1
|
Mikesell AR, Isaeva E, Schulte ML, Menzel AD, Sriram A, Prahl MM, Shin SM, Sadler KE, Yu H, Stucky CL. Increased keratinocyte activity and PIEZO1 signaling contribute to paclitaxel-induced mechanical hypersensitivity. Sci Transl Med 2024; 16:eadn5629. [PMID: 39661703 DOI: 10.1126/scitranslmed.adn5629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 11/18/2024] [Indexed: 12/13/2024]
Abstract
Recent work demonstrates that epidermal keratinocytes are critical for normal touch sensation. However, it is unknown whether keratinocytes contribute to touch-evoked pain and hypersensitivity after tissue injury. Here, we used a mouse model of paclitaxel treatment to determine the extent to which keratinocyte activity contributes to the severe neuropathic pain that accompanies chemotherapy. We found that keratinocyte inhibition by either optogenetic or chemogenetic methods largely alleviated paclitaxel-induced mechanical hypersensitivity across acute and persistent time points from 2 days through 3 weeks. Furthermore, we found that paclitaxel exposure sensitized mouse and human keratinocytes to mechanical stimulation and enhanced currents of PIEZO1, a mechanosensitive channel highly expressed in keratinocytes. Deletion of PIEZO1 from keratinocytes alleviated paclitaxel-induced mechanical hypersensitivity in mice. These findings suggest that nonneuronal cutaneous cells contribute substantially to neuropathic pain and pave the way for the development of new pain relief strategies that target epidermal keratinocytes and PIEZO1.
Collapse
Affiliation(s)
- Alexander R Mikesell
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Elena Isaeva
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | | - Anthony D Menzel
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Anvitha Sriram
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Megan M Prahl
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Seung Min Shin
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Katelyn E Sadler
- Department of Neuroscience, Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Hongwei Yu
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Cheryl L Stucky
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
2
|
Yacoub I, Rayn K, Choi JI, Bakst R, Chhabra A, Qian JY, Johnstone P, Simone CB. The Role of Radiation, Immunotherapy, and Chemotherapy in the Management of Locally Advanced or Metastatic Cutaneous Malignancies. Cancers (Basel) 2024; 16:3920. [PMID: 39682109 DOI: 10.3390/cancers16233920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/31/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
INTRODUCTION Skin cancer impacts a significant proportion of the population. While surgical management is often the mainstay of treatment, advanced or metastatic cutaneous malignancies require additional local and/or systemic therapies. METHODS A review of the literature was performed studying the use of radiation therapy, chemotherapy, and immunotherapy for locally advanced or metastatic cutaneous malignancies. RESULTS A summary of the present literature on the management of locally advanced or metastatic cutaneous malignancies is presented across cutaneous head and neck basal cell carcinoma, squamous cell carcinoma, melanoma, and Merkel cell carcinoma. The addition of multidisciplinary therapies to resection is often associated with improved outcomes. CONCLUSION The management of cutaneous head and neck malignancies requires an approach integrating multiple specialties, to optimize outcomes and minimize toxicities.
Collapse
Affiliation(s)
| | - Kareem Rayn
- Department of Radiation Oncology, Moffitt Cancer Center, Tampa, FL 33612, USA
| | - J Isabelle Choi
- New York Proton Center, New York, NY 10035, USA
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Richard Bakst
- New York Proton Center, New York, NY 10035, USA
- Department of Radiation Oncology, Mount Sinai Medical Center, New York, NY 10029, USA
| | - Arpit Chhabra
- New York Proton Center, New York, NY 10035, USA
- Department of Radiation Oncology, Mount Sinai Medical Center, New York, NY 10029, USA
| | - Joshua Y Qian
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Peter Johnstone
- Department of Radiation Oncology, Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Charles B Simone
- New York Proton Center, New York, NY 10035, USA
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
3
|
La Rosa VL, Geraci A, Iacono A, Commodari E. Affective Touch in Preterm Infant Development: Neurobiological Mechanisms and Implications for Child-Caregiver Attachment and Neonatal Care. CHILDREN (BASEL, SWITZERLAND) 2024; 11:1407. [PMID: 39594981 PMCID: PMC11592606 DOI: 10.3390/children11111407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/11/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024]
Abstract
BACKGROUND/OBJECTIVES Affective touch is crucial in infant development, particularly in regulating emotional, cognitive, and physiological processes. Preterm infants are often deprived of essential tactile stimulation owing to their early exposure to the external environment, which may affect long-term developmental outcomes. This review aimed to examine the neurobiological mechanisms of affective touch and highlight effective interventions, such as skin-to-skin contact (SSC) and kangaroo care (KC), to promote development in preterm infants. METHODS This review summarizes recent studies in the literature on affective touch, the role of C-tactile fibers, and the effects of tactile interventions in neonatal care. Studies were selected based on their relevance to the care and development of preterm infants, with a focus on physiological and neurodevelopmental outcomes. Key interventions, including SSC and massage therapy, are discussed in relation to their effectiveness in the neonatal intensive care unit (NICU). RESULTS The results suggest that affective touch, mainly through activation of tactile C-fibers, improves caregiver-infant bonding, reduces stress responses, and supports neurodevelopment in preterm infants. Interventions such as SSC and KC have also been shown to improve physiological regulation in these infants, including heart rate, breathing, and temperature control while promoting emotional regulation and cognitive development. CONCLUSIONS Affective touch is a key component of early development, particularly in preterm infants admitted to the NICU. Integrating tactile interventions such as SSC and KC into neonatal care practices may significantly improve long-term developmental outcomes. Future research should explore the epigenetic mechanisms underlying affective touch and further refine tactile interventions to optimize neonatal care.
Collapse
Affiliation(s)
- Valentina Lucia La Rosa
- Department of Educational Sciences, University of Catania, 95124 Catania, Italy; (A.G.); (A.I.); (E.C.)
| | | | | | | |
Collapse
|
4
|
Yamada A, Gautam M, Yamada AI, Ling J, Gupta S, Furue H, Luo W, Gu JG. Acid-Sensing Ion Channels Drive the Generation of Tactile Impulses in Merkel Cell-Neurite Complexes of the Glabrous Skin of Rodent Hindpaws. J Neurosci 2024; 44:e0885242024. [PMID: 39379156 PMCID: PMC11580779 DOI: 10.1523/jneurosci.0885-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/03/2024] [Accepted: 09/27/2024] [Indexed: 10/10/2024] Open
Abstract
Merkel cell-neurite complexes (MNCs) are enriched in touch-sensitive areas, including whisker hair follicles and the glabrous skin of the rodent's paws, where tactile stimulation elicits slowly adapting type 1 (SA1) tactile impulses to encode for the sense of touch. Recently, we have shown with rodent whisker hair follicles that SA1 impulses are generated through fast excitatory synaptic transmission at MNCs and driven by acid-sensing ion channels (ASICs). However, it is currently unknown whether, besides whisker hair follicles, ASICs also play an essential role in generating SA1 impulses from MNCs of other body parts in mammals. In the present study, we attempted to address this question by using the skin-nerve preparations made from the hindpaw glabrous skin and tibial nerves of both male and female rodents and applying the pressure-clamped single-fiber recordings. We showed that SA1 impulses elicited by tactile stimulation to the rat hindpaw glabrous skin were largely diminished in the presence of amiloride and diminazene, two ASIC channel blockers. Furthermore, using the hindpaw glabrous skin and tibial nerve preparations made from the mice genetically deleted of ASIC3 channels (ASIC3-/-), we showed that the frequency of SA1 impulses was significantly lower in ASIC3-/- mice than in littermate wild-type ASIC3+/+ mice, a result consistent with the pharmacological experiments with ASIC channel blockers. Our findings suggest that ASIC channels are essential for generating SA1 impulses to underlie the sense of touch in the glabrous skin of rodent hindpaws.
Collapse
Affiliation(s)
- Akihiro Yamada
- Departments of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Mayank Gautam
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 19104
| | - Ayaka I Yamada
- Departments of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Jennifer Ling
- Departments of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Saurav Gupta
- Departments of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Hidemasa Furue
- Department of Neurophysiology, Hyogo Medical University, Nishinomiya 663-8501, Japan
| | - Wenqin Luo
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 19104
| | - Jianguo G Gu
- Departments of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294
- Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama 35294
| |
Collapse
|
5
|
Yang K, Li B, Ma Z, Xu J, Wang D, Zeng Z, Ho D. Ion-Selective Mobility Differential Amplifier: Enhancing Pressure-Induced Voltage Response in Hydrogels. Angew Chem Int Ed Engl 2024:e202415000. [PMID: 39545315 DOI: 10.1002/anie.202415000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 11/14/2024] [Accepted: 11/14/2024] [Indexed: 11/17/2024]
Abstract
Piezoionics is an emerging mechanical-electrical energy conversion paradigm that enables self-powered sensing systems for next-generation intelligent wearable electronics. However, there are currently no rational design approaches to enhance the stimulus response of piezoionic devices. Here, we present a strategy using crown ether as ion-selective mobility differential amplifiers for enhancing the pressure-induced voltage response in ionic polyvinyl alcohol (PVA) hydrogels. The crown ether grafted PVA (PVA-CE) hydrogel prototype achieves a 30-fold amplified piezoionic coefficient of 1490 nV Pa-1 within 0-1 kPa, compared to 49 nV Pa-1 of the unmodified PVA. The PVA-CE exhibits an ultra-low pressure detection limit of 0.2 Pa with a fast response time of 18.1 ms. Leveraging these properties, we further demonstrate arrayed pressure sensing with a PVA-CE piezoionic skin, analogous to the human somatosensory network. These capabilities hold great promises for emerging healthcare applications such as synthetic biology, soft robotics, and beyond.
Collapse
Affiliation(s)
- Kai Yang
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
- Hong Kong Centre for Cerebro-cardiovascular Health Engineering, Hong Kong Science Park, Hong Kong, 999077, China
| | - Bolong Li
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
- Hong Kong Centre for Cerebro-cardiovascular Health Engineering, Hong Kong Science Park, Hong Kong, 999077, China
| | - Zhihao Ma
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
- Hong Kong Centre for Cerebro-cardiovascular Health Engineering, Hong Kong Science Park, Hong Kong, 999077, China
| | - Jiangang Xu
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
- Hong Kong Centre for Cerebro-cardiovascular Health Engineering, Hong Kong Science Park, Hong Kong, 999077, China
| | - Dong Wang
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
- Hong Kong Centre for Cerebro-cardiovascular Health Engineering, Hong Kong Science Park, Hong Kong, 999077, China
| | - Zhiheng Zeng
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
- Hong Kong Centre for Cerebro-cardiovascular Health Engineering, Hong Kong Science Park, Hong Kong, 999077, China
| | - Derek Ho
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
- Hong Kong Centre for Cerebro-cardiovascular Health Engineering, Hong Kong Science Park, Hong Kong, 999077, China
| |
Collapse
|
6
|
Zhong S, Su L, Xu M, Loke D, Yu B, Zhang Y, Zhao R. Recent Advances in Artificial Sensory Neurons: Biological Fundamentals, Devices, Applications, and Challenges. NANO-MICRO LETTERS 2024; 17:61. [PMID: 39537845 PMCID: PMC11561216 DOI: 10.1007/s40820-024-01550-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/28/2024] [Indexed: 11/16/2024]
Abstract
Spike-based neural networks, which use spikes or action potentials to represent information, have gained a lot of attention because of their high energy efficiency and low power consumption. To fully leverage its advantages, converting the external analog signals to spikes is an essential prerequisite. Conventional approaches including analog-to-digital converters or ring oscillators, and sensors suffer from high power and area costs. Recent efforts are devoted to constructing artificial sensory neurons based on emerging devices inspired by the biological sensory system. They can simultaneously perform sensing and spike conversion, overcoming the deficiencies of traditional sensory systems. This review summarizes and benchmarks the recent progress of artificial sensory neurons. It starts with the presentation of various mechanisms of biological signal transduction, followed by the systematic introduction of the emerging devices employed for artificial sensory neurons. Furthermore, the implementations with different perceptual capabilities are briefly outlined and the key metrics and potential applications are also provided. Finally, we highlight the challenges and perspectives for the future development of artificial sensory neurons.
Collapse
Affiliation(s)
- Shuai Zhong
- Guangdong Institute of Intelligence Science and Technology, Hengqin, Zhuhai, 519031, People's Republic of China.
| | - Lirou Su
- Guangdong Institute of Intelligence Science and Technology, Hengqin, Zhuhai, 519031, People's Republic of China
| | - Mingkun Xu
- Guangdong Institute of Intelligence Science and Technology, Hengqin, Zhuhai, 519031, People's Republic of China
| | - Desmond Loke
- Department of Science, Mathematics and Technology, Singapore University of Technology and Design, Singapore, 487372, Singapore
| | - Bin Yu
- College of Integrated Circuits, Zhejiang University, Hangzhou, 3112000, People's Republic of China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 310027, People's Republic of China
| | - Yishu Zhang
- College of Integrated Circuits, Zhejiang University, Hangzhou, 3112000, People's Republic of China.
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 310027, People's Republic of China.
| | - Rong Zhao
- Department of Precision Instruments, Tsinghua University, Beijing, 100084, People's Republic of China
- Center for Brain-Inspired Computing Research, Tsinghua University, Beijing, 100084, People's Republic of China
- IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, 100084, People's Republic of China
| |
Collapse
|
7
|
Korgan AC, Prendergast K, Rosenhauer AM, Morrison KE, Jovanovic T, Bale TL. Trauma and sensory systems: Biological mechanisms involving the skin and the 17q21 gene cluster. Biol Psychiatry 2024:S0006-3223(24)01737-2. [PMID: 39521032 DOI: 10.1016/j.biopsych.2024.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 08/30/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
Childhood trauma experience increases risk for neuropsychiatric and neurodevelopmental disorders, including posttraumatic stress disorder (PTSD), autism spectrum disorders (ASDs), and attention deficit/hyperactivity disorder (ADHD). While the biological mechanisms connecting adverse experiences with later disease presentation are not clear, the concept of Gene x Environment x Development (GxExD) interactions has significant implications for improving our understanding of these diseases. We recently utilized this approach in a study where we found that women exposed to interpersonal violence trauma (the E) uniquely during adolescence (the D), but not childhood or adulthood, had novel protein biomarkers (the G) associated with a sensory cell system in the skin, Merkel cells. Merkel cell mechanosensory signaling is important in gentle and social touch, inflammation-induced pain, and the skin's neuroendocrine stress response. Further, keratinocyte-derived Merkel cell final maturation occurs during the identified vulnerable period of adolescence. Interestingly, many of the genes identified in our study belong to a known 17q21 gene cluster, suggesting an identifiable location in the genome permanently altered by adolescent trauma. These results form a potential functional link between mechanosensory Merkel cells and the pathology and sensory symptomatology in PTSD. Future research directions could identify specific mechanisms involved in tactile alterations following trauma in hopes of revealing additional biomarkers and potentially leading to novel tactile-involved therapies (e.g., massage, electroacupuncture, or focused ultrasound).
Collapse
Affiliation(s)
- Austin C Korgan
- Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Kathryn Prendergast
- Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Anna M Rosenhauer
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University, Detroit, MI
| | | | - Tanja Jovanovic
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University, Detroit, MI
| | - Tracy L Bale
- Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, CO.
| |
Collapse
|
8
|
Xiao B. Mechanisms of mechanotransduction and physiological roles of PIEZO channels. Nat Rev Mol Cell Biol 2024; 25:886-903. [PMID: 39251883 DOI: 10.1038/s41580-024-00773-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2024] [Indexed: 09/11/2024]
Abstract
Mechanical force is an essential physical element that contributes to the formation and function of life. The discovery of the evolutionarily conserved PIEZO family, including PIEZO1 and PIEZO2 in mammals, as bona fide mechanically activated cation channels has transformed our understanding of how mechanical forces are sensed and transduced into biological activities. In this Review, I discuss recent structure-function studies that have illustrated how PIEZO1 and PIEZO2 adopt their unique structural design and curvature-based gating dynamics, enabling their function as dedicated mechanotransduction channels with high mechanosensitivity and selective cation conductivity. I also discuss our current understanding of the physiological and pathophysiological roles mediated by PIEZO channels, including PIEZO1-dependent regulation of development and functional homeostasis and PIEZO2-dominated mechanosensation of touch, tactile pain, proprioception and interoception of mechanical states of internal organs. Despite the remarkable progress in PIEZO research, this Review also highlights outstanding questions in the field.
Collapse
Affiliation(s)
- Bailong Xiao
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China.
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China.
- Beijing Frontier Research Center of Biological Structure, Tsinghua University, Beijing, China.
- IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China.
- State Key Laboratory of Membrane Biology, Tsinghua University, Beijing, China.
| |
Collapse
|
9
|
Xu Y, Wang Y, Yang Y, Fang X, Wu L, Hu J, Li J, Mei S. Piezo1: the key regulators in central nervous system diseases. Front Cell Neurosci 2024; 18:1441806. [PMID: 39539343 PMCID: PMC11557416 DOI: 10.3389/fncel.2024.1441806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024] Open
Abstract
The occurrence and development of central nervous system (CNS) diseases is a multi-factor and multi-gene pathological process, and their diagnosis and treatment have always posed a serious challenge in the medical field. Therefore, exploring the relevant factors in the pathogenesis of CNS and improving the diagnosis and treatment rates has become an urgent problem. Piezo1 is a recently discovered mechanosensitive ion channel that opens in response to mechanical stimuli. A number of previous studies have shown that the Piezo channel family plays a crucial role in CNS physiology and pathology, especially in diseases related to CNS development and mechanical stimulation. This article comprehensively describes the biological properties of Piezo1, focuses on the potential association between Piezo1 and CNS disorders, and explores the pharmacological roles of Piezo1 agonists and inhibitors in treating CNS disorders.
Collapse
Affiliation(s)
- Yi Xu
- The Second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yuheng Wang
- The Second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yanling Yang
- The Second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Xiaowei Fang
- Department of Emergency Medicine, The Second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Lidong Wu
- Department of Emergency Medicine, The Second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Jialing Hu
- Department of Emergency Medicine, The Second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Jin Li
- Department of Emergency Medicine, The Second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Shuchong Mei
- Department of Emergency Medicine, The Second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, China
| |
Collapse
|
10
|
Karanth S, Wiesenfarth M, Benthin J, Koehler M. Fava Bean Protein Nanofibrils Modulate Cell Membrane Interfaces for Biomolecular Interactions as Unveiled by Atomic Force Microscopy. Foods 2024; 13:3411. [PMID: 39517195 PMCID: PMC11545818 DOI: 10.3390/foods13213411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/15/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Functional amyloids (protein nanofibrils, PNF) synthesized from plant sources exhibit unique physicochemical and nanomechanical properties that could improve food texture. While environmental factors affecting PNFs are well-known, scientific evidence on how cells (focus on the oral cavity) respond to them under physiological conditions is lacking. Self-assembled PNFs synthesized from fava bean whole protein isolate show a strong pH- and solvent-dependent morphology and elasticity modification measured by atomic force microscopy (AFM). After incubation of PNFs with an oral mechanosensitive model cell line at pH 7.3, difference in cell-surface roughness without significant changes in the overall cell elasticity were measured. The role of cell membrane composition on supported lipid bilayers was also tested, showing an increase in membrane elasticity with increasing fibril concentration and the possible impact of annular phospholipids in binding. Genetic responses of membrane proteins involved in texture and fat perception were detected at the mRNA level by RT-qPCR assay and both mechano- and chemosensing proteins displayed responses highlighting an interface dependent interaction. The outcomes of this study provide a basis for understanding the changing physicochemical properties of PNFs and their effect on flavor perception by altering mouthfeel and fat properties. This knowledge is important in the development of plant-based texture enhancers for sensory-appealing foods that require consumer acceptance and further promote healthy diets.
Collapse
Affiliation(s)
- Sanjai Karanth
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Lise-Meitner-Str. 34, 85354 Freising, Germany; (S.K.); (M.W.); (J.B.)
| | - Marina Wiesenfarth
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Lise-Meitner-Str. 34, 85354 Freising, Germany; (S.K.); (M.W.); (J.B.)
- TUM Graduate School, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Alte Akademie 8, 85354 Freising, Germany
| | - Julia Benthin
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Lise-Meitner-Str. 34, 85354 Freising, Germany; (S.K.); (M.W.); (J.B.)
- TUM Graduate School, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Alte Akademie 8, 85354 Freising, Germany
| | - Melanie Koehler
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Lise-Meitner-Str. 34, 85354 Freising, Germany; (S.K.); (M.W.); (J.B.)
- Chair of Nutritional Systems Biology, TUM Junior Fellow, School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| |
Collapse
|
11
|
Turecek J, Ginty DD. Coding of self and environment by Pacinian neurons in freely moving animals. Neuron 2024; 112:3267-3277.e6. [PMID: 39116877 PMCID: PMC11466703 DOI: 10.1016/j.neuron.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 06/11/2024] [Accepted: 07/12/2024] [Indexed: 08/10/2024]
Abstract
Pacinian corpuscle neurons are specialized low-threshold mechanoreceptors (LTMRs) that are tuned to detect high-frequency vibration (∼50-2,000 Hz); however, it is unclear how Pacinians and other LTMRs encode mechanical forces encountered during naturalistic behavior. Here, we developed methods to record LTMRs in awake, freely moving mice. We find that Pacinians, but not other LTMRs, encode subtle vibrations of surfaces encountered by the animal, including low-amplitude vibrations initiated over 2 m away. Strikingly, Pacinians are also highly active during a wide variety of natural behaviors, including walking, grooming, digging, and climbing. Pacinians in the hindlimb are sensitive enough to be activated by forelimb- or upper-body-dominant behaviors. Finally, we find that Pacinian LTMRs have diverse tuning and sensitivity. Our findings suggest a Pacinian population code for the representation of vibro-tactile features generated by self-initiated movements and low-amplitude environmental vibrations emanating from distant locations.
Collapse
Affiliation(s)
- Josef Turecek
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA.
| | - David D Ginty
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
12
|
Sánchez-Carranza O, Chakrabarti S, Kühnemund J, Schwaller F, Bégay V, García-Contreras JA, Wang L, Lewin GR. Piezo2 voltage-block regulates mechanical pain sensitivity. Brain 2024; 147:3487-3500. [PMID: 38984717 PMCID: PMC11449130 DOI: 10.1093/brain/awae227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/19/2024] [Accepted: 06/13/2024] [Indexed: 07/11/2024] Open
Abstract
PIEZO2 is a trimeric mechanically-gated ion channel expressed by most sensory neurons in the dorsal root ganglia. Mechanosensitive PIEZO2 channels are also genetically required for normal touch sensation in both mice and humans. We previously showed that PIEZO2 channels are also strongly modulated by membrane voltage. Specifically, it is only at very positive voltages that all channels are available for opening by mechanical force. Conversely, most PIEZO2 channels are blocked at normal negative resting membrane potentials. The physiological function of this unusual biophysical property of PIEZO2 channels, however, remained unknown. We characterized the biophysical properties of three PIEZO2 ion channel mutations at an evolutionarily conserved arginine (R2756). Using genome engineering in mice we generated Piezo2R2756H/R2756H and Piezo2R2756K/R2756K knock-in mice to characterize the physiological consequences of altering PIEZO2 voltage sensitivity in vivo. We measured endogenous mechanosensitive currents in sensory neurons isolated from the dorsal root ganglia and characterized mechanoreceptor and nociceptor function using electrophysiology. Mice were also assessed behaviourally and morphologically. Mutations at the conserved Arginine (R2756) dramatically changed the biophysical properties of the channel relieving voltage block and lowering mechanical thresholds for channel activation. Piezo2R2756H/R2756H and Piezo2R2756K/R2756K knock-in mice that were homozygous for gain-of-function mutations were viable and were tested for sensory changes. Surprisingly, mechanosensitive currents in nociceptors, neurons that detect noxious mechanical stimuli, were substantially sensitized in Piezo2 knock-in mice, but mechanosensitive currents in most mechanoreceptors that underlie touch sensation were only mildly affected by the same mutations. Single-unit electrophysiological recordings from sensory neurons innervating the glabrous skin revealed that rapidly-adapting mechanoreceptors that innervate Meissner's corpuscles exhibited slightly decreased mechanical thresholds in Piezo2 knock-in mice. Consistent with measurements of mechanically activated currents in isolated sensory neurons essentially all cutaneous nociceptors, both fast conducting Aδ-mechanonociceptors and unmyelinated C-fibre nociceptors were substantially more sensitive to mechanical stimuli and indeed acquired receptor properties similar to ultrasensitive touch receptors in Piezo2 knock-in mice. Mechanical stimuli also induced enhanced ongoing activity in cutaneous nociceptors in Piezo2 knock-in mice and hyper-sensitive PIEZO2 channels were sufficient alone to drive ongoing activity, even in isolated nociceptive neurons. Consistently, Piezo2 knock-in mice showed substantial behavioural hypersensitivity to noxious mechanical stimuli. Our data indicate that ongoing activity and sensitization of nociceptors, phenomena commonly found in human chronic pain syndromes, can be driven by relieving the voltage-block of PIEZO2 ion channels. Indeed, membrane depolarization caused by multiple noxious stimuli may sensitize nociceptors by relieving voltage-block of PIEZO2 channels.
Collapse
Affiliation(s)
- Oscar Sánchez-Carranza
- Molecular Physiology of Somatic Sensation Laboratory, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin 10409, Germany
| | - Sampurna Chakrabarti
- Molecular Physiology of Somatic Sensation Laboratory, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin 10409, Germany
| | - Johannes Kühnemund
- Molecular Physiology of Somatic Sensation Laboratory, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin 10409, Germany
| | - Fred Schwaller
- Molecular Physiology of Somatic Sensation Laboratory, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin 10409, Germany
| | - Valérie Bégay
- Molecular Physiology of Somatic Sensation Laboratory, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin 10409, Germany
| | - Jonathan Alexis García-Contreras
- Molecular Physiology of Somatic Sensation Laboratory, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin 10409, Germany
| | - Lin Wang
- Molecular Physiology of Somatic Sensation Laboratory, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin 10409, Germany
| | - Gary R Lewin
- Molecular Physiology of Somatic Sensation Laboratory, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin 10409, Germany
- Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
- German Center for Mental Health (DZPG), partner site Berlin, 10117 Berlin, Germany
| |
Collapse
|
13
|
Nagase T, Nagase M. Piezo ion channels: long-sought-after mechanosensors mediating hypertension and hypertensive nephropathy. Hypertens Res 2024; 47:2786-2799. [PMID: 39103520 DOI: 10.1038/s41440-024-01820-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/03/2024] [Accepted: 07/07/2024] [Indexed: 08/07/2024]
Abstract
Recent advances in mechanobiology and the discovery of mechanosensitive ion channels have opened a new era of research on hypertension and related diseases. Piezo1 and Piezo2, first reported in 2010, are regarded as bona fide mechanochannels that mediate various biological and pathophysiological phenomena in multiple tissues and organs. For example, Piezo channels have pivotal roles in blood pressure control, triggering shear stress-induced nitric oxide synthesis and vasodilation, regulating baroreflex in the carotid sinus and aorta, and releasing renin from renal juxtaglomerular cells. Herein, we provide an overview of recent literature on the roles of Piezo channels in the pathogenesis of hypertension and related kidney damage, including our experimental data on the involvement of Piezo1 in podocyte injury and that of Piezo2 in renin expression and renal fibrosis in animal models of hypertensive nephropathy. The mechanosensitive ion channels Piezo1 and Piezo2 play various roles in the pathogenesis of systemic hypertension by acting on vascular endothelial cells, baroreceptors in the carotid artery and aorta, and the juxtaglomerular apparatus. Piezo channels also contribute to hypertensive nephropathy by acting on mesangial cells, podocytes, and perivascular mesenchymal cells.
Collapse
Affiliation(s)
- Takashi Nagase
- Kunitachi Aoyagien Tachikawa Geriatric Health Services Facility, Tokyo, Japan
| | - Miki Nagase
- Department of Anatomy, Kyorin University School of Medicine, Tokyo, Japan.
| |
Collapse
|
14
|
Lewis AH, Cronin ME, Grandl J. Piezo1 ion channels are capable of conformational signaling. Neuron 2024; 112:3161-3175.e5. [PMID: 39043183 PMCID: PMC11427155 DOI: 10.1016/j.neuron.2024.06.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 05/28/2024] [Accepted: 06/25/2024] [Indexed: 07/25/2024]
Abstract
Piezo1 is a mechanically activated ion channel that senses forces with short latency and high sensitivity. Piezos undergo large conformational changes, induce far-reaching deformation onto the membrane, and modulate the function of two-pore potassium (K2P) channels. Taken together, this led us to hypothesize that Piezos may be able to signal their conformational state to other nearby proteins. Here, we use chemical control to acutely restrict Piezo1 conformational flexibility and show that Piezo1 conformational changes, but not ion permeation through them, are required for modulating the K2P channel K2P2.1 (TREK1). Super-resolution imaging and stochastic simulations further reveal that both channels do not co-localize, which implies that modulation is not mediated through direct binding interactions; however, at high Piezo1 densities, most TREK1 channels are within the predicted Piezo1 membrane footprint, suggesting that the footprint may underlie conformational signaling. We speculate that physiological roles originally attributed to Piezo1 ionotropic function could, alternatively, involve conformational signaling.
Collapse
Affiliation(s)
- Amanda H Lewis
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Marie E Cronin
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Jörg Grandl
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
15
|
Zhang L, Nagel M, Olson WP, Chesler AT, O'Connor DH. Trigeminal innervation and tactile responses in mouse tongue. Cell Rep 2024; 43:114665. [PMID: 39215998 PMCID: PMC11500437 DOI: 10.1016/j.celrep.2024.114665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 06/03/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024] Open
Abstract
The neural basis of tongue mechanosensation remains largely mysterious despite the tongue's high tactile acuity, sensitivity, and relevance to ethologically important functions. We studied terminal morphologies and tactile responses of lingual afferents from the trigeminal ganglion. Fungiform papillae, the taste-bud-holding structures in the tongue, were convergently innervated by multiple Piezo2+ trigeminal afferents, whereas single trigeminal afferents branched into multiple adjacent filiform papillae. In vivo single-unit recordings from the trigeminal ganglion revealed lingual low-threshold mechanoreceptors (LTMRs) with distinct tactile properties ranging from intermediately adapting (IA) to rapidly adapting (RA). The receptive fields of these LTMRs were mostly less than 0.1 mm2 and concentrated at the tip of the tongue, resembling the distribution of fungiform papillae. Our results indicate that fungiform papillae are mechanosensory structures and suggest a simple model that links functional and anatomical properties of tactile sensory neurons in the tongue.
Collapse
Affiliation(s)
- Linghua Zhang
- Solomon H. Snyder Department of Neuroscience, Krieger Mind/Brain Institute, Kavli Neuroscience Discovery Institute, The Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA
| | - Maximilian Nagel
- Sensory Cells and Circuits Section, National Center for Complementary and Integrative Health, Bethesda, MD 20892, USA
| | - William P Olson
- Solomon H. Snyder Department of Neuroscience, Krieger Mind/Brain Institute, Kavli Neuroscience Discovery Institute, The Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA
| | - Alexander T Chesler
- Sensory Cells and Circuits Section, National Center for Complementary and Integrative Health, Bethesda, MD 20892, USA
| | - Daniel H O'Connor
- Solomon H. Snyder Department of Neuroscience, Krieger Mind/Brain Institute, Kavli Neuroscience Discovery Institute, The Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA.
| |
Collapse
|
16
|
Wang W, Liu Y, Wang G, Cheng Q, Ming D. Oscillatory cortico-cortical connectivity during tactile discrimination between dynamic and static stimulation. Cereb Cortex 2024; 34:bhae277. [PMID: 39331031 DOI: 10.1093/cercor/bhae277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/15/2024] [Accepted: 06/16/2024] [Indexed: 09/28/2024] Open
Abstract
Fine sensory modalities play an essential role in perceiving the world. However, little is known about how the cortico-cortical distinguishes between dynamic and static tactile signals. This study investigated oscillatory connectivity during a tactile discrimination task of dynamic and static stimulation via electroencephalogram (EEG) recordings and the fast oscillatory networks across widespread cortical regions. While undergoing EEG recordings, the subject felt an electro-tactile presented by a 3-dot array. Each block consisted of 3 forms of stimulation: Spatio-temporal (dynamic), Spatial (static), and Control condition (lack of electrical stimulation). The average event-related potential for the Spatial and Spatio-temporal conditions exhibited statistically significant differences between 25 and 75, 81 and 121, 174 and 204 and 459 and 489 ms after stimulus onset. Based on those times, the sLORETA approach was used to reconstruct the inverse solutions of EEG. Source localization appeared superior parietal at around 25 to 75 ms, in the primary motor cortex at 81 to 121 ms, in the central prefrontal cortex at 174 to 204 and 459 to 489 ms. To better assess spectral brain functional connectivity, we selected frequency ranges with correspondingly significant differences: for static tactile stimulation, these are concentrated in the Theta, Alpha, and Gamma bands, whereas for dynamic stimulation, the relative energy change bands are focused on the Theta and Alpha bands. These nodes' functional connectivity analysis (phase lag index) showed 3 distinct distributed networks. A tactile information discrimination network linked the Occipital lobe, Prefrontal lobe, and Postcentral gyrus. A tactile feedback network linked the Prefrontal lobe, Postcentral gyrus, and Temporal lobe. A dominant motor feedforward loop network linked the Parietal cortex, Prefrontal lobe, Frontal lobe, and Parietal cortex. Processing dynamic and static tactile signals involves discriminating tactile information, motion planning, and cognitive decision processing.
Collapse
Affiliation(s)
- Wenjie Wang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Weijin Road Nankai District, Tianjin, China
- Haihe Laboratory of Brain-computer Interaction and Human-machine Integration, Tianjin, China
| | - Yuan Liu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Weijin Road Nankai District, Tianjin, China
- Haihe Laboratory of Brain-computer Interaction and Human-machine Integration, Tianjin, China
| | - Guoyao Wang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Weijin Road Nankai District, Tianjin, China
- Haihe Laboratory of Brain-computer Interaction and Human-machine Integration, Tianjin, China
| | - Qian Cheng
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Weijin Road Nankai District, Tianjin, China
- Haihe Laboratory of Brain-computer Interaction and Human-machine Integration, Tianjin, China
| | - Dong Ming
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Weijin Road Nankai District, Tianjin, China
- Haihe Laboratory of Brain-computer Interaction and Human-machine Integration, Tianjin, China
| |
Collapse
|
17
|
Falcão M, Monteiro P, Jacinto L. Tactile sensory processing deficits in genetic mouse models of autism spectrum disorder. J Neurochem 2024; 168:2105-2123. [PMID: 38837765 DOI: 10.1111/jnc.16135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/04/2024] [Accepted: 05/07/2024] [Indexed: 06/07/2024]
Abstract
Altered sensory processing is a common feature in autism spectrum disorder (ASD), as recognized in the Diagnostic and Statistical Manual of Mental Disorders (DSM-5). Although altered responses to tactile stimuli are observed in over 60% of individuals with ASD, the neurobiological basis of this phenomenon is poorly understood. ASD has a strong genetic component and genetic mouse models can provide valuable insights into the mechanisms underlying tactile abnormalities in ASD. This review critically addresses recent findings regarding tactile processing deficits found in mouse models of ASD, with a focus on behavioral, anatomical, and functional alterations. Particular attention was given to cellular and circuit-level functional alterations, both in the peripheral and central nervous systems, with the objective of highlighting possible convergence mechanisms across models. By elucidating the impact of mutations in ASD candidate genes on somatosensory circuits and correlating them with behavioral phenotypes, this review significantly advances our understanding of tactile deficits in ASD. Such insights not only broaden our comprehension but also pave the way for future therapeutic interventions.
Collapse
Affiliation(s)
- Margarida Falcão
- Department of Biomedicine-Experimental Biology Unit, Faculty of Medicine of the University of Porto (FMUP), Porto, Portugal
| | - Patricia Monteiro
- Department of Biomedicine-Experimental Biology Unit, Faculty of Medicine of the University of Porto (FMUP), Porto, Portugal
| | - Luis Jacinto
- Department of Biomedicine-Experimental Biology Unit, Faculty of Medicine of the University of Porto (FMUP), Porto, Portugal
| |
Collapse
|
18
|
Castranova D, Kenton MI, Kraus A, Dell CW, Park JS, Galanternik MV, Park G, Lumbantobing DN, Dye L, Marvel M, Iben J, Taimatsu K, Pham V, Willms RJ, Blevens L, Robertson TF, Hou Y, Huttenlocher A, Foley E, Parenti LR, Frazer JK, Narayan K, Weinstein BM. The axillary lymphoid organ - an external, experimentally accessible immune organ in the zebrafish. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.25.605139. [PMID: 39091802 PMCID: PMC11291151 DOI: 10.1101/2024.07.25.605139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Lymph nodes and other secondary lymphoid organs play critical roles in immune surveillance and immune activation in mammals, but the deep internal locations of these organs make it challenging to image and study them in living animals. Here, we describe a previously uncharacterized external immune organ in the zebrafish ideally suited for studying immune cell dynamics in vivo, the axillary lymphoid organ (ALO). This small, translucent organ has an outer cortex teeming with immune cells, an inner medulla with a mesh-like network of fibroblastic reticular cells along which immune cells migrate, and a network of lymphatic vessels draining to a large adjacent lymph sac. Noninvasive high-resolution imaging of transgenically marked immune cells can be carried out in the lobes of living animals, and the ALO is readily accessible to external treatment. This newly discovered tissue provides a superb model for dynamic live imaging of immune cells and their interaction with pathogens and surrounding tissues, including blood and lymphatic vessels.
Collapse
Affiliation(s)
- Daniel Castranova
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20814, USA
| | - Madeleine I. Kenton
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20814, USA
| | - Aurora Kraus
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20814, USA
| | - Christopher W. Dell
- Center for Molecular Microscopy, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA and Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Jong S. Park
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20814, USA
| | - Marina Venero Galanternik
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20814, USA
| | - Gilseung Park
- Section of Pediatric Hematology-Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Daniel N. Lumbantobing
- Division of Fishes, Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560, USA
| | - Louis Dye
- Microscopy and Imaging Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20814, USA
| | - Miranda Marvel
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20814, USA
| | - James Iben
- Molecular Genomics Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20814, USA
| | - Kiyohito Taimatsu
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20814, USA
| | - Van Pham
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20814, USA
| | - Reegan J. Willms
- Department of Medical Microbiology and Immunology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Lucas Blevens
- Section of Pediatric Hematology-Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Tanner F. Robertson
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706
| | - Yiran Hou
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706
| | - Anna Huttenlocher
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706
| | - Edan Foley
- Department of Medical Microbiology and Immunology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Lynne R. Parenti
- Division of Fishes, Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560, USA
| | - J. Kimble Frazer
- Section of Pediatric Hematology-Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Kedar Narayan
- Center for Molecular Microscopy, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA and Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Brant M. Weinstein
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20814, USA
| |
Collapse
|
19
|
Luo H, Chen X, Li S, Xu J, Li X, Tian H, Wang C, Li B, Zhang M, Sun B, He J, Shao J. Bioinspired Suspended Sensing Membrane Array with Modulable Wedged-Conductive Channels for Crosstalk-Free and High-Resolution Detection. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403645. [PMID: 38720473 PMCID: PMC11267273 DOI: 10.1002/advs.202403645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 04/26/2024] [Indexed: 07/25/2024]
Abstract
High spatial-resolution detection is essential for biomedical applications and human-machine interaction. However, as the sensor array density increases, the miniaturization will lead to interference between adjacent units and deterioration in sensing performance. Here, inspired by the cochlea's sensing structure, a high-density flexible pressure sensor array featuring with suspended sensing membrane with sensitivity-enhanced customized channels is presented for crosstalk-free and high-resolution detection. By imitating the basilar membrane attached to spiral ligaments, a sensing membrane is fixed onto a high-stiffness substrate with cavities, forming a stable braced isolation to provide an excellent crosstalk-free capability (crosstalk coefficient: 47.24 dB) with high-density integration (100 units within 1 cm2). Similar to the opening of ion channels in hair cells, the wedge-type expansion of the embedded cracks introduced by stress concentration structures enables a high sensitivity (0.19 kPa-1) and a large measuring range (400 kPa). Finally, it demonstrates promising applications in distributed displays and the condition monitoring of medical-surgical intubation.
Collapse
Affiliation(s)
- Haixuan Luo
- State Key Laboratory for Manufacturing Systems EngineeringXi'an Jiaotong UniversityXi'anShaanxi710049China
- Frontier Institute of Science and Technology (FIST)Xi'an Jiaotong UniversityXi'anShaanxi710049China
| | - Xiaoliang Chen
- State Key Laboratory for Manufacturing Systems EngineeringXi'an Jiaotong UniversityXi'anShaanxi710049China
- Frontier Institute of Science and Technology (FIST)Xi'an Jiaotong UniversityXi'anShaanxi710049China
| | - Sheng Li
- State Key Laboratory for Manufacturing Systems EngineeringXi'an Jiaotong UniversityXi'anShaanxi710049China
| | - Jinbin Xu
- Frontier Institute of Science and Technology (FIST)Xi'an Jiaotong UniversityXi'anShaanxi710049China
| | - Xiangming Li
- State Key Laboratory for Manufacturing Systems EngineeringXi'an Jiaotong UniversityXi'anShaanxi710049China
| | - Hongmiao Tian
- State Key Laboratory for Manufacturing Systems EngineeringXi'an Jiaotong UniversityXi'anShaanxi710049China
| | - Chunhui Wang
- State Key Laboratory for Manufacturing Systems EngineeringXi'an Jiaotong UniversityXi'anShaanxi710049China
| | - Bo Li
- State Key Laboratory for Manufacturing Systems EngineeringXi'an Jiaotong UniversityXi'anShaanxi710049China
| | - Manman Zhang
- State Key Laboratory for Manufacturing Systems EngineeringXi'an Jiaotong UniversityXi'anShaanxi710049China
| | - Bai Sun
- Frontier Institute of Science and Technology (FIST)Xi'an Jiaotong UniversityXi'anShaanxi710049China
| | - Juan He
- Department of RehabilitationFirst Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxi710061China
| | - Jinyou Shao
- State Key Laboratory for Manufacturing Systems EngineeringXi'an Jiaotong UniversityXi'anShaanxi710049China
- Frontier Institute of Science and Technology (FIST)Xi'an Jiaotong UniversityXi'anShaanxi710049China
- Department of RehabilitationFirst Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxi710061China
| |
Collapse
|
20
|
Ding H, Zhou L, Zhou J, Feng J. Peripheral Mechanisms of Mechanical Itch. J Invest Dermatol 2024; 144:1449-1453. [PMID: 38206270 DOI: 10.1016/j.jid.2023.10.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/25/2023] [Accepted: 10/31/2023] [Indexed: 01/12/2024]
Abstract
Mechanical itch, which is defined as an itch sensation caused by innocuous mechanical force, may warn of the potential risk in the skin. The increased mechanosensitivity in sensory neurons may cause scratch-induced itch and promote the transition from acute itch to chronic itch. Recent studies have not only expanded our knowledge about the neuronal circuits in the CNS but have also highlighted the importance of the peripheral epithelia-immune-neuronal crosstalk in the development of mechanical itch. In this review, we will summarize related findings about the molecular and cellular mechanisms of mechanical itch in the skin.
Collapse
Affiliation(s)
- Huijuan Ding
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Liqin Zhou
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Jiaying Zhou
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jing Feng
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China; State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
21
|
Xia X, Cao X, Zhang B, Zhang L, Dong J, Qin J, Xuan P, Liu L, Sun Y, Fan W, Ling S, Hofkens J, Lai F, Liu T. Human Skin-Mimicking Ionogel-Based Electronic Skin for Intelligent Robotic Sorting. Macromol Rapid Commun 2024:e2400379. [PMID: 38940242 DOI: 10.1002/marc.202400379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/26/2024] [Indexed: 06/29/2024]
Abstract
Creating bionic intelligent robotic systems that emulate human-like skin perception presents a considerable scientific challenge. This study introduces a multifunctional bionic electronic skin (e-skin) made from polyacrylic acid ionogel (PAIG), designed to detect human motion signals and transmit them to robotic systems for recognition and classification. The PAIG is synthesized using a suspension of liquid metal and graphene oxide nanosheets as initiators and cross-linkers. The resulting PAIGs demonstrate excellent mechanical properties, resistance to freezing and drying, and self-healing capabilities. Functionally, the PAIG effectively captures human motion signals through electromechanical sensing. Furthermore, a bionic intelligent sorting robot system is developed by integrating the PAIG-based e-skin with a robotic manipulator. This system leverages its ability to detect frictional electrical signals, enabling precise identification and sorting of materials. The innovations presented in this study hold significant potential for applications in artificial intelligence, rehabilitation training, and intelligent classification systems.
Collapse
Affiliation(s)
- Xuemeng Xia
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, International Joint Research Laboratory for Nano Energy Composites, Jiangnan University, Wuxi, 214122, P. R. China
| | - Xinyi Cao
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, P. R. China
| | - Bao Zhang
- Institute of Polymer Materials, School of Materials Science and Engineering, South China University of Technology, Guangzhou, Guangdong, 510641, P. R. China
| | - Leiqian Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, International Joint Research Laboratory for Nano Energy Composites, Jiangnan University, Wuxi, 214122, P. R. China
| | - Jiancheng Dong
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, International Joint Research Laboratory for Nano Energy Composites, Jiangnan University, Wuxi, 214122, P. R. China
| | - Jingjing Qin
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, International Joint Research Laboratory for Nano Energy Composites, Jiangnan University, Wuxi, 214122, P. R. China
| | - Pengyang Xuan
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, International Joint Research Laboratory for Nano Energy Composites, Jiangnan University, Wuxi, 214122, P. R. China
| | - Leyao Liu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, International Joint Research Laboratory for Nano Energy Composites, Jiangnan University, Wuxi, 214122, P. R. China
| | - Yi Sun
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, P. R. China
| | - Wei Fan
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, International Joint Research Laboratory for Nano Energy Composites, Jiangnan University, Wuxi, 214122, P. R. China
| | - Shengjie Ling
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, P. R. China
| | - Johan Hofkens
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven, 3001, Belgium
- Department of Molecular Spectroscopy, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Feili Lai
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven, 3001, Belgium
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Tianxi Liu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, International Joint Research Laboratory for Nano Energy Composites, Jiangnan University, Wuxi, 214122, P. R. China
| |
Collapse
|
22
|
Sánchez-Trasviña C, Coronel-Meneses D, Escobar-Fernández AM, Mayolo-Deloisa K. Transdermal microneedle patches as a promising drug delivery system for anti-obesogenic molecules. Front Bioeng Biotechnol 2024; 12:1380537. [PMID: 38919379 PMCID: PMC11196754 DOI: 10.3389/fbioe.2024.1380537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/17/2024] [Indexed: 06/27/2024] Open
Abstract
Obesity, characterized by excessive storage of lipids, has become a global pandemic with high incidence levels, and its forecast is not encouraging. Currently, there are different strategies to treat obesity; however, these conventional methods have various limitations. Lifestyle changes may result in poor outcomes due to the complexity of obesity causes, pharmaceutic treatments produce severe side effects, and bariatric surgery is highly invasive. In the search for alternative treatments to fight obesity, transdermal drug delivery systems of anti-obesogenic molecules have gained particular attention. However, the diffusion of molecules through the skin is the main drawback due to the characteristics of different layers of the skin, principally the stratum corneum and its barrier-like behavior. In this sense, microneedles patches (MP) have emerged to overcome this limitation by piercing the skin and allowing drug delivery inside the body. Although MP have been studied for some years, it was not until about 2017 that their potential as anti-obesogenic treatment was reported. This article aims to summarize and analyze the strategies employed to produce MP and to embed the active molecules against obesity. Special attention is focused on the microneedle's material, geometry, array, and additional delivery strategies, like nanoencapsulation. MP are a promising tool to develop an easy-access treatment, avoiding the digestive tract and with the capacity to enhance the anti-obesogenic activity by delivering one or more active molecules.
Collapse
Affiliation(s)
- Calef Sánchez-Trasviña
- Tecnologico de Monterrey, Institute for Obesity Research, Monterrey, NL, Mexico
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Centro de Biotecnología-FEMSA, Monterrey, NL, Mexico
| | - David Coronel-Meneses
- Tecnologico de Monterrey, Institute for Obesity Research, Monterrey, NL, Mexico
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Centro de Biotecnología-FEMSA, Monterrey, NL, Mexico
| | - Aleyda Margarita Escobar-Fernández
- Tecnologico de Monterrey, Institute for Obesity Research, Monterrey, NL, Mexico
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Centro de Biotecnología-FEMSA, Monterrey, NL, Mexico
| | - Karla Mayolo-Deloisa
- Tecnologico de Monterrey, Institute for Obesity Research, Monterrey, NL, Mexico
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Centro de Biotecnología-FEMSA, Monterrey, NL, Mexico
| |
Collapse
|
23
|
Lewis AH, Cronin ME, Grandl J. Piezo1 ion channels are capable of conformational signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.28.596257. [PMID: 38854150 PMCID: PMC11160644 DOI: 10.1101/2024.05.28.596257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Piezo1 is a mechanically activated ion channel that senses forces with short latency and high sensitivity. Piezos undergo large conformational changes, induce far-reaching deformation onto the membrane, and modulate the function of two-pore potassium (K2P) channels. Taken together, this led us to hypothesize that Piezos may be able to signal their conformational state to other nearby proteins. Here, we use chemical control to acutely restrict Piezo1 conformational flexibility and show that Piezo1 conformational changes, but not ion permeation through it, are required for modulating the K2P channel TREK1. Super-resolution imaging and stochastic simulations further reveal that both channels do not co-localize, which implies that modulation is not mediated through direct binding interactions; however, at high Piezo1 densities, most TREK1 channels are within the predicted Piezo1 membrane footprint, suggesting the footprint may underlie conformational signaling. We speculate that physiological roles originally attributed to Piezo1 ionotropic function could, alternatively, involve conformational signaling.
Collapse
Affiliation(s)
- Amanda H. Lewis
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Marie E. Cronin
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Jörg Grandl
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
24
|
Zhang X, Shao J, Wang C, Liu C, Hao H, Li X, An Y, He J, Zhao W, Zhao Y, Kong Y, Jia Z, Wan S, Yuan Y, Zhang H, Zhang H, Du X. TMC7 functions as a suppressor of Piezo2 in primary sensory neurons blunting peripheral mechanotransduction. Cell Rep 2024; 43:114014. [PMID: 38568807 DOI: 10.1016/j.celrep.2024.114014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 02/20/2024] [Accepted: 03/14/2024] [Indexed: 04/05/2024] Open
Abstract
The transmembrane channel-like (TMC) protein family comprises eight members, with TMC1 and TMC2 being extensively studied. This study demonstrates substantial co-expression of TMC7 with the mechanosensitive channel Piezo2 in somatosensory neurons. Genetic deletion of TMC7 in primary sensory ganglia neurons in vivo enhances sensitivity in both physiological and pathological mechanosensory transduction. This deletion leads to an increase in proportion of rapidly adapting (RA) currents conducted by Piezo2 in dorsal root ganglion (DRG) neurons and accelerates RA deactivation kinetics. In HEK293 cells expressing both proteins, TMC7 significantly suppresses the current amplitudes of co-expressed Piezo2. Our findings reveal that TMC7 and Piezo2 exhibit physical interactions, and both proteins also physically interact with cytoskeletal β-actin. We hypothesize that TMC7 functions as an inhibitory modulator of Piezo2 in DRG neurons, either through direct inhibition or by disrupting the transmission of mechanical forces from the cytoskeleton to the channel.
Collapse
Affiliation(s)
- Xiaoxue Zhang
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jichen Shao
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Caixue Wang
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, Hebei, China; The Forth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Chao Liu
- Department of Animal Care, The Key Laboratory of Experimental Animal, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Han Hao
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xinmeng Li
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yating An
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jinsha He
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Weixin Zhao
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yiwen Zhao
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Youzhen Kong
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Zhanfeng Jia
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Shaopo Wan
- Institute of Electrical Engineering, Yanshan University, Qinhuangdao, Hebei, China
| | - Yi Yuan
- Institute of Electrical Engineering, Yanshan University, Qinhuangdao, Hebei, China
| | - Huiran Zhang
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Hailin Zhang
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xiaona Du
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, Hebei, China.
| |
Collapse
|
25
|
Özdemir A, Yeter V, Koçak N, Çalışkan S. Unusual Metastasis to Eyelid from Extraocular Merkel Cell Carcinoma. Turk J Ophthalmol 2024; 54:116-119. [PMID: 38646410 PMCID: PMC11034544 DOI: 10.4274/tjo.galenos.2024.25686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 02/02/2024] [Indexed: 04/23/2024] Open
Abstract
Merkel cell carcinoma (MCC) is an unusual skin tumor that has a significant rate of distant and local metastases. It is known that primary MCC of the eyelid usually occurs at the upper eyelid. Here we report an unusual case of MCC metastasis to the eyelid. A 63-year-old male was diagnosed with MCC three years earlier after initially presenting with a mass in his right thigh. After histopathological diagnosis, the patient received medical therapy. During treatment, he developed multiple distant metastases and a firm, purple, vascularized lesion on the upper eyelid. We confirmed the lesion was an eyelid metastasis of MCC by histopathological examination and imaging methods. This case shows that extraocular MCC can metastasize to the eyelids, particularly the upper eyelid, where primary periocular MCC usually appears.
Collapse
Affiliation(s)
- Ahmet Özdemir
- Ondokuz Mayıs University, Department of Ophthalmology, Samsun, Türkiye
| | - Volkan Yeter
- Ondokuz Mayıs University, Department of Ophthalmology, Samsun, Türkiye
| | - Nurullah Koçak
- Ondokuz Mayıs University, Department of Ophthalmology, Samsun, Türkiye
| | - Sultan Çalışkan
- Ondokuz Mayıs University, Department of Ophthalmology, Samsun, Türkiye
| |
Collapse
|
26
|
Yamada A, Ling J, Yamada AI, Furue H, Gu JG. ASICs mediate fast excitatory synaptic transmission for tactile discrimination. Neuron 2024; 112:1286-1301.e8. [PMID: 38359825 PMCID: PMC11031316 DOI: 10.1016/j.neuron.2024.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/05/2023] [Accepted: 01/16/2024] [Indexed: 02/17/2024]
Abstract
Tactile discrimination, the ability to differentiate objects' physical properties such as texture, shape, and edges, is essential for environmental exploration, social interaction, and early childhood development. This ability heavily relies on Merkel cell-neurite complexes (MNCs), the tactile end-organs enriched in the fingertips of humans and the whisker hair follicles of non-primate mammals. Although recent studies have advanced our knowledge on mechanical transduction in MNCs, it remains unknown how tactile signals are encoded at MNCs. Here, using rodent whisker hair follicles, we show that tactile signals are encoded at MNCs as fast excitatory synaptic transmission. This synaptic transmission is mediated by acid-sensing ion channels (ASICs) located on the neurites of MNCs, with protons as the principal transmitters. Pharmacological inhibition or genetic deletion of ASICs diminishes the tactile encoding at MNCs and impairs tactile discrimination in animals. Together, ASICs are required for tactile encoding at MNCs to enable tactile discrimination in mammals.
Collapse
Affiliation(s)
- Akihiro Yamada
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jennifer Ling
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ayaka I Yamada
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Hidemasa Furue
- Department of Neurophysiology, Hyogo Medical University, Nishinomiya 663-8501, Japan
| | - Jianguo G Gu
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, USA; Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
27
|
Sakaguchi S, Tsutsumi M, Akita S, Konyo M, Kajiya K. Human Merkel Cells as the Initiator of Mechanotransduction in the Skin: Linking the Animal Model to Humans. J Invest Dermatol 2024:S0022-202X(24)00278-1. [PMID: 38608833 DOI: 10.1016/j.jid.2024.03.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 03/15/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024]
Affiliation(s)
- Saito Sakaguchi
- MIRAI Technology Institute, Shiseido Co., Ltd., Yokohama, Japan; Graduate School of Information Sciences, Tohoku University, Sendai, Japan
| | - Moe Tsutsumi
- MIRAI Technology Institute, Shiseido Co., Ltd., Yokohama, Japan.
| | - Shinsuke Akita
- Department of Plastic, Reconstructive, and Aesthetic Surgery, Chiba University, Chiba, Japan
| | - Masashi Konyo
- Graduate School of Information Sciences, Tohoku University, Sendai, Japan
| | - Kentaro Kajiya
- MIRAI Technology Institute, Shiseido Co., Ltd., Yokohama, Japan
| |
Collapse
|
28
|
Yosipovitch G, Kim B, Luger T, Lerner E, Metz M, Adiri R, Canosa JM, Cha A, Ständer S. Similarities and differences in peripheral itch and pain pathways in atopic dermatitis. J Allergy Clin Immunol 2024; 153:904-912. [PMID: 38103700 DOI: 10.1016/j.jaci.2023.10.034] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/22/2023] [Accepted: 10/12/2023] [Indexed: 12/19/2023]
Abstract
Atopic dermatitis (AD) is predominantly characterized by intense itching, but concomitant skin pain is experienced by more than 40% of patients. Patients with AD display considerable somatosensory aberrations, including increased nerve sensitivity to itch stimuli (hyperknesis), perception of itch from innocuous stimuli (alloknesis), or perception of pain from innocuous stimuli (allodynia). This review summarizes the current understanding of the similarities and differences in the peripheral mechanisms underlying itch and pain in AD. These distinct yet reciprocal sensations share many similarities in the peripheral nervous system, including common mediators (such as serotonin, endothelin-1, IL-33, and thymic stromal lymphopoietin), receptors (such as members of the G protein-coupled receptor family and Toll-like receptors), and ion channels for signal transduction (such as certain members of the transient receptor potential [TRP] cation channels). Itch-responding neurons are also sensitive to pain stimuli. However, there are distinct differences between itch and pain signaling. For example, specific immune responses are associated with pain (type 1 and/or type 3 cytokines and certain chemokine C-C [CCL2, CCL5] and C-X-C [CXCL] motif ligands) and itch (type 2 cytokines, including IL-31, and periostin). The TRP melastatin channels TRPM2 and TRPM3 have a role in pain but no known role in itch. Activation of μ-opioid receptors is known to alleviate pain but exacerbate itch. Understanding the connection between itch and pain mechanisms may offer new insights into the treatment of chronic pain and itch in AD.
Collapse
Affiliation(s)
- Gil Yosipovitch
- Miami Itch Center, Miller School of Medicine, University of Miami, Miami, Fla.
| | - Brian Kim
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St Louis, Mo
| | | | - Ethan Lerner
- Massachusetts General Hospital, Charlestown, Mass
| | - Martin Metz
- Institute of Allergology, Charité-Universitätsmedizin Berlin, Berlin, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, Berlin, Germany
| | - Roni Adiri
- Pfizer Pharmaceuticals Israel Ltd, Herzliya Pituach, Israel
| | | | | | - Sonja Ständer
- Center for Chronic Pruritus, Münster University Hospital, Münster, Germany
| |
Collapse
|
29
|
Luedke KP, Yoshino J, Yin C, Jiang N, Huang JM, Huynh K, Parrish JZ. Dendrite intercalation between epidermal cells tunes nociceptor sensitivity to mechanical stimuli in Drosophila larvae. PLoS Genet 2024; 20:e1011237. [PMID: 38662763 DOI: 10.1371/journal.pgen.1011237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 05/07/2024] [Accepted: 03/29/2024] [Indexed: 05/07/2024] Open
Abstract
An animal's skin provides a first point of contact with the sensory environment, including noxious cues that elicit protective behavioral responses. Nociceptive somatosensory neurons densely innervate and intimately interact with epidermal cells to receive these cues, however the mechanisms by which epidermal interactions shape processing of noxious inputs is still poorly understood. Here, we identify a role for dendrite intercalation between epidermal cells in tuning sensitivity of Drosophila larvae to noxious mechanical stimuli. In wild-type larvae, dendrites of nociceptive class IV da neurons intercalate between epidermal cells at apodemes, which function as body wall muscle attachment sites, but not at other sites in the epidermis. From a genetic screen we identified miR-14 as a regulator of dendrite positioning in the epidermis: miR-14 is expressed broadly in the epidermis but not in apodemes, and miR-14 inactivation leads to excessive apical dendrite intercalation between epidermal cells. We found that miR-14 regulates expression and distribution of the epidermal Innexins ogre and Inx2 and that these epidermal gap junction proteins restrict epidermal dendrite intercalation. Finally, we found that altering the extent of epidermal dendrite intercalation had corresponding effects on nociception: increasing epidermal intercalation sensitized larvae to noxious mechanical inputs and increased mechanically evoked calcium responses in nociceptive neurons, whereas reducing epidermal dendrite intercalation had the opposite effects. Altogether, these studies identify epidermal dendrite intercalation as a mechanism for mechanical coupling of nociceptive neurons to the epidermis, with nociceptive sensitivity tuned by the extent of intercalation.
Collapse
Affiliation(s)
- Kory P Luedke
- Department of Biology, University of Washington, Seattle, Washington State, United States of America
| | - Jiro Yoshino
- Department of Biology, University of Washington, Seattle, Washington State, United States of America
| | - Chang Yin
- Department of Biology, University of Washington, Seattle, Washington State, United States of America
| | - Nan Jiang
- Department of Biology, University of Washington, Seattle, Washington State, United States of America
| | - Jessica M Huang
- Department of Biology, University of Washington, Seattle, Washington State, United States of America
| | - Kevin Huynh
- Department of Biology, University of Washington, Seattle, Washington State, United States of America
| | - Jay Z Parrish
- Department of Biology, University of Washington, Seattle, Washington State, United States of America
| |
Collapse
|
30
|
Cao Y, Li R, Bai L. Vagal sensory pathway for the gut-brain communication. Semin Cell Dev Biol 2024; 156:228-243. [PMID: 37558522 DOI: 10.1016/j.semcdb.2023.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 06/07/2023] [Accepted: 07/20/2023] [Indexed: 08/11/2023]
Abstract
The communication between the gut and brain is crucial for regulating various essential physiological functions, such as energy balance, fluid homeostasis, immune response, and emotion. The vagal sensory pathway plays an indispensable role in connecting the gut to the brain. Recently, our knowledge of the vagal gut-brain axis has significantly advanced through molecular genetic studies, revealing a diverse range of vagal sensory cell types with distinct peripheral innervations, response profiles, and physiological functions. Here, we review the current understanding of how vagal sensory neurons contribute to gut-brain communication. First, we highlight recent transcriptomic and genetic approaches that have characterized different vagal sensory cell types. Then, we focus on discussing how different subtypes encode numerous gut-derived signals and how their activities are translated into physiological and behavioral regulations. The emerging insights into the diverse cell types and functional properties of vagal sensory neurons have paved the way for exciting future directions, which may provide valuable insights into potential therapeutic targets for disorders involving gut-brain communication.
Collapse
Affiliation(s)
- Yiyun Cao
- Chinese Institute for Brain Research, Beijing 102206, China
| | - Rui Li
- Chinese Institute for Brain Research, Beijing 102206, China; State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
| | - Ling Bai
- Chinese Institute for Brain Research, Beijing 102206, China.
| |
Collapse
|
31
|
Qi L, Iskols M, Shi D, Reddy P, Walker C, Lezgiyeva K, Voisin T, Pawlak M, Kuchroo VK, Chiu IM, Ginty DD, Sharma N. A mouse DRG genetic toolkit reveals morphological and physiological diversity of somatosensory neuron subtypes. Cell 2024; 187:1508-1526.e16. [PMID: 38442711 PMCID: PMC10947841 DOI: 10.1016/j.cell.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 11/12/2023] [Accepted: 02/05/2024] [Indexed: 03/07/2024]
Abstract
Dorsal root ganglia (DRG) somatosensory neurons detect mechanical, thermal, and chemical stimuli acting on the body. Achieving a holistic view of how different DRG neuron subtypes relay neural signals from the periphery to the CNS has been challenging with existing tools. Here, we develop and curate a mouse genetic toolkit that allows for interrogating the properties and functions of distinct cutaneous targeting DRG neuron subtypes. These tools have enabled a broad morphological analysis, which revealed distinct cutaneous axon arborization areas and branching patterns of the transcriptionally distinct DRG neuron subtypes. Moreover, in vivo physiological analysis revealed that each subtype has a distinct threshold and range of responses to mechanical and/or thermal stimuli. These findings support a model in which morphologically and physiologically distinct cutaneous DRG sensory neuron subtypes tile mechanical and thermal stimulus space to collectively encode a wide range of natural stimuli.
Collapse
Affiliation(s)
- Lijun Qi
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Michael Iskols
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - David Shi
- Department of Molecular Pharmacology and Therapeutics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Pranav Reddy
- Department of Molecular Pharmacology and Therapeutics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Christopher Walker
- Department of Molecular Pharmacology and Therapeutics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Karina Lezgiyeva
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Tiphaine Voisin
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Mathias Pawlak
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital, and Harvard Medical School, Boston, MA 02115, USA
| | - Vijay K Kuchroo
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital, and Harvard Medical School, Boston, MA 02115, USA
| | - Isaac M Chiu
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - David D Ginty
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA.
| | - Nikhil Sharma
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Department of Molecular Pharmacology and Therapeutics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
32
|
Anselmi C, Fuller GK, Stolfi A, Groves AK, Manni L. Sensory cells in tunicates: insights into mechanoreceptor evolution. Front Cell Dev Biol 2024; 12:1359207. [PMID: 38550380 PMCID: PMC10973136 DOI: 10.3389/fcell.2024.1359207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/04/2024] [Indexed: 04/04/2024] Open
Abstract
Tunicates, the sister group of vertebrates, offer a unique perspective for evolutionary developmental studies (Evo-Devo) due to their simple anatomical organization. Moreover, the separation of tunicates from vertebrates predated the vertebrate-specific genome duplications. As adults, they include both sessile and pelagic species, with very limited mobility requirements related mainly to water filtration. In sessile species, larvae exhibit simple swimming behaviors that are required for the selection of a suitable substrate on which to metamorphose. Despite their apparent simplicity, tunicates display a variety of mechanoreceptor structures involving both primary and secondary sensory cells (i.e., coronal sensory cells). This review encapsulates two decades of research on tunicate mechanoreception focusing on the coronal organ's sensory cells as prime candidates for understanding the evolution of vertebrate hair cells of the inner ear and the lateral line organ. The review spans anatomical, cellular and molecular levels emphasizing both similarity and differences between tunicate and vertebrate mechanoreception strategies. The evolutionary significance of mechanoreception is discussed within the broader context of Evo-Devo studies, shedding light on the intricate pathways that have shaped the sensory system in chordates.
Collapse
Affiliation(s)
- Chiara Anselmi
- Hopkins Marine Station, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Pacific Grove, CA, United States
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, United States
| | - Gwynna K. Fuller
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
| | - Alberto Stolfi
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States
| | - Andrew K. Groves
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| | - Lucia Manni
- Dipartimento di Biologia, Università degli Studi di Padova, Padova, Italy
| |
Collapse
|
33
|
Lopez JA, Romero LO, Kaung WL, Maddox JW, Vásquez V, Lee A. Caldendrin Is a Repressor of PIEZO2 Channels and Touch Sensation in Mice. J Neurosci 2024; 44:e1402232023. [PMID: 38262725 PMCID: PMC10919251 DOI: 10.1523/jneurosci.1402-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 01/25/2024] Open
Abstract
The sense of touch is crucial for cognitive, emotional, and social development and relies on mechanically activated (MA) ion channels that transduce force into an electrical signal. Despite advances in the molecular characterization of these channels, the physiological factors that control their activity are poorly understood. Here, we used behavioral assays, electrophysiological recordings, and various mouse strains (males and females analyzed separately) to investigate the role of the calmodulin-like Ca2+ sensor, caldendrin, as a key regulator of MA channels and their roles in touch sensation. In mice lacking caldendrin (Cabp1 KO), heightened responses to tactile stimuli correlate with enlarged MA currents with lower mechanical thresholds in dorsal root ganglion neurons (DRGNs). The expression pattern of caldendrin in the DRG parallels that of the major MA channel required for touch sensation, PIEZO2. In transfected cells, caldendrin interacts with and inhibits the activity of PIEZO2 in a manner that requires an alternatively spliced sequence in the N-terminal domain of caldendrin. Moreover, targeted genetic deletion of caldendrin in Piezo2-expressing DRGNs phenocopies the tactile hypersensitivity of complete Cabp1 KO mice. We conclude that caldendrin is an endogenous repressor of PIEZO2 channels and their contributions to touch sensation in DRGNs.
Collapse
Affiliation(s)
- Josue A Lopez
- Department of Neuroscience and Center for Learning and Memory, University of Texas-Austin, Austin 78712, Texas
| | - Luis O Romero
- Department of Physiology, The University of Tennessee Health Science Center, Memphis 38163, Tennessee
- Integrated Biomedical Sciences Graduate Program, College of Graduate Health Sciences, Memphis 38163, Tennessee
| | - Wai-Lin Kaung
- Department of Neuroscience and Center for Learning and Memory, University of Texas-Austin, Austin 78712, Texas
| | - J Wesley Maddox
- Department of Neuroscience and Center for Learning and Memory, University of Texas-Austin, Austin 78712, Texas
| | - Valeria Vásquez
- Department of Physiology, The University of Tennessee Health Science Center, Memphis 38163, Tennessee
| | - Amy Lee
- Department of Neuroscience and Center for Learning and Memory, University of Texas-Austin, Austin 78712, Texas
| |
Collapse
|
34
|
Schappe MS, Brinn PA, Joshi NR, Greenberg RS, Min S, Alabi AA, Zhang C, Liberles SD. A vagal reflex evoked by airway closure. Nature 2024; 627:830-838. [PMID: 38448588 PMCID: PMC10972749 DOI: 10.1038/s41586-024-07144-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 01/31/2024] [Indexed: 03/08/2024]
Abstract
Airway integrity must be continuously maintained throughout life. Sensory neurons guard against airway obstruction and, on a moment-by-moment basis, enact vital reflexes to maintain respiratory function1,2. Decreased lung capacity is common and life-threatening across many respiratory diseases, and lung collapse can be acutely evoked by chest wall trauma, pneumothorax or airway compression. Here we characterize a neuronal reflex of the vagus nerve evoked by airway closure that leads to gasping. In vivo vagal ganglion imaging revealed dedicated sensory neurons that detect airway compression but not airway stretch. Vagal neurons expressing PVALB mediate airway closure responses and innervate clusters of lung epithelial cells called neuroepithelial bodies (NEBs). Stimulating NEBs or vagal PVALB neurons evoked gasping in the absence of airway threats, whereas ablating NEBs or vagal PVALB neurons eliminated gasping in response to airway closure. Single-cell RNA sequencing revealed that NEBs uniformly express the mechanoreceptor PIEZO2, and targeted knockout of Piezo2 in NEBs eliminated responses to airway closure. NEBs were dispensable for the Hering-Breuer inspiratory reflex, which indicated that discrete terminal structures detect airway closure and inflation. Similar to the involvement of Merkel cells in touch sensation3,4, NEBs are PIEZO2-expressing epithelial cells and, moreover, are crucial for an aspect of lung mechanosensation. These findings expand our understanding of neuronal diversity in the airways and reveal a dedicated vagal pathway that detects airway closure to help preserve respiratory function.
Collapse
Affiliation(s)
- Michael S Schappe
- Department of Cell Biology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Philip A Brinn
- Department of Cell Biology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Narendra R Joshi
- Department of Cell Biology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Rachel S Greenberg
- Department of Cell Biology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Soohong Min
- Department of Cell Biology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - AbdulRasheed A Alabi
- Department of Cell Biology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Chuchu Zhang
- Department of Cell Biology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Stephen D Liberles
- Department of Cell Biology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
35
|
Logan DR, Hall J, Bianchi L. A helping hand: roles for accessory cells in the sense of touch across species. Front Cell Neurosci 2024; 18:1367476. [PMID: 38433863 PMCID: PMC10904576 DOI: 10.3389/fncel.2024.1367476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 02/05/2024] [Indexed: 03/05/2024] Open
Abstract
During touch, mechanical forces are converted into electrochemical signals by tactile organs made of neurons, accessory cells, and their shared extracellular spaces. Accessory cells, including Merkel cells, keratinocytes, lamellar cells, and glia, play an important role in the sensation of touch. In some cases, these cells are intrinsically mechanosensitive; however, other roles include the release of chemical messengers, the chemical modification of spaces that are shared with neurons, and the tuning of neural sensitivity by direct physical contact. Despite great progress in the last decade, the precise roles of these cells in the sense of touch remains unclear. Here we review the known and hypothesized contributions of several accessory cells to touch by incorporating research from multiple organisms including C. elegans, D. melanogaster, mammals, avian models, and plants. Several broad parallels are identified including the regulation of extracellular ions and the release of neuromodulators by accessory cells, as well as the emerging potential physical contact between accessory cells and sensory neurons via tethers. Our broader perspective incorporates the importance of accessory cells to the understanding of human touch and pain, as well as to animal touch and its molecular underpinnings, which are underrepresented among the animal welfare literature. A greater understanding of touch, which must include a role for accessory cells, is also relevant to emergent technical applications including prosthetics, virtual reality, and robotics.
Collapse
Affiliation(s)
| | | | - Laura Bianchi
- Department of Physiology and Biophysics, University of Miami, Miami, FL, United States
| |
Collapse
|
36
|
Ojeda-Alonso J, Calvo-Enrique L, Paricio-Montesinos R, Kumar R, Zhang MD, Poulet JFA, Ernfors P, Lewin GR. Sensory Schwann cells set perceptual thresholds for touch and selectively regulate mechanical nociception. Nat Commun 2024; 15:898. [PMID: 38320986 PMCID: PMC10847425 DOI: 10.1038/s41467-024-44845-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/08/2024] [Indexed: 02/08/2024] Open
Abstract
Previous work identified nociceptive Schwann cells that can initiate pain. Consistent with the existence of inherently mechanosensitive sensory Schwann cells, we found that in mice, the mechanosensory function of almost all nociceptors, including those signaling fast pain, were dependent on sensory Schwann cells. In polymodal nociceptors, sensory Schwann cells signal mechanical, but not cold or heat pain. Terminal Schwann cells also surround mechanoreceptor nerve-endings within the Meissner's corpuscle and in hair follicle lanceolate endings that both signal vibrotactile touch. Within Meissner´s corpuscles, two molecularly and functionally distinct sensory Schwann cells positive for Sox10 and Sox2 differentially modulate rapidly adapting mechanoreceptor function. Using optogenetics we show that Meissner's corpuscle Schwann cells are necessary for the perception of low threshold vibrotactile stimuli. These results show that sensory Schwann cells within diverse glio-neural mechanosensory end-organs are sensors for mechanical pain as well as necessary for touch perception.
Collapse
Affiliation(s)
- Julia Ojeda-Alonso
- Molecular Physiology of Somatic Sensation, Max Delbrück Center for Molecular Medicine, 13125, Berlin, Germany
| | - Laura Calvo-Enrique
- Department of Medical Biochemistry and Biophysics, Division of Molecular Neurobiology, Karolinska Institutet, Stockholm, Sweden
- Departamento de Biología Celular y Patología, Instituto de Neurociencias de Castilla y León, University of Salamanca, Salamanca, Spain
| | - Ricardo Paricio-Montesinos
- Neural Circuits and Behavior, Max Delbrück Center for Molecular Medicine, 13125, Berlin, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen e. V. (DZNE), Venusberg-Campus 1/99, 53127, Bonn, Germany
| | - Rakesh Kumar
- Department of Medical Biochemistry and Biophysics, Division of Molecular Neurobiology, Karolinska Institutet, Stockholm, Sweden
- Pain Center, Department of Anesthesiology Washington University School of Medicine, CB 8108, 660 S. Euclid Ave., St. Louis, MO, 63110, USA
| | - Ming-Dong Zhang
- Department of Medical Biochemistry and Biophysics, Division of Molecular Neurobiology, Karolinska Institutet, Stockholm, Sweden
| | - James F A Poulet
- Neural Circuits and Behavior, Max Delbrück Center for Molecular Medicine, 13125, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Patrik Ernfors
- Department of Medical Biochemistry and Biophysics, Division of Molecular Neurobiology, Karolinska Institutet, Stockholm, Sweden.
| | - Gary R Lewin
- Molecular Physiology of Somatic Sensation, Max Delbrück Center for Molecular Medicine, 13125, Berlin, Germany.
- Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany.
- German Center for Mental Health (DZPG), partner site Berlin, Berlin, Germany.
| |
Collapse
|
37
|
Kwon JY, Kim JE, Kim JS, Chun SY, Soh K, Yoon JH. Artificial sensory system based on memristive devices. EXPLORATION (BEIJING, CHINA) 2024; 4:20220162. [PMID: 38854486 PMCID: PMC10867403 DOI: 10.1002/exp.20220162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/16/2023] [Indexed: 06/11/2024]
Abstract
In the biological nervous system, the integration and cooperation of parallel system of receptors, neurons, and synapses allow efficient detection and processing of intricate and disordered external information. Such systems acquire and process environmental data in real-time, efficiently handling complex tasks with minimal energy consumption. Memristors can mimic typical biological receptors, neurons, and synapses by implementing key features of neuronal signal-processing functions such as selective adaption in receptors, leaky integrate-and-fire in neurons, and synaptic plasticity in synapses. External stimuli are sensitively detected and filtered by "artificial receptors," encoded into spike signals via "artificial neurons," and integrated and stored through "artificial synapses." The high operational speed, low power consumption, and superior scalability of memristive devices make their integration with high-performance sensors a promising approach for creating integrated artificial sensory systems. These integrated systems can extract useful data from a large volume of raw data, facilitating real-time detection and processing of environmental information. This review explores the recent advances in memristor-based artificial sensory systems. The authors begin with the requirements of artificial sensory elements and then present an in-depth review of such elements demonstrated by memristive devices. Finally, the major challenges and opportunities in the development of memristor-based artificial sensory systems are discussed.
Collapse
Affiliation(s)
- Ju Young Kwon
- Electronic Materials Research CenterKorea Institute of Science and Technology (KIST)SeoulRepublic of Korea
| | - Ji Eun Kim
- Electronic Materials Research CenterKorea Institute of Science and Technology (KIST)SeoulRepublic of Korea
- Department of Materials Science and EngineeringKorea UniversitySeoulRepublic of Korea
| | - Jong Sung Kim
- Electronic Materials Research CenterKorea Institute of Science and Technology (KIST)SeoulRepublic of Korea
- Department of Materials Science and EngineeringKorea UniversitySeoulRepublic of Korea
| | - Suk Yeop Chun
- Electronic Materials Research CenterKorea Institute of Science and Technology (KIST)SeoulRepublic of Korea
- KU‐KIST Graduate School of Converging Science and TechnologyKorea UniversitySeoulRepublic of Korea
| | - Keunho Soh
- Electronic Materials Research CenterKorea Institute of Science and Technology (KIST)SeoulRepublic of Korea
- Department of Materials Science and EngineeringKorea UniversitySeoulRepublic of Korea
| | - Jung Ho Yoon
- Electronic Materials Research CenterKorea Institute of Science and Technology (KIST)SeoulRepublic of Korea
| |
Collapse
|
38
|
Nguyen MB, Flora P, Branch MC, Weber M, Zheng XY, Sivan U, Joost S, Annusver K, Zheng D, Kasper M, Ezhkova E. Tenascin-C expressing touch dome keratinocytes exhibit characteristics of all epidermal lineages. SCIENCE ADVANCES 2024; 10:eadi5791. [PMID: 38241368 PMCID: PMC10798558 DOI: 10.1126/sciadv.adi5791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 12/20/2023] [Indexed: 01/21/2024]
Abstract
The touch dome (TD) keratinocytes are specialized epidermal cells that intimately associate with the light touch sensing Merkel cells (MCs). The TD keratinocytes function as a niche for the MCs and can induce de novo hair follicles upon stimulation; however, how the TD keratinocytes are maintained during homeostasis remains unclear. scRNA-seq identified a specific TD keratinocyte marker, Tenascin-C (TNC). Lineage tracing of Tnc-expressing TD keratinocytes revealed that these cells maintain themselves as an autonomous epidermal compartment and give rise to MCs upon injury. Molecular characterization uncovered that, while the transcriptional and chromatin landscape of the TD keratinocytes is remarkably similar to that of the interfollicular epidermal keratinocytes, it also shares certain molecular signatures with the hair follicle keratinocytes. Our study highlights that the TD keratinocytes in the adult skin have molecular characteristics of keratinocytes of diverse epidermal lineages.
Collapse
Affiliation(s)
- Minh Binh Nguyen
- Black Family Stem Cell Institute, Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Pooja Flora
- Black Family Stem Cell Institute, Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Meagan C. Branch
- Black Family Stem Cell Institute, Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Madison Weber
- Black Family Stem Cell Institute, Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Xiang Yu Zheng
- Department of Genetics, Albert Einstein College of Medicine, New York, NY, USA
- Department of Neurology, and Neuroscience, Albert Einstein College of Medicine, New York, NY, USA
| | - Unnikrishnan Sivan
- Department of Neurology, and Neuroscience, Albert Einstein College of Medicine, New York, NY, USA
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Simon Joost
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Karl Annusver
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Deyou Zheng
- Department of Genetics, Albert Einstein College of Medicine, New York, NY, USA
- Department of Neurology, and Neuroscience, Albert Einstein College of Medicine, New York, NY, USA
| | - Maria Kasper
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Elena Ezhkova
- Black Family Stem Cell Institute, Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
39
|
Tominaga M, Kashio M. Thermosensation and TRP Channels. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1461:3-13. [PMID: 39289270 DOI: 10.1007/978-981-97-4584-5_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Somatosensory neurons can sense external temperature by converting sensation of temperature information to neural activity via afferent input to the central nervous system. Various populations of somatosensory neurons have specialized gene expression, including expression of thermosensitive transient receptor potential (TRP) ion channels. Thermosensitive TRP channels are responsible for thermal transduction at the peripheral ends of somatosensory neurons and can sense a wide range of temperatures. Here we focus on several thermosensitive TRP channels including TRPV1, TRPV4, TRPM2, TRPM3, TRPM8, TRPC5, and TRPA1 in sensory neurons. TRPV3, TRPV4, and TRPC5 are also involved in somatosensation in nonneuronal cells and tissues. In particular, we discuss whether skin senses ambient temperatures through TRPV3 and TRPV4 activation in skin keratinocytes and the involvement of TRPM2 expressed by hypothalamic neurons in thermosensation in the brain.
Collapse
Affiliation(s)
- Makoto Tominaga
- Division of Cell Signaling, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan.
- Thermal Biology Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Japan.
- Department of Physiological Sciences, The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Japan.
| | - Makiko Kashio
- Division of Cell Signaling, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan
- Thermal Biology Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Japan
- Department of Physiological Sciences, The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Japan
| |
Collapse
|
40
|
Purice MD, Severs LJ, Singhvi A. Glia in Invertebrate Models: Insights from Caenorhabditis elegans. ADVANCES IN NEUROBIOLOGY 2024; 39:19-49. [PMID: 39190070 DOI: 10.1007/978-3-031-64839-7_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Glial cells modulate brain development, function, and health across all bilaterian animals, and studies in the past two decades have made rapid strides to uncover the underlying molecular mechanisms of glial functions. The nervous system of the invertebrate genetic model Caenorhabditis elegans (C. elegans) has small cell numbers with invariant lineages, mapped connectome, easy genetic manipulation, and a short lifespan, and the animal is also optically transparent. These characteristics are revealing C. elegans to be a powerful experimental platform for studying glial biology. This chapter discusses studies in C. elegans that add to our understanding of how glia modulate adult neural functions, and thereby animal behaviors, as well as emerging evidence of their roles as autonomous sensory cells. The rapid molecular and cellular advancements in understanding C. elegans glia in recent years underscore the utility of this model in studies of glial biology. We conclude with a perspective on future research avenues for C. elegans glia that may readily contribute molecular mechanistic insights into glial functions in the nervous system.
Collapse
Affiliation(s)
- Maria D Purice
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Liza J Severs
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Aakanksha Singhvi
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA.
- Department of Biological Structure, University of Washington School of Medicine, Seattle, WA, USA.
| |
Collapse
|
41
|
Tong C, Moayedi Y, Lumpkin EA. Merkel cells and keratinocytes in oral mucosa are activated by mechanical stimulation. Physiol Rep 2024; 12:e15826. [PMID: 38246872 PMCID: PMC10800296 DOI: 10.14814/phy2.15826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 08/28/2023] [Indexed: 01/23/2024] Open
Abstract
The detection of mechanical qualities of foodstuffs is essential for nutrient acquisition, evaluation of food freshness, and bolus formation during mastication. However, the mechanisms through which mechanosensitive cells in the oral cavity transmit mechanical information from the periphery to the brain are not well defined. We hypothesized Merkel cells, which are epithelial mechanoreceptors and important for pressure and texture sensing in the skin, can be mechanically activated in the oral cavity. Using live-cell calcium imaging, we recorded Merkel cell activity in ex vivo gingival and palatal preparations from mice in response to mechanical stimulation. Merkel cells responded with distinct temporal patterns and activation thresholds in a region-specific manner, with Merkel cells in the hard palate having a higher mean activation threshold than those in the gingiva. Unexpectedly, we found that oral keratinocytes were also activated by mechanical stimulation, even in the absence of Merkel cells. This indicates that mechanical stimulation of oral mucosa independently activates at least two subpopulations of epithelial cells. Finally, we found that oral Merkel cells contribute to preference for consuming oily emulsion. To our knowledge, these data represent the first functional study of Merkel-cell physiology and its role in flavor detection in the oral cavity.
Collapse
Affiliation(s)
- Chi‐Kun Tong
- Department of Physiology and Cellular BiophysicsColumbia University Medical CenterNew YorkNew YorkUSA
| | - Yalda Moayedi
- Department of Physiology and Cellular BiophysicsColumbia University Medical CenterNew YorkNew YorkUSA
- Present address:
Departments of Neurology and Otolaryngology‐Head and Neck SurgeryColumbia UniversityNew YorkNYUSA
| | - Ellen A. Lumpkin
- Department of Physiology and Cellular BiophysicsColumbia University Medical CenterNew YorkNew YorkUSA
- Department of DermatologyColumbia University Medical CenterNew YorkNew YorkUSA
- Present address:
Department of Molecular and Cell BiologyHelen Wills Neuroscience Institute, University of California, BerkeleyBerkeleyCAUSA
| |
Collapse
|
42
|
Zhang M, An H, Gu Z, Zhang YC, Wan T, Jiang HR, Zhang FS, Jiang BG, Han N, Wen YQ, Zhang PX. Multifunctional wet-adhesive chitosan/acrylic conduit for sutureless repair of peripheral nerve injuries. Int J Biol Macromol 2023; 253:126793. [PMID: 37709238 DOI: 10.1016/j.ijbiomac.2023.126793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/30/2023] [Accepted: 09/05/2023] [Indexed: 09/16/2023]
Abstract
The incidence of peripheral nerve injury (PNI) is high worldwide, and a poor prognosis is common. Surgical closure and repair of the affected area are crucial to ensure the effective treatment of peripheral nerve injuries. Despite being the standard treatment approach, reliance on sutures to seal the severed nerve ends introduces several limitations and restrictions. This technique is intricate and time-consuming, and the application of threading and punctate sutures may lead to tissue damage and heightened tension concentrations, thus increasing the risk of fixation failure and local inflammation. This study aimed to develop easily implantable chitosan-based peripheral nerve repair conduits that combine acrylic acid and cleavable N-hydroxysuccinimide to reduce nerve damage during repair. In ex vivo tissue adhesion tests, the conduit achieved maximal interfacial toughness of 705 J m-2 ± 30 J m-2, allowing continuous bridging of the severed nerve ends. Adhesive repair significantly reduces local inflammation caused by conventional sutures, and the positive charge of chitosan disrupts the bacterial cell wall and reduces implant-related infections. This promises to open new avenues for sutureless nerve repair and reliable medical implants.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Orthopedics and Trauma, Peking University People's Hospital, Key Laboratory of Trauma and Neural Regeneration, Peking University, National Center for Trauma Medicine, Beijing 100044, China.
| | - Heng An
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry & Biological Engineering, University of Science & Technology Beijing, Beijing 100083, China.
| | - Zhen Gu
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry & Biological Engineering, University of Science & Technology Beijing, Beijing 100083, China.
| | - Yi-Chong Zhang
- Department of Orthopedics and Trauma, Peking University People's Hospital, Key Laboratory of Trauma and Neural Regeneration, Peking University, National Center for Trauma Medicine, Beijing 100044, China.
| | - Teng Wan
- Department of Orthopedics and Trauma, Peking University People's Hospital, Key Laboratory of Trauma and Neural Regeneration, Peking University, National Center for Trauma Medicine, Beijing 100044, China.
| | - Hao-Ran Jiang
- Department of Orthopedics and Trauma, Peking University People's Hospital, Key Laboratory of Trauma and Neural Regeneration, Peking University, National Center for Trauma Medicine, Beijing 100044, China.
| | - Feng-Shi Zhang
- Department of Orthopedics and Trauma, Peking University People's Hospital, Key Laboratory of Trauma and Neural Regeneration, Peking University, National Center for Trauma Medicine, Beijing 100044, China.
| | - Bao-Guo Jiang
- Department of Orthopedics and Trauma, Peking University People's Hospital, Key Laboratory of Trauma and Neural Regeneration, Peking University, National Center for Trauma Medicine, Beijing 100044, China.
| | - Na Han
- Department of Orthopedics and Trauma, Peking University People's Hospital, Key Laboratory of Trauma and Neural Regeneration, Peking University, National Center for Trauma Medicine, Beijing 100044, China.
| | - Yong-Qiang Wen
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry & Biological Engineering, University of Science & Technology Beijing, Beijing 100083, China.
| | - Pei-Xun Zhang
- Department of Orthopedics and Trauma, Peking University People's Hospital, Key Laboratory of Trauma and Neural Regeneration, Peking University, National Center for Trauma Medicine, Beijing 100044, China.
| |
Collapse
|
43
|
Mikesell AR, Isaeva E, Schulte ML, Menzel AD, Sriram A, Prahl MM, Shin SM, Sadler KE, Yu H, Stucky CL. Keratinocyte Piezo1 drives paclitaxel-induced mechanical hypersensitivity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.12.571332. [PMID: 38168305 PMCID: PMC10760029 DOI: 10.1101/2023.12.12.571332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Recent work demonstrates that epidermal keratinocytes are critical for normal touch sensation. However, it is unknown if keratinocytes contribute to touch evoked pain and hypersensitivity following tissue injury. Here, we used inhibitory optogenetic and chemogenetic techniques to determine the extent to which keratinocyte activity contributes to the severe neuropathic pain that accompanies chemotherapeutic treatment. We found that keratinocyte inhibition largely alleviates paclitaxel-induced mechanical hypersensitivity. Furthermore, we found that paclitaxel exposure sensitizes mouse and human keratinocytes to mechanical stimulation through the keratinocyte mechanotransducer Piezo1. These findings demonstrate the contribution of non-neuronal cutaneous cells to neuropathic pain and pave the way for the development of new pain-relief strategies that target epidermal keratinocytes and Piezo1.
Collapse
Affiliation(s)
- Alexander R Mikesell
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin; Milwaukee, WI 53226, USA
| | - Elena Isaeva
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin; Milwaukee, WI 53226, USA
| | | | - Anthony D Menzel
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin; Milwaukee, WI 53226, USA
| | - Anvitha Sriram
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin; Milwaukee, WI 53226, USA
| | - Megan M Prahl
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin; Milwaukee, WI 53226, USA
| | - Seung Min Shin
- Department of Anesthesiology, Medical College of Wisconsin; Milwaukee, WI 53226, USA
| | - Katelyn E Sadler
- Department of Neuroscience, Center for Advanced Pain Studies, University of Texas at Dallas; Richardson, TX 75080, USA
| | - Hongwei Yu
- Department of Anesthesiology, Medical College of Wisconsin; Milwaukee, WI 53226, USA
| | - Cheryl L Stucky
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin; Milwaukee, WI 53226, USA
| |
Collapse
|
44
|
Mao F, Yang W. How Merkel cells transduce mechanical stimuli: A biophysical model of Merkel cells. PLoS Comput Biol 2023; 19:e1011720. [PMID: 38117763 PMCID: PMC10732429 DOI: 10.1371/journal.pcbi.1011720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 11/27/2023] [Indexed: 12/22/2023] Open
Abstract
Merkel cells combine with Aβ afferents, producing slowly adapting type 1(SA1) responses to mechanical stimuli. However, how Merkel cells transduce mechanical stimuli into neural signals to Aβ afferents is still unclear. Here we develop a biophysical model of Merkel cells for mechanical transduction by incorporating main ingredients such as Ca2+ and K+ voltage-gated channels, Piezo2 channels, internal Ca2+ stores, neurotransmitters release, and cell deformation. We first validate our model with several experiments. Then we reveal that Ca2+ and K+ channels on the plasma membrane shape the depolarization of membrane potentials, further regulating the Ca2+ transients in the cells. We also show that Ca2+ channels on the plasma membrane mainly inspire the Ca2+ transients, while internal Ca2+ stores mainly maintain the Ca2+ transients. Moreover, we show that though Piezo2 channels are rapidly adapting mechanical-sensitive channels, they are sufficient to inspire sustained Ca2+ transients in Merkel cells, which further induce the release of neurotransmitters for tens of seconds. Thus our work provides a model that captures the membrane potentials and Ca2+ transients features of Merkel cells and partly explains how Merkel cells transduce the mechanical stimuli by Piezo2 channels.
Collapse
Affiliation(s)
- Fangtao Mao
- Research Center for Humanoid Sensing, Intelligent Perception Research Institute of Zhejiang Lab, Hangzhou, Zhejiang, China
| | - Wenzhen Yang
- Research Center for Humanoid Sensing, Intelligent Perception Research Institute of Zhejiang Lab, Hangzhou, Zhejiang, China
| |
Collapse
|
45
|
CHAMBERS JK, ITO S, UCHIDA K. Feline papillomavirus-associated Merkel cell carcinoma: a comparative review with human Merkel cell carcinoma. J Vet Med Sci 2023; 85:1195-1209. [PMID: 37743525 PMCID: PMC10686778 DOI: 10.1292/jvms.23-0322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 08/28/2023] [Indexed: 09/26/2023] Open
Abstract
Merkel cell carcinoma (MCC) is a rare skin tumor that shares a similar immunophenotype with Merkel cells, although its origin is debatable. More than 80% of human MCC cases are associated with Merkel cell polyomavirus infections and viral gene integration. Recent studies have shown that the clinical and pathological characteristics of feline MCC are comparable to those of human MCC, including its occurrence in aged individuals, aggressive behavior, histopathological findings, and the expression of Merkel cell markers. More than 90% of feline MCC are positive for the Felis catus papillomavirus type 2 (FcaPV2) gene. Molecular changes involved in papillomavirus-associated tumorigenesis, such as increased p16 and decreased retinoblastoma (Rb) and p53 protein levels, were observed in FcaPV2-positive MCC, but not in FcaPV2-negative MCC cases. These features were also confirmed in FcaPV2-positive and -negative MCC cell lines. The expression of papillomavirus E6 and E7 genes, responsible for p53 degradation and Rb inhibition, respectively, was detected in tumor cells by in situ hybridization. Whole genome sequencing revealed the integration of FcaPV2 DNA into the host feline genome. MCC cases often develop concurrent skin lesions, such as viral plaque and squamous cell carcinoma, which are also associated with papillomavirus infection. These findings suggest that FcaPV2 infection and integration of viral genes are involved in the development of MCC in cats. This review provides an overview of the comparative pathology of feline and human MCC caused by different viruses and discusses their cell of origin.
Collapse
Affiliation(s)
- James K CHAMBERS
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Soma ITO
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kazuyuki UCHIDA
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
46
|
Turecek J, Ginty DD. Coding of self and environment by Pacinian neurons in freely moving animals. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.11.557225. [PMID: 37745531 PMCID: PMC10515833 DOI: 10.1101/2023.09.11.557225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Pacinian corpuscle neurons are specialized low-threshold mechanoreceptors (LTMRs) that are tuned to detect high-frequency vibration (~40-2000 Hz), however it is unclear how Pacinians and other LTMRs encode mechanical forces encountered during naturalistic behavior. Here, we developed methods to record LTMRs in awake, freely moving mice. We find that Pacinians, but not other LTMRs, encode subtle vibrations of surfaces encountered by the animal, including low-amplitude vibrations initiated over two meters away. Strikingly, Pacinians are also highly active during a wide variety of natural behaviors, including walking, grooming, digging, and climbing. Pacinians in the hindlimb are sensitive enough to be activated by forelimb- or upper-body-dominant behaviors. Finally, we find that Pacinian LTMRs have diverse tuning and sensitivity. Our findings suggest a Pacinian population code for the representation of vibro-tactile features generated by self-initiated movements and low-amplitude environmental vibrations emanating from distant locations.
Collapse
Affiliation(s)
- Josef Turecek
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115
| | - David D Ginty
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115
| |
Collapse
|
47
|
Czyz CM, Kunth PW, Gruber F, Kremslehner C, Hammers CM, Hundt JE. Requisite instruments for the establishment of three-dimensional epidermal human skin equivalents-A methods review. Exp Dermatol 2023; 32:1870-1883. [PMID: 37605856 DOI: 10.1111/exd.14911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 07/30/2023] [Accepted: 08/02/2023] [Indexed: 08/23/2023]
Abstract
Human skin equivalents (HSEs) are three-dimensional skin organ culture models raised in vitro. This review gives an overview of common techniques for setting up HSEs. The HSE consists of an artificial dermis and epidermis. 3T3-J2 murine fibroblasts, purchased human fibroblasts or freshly isolated and cultured fibroblasts, together with other components, for example, collagen type I, are used to build the scaffold. Freshly isolated and cultured keratinocytes are seeded on top. It is possible to add other cell types, for example, melanocytes, to the HSE-depending on the research question. After several days and further steps, the 3D skin can be harvested. Additionally, we show possible markers and techniques for evaluation of artificial skin. Furthermore, we provide a comparison of HSEs to human skin organ culture, a model which employs human donor skin. We outline advantages and limitations of both models and discuss future perspectives in using HSEs.
Collapse
Affiliation(s)
- Christianna Marie Czyz
- Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck, Lübeck, Germany
| | - Paul Werner Kunth
- Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck, Lübeck, Germany
| | - Florian Gruber
- Christian Doppler Laboratory for Skin Multimodal Analytical Imaging of Aging and Senescence - SKINMAGINE, Medical University of Vienna, Vienna, Austria
| | - Christopher Kremslehner
- Christian Doppler Laboratory for Skin Multimodal Analytical Imaging of Aging and Senescence - SKINMAGINE, Medical University of Vienna, Vienna, Austria
| | - Christoph Matthias Hammers
- Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck, Lübeck, Germany
- Department of Dermatology, Venereology and Allergology, University of Kiel, Kiel, Germany
| | | |
Collapse
|
48
|
Jang HJ, Tiruneh DM, Ryu H, Yoon JK. Piezoelectric and Triboelectric Nanogenerators for Enhanced Wound Healing. Biomimetics (Basel) 2023; 8:517. [PMID: 37999158 PMCID: PMC10669670 DOI: 10.3390/biomimetics8070517] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/22/2023] [Accepted: 10/30/2023] [Indexed: 11/25/2023] Open
Abstract
Wound healing is a highly orchestrated biological process characterized by sequential phases involving inflammation, proliferation, and tissue remodeling, and the role of endogenous electrical signals in regulating these phases has been highlighted. Recently, external electrostimulation has been shown to enhance these processes by promoting cell migration, extracellular matrix formation, and growth factor release while suppressing pro-inflammatory signals and reducing the risk of infection. Among the innovative approaches, piezoelectric and triboelectric nanogenerators have emerged as the next generation of flexible and wireless electronics designed for energy harvesting and efficiently converting mechanical energy into electrical power. In this review, we discuss recent advances in the emerging field of nanogenerators for harnessing electrical stimulation to accelerate wound healing. We elucidate the fundamental mechanisms of wound healing and relevant bioelectric physiology, as well as the principles underlying each nanogenerator technology, and review their preclinical applications. In addition, we address the prominent challenges and outline the future prospects for this emerging era of electrical wound-healing devices.
Collapse
Affiliation(s)
- Hye-Jeong Jang
- Department of Systems Biotechnology, Chung-Ang University, Anseong-si 17546, Gyeonggi-do, Republic of Korea;
| | - Daniel Manaye Tiruneh
- Department of Intelligence Energy and Industry, Chung-Ang University, Seoul 06974, Republic of Korea;
| | - Hanjun Ryu
- Department of Intelligence Energy and Industry, Chung-Ang University, Seoul 06974, Republic of Korea;
- Department of Advanced Materials Engineering, Chung-Ang University, Anseong-si 17546, Gyeonggi-do, Republic of Korea
| | - Jeong-Kee Yoon
- Department of Systems Biotechnology, Chung-Ang University, Anseong-si 17546, Gyeonggi-do, Republic of Korea;
| |
Collapse
|
49
|
Agramunt J, Parke B, Mena S, Ubels V, Jimenez F, Williams G, Rhodes ADY, Limbu S, Hexter M, Knight L, Hashemi P, Kozlov AS, Higgins CA. Mechanical stimulation of human hair follicle outer root sheath cultures activates adjacent sensory neurons. SCIENCE ADVANCES 2023; 9:eadh3273. [PMID: 37889977 PMCID: PMC10610912 DOI: 10.1126/sciadv.adh3273] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023]
Abstract
Mechanical stimuli, such as stroking or pressing on the skin, activate mechanoreceptors transmitting information to the sensory nervous system and brain. It is well accepted that deflection of the hair fiber that occurs with a light breeze or touch directly activates the sensory neurons surrounding the hair follicle, facilitating transmission of mechanical information. Here, we hypothesized that hair follicle outer root sheath cells act as transducers of mechanical stimuli to sensory neurons surrounding the hair follicle. Using electrochemical analysis on human hair follicle preparations in vitro, we were able to show that outer root sheath cells release ATP and the neurotransmitters serotonin and histamine in response to mechanical stimulation. Using calcium imaging combined with pharmacology in a coculture of outer root sheath cells with sensory neurons, we found that the release of these three molecules from hair follicle cells leads to activation of sensory neurons.
Collapse
Affiliation(s)
- Julià Agramunt
- Department of Bioengineering, Imperial College London, London, UK
| | - Brenna Parke
- Department of Bioengineering, Imperial College London, London, UK
| | - Sergio Mena
- Department of Bioengineering, Imperial College London, London, UK
| | - Victor Ubels
- Department of Bioengineering, Imperial College London, London, UK
| | - Francisco Jimenez
- Mediteknia Clinic, Las Palmas, Gran Canaria, Spain
- University Fernando Pessoa Canarias, Gran Canaria, Spain
| | | | - Anna DY Rhodes
- Department of Bioengineering, Imperial College London, London, UK
| | - Summik Limbu
- Department of Bioengineering, Imperial College London, London, UK
| | - Melissa Hexter
- Department of Bioengineering, Imperial College London, London, UK
| | | | - Parastoo Hashemi
- Department of Bioengineering, Imperial College London, London, UK
| | - Andriy S. Kozlov
- Department of Bioengineering, Imperial College London, London, UK
| | | |
Collapse
|
50
|
Handler A, Zhang Q, Pang S, Nguyen TM, Iskols M, Nolan-Tamariz M, Cattel S, Plumb R, Sanchez B, Ashjian K, Shotland A, Brown B, Kabeer M, Turecek J, DeLisle MM, Rankin G, Xiang W, Pavarino EC, Africawala N, Santiago C, Lee WCA, Xu CS, Ginty DD. Three-dimensional reconstructions of mechanosensory end organs suggest a unifying mechanism underlying dynamic, light touch. Neuron 2023; 111:3211-3229.e9. [PMID: 37725982 PMCID: PMC10773061 DOI: 10.1016/j.neuron.2023.08.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/31/2023] [Accepted: 08/22/2023] [Indexed: 09/21/2023]
Abstract
Across mammalian skin, structurally complex and diverse mechanosensory end organs respond to mechanical stimuli and enable our perception of dynamic, light touch. How forces act on morphologically dissimilar mechanosensory end organs of the skin to gate the requisite mechanotransduction channel Piezo2 and excite mechanosensory neurons is not understood. Here, we report high-resolution reconstructions of the hair follicle lanceolate complex, Meissner corpuscle, and Pacinian corpuscle and the subcellular distribution of Piezo2 within them. Across all three end organs, Piezo2 is restricted to the sensory axon membrane, including axon protrusions that extend from the axon body. These protrusions, which are numerous and elaborate extensively within the end organs, tether the axon to resident non-neuronal cells via adherens junctions. These findings support a unified model for dynamic touch in which mechanical stimuli stretch hundreds to thousands of axon protrusions across an end organ, opening proximal, axonal Piezo2 channels and exciting the neuron.
Collapse
Affiliation(s)
- Annie Handler
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Qiyu Zhang
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Song Pang
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Tri M Nguyen
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Michael Iskols
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Michael Nolan-Tamariz
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Stuart Cattel
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Rebecca Plumb
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Brianna Sanchez
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Karyl Ashjian
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Aria Shotland
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Bartianna Brown
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Madiha Kabeer
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Josef Turecek
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Michelle M DeLisle
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Genelle Rankin
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Wangchu Xiang
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Elisa C Pavarino
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Nusrat Africawala
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Celine Santiago
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Wei-Chung Allen Lee
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
| | - C Shan Xu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - David D Ginty
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|