1
|
Wang J, Zhang Q, Fan W, Shi Q, Mao J, Xie J, Chai G, Zhang C. Deciphering olfactory receptor binding mechanisms: a structural and dynamic perspective on olfactory receptors. Front Mol Biosci 2025; 11:1498796. [PMID: 39845900 PMCID: PMC11751049 DOI: 10.3389/fmolb.2024.1498796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 12/23/2024] [Indexed: 01/24/2025] Open
Abstract
Olfactory receptors, classified as G-protein coupled receptors (GPCRs), have been a subject of scientific inquiry since the early 1950s. Historically, investigations into the sensory mechanisms of olfactory receptors were often confined to behavioral characteristics in model organisms or the expression of related proteins and genes. However, with the development of cryo-electron microscopy techniques, it has gradually become possible to decipher the specific structures of olfactory receptors in insects and humans. This has provided new insights into the binding mechanisms between odor molecules and olfactory receptors. Furthermore, due to the rapid advancements in related fields such as computer simulations, the prediction and exploration of odor molecule binding to olfactory receptors have been progressively achieved through molecular dynamics simulations. Through this comprehensive review, we aim to provide a thorough analysis of research related to the binding mechanisms between odor molecules and olfactory receptors from the perspectives of structural biology and molecular dynamics simulations. Finally, we will provide an outlook on the future of research in the field of olfactory receptor sensory mechanisms.
Collapse
Affiliation(s)
- Jingtao Wang
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan, China
- Department of tobacco flavor, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, Henan, China
| | - Qidong Zhang
- Department of tobacco flavor, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, Henan, China
| | - Wu Fan
- Department of tobacco flavor, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, Henan, China
| | - Qingzhao Shi
- Department of tobacco flavor, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, Henan, China
| | - Jian Mao
- Department of tobacco flavor, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, Henan, China
| | - Jianping Xie
- Department of tobacco flavor, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, Henan, China
| | - Guobi Chai
- Department of tobacco flavor, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, Henan, China
- Food Laboratory of Zhongyuan, Flavour Science Research Center of Zhengzhou University, Zhengzhou, Henan, China
| | - Chenglei Zhang
- Medical Laboratory, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| |
Collapse
|
2
|
Huang C, Luo J, Woo SJ, Roitman LA, Li J, Pieribone VA, Kannan M, Vasan G, Schnitzer MJ. Dopamine-mediated interactions between short- and long-term memory dynamics. Nature 2024; 634:1141-1149. [PMID: 39038490 PMCID: PMC11525173 DOI: 10.1038/s41586-024-07819-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 07/11/2024] [Indexed: 07/24/2024]
Abstract
In dynamic environments, animals make behavioural decisions on the basis of the innate valences of sensory cues and information learnt about these cues across multiple timescales1-3. However, it remains unclear how the innate valence of a sensory stimulus affects the acquisition of learnt valence information and subsequent memory dynamics. Here we show that in the Drosophila brain, interconnected short- and long-term memory units of the mushroom body jointly regulate memory through dopamine signals that encode innate and learnt sensory valences. By performing time-lapse in vivo voltage-imaging studies of neural spiking in more than 500 flies undergoing olfactory associative conditioning, we found that protocerebral posterior lateral 1 dopamine neurons (PPL1-DANs)4 heterogeneously and bidirectionally encode innate and learnt valences of punishment, reward and odour cues. During learning, these valence signals regulate memory storage and extinction in mushroom body output neurons (MBONs)5. During initial conditioning bouts, PPL1-γ1pedc and PPL1-γ2α'1 neurons control short-term memory formation, which weakens inhibitory feedback from MBON-γ1pedc>α/β to PPL1-α'2α2 and PPL1-α3. During further conditioning, this diminished feedback allows these two PPL1-DANs to encode the net innate plus learnt valence of the conditioned odour cue, which gates long-term memory formation. A computational model constrained by the fly connectome6,7 and our spiking data explains how dopamine signals mediate the circuit interactions between short- and long-term memory traces, yielding predictions that our experiments confirmed. Overall, the mushroom body achieves flexible learning through the integration of innate and learnt valences in parallel learning units sharing feedback interconnections. This hybrid physiological-anatomical mechanism may be a general means by which dopamine regulates memory dynamics in other species and brain structures, including the vertebrate basal ganglia.
Collapse
Affiliation(s)
- Cheng Huang
- James Clark Center, Stanford University, Stanford, CA, USA.
- Department of Biology, Stanford University, Stanford, CA, USA.
- Dept. of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA.
| | - Junjie Luo
- James Clark Center, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Seung Je Woo
- James Clark Center, Stanford University, Stanford, CA, USA
| | | | - Jizhou Li
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
- CNC Program, Stanford University, Stanford, CA, USA
- Department of Electronic Engineering, The Chinese University of Hong Kong, Hong Kong, China
| | - Vincent A Pieribone
- The John B. Pierce Laboratory, New Haven, CT, USA
- Department of Cellular & Molecular Physiology, Yale University, New Haven, CT, USA
| | - Madhuvanthi Kannan
- The John B. Pierce Laboratory, New Haven, CT, USA.
- Department of Cellular & Molecular Physiology, Yale University, New Haven, CT, USA.
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA.
| | - Ganesh Vasan
- The John B. Pierce Laboratory, New Haven, CT, USA.
- Department of Cellular & Molecular Physiology, Yale University, New Haven, CT, USA.
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA.
| | - Mark J Schnitzer
- James Clark Center, Stanford University, Stanford, CA, USA.
- Department of Biology, Stanford University, Stanford, CA, USA.
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA.
- CNC Program, Stanford University, Stanford, CA, USA.
- Department of Applied Physics, Stanford University, Stanford, CA, USA.
| |
Collapse
|
3
|
Monk T, Dennler N, Ralph N, Rastogi S, Afshar S, Urbizagastegui P, Jarvis R, van Schaik A, Adamatzky A. Electrical Signaling Beyond Neurons. Neural Comput 2024; 36:1939-2029. [PMID: 39141803 DOI: 10.1162/neco_a_01696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 05/21/2024] [Indexed: 08/16/2024]
Abstract
Neural action potentials (APs) are difficult to interpret as signal encoders and/or computational primitives. Their relationships with stimuli and behaviors are obscured by the staggering complexity of nervous systems themselves. We can reduce this complexity by observing that "simpler" neuron-less organisms also transduce stimuli into transient electrical pulses that affect their behaviors. Without a complicated nervous system, APs are often easier to understand as signal/response mechanisms. We review examples of nonneural stimulus transductions in domains of life largely neglected by theoretical neuroscience: bacteria, protozoans, plants, fungi, and neuron-less animals. We report properties of those electrical signals-for example, amplitudes, durations, ionic bases, refractory periods, and particularly their ecological purposes. We compare those properties with those of neurons to infer the tasks and selection pressures that neurons satisfy. Throughout the tree of life, nonneural stimulus transductions time behavioral responses to environmental changes. Nonneural organisms represent the presence or absence of a stimulus with the presence or absence of an electrical signal. Their transductions usually exhibit high sensitivity and specificity to a stimulus, but are often slow compared to neurons. Neurons appear to be sacrificing the specificity of their stimulus transductions for sensitivity and speed. We interpret cellular stimulus transductions as a cell's assertion that it detected something important at that moment in time. In particular, we consider neural APs as fast but noisy detection assertions. We infer that a principal goal of nervous systems is to detect extremely weak signals from noisy sensory spikes under enormous time pressure. We discuss neural computation proposals that address this goal by casting neurons as devices that implement online, analog, probabilistic computations with their membrane potentials. Those proposals imply a measurable relationship between afferent neural spiking statistics and efferent neural membrane electrophysiology.
Collapse
Affiliation(s)
- Travis Monk
- International Centre for Neuromorphic Systems, MARCS Institute, Western Sydney University, Sydney, NSW 2747, Australia
| | - Nik Dennler
- International Centre for Neuromorphic Systems, MARCS Institute, Western Sydney University, Sydney, NSW 2747, Australia
- Biocomputation Group, University of Hertfordshire, Hatfield, Hertfordshire AL10 9AB, U.K.
| | - Nicholas Ralph
- International Centre for Neuromorphic Systems, MARCS Institute, Western Sydney University, Sydney, NSW 2747, Australia
| | - Shavika Rastogi
- International Centre for Neuromorphic Systems, MARCS Institute, Western Sydney University, Sydney, NSW 2747, Australia
- Biocomputation Group, University of Hertfordshire, Hatfield, Hertfordshire AL10 9AB, U.K.
| | - Saeed Afshar
- International Centre for Neuromorphic Systems, MARCS Institute, Western Sydney University, Sydney, NSW 2747, Australia
| | - Pablo Urbizagastegui
- International Centre for Neuromorphic Systems, MARCS Institute, Western Sydney University, Sydney, NSW 2747, Australia
| | - Russell Jarvis
- International Centre for Neuromorphic Systems, MARCS Institute, Western Sydney University, Sydney, NSW 2747, Australia
| | - André van Schaik
- International Centre for Neuromorphic Systems, MARCS Institute, Western Sydney University, Sydney, NSW 2747, Australia
| | - Andrew Adamatzky
- Unconventional Computing Laboratory, University of the West of England, Bristol BS16 1QY, U.K.
| |
Collapse
|
4
|
Takagi S, Sancer G, Abuin L, Stupski SD, Roman Arguello J, Prieto-Godino LL, Stern DL, Cruchet S, Álvarez-Ocaña R, Wienecke CFR, van Breugel F, Jeanne JM, Auer TO, Benton R. Olfactory sensory neuron population expansions influence projection neuron adaptation and enhance odour tracking. Nat Commun 2024; 15:7041. [PMID: 39147786 PMCID: PMC11327376 DOI: 10.1038/s41467-024-50808-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 07/22/2024] [Indexed: 08/17/2024] Open
Abstract
The evolutionary expansion of sensory neuron populations detecting important environmental cues is widespread, but functionally enigmatic. We investigated this phenomenon through comparison of homologous olfactory pathways of Drosophila melanogaster and its close relative Drosophila sechellia, an extreme specialist for Morinda citrifolia noni fruit. D. sechellia has evolved species-specific expansions in select, noni-detecting olfactory sensory neuron (OSN) populations, through multigenic changes. Activation and inhibition of defined proportions of neurons demonstrate that OSN number increases contribute to stronger, more persistent, noni-odour tracking behaviour. These expansions result in increased synaptic connections of sensory neurons with their projection neuron (PN) partners, which are conserved in number between species. Surprisingly, having more OSNs does not lead to greater odour-evoked PN sensitivity or reliability. Rather, pathways with increased sensory pooling exhibit reduced PN adaptation, likely through weakened lateral inhibition. Our work reveals an unexpected functional impact of sensory neuron population expansions to explain ecologically-relevant, species-specific behaviour.
Collapse
Affiliation(s)
- Suguru Takagi
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.
| | - Gizem Sancer
- Department of Neuroscience, Yale University, New Haven, CT, USA
| | - Liliane Abuin
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - S David Stupski
- Department of Mechanical Engineering, University of Nevada, Reno, NV, USA
| | - J Roman Arguello
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
- Department of Ecology and Evolution, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Lucia L Prieto-Godino
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
- The Francis Crick Institute, London, UK
| | - David L Stern
- Janelia Research Campus of the Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Steeve Cruchet
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Raquel Álvarez-Ocaña
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Carl F R Wienecke
- Department of Neurobiology, Stanford University, Stanford, CA, USA
- Department of Neurobiology, Harvard Medical School, Cambridge, MA, USA
| | - Floris van Breugel
- Department of Mechanical Engineering, University of Nevada, Reno, NV, USA
| | - James M Jeanne
- Department of Neuroscience, Yale University, New Haven, CT, USA
| | - Thomas O Auer
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.
- Department of Biology, University of Fribourg, Fribourg, Switzerland.
| | - Richard Benton
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
5
|
Zhang J, Duan S, Wang W, Liu D, Wang Y. Molecular Basis of CO 2 Sensing in Hyphantria cunea. Int J Mol Sci 2024; 25:5987. [PMID: 38892175 PMCID: PMC11172650 DOI: 10.3390/ijms25115987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/25/2024] [Accepted: 05/26/2024] [Indexed: 06/21/2024] Open
Abstract
Carbon dioxide (CO2) released by plants can serve as a cue for regulating insect behaviors. Hyphantria cunea is a widely distributed forestry pest that may use CO2 as a cue for foraging and oviposition. However, the molecular mechanism underlying its ability to sense CO2 has not been elucidated. Our initial study showed that CO2 is significantly attractive to H. cunea adults. Subsequently, 44 H. cunea gustatory receptors (GRs) were identified using transcriptome data, and 3 candidate CO2 receptors that are specifically expressed in the labial palps were identified. In vivo electrophysiological assays revealed that the labial palp is the primary organ for CO2 perception in H. cunea, which is similar to findings in other lepidopteran species. By using the Xenopus oocyte expression system, we showed that the HcunGR1 and HcunGR3 co-expressions produced a robust response to CO2, but HcunGR2 had an inhibitory effect on CO2 perception. Finally, immunohistochemical staining revealed sexual dimorphism in the CO2-sensitive labial pit organ glomerulus (LPOG). Taken together, our results clarified the mechanism by which H. cunea sense CO2, laying the foundation for further investigations into the role of CO2 in the rapid spread of H. cunea.
Collapse
Affiliation(s)
- Jian Zhang
- School of Life Sciences, Changchun Normal University, Changchun 130033, China
| | - Shiwen Duan
- School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Wenlong Wang
- School of Life Sciences, Changchun Normal University, Changchun 130033, China
| | - Duo Liu
- School of Life Sciences, Changchun Normal University, Changchun 130033, China
| | - Yinliang Wang
- School of Life Sciences, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
6
|
Chan ICW, Chen N, Hernandez J, Meltzer H, Park A, Stahl A. Future avenues in Drosophila mushroom body research. Learn Mem 2024; 31:a053863. [PMID: 38862172 PMCID: PMC11199946 DOI: 10.1101/lm.053863.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 03/27/2024] [Indexed: 06/13/2024]
Abstract
How does the brain translate sensory information into complex behaviors? With relatively small neuronal numbers, readable behavioral outputs, and an unparalleled genetic toolkit, the Drosophila mushroom body (MB) offers an excellent model to address this question in the context of associative learning and memory. Recent technological breakthroughs, such as the freshly completed full-brain connectome, multiomics approaches, CRISPR-mediated gene editing, and machine learning techniques, led to major advancements in our understanding of the MB circuit at the molecular, structural, physiological, and functional levels. Despite significant progress in individual MB areas, the field still faces the fundamental challenge of resolving how these different levels combine and interact to ultimately control the behavior of an individual fly. In this review, we discuss various aspects of MB research, with a focus on the current knowledge gaps, and an outlook on the future methodological developments required to reach an overall view of the neurobiological basis of learning and memory.
Collapse
Affiliation(s)
- Ivy Chi Wai Chan
- Dynamics of Neuronal Circuits Group, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Developmental Biology, RWTH Aachen University, Aachen, Germany
| | - Nannan Chen
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096, China
| | - John Hernandez
- Neuroscience Department, Brown University, Providence, Rhode Island 02906, USA
| | - Hagar Meltzer
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Annie Park
- Department of Physiology, Anatomy and Genetics, Centre for Neural Circuits and Behaviour, University of Oxford, Oxford, United Kingdom
| | - Aaron Stahl
- Neuroscience and Pharmacology, University of Iowa, Iowa City, Iowa 52242, USA
| |
Collapse
|
7
|
Tao L, Wechsler SP, Bhandawat V. Sensorimotor transformation underlying odor-modulated locomotion in walking Drosophila. Nat Commun 2023; 14:6818. [PMID: 37884581 PMCID: PMC10603174 DOI: 10.1038/s41467-023-42613-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 10/17/2023] [Indexed: 10/28/2023] Open
Abstract
Most real-world behaviors - such as odor-guided locomotion - are performed with incomplete information. Activity in olfactory receptor neuron (ORN) classes provides information about odor identity but not the location of its source. In this study, we investigate the sensorimotor transformation that relates ORN activation to locomotion changes in Drosophila by optogenetically activating different combinations of ORN classes and measuring the resulting changes in locomotion. Three features describe this sensorimotor transformation: First, locomotion depends on both the instantaneous firing frequency (f) and its change (df); the two together serve as a short-term memory that allows the fly to adapt its motor program to sensory context automatically. Second, the mapping between (f, df) and locomotor parameters such as speed or curvature is distinct for each pattern of activated ORNs. Finally, the sensorimotor mapping changes with time after odor exposure, allowing information integration over a longer timescale.
Collapse
Affiliation(s)
- Liangyu Tao
- School of Biomedical Engineering and Health Sciences, Drexel University, Philadelphia, PA, USA
| | - Samuel P Wechsler
- School of Biomedical Engineering and Health Sciences, Drexel University, Philadelphia, PA, USA
- Department of Neurobiology and Anatomy, Drexel University, Philadelphia, PA, USA
| | - Vikas Bhandawat
- School of Biomedical Engineering and Health Sciences, Drexel University, Philadelphia, PA, USA.
| |
Collapse
|
8
|
Nishino H. Spatial odor map formation, development, and possible function in a nocturnal insect. CURRENT OPINION IN INSECT SCIENCE 2023; 59:101087. [PMID: 37468043 DOI: 10.1016/j.cois.2023.101087] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/11/2023] [Accepted: 07/13/2023] [Indexed: 07/21/2023]
Abstract
An odor plume is composed of fine filamentous structures interspersed by clean air. Various animals use bilateral comparison with paired olfactory organs for detecting spatial and temporal features of the plume. American cockroaches are capable of locating a sex pheromone source with one long antenna spanning 5 cm, so-called unilateral odor sampling. This capability stems from an antennotopic map in which olfactory sensory neurons located proximo-distally in the antenna send axon terminals proximo-distally in a given glomerulus, relative to axonal entry points. Multiple output neurons (projection neurons) utilize this spatial map in the pheromone-receptive glomerulus. Here, I summarize neuronal underpinnings of receptive field formation, development, and how this intraglomerular spatial map can be utilized for odor localization.
Collapse
Affiliation(s)
- Hiroshi Nishino
- Research Institute for Electronic Science, Hokkaido University, Sapporo, 060-0812, Japan.
| |
Collapse
|
9
|
Steele TJ, Lanz AJ, Nagel KI. Olfactory navigation in arthropods. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2023; 209:467-488. [PMID: 36658447 PMCID: PMC10354148 DOI: 10.1007/s00359-022-01611-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 12/26/2022] [Accepted: 12/31/2022] [Indexed: 01/21/2023]
Abstract
Using odors to find food and mates is one of the most ancient and highly conserved behaviors. Arthropods from flies to moths to crabs use broadly similar strategies to navigate toward odor sources-such as integrating flow information with odor information, comparing odor concentration across sensors, and integrating odor information over time. Because arthropods share many homologous brain structures-antennal lobes for processing olfactory information, mechanosensors for processing flow, mushroom bodies (or hemi-ellipsoid bodies) for associative learning, and central complexes for navigation, it is likely that these closely related behaviors are mediated by conserved neural circuits. However, differences in the types of odors they seek, the physics of odor dispersal, and the physics of locomotion in water, air, and on substrates mean that these circuits must have adapted to generate a wide diversity of odor-seeking behaviors. In this review, we discuss common strategies and specializations observed in olfactory navigation behavior across arthropods, and review our current knowledge about the neural circuits subserving this behavior. We propose that a comparative study of arthropod nervous systems may provide insight into how a set of basic circuit structures has diversified to generate behavior adapted to different environments.
Collapse
Affiliation(s)
- Theresa J Steele
- Neuroscience Institute, NYU School of Medicine, 435 E 30th St., New York, NY, 10016, USA
| | - Aaron J Lanz
- Neuroscience Institute, NYU School of Medicine, 435 E 30th St., New York, NY, 10016, USA
| | - Katherine I Nagel
- Neuroscience Institute, NYU School of Medicine, 435 E 30th St., New York, NY, 10016, USA.
| |
Collapse
|
10
|
Taisz I, Donà E, Münch D, Bailey SN, Morris BJ, Meechan KI, Stevens KM, Varela-Martínez I, Gkantia M, Schlegel P, Ribeiro C, Jefferis GSXE, Galili DS. Generating parallel representations of position and identity in the olfactory system. Cell 2023; 186:2556-2573.e22. [PMID: 37236194 PMCID: PMC10403364 DOI: 10.1016/j.cell.2023.04.038] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 12/07/2022] [Accepted: 04/28/2023] [Indexed: 05/28/2023]
Abstract
In Drosophila, a dedicated olfactory channel senses a male pheromone, cis-vaccenyl acetate (cVA), promoting female courtship while repelling males. Here, we show that separate cVA-processing streams extract qualitative and positional information. cVA sensory neurons respond to concentration differences in a 5-mm range around a male. Second-order projection neurons encode the angular position of a male by detecting inter-antennal differences in cVA concentration, which are amplified through contralateral inhibition. At the third circuit layer, we identify 47 cell types with diverse input-output connectivity. One population responds tonically to male flies, a second is tuned to olfactory looming, while a third integrates cVA and taste to coincidentally promote female mating. The separation of olfactory features resembles the mammalian what and where visual streams; together with multisensory integration, this enables behavioral responses appropriate to specific ethological contexts.
Collapse
Affiliation(s)
- István Taisz
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Erika Donà
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
| | | | | | - Billy J Morris
- Department of Zoology, University of Cambridge, Cambridge, UK
| | | | - Katie M Stevens
- Department of Zoology, University of Cambridge, Cambridge, UK
| | | | - Marina Gkantia
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Philipp Schlegel
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK; Department of Zoology, University of Cambridge, Cambridge, UK
| | | | - Gregory S X E Jefferis
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK; Department of Zoology, University of Cambridge, Cambridge, UK.
| | - Dana S Galili
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK.
| |
Collapse
|
11
|
Jayaram V, Sehdev A, Kadakia N, Brown EA, Emonet T. Temporal novelty detection and multiple timescale integration drive Drosophila orientation dynamics in temporally diverse olfactory environments. PLoS Comput Biol 2023; 19:e1010606. [PMID: 37167321 PMCID: PMC10205008 DOI: 10.1371/journal.pcbi.1010606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 05/23/2023] [Accepted: 04/03/2023] [Indexed: 05/13/2023] Open
Abstract
To survive, insects must effectively navigate odor plumes to their source. In natural plumes, turbulent winds break up smooth odor regions into disconnected patches, so navigators encounter brief bursts of odor interrupted by bouts of clean air. The timing of these encounters plays a critical role in navigation, determining the direction, rate, and magnitude of insects' orientation and speed dynamics. Disambiguating the specific role of odor timing from other cues, such as spatial structure, is challenging due to natural correlations between plumes' temporal and spatial features. Here, we use optogenetics to isolate temporal features of odor signals, examining how the frequency and duration of odor encounters shape the navigational decisions of freely-walking Drosophila. We find that fly angular velocity depends on signal frequency and intermittency-the fraction of time signal can be detected-but not directly on durations. Rather than switching strategies when signal statistics change, flies smoothly transition between signal regimes, by combining an odor offset response with a frequency-dependent novelty-like response. In the latter, flies are more likely to turn in response to each odor hit only when the hits are sparse. Finally, the upwind bias of individual turns relies on a filtering scheme with two distinct timescales, allowing rapid and sustained responses in a variety of signal statistics. A quantitative model incorporating these ingredients recapitulates fly orientation dynamics across a wide range of environments and shows that temporal novelty detection, when combined with odor motion detection, enhances odor plume navigation.
Collapse
Affiliation(s)
- Viraaj Jayaram
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut, United States of America
- Quantitative Biology Institute, Yale University, New Haven, Connecticut, United States of America
- Department of Physics, Yale University, New Haven, Connecticut, United States of America
| | - Aarti Sehdev
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut, United States of America
- Quantitative Biology Institute, Yale University, New Haven, Connecticut, United States of America
| | - Nirag Kadakia
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut, United States of America
- Quantitative Biology Institute, Yale University, New Haven, Connecticut, United States of America
- Swartz Foundation for Theoretical Neuroscience, Yale University, New Haven, Connecticut, United States of America
| | - Ethan A. Brown
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut, United States of America
- Quantitative Biology Institute, Yale University, New Haven, Connecticut, United States of America
- Yale College, Yale University, New Haven, Connecticut, United States of America
| | - Thierry Emonet
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut, United States of America
- Quantitative Biology Institute, Yale University, New Haven, Connecticut, United States of America
- Department of Physics, Yale University, New Haven, Connecticut, United States of America
- Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut, United States of America
| |
Collapse
|
12
|
Wechsler SP, Bhandawat V. Behavioral algorithms and neural mechanisms underlying odor-modulated locomotion in insects. J Exp Biol 2023; 226:jeb200261. [PMID: 36637433 PMCID: PMC10086387 DOI: 10.1242/jeb.200261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Odors released from mates and resources such as a host and food are often the first sensory signals that an animal can detect. Changes in locomotion in response to odors are an important mechanism by which animals access resources important to their survival. Odor-modulated changes in locomotion in insects constitute a whole suite of flexible behaviors that allow insects to close in on these resources from long distances and perform local searches to locate and subsequently assess them. Here, we review changes in odor-mediated locomotion across many insect species. We emphasize that changes in locomotion induced by odors are diverse. In particular, the olfactory stimulus is sporadic at long distances and becomes more continuous at short distances. This distance-dependent change in temporal profile produces a corresponding change in an insect's locomotory strategy. We also discuss the neural circuits underlying odor modulation of locomotion.
Collapse
Affiliation(s)
- Samuel P. Wechsler
- School of Biomedical Engineering, Sciences and Health Systems, Drexel University, Philadelphia, PA 19104, USA
| | - Vikas Bhandawat
- School of Biomedical Engineering, Sciences and Health Systems, Drexel University, Philadelphia, PA 19104, USA
| |
Collapse
|
13
|
van Breugel F, Brunton BW. Flies catch wind of where smells come from. Nature 2022; 611:667-668. [DOI: 10.1038/d41586-022-03561-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
14
|
Kadakia N, Demir M, Michaelis BT, DeAngelis BD, Reidenbach MA, Clark DA, Emonet T. Odour motion sensing enhances navigation of complex plumes. Nature 2022; 611:754-761. [PMID: 36352224 PMCID: PMC10039482 DOI: 10.1038/s41586-022-05423-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 10/06/2022] [Indexed: 11/11/2022]
Abstract
Odour plumes in the wild are spatially complex and rapidly fluctuating structures carried by turbulent airflows1-4. To successfully navigate plumes in search of food and mates, insects must extract and integrate multiple features of the odour signal, including odour identity5, intensity6 and timing6-12. Effective navigation requires balancing these multiple streams of olfactory information and integrating them with other sensory inputs, including mechanosensory and visual cues9,12,13. Studies dating back a century have indicated that, of these many sensory inputs, the wind provides the main directional cue in turbulent plumes, leading to the longstanding model of insect odour navigation as odour-elicited upwind motion6,8-12,14,15. Here we show that Drosophila melanogaster shape their navigational decisions using an additional directional cue-the direction of motion of odours-which they detect using temporal correlations in the odour signal between their two antennae. Using a high-resolution virtual-reality paradigm to deliver spatiotemporally complex fictive odours to freely walking flies, we demonstrate that such odour-direction sensing involves algorithms analogous to those in visual-direction sensing16. Combining simulations, theory and experiments, we show that odour motion contains valuable directional information that is absent from the airflow alone, and that both Drosophila and virtual agents are aided by that information in navigating naturalistic plumes. The generality of our findings suggests that odour-direction sensing may exist throughout the animal kingdom and could improve olfactory robot navigation in uncertain environments.
Collapse
Affiliation(s)
- Nirag Kadakia
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
- Quantitative Biology Institute, Yale University, New Haven, CT, USA
- Swartz Foundation for Theoretical Neuroscience, Yale University, New Haven, CT, USA
| | - Mahmut Demir
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
- Quantitative Biology Institute, Yale University, New Haven, CT, USA
| | - Brenden T Michaelis
- Department of Environmental Sciences, University of Virginia, Charlottesville, VA, USA
| | - Brian D DeAngelis
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
- Quantitative Biology Institute, Yale University, New Haven, CT, USA
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, USA
| | - Matthew A Reidenbach
- Department of Environmental Sciences, University of Virginia, Charlottesville, VA, USA
| | - Damon A Clark
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA.
- Quantitative Biology Institute, Yale University, New Haven, CT, USA.
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, USA.
- Department of Physics, Yale University, New Haven, CT, USA.
| | - Thierry Emonet
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA.
- Quantitative Biology Institute, Yale University, New Haven, CT, USA.
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, USA.
- Department of Physics, Yale University, New Haven, CT, USA.
| |
Collapse
|
15
|
Functional Asymmetries Routing the Mating Behavior of the Rusty Grain Beetle, Cryptolestes ferrugineus (Stephens) (Coleoptera: Laemophloeidae). INSECTS 2022; 13:insects13080699. [PMID: 36005324 PMCID: PMC9409065 DOI: 10.3390/insects13080699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 07/22/2022] [Accepted: 07/27/2022] [Indexed: 12/04/2022]
Abstract
Simple Summary We evaluated the behavioral asymmetries of Cryptolestes ferrugineus (Stephens) (Coleoptera: Laemophloeidae) males during courtship and mating with potential mates. The highest proportion of males showed left-biased approaches towards females, and turned 180° to their left. Right-biased males (i.e., approaching mates from the right and then turning 180°) were fewer than left-biased males. A low percentage of males approaching from the front and back side achieved successful mating. Left-biased-approaching males had a significantly shorter copula duration in comparison with other males. Left-biased males performed shorter copulation attempts and copula in comparison to right-biased males. This research contributes to understand the role of lateralization in the beetle family Laemophloeidae. Abstract The rusty grain beetle, Cryptolestes ferrugineus (Stephens) (Coleoptera: Laemophloeidae), is a serious secondary pest of stored and processed food commodities. In the present study, we investigated the lateralization of males during courtship and mating, attempting to understand if it can be linked with a high likelihood of successful copulation. Most males exhibited left-biased (41%) approaches towards females, and turned 180° to their left, with 37% mating success. Right-biased males (i.e., approaching from the right and then turning 180°) were fewer than left-biased ones; 26% out of 34% managed to copulate with females. Only 9% out of 13% and 7% out of 11% of the back side- and front side-approaching males succeeded in mating, respectively. Directional asymmetries in approaching a potential mate, as well as the laterality of side-biased turning 180°, significantly affected male copulation success, with left-biased males achieving higher mating success if compared to right-biased males. Copula duration was significantly lower for left-biased-approaching males (1668.0 s) over the others (i.e., 1808.1, 1767.9 and 1746.9 for right-biased, front and back side-males, respectively). Left-biased males performed shorter copulation attempts and copula compared to right-biased males. Overall, our study adds basic knowledge to the lateralized behavioral displays during courtship and copula of C. ferrugineus.
Collapse
|
16
|
Emergence of Integrated Information at Macro Timescales in Real Neural Recordings. ENTROPY 2022; 24:e24050625. [PMID: 35626510 PMCID: PMC9140848 DOI: 10.3390/e24050625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/22/2022] [Accepted: 04/26/2022] [Indexed: 11/17/2022]
Abstract
How a system generates conscious experience remains an elusive question. One approach towards answering this is to consider the information available in the system from the perspective of the system itself. Integrated information theory (IIT) proposes a measure to capture this integrated information (Φ). While Φ can be computed at any spatiotemporal scale, IIT posits that it be applied at the scale at which the measure is maximised. Importantly, Φ in conscious systems should emerge to be maximal not at the smallest spatiotemporal scale, but at some macro scale where system elements or timesteps are grouped into larger elements or timesteps. Emergence in this sense has been demonstrated in simple example systems composed of logic gates, but it remains unclear whether it occurs in real neural recordings which are generally continuous and noisy. Here we first utilise a computational model to confirm that Φ becomes maximal at the temporal scales underlying its generative mechanisms. Second, we search for emergence in local field potentials from the fly brain recorded during wakefulness and anaesthesia, finding that normalised Φ (wake/anaesthesia), but not raw Φ values, peaks at 5 ms. Lastly, we extend our model to investigate why raw Φ values themselves did not peak. This work extends the application of Φ to simple artificial systems consisting of logic gates towards searching for emergence of a macro spatiotemporal scale in real neural systems.
Collapse
|
17
|
Ning J, Li Z, Zhang X, Wang J, Chen D, Liu Q, Sun Y. Behavioral signatures of structured feature detection during courtship in Drosophila. Curr Biol 2022; 32:1211-1231.e7. [DOI: 10.1016/j.cub.2022.01.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 11/27/2021] [Accepted: 01/10/2022] [Indexed: 11/27/2022]
|
18
|
Jayaram V, Kadakia N, Emonet T. Sensing complementary temporal features of odor signals enhances navigation of diverse turbulent plumes. eLife 2022; 11:e72415. [PMID: 35072625 PMCID: PMC8871351 DOI: 10.7554/elife.72415] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 01/20/2022] [Indexed: 11/13/2022] Open
Abstract
We and others have shown that during odor plume navigation, walking Drosophila melanogaster bias their motion upwind in response to both the frequency of their encounters with the odor (Demir et al., 2020) and the intermittency of the odor signal, which we define to be the fraction of time the signal is above a detection threshold (Alvarez-Salvado et al., 2018). Here, we combine and simplify previous mathematical models that recapitulated these data to investigate the benefits of sensing both of these temporal features and how these benefits depend on the spatiotemporal statistics of the odor plume. Through agent-based simulations, we find that navigators that only use frequency or intermittency perform well in some environments - achieving maximal performance when gains are near those inferred from experiment - but fail in others. Robust performance across diverse environments requires both temporal modalities. However, we also find a steep trade-off when using both sensors simultaneously, suggesting a strong benefit to modulating how much each sensor is weighted, rather than using both in a fixed combination across plumes. Finally, we show that the circuitry of the Drosophila olfactory periphery naturally enables simultaneous intermittency and frequency sensing, enhancing robust navigation through a diversity of odor environments. Together, our results suggest that the first stage of olfactory processing selects and encodes temporal features of odor signals critical to real-world navigation tasks.
Collapse
Affiliation(s)
- Viraaj Jayaram
- Department of Physics, Yale UniversityNew HavenUnited States
- Department of Molecular, Cellular and Developmental Biology, Yale UniversityNew HavenUnited States
- Quantitative Biology Institute, Yale UniversityNew HavenUnited States
| | - Nirag Kadakia
- Department of Molecular, Cellular and Developmental Biology, Yale UniversityNew HavenUnited States
- Quantitative Biology Institute, Yale UniversityNew HavenUnited States
| | - Thierry Emonet
- Department of Physics, Yale UniversityNew HavenUnited States
- Department of Molecular, Cellular and Developmental Biology, Yale UniversityNew HavenUnited States
- Quantitative Biology Institute, Yale UniversityNew HavenUnited States
| |
Collapse
|
19
|
Abdelrahman NY, Vasilaki E, Lin AC. Compensatory variability in network parameters enhances memory performance in the Drosophila mushroom body. Proc Natl Acad Sci U S A 2021; 118:e2102158118. [PMID: 34845010 PMCID: PMC8670477 DOI: 10.1073/pnas.2102158118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2021] [Indexed: 11/18/2022] Open
Abstract
Neural circuits use homeostatic compensation to achieve consistent behavior despite variability in underlying intrinsic and network parameters. However, it remains unclear how compensation regulates variability across a population of the same type of neurons within an individual and what computational benefits might result from such compensation. We address these questions in the Drosophila mushroom body, the fly's olfactory memory center. In a computational model, we show that under sparse coding conditions, memory performance is degraded when the mushroom body's principal neurons, Kenyon cells (KCs), vary realistically in key parameters governing their excitability. However, memory performance is rescued while maintaining realistic variability if parameters compensate for each other to equalize KC average activity. Such compensation can be achieved through both activity-dependent and activity-independent mechanisms. Finally, we show that correlations predicted by our model's compensatory mechanisms appear in the Drosophila hemibrain connectome. These findings reveal compensatory variability in the mushroom body and describe its computational benefits for associative memory.
Collapse
Affiliation(s)
- Nada Y Abdelrahman
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, United Kingdom
- Department of Computer Science, University of Sheffield, Sheffield S1 4DP, United Kingdom
- Neuroscience Institute, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Eleni Vasilaki
- Department of Computer Science, University of Sheffield, Sheffield S1 4DP, United Kingdom
- Neuroscience Institute, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Andrew C Lin
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, United Kingdom;
- Neuroscience Institute, University of Sheffield, Sheffield S10 2TN, United Kingdom
| |
Collapse
|
20
|
Knebel D, Rigosi E. Temporal and structural neural asymmetries in insects. CURRENT OPINION IN INSECT SCIENCE 2021; 48:72-78. [PMID: 34695604 DOI: 10.1016/j.cois.2021.10.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 10/14/2021] [Accepted: 10/14/2021] [Indexed: 05/28/2023]
Abstract
Neural asymmetries of the bilateral parts of the nervous system are found throughout the animal kingdom. The relative low complexity and experimental accessibility of the insect nervous system makes it well suited for studying the functions of neural asymmetries and their underlying mechanisms. Recent findings in insects reveal hardwired asymmetries in their peripheral and central nervous systems, which affect sensory perception, motor behaviours and cognitive-related tasks. Together, these findings underscore the tendency of the nervous system to segregate between the activities of its right and left sides either transiently or as permanent lateralized specializations.
Collapse
Affiliation(s)
- Daniel Knebel
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel; Department of Computer Science, Bar-Ilan University, Ramat-Gan 5290002, Israel; Lise Meitner Group Social Behaviour, Max-Planck-Institute for Chemical Ecology, Hans-Knöll-Straße 8, Jena 07745, Germany.
| | - Elisa Rigosi
- Department of Biology, Lund University, Sölvegatan 35, Lund 22362, Sweden.
| |
Collapse
|
21
|
Lin Y, Yao Y, Zhang W, Fang Q, Zhang L, Zhang Y, Xu Y. Applications of upconversion nanoparticles in cellular optogenetics. Acta Biomater 2021; 135:1-12. [PMID: 34461347 DOI: 10.1016/j.actbio.2021.08.035] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 08/07/2021] [Accepted: 08/23/2021] [Indexed: 11/16/2022]
Abstract
Upconversion-mediated optogenetics is an emerging powerful technique to remotely control and manipulate the deep-tissue protein functions and signaling pathway activation. This technique uses lanthanide upconversion nanoparticles (UCNPs) as light transducers and through near-infrared light to indirectly activate the traditional optogenetic proteins. With the merits of high spatiotemporal resolution and minimal invasiveness, this technique enables cell-type specific manipulation of cellular activities in deep tissues as well as in living animals. In this review, we introduce the latest development of optogenetic modules and UCNPs, with emphasis on the integration of UCNPs with cellular optogenetics and their biomedical applications on the control of neural/brain activity, cancer therapy and cardiac optogenetics in vivo. Furthermore, we analyze the current developed strategies to optimize and advance the upconversion-mediated optogenetics and discuss the remaining challenges of its further applications in biomedical study and clinical translational research. STATEMENT OF SIGNIFICANCE: Optogenetics harnesses photoactivatable proteins to optically stimulate and control intracellular activities. UCNPs-mediated NIR-activatable optogenetics uses lanthanide upconversion nanoparticles (UCNPs) as light transducers and utilizes near-infrared (NIR) light to indirectly activate the traditional optogenetic proteins. The integration of UCNPs with cellular optogenetics has showed great promise in biomedical applications in regulating neural/brain activity, cancer therapy and cardiac optogenetics in vivo. The evolution and optimization of functional UCNPs and the discovery and engineering of novel optogenetic modules would both contribute to the advance of such unique hybrid technology, which may lead to discoveries in biomedical research and provide new treatments for human diseases.
Collapse
Affiliation(s)
- Yinyan Lin
- Department of Biomedical Engineering, Key Laboratory of Biomedical Engineering of Ministry of Education, State Key Laboratory of Modern Optical Instrumentation, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou 310027, China
| | - Yuanfa Yao
- Department of Biomedical Engineering, Key Laboratory of Biomedical Engineering of Ministry of Education, State Key Laboratory of Modern Optical Instrumentation, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou 310027, China
| | - Wanmei Zhang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Qiuyu Fang
- Department of Biomedical Engineering, Key Laboratory of Biomedical Engineering of Ministry of Education, State Key Laboratory of Modern Optical Instrumentation, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou 310027, China
| | - Luhao Zhang
- Department of Biomedical Engineering, Key Laboratory of Biomedical Engineering of Ministry of Education, State Key Laboratory of Modern Optical Instrumentation, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou 310027, China
| | - Yan Zhang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Yingke Xu
- Department of Biomedical Engineering, Key Laboratory of Biomedical Engineering of Ministry of Education, State Key Laboratory of Modern Optical Instrumentation, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou 310027, China; Department of Endocrinology, The Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China.
| |
Collapse
|
22
|
Cavelius M, Brunel T, Didier A. Lessons from behavioral lateralization in olfaction. Brain Struct Funct 2021; 227:685-696. [PMID: 34596756 PMCID: PMC8843900 DOI: 10.1007/s00429-021-02390-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/19/2021] [Indexed: 11/16/2022]
Abstract
Sensory information, sampled by sensory organs positioned on each side of the body may play a crucial role in organizing brain lateralization. This question is of particular interest with regard to the growing evidence of alteration in lateralization in several psychiatric conditions. In this context, the olfactory system, an ancient, mostly ipsilateral and well-conserved system across phylogeny may prove an interesting model system to understand the behavioral significance of brain lateralization. Here, we focused on behavioral data in vertebrates and non-vertebrates, suggesting that the two hemispheres of the brain differentially processed olfactory cues to achieve diverse sensory operations, such as detection, discrimination, identification of behavioral valuable cues or learning. These include reports across different species on best performances with one nostril or the other or odorant active sampling by one nostril or the other, depending on odorants or contexts. In some species, hints from peripheral anatomical or functional asymmetry were proposed to explain these asymmetries in behavior. Instigations of brain activation or more rarely of brain connectivity evoked by odorants revealed a complex picture with regards to asymmetric patterns which is discussed with respect to behavioral data. Along the steps of the discussed literature, we propose avenues for future research.
Collapse
Affiliation(s)
- Matthias Cavelius
- Lyon Neuroscience Research Center (CRNL), Neuropop Team, Lyon, France.,CNRS 5292, Inserm 1028, Lyon 1 University, Lyon, France
| | - Théo Brunel
- Lyon Neuroscience Research Center (CRNL), Neuropop Team, Lyon, France.,CNRS 5292, Inserm 1028, Lyon 1 University, Lyon, France
| | - Anne Didier
- Lyon Neuroscience Research Center (CRNL), Neuropop Team, Lyon, France. .,CNRS 5292, Inserm 1028, Lyon 1 University, Lyon, France.
| |
Collapse
|
23
|
Raithel CU, Gottfried JA. Using your nose to find your way: Ethological comparisons between human and non-human species. Neurosci Biobehav Rev 2021; 128:766-779. [PMID: 34214515 PMCID: PMC8359807 DOI: 10.1016/j.neubiorev.2021.06.040] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 06/10/2021] [Accepted: 06/25/2021] [Indexed: 02/08/2023]
Abstract
Olfaction is arguably the least valued among our sensory systems, and its significance for human behavior is often neglected. Spatial navigation represents no exception to the rule: humans are often characterized as purely visual navigators, a view that undermines the contribution of olfactory cues. Accordingly, research investigating whether and how humans use olfaction to navigate space is rare. In comparison, research on olfactory navigation in non-human species is abundant, and identifies behavioral strategies along with neural mechanisms characterizing the use of olfactory cues during spatial tasks. Using an ethological approach, our review draws from studies on olfactory navigation across species to describe the adaptation of strategies under the influence of selective pressure. Mammals interact with spatial environments by abstracting multisensory information into cognitive maps. We thus argue that olfactory cues, alongside inputs from other sensory modalities, play a crucial role in spatial navigation for mammalian species, including humans; that is, odors constitute one of the many building blocks in the formation of cognitive maps.
Collapse
Affiliation(s)
- Clara U Raithel
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, 3400 Hamilton Walk, Stemmler Hall, Room G10, Philadelphia, PA, 19104, USA; Department of Psychology, School of Arts and Sciences, University of Pennsylvania, 425 S. University Avenue, Stephen A. Levin Building, Philadelphia, PA, 19104, USA.
| | - Jay A Gottfried
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, 3400 Hamilton Walk, Stemmler Hall, Room G10, Philadelphia, PA, 19104, USA; Department of Psychology, School of Arts and Sciences, University of Pennsylvania, 425 S. University Avenue, Stephen A. Levin Building, Philadelphia, PA, 19104, USA
| |
Collapse
|
24
|
Functional Relevance of Dual Olfactory Bulbs in Olfactory Coding. eNeuro 2021; 8:ENEURO.0070-21.2021. [PMID: 34413085 PMCID: PMC8422849 DOI: 10.1523/eneuro.0070-21.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 11/21/2022] Open
Abstract
Bilateral convergence of external stimuli is a common feature of vertebrate sensory systems. This convergence of inputs from the bilateral receptive fields allows higher order sensory perception, such as depth perception in the vertebrate visual system and stimulus localization in the auditory system. The functional role of such bilateral convergence in the olfactory system is unknown. To test whether each olfactory bulb (OB) contributes a separate piece of olfactory information, and whether information from the bilateral OB is integrated, we synchronized the activation of OBs with blue light in mice expressing ChIEF in the olfactory sensory neurons (OSNs) and behaviorally assessed the relevance of dual OBs in olfactory perception. Our findings suggest that each OB contributes separate components of olfactory information, and the mice integrate the bilaterally synchronized olfactory information for olfactory identity.
Collapse
|
25
|
Gosztolai A, Günel S, Lobato-Ríos V, Pietro Abrate M, Morales D, Rhodin H, Fua P, Ramdya P. LiftPose3D, a deep learning-based approach for transforming two-dimensional to three-dimensional poses in laboratory animals. Nat Methods 2021; 18:975-981. [PMID: 34354294 PMCID: PMC7611544 DOI: 10.1038/s41592-021-01226-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 06/29/2021] [Indexed: 12/22/2022]
Abstract
Markerless three-dimensional (3D) pose estimation has become an indispensable tool for kinematic studies of laboratory animals. Most current methods recover 3D poses by multi-view triangulation of deep network-based two-dimensional (2D) pose estimates. However, triangulation requires multiple synchronized cameras and elaborate calibration protocols that hinder its widespread adoption in laboratory studies. Here we describe LiftPose3D, a deep network-based method that overcomes these barriers by reconstructing 3D poses from a single 2D camera view. We illustrate LiftPose3D's versatility by applying it to multiple experimental systems using flies, mice, rats and macaques, and in circumstances where 3D triangulation is impractical or impossible. Our framework achieves accurate lifting for stereotypical and nonstereotypical behaviors from different camera angles. Thus, LiftPose3D permits high-quality 3D pose estimation in the absence of complex camera arrays and tedious calibration procedures and despite occluded body parts in freely behaving animals.
Collapse
Affiliation(s)
- Adam Gosztolai
- Neuroengineering Laboratory, Brain Mind Institute & Interfaculty Institute of Bioengineering, EPFL, Lausanne, Switzerland.
| | - Semih Günel
- Neuroengineering Laboratory, Brain Mind Institute & Interfaculty Institute of Bioengineering, EPFL, Lausanne, Switzerland. .,Computer Vision Laboratory, EPFL, Lausanne, Switzerland.
| | - Victor Lobato-Ríos
- Neuroengineering Laboratory, Brain Mind Institute & Interfaculty Institute of Bioengineering, EPFL, Lausanne, Switzerland
| | - Marco Pietro Abrate
- Neuroengineering Laboratory, Brain Mind Institute & Interfaculty Institute of Bioengineering, EPFL, Lausanne, Switzerland
| | - Daniel Morales
- Neuroengineering Laboratory, Brain Mind Institute & Interfaculty Institute of Bioengineering, EPFL, Lausanne, Switzerland
| | - Helge Rhodin
- Department of Computer Science, UBC, Vancouver, Canada
| | - Pascal Fua
- Computer Vision Laboratory, EPFL, Lausanne, Switzerland
| | - Pavan Ramdya
- Neuroengineering Laboratory, Brain Mind Institute & Interfaculty Institute of Bioengineering, EPFL, Lausanne, Switzerland.
| |
Collapse
|
26
|
Breugel FV. Correlated decision making across multiple phases of olfactory guided search in Drosophila improves search efficiency. J Exp Biol 2021; 224:271881. [PMID: 34286337 DOI: 10.1242/jeb.242267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 07/19/2021] [Indexed: 11/20/2022]
Abstract
Nearly all motile organisms must search for food, often requiring multiple phases of exploration across heterogeneous environments. The fruit fly, Drosophila, has emerged as an effective model system for studying this behavior, however, little is known about the extent to which experiences at one point in their search might influence decisions in another. To investigate whether prior experiences impact flies' search behavior after landing, I tracked individually labelled fruit flies as they explored three odor emitting but food-barren objects. I found two features of their behavior that are correlated with the distance they travel on foot. First, flies walked larger distances when they approached the odor source, which they were almost twice as likely to do when landing on the patch farthest downwind. Computational fluid dynamics simulations suggest this patch may have had a stronger baseline odor, but only ∼15% higher than the other two. This small increase, together with flies' high olfactory sensitivity, suggests that perhaps their flight trajectory used to approach the patches plays a role. Second, flies also walked larger distances when the time elapsed since their last visit was longer. However, the correlation is subtle and subject to a large degree of variability. Using agent-based models, I show that this small correlation can increase search efficiency by 25-50% across many scenarios. Furthermore, my models provide mechanistic hypotheses explaining the variability through either a noisy or straightforward decision-making process. Surprisingly, these stochastic decision-making algorithms enhance search efficiency in challenging but realistic search scenarios compared to deterministic strategies.
Collapse
|
27
|
Schlegel P, Bates AS, Stürner T, Jagannathan SR, Drummond N, Hsu J, Serratosa Capdevila L, Javier A, Marin EC, Barth-Maron A, Tamimi IFM, Li F, Rubin GM, Plaza SM, Costa M, Jefferis GSXE. Information flow, cell types and stereotypy in a full olfactory connectome. eLife 2021; 10:e66018. [PMID: 34032214 PMCID: PMC8298098 DOI: 10.7554/elife.66018] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 05/24/2021] [Indexed: 12/19/2022] Open
Abstract
The hemibrain connectome provides large-scale connectivity and morphology information for the majority of the central brain of Drosophila melanogaster. Using this data set, we provide a complete description of the Drosophila olfactory system, covering all first, second and lateral horn-associated third-order neurons. We develop a generally applicable strategy to extract information flow and layered organisation from connectome graphs, mapping olfactory input to descending interneurons. This identifies a range of motifs including highly lateralised circuits in the antennal lobe and patterns of convergence downstream of the mushroom body and lateral horn. Leveraging a second data set we provide a first quantitative assessment of inter- versus intra-individual stereotypy. Comparing neurons across two brains (three hemispheres) reveals striking similarity in neuronal morphology across brains. Connectivity correlates with morphology and neurons of the same morphological type show similar connection variability within the same brain as across two brains.
Collapse
Affiliation(s)
- Philipp Schlegel
- Neurobiology Division, MRC Laboratory of Molecular BiologyCambridgeUnited Kingdom
- Department of Zoology, University of CambridgeCambridgeUnited Kingdom
| | | | - Tomke Stürner
- Department of Zoology, University of CambridgeCambridgeUnited Kingdom
| | | | - Nikolas Drummond
- Department of Zoology, University of CambridgeCambridgeUnited Kingdom
| | - Joseph Hsu
- Department of Zoology, University of CambridgeCambridgeUnited Kingdom
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | | | - Alexandre Javier
- Department of Zoology, University of CambridgeCambridgeUnited Kingdom
| | - Elizabeth C Marin
- Department of Zoology, University of CambridgeCambridgeUnited Kingdom
| | - Asa Barth-Maron
- Department of Neurobiology, Harvard Medical SchoolBostonUnited States
| | - Imaan FM Tamimi
- Department of Zoology, University of CambridgeCambridgeUnited Kingdom
| | - Feng Li
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Gerald M Rubin
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Stephen M Plaza
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Marta Costa
- Department of Zoology, University of CambridgeCambridgeUnited Kingdom
| | - Gregory S X E Jefferis
- Neurobiology Division, MRC Laboratory of Molecular BiologyCambridgeUnited Kingdom
- Department of Zoology, University of CambridgeCambridgeUnited Kingdom
| |
Collapse
|
28
|
Abstract
Simple innate behavior is often described as hard-wired and largely inflexible. Here, we show that the avoidance of hot temperature, a simple innate behavior, contains unexpected plasticity in Drosophila. First, we demonstrate that hot receptor neurons of the antenna and their molecular heat sensor, Gr28B.d, are essential for flies to produce escape turns away from heat. High-resolution fly tracking combined with a 3D simulation of the thermal environment shows that, in steep thermal gradients, the direction of escape turns is determined by minute temperature differences between the antennae (0.1°-1 °C). In parallel, live calcium imaging confirms that such small stimuli reliably activate both peripheral thermosensory neurons and central circuits. Next, based on our measurements, we evolve a fly/vehicle model with two symmetrical sensors and motors (a "Braitenberg vehicle") which closely approximates basic fly thermotaxis. Critical differences between real flies and the hard-wired vehicle reveal that fly heat avoidance involves decision-making, relies on rapid learning, and is robust to new conditions, features generally associated with more complex behavior.
Collapse
|
29
|
Pisokas I. Reverse Engineering and Robotics as Tools for Analyzing Neural Circuits. Front Neurorobot 2021; 14:578803. [PMID: 33574747 PMCID: PMC7870716 DOI: 10.3389/fnbot.2020.578803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 12/18/2020] [Indexed: 11/28/2022] Open
Abstract
Understanding neuronal circuits that have evolved over millions of years to control adaptive behavior may provide us with alternative solutions to problems in robotics. Recently developed genetic tools allow us to study the connectivity and function of the insect nervous system at the single neuron level. However, neuronal circuits are complex, so the question remains, can we unravel the complex neuronal connectivity to understand the principles of the computations it embodies? Here, I illustrate the plausibility of incorporating reverse engineering to analyze part of the central complex, an insect brain structure essential for navigation behaviors such as maintaining a specific compass heading and path integration. I demonstrate that the combination of reverse engineering with simulations allows the study of both the structure and function of the underlying circuit, an approach that augments our understanding of both the computation performed by the neuronal circuit and the role of its components.
Collapse
Affiliation(s)
- Ioannis Pisokas
- Institute of Perception, Action and Behaviour, School of Informatics, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
30
|
Goulard R, Buehlmann C, Niven JE, Graham P, Webb B. A motion compensation treadmill for untethered wood ants ( Formica rufa): evidence for transfer of orientation memories from free-walking training. ACTA ACUST UNITED AC 2020; 223:223/24/jeb228601. [PMID: 33443039 PMCID: PMC7774907 DOI: 10.1242/jeb.228601] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 10/23/2020] [Indexed: 11/20/2022]
Abstract
The natural scale of insect navigation during foraging makes it challenging to study under controlled conditions. Virtual reality and trackball setups have offered experimental control over visual environments while studying tethered insects, but potential limitations and confounds introduced by tethering motivates the development of alternative untethered solutions. In this paper, we validate the use of a motion compensator (or ‘treadmill’) to study visually driven behaviour of freely moving wood ants (Formica rufa). We show how this setup allows naturalistic walking behaviour and preserves foraging motivation over long time frames. Furthermore, we show that ants are able to transfer associative and navigational memories from classical maze and arena contexts to our treadmill. Thus, we demonstrate the possibility to study navigational behaviour over ecologically relevant durations (and virtual distances) in precisely controlled environments, bridging the gap between natural and highly controlled laboratory experiments. Summary: We have developed and validated a motion compensating treadmill for wood ants which opens new perspectives to study insect navigation behaviour in a fully controlled manner over ecologically relevant durations.
Collapse
Affiliation(s)
- Roman Goulard
- School of Informatics, University of Edinburgh, Edinburgh EH8 9AB, UK
| | | | - Jeremy E Niven
- University of Sussex, School of Life Sciences, Brighton BN1 9QG, UK
| | - Paul Graham
- University of Sussex, School of Life Sciences, Brighton BN1 9QG, UK
| | - Barbara Webb
- School of Informatics, University of Edinburgh, Edinburgh EH8 9AB, UK
| |
Collapse
|
31
|
Demir M, Kadakia N, Anderson HD, Clark DA, Emonet T. Walking Drosophila navigate complex plumes using stochastic decisions biased by the timing of odor encounters. eLife 2020; 9:e57524. [PMID: 33140723 PMCID: PMC7609052 DOI: 10.7554/elife.57524] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 09/15/2020] [Indexed: 11/16/2022] Open
Abstract
How insects navigate complex odor plumes, where the location and timing of odor packets are uncertain, remains unclear. Here we imaged complex odor plumes simultaneously with freely-walking flies, quantifying how behavior is shaped by encounters with individual odor packets. We found that navigation was stochastic and did not rely on the continuous modulation of speed or orientation. Instead, flies turned stochastically with stereotyped saccades, whose direction was biased upwind by the timing of prior odor encounters, while the magnitude and rate of saccades remained constant. Further, flies used the timing of odor encounters to modulate the transition rates between walks and stops. In more regular environments, flies continuously modulate speed and orientation, even though encounters can still occur randomly due to animal motion. We find that in less predictable environments, where encounters are random in both space and time, walking flies navigate with random walks biased by encounter timing.
Collapse
Affiliation(s)
- Mahmut Demir
- Department of Molecular, Cellular and Developmental Biology, Yale UniversityNew HavenUnited States
| | - Nirag Kadakia
- Department of Molecular, Cellular and Developmental Biology, Yale UniversityNew HavenUnited States
- Swartz Foundation Fellow, Yale UniversityNew HavenUnited States
| | - Hope D Anderson
- Department of Molecular, Cellular and Developmental Biology, Yale UniversityNew HavenUnited States
| | - Damon A Clark
- Department of Molecular, Cellular and Developmental Biology, Yale UniversityNew HavenUnited States
- Interdepartmental Neuroscience Program, Yale UniversityNew HavenUnited States
- Department of Physics, Yale UniversityNew HavenUnited States
| | - Thierry Emonet
- Department of Molecular, Cellular and Developmental Biology, Yale UniversityNew HavenUnited States
- Interdepartmental Neuroscience Program, Yale UniversityNew HavenUnited States
- Department of Physics, Yale UniversityNew HavenUnited States
| |
Collapse
|
32
|
Pisokas I, Heinze S, Webb B. The head direction circuit of two insect species. eLife 2020; 9:e53985. [PMID: 32628112 PMCID: PMC7419142 DOI: 10.7554/elife.53985] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 07/06/2020] [Indexed: 01/30/2023] Open
Abstract
Recent studies of the Central Complex in the brain of the fruit fly have identified neurons with activity that tracks the animal's heading direction. These neurons are part of a neuronal circuit with dynamics resembling those of a ring attractor. The homologous circuit in other insects has similar topographic structure but with significant structural and connectivity differences. We model the connectivity patterns of two insect species to investigate the effect of these differences on the dynamics of the circuit. We illustrate that the circuit found in locusts can also operate as a ring attractor but differences in the inhibition pattern enable the fruit fly circuit to respond faster to heading changes while additional recurrent connections render the locust circuit more tolerant to noise. Our findings demonstrate that subtle differences in neuronal projection patterns can have a significant effect on circuit performance and illustrate the need for a comparative approach in neuroscience.
Collapse
Affiliation(s)
- Ioannis Pisokas
- School of Informatics, University of EdinburghEdinburghUnited Kingdom
| | - Stanley Heinze
- Lund Vision Group and NanoLund, Lund UniversityLundSweden
| | - Barbara Webb
- School of Informatics, University of EdinburghEdinburghUnited Kingdom
| |
Collapse
|
33
|
Kermen F, Lal P, Faturos NG, Yaksi E. Interhemispheric connections between olfactory bulbs improve odor detection. PLoS Biol 2020; 18:e3000701. [PMID: 32310946 PMCID: PMC7192517 DOI: 10.1371/journal.pbio.3000701] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 04/30/2020] [Accepted: 04/02/2020] [Indexed: 01/06/2023] Open
Abstract
Interhemispheric connections enable interaction and integration of sensory information in bilaterian nervous systems and are thought to optimize sensory computations. However, the cellular and spatial organization of interhemispheric networks and the computational properties they mediate in vertebrates are still poorly understood. Thus, it remains unclear to what extent the connectivity between left and right brain hemispheres participates in sensory processing. Here, we show that the zebrafish olfactory bulbs (OBs) receive direct interhemispheric projections from their contralateral counterparts in addition to top-down inputs from the contralateral zebrafish homolog of olfactory cortex. The direct interhemispheric projections between the OBs reach peripheral layers of the contralateral OB and retain a precise topographic organization, which directly connects similarly tuned olfactory glomeruli across hemispheres. In contrast, interhemispheric top-down inputs consist of diffuse projections that broadly innervate the inhibitory granule cell layer. Jointly, these interhemispheric connections elicit a balance of topographically organized excitation and nontopographic inhibition on the contralateral OB and modulate odor responses. We show that the interhemispheric connections in the olfactory system enable the modulation of odor response and contribute to a small but significant improvement in the detection of a reproductive pheromone when presented together with complex olfactory cues by potentiating the response of the pheromone selective neurons. Taken together, our data show a previously unknown function for an interhemispheric connection between chemosensory maps of the olfactory system. Interhemispheric connections enable interaction and integration of sensory information in bilaterian nervous systems and are thought to optimize sensory computations. This study shows that interhemispheric olfactory connections in the zebrafish brain improve the detection of a reproductive pheromone within a noisy odor background.
Collapse
Affiliation(s)
- Florence Kermen
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Neuro-Electronics Research Flanders, Leuven, Belgium
- Department of Biology, Faculty of Natural Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- * E-mail: (FK); (EY)
| | - Pradeep Lal
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Nicholas G. Faturos
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Emre Yaksi
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Neuro-Electronics Research Flanders, Leuven, Belgium
- * E-mail: (FK); (EY)
| |
Collapse
|
34
|
Dalal T, Gupta N, Haddad R. Bilateral and unilateral odor processing and odor perception. Commun Biol 2020; 3:150. [PMID: 32238904 PMCID: PMC7113286 DOI: 10.1038/s42003-020-0876-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 03/05/2020] [Indexed: 11/09/2022] Open
Abstract
Imagine smelling a novel perfume with only one nostril and then smelling it again with the other nostril. Clearly, you can tell that it is the same perfume both times. This simple experiment demonstrates that odor information is shared across both hemispheres to enable perceptual unity. In many sensory systems, perceptual unity is believed to be mediated by inter-hemispheric connections between iso-functional cortical regions. However, in the olfactory system, the underlying neural mechanisms that enable this coordination are unclear because the two olfactory cortices are not topographically organized and do not seem to have homotypic inter-hemispheric mapping. This review presents recent advances in determining which aspects of odor information are processed unilaterally or bilaterally, and how odor information is shared across the two hemispheres. We argue that understanding the mechanisms of inter-hemispheric coordination can provide valuable insights that are hard to achieve when focusing on one hemisphere alone.
Collapse
Affiliation(s)
- Tal Dalal
- The Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Nitin Gupta
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, 208016, India
| | - Rafi Haddad
- The Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, 5290002, Israel.
| |
Collapse
|
35
|
Mechanisms underlying attraction to odors in walking Drosophila. PLoS Comput Biol 2020; 16:e1007718. [PMID: 32226007 PMCID: PMC7105121 DOI: 10.1371/journal.pcbi.1007718] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 02/07/2020] [Indexed: 11/19/2022] Open
Abstract
Mechanisms that control movements range from navigational mechanisms, in which the animal employs directional cues to reach a specific destination, to search movements during which there are little or no environmental cues. Even though most real-world movements result from an interplay between these mechanisms, an experimental system and theoretical framework for the study of interplay of these mechanisms is not available. Here, we rectify this deficit. We create a new method to stimulate the olfactory system in Drosophila or fruit flies. As flies explore a circular arena, their olfactory receptor neuron (ORNs) are optogenetically activated within a central region making this region attractive to the flies without emitting any clear directional signals outside this central region. In the absence of ORN activation, the fly’s locomotion can be described by a random walk model where a fly’s movement is described by its speed and turn-rate (or kinematics). Upon optogenetic stimulation, the fly’s behavior changes dramatically in two respects. First, there are large kinematic changes. Second, there are more turns at the border between light-zone and no-light-zone and these turns have an inward bias. Surprisingly, there is no increase in turn-rate, rather a large decrease in speed that makes it appear that the flies are turning at the border. Similarly, the inward bias of the turns is a result of the increase in turn angle. These two mechanisms entirely account for the change in a fly’s locomotion. No complex mechanisms such as path-integration or a careful evaluation of gradients are necessary. The strategy an animal employs to explore the environment and to find and return to the location where it has previously found food or mates is an important part of its behavior. In nature, animals have incomplete information about their environment, and must use this incomplete information to navigate. In most laboratory experiments, there is usually clear directional information making it difficult to infer an animal’s real strategy from laboratory behavioral experiments. In this study, we devise a new behavioral task wherein we remotely activate olfactory neurons when fruit flies are in a given location. This activation makes a given location attractive to the flies without providing any directional information and allows us to assess how flies navigate under these conditions. We find that flies navigate towards the activated location using two simple mechanisms: First, its speed in the activated region and its turn rate is much lower than it is elsewhere. Second, at the boundary of the odor-zone, its speed decreases dramatically and its turns become much sharper. Essentially, these simple mechanisms appear to be extremely robust.
Collapse
|
36
|
Zhang N, Guo L, Simpson JH. Spatial Comparisons of Mechanosensory Information Govern the Grooming Sequence in Drosophila. Curr Biol 2020; 30:988-1001.e4. [PMID: 32142695 PMCID: PMC7184881 DOI: 10.1016/j.cub.2020.01.045] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/17/2019] [Accepted: 01/14/2020] [Indexed: 01/28/2023]
Abstract
Animals integrate information from different sensory modalities, body parts, and time points to inform behavioral choice, but the relevant sensory comparisons and the underlying neural circuits are still largely unknown. We use the grooming behavior of Drosophila melanogaster as a model to investigate the sensory comparisons that govern a motor sequence. Flies perform grooming movements spontaneously, but when covered with dust, they clean their bodies following an anterior-to-posterior sequence. After investigating different sensory modalities that could detect dust, we focus on mechanosensory bristle neurons, whose optogenetic activation induces a similar sequence. Computational modeling predicts that higher sensory input strength to the head will cause anterior grooming to occur first. We test this prediction using an optogenetic competition assay whereby two targeted light beams independently activate mechanosensory bristle neurons on different body parts. We find that the initial choice of grooming movement is determined by the ratio of sensory inputs to different body parts. In dust-covered flies, sensory inputs change as a result of successful cleaning movements. Simulations from our model suggest that this change results in sequence progression. One possibility is that flies perform frequent comparisons between anterior and posterior sensory inputs, and the changing ratios drive different behavior choices. Alternatively, flies may track the temporal change in sensory input to a given body part to measure cleaning effectiveness. The first hypothesis is supported by our optogenetic competition experiments: iterative spatial comparisons of sensory inputs between body parts is essential for organizing grooming movements in sequence. Zhang et al. find that Drosophila covered with dust compare sensory inputs from mechanosensory bristles on different body parts during grooming. The ratio of anterior:posterior sensory input and its dynamics, rather than the rate of dust removal from the anterior, drives the anterior-to-posterior grooming sequence.
Collapse
Affiliation(s)
- Neil Zhang
- Department of Molecular, Cellular, and Developmental Biology and Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Li Guo
- Department of Molecular, Cellular, and Developmental Biology and Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Julie H Simpson
- Department of Molecular, Cellular, and Developmental Biology and Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106, USA.
| |
Collapse
|
37
|
Currier TA, Nagel KI. Multisensory control of navigation in the fruit fly. Curr Opin Neurobiol 2019; 64:10-16. [PMID: 31841944 DOI: 10.1016/j.conb.2019.11.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 11/23/2019] [Accepted: 11/25/2019] [Indexed: 01/16/2023]
Abstract
Spatial navigation is influenced by cues from nearly every sensory modality and thus provides an excellent model for understanding how different sensory streams are integrated to drive behavior. Here we review recent work on multisensory control of navigation in the model organism Drosophila melanogaster, which allows for detailed circuit dissection. We identify four modes of integration that have been described in the literature-suppression, gating, summation, and association-and describe regions of the larval and adult brain that have been implicated in sensory integration. Finally we discuss what circuit architectures might support these different forms of integration. We argue that Drosophila is an excellent model to discover these circuit and biophysical motifs.
Collapse
Affiliation(s)
- Timothy A Currier
- Neuroscience Institute, New York University Medical Center, 435 E 30th St., New York, NY 10016, USA; Center for Neural Science, New York University, 4 Washington Place, New York, NY 10003, USA
| | - Katherine I Nagel
- Neuroscience Institute, New York University Medical Center, 435 E 30th St., New York, NY 10016, USA; Center for Neural Science, New York University, 4 Washington Place, New York, NY 10003, USA.
| |
Collapse
|
38
|
Gorur-Shandilya S, Martelli C, Demir M, Emonet T. Controlling and measuring dynamic odorant stimuli in the laboratory. ACTA ACUST UNITED AC 2019; 222:jeb.207787. [PMID: 31672728 DOI: 10.1242/jeb.207787] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 10/24/2019] [Indexed: 12/28/2022]
Abstract
Animals experience complex odorant stimuli that vary widely in composition, intensity and temporal properties. However, stimuli used to study olfaction in the laboratory are much simpler. This mismatch arises from the challenges in measuring and controlling them precisely and accurately. Even simple pulses can have diverse kinetics that depend on their molecular identity. Here, we introduce a model that describes how stimulus kinetics depend on the molecular identity of the odorant and the geometry of the delivery system. We describe methods to deliver dynamic odorant stimuli of several types, including broadly distributed stimuli that reproduce some of the statistics of naturalistic plumes, in a reproducible and precise manner. Finally, we introduce a method to calibrate a photo-ionization detector to any odorant it can detect, using no additional components. Our approaches are affordable and flexible and can be used to advance our understanding of how olfactory neurons encode real-world odor signals.
Collapse
Affiliation(s)
- Srinivas Gorur-Shandilya
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06511, USA.,Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Carlotta Martelli
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA.,Department of Biology, University of Konstanz, Konstanz 78457, Germany
| | - Mahmut Demir
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Thierry Emonet
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06511, USA .,Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA.,Department of Physics, Yale University, New Haven, CT 06511, USA
| |
Collapse
|
39
|
Qin S, Li Q, Tang C, Tu Y. Optimal compressed sensing strategies for an array of nonlinear olfactory receptor neurons with and without spontaneous activity. Proc Natl Acad Sci U S A 2019; 116:20286-20295. [PMID: 31548382 PMCID: PMC6789560 DOI: 10.1073/pnas.1906571116] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
There are numerous different odorant molecules in nature but only a relatively small number of olfactory receptor neurons (ORNs) in brains. This "compressed sensing" challenge is compounded by the constraint that ORNs are nonlinear sensors with a finite dynamic range. Here, we investigate possible optimal olfactory coding strategies by maximizing mutual information between odor mixtures and ORNs' responses with respect to the bipartite odor-receptor interaction network (ORIN) characterized by sensitivities between all odorant-ORN pairs. For ORNs without spontaneous (basal) activity, we find that the optimal ORIN is sparse-a finite fraction of sensitives are zero, and the nonzero sensitivities follow a broad distribution that depends on the odor statistics. We show analytically that sparsity in the optimal ORIN originates from a trade-off between the broad tuning of ORNs and possible interference. Furthermore, we show that the optimal ORIN enhances performances of downstream learning tasks (reconstruction and classification). For ORNs with a finite basal activity, we find that having inhibitory odor-receptor interactions increases the coding capacity and the fraction of inhibitory interactions increases with the ORN basal activity. We argue that basal activities in sensory receptors in different organisms are due to the trade-off between the increase in coding capacity and the cost of maintaining the spontaneous basal activity. Our theoretical findings are consistent with existing experiments and predictions are made to further test our theory. The optimal coding model provides a unifying framework to understand the peripheral olfactory systems across different organisms.
Collapse
Affiliation(s)
- Shanshan Qin
- Center for Quantitative Biology, Peking University, Beijing 100871, China
| | - Qianyi Li
- Integrated Science Program, Yuanpei College, Peking University, Beijing 100871, China
| | - Chao Tang
- Center for Quantitative Biology, Peking University, Beijing 100871, China;
- School of Physics, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Yuhai Tu
- Physical Sciences Department, IBM T. J. Watson Research Center, Yorktown Heights, NY 10598
| |
Collapse
|
40
|
Kaur R, Surala M, Hoger S, Grössmann N, Grimm A, Timaeus L, Kallina W, Hummel T. Pioneer interneurons instruct bilaterality in the Drosophila olfactory sensory map. SCIENCE ADVANCES 2019; 5:eaaw5537. [PMID: 31681838 PMCID: PMC6810332 DOI: 10.1126/sciadv.aaw5537] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 09/28/2019] [Indexed: 06/10/2023]
Abstract
Interhemispheric synaptic connections, a prominent feature in animal nervous systems for the rapid exchange and integration of neuronal information, can appear quite suddenly during brain evolution, raising the question about the underlying developmental mechanism. Here, we show in the Drosophila olfactory system that the induction of a bilateral sensory map, an evolutionary novelty in dipteran flies, is mediated by a unique type of commissural pioneer interneurons (cPINs) via the localized activity of the cell adhesion molecule Neuroglian. Differential Neuroglian signaling in cPINs not only prepatterns the olfactory contralateral tracts but also prevents the targeting of ingrowing sensory axons to their ipsilateral synaptic partners. These results identified a sensitive cellular interaction to switch the sequential assembly of diverse neuron types from a unilateral to a bilateral brain circuit organization.
Collapse
Affiliation(s)
- Rashmit Kaur
- Department of Neurobiology, University of Vienna, Althanstrasse 14A, 1090 Vienna, Austria
| | - Michael Surala
- Department of Neurobiology, University of Vienna, Althanstrasse 14A, 1090 Vienna, Austria
| | - Sebastian Hoger
- Department of Neurobiology, University of Vienna, Althanstrasse 14A, 1090 Vienna, Austria
| | - Nicole Grössmann
- Ludwig Boltzmann Institute, Health Technology Assessment (LBI-HTA), Garnisongasse7/20, 1090 Vienna, Austria
- Department of Health Economics, Center for Public Health, Medical University of Vienna, Vienna, Austria
| | - Alexandra Grimm
- Department of Neurobiology, University of Vienna, Althanstrasse 14A, 1090 Vienna, Austria
| | - Lorin Timaeus
- Department of Neurobiology, University of Vienna, Althanstrasse 14A, 1090 Vienna, Austria
| | - Wolfgang Kallina
- Department of Neurobiology, University of Vienna, Althanstrasse 14A, 1090 Vienna, Austria
| | - Thomas Hummel
- Department of Neurobiology, University of Vienna, Althanstrasse 14A, 1090 Vienna, Austria
| |
Collapse
|
41
|
Random Walk Revisited: Quantification and Comparative Analysis of Drosophila Walking Trajectories. iScience 2019; 19:1145-1159. [PMID: 31541919 PMCID: PMC6831876 DOI: 10.1016/j.isci.2019.08.054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/18/2019] [Accepted: 08/27/2019] [Indexed: 12/12/2022] Open
Abstract
Walking trajectory is frequently measured to assess animal behavior. Air-supported spherical treadmills have been developed for real-time monitoring of animal walking trajectories. However, current systems for mice mainly employ computer mouse microcameras (chip-on-board sensors) to monitor ball motion, and these detectors exhibit technical issues with focus and rotation scale. In addition, computational methods to analyze and quantify the “random walk” of organisms are under-developed. In this work, we overcame the hurdle of frame-to-signal translation to develop a treadmill system with camera-based detection. Moreover, we generated a package of mathematical methods to quantify distinct aspects of Drosophila walking trajectories. By extracting and quantifying certain features of walking dynamics with high temporal resolution, we found that depending on their internal state, flies employ different walking strategies to approach environmental cues. This camera-based treadmill system and method package may also be applicable to monitor the walking trajectories of other diverse animal species. A camera-mode treadmill system was built to track Drosophila walking trajectories Four key features were identified to describe walking strategies Ball rotation is indispensable for full characterization of trajectories Fed and starved control flies show no obvious differences in their random walk
Collapse
|
42
|
Conchou L, Lucas P, Meslin C, Proffit M, Staudt M, Renou M. Insect Odorscapes: From Plant Volatiles to Natural Olfactory Scenes. Front Physiol 2019; 10:972. [PMID: 31427985 PMCID: PMC6688386 DOI: 10.3389/fphys.2019.00972] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 07/11/2019] [Indexed: 11/13/2022] Open
Abstract
Olfaction is an essential sensory modality for insects and their olfactory environment is mostly made up of plant-emitted volatiles. The terrestrial vegetation produces an amazing diversity of volatile compounds, which are then transported, mixed, and degraded in the atmosphere. Each insect species expresses a set of olfactory receptors that bind part of the volatile compounds present in its habitat. Insect odorscapes are thus defined as species-specific olfactory spaces, dependent on the local habitat, and dynamic in time. Manipulations of pest-insect odorscapes are a promising approach to answer the strong demand for pesticide-free plant-protection strategies. Moreover, understanding their olfactory environment becomes a major concern in the context of global change and environmental stresses to insect populations. A considerable amount of information is available on the identity of volatiles mediating biotic interactions that involve insects. However, in the large body of research devoted to understanding how insects use olfaction to locate resources, an integrative vision of the olfactory environment has rarely been reached. This article aims to better apprehend the nature of the insect odorscape and its importance to insect behavioral ecology by reviewing the literature specific to different disciplines from plant ecophysiology to insect neuroethology. First, we discuss the determinants of odorscape composition, from the production of volatiles by plants (section "Plant Metabolism and Volatile Emissions") to their filtering during detection by the olfactory system of insects (section "Insect Olfaction: How Volatile Plant Compounds Are Encoded and Integrated by the Olfactory System"). We then summarize the physical and chemical processes by which volatile chemicals distribute in space (section "Transportation of Volatile Plant Compounds and Spatial Aspects of the Odorscape") and time (section "Temporal Aspects: The Dynamics of the Odorscape") in the atmosphere. The following sections consider the ecological importance of background odors in odorscapes and how insects adapt to their olfactory environment. Habitat provides an odor background and a sensory context that modulate the responses of insects to pheromones and other olfactory signals (section "Ecological Importance of Odorscapes"). In addition, insects do not respond inflexibly to single elements in their odorscape but integrate several components of their environment (section "Plasticity and Adaptation to Complex and Variable Odorscapes"). We finally discuss existing methods of odorscape manipulation for sustainable pest insect control and potential future developments in the context of agroecology (section "Odorscapes in Plant Protection and Agroecology").
Collapse
Affiliation(s)
- Lucie Conchou
- INRA, Sorbonne Université, INRA, CNRS, UPEC, IRD, University P7, Institute of Ecology and Environmental Sciences of Paris, Paris, France
| | - Philippe Lucas
- INRA, Sorbonne Université, INRA, CNRS, UPEC, IRD, University P7, Institute of Ecology and Environmental Sciences of Paris, Paris, France
| | - Camille Meslin
- INRA, Sorbonne Université, INRA, CNRS, UPEC, IRD, University P7, Institute of Ecology and Environmental Sciences of Paris, Paris, France
| | - Magali Proffit
- CEFE, CNRS, EPHE, IRD, Université de Montpellier, Université Paul-Valéry Montpellier, Montpellier, France
| | - Michael Staudt
- CEFE, CNRS, EPHE, IRD, Université de Montpellier, Université Paul-Valéry Montpellier, Montpellier, France
| | - Michel Renou
- INRA, Sorbonne Université, INRA, CNRS, UPEC, IRD, University P7, Institute of Ecology and Environmental Sciences of Paris, Paris, France
| |
Collapse
|
43
|
Mohamed AAM, Hansson BS, Sachse S. Third-Order Neurons in the Lateral Horn Enhance Bilateral Contrast of Odor Inputs Through Contralateral Inhibition in Drosophila. Front Physiol 2019; 10:851. [PMID: 31354516 PMCID: PMC6629933 DOI: 10.3389/fphys.2019.00851] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 06/20/2019] [Indexed: 11/13/2022] Open
Abstract
The survival and reproduction of Drosophila melanogaster depends heavily on its ability to determine the location of an odor source and either to move toward or away from it. Despite the very small spatial separation between the two antennae and the redundancy in sensory neuron projection to both sides of the brain, Drosophila can resolve the concentration gradient by comparing the signal strength between the two antennae. When an odor stimulates the antennae asymmetrically, ipsilateral projection neurons from the first olfactory center are more strongly excited compared to the contralateral ones. However, it remains elusive how higher-order neurons process such asymmetric or lateralized odor inputs. Here, we monitored and analyzed for the first time the activity patterns of a small cluster of third-order neurons (so-called ventrolateral protocerebrum neurons) to asymmetric olfactory stimulation using two-photon calcium imaging. Our data demonstrate that lateralized odors evoke distinct activation of these neurons in the left and right brain hemisphere as a result of contralateral inhibition. Moreover, using laser transection experiments we show that this contralateral inhibition is mediated by presynaptic neurons most likely located in the lateral horn. Finally, we propose that this inhibitory interaction between higher-order neurons facilitates odor lateralization and plays a crucial role in olfactory navigation behavior of Drosophila, a theory that needs to be experimentally addressed in future studies.
Collapse
Affiliation(s)
| | | | - Silke Sachse
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
| |
Collapse
|
44
|
Batchelor AV, Wilson RI. Sound localization behavior in Drosophila melanogaster depends on inter-antenna vibration amplitude comparisons. ACTA ACUST UNITED AC 2019; 222:222/3/jeb191213. [PMID: 30733260 DOI: 10.1242/jeb.191213] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 11/20/2018] [Indexed: 12/25/2022]
Abstract
Drosophila melanogaster hear with their antennae: sound evokes vibration of the distal antennal segment, and this vibration is transduced by specialized mechanoreceptor cells. The left and right antennae vibrate preferentially in response to sounds arising from different azimuthal angles. Therefore, by comparing signals from the two antennae, it should be possible to obtain information about the azimuthal angle of a sound source. However, behavioral evidence of sound localization has not been reported in Drosophila Here, we show that walking D. melanogaster do indeed turn in response to lateralized sounds. We confirm that this behavior is evoked by vibrations of the distal antennal segment. The rule for turning is different for sounds arriving from different locations: flies turn toward sounds in their front hemifield, but they turn away from sounds in their rear hemifield, and they do not turn at all in response to sounds from 90 or -90 deg. All of these findings can be explained by a simple rule: the fly steers away from the antenna with the larger vibration amplitude. Finally, we show that these behaviors generalize to sound stimuli with diverse spectro-temporal features, and that these behaviors are found in both sexes. Our findings demonstrate the behavioral relevance of the antenna's directional tuning properties. They also pave the way for investigating the neural implementation of sound localization, as well as the potential roles of sound-guided steering in courtship and exploration.
Collapse
Affiliation(s)
- Alexandra V Batchelor
- Department of Neurobiology, Harvard Medical School, 220 Longwood Ave., Boston, MA 02115, USA
| | - Rachel I Wilson
- Department of Neurobiology, Harvard Medical School, 220 Longwood Ave., Boston, MA 02115, USA
| |
Collapse
|
45
|
Espinosa-Carrasco J, Erb I, Hermoso Pulido T, Ponomarenko J, Dierssen M, Notredame C. Pergola: Boosting Visualization and Analysis of Longitudinal Data by Unlocking Genomic Analysis Tools. iScience 2018; 9:244-257. [PMID: 30419504 PMCID: PMC6231116 DOI: 10.1016/j.isci.2018.10.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 09/12/2018] [Accepted: 10/22/2018] [Indexed: 01/27/2023] Open
Abstract
The growing appetite of behavioral neuroscience for automated data production is prompting the need for new computational standards allowing improved interoperability, reproducibility, and shareability. We show here how these issues can be solved by repurposing existing genomic formats whose structure perfectly supports the handling of time series. This allows existing genomic analysis and visualization tools to be deployed onto behavioral data. As a proof of principle, we implemented the conversion procedure in Pergola, an open source software, and used genomics tools to reproduce results obtained in mouse, fly, and worm. We also show how common genomics techniques such as principal component analysis, hidden Markov modeling, and volcano plots can be deployed on the reformatted behavioral data. These analyses are easy to share because they depend on the scripting of public software. They are also easy to reproduce thanks to their integration within Nextflow, a workflow manager using containerized software.
Collapse
Affiliation(s)
- Jose Espinosa-Carrasco
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain; Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, Barcelona 08028, Spain
| | - Ionas Erb
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | - Toni Hermoso Pulido
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | - Julia Ponomarenko
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Mara Dierssen
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Valencia, Spain.
| | - Cedric Notredame
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain.
| |
Collapse
|
46
|
Álvarez-Salvado E, Licata AM, Connor EG, McHugh MK, King BMN, Stavropoulos N, Victor JD, Crimaldi JP, Nagel KI. Elementary sensory-motor transformations underlying olfactory navigation in walking fruit-flies. eLife 2018; 7:e37815. [PMID: 30129438 PMCID: PMC6103744 DOI: 10.7554/elife.37815] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 07/16/2018] [Indexed: 12/25/2022] Open
Abstract
Odor attraction in walking Drosophila melanogaster is commonly used to relate neural function to behavior, but the algorithms underlying attraction are unclear. Here, we develop a high-throughput assay to measure olfactory behavior in response to well-controlled sensory stimuli. We show that odor evokes two behaviors: an upwind run during odor (ON response), and a local search at odor offset (OFF response). Wind orientation requires antennal mechanoreceptors, but search is driven solely by odor. Using dynamic odor stimuli, we measure the dependence of these two behaviors on odor intensity and history. Based on these data, we develop a navigation model that recapitulates the behavior of flies in our apparatus, and generates realistic trajectories when run in a turbulent boundary layer plume. The ability to parse olfactory navigation into quantifiable elementary sensori-motor transformations provides a foundation for dissecting neural circuits that govern olfactory behavior.
Collapse
Affiliation(s)
- Efrén Álvarez-Salvado
- Neuroscience InstituteNew York University Langone Medical CenterNew YorkUnited States
| | - Angela M Licata
- Neuroscience InstituteNew York University Langone Medical CenterNew YorkUnited States
| | - Erin G Connor
- Department of Civil, Environmental and Architectural EngineeringUniversity of Colorado BoulderBoulderUnited States
| | - Margaret K McHugh
- Department of Civil, Environmental and Architectural EngineeringUniversity of Colorado BoulderBoulderUnited States
| | - Benjamin MN King
- Neuroscience InstituteNew York University Langone Medical CenterNew YorkUnited States
| | - Nicholas Stavropoulos
- Neuroscience InstituteNew York University Langone Medical CenterNew YorkUnited States
| | - Jonathan D Victor
- Institute for Computational BiomedicineWeill Cornell Medical CollegeNew YorkUnited States
- Feil Family Brain and Mind Research InstituteWeill Cornell Medical CollegeNew YorkUnited States
| | - John P Crimaldi
- Department of Civil, Environmental and Architectural EngineeringUniversity of Colorado BoulderBoulderUnited States
| | - Katherine I Nagel
- Neuroscience InstituteNew York University Langone Medical CenterNew YorkUnited States
| |
Collapse
|
47
|
Grobman M, Dalal T, Lavian H, Shmuel R, Belelovsky K, Xu F, Korngreen A, Haddad R. A Mirror-Symmetric Excitatory Link Coordinates Odor Maps across Olfactory Bulbs and Enables Odor Perceptual Unity. Neuron 2018; 99:800-813.e6. [PMID: 30078580 DOI: 10.1016/j.neuron.2018.07.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 05/11/2018] [Accepted: 07/06/2018] [Indexed: 10/28/2022]
Abstract
Sensory input reaching the brain from bilateral and offset channels is nonetheless perceived as unified. This unity could be explained by simultaneous projections to both hemispheres, or inter-hemispheric information transfer between sensory cortical maps. Odor input, however, is not topographically organized, nor does it project bilaterally, making olfactory perceptual unity enigmatic. Here we report a circuit that interconnects mirror-symmetric isofunctional mitral/tufted cells between the mouse olfactory bulbs. Connected neurons respond to similar odors from ipsi- and contra-nostrils, whereas unconnected neurons do not respond to odors from the contralateral nostril. This connectivity is likely mediated through a one-to-one mapping from mitral/tufted neurons to the ipsilateral anterior olfactory nucleus pars externa, which activates the mirror-symmetric isofunctional mitral/tufted neurons glutamatergically. This circuit enables sharing of odor information across hemispheres in the absence of a cortical topographical organization, suggesting that olfactory glomerular maps are the equivalent of cortical sensory maps found in other senses.
Collapse
Affiliation(s)
- Mark Grobman
- The Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Tal Dalal
- The Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Hagar Lavian
- The Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Ronit Shmuel
- The Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Katya Belelovsky
- The Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Fuqiang Xu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Center for Excellence in Brain Science and Intelligent Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Alon Korngreen
- The Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan 5290002, Israel; The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Rafi Haddad
- The Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan 5290002, Israel.
| |
Collapse
|
48
|
High Precision of Spike Timing across Olfactory Receptor Neurons Allows Rapid Odor Coding in Drosophila. iScience 2018; 4:76-83. [PMID: 30240755 PMCID: PMC6147046 DOI: 10.1016/j.isci.2018.05.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 04/19/2018] [Accepted: 05/14/2018] [Indexed: 01/10/2023] Open
Abstract
In recent years, it has become evident that olfaction is a fast sense, and millisecond short differences in stimulus onsets are used by animals to analyze their olfactory environment. In contrast, olfactory receptor neurons are thought to be relatively slow and temporally imprecise. These observations have led to a conundrum: how, then, can an animal resolve fast stimulus dynamics and smell with high temporal acuity? Using parallel recordings from olfactory receptor neurons in Drosophila, we found hitherto unknown fast and temporally precise odorant-evoked spike responses, with first spike latencies (relative to odorant arrival) down to 3 ms and with a SD below 1 ms. These data provide new upper bounds for the speed of olfactory processing and suggest that the insect olfactory system could use the precise spike timing for olfactory coding and computation, which can explain insects' rapid processing of temporal stimuli when encountering turbulent odor plumes. Olfactory receptor neuron responses are fast and temporally precise Odor-evoked spikes can occur 3 ms after odorant arrival and jitter less than 1 ms First-spike timing varies over a wider concentration range than spike rate Neural network model demonstrates the plausibility of a spike-timing code for odors
Collapse
|
49
|
Benelli G. Mating behavior of the West Nile virus vector Culex pipiens - role of behavioral asymmetries. Acta Trop 2018; 179:88-95. [PMID: 29288628 DOI: 10.1016/j.actatropica.2017.12.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 12/11/2017] [Accepted: 12/23/2017] [Indexed: 10/18/2022]
Abstract
Culex pipiens is a vector of West Nile, Rift Valley fever, Japanese encephalitis and Usutu viruses. In agreement with the criteria of Integrated Vector Management, several research efforts have been devoted to develop behavior-based control tools to fight mosquito vectors. However, our knowledge of mosquito mating biology and sexual communication is still patchy. Despite the high relevance of C. pipiens as a vector of medical and veterinary importance, no studies on its mating behavior and the factors routing mating success have been conducted. In this study, I quantified the mating behavior of an Italian strain of C. pipiens, evaluating the male mating success and its potential connections with population-level lateralized traits occurring during the mating sequence. Mean copula duration exceeded 100 s. Courting males can be straightly accepted by the female after the first genital contact (38.95%), as well as after some rejection kicks performed by females with hind legs (17.89%). No copula duration differences were detected between these two cases. The overall male mating success in laboratory conditions was 56.84%. The females performing rejection kicks preferentially used right hind legs at population-level. This was confirmed over four subsequent testing phases. The number of kicks per rejection event and the rejection success were higher when right legs are used over left ones, showing a functional advantage linked with the employ of right legs. Overall, the present study represents the first quantification of the courtship and mating behavior of C. pipiens. Data on male mating success and the role population-level lateralized mating traits provides basic biological knowledge that can be helpful to optimize autocidal and behavior-based control tools.
Collapse
|
50
|
Spatial Receptive Fields for Odor Localization. Curr Biol 2018; 28:600-608.e3. [PMID: 29429617 DOI: 10.1016/j.cub.2017.12.055] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 12/14/2017] [Accepted: 12/28/2017] [Indexed: 11/20/2022]
Abstract
Animals rely on olfaction to navigate through complex olfactory landscapes, but the mechanisms that allow an animal to encode the spatial structure of an odorous environment remain unclear. To acquire information about the spatial distribution of an odorant, animals may rely on bilateral olfactory organs and compare side differences of odor intensity and timing [1-6] or may perform spatial and temporal signal integration of subsequent samplings [7]. The American cockroach can efficiently locate a source of sex pheromone even after the removal of one antenna, suggesting that bilateral comparison is not a prerequisite for odor localization in this species [8, 9]. Cognate olfactory sensory neurons (OSNs) originating from different locations on the flagellum, but bearing the same olfactory receptor, converge onto the same glomerulus within the antennal lobe, which is thought to result in a loss of spatial information. Here, we identified 12 types of pheromone-responsive projection neurons (PNs), each with spatially tuned receptive field. The combination of (1) the antennotopic organization of OSNs terminals and (2) the stereotyped compartmentalization of PNs' dendritic arborization within the macroglomerulus (MG), allows encoding the spatial position of the pheromone. Furthermore, each PN type innervates a different compartment of the mushroom body, providing the means for encoding spatial olfactory information along the olfactory circuit. Finally, MG PNs exhibit both excitatory and inhibitory spatial receptive fields and modulate their responses based on changes in stimulus geometry. In conclusion, we propose a mechanism for encoding information on the spatial distribution of a pheromone, expanding both our understanding of odor coding and of the strategies insects adopt to localize a sexual mate.
Collapse
|