that redstarts nested indoors or closer to human settlements. These findings suggest that redstarts actively choose to place their nest in the vicinity of a human residence as a defense against cuckoos. Our study exemplifies how animals take advantage of the urban environment by using it as a novel line of defense against detrimental interspecific interactions.
Collapse
Affiliation(s)
- Jinggang Zhang
- Ministry of Education Key Laboratory for Biodiversity Sciences and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing 100875, China; Department of Behavioural Ecology and Evolutionary Genetics, Max Planck Institute for Ornithology, 82319 Seewiesen, Germany
| | - Peter Santema
- Department of Behavioural Ecology and Evolutionary Genetics, Max Planck Institute for Ornithology, 82319 Seewiesen, Germany; Edward Grey Institute, Department of Zoology, University of Oxford, Oxford OX1 3PS, UK
| | - Jianqiang Li
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - Wenhong Deng
- Ministry of Education Key Laboratory for Biodiversity Sciences and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing 100875, China.
| | - Bart Kempenaers
- Department of Behavioural Ecology and Evolutionary Genetics, Max Planck Institute for Ornithology, 82319 Seewiesen, Germany
| |
Collapse
|
37
|
Corrêa-do-Nascimento GS, Leite GR. Current and paleoclimate models for an Atlantic Forest kissing bug indicate broader distribution outside biome delimitations. Front Ecol Evol 2023. [DOI: 10.3389/fevo.2022.1051454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Abstract
IntroductionRhodnius domesticus is a kissing bug with known occurrence around the Atlantic coast of South America and is considered to be the only endemic species of the Atlantic Forest for the Rhodniini tribe. In this study, we aimed to indicate the species trends in possible distribution in the current and paleoclimate scenarios from the last glacial maximum (LGM).MethodsWe revised R. domesticus distribution information and created ecological niche models (ENMs) between the current time and Pleistocene end scenarios for the study regions. Models were built and validated using Maxent, KUENM, and ENMeval packages in R and ArcMap. We considered the models' uncertainty when calculating the average model variance and using mobility-oriented parity (MOP) analyses to indicate extrapolation risk areas in transfer scenarios.ResultsWe found 44 different geographical species records, and our current time models indicate suitable areas in coastal regions of the Atlantic and surrounding locations in higher and lower latitudes. Paleoclimate models indicate general suitability in coastal regions and change in suitability in the interior region through time.DiscussionOur revision and ENMs indicate two main points: Despite the fact that R. domesticus records are spatial and time concentrated in some coastal regions of the Atlantic Forest, species could have a broader distribution area, including regions outside the biome delimitations in northeast and southwest areas of South America. Paleodistribution models indicate species broader distribution in Atlantic Forest-related areas in LGM and northern interior regions of South America from late Pleistocene to the current times. In glaciation scenarios, continental shelf distribution was relevant and species' different connectivity routes with other biomes may be developed after LGM.
Collapse
|
38
|
Abstract
There is growing awareness of pollinator declines worldwide. Conservation efforts have mainly focused on finding the direct causes, while paying less attention to building a systemic understanding of the fragility of these communities of pollinators. To fill this gap, we need operational measures of network resilience that integrate two different approaches in theoretical ecology. First, we should consider the range of conditions compatible with the stable coexistence of all of the species in a community. Second, we should address the rate and shape of network collapse once this safe operational space is exited. In this review, we describe this integrative approach and consider several mechanisms that may enhance the resilience of pollinator communities, chiefly rewiring the network of interactions, increasing heterogeneity, allowing variance, and enhancing coevolution. The most pressing need is to develop ways to reduce the gap between these theoretical recommendations and practical applications. This perspective shifts the emphasis from traditional approaches focusing on the equilibrium states to strategies that allow pollination networks to cope with global environmental change.
Collapse
Affiliation(s)
- Jordi Bascompte
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland;
| | - Marten Scheffer
- Department of Environmental Sciences, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
39
|
Oxidative stress-triggered Wnt signaling perturbation characterizes the tipping point of lung adeno-to-squamous transdifferentiation. Signal Transduct Target Ther 2023; 8:16. [PMID: 36627278 PMCID: PMC9832009 DOI: 10.1038/s41392-022-01227-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 09/30/2022] [Accepted: 10/10/2022] [Indexed: 01/12/2023] Open
Abstract
Lkb1 deficiency confers the Kras-mutant lung cancer with strong plasticity and the potential for adeno-to-squamous transdifferentiation (AST). However, it remains largely unknown how Lkb1 deficiency dynamically regulates AST. Using the classical AST mouse model (Kras LSL-G12D/+;Lkb1flox/flox, KL), we here comprehensively analyze the temporal transcriptomic dynamics of lung tumors at different stages by dynamic network biomarker (DNB) and identify the tipping point at which the Wnt signaling is abruptly suppressed by the excessive accumulation of reactive oxygen species (ROS) through its downstream effector FOXO3A. Bidirectional genetic perturbation of the Wnt pathway using two different Ctnnb1 conditional knockout mouse strains confirms its essential role in the negative regulation of AST. Importantly, pharmacological activation of the Wnt pathway before but not after the tipping point inhibits squamous transdifferentiation, highlighting the irreversibility of AST after crossing the tipping point. Through comparative transcriptomic analyses of mouse and human tumors, we find that the lineage-specific transcription factors (TFs) of adenocarcinoma and squamous cell carcinoma form a "Yin-Yang" counteracting network. Interestingly, inactivation of the Wnt pathway preferentially suppresses the adenomatous lineage TF network and thus disrupts the "Yin-Yang" homeostasis to lean towards the squamous lineage, whereas ectopic expression of NKX2-1, an adenomatous lineage TF, significantly dampens such phenotypic transition accelerated by the Wnt pathway inactivation. The negative correlation between the Wnt pathway and AST is further observed in a large cohort of human lung adenosquamous carcinoma. Collectively, our study identifies the tipping point of AST and highlights an essential role of the ROS-Wnt axis in dynamically orchestrating the homeostasis between adeno- and squamous-specific TF networks at the AST tipping point.
Collapse
|
40
|
Thom D, Ammer C, Annighöfer P, Aszalós R, Dittrich S, Hagge J, Keeton WS, Kovacs B, Krautkrämer O, Müller J, von Oheimb G, Seidl R. Regeneration in European beech forests after drought: the effects of microclimate, deadwood and browsing. EUROPEAN JOURNAL OF FOREST RESEARCH 2022; 142:259-273. [PMID: 37065509 PMCID: PMC10085954 DOI: 10.1007/s10342-022-01520-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 10/06/2022] [Accepted: 11/24/2022] [Indexed: 06/19/2023]
Abstract
UNLABELLED With progressing climate change, increasing weather extremes will endanger tree regeneration. Canopy openings provide light for tree establishment, but also reduce the microclimatic buffering effect of forests. Thus, disturbances can have both positive and negative impacts on tree regeneration. In 2015, three years before an extreme drought episode hit Central Europe, we established a manipulation experiment with a factorial block design in European beech (Fagus sylvatica L.)-dominated forests. At five sites located in southeastern Germany, we conducted three censuses of tree regeneration after implementing two different canopy disturbances (aggregated and distributed canopy openings), and four deadwood treatments (retaining downed, standing, downed + standing deadwood and removing all deadwood), as well as in one untreated control plot. In addition, we measured understory light levels and recorded local air temperature and humidity over five years. We (i) tested the effects of experimental disturbance and deadwood treatments on regeneration and (ii) identified the drivers of regeneration density as well as seedling species and structural diversity. Regeneration density increased over time. Aggregated canopy openings supported species and structural diversity, but reduced regeneration density. Tree regeneration was positively associated with understory light levels, while maximum vapor pressure deficit influenced tree regeneration negatively. Deadwood and browsing impacts on regeneration varied and were inconclusive. Our study indicates that despite the drought episode regeneration in beech-dominated forests persisted under moderately disturbed canopies. However, the positive effect of increased light availability on tree regeneration might have been offset by harsher microclimate after canopies have been disturbed. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s10342-022-01520-1.
Collapse
Affiliation(s)
- Dominik Thom
- Ecosystem Dynamics and Forest Management Group, School of Life Sciences, Technical University of Munich, Hans-Carl-Von-Carlowitz-Platz 2, 85354 Freising, Germany
- Gund Institute for Environment, University of Vermont, 617 Main Street, Burlington, VT 05405 USA
| | - Christian Ammer
- Silviculture and Forest Ecology of the Temperate Zones, Faculty of Forest Sciences, University of Göttingen, Büsgenweg 1, 37077 Göttingen, Germany
| | - Peter Annighöfer
- Forestry and Agroforestry Systems Group, School of Life Sciences, Technical University of Munich, Hans-Carl-Von-Carlowitz-Platz 2, 85354 Freising, Germany
| | - Réka Aszalós
- Centre for Ecological Research, Institute of Ecology and Botany, Alkotmány Út 2-4, Vácrátót, 2163 Hungary
| | - Sebastian Dittrich
- Institute of General Ecology and Environmental Protection, Department of Forest Sciences, Technische Universität Dresden, Pienner Straße 7, 01737 Tharandt, Germany
| | - Jonas Hagge
- Forest Nature Conservation, Northwest German Forest Research Institute, Prof.-Oelkers-Str. 6, 34346 Hann. Münden, Germany
- Forest Nature Conservation, Faculty of Forest Sciences, Georg-August-University Göttingen, Büsgenweg 3, 37077 Göttingen, Germany
| | - William S. Keeton
- Gund Institute for Environment, University of Vermont, 617 Main Street, Burlington, VT 05405 USA
- Rubenstein School of Environment and Natural Resources, University of Vermont, Burlington, VT 05405 USA
| | - Bence Kovacs
- Centre for Ecological Research, Institute of Ecology and Botany, Alkotmány Út 2-4, Vácrátót, 2163 Hungary
| | - Ole Krautkrämer
- Animal Ecology, Department of Ecology, Faculty of Biology, Philipps-University of Marburg, Karl-Von-Frisch-Straße 8, 35043 Marburg, Germany
- LPV, Thüringer Wald E. V., Rennsteigstraße 18, 98673 Eisfeld, OT Friedrichshöhe Germany
| | - Jörg Müller
- Ecological Field Station Fabrikschleichach, Department of Animal Ecology and Tropical Biology, University of Würzburg, Glashüttenstraße 5, 96181 Rauhenebrach, Germany
- Bavarian Forest National Park, Freyunger Strasse 2, 94481 Grafenau, Germany
| | - Goddert von Oheimb
- Institute of General Ecology and Environmental Protection, Department of Forest Sciences, Technische Universität Dresden, Pienner Straße 7, 01737 Tharandt, Germany
| | - Rupert Seidl
- Ecosystem Dynamics and Forest Management Group, School of Life Sciences, Technical University of Munich, Hans-Carl-Von-Carlowitz-Platz 2, 85354 Freising, Germany
- Berchtesgaden National Park, Doktorberg 6, 83471 Berchtesgaden, Germany
| |
Collapse
|
41
|
Burger JR, Okie JG, Hatton IA, Weinberger VP, Shrestha M, Liedtke KJ, Be T, Cruz AR, Feng X, Hinojo-Hinojo C, Kibria ASMG, Ernst KC, Enquist BJ. Global city densities: Re-examining urban scaling theory. FRONTIERS IN CONSERVATION SCIENCE 2022. [DOI: 10.3389/fcosc.2022.879934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Understanding scaling relations of social and environmental attributes of urban systems is necessary for effectively managing cities. Urban scaling theory (UST) has assumed that population density scales positively with city size. We present a new global analysis using a publicly available database of 933 cities from 38 countries. Our results showed that (18/38) 47% of countries analyzed supported increasing density scaling (pop ~ area) with exponents ~⅚ as UST predicts. In contrast, 17 of 38 countries (~45%) exhibited density scalings statistically indistinguishable from constant population densities across cities of varying sizes. These results were generally consistent in years spanning four decades from 1975 to 2015. Importantly, density varies by an order of magnitude between regions and countries and decreases in more developed economies. Our results (i) point to how economic and regional differences may affect the scaling of density with city size and (ii) show how understanding country- and region-specific strategies could inform effective management of urban systems for biodiversity, public health, conservation and resiliency from local to global scales.200 word statement of contribution: Urban Scaling Theory (UST) is a general scaling framework that makes quantitative predictions for how many urban attributes spanning physical, biological and social dimensions scale with city size; thus, UST has great implications in guiding future city developments. A major assumption of UST is that larger cities become denser. We evaluated this assumption using a publicly available global dataset of 933 cities in 38 countries. Our scaling analysis of population size and area of cities revealed that while many countries analyzed showed increasing densities with city size, about 45% of countries showed constant densities across cities. These results question a key assumption of UST. Our results suggest policies and management strategies for biodiversity conservation, public health and sustainability of urban systems may need to be tailored to national and regional scaling relations to be effective.
Collapse
|
42
|
Kowallik V, Das A, Mikheyev AS. Experimental inheritance of antibiotic acquired dysbiosis affects host phenotypes across generations. Front Microbiol 2022; 13:1030771. [PMID: 36532456 PMCID: PMC9751584 DOI: 10.3389/fmicb.2022.1030771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/24/2022] [Indexed: 04/12/2024] Open
Abstract
Microbiomes can enhance the health, fitness and even evolutionary potential of their hosts. Many organisms propagate favorable microbiomes fully or partially via vertical transmission. In the long term, such co-propagation can lead to the evolution of specialized microbiomes and functional interdependencies with the host. However, microbiomes are vulnerable to environmental stressors, particularly anthropogenic disturbance such as antibiotics, resulting in dysbiosis. In cases where microbiome transmission occurs, a disrupted microbiome may then become a contagious pathology causing harm to the host across generations. We tested this hypothesis using the specialized socially transmitted gut microbiome of honey bees as a model system. By experimentally passaging tetracycline-treated microbiomes across worker 'generations' we found that an environmentally acquired dysbiotic phenotype is heritable. As expected, the antibiotic treatment disrupted the microbiome, eliminating several common and functionally important taxa and strains. When transmitted, the dysbiotic microbiome harmed the host in subsequent generations. Particularly, naïve bees receiving antibiotic-altered microbiomes died at higher rates when challenged with further antibiotic stress. Bees with inherited dysbiotic microbiomes showed alterations in gene expression linked to metabolism and immunity, among other pathways, suggesting effects on host physiology. These results indicate that there is a possibility that sublethal exposure to chemical stressors, such as antibiotics, may cause long-lasting changes to functional host-microbiome relationships, possibly weakening the host's progeny in the face of future ecological challenges. Future studies under natural conditions would be important to examine the extent to which negative microbiome-mediated phenotypes could indeed be heritable and what role this may play in the ongoing loss of biodiversity.
Collapse
Affiliation(s)
- Vienna Kowallik
- Okinawa Institute of Science and Technology, Tancha Onna-son, Okinawa, Japan
| | - Ashutosh Das
- Australian National University, Canberra, ACT, Australia
- Chattogram Veterinary and Animal Sciences University, Khulshi, Chattogram, Bangladesh
| | - Alexander S. Mikheyev
- Okinawa Institute of Science and Technology, Tancha Onna-son, Okinawa, Japan
- Australian National University, Canberra, ACT, Australia
| |
Collapse
|
43
|
Blanchard G, Munoz F. Revisiting extinction debt through the lens of multitrophic networks and meta‐ecosystems. OIKOS 2022. [DOI: 10.1111/oik.09435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Grégoire Blanchard
- AMAP, Univ. Montpellier, CIRAD, CNRS, INRAE, IRD Montpellier France
- AMAP, IRD, Herbier de Nouvelle Calédonie Nouméa Nouvelle Calédonie
| | | |
Collapse
|
44
|
Krehenwinkel H, Weber S, Broekmann R, Melcher A, Hans J, Wolf R, Hochkirch A, Kennedy SR, Koschorreck J, Künzel S, Müller C, Retzlaff R, Teubner D, Schanzer S, Klein R, Paulus M, Udelhoven T, Veith M. Environmental DNA from archived leaves reveals widespread temporal turnover and biotic homogenization in forest arthropod communities. eLife 2022; 11:e78521. [PMID: 36354219 PMCID: PMC9767467 DOI: 10.7554/elife.78521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 11/06/2022] [Indexed: 11/10/2022] Open
Abstract
A major limitation of current reports on insect declines is the lack of standardized, long-term, and taxonomically broad time series. Here, we demonstrate the utility of environmental DNA from archived leaf material to characterize plant-associated arthropod communities. We base our work on several multi-decadal leaf time series from tree canopies in four land use types, which were sampled as part of a long-term environmental monitoring program across Germany. Using these highly standardized and well-preserved samples, we analyze temporal changes in communities of several thousand arthropod species belonging to 23 orders using metabarcoding and quantitative PCR. Our data do not support widespread declines of α-diversity or genetic variation within sites. Instead, we find a gradual community turnover, which results in temporal and spatial biotic homogenization, across all land use types and all arthropod orders. Our results suggest that insect decline is more complex than mere α-diversity loss, but can be driven by β-diversity decay across space and time.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Sven Künzel
- Max Planck Institute for Evolutionary BiologyPlönGermany
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Lapeyrolerie M, Boettiger C. Limits to ecological forecasting: Estimating uncertainty for critical transitions with deep learning. Methods Ecol Evol 2022. [DOI: 10.1111/2041-210x.14013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Marcus Lapeyrolerie
- Department of Environmental Science, Policy, and Management University of California, Berkeley Berkeley California USA
| | - Carl Boettiger
- Department of Environmental Science, Policy, and Management University of California, Berkeley Berkeley California USA
| |
Collapse
|
46
|
Estes JA, Vermeij GJ. History's legacy: Why future progress in ecology demands a view of the past. Ecology 2022; 103:e3788. [PMID: 35718755 DOI: 10.1002/ecy.3788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/04/2022] [Accepted: 05/16/2022] [Indexed: 11/06/2022]
Abstract
History has profoundly affected the composition, distribution, and abundances of species in contemporary ecosystems. A full understanding of how ecosystems work and change must therefore take history into account. We offer four well-studied examples illustrating how a knowledge of history has strengthened interpretations of modern systems: the development of molluscan antipredatory defenses in relation to shell-breaking predators; the North Pacific kelp ecosystem with sea otters, smaller predators, sea urchins, and large herbivores; estuarine ecosystems affected by the decline in oysters and other suspension feeders; and the legacy of extinct large herbivores and frugivores in tropical American forests. Many current ecological problems would greatly benefit from a historical perspective. We highlight four of these: soil depletion and tree stunting in forests related to the disappearance of large consumers; the spread of anoxic dead zones in the ocean, which we argue could be mitigated by restoring predator and suspension-feeding guilds; ocean acidification, which would be alleviated by more nutrient recycling by consumers in the aerobic ecosystem; and the relation between species diversity and keystone predators, a foundational concept that is complicated by simplified trophic relationships in modern ecosystems.
Collapse
Affiliation(s)
- James A Estes
- Ecology and Evolutionary Biology, University of California-Santa Cruz, Santa Cruz, California, USA
| | - Geerat J Vermeij
- Earth and Planetary Science, University of California-Davis, Davis, California, USA
| |
Collapse
|
47
|
Kim T, Kadji H, Whalen AJ, Ashourvan A, Freeman E, Fried SI, Tadigadapa S, Schiff SJ. Thermal effects on neurons during stimulation of the brain. J Neural Eng 2022; 19:056029. [PMID: 36126646 PMCID: PMC9855718 DOI: 10.1088/1741-2552/ac9339] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/13/2022] [Accepted: 09/20/2022] [Indexed: 01/25/2023]
Abstract
All electric and magnetic stimulation of the brain deposits thermal energy in the brain. This occurs through either Joule heating of the conductors carrying current through electrodes and magnetic coils, or through dissipation of energy in the conductive brain.Objective.Although electrical interaction with brain tissue is inseparable from thermal effects when electrodes are used, magnetic induction enables us to separate Joule heating from induction effects by contrasting AC and DC driving of magnetic coils using the same energy deposition within the conductors. Since mammalian cortical neurons have no known sensitivity to static magnetic fields, and if there is no evidence of effect on spike timing to oscillating magnetic fields, we can presume that the induced electrical currents within the brain are below the molecular shot noise where any interaction with tissue is purely thermal.Approach.In this study, we examined a range of frequencies produced from micromagnetic coils operating below the molecular shot noise threshold for electrical interaction with single neurons.Main results.We found that small temperature increases and decreases of 1∘C caused consistent transient suppression and excitation of neurons during temperature change. Numerical modeling of the biophysics demonstrated that the Na-K pump, and to a lesser extent the Nernst potential, could account for these transient effects. Such effects are dependent upon compartmental ion fluxes and the rate of temperature change.Significance.A new bifurcation is described in the model dynamics that accounts for the transient suppression and excitation; in addition, we note the remarkable similarity of this bifurcation's rate dependency with other thermal rate-dependent tipping points in planetary warming dynamics. These experimental and theoretical findings demonstrate that stimulation of the brain must take into account small thermal effects that are ubiquitously present in electrical and magnetic stimulation. More sophisticated models of electrical current interaction with neurons combined with thermal effects will lead to more accurate modulation of neuronal activity.
Collapse
Affiliation(s)
- TaeKen Kim
- Department of Physics, The Pennsylvania State University, University Park, PA, United States of America
| | - Herve Kadji
- Center for Neural Engineering, Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, United States of America
- Department of Radiation Oncology, Hackensack Meridian Health Mountainside Medical Center, Montclair, NJ, United States of America
| | - Andrew J Whalen
- Department of Mechanical Engineering, The Pennsylvania State University, University Park, PA, United States of America
- Department of Neurosurgery, Harvard Medical School, Massachusetts General Hospital, Boston, MA, United States of America
| | - Arian Ashourvan
- Center for Neural Engineering, Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, United States of America
| | - Eugene Freeman
- Department of Electrical Engineering, The Pennsylvania State University, University Park, PA, United States of America
- Honeywell International Aerospace Advanced Technology, Plymouth, MN, United States of America
| | - Shelley I Fried
- Department of Neurosurgery, Harvard Medical School, Massachusetts General Hospital, Boston, MA, United States of America
- Boston VA Healthcare System, Boston 02130, United States of America
| | - Srinivas Tadigadapa
- Department of Electrical Engineering, The Pennsylvania State University, University Park, PA, United States of America
- Department of Electrical and Computer Engineering, Northeastern University, Boston, MA, United States of America
| | - Steven J Schiff
- Department of Physics, The Pennsylvania State University, University Park, PA, United States of America
- Center for Neural Engineering, Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, United States of America
- Department of Neurosurgery, Penn State College of Medicine, Hershey, PA 17033, United States of America
- Department of Neurosurgery, Yale University, 333 Cedar Street, TMP 410, New Haven, CT 06510, United States of America
| |
Collapse
|
48
|
Yao M, Zhang S, Lu Q, Chen X, Zhang SY, Kong Y, Zhao J. Fishing for fish environmental DNA: Ecological applications, methodological considerations, surveying designs, and ways forward. Mol Ecol 2022; 31:5132-5164. [PMID: 35972241 DOI: 10.1111/mec.16659] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 07/20/2022] [Accepted: 07/27/2022] [Indexed: 12/15/2022]
Abstract
Vast global declines of freshwater and marine fish diversity and population abundance pose serious threats to both ecosystem sustainability and human livelihoods. Environmental DNA (eDNA)-based biomonitoring provides robust, efficient, and cost-effective assessment of species occurrences and population trends in diverse aquatic environments. Thus, it holds great potential for improving conventional surveillance frameworks to facilitate fish conservation and fisheries management. However, the many technical considerations and rapid developments underway in the eDNA arena can overwhelm researchers and practitioners new to the field. Here, we systematically analysed 416 fish eDNA studies to summarize research trends in terms of investigated targets, research aims, and study systems, and reviewed the applications, rationales, methodological considerations, and limitations of eDNA methods with an emphasis on fish and fisheries research. We highlighted how eDNA technology may advance our knowledge of fish behaviour, species distributions, population genetics, community structures, and ecological interactions. We also synthesized the current knowledge of several important methodological concerns, including the qualitative and quantitative power eDNA has to recover fish biodiversity and abundance, and the spatial and temporal representations of eDNA with respect to its sources. To facilitate ecological applications implementing fish eDNA techniques, recent literature was summarized to generate guidelines for effective sampling in lentic, lotic, and marine habitats. Finally, we identified current gaps and limitations, and pointed out newly emerging research avenues for fish eDNA. As methodological optimization and standardization improve, eDNA technology should revolutionize fish monitoring and promote biodiversity conservation and fisheries management that transcends geographic and temporal boundaries.
Collapse
Affiliation(s)
- Meng Yao
- Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, China.,School of Life Sciences, Peking University, Beijing, China
| | - Shan Zhang
- Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, China.,School of Life Sciences, Peking University, Beijing, China
| | - Qi Lu
- Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, China.,School of Life Sciences, Peking University, Beijing, China
| | - Xiaoyu Chen
- Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, China.,School of Life Sciences, Peking University, Beijing, China
| | - Si-Yu Zhang
- Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, China.,School of Life Sciences, Peking University, Beijing, China
| | - Yueqiao Kong
- Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, China.,School of Life Sciences, Peking University, Beijing, China
| | - Jindong Zhao
- Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, China.,School of Life Sciences, Peking University, Beijing, China
| |
Collapse
|
49
|
Zhang H, Wang Q, Zhang W, Havlin S, Gao J. Estimating comparable distances to tipping points across mutualistic systems by scaled recovery rates. Nat Ecol Evol 2022; 6:1524-1536. [PMID: 36038725 DOI: 10.1038/s41559-022-01850-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 07/14/2022] [Indexed: 11/08/2022]
Abstract
Mutualistic systems can experience abrupt and irreversible regime shifts caused by local or global stressors. Despite decades of efforts to understand ecosystem dynamics and determine whether a tipping point could occur, there are no current approaches to estimate distances (in state/parameter space) to tipping points and compare the distances across various mutualistic systems. Here we develop a general dimension-reduction approach that simultaneously compresses the natural control and state parameters of high-dimensional complex systems and introduces a scaling factor for recovery rates. Our theoretical framework places various systems with entirely different dynamical parameters, network structure and state perturbations on the same scale. More importantly, it compares distances to tipping points across different systems on the basis of data on abundance and topology. By applying the method to 54 real-world mutualistic networks, our analytical results unveil the network characteristics and system parameters that control a system's resilience. We contribute to the ongoing efforts in developing a general framework for mapping and predicting distance to tipping points of ecological and potentially other systems.
Collapse
Affiliation(s)
- Huixin Zhang
- Department of Automation, Shanghai Jiao Tong University, Shanghai, China
| | - Qi Wang
- Department of Civil and Environmental Engineering, Northeastern University, Boston, MA, USA
| | - Weidong Zhang
- Department of Automation, Shanghai Jiao Tong University, Shanghai, China
| | - Shlomo Havlin
- Department of Physics, Bar-Ilan University, Ramat-Gan, Israel
| | - Jianxi Gao
- Department of Computer Science, Rensselaer Polytechnic Institute, Troy, NY, USA.
- Network Science and Technology Center, Rensselaer Polytechnic Institute, Troy, NY, USA.
| |
Collapse
|
50
|
Nova N, Athni TS, Childs ML, Mandle L, Mordecai EA. Global Change and Emerging Infectious Diseases. ANNUAL REVIEW OF RESOURCE ECONOMICS 2022; 14:333-354. [PMID: 38371741 PMCID: PMC10871673 DOI: 10.1146/annurev-resource-111820-024214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Our world is undergoing rapid planetary changes driven by human activities, often mediated by economic incentives and resource management, affecting all life on Earth. Concurrently, many infectious diseases have recently emerged or spread into new populations. Mounting evidence suggests that global change-including climate change, land-use change, urbanization, and global movement of individuals, species, and goods-may be accelerating disease emergence by reshaping ecological systems in concert with socioeconomic factors. Here, we review insights, approaches, and mechanisms by which global change drives disease emergence from a disease ecology perspective. We aim to spur more interdisciplinary collaboration with economists and identification of more effective and sustainable interventions to prevent disease emergence. While almost all infectious diseases change in response to global change, the mechanisms and directions of these effects are system specific, requiring new, integrated approaches to disease control that recognize linkages between environmental and economic sustainability and human and planetary health.
Collapse
Affiliation(s)
- Nicole Nova
- Department of Biology, Stanford University, Stanford, California, USA
| | - Tejas S Athni
- Department of Biology, Stanford University, Stanford, California, USA
| | - Marissa L Childs
- Emmett Interdisciplinary Program in Environment and Resources, Stanford University, Stanford, California, USA
| | - Lisa Mandle
- Department of Biology, Stanford University, Stanford, California, USA
- Natural Capital Project, Stanford University, Stanford, California, USA
- Woods Institute for the Environment, Stanford University, Stanford, California, USA
| | - Erin A Mordecai
- Department of Biology, Stanford University, Stanford, California, USA
| |
Collapse
|