1
|
Rajeev A, Bhatia D. DNA-templated fluorescent metal nanoclusters and their illuminating applications. NANOSCALE 2024; 16:18715-18731. [PMID: 39292491 DOI: 10.1039/d4nr03429e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
After the discovery of DNA during the mid-20th century, a multitude of novel methodologies have surfaced which exploit DNA for its various properties. One such recently developed application of DNA is as a template in metal nanocluster formation. In the early years of the new millennium, a group of researchers found that DNA can be adopted as a template for the binding of metal nanoparticles that ultimately form nanoclusters. Three metal nanoclusters have been studied so far, including silver, gold, and copper, which have a plethora of biological applications. This review focuses on the synthesis, mechanisms, and novel applications of DNA-templated metal nanoclusters, including the therapies that have employed them for their wide range of fluorescent properties, and the future perspectives related to their development by exploiting machine learning algorithms and molecular dynamics simulation studies.
Collapse
Affiliation(s)
- Ashwin Rajeev
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, Gujarat-382355, India.
| | - Dhiraj Bhatia
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, Gujarat-382355, India.
| |
Collapse
|
2
|
Shao J, Qiu X, Zhang L, Li S, Xue S, Si Y, Li Y, Jiang J, Wu Y, Xiong Q, Wang Y, Chen Q, Gao T, Zhu L, Wang H, Xie M. Multi-layered computational gene networks by engineered tristate logics. Cell 2024; 187:5064-5080.e14. [PMID: 39089254 DOI: 10.1016/j.cell.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 04/19/2024] [Accepted: 07/01/2024] [Indexed: 08/03/2024]
Abstract
So far, biocomputation strictly follows traditional design principles of digital electronics, which could reach their limits when assembling gene circuits of higher complexity. Here, by creating genetic variants of tristate buffers instead of using conventional logic gates as basic signal processing units, we introduce a tristate-based logic synthesis (TriLoS) framework for resource-efficient design of multi-layered gene networks capable of performing complex Boolean calculus within single-cell populations. This sets the stage for simple, modular, and low-interference mapping of various arithmetic logics of interest and an effectively enlarged engineering space within single cells. We not only construct computational gene networks running full adder and full subtractor operations at a cellular level but also describe a treatment paradigm building on programmable cell-based therapeutics, allowing for adjustable and disease-specific drug secretion logics in vivo. This work could foster the evolution of modern biocomputers to progress toward unexplored applications in precision medicine.
Collapse
Affiliation(s)
- Jiawei Shao
- Department of Pharmacy, Center for Regenerative and Aging Medicine, the Fourth Affiliated Hospital of School of Medicine and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, Zhejiang 322000, China; Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Medicine and School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China.
| | - Xinyuan Qiu
- Department of Biology and Chemistry, College of Science, National University of Defense Technology, Changsha, Hunan 410073, China; College of Computer Science and Technology, National University of Defense Technology, Changsha, Hunan 410073, China
| | - Lihang Zhang
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Medicine and School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China; Research Center for Life Sciences Computing, Zhejiang Laboratory, Hangzhou, Zhejiang 311100, China
| | - Shichao Li
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Medicine and School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China; College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Shuai Xue
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China
| | - Yaqing Si
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Medicine and School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China; School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Yilin Li
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Medicine and School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China; College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jian Jiang
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Medicine and School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China; School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Yuhang Wu
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Medicine and School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China; School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Qiqi Xiong
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Medicine and School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China; School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Yukai Wang
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China; School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Qidi Chen
- Department of Pharmacy, Center for Regenerative and Aging Medicine, the Fourth Affiliated Hospital of School of Medicine and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, Zhejiang 322000, China
| | - Ting Gao
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Medicine and School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Lingyun Zhu
- Department of Biology and Chemistry, College of Science, National University of Defense Technology, Changsha, Hunan 410073, China.
| | - Hui Wang
- Research Center for Life Sciences Computing, Zhejiang Laboratory, Hangzhou, Zhejiang 311100, China.
| | - Mingqi Xie
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Medicine and School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China; School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China.
| |
Collapse
|
3
|
Gautam P, Sinha SK. The Blueprint of Logical Decisions in a NF-κB Signaling System. ACS OMEGA 2024; 9:22625-22634. [PMID: 38826544 PMCID: PMC11137707 DOI: 10.1021/acsomega.4c00049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/13/2024] [Accepted: 04/19/2024] [Indexed: 06/04/2024]
Abstract
Nearly identical cells can exhibit substantially different responses to the same stimulus that causes phenotype diversity. Such interplay between phenotype diversity and the architecture of regulatory circuits is crucial since it determines the state of a biological cell. Here, we theoretically analyze how the circuit blueprints of NF-κB in cellular environments are formed and their role in determining the cells' metabolic state. The NF-κB is a collective name for a developmental conserved family of five different transcription factors that can form homodimers or heterodimers and often promote DNA looping to reprogram the inflammatory gene response. The NF-κB controls many biological functions, including cellular differentiation, proliferation, migration, and survival. Our model shows that nuclear localization of NF-κB differentially promotes logic operations such as AND, NAND, NOR, and OR in its regulatory network. Through the quantitative thermodynamic model of transcriptional regulation and systematic variation of promoter-enhancer interaction modes, we can account for the origin of various logic gates as formed in the NF-κB system. We further show that the interconversion or switching of logic gates yielded under systematic variations of the stimuli activity and DNA looping parameters. Such computation occurs in regulatory and signaling pathways in individual cells at a molecular scale, which one can exploit to design a biomolecular computer.
Collapse
Affiliation(s)
- Pankaj Gautam
- Theoretical and Computational
Biophysical Chemistry Group, Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| | - Sudipta Kumar Sinha
- Theoretical and Computational
Biophysical Chemistry Group, Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| |
Collapse
|
4
|
Teixeira AP, Fussenegger M. Synthetic Gene Circuits for Regulation of Next-Generation Cell-Based Therapeutics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309088. [PMID: 38126677 PMCID: PMC10885662 DOI: 10.1002/advs.202309088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Indexed: 12/23/2023]
Abstract
Arming human cells with synthetic gene circuits enables to expand their capacity to execute superior sensing and response actions, offering tremendous potential for innovative cellular therapeutics. This can be achieved by assembling components from an ever-expanding molecular toolkit, incorporating switches based on transcriptional, translational, or post-translational control mechanisms. This review provides examples from the three classes of switches, and discusses their advantages and limitations to regulate the activity of therapeutic cells in vivo. Genetic switches designed to recognize internal disease-associated signals often encode intricate actuation programs that orchestrate a reduction in the sensed signal, establishing a closed-loop architecture. Conversely, switches engineered to detect external molecular or physical cues operate in an open-loop fashion, switching on or off upon signal exposure. The integration of such synthetic gene circuits into the next generation of chimeric antigen receptor T-cells is already enabling precise calibration of immune responses in terms of magnitude and timing, thereby improving the potency and safety of therapeutic cells. Furthermore, pre-clinical engineered cells targeting other chronic diseases are gathering increasing attention, and this review discusses the path forward for achieving clinical success. With synthetic biology at the forefront, cellular therapeutics holds great promise for groundbreaking treatments.
Collapse
Affiliation(s)
- Ana P. Teixeira
- Department of Biosystems Science and EngineeringETH ZurichKlingelbergstrasse 48BaselCH‐4056Switzerland
| | - Martin Fussenegger
- Department of Biosystems Science and EngineeringETH ZurichKlingelbergstrasse 48BaselCH‐4056Switzerland
- Faculty of ScienceUniversity of BaselKlingelbergstrasse 48BaselCH‐4056Switzerland
| |
Collapse
|
5
|
Li S, Wu Y, Peng X, Chen H, Zhang T, Chen H, Yang J, Xie Y, Qi H, Xiang W, Huang B, Zhou S, Hu Y, Tan Q, Du X, Huang J, Zhang R, Li X, Luo F, Jin M, Su N, Luo X, Huang S, Yang P, Yan X, Lian J, Zhu Y, Xiong Y, Xiao G, Liu Y, Shen C, Kuang L, Ni Z, Chen L. A Novel Cargo Delivery System-AnCar-Exo LaIMTS Ameliorates Arthritis via Specifically Targeting Pro-Inflammatory Macrophages. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306143. [PMID: 38083984 PMCID: PMC10870055 DOI: 10.1002/advs.202306143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/31/2023] [Indexed: 02/17/2024]
Abstract
Macrophages are heterogenic phagocytic cells that play distinct roles in physiological and pathological processes. Targeting different types of macrophages has shown potent therapeutic effects in many diseases. Although many approaches are developed to target anti-inflammatory macrophages, there are few researches on targeting pro-inflammatory macrophages, which is partially attributed to their non-s pecificity phagocytosis of extracellular substances. In this study, a novel recombinant protein is constructed that can be anchored on an exosome membrane with the purpose of targeting pro-inflammatory macrophages via antigen recognition, which is named AnCar-ExoLaIMTS . The data indicate that the phagocytosis efficiencies of pro-inflammatory macrophages for different AnCar-ExoLaIMTS show obvious differences. The AnCar-ExoLaIMTS3 has the best targeting ability for pro-inflammatory macrophages in vitro and in vivo. Mechanically, AnCar-ExoLaIMTS3 can specifically recognize the leucine-rich repeat domain of the TLR4 receptor, and then enter into pro-inflammatory macrophages via the TLR4-mediated receptor endocytosis pathway. Moreover, AnCar-ExoLaIMTS3 can efficiently deliver therapeutic cargo to pro-inflammatory macrophages and inhibit the synovial inflammatory response via downregulation of HIF-1α level, thus ameliorating the severity of arthritis in vivo. Collectively, the work established a novel gene/drug delivery system that can specifically target pro-inflammatory macrophages, which may be beneficial for the treatments of arthritis and other inflammatory diseases.
Collapse
|
6
|
Franko N, da Silva Santinha AJ, Xue S, Zhao H, Charpin-El Hamri G, Platt RJ, Teixeira AP, Fussenegger M. Integrated compact regulators of protein activity enable control of signaling pathways and genome-editing in vivo. Cell Discov 2024; 10:9. [PMID: 38263404 PMCID: PMC10805712 DOI: 10.1038/s41421-023-00632-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 12/02/2023] [Indexed: 01/25/2024] Open
Abstract
Viral proteases and clinically safe inhibitors were employed to build integrated compact regulators of protein activity (iCROP) for post-translational regulation of functional proteins by tunable proteolytic activity. In the absence of inhibitor, the co-localized/fused protease cleaves a target peptide sequence introduced in an exposed loop of the protein of interest, irreversibly fragmenting the protein structure and destroying its functionality. We selected three proteases and demonstrated the versatility of the iCROP framework by validating it to regulate the functional activity of ten different proteins. iCROP switches can be delivered either as mRNA or DNA, and provide rapid actuation kinetics with large induction ratios, while remaining strongly suppressed in the off state without inhibitor. iCROPs for effectors of the NF-κB and NFAT signaling pathways were assembled and confirmed to enable precise activation/inhibition of downstream events in response to protease inhibitors. In lipopolysaccharide-treated mice, iCROP-sr-IκBα suppressed cytokine release ("cytokine storm") by rescuing the activity of IκBα, which suppresses NF-κB signaling. We also constructed compact inducible CRISPR-(d)Cas9 variants and showed that iCROP-Cas9-mediated knockout of the PCSK9 gene in the liver lowered blood LDL-cholesterol levels in mice. iCROP-based protein switches will facilitate protein-level regulation in basic research and translational applications.
Collapse
Affiliation(s)
- Nik Franko
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | | | - Shuai Xue
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Haijie Zhao
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Ghislaine Charpin-El Hamri
- Département Génie Biologique, Institut Universitaire de Technologie, Université Claude Bernard Lyon 1, Villeurbanne, Cedex, France
| | | | - Ana Palma Teixeira
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Martin Fussenegger
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.
- Faculty of Science, University of Basel, Basel, Switzerland.
| |
Collapse
|
7
|
Zheng F, Kawabe Y, Kamihira M. RNA Aptamer-Mediated Gene Activation Systems for Inducible Transgene Expression in Animal Cells. ACS Synth Biol 2024; 13:230-241. [PMID: 38073086 DOI: 10.1021/acssynbio.3c00472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
RNA expression analyses can be used to obtain various information from inside cells, such as physical conditions, the chemical environment, and endogenous signals. For detecting RNA, the system regulating intracellular gene expression has the potential for monitoring RNA expression levels in real time within living cells. Synthetic biology provides powerful tools for detecting and analyzing RNA inside cells. Here, we devised an RNA aptamer-mediated gene activation system, RAMGA, to induce RNA-triggered gene expression activation by employing an inducible complex formation strategy grounded in synthetic biology. This methodology connects DNA-binding domains and transactivators through target RNA using RNA-binding domains, including phage coat proteins. MS2 bacteriophage coat protein fused with a transcriptional activator and PP7 bacteriophage coat protein fused with the tetracycline repressor (tetR) can be bridged by target RNA encoding MS2 and PP7 stem-loops, resulting in transcriptional activation. We generated recombinant CHO cells containing an inducible GFP expression module governed by a minimal promoter with a tetR-responsive element. Cells carrying the trigger RNA exhibited robust reporter gene expression, whereas cells lacking it exhibited no expression. GFP expression was upregulated over 200-fold compared with that in cells without a target RNA expression vector. Moreover, this system can detect the expression of mRNA tagged with aptamer tags and modulate reporter gene expression based on the target mRNA level without affecting the expression of the original mRNA-encoding gene. The RNA-triggered gene expression systems developed in this study have potential as a new platform for establishing gene circuits, evaluating endogenous gene expression, and developing novel RNA detectors.
Collapse
Affiliation(s)
- Feiyang Zheng
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yoshinori Kawabe
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Masamichi Kamihira
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
8
|
Hirosawa M, Saito H. RNA Switches Using Cas Proteins. Methods Mol Biol 2024; 2774:177-192. [PMID: 38441765 DOI: 10.1007/978-1-0716-3718-0_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Expanding the number of available RNA-binding proteins (RBPs) is vital to establishing posttranscriptional circuits in mammalian cells. We focused on CRISPR-Cas systems and exploited Cas proteins for their versatility as RBPs. The translation of genes encoded in an mRNA becomes regulatable by a Cas protein by inserting a crRNA/sgRNA sequence recognizable by the specific Cas protein into its 5'UTR. These Cas protein-responsive switches vastly expand the available tools in synthetic biology because of the wide range of Cas protein orthologs that can be used as trigger proteins.Here, we describe the design principle of Cas protein-responsive switches, both plasmid and RNA versions, using Streptococcus pyogenes Cas9 (SpCas9) as an example and show an example of its use in mammalian cells, HEK293FT cells.
Collapse
Affiliation(s)
- Moe Hirosawa
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Hirohide Saito
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan.
| |
Collapse
|
9
|
Shao J, Li S, Qiu X, Jiang J, Zhang L, Wang P, Si Y, Wu Y, He M, Xiong Q, Zhao L, Li Y, Fan Y, Viviani M, Fu Y, Wu C, Gao T, Zhu L, Fussenegger M, Wang H, Xie M. Engineered poly(A)-surrogates for translational regulation and therapeutic biocomputation in mammalian cells. Cell Res 2024; 34:31-46. [PMID: 38172533 PMCID: PMC10770082 DOI: 10.1038/s41422-023-00896-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 10/27/2023] [Indexed: 01/05/2024] Open
Abstract
Here, we present a gene regulation strategy enabling programmable control over eukaryotic translational initiation. By excising the natural poly-adenylation (poly-A) signal of target genes and replacing it with a synthetic control region harboring RNA-binding protein (RBP)-specific aptamers, cap-dependent translation is rendered exclusively dependent on synthetic translation initiation factors (STIFs) containing different RBPs engineered to conditionally associate with different eIF4F-binding proteins (eIFBPs). This modular design framework facilitates the engineering of various gene switches and intracellular sensors responding to many user-defined trigger signals of interest, demonstrating tightly controlled, rapid and reversible regulation of transgene expression in mammalian cells as well as compatibility with various clinically applicable delivery routes of in vivo gene therapy. Therapeutic efficacy was demonstrated in two animal models. To exemplify disease treatments that require on-demand drug secretion, we show that a custom-designed gene switch triggered by the FDA-approved drug grazoprevir can effectively control insulin expression and restore glucose homeostasis in diabetic mice. For diseases that require instantaneous sense-and-response treatment programs, we create highly specific sensors for various subcellularly (mis)localized protein markers (such as cancer-related fusion proteins) and show that translation-based protein sensors can be used either alone or in combination with other cell-state classification strategies to create therapeutic biocomputers driving self-sufficient elimination of tumor cells in mice. This design strategy demonstrates unprecedented flexibility for translational regulation and could form the basis for a novel class of programmable gene therapies in vivo.
Collapse
Affiliation(s)
- Jiawei Shao
- International Institutes of Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China.
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China.
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China.
| | - Shichao Li
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xinyuan Qiu
- Department of Biology and Chemistry, College of Science, National University of Defense Technology, Changsha, Hunan, China
| | - Jian Jiang
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
- School of Life Sciences, Fudan University, Shanghai, China
| | - Lihang Zhang
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
- Research Center of Biological Computation, Zhejiang Laboratory, Hangzhou, Zhejiang, China
| | - Pengli Wang
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Yaqing Si
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
- School of Life Sciences, Fudan University, Shanghai, China
| | - Yuhang Wu
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
- School of Life Sciences, Fudan University, Shanghai, China
| | - Minghui He
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
- School of Life Sciences, Fudan University, Shanghai, China
| | - Qiqi Xiong
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
- School of Life Sciences, Fudan University, Shanghai, China
| | - Liuqi Zhao
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yilin Li
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yuxuan Fan
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Mirta Viviani
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
- School of Life Sciences, Fudan University, Shanghai, China
| | - Yu Fu
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
- School of Life Sciences, Fudan University, Shanghai, China
| | - Chaohua Wu
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Ting Gao
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Lingyun Zhu
- Department of Biology and Chemistry, College of Science, National University of Defense Technology, Changsha, Hunan, China
| | - Martin Fussenegger
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058, Basel, Switzerland
- Faculty of Science, University of Basel, Mattenstrasse 26, CH-4058, Basel, Switzerland
| | - Hui Wang
- Research Center of Biological Computation, Zhejiang Laboratory, Hangzhou, Zhejiang, China.
| | - Mingqi Xie
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China.
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China.
- School of Engineering, Westlake University, Hangzhou, Zhejiang, China.
| |
Collapse
|
10
|
Tang L, Tian Z, Cheng J, Zhang Y, Song Y, Liu Y, Wang J, Zhang P, Ke Y, Simmel FC, Song J. Circular single-stranded DNA as switchable vector for gene expression in mammalian cells. Nat Commun 2023; 14:6665. [PMID: 37863879 PMCID: PMC10589306 DOI: 10.1038/s41467-023-42437-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 10/11/2023] [Indexed: 10/22/2023] Open
Abstract
Synthetic gene networks in mammalian cells are currently limited to either protein-based transcription factors or RNA-based regulators. Here, we demonstrate a regulatory approach based on circular single-stranded DNA (Css DNA), which can be used as an efficient expression vector with switchable activity, enabling gene regulation in mammalian cells. The Css DNA is transformed into its double-stranded form via DNA replication and used as vectors encoding a variety of different proteins in a wide range of cell lines as well as in mice. The rich repository of DNA nanotechnology allows to use sort single-stranded DNA effectors to fold Css DNA into DNA nanostructures of different complexity, leading the gene expression to programmable inhibition and subsequently re-activation via toehold-mediated strand displacement. The regulatory strategy from Css DNA can thus expand the molecular toolbox for the realization of synthetic regulatory networks with potential applications in genetic diagnosis and gene therapy.
Collapse
Affiliation(s)
- Linlin Tang
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Zhijin Tian
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, 310022, Hangzhou, Zhejiang, China
- Department of Chemistry, University of Science & Technology of China, 230026, Hefei, Anhui, China
| | - Jin Cheng
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Yijing Zhang
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, 310022, Hangzhou, Zhejiang, China
- School of Life Sciences, Tianjin University, 300072, Tianjin, China
| | - Yongxiu Song
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, 310022, Hangzhou, Zhejiang, China
| | - Yan Liu
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Jinghao Wang
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, 310022, Hangzhou, Zhejiang, China
- Department of Chemistry, University of Science & Technology of China, 230026, Hefei, Anhui, China
| | - Pengfei Zhang
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, 310022, Hangzhou, Zhejiang, China
| | - Yonggang Ke
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30322, USA.
| | | | - Jie Song
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 200240, Shanghai, China.
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, 310022, Hangzhou, Zhejiang, China.
| |
Collapse
|
11
|
Wang X, Zhou X, Kang L, Lai Y, Ye H. Engineering natural molecule-triggered genetic control systems for tunable gene- and cell-based therapies. Synth Syst Biotechnol 2023; 8:416-426. [PMID: 37384125 PMCID: PMC10293594 DOI: 10.1016/j.synbio.2023.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/01/2023] [Accepted: 06/04/2023] [Indexed: 06/30/2023] Open
Abstract
The ability to precisely control activities of engineered designer cells provides a novel strategy for modern precision medicine. Dynamically adjustable gene- and cell-based precision therapies are recognized as next generation medicines. However, the translation of these controllable therapeutics into clinical practice is severely hampered by the lack of safe and highly specific genetic switches controlled by triggers that are nontoxic and side-effect free. Recently, natural products derived from plants have been extensively explored as trigger molecules to control genetic switches and synthetic gene networks for multiple applications. These controlled genetic switches could be further introduced into mammalian cells to obtain synthetic designer cells for adjustable and fine tunable cell-based precision therapy. In this review, we introduce various available natural molecules that were engineered to control genetic switches for controllable transgene expression, complex logic computation, and therapeutic drug delivery to achieve precision therapy. We also discuss current challenges and prospects in translating these natural molecule-controlled genetic switches developed for biomedical applications from the laboratory to the clinic.
Collapse
|
12
|
Huang J, Xue S, Buchmann P, Teixeira AP, Fussenegger M. An electrogenetic interface to program mammalian gene expression by direct current. Nat Metab 2023; 5:1395-1407. [PMID: 37524785 PMCID: PMC10447240 DOI: 10.1038/s42255-023-00850-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/23/2023] [Indexed: 08/02/2023]
Abstract
Wearable electronic devices are playing a rapidly expanding role in the acquisition of individuals' health data for personalized medical interventions; however, wearables cannot yet directly program gene-based therapies because of the lack of a direct electrogenetic interface. Here we provide the missing link by developing an electrogenetic interface that we call direct current (DC)-actuated regulation technology (DART), which enables electrode-mediated, time- and voltage-dependent transgene expression in human cells using DC from batteries. DART utilizes a DC supply to generate non-toxic levels of reactive oxygen species that act via a biosensor to reversibly fine-tune synthetic promoters. In a proof-of-concept study in a type 1 diabetic male mouse model, a once-daily transdermal stimulation of subcutaneously implanted microencapsulated engineered human cells by energized acupuncture needles (4.5 V DC for 10 s) stimulated insulin release and restored normoglycemia. We believe this technology will enable wearable electronic devices to directly program metabolic interventions.
Collapse
Affiliation(s)
- Jinbo Huang
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Shuai Xue
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Peter Buchmann
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Ana Palma Teixeira
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Martin Fussenegger
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.
- Faculty of Science, University of Basel, Basel, Switzerland.
| |
Collapse
|
13
|
Chen J, Vishweshwaraiah YL, Mailman RB, Tabdanov ED, Dokholyan NV. A noncommutative combinatorial protein logic circuit controls cell orientation in nanoenvironments. SCIENCE ADVANCES 2023; 9:eadg1062. [PMID: 37235645 PMCID: PMC10219599 DOI: 10.1126/sciadv.adg1062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 04/20/2023] [Indexed: 05/28/2023]
Abstract
Single-protein-based devices that integrate signal sensing with logical operations to generate functional outputs offer exceptional promise for monitoring and modulating biological systems. Engineering such intelligent nanoscale computing agents is challenging, as it requires the integration of sensor domains into a functional protein via intricate allosteric networks. We incorporate a rapamycin-sensitive sensor (uniRapR) and a blue light-responsive LOV2 domain into human Src kinase, creating a protein device that functions as a noncommutative combinatorial logic circuit. In our design, rapamycin activates Src kinase, causing protein localization to focal adhesions, whereas blue light exerts the reverse effect that inactivates Src translocation. Focal adhesion maturation induced by Src activation reduces cell migration dynamics and shifts cell orientation to align along collagen nanolane fibers. Using this protein device, we reversibly control cell orientation by applying the appropriate input signals, a framework that may be useful in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Jiaxing Chen
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA 17033-0850, USA
| | | | - Richard B. Mailman
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA 17033-0850, USA
| | - Erdem D. Tabdanov
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA 17033-0850, USA
| | - Nikolay V. Dokholyan
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA 17033-0850, USA
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA 17033-0850, USA
- Department of Chemistry, Pennsylvania State University, University Park, PA 16802, USA
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
14
|
Maity D, Guha Ray P, Buchmann P, Mansouri M, Fussenegger M. Blood-Glucose-Powered Metabolic Fuel Cell for Self-Sufficient Bioelectronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300890. [PMID: 36893359 DOI: 10.1002/adma.202300890] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/28/2023] [Indexed: 05/26/2023]
Abstract
Currently available bioelectronic devices consume too much power to be continuously operated on rechargeable batteries, and are often powered wirelessly, with attendant issues regarding reliability, convenience, and mobility. Thus, the availability of a robust, self-sufficient, implantable electrical power generator that works under physiological conditions would be transformative for many applications, from driving bioelectronic implants and prostheses to programing cellular behavior and patients' metabolism. Here, capitalizing on a new copper-containing, conductively tuned 3D carbon nanotube composite, an implantable blood-glucose-powered metabolic fuel cell is designed that continuously monitors blood-glucose levels, converts excess glucose into electrical power during hyperglycemia, and produces sufficient energy (0.7 mW cm-2 , 0.9 V, 50 mm glucose) to drive opto- and electro-genetic regulation of vesicular insulin release from engineered beta cells. It is shown that this integration of blood-glucose monitoring with elimination of excessive blood glucose by combined electro-metabolic conversion and insulin-release-mediated cellular consumption enables the metabolic fuel cell to restore blood-glucose homeostasis in an automatic, self-sufficient, and closed-loop manner in an experimental model of type-1 diabetes.
Collapse
Affiliation(s)
- Debasis Maity
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, Basel, CH-4058, Switzerland
| | - Preetam Guha Ray
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, Basel, CH-4058, Switzerland
| | - Peter Buchmann
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, Basel, CH-4058, Switzerland
| | - Maysam Mansouri
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, Basel, CH-4058, Switzerland
| | - Martin Fussenegger
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, Basel, CH-4058, Switzerland
- Faculty of Science, University of Basel, Mattenstrasse 26, Basel, CH-4058, Switzerland
| |
Collapse
|
15
|
Ferreira SS, Anderson CE, Antunes MS. A logical way to reprogram plants. Biochem Biophys Res Commun 2023; 654:80-86. [PMID: 36898227 DOI: 10.1016/j.bbrc.2023.02.080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023]
Abstract
Living cells constantly monitor their external and internal environments for changing conditions, stresses or developmental cues. Networks of genetically encoded components sense and process these signals following pre-defined rules in such a way that specific combinations of the presence or absence of certain signals activate suitable responses. Many biological signal integration mechanisms approximate Boolean logic operations, whereby presence or absence of signals are computed as variables with values described as either true or false, respectively. Boolean logic gates are commonly used in algebra and in computer sciences, and have long been recognized as useful information processing devices in electronic circuits. In these circuits, logic gates integrate multiple input values and produce an output signal according to pre-defined Boolean logic operations. Recent implementation of these logic operations using genetic components to process information in living cells has allowed genetic circuits to enable novel traits with decision-making capabilities. Although several literature reports describe the design and use of these logic gates to introduce new functions in bacterial, yeast and mammalian cells, similar approaches in plants remain scarce, likely due to challenges posed by the complexity of plants and the lack of some technological advances, e.g., species-independent genetic transformation. In this mini review, we have surveyed recent reports describing synthetic genetic Boolean logic operators in plants and the different gate architectures used. We also briefly discuss the potential of deploying these genetic devices in plants to bring to fruition a new generation of resilient crops and improved biomanufacturing platforms.
Collapse
Affiliation(s)
- Savio S Ferreira
- Department of Biological Sciences, University of North Texas, Denton, TX, 76203, USA; BioDiscovery Institute, University of North Texas, Denton, TX, 76203, USA.
| | - Charles E Anderson
- Department of Biological Sciences, University of North Texas, Denton, TX, 76203, USA; BioDiscovery Institute, University of North Texas, Denton, TX, 76203, USA.
| | - Mauricio S Antunes
- Department of Biological Sciences, University of North Texas, Denton, TX, 76203, USA; BioDiscovery Institute, University of North Texas, Denton, TX, 76203, USA.
| |
Collapse
|
16
|
Kawasaki S, Ono H, Hirosawa M, Kuwabara T, Sumi S, Lee S, Woltjen K, Saito H. Programmable mammalian translational modulators by CRISPR-associated proteins. Nat Commun 2023; 14:2243. [PMID: 37076490 PMCID: PMC10115826 DOI: 10.1038/s41467-023-37540-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/21/2023] [Indexed: 04/21/2023] Open
Abstract
Translational modulation based on RNA-binding proteins can be used to construct artificial gene circuits, but RNA-binding proteins capable of regulating translation efficiently and orthogonally remain scarce. Here we report CARTRIDGE (Cas-Responsive Translational Regulation Integratable into Diverse Gene control) to repurpose Cas proteins as translational modulators in mammalian cells. We demonstrate that a set of Cas proteins efficiently and orthogonally repress or activate the translation of designed mRNAs that contain a Cas-binding RNA motif in the 5'-UTR. By linking multiple Cas-mediated translational modulators, we designed and built artificial circuits like logic gates, cascades, and half-subtractor circuits. Moreover, we show that various CRISPR-related technologies like anti-CRISPR and split-Cas9 platforms could be similarly repurposed to control translation. Coupling Cas-mediated translational and transcriptional regulation enhanced the complexity of synthetic circuits built by only introducing a few additional elements. Collectively, CARTRIDGE has enormous potential as a versatile molecular toolkit for mammalian synthetic biology.
Collapse
Affiliation(s)
- Shunsuke Kawasaki
- Department of Life Science Frontiers, Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan.
| | - Hiroki Ono
- Department of Life Science Frontiers, Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
- Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Moe Hirosawa
- Department of Life Science Frontiers, Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Takeru Kuwabara
- Faculty of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Shunsuke Sumi
- Department of Life Science Frontiers, Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
- Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Suji Lee
- Department of Life Science Frontiers, Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
- Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Knut Woltjen
- Department of Life Science Frontiers, Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Hirohide Saito
- Department of Life Science Frontiers, Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan.
- Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan.
| |
Collapse
|
17
|
Bertschi A, Wang P, Galvan S, Teixeira AP, Fussenegger M. Combinatorial protein dimerization enables precise multi-input synthetic computations. Nat Chem Biol 2023; 19:767-777. [PMID: 36894721 DOI: 10.1038/s41589-023-01281-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 02/01/2023] [Indexed: 03/11/2023]
Abstract
Bacterial transcription factors (TFs) with helix-turn-helix (HTH) DNA-binding domains have been widely explored to build orthogonal transcriptional regulation systems in mammalian cells. Here we capitalize on the modular structure of these proteins to build a framework for multi-input logic gates relying on serial combinations of inducible protein-protein interactions. We found that for some TFs, their HTH domain alone is sufficient for DNA binding. By fusing the HTH domain to TFs, we established dimerization dependent rather than DNA-binding-dependent activation. This enabled us to convert gene switches from OFF-type into more widely applicable ON-type systems and to create mammalian gene switches responsive to new inducers. By combining both OFF and ON modes of action, we built a compact, high-performance bandpass filter. Furthermore, we were able to show cytosolic and extracellular dimerization. Cascading up to five pairwise fusion proteins yielded robust multi-input AND logic gates. Combinations of different pairwise fusion proteins afforded a variety of 4-input 1-output AND and OR logic gate configurations.
Collapse
Affiliation(s)
- Adrian Bertschi
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Pengli Wang
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Silvia Galvan
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Ana Palma Teixeira
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Martin Fussenegger
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland. .,University of Basel, Faculty of Science, Basel, Switzerland.
| |
Collapse
|
18
|
Bongard J, Levin M. There's Plenty of Room Right Here: Biological Systems as Evolved, Overloaded, Multi-Scale Machines. Biomimetics (Basel) 2023; 8:110. [PMID: 36975340 PMCID: PMC10046700 DOI: 10.3390/biomimetics8010110] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/24/2023] [Accepted: 03/01/2023] [Indexed: 03/18/2023] Open
Abstract
The applicability of computational models to the biological world is an active topic of debate. We argue that a useful path forward results from abandoning hard boundaries between categories and adopting an observer-dependent, pragmatic view. Such a view dissolves the contingent dichotomies driven by human cognitive biases (e.g., a tendency to oversimplify) and prior technological limitations in favor of a more continuous view, necessitated by the study of evolution, developmental biology, and intelligent machines. Form and function are tightly entwined in nature, and in some cases, in robotics as well. Thus, efforts to re-shape living systems for biomedical or bioengineering purposes require prediction and control of their function at multiple scales. This is challenging for many reasons, one of which is that living systems perform multiple functions in the same place at the same time. We refer to this as "polycomputing"-the ability of the same substrate to simultaneously compute different things, and make those computational results available to different observers. This ability is an important way in which living things are a kind of computer, but not the familiar, linear, deterministic kind; rather, living things are computers in the broad sense of their computational materials, as reported in the rapidly growing physical computing literature. We argue that an observer-centered framework for the computations performed by evolved and designed systems will improve the understanding of mesoscale events, as it has already done at quantum and relativistic scales. To develop our understanding of how life performs polycomputing, and how it can be convinced to alter one or more of those functions, we can first create technologies that polycompute and learn how to alter their functions. Here, we review examples of biological and technological polycomputing, and develop the idea that the overloading of different functions on the same hardware is an important design principle that helps to understand and build both evolved and designed systems. Learning to hack existing polycomputing substrates, as well as to evolve and design new ones, will have massive impacts on regenerative medicine, robotics, and computer engineering.
Collapse
Affiliation(s)
- Joshua Bongard
- Department of Computer Science, University of Vermont, Burlington, VT 05405, USA
| | - Michael Levin
- Allen Discovery Center at Tufts University, 200 Boston Ave., Suite 4600, Medford, MA 02155, USA
| |
Collapse
|
19
|
DNA computational device-based smart biosensors. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2022.116911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
20
|
Ono H, Saito H. Sensing intracellular signatures with synthetic mRNAs. RNA Biol 2023; 20:588-602. [PMID: 37582192 PMCID: PMC10431736 DOI: 10.1080/15476286.2023.2244791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 06/30/2023] [Accepted: 07/31/2023] [Indexed: 08/17/2023] Open
Abstract
The bottom-up assembly of biological components in synthetic biology has contributed to a better understanding of natural phenomena and the development of new technologies for practical applications. Over the past few decades, basic RNA research has unveiled the regulatory roles of RNAs underlying gene regulatory networks; while advances in RNA biology, in turn, have highlighted the potential of a wide variety of RNA elements as building blocks to construct artificial systems. In particular, synthetic mRNA-based translational regulators, which respond to signals in cells and regulate the production of encoded output proteins, are gaining attention with the recent rise of mRNA therapeutics. In this Review, we discuss recent progress in RNA synthetic biology, mainly focusing on emerging technologies for sensing intracellular protein and RNA molecules and controlling translation.
Collapse
Affiliation(s)
- Hiroki Ono
- Department of Life Science Frontiers, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Sakyo-Ku, Japan
| | - Hirohide Saito
- Department of Life Science Frontiers, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Sakyo-Ku, Japan
| |
Collapse
|
21
|
Wu H, Zhang Z, Zhang Y, Zhao Z, Zhu H, Yue C. Extracellular vesicle: A magic lamp to treat skin aging, refractory wound, and pigmented dermatosis? Front Bioeng Biotechnol 2022; 10:1043320. [PMID: 36420445 PMCID: PMC9676268 DOI: 10.3389/fbioe.2022.1043320] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 10/24/2022] [Indexed: 09/19/2023] Open
Abstract
Exposure of the skin to an external stimulus may lead to a series of irreversible dysfunctions, such as skin aging, refractory wounds, and pigmented dermatosis. Nowadays, many cutaneous treatments have failed to strike a balance between cosmetic needs and medical recovery. Extracellular vesicles (EVs) are one of the most promising therapeutic tools. EVs are cell-derived nanoparticles that can carry a variety of cargoes, such as nucleic acids, lipids, and proteins. They also have the ability to communicate with neighboring or distant cells. A growing body of evidence suggests that EVs play a significant role in skin repair. We summarize the current findings of EV therapy in skin aging, refractory wound, and pigmented dermatosis and also describe the novel engineering strategies for optimizing EV function and therapeutic outcomes.
Collapse
Affiliation(s)
- Haiyan Wu
- Key Laboratory of Microbial Drugs Innovation and Transformation of Yan’an, School of Basic Medicine, Yan’an University, Yan’an, China
- Institute for Regenerative Medicine & Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhenchun Zhang
- Key Laboratory of Microbial Drugs Innovation and Transformation of Yan’an, School of Basic Medicine, Yan’an University, Yan’an, China
- Institute for Regenerative Medicine & Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yuemeng Zhang
- Key Laboratory of Microbial Drugs Innovation and Transformation of Yan’an, School of Basic Medicine, Yan’an University, Yan’an, China
| | - Zhenlin Zhao
- Shenzhen Ruipuxun Academy for Stem Cell & Regenerative Medicine, Shenzhen, China
| | - Hongming Zhu
- Institute for Regenerative Medicine & Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- Shenzhen Ruipuxun Academy for Stem Cell & Regenerative Medicine, Shenzhen, China
| | - Changwu Yue
- Key Laboratory of Microbial Drugs Innovation and Transformation of Yan’an, School of Basic Medicine, Yan’an University, Yan’an, China
| |
Collapse
|
22
|
Prochazka L, Michaels YS, Lau C, Jones RD, Siu M, Yin T, Wu D, Jang E, Vázquez‐Cantú M, Gilbert PM, Kaul H, Benenson Y, Zandstra PW. Synthetic gene circuits for cell state detection and protein tuning in human pluripotent stem cells. Mol Syst Biol 2022; 18:e10886. [PMID: 36366891 PMCID: PMC9650275 DOI: 10.15252/msb.202110886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 10/13/2022] [Accepted: 10/17/2022] [Indexed: 11/13/2022] Open
Abstract
During development, cell state transitions are coordinated through changes in the identity of molecular regulators in a cell type‐ and dose‐specific manner. The ability to rationally engineer such transitions in human pluripotent stem cells (hPSC) will enable numerous applications in regenerative medicine. Herein, we report the generation of synthetic gene circuits that can detect a desired cell state using AND‐like logic integration of endogenous miRNAs (classifiers) and, upon detection, produce fine‐tuned levels of output proteins using an miRNA‐mediated output fine‐tuning technology (miSFITs). Specifically, we created an “hPSC ON” circuit using a model‐guided miRNA selection and circuit optimization approach. The circuit demonstrates robust PSC‐specific detection and graded output protein production. Next, we used an empirical approach to create an “hPSC‐Off” circuit. This circuit was applied to regulate the secretion of endogenous BMP4 in a state‐specific and fine‐tuned manner to control the composition of differentiating hPSCs. Our work provides a platform for customized cell state‐specific control of desired physiological factors in hPSC, laying the foundation for programming cell compositions in hPSC‐derived tissues and beyond.
Collapse
Affiliation(s)
- Laura Prochazka
- Institute of Biomedical Engineering (BME) University of Toronto Toronto ON Canada
- Donnelly Centre for Cellular & Biomolecular Research University of Toronto Toronto ON Canada
| | - Yale S Michaels
- Michael Smith Laboratories University of British Columbia Vancouver BC Canada
- School of Biomedical Engineering University of British Columbia Vancouver BC Canada
| | - Charles Lau
- Institute of Biomedical Engineering (BME) University of Toronto Toronto ON Canada
- Donnelly Centre for Cellular & Biomolecular Research University of Toronto Toronto ON Canada
- Michael Smith Laboratories University of British Columbia Vancouver BC Canada
- School of Biomedical Engineering University of British Columbia Vancouver BC Canada
| | - Ross D Jones
- Michael Smith Laboratories University of British Columbia Vancouver BC Canada
- School of Biomedical Engineering University of British Columbia Vancouver BC Canada
| | - Mona Siu
- Michael Smith Laboratories University of British Columbia Vancouver BC Canada
- School of Biomedical Engineering University of British Columbia Vancouver BC Canada
| | - Ting Yin
- Institute of Biomedical Engineering (BME) University of Toronto Toronto ON Canada
- Donnelly Centre for Cellular & Biomolecular Research University of Toronto Toronto ON Canada
| | - Diana Wu
- Institute of Biomedical Engineering (BME) University of Toronto Toronto ON Canada
- Donnelly Centre for Cellular & Biomolecular Research University of Toronto Toronto ON Canada
| | - Esther Jang
- Institute of Biomedical Engineering (BME) University of Toronto Toronto ON Canada
- Donnelly Centre for Cellular & Biomolecular Research University of Toronto Toronto ON Canada
| | - Mercedes Vázquez‐Cantú
- Institute of Biomedical Engineering (BME) University of Toronto Toronto ON Canada
- Donnelly Centre for Cellular & Biomolecular Research University of Toronto Toronto ON Canada
- Swiss Federal Institute of Technology (ETH) Zürich, Department of Biosystems Science and Engineering (D‐BSSE) Basel Switzerland
| | - Penney M Gilbert
- Institute of Biomedical Engineering (BME) University of Toronto Toronto ON Canada
- Donnelly Centre for Cellular & Biomolecular Research University of Toronto Toronto ON Canada
- Department of Cell and Systems Biology University of Toronto Toronto ON Canada
| | - Himanshu Kaul
- School of Engineering University of Leicester Leicester UK
- Department of Respiratory Sciences University of Leicester Leicester UK
| | - Yaakov Benenson
- Swiss Federal Institute of Technology (ETH) Zürich, Department of Biosystems Science and Engineering (D‐BSSE) Basel Switzerland
| | - Peter W Zandstra
- Michael Smith Laboratories University of British Columbia Vancouver BC Canada
- School of Biomedical Engineering University of British Columbia Vancouver BC Canada
| |
Collapse
|
23
|
Stefanov BA, Fussenegger M. Biomarker-driven feedback control of synthetic biology systems for next-generation personalized medicine. Front Bioeng Biotechnol 2022; 10:986210. [PMID: 36225597 PMCID: PMC9548536 DOI: 10.3389/fbioe.2022.986210] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 09/06/2022] [Indexed: 11/13/2022] Open
Abstract
Many current clinical therapies for chronic diseases involve administration of drugs using dosage and bioavailability parameters estimated for a generalized population. This standard approach carries the risk of under dosing, which may result in ineffective treatment, or overdosing, which may cause undesirable side effects. Consequently, maintaining a drug concentration in the therapeutic window often requires frequent monitoring, adversely affecting the patient’s quality of life. In contrast, endogenous biosystems have evolved finely tuned feedback control loops that govern the physiological functions of the body based on multiple input parameters. To provide personalized treatment for chronic diseases, therefore, we require synthetic systems that can similarly generate a calibrated therapeutic response. Such engineered autonomous closed-loop devices should incorporate a sensor that actively tracks and evaluates the disease severity based on one or more biomarkers, as well as components that utilize these molecular inputs to bio compute and deliver the appropriate level of therapeutic output. Here, we review recent advances in applications of the closed-loop design principle in biomedical implants for treating severe and chronic diseases, highlighting translational studies of cellular therapies. We describe the engineering principles and components of closed-loop therapeutic devices, and discuss their potential to become a key pillar of personalized medicine.
Collapse
Affiliation(s)
| | - Martin Fussenegger
- ETH Zürich, Department of Biosystems Science and Engineering, Basel, Switzerland
- Faculty of Life Science, University of Basel, Basel, Switzerland
- *Correspondence: Martin Fussenegger,
| |
Collapse
|
24
|
Spatial confinement of multi-enzyme for cascade catalysis in cell-inspired all-aqueous multicompartmental microcapsules. J Colloid Interface Sci 2022; 626:768-774. [PMID: 35820212 DOI: 10.1016/j.jcis.2022.06.128] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/05/2022] [Accepted: 06/24/2022] [Indexed: 11/21/2022]
Abstract
Biocatalytic reaction networks in eukaryotic cells is realized by the immobilized and compartmental multi-enzymatic system. Inspired by the spatial localization of natural cells, multiple enzymes were confined within the multicompartmental microcapsules, which were created using a gas-shearing method coupled with surface-triggered in situ gelation strategy. Heterogeneous multicompartmental (two-, three-, four-, six-, or eight-faced) core particles, due to their capacity for positional assembly, were encapsuled in alginate hydrogel shells. The generated microcapsules integrate logic network to access complex digital design through a three-step convergent enzymatic cascade reaction as a model, and the capsules with high stability, recyclability and cytocompatibility are ideal enzymatic reactor systems to be used for biomimetic biocatalysis process.
Collapse
|
25
|
DiAndreth B, Wauford N, Hu E, Palacios S, Weiss R. PERSIST platform provides programmable RNA regulation using CRISPR endoRNases. Nat Commun 2022; 13:2582. [PMID: 35562172 PMCID: PMC9095627 DOI: 10.1038/s41467-022-30172-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 04/20/2022] [Indexed: 12/26/2022] Open
Abstract
Regulated transgene expression is an integral component of gene therapies, cell therapies and biomanufacturing. However, transcription factor-based regulation, upon which most applications are based, suffers from complications such as epigenetic silencing that limit expression longevity and reliability. Constitutive transgene transcription paired with post-transcriptional gene regulation could combat silencing, but few such RNA- or protein-level platforms exist. Here we develop an RNA-regulation platform we call "PERSIST" which consists of nine CRISPR-specific endoRNases as RNA-level activators and repressors as well as modular OFF- and ON-switch regulatory motifs. We show that PERSIST-regulated transgenes exhibit strong OFF and ON responses, resist silencing for at least two months, and can be readily layered to construct cascades, logic functions, switches and other sophisticated circuit topologies. The orthogonal, modular and composable nature of this platform as well as the ease in constructing robust and predictable gene circuits promises myriad applications in gene and cell therapies.
Collapse
Affiliation(s)
- Breanna DiAndreth
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Noreen Wauford
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Eileen Hu
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Sebastian Palacios
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Ron Weiss
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
26
|
Synthetic RNA-based post-transcriptional expression control methods and genetic circuits. Adv Drug Deliv Rev 2022; 184:114196. [PMID: 35288218 DOI: 10.1016/j.addr.2022.114196] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/27/2022] [Accepted: 03/08/2022] [Indexed: 12/19/2022]
Abstract
RNA-based synthetic genetic circuits provide an alternative for traditional transcription-based circuits in applications where genomic integration is to be avoided. Incorporating various post-transcriptional control methods into such circuits allows for controlling the behaviour of the circuit through the detection of certain biomolecular inputs or reconstituting defined circuit behaviours, thus manipulating cellular functions. In this review, recent developments of various types of post-transcriptional control methods in mammalian cells are discussed as well as auxiliary components that allow for the creation and development of mRNA-based switches. How such post-transcriptional switches are combined into synthetic circuits as well as their applications in biomedical and preclinical settings are also described. Finally, we examine the challenges that need to be surmounted before RNA-based synthetic circuits can be reliably deployed into clinical settings.
Collapse
|
27
|
Cellular Computational Logic Using Toehold Switches. Int J Mol Sci 2022; 23:ijms23084265. [PMID: 35457085 PMCID: PMC9033136 DOI: 10.3390/ijms23084265] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/09/2022] [Accepted: 04/10/2022] [Indexed: 11/16/2022] Open
Abstract
The development of computational logic that carries programmable and predictable features is one of the key requirements for next-generation synthetic biological devices. Despite considerable progress, the construction of synthetic biological arithmetic logic units presents numerous challenges. In this paper, utilizing the unique advantages of RNA molecules in building complex logic circuits in the cellular environment, we demonstrate the RNA-only bitwise logical operation of XOR gates and basic arithmetic operations, including a half adder, a half subtractor, and a Feynman gate, in Escherichia coli. Specifically, de-novo-designed riboregulators, known as toehold switches, were concatenated to enhance the functionality of an OR gate, and a previously utilized antisense RNA strategy was further optimized to construct orthogonal NIMPLY gates. These optimized synthetic logic gates were able to be seamlessly integrated to achieve final arithmetic operations on small molecule inputs in cells. Toehold-switch-based ribocomputing devices may provide a fundamental basis for synthetic RNA-based arithmetic logic units or higher-order systems in cells.
Collapse
|
28
|
Wang Y, Zhang G, Meng Q, Huang S, Guo P, Leng Q, Sun L, Liu G, Huang X, Liu J. Precise tumor immune rewiring via synthetic CRISPRa circuits gated by concurrent gain/loss of transcription factors. Nat Commun 2022; 13:1454. [PMID: 35304449 PMCID: PMC8933567 DOI: 10.1038/s41467-022-29120-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 03/01/2022] [Indexed: 12/14/2022] Open
Abstract
Reinvigoration of antitumor immunity has recently become the central theme for the development of cancer therapies. Nevertheless, the precise delivery of immunotherapeutic activities to the tumors remains challenging. Here, we explore a synthetic gene circuit-based strategy for specific tumor identification, and for subsequently engaging immune activation. By design, these circuits are assembled from two interactive modules, i.e., an oncogenic TF-driven CRISPRa effector, and a corresponding p53-inducible off-switch (NOT gate), which jointly execute an AND-NOT logic for accurate tumor targeting. In particular, two forms of the NOT gate are developed, via the use of an inhibitory sgRNA or an anti-CRISPR protein, with the second form showing a superior performance in gating CRISPRa by p53 loss. Functionally, the optimized AND-NOT logic circuit can empower a highly specific and effective tumor recognition/immune rewiring axis, leading to therapeutic effects in vivo. Taken together, our work presents an adaptable strategy for the development of precisely delivered immunotherapy. “Reinvigoration of antitumor immunity has recently become the central theme for the development of cancer therapies. Here the authors present an adaptable gene circuit to harness the CRISPRa for tumorlocalized immune activation.”
Collapse
Affiliation(s)
- Yafeng Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center at Medical School of Nanjing University, Nanjing, 210061, China.,Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Guiquan Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center at Medical School of Nanjing University, Nanjing, 210061, China
| | - Qingzhou Meng
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, 78 Hengzhigang Road, Guangzhou, 510095, China
| | - Shisheng Huang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Panpan Guo
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Qibin Leng
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, 78 Hengzhigang Road, Guangzhou, 510095, China
| | - Lingyun Sun
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Geng Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center at Medical School of Nanjing University, Nanjing, 210061, China. .,Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, 210093, China.
| | - Xingxu Huang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China. .,Zhejiang Laboratory, Hangzhou, 311100, China.
| | - Jianghuai Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center at Medical School of Nanjing University, Nanjing, 210061, China. .,Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, 210093, China.
| |
Collapse
|
29
|
Coggan JS, Keller D, Markram H, Schürmann F, Magistretti PJ. Representing Stimulus Information in an Energy Metabolism Pathway. J Theor Biol 2022; 540:111090. [PMID: 35271865 DOI: 10.1016/j.jtbi.2022.111090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 02/21/2022] [Accepted: 03/01/2022] [Indexed: 10/18/2022]
Abstract
We explored a computational model of astrocytic energy metabolism and demonstrated the theoretical plausibility that this type of pathway might be capable of coding information about stimuli in addition to its known functions in cellular energy and carbon budgets. Simulation results indicate that glycogenolytic glycolysis triggered by activation of adrenergic receptors can capture the intensity and duration features of a neuromodulator waveform and can respond in a dose-dependent manner, including non-linear state changes that are analogous to action potentials. We show how this metabolic pathway can translate information about external stimuli to production profiles of energy-carrying molecules such as lactate with a precision beyond simple signal transduction or non-linear amplification. The results suggest the operation of a metabolic state-machine from the spatially discontiguous yet interdependent metabolite elements. Such metabolic pathways might be well-positioned to code an additional level of salient information about a cell's environmental demands to impact its function. Our hypothesis has implications for the computational power and energy efficiency of the brain.
Collapse
Affiliation(s)
- Jay S Coggan
- Blue Brain Project, École Polytechnique Fédérale de Lausanne (EPFL), Geneva, CH-1202, Switzerland.
| | - Daniel Keller
- Blue Brain Project, École Polytechnique Fédérale de Lausanne (EPFL), Geneva, CH-1202, Switzerland
| | - Henry Markram
- Blue Brain Project, École Polytechnique Fédérale de Lausanne (EPFL), Geneva, CH-1202, Switzerland
| | - Felix Schürmann
- Blue Brain Project, École Polytechnique Fédérale de Lausanne (EPFL), Geneva, CH-1202, Switzerland
| | - Pierre J Magistretti
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| |
Collapse
|
30
|
Draper T, Poros-Tarcali E, Pérez-Mercader J. pH Oscillating System for Molecular Computation as a Chemical Turing Machine. ACS OMEGA 2022; 7:6099-6103. [PMID: 35224372 PMCID: PMC8867811 DOI: 10.1021/acsomega.1c06505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/21/2022] [Indexed: 06/14/2023]
Abstract
It has previously been demonstrated that native chemical Turing machines can be constructed by exploiting the nonlinear dynamics of the homogeneous oscillating Belousov-Zhabotinsky reaction. These Turing machines can perform word recognition of a Chomsky type 1 context sensitive language (CSL), demonstrating their high computing power. Here, we report on a chemical Turing machine that has been developed using the H2O2-H2SO4-SO3 2--CO3 2- pH oscillating system. pH oscillators are different to bromate oscillators in two key ways: the proton is the autocatalytic agent, and at least one of the reductants is always fully consumed in each turnover-meaning the system has to be operated as a flow reactor. Through careful design, we establish a system that can also perform Chomsky type 1 CSL word recognition and demonstrate its power through the testing of a series of in-language and out-of-language words.
Collapse
Affiliation(s)
- Thomas
C. Draper
- Department
of Earth and Planetary Sciences and Origins of Life Initiative, Harvard University, Cambridge, Massachusetts 02138-1204, United States
| | - Eszter Poros-Tarcali
- Department
of Earth and Planetary Sciences and Origins of Life Initiative, Harvard University, Cambridge, Massachusetts 02138-1204, United States
| | - Juan Pérez-Mercader
- Department
of Earth and Planetary Sciences and Origins of Life Initiative, Harvard University, Cambridge, Massachusetts 02138-1204, United States
- Santa
Fe Institute, Santa Fe, New Mexico 87501, United States
| |
Collapse
|
31
|
Elliott KL, Fritzsch B, Yamoah EN, Zine A. Age-Related Hearing Loss: Sensory and Neural Etiology and Their Interdependence. Front Aging Neurosci 2022; 14:814528. [PMID: 35250542 PMCID: PMC8891613 DOI: 10.3389/fnagi.2022.814528] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 01/03/2022] [Indexed: 12/19/2022] Open
Abstract
Age-related hearing loss (ARHL) is a common, increasing problem for older adults, affecting about 1 billion people by 2050. We aim to correlate the different reductions of hearing from cochlear hair cells (HCs), spiral ganglion neurons (SGNs), cochlear nuclei (CN), and superior olivary complex (SOC) with the analysis of various reasons for each one on the sensory deficit profiles. Outer HCs show a progressive loss in a basal-to-apical gradient, and inner HCs show a loss in a apex-to-base progression that results in ARHL at high frequencies after 70 years of age. In early neonates, SGNs innervation of cochlear HCs is maintained. Loss of SGNs results in a considerable decrease (~50% or more) of cochlear nuclei in neonates, though the loss is milder in older mice and humans. The dorsal cochlear nuclei (fusiform neurons) project directly to the inferior colliculi while most anterior cochlear nuclei reach the SOC. Reducing the number of neurons in the medial nucleus of the trapezoid body (MNTB) affects the interactions with the lateral superior olive to fine-tune ipsi- and contralateral projections that may remain normal in mice, possibly humans. The inferior colliculi receive direct cochlear fibers and second-order fibers from the superior olivary complex. Loss of the second-order fibers leads to hearing loss in mice and humans. Although ARHL may arise from many complex causes, HC degeneration remains the more significant problem of hearing restoration that would replace the cochlear implant. The review presents recent findings of older humans and mice with hearing loss.
Collapse
Affiliation(s)
- Karen L. Elliott
- Department of Biology, University of Iowa, Iowa City, IA, United States
| | - Bernd Fritzsch
- Department of Biology, University of Iowa, Iowa City, IA, United States
- *Correspondence: Bernd Fritzsch
| | - Ebenezer N. Yamoah
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, NV, United States
| | - Azel Zine
- LBN, Laboratory of Bioengineering and Nanoscience, University of Montpellier, Montpellier, France
| |
Collapse
|
32
|
Sarkar K, Bonnerjee D, Srivastava R, Bagh S. A single layer artificial neural network type architecture with molecular engineered bacteria for reversible and irreversible computing. Chem Sci 2021; 12:15821-15832. [PMID: 35024106 PMCID: PMC8672730 DOI: 10.1039/d1sc01505b] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 11/08/2021] [Indexed: 11/21/2022] Open
Abstract
Here, we adapted the basic concept of artificial neural networks (ANNs) and experimentally demonstrate a broadly applicable single layer ANN type architecture with molecular engineered bacteria to perform complex irreversible computing like multiplexing, de-multiplexing, encoding, decoding, majority functions, and reversible computing like Feynman and Fredkin gates. The encoder and majority functions and reversible computing were experimentally implemented within living cells for the first time. We created cellular devices, which worked as artificial neuro-synapses in bacteria, where input chemical signals were linearly combined and processed through a non-linear activation function to produce fluorescent protein outputs. To create such cellular devices, we established a set of rules by correlating truth tables, mathematical equations of ANNs, and cellular device design, which unlike cellular computing, does not require a circuit diagram and the equation directly correlates the design of the cellular device. To our knowledge this is the first adaptation of ANN type architecture with engineered cells. This work may have significance in establishing a new platform for cellular computing, reversible computing and in transforming living cells as ANN-enabled hardware.
Collapse
Affiliation(s)
- Kathakali Sarkar
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Homi Bhabha National Institute (HBNI) Block A/F, Sector-I, Bidhannagar Kolkata 700064 India
| | - Deepro Bonnerjee
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Homi Bhabha National Institute (HBNI) Block A/F, Sector-I, Bidhannagar Kolkata 700064 India
| | - Rajkamal Srivastava
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Homi Bhabha National Institute (HBNI) Block A/F, Sector-I, Bidhannagar Kolkata 700064 India
| | - Sangram Bagh
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Homi Bhabha National Institute (HBNI) Block A/F, Sector-I, Bidhannagar Kolkata 700064 India
| |
Collapse
|
33
|
Boateng-Antwi MKA, Lin Y, Ren S, Wang X, Pan D. New function of a well-known promoter: Enhancer activity of minimal CMV promoter enables efficient dual-cassette transgene expression. J Gene Med 2021; 23:e3380. [PMID: 34318559 DOI: 10.1002/jgm.3380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Co-expression of multiple genes in single vectors has achieved varying degrees of success by employing two promoters and/or application of viral 2A-peptide or the internal ribosome entry-site (IRES). However, promoter interference, potential functional-interruption of expressed-proteins by 2A-generated residual peptides or weaker translation of IRES-mediated downstream genes has curtailed their utilization. Thus, there is the need for single vectors that robustly express multiple proteins for enhanced gene therapy applications. METHODS We engineered lentiviral-vectors for dual-cassette expression of green fluorescent protein and mCherry in uni- or bidirectional architectures using the short-version (Es) of elongation factor 1α (EF) promoter and simian virus 40 promoter (Sv). The regulatory function of a core fragment (cC) from human cytomegalovirus promoter was investigated with cell-lineage specificity in NIH3T3 (fibroblast) and hematopoietic cell lines U937 (monocyte/macrophage), LCL (lymphoid), DAMI (megakaryocyte) and MEL (erythroid). RESULTS The cC element in reverse-orientation not only boosted upstream Es promoter to levels comparable to full-length EF in DAMI, U937 and 3T3 cells, but also blocked the suppression of downstream Sv promoter by Es in U937 and 3T3 cells with further improved Sv activity in DAMI cells. Such lineage-restricted up-regulation is likely attributed to two protein-binding domains of cC and diverse expression of related factors in different cell types for enhancer and terminator activities, but not spacing function. CONCLUSIONS Such a newly developed dual-cassette vector could be advantageous, particularly in hematopoietic cell-mediated gene/cancer therapy, by allowing for independent and robust co-expression of therapeutic gene(s) and/or a selectable gene or imaging marker in the same cells.
Collapse
Affiliation(s)
- Michael K A Boateng-Antwi
- Gene and Cell Therapy Program, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Department of Pathology, University of Cincinnati Graduate School, Cincinnati, OH, USA
| | - Yi Lin
- Gene and Cell Therapy Program, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Sheng Ren
- Gene and Cell Therapy Program, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Xiaohong Wang
- Gene and Cell Therapy Program, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Dao Pan
- Gene and Cell Therapy Program, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Department of Pathology, University of Cincinnati Graduate School, Cincinnati, OH, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
34
|
MacDonald IC, Seamons TR, Emmons JC, Javdan SB, Deans TL. Enhanced regulation of prokaryotic gene expression by a eukaryotic transcriptional activator. Nat Commun 2021; 12:4109. [PMID: 34226549 PMCID: PMC8257575 DOI: 10.1038/s41467-021-24434-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 06/17/2021] [Indexed: 11/23/2022] Open
Abstract
Expanding the genetic toolbox for prokaryotic synthetic biology is a promising strategy for enhancing the dynamic range of gene expression and enabling new engineered applications for research and biomedicine. Here, we reverse the current trend of moving genetic parts from prokaryotes to eukaryotes and demonstrate that the activating eukaryotic transcription factor QF and its corresponding DNA-binding sequence can be moved to E. coli to introduce transcriptional activation, in addition to tight off states. We further demonstrate that the QF transcription factor can be used in genetic devices that respond to low input levels with robust and sustained output signals. Collectively, we show that eukaryotic gene regulator elements are functional in prokaryotes and establish a versatile and broadly applicable approach for constructing genetic circuits with complex functions. These genetic tools hold the potential to improve biotechnology applications for medical science and research. Expanded toolkits for prokaryotic synthetic biology can enhance the dynamic range of gene expression. Here the authors move the eukaryotic transcription factor QF into E. coli and integrate it into genetic devices.
Collapse
Affiliation(s)
- I Cody MacDonald
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Travis R Seamons
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Jonathan C Emmons
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Shwan B Javdan
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Tara L Deans
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
35
|
Fukunaga K, Yokobayashi Y. Directed evolution of orthogonal RNA-RBP pairs through library-vs-library in vitro selection. Nucleic Acids Res 2021; 50:601-616. [PMID: 34219162 PMCID: PMC8789040 DOI: 10.1093/nar/gkab527] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/03/2021] [Accepted: 06/08/2021] [Indexed: 12/30/2022] Open
Abstract
RNA-binding proteins (RBPs) and their RNA ligands play many critical roles in gene regulation and RNA processing in cells. They are also useful for various applications in cell biology and synthetic biology. However, re-engineering novel and orthogonal RNA-RBP pairs from natural components remains challenging while such synthetic RNA-RBP pairs could significantly expand the RNA-RBP toolbox for various applications. Here, we report a novel library-vs-library in vitro selection strategy based on Phage Display coupled with Systematic Evolution of Ligands by EXponential enrichment (PD-SELEX). Starting with pools of 1.1 × 1012 unique RNA sequences and 4.0 × 108 unique phage-displayed L7Ae-scaffold (LS) proteins, we selected RNA-RBP complexes through a two-step affinity purification process. After six rounds of library-vs-library selection, the selected RNAs and LS proteins were analyzed by next-generation sequencing (NGS). Further deconvolution of the enriched RNA and LS protein sequences revealed two synthetic and orthogonal RNA-RBP pairs that exhibit picomolar affinity and >4000-fold selectivity.
Collapse
Affiliation(s)
- Keisuke Fukunaga
- Nucleic Acid Chemistry and Engineering Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904 0495, Japan
| | - Yohei Yokobayashi
- Nucleic Acid Chemistry and Engineering Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904 0495, Japan
| |
Collapse
|
36
|
Chen D, Yang S, Han H, Song L, Huang D, Lin X, Xu X, Yang Q. The Construction of DNA Logic Gates Restricted to Certain Live Cells Based on the Structure Programmability and Aptamer-Cell Affinity of G-Quadruplexes. Chemistry 2021; 27:11627-11632. [PMID: 34046964 DOI: 10.1002/chem.202100913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Indexed: 11/09/2022]
Abstract
DNA computation is considered a fascinating alternative to silicon-based computers; it has evoked substantial attention and made rapid advances. Besides realizing versatile functions, implementing spatiotemporal control of logic operations, especially at the cellular level, is also of great significance to the development of DNA computation. However, developing simple and efficient methods to restrict DNA logic gates performing in live cells is still a challenge. In this work, a series of DNA logic gates was designed by taking full advantage of the diversity and programmability of the G-quadruplex (G4) structure. More importantly, by further using the high affinity and specific endocytosis of cells to aptamer G4, an INHIBIT logic gate has been realized whose operational site is precisely restricted to specific live cells. The design strategy might have great potential in the field of molecular computation and smart bio-applications.
Collapse
Affiliation(s)
- Die Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P.R. China
| | - Shu Yang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P.R. China
| | - Huayi Han
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P.R. China
| | - Lingbo Song
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P.R. China
| | - Dan Huang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, P.R. China
| | - Xiao Lin
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, P.R. China
| | - Xiaoping Xu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P.R. China
| | - Qianfan Yang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, P.R. China
| |
Collapse
|
37
|
Yang J, Ding S. Engineering L7Ae for RNA-Only Delivery Kill Switch Targeting CMS2 Type Colorectal Cancer Cells. ACS Synth Biol 2021; 10:1095-1105. [PMID: 33939419 DOI: 10.1021/acssynbio.0c00612] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The lack of specific-targeting therapy to precisely identify and kill malignant cells while sparing others is a great challenge in colorectal cancer (CRC) treatment. In the era of molecular classification of tumors, CRC has been grouped into four Consensus Molecular Subtypes. Accounting for 37% of all types, the CMS2 group (canonical type) shows distinguishing features: WNT and MYC signaling activation. In this study, we designed an RNA-only delivery kill switch to specifically eliminate CMS2 type CRC cells. The sensing and logic processing functions are integrated by the newly engineered L7Ae, which can not only detect the stability of β-catenin protein and the presence of cytoplasm located Myc/Myc-nick, but also do logic computation. The circuit specifically eliminated HCT-116 cells while sparing other kinds of cells, showing a proof-of-principle approach to precisely target CMS2 type CRC.
Collapse
Affiliation(s)
- Jiong Yang
- Department of Gastroenterology, Peking University Third Hospital, Beijing 100191, China
- Beijing Key Laboratory for Helicobacter pylori Infection and Upper Gastrointestinal Diseases, Beijing 100191, China
| | - Shigang Ding
- Department of Gastroenterology, Peking University Third Hospital, Beijing 100191, China
- Beijing Key Laboratory for Helicobacter pylori Infection and Upper Gastrointestinal Diseases, Beijing 100191, China
| |
Collapse
|
38
|
Gao B, Sun Q. Programming gene expression in multicellular organisms for physiology modulation through engineered bacteria. Nat Commun 2021; 12:2689. [PMID: 33976154 PMCID: PMC8113242 DOI: 10.1038/s41467-021-22894-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 03/29/2021] [Indexed: 02/07/2023] Open
Abstract
A central goal of synthetic biology is to predictably and efficiently reprogram living systems to perform computations and carry out specific biological tasks. Although there have been many advances in the bio-computational design of living systems, these advances have mainly been applied to microorganisms or cell lines; programming animal physiology remains challenging for synthetic biology because of the system complexity. Here, we present a bacteria-animal symbiont system in which engineered bacteria recognize external signals and modulate animal gene expression, twitching phenotype, and fat metabolism through RNA interference toward gfp, sbp-1, and unc-22 gene in C. elegans. By using genetic circuits in bacteria to control these RNA expressions, we are able to program the physiology of the model animal Caenorhabditis elegans with logic gates. We anticipate that engineered bacteria can be used more extensively to program animal physiology for agricultural, therapeutic, and basic science applications.
Collapse
Affiliation(s)
- Baizhen Gao
- Department of Chemical Engineering, Texas A&M University, College Station, TX, USA
| | - Qing Sun
- Department of Chemical Engineering, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
39
|
Kim J, Quijano JF, Kim J, Yeung E, Murray RM. Synthetic logic circuits using RNA aptamer against T7 RNA polymerase. Biotechnol J 2021; 17:e2000449. [PMID: 33813787 DOI: 10.1002/biot.202000449] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 03/05/2021] [Accepted: 03/30/2021] [Indexed: 12/23/2022]
Abstract
Recent advances in nucleic acids engineering introduced several RNA-based regulatory components for synthetic gene circuits, expanding the toolsets to engineer organisms. In this work, we designed genetic circuits implementing an RNA aptamer previously described to have the capability of binding to the T7 RNA polymerase and inhibiting its activity in vitro. We first demonstrated the utility of the RNA aptamer in combination with programmable synthetic transcription networks in vitro. As a step to quickly assess the feasibility of aptamer functions in vivo, we tested the aptamer and its sequence variants in the cell-free expression system, verifying the aptamer functionality in the cell-free testbed. The expression of aptamer in E. coli demonstrated control over GFP expression driven by T7 RNA polymerase, indicating its ability to serve as building blocks for logic circuits and transcriptional cascades. This work elucidates the potential of T7 RNA polymerase aptamer as regulators for synthetic biological circuits and metabolic engineering.
Collapse
Affiliation(s)
- Jongmin Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, Republic of Korea.,Department of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA
| | - Juan F Quijano
- Department of Biological Sciences, Columbia University, New York, New York, USA
| | - Jeongwon Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, Republic of Korea
| | - Enoch Yeung
- Department of Control and Dynamical Systems, California Institute of Technology, Pasadena, California, USA.,Department of Mechanical Engineering, University of California, Santa Barbara, California, USA
| | - Richard M Murray
- Department of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA.,Department of Control and Dynamical Systems, California Institute of Technology, Pasadena, California, USA
| |
Collapse
|
40
|
Madec M, Rosati E, Lallement C. Feasibility and reliability of sequential logic with gene regulatory networks. PLoS One 2021; 16:e0249234. [PMID: 33784367 PMCID: PMC8009411 DOI: 10.1371/journal.pone.0249234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 03/14/2021] [Indexed: 11/19/2022] Open
Abstract
Gene regulatory networks exhibiting Boolean behaviour, e.g. AND, OR or XOR, have been routinely designed for years. However, achieving more sophisticated functions, such as control or computation, usually requires sequential circuits or so-called state machines. For such a circuit, outputs depend both on inputs and the current state of the system. Although it is still possible to design such circuits by analogy with digital electronics, some particularities of biology make the task trickier. The impact of two of them, namely the stochasticity of biological processes and the inhomogeneity in the response of regulation mechanisms, are assessed in this paper. Numerical simulations performed in two use cases point out high risks of malfunctions even for designed GRNs functional from a theoretical point of view. Several solutions to improve reliability of such systems are also discussed.
Collapse
Affiliation(s)
- Morgan Madec
- Laboratory of Engineering Sciences, Computer Sciences and Imaging, UMR 7357 (University of Strasbourg / CNRS), Illkirch, France
| | - Elise Rosati
- Laboratory of Engineering Sciences, Computer Sciences and Imaging, UMR 7357 (University of Strasbourg / CNRS), Illkirch, France
| | - Christophe Lallement
- Laboratory of Engineering Sciences, Computer Sciences and Imaging, UMR 7357 (University of Strasbourg / CNRS), Illkirch, France
| |
Collapse
|
41
|
Zhang J, Qiu Z, Fan J, He F, Kang W, Yang S, Wang H, Huang J, Nie Z. Scan and Unlock: A Programmable DNA Molecular Automaton for Cell‐Selective Activation of Ligand‐Based Signaling. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015129] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jinghui Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering, College of Biology Hunan University Changsha 410082 P. R. China
| | - Zongyang Qiu
- Zhejiang Provincial Laboratory of Life Sciences and Biomedicine Key Laboratory of Structural Biology of Zhejiang Province School of Life Sciences Westlake University 18 Shilongshan Road Hangzhou 310024 P. R. China
- Institute of Biology Westlake Institute for Advanced Study 18 Shilongshan Road Hangzhou 310024 P. R. China
| | - Jiahui Fan
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering, College of Biology Hunan University Changsha 410082 P. R. China
| | - Fang He
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering, College of Biology Hunan University Changsha 410082 P. R. China
| | - Wenyuan Kang
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering, College of Biology Hunan University Changsha 410082 P. R. China
| | - Sihui Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering, College of Biology Hunan University Changsha 410082 P. R. China
| | - Hong‐Hui Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering, College of Biology Hunan University Changsha 410082 P. R. China
| | - Jing Huang
- Zhejiang Provincial Laboratory of Life Sciences and Biomedicine Key Laboratory of Structural Biology of Zhejiang Province School of Life Sciences Westlake University 18 Shilongshan Road Hangzhou 310024 P. R. China
- Institute of Biology Westlake Institute for Advanced Study 18 Shilongshan Road Hangzhou 310024 P. R. China
| | - Zhou Nie
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering, College of Biology Hunan University Changsha 410082 P. R. China
| |
Collapse
|
42
|
Zhang J, Qiu Z, Fan J, He F, Kang W, Yang S, Wang H, Huang J, Nie Z. Scan and Unlock: A Programmable DNA Molecular Automaton for Cell‐Selective Activation of Ligand‐Based Signaling. Angew Chem Int Ed Engl 2021; 60:6733-6743. [DOI: 10.1002/anie.202015129] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Indexed: 12/15/2022]
Affiliation(s)
- Jinghui Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering, College of Biology Hunan University Changsha 410082 P. R. China
| | - Zongyang Qiu
- Zhejiang Provincial Laboratory of Life Sciences and Biomedicine Key Laboratory of Structural Biology of Zhejiang Province School of Life Sciences Westlake University 18 Shilongshan Road Hangzhou 310024 P. R. China
- Institute of Biology Westlake Institute for Advanced Study 18 Shilongshan Road Hangzhou 310024 P. R. China
| | - Jiahui Fan
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering, College of Biology Hunan University Changsha 410082 P. R. China
| | - Fang He
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering, College of Biology Hunan University Changsha 410082 P. R. China
| | - Wenyuan Kang
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering, College of Biology Hunan University Changsha 410082 P. R. China
| | - Sihui Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering, College of Biology Hunan University Changsha 410082 P. R. China
| | - Hong‐Hui Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering, College of Biology Hunan University Changsha 410082 P. R. China
| | - Jing Huang
- Zhejiang Provincial Laboratory of Life Sciences and Biomedicine Key Laboratory of Structural Biology of Zhejiang Province School of Life Sciences Westlake University 18 Shilongshan Road Hangzhou 310024 P. R. China
- Institute of Biology Westlake Institute for Advanced Study 18 Shilongshan Road Hangzhou 310024 P. R. China
| | - Zhou Nie
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering, College of Biology Hunan University Changsha 410082 P. R. China
| |
Collapse
|
43
|
Muldoon JJ, Kandula V, Hong M, Donahue PS, Boucher JD, Bagheri N, Leonard JN. Model-guided design of mammalian genetic programs. SCIENCE ADVANCES 2021; 7:eabe9375. [PMID: 33608279 PMCID: PMC7895425 DOI: 10.1126/sciadv.abe9375] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 01/06/2021] [Indexed: 06/10/2023]
Abstract
Genetically engineering cells to perform customizable functions is an emerging frontier with numerous technological and translational applications. However, it remains challenging to systematically engineer mammalian cells to execute complex functions. To address this need, we developed a method enabling accurate genetic program design using high-performing genetic parts and predictive computational models. We built multifunctional proteins integrating both transcriptional and posttranslational control, validated models for describing these mechanisms, implemented digital and analog processing, and effectively linked genetic circuits with sensors for multi-input evaluations. The functional modularity and compositional versatility of these parts enable one to satisfy a given design objective via multiple synonymous programs. Our approach empowers bioengineers to predictively design mammalian cellular functions that perform as expected even at high levels of biological complexity.
Collapse
Affiliation(s)
- J J Muldoon
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL 60208, USA
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
| | - V Kandula
- Honors Program in Medical Education, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - M Hong
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
| | - P S Donahue
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL 60208, USA
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
- Medical Scientist Training Program, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - J D Boucher
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL 60208, USA
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
| | - N Bagheri
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL 60208, USA
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
- Center for Synthetic Biology, Chemistry of Life Processes Institute, and Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Evanston, IL 60208, USA
- Departments of Biology and Chemical Engineering, University of Washington, Seattle, WA 98195, USA
| | - J N Leonard
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL 60208, USA.
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
- Center for Synthetic Biology, Chemistry of Life Processes Institute, and Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
44
|
Barros MT, Doan P, Kandhavelu M, Jennings B, Balasubramaniam S. Engineering calcium signaling of astrocytes for neural-molecular computing logic gates. Sci Rep 2021; 11:595. [PMID: 33436729 PMCID: PMC7803753 DOI: 10.1038/s41598-020-79891-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 11/24/2020] [Indexed: 11/22/2022] Open
Abstract
This paper proposes the use of astrocytes to realize Boolean logic gates, through manipulation of the threshold of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\hbox {Ca}^{2+}$$\end{document}Ca2+ ion flows between the cells based on the input signals. Through wet-lab experiments that engineer the astrocytes cells with pcDNA3.1-hGPR17 genes as well as chemical compounds, we show that both AND and OR gates can be implemented by controlling \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\hbox {Ca}^{2+}$$\end{document}Ca2+ signals that flow through the population. A reinforced learning platform is also presented in the paper to optimize the \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\hbox {Ca}^{2+}$$\end{document}Ca2+ activated level and time slot of input signals \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$T_b$$\end{document}Tb into the gate. This design platform caters for any size and connectivity of the cell population, by taking into consideration the delay and noise produced from the signalling between the cells. To validate the effectiveness of the reinforced learning platform, a \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\hbox {Ca}^{2+}$$\end{document}Ca2+ signalling simulator was used to simulate the signalling between the astrocyte cells. The results from the simulation show that an optimum value for both the \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\hbox {Ca}^{2+}$$\end{document}Ca2+ activated level and time slot of input signals \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$T_b$$\end{document}Tb is required to achieve up to 90% accuracy for both the AND and OR gates. Our method can be used as the basis for future Neural–Molecular Computing chips, constructed from engineered astrocyte cells, which can form the basis for a new generation of brain implants.
Collapse
Affiliation(s)
- Michael Taynnan Barros
- School of Computer Science and Electronic Engineering, University of Essex, Colchester, UK. .,BioMediTech, Faculty of Medicine and Health Technology, Tampere University, P.O.Box 553, 33101, Tampere, Finland.
| | - Phuong Doan
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, P.O.Box 553, 33101, Tampere, Finland
| | - Meenakshisundaram Kandhavelu
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, P.O.Box 553, 33101, Tampere, Finland
| | - Brendan Jennings
- Telecommunication Software and Systems Group (TSSG), Waterford Institute of Technology (WIT), Waterford, Ireland
| | - Sasitharan Balasubramaniam
- Telecommunication Software and Systems Group (TSSG), Waterford Institute of Technology (WIT), Waterford, Ireland.,FutureNeuro, The SFI Research Centre for Chronic and Rare Neurological Diseases, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| |
Collapse
|
45
|
Fan D, Wang J, Wang E, Dong S. Propelling DNA Computing with Materials' Power: Recent Advancements in Innovative DNA Logic Computing Systems and Smart Bio-Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2001766. [PMID: 33344121 PMCID: PMC7740092 DOI: 10.1002/advs.202001766] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/30/2020] [Indexed: 05/11/2023]
Abstract
DNA computing is recognized as one of the most outstanding candidates of next-generation molecular computers that perform Boolean logic using DNAs as basic elements. Benefiting from DNAs' inherent merits of low-cost, easy-synthesis, excellent biocompatibility, and high programmability, DNA computing has evoked substantial interests and gained burgeoning advancements in recent decades, and also exhibited amazing magic in smart bio-applications. In this review, recent achievements of DNA logic computing systems using multifarious materials as building blocks are summarized. Initially, the operating principles and functions of different logic devices (common logic gates, advanced arithmetic and non-arithmetic logic devices, versatile logic library, etc.) are elaborated. Afterward, state-of-the-art DNA computing systems based on diverse "toolbox" materials, including typical functional DNA motifs (aptamer, metal-ion dependent DNAzyme, G-quadruplex, i-motif, triplex, etc.), DNA tool-enzymes, non-DNA biomaterials (natural enzyme, protein, antibody), nanomaterials (AuNPs, magnetic beads, graphene oxide, polydopamine nanoparticles, carbon nanotubes, DNA-templated nanoclusters, upconversion nanoparticles, quantum dots, etc.) or polymers, 2D/3D DNA nanostructures (circular/interlocked DNA, DNA tetrahedron/polyhedron, DNA origami, etc.) are reviewed. The smart bio-applications of DNA computing to the fields of intelligent analysis/diagnosis, cell imaging/therapy, amongst others, are further outlined. More importantly, current "Achilles' heels" and challenges are discussed, and future promising directions of this field are also recommended.
Collapse
Affiliation(s)
- Daoqing Fan
- State Key Laboratory of Electroanalytical ChemistryChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022China
- Present address:
Institute of ChemistryThe Hebrew University of JerusalemJerusalem91904Israel
| | - Juan Wang
- State Key Laboratory of Electroanalytical ChemistryChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022China
- University of Science and Technology of ChinaHefeiAnhui230026China
| | - Erkang Wang
- State Key Laboratory of Electroanalytical ChemistryChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022China
- University of Science and Technology of ChinaHefeiAnhui230026China
| | - Shaojun Dong
- State Key Laboratory of Electroanalytical ChemistryChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022China
- University of Science and Technology of ChinaHefeiAnhui230026China
| |
Collapse
|
46
|
Verbič A, Praznik A, Jerala R. A guide to the design of synthetic gene networks in mammalian cells. FEBS J 2020; 288:5265-5288. [PMID: 33289352 DOI: 10.1111/febs.15652] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 11/06/2020] [Accepted: 11/01/2020] [Indexed: 12/22/2022]
Abstract
Synthetic biology aims to harness natural and synthetic biological parts and engineering them in new combinations and systems, producing novel therapies, diagnostics, bioproduction systems, and providing information on the mechanism of function of biological systems. Engineering cell function requires the rewiring or de novo construction of cell information processing networks. Using natural and synthetic signal processing elements, researchers have demonstrated a wide array of signal sensing, processing and propagation modules, using transcription, translation, or post-translational modification to program new function. The toolbox for synthetic network design is ever-advancing and has still ample room to grow. Here, we review the diversity of synthetic gene networks, types of building modules, techniques of regulation, and their applications.
Collapse
Affiliation(s)
- Anže Verbič
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Arne Praznik
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Roman Jerala
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
| |
Collapse
|
47
|
Logic Gates Based on DNA Aptamers. Pharmaceuticals (Basel) 2020; 13:ph13110417. [PMID: 33238657 PMCID: PMC7700249 DOI: 10.3390/ph13110417] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 02/08/2023] Open
Abstract
DNA bio-computing is an emerging trend in modern science that is based on interactions among biomolecules. Special types of DNAs are aptamers that are capable of selectively forming complexes with target compounds. This review is devoted to a discussion of logic gates based on aptamers for the purposes of medicine and analytical chemistry. The review considers different approaches to the creation of logic gates and identifies the general algorithms of their creation, as well as describes the methods of obtaining an output signal which can be divided into optical and electrochemical. Aptameric logic gates based on DNA origami and DNA nanorobots are also shown. The information presented in this article can be useful when creating new logic gates using existing aptamers and aptamers that will be selected in the future.
Collapse
|
48
|
Stoof R, Goñi-Moreno Á. Modelling co-translational dimerization for programmable nonlinearity in synthetic biology. J R Soc Interface 2020; 17:20200561. [PMID: 33143595 DOI: 10.1098/rsif.2020.0561] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Nonlinearity plays a fundamental role in the performance of both natural and synthetic biological networks. Key functional motifs in living microbial systems, such as the emergence of bistability or oscillations, rely on nonlinear molecular dynamics. Despite its core importance, the rational design of nonlinearity remains an unmet challenge. This is largely due to a lack of mathematical modelling that accounts for the mechanistic basis of nonlinearity. We introduce a model for gene regulatory circuits that explicitly simulates protein dimerization-a well-known source of nonlinear dynamics. Specifically, our approach focuses on modelling co-translational dimerization: the formation of protein dimers during-and not after-translation. This is in contrast to the prevailing assumption that dimer generation is only viable between freely diffusing monomers (i.e. post-translational dimerization). We provide a method for fine-tuning nonlinearity on demand by balancing the impact of co- versus post-translational dimerization. Furthermore, we suggest design rules, such as protein length or physical separation between genes, that may be used to adjust dimerization dynamics in vivo. The design, build and test of genetic circuits with on-demand nonlinear dynamics will greatly improve the programmability of synthetic biological systems.
Collapse
Affiliation(s)
- Ruud Stoof
- School of Computing, Newcastle University, Urban Sciences Building, Science Square, Newcastle upon Tyne NE4 5TG, UK
| | - Ángel Goñi-Moreno
- School of Computing, Newcastle University, Urban Sciences Building, Science Square, Newcastle upon Tyne NE4 5TG, UK.,Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA), Universidad Politénica de Madrid (UPM), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo-UPM, 28223 Pozuelo de Alarcón, Madrid, Spain
| |
Collapse
|
49
|
Han L, Shan Q. Pair of Residue Substitutions at the Outer Mouth of the Channel Pore Act as Inputs for a Boolean Logic "OR" Gate Based on the Glycine Receptor. ACS Chem Neurosci 2020; 11:3409-3417. [PMID: 32970400 DOI: 10.1021/acschemneuro.0c00522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The glycine receptor (GlyR) is a ligand-activated chloride channel, whose mutations are the major cause of hereditary hyperekplexia. The hyperekplexia-causing R271Q mutation, which is located at the extracellular outer mouth of the channel pore, dramatically impairs the GlyR function manifesting a reduced sensitivity toward glycine. This study reports that a second mutation, S273D, rescues the function of the R271Q GlyR to that of the wild-type (WT) GlyR. Surprisingly, the S273D mutation, when introduced to the WT GlyR, does not further increase the receptor function. In other words, the compromised function of the 271Q 273S GlyR (i.e., the R271Q GlyR) can be rescued to WT levels by the introduction of either, or both, of the Q271R and S273D substitutions. From the perspective of Boolean logic gates, the Q271R and S273D substitutions act as inputs for an OR gate based on the GlyR. Further experiments revealed that the negative-charge carried by the 273 residue is essential for the expression of the OR gate and that the expression of the OR gate is residue-position-specific. In addition, mechanistic investigation implied that the 273 residue influences the 271 residue, which might underpin the unique nonadditive OR gate relationship between these two residues. Such an ion-channel-based OR gate, expressing output in the form of electrical current, could potentially be developed to digitally manipulate neuronal activity.
Collapse
Affiliation(s)
- Lu Han
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Qiang Shan
- Laboratory for Synaptic Plasticity, Shantou University Medical College, Shantou, Guangdong 515041, China
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| |
Collapse
|
50
|
Chen D, Wu Z, Xu X, Yang S. A Supramolecular Counter Circuit Based on Cyanine Dye Assembly. Chemistry 2020; 26:13235-13240. [PMID: 32337743 DOI: 10.1002/chem.202001240] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/16/2020] [Indexed: 11/10/2022]
Affiliation(s)
- Die Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology West China School of Pharmacy Sichuan University Chengdu 610041 P. R. China
| | - Zhiming Wu
- College of Computer Science Sichuan University Chengdu 610065 P. R. China
| | - Xiaoping Xu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology West China School of Pharmacy Sichuan University Chengdu 610041 P. R. China
| | - Shu Yang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology West China School of Pharmacy Sichuan University Chengdu 610041 P. R. China
| |
Collapse
|