1
|
Ji RL, Tao YX. Biased signaling in drug discovery and precision medicine. Pharmacol Ther 2025; 268:108804. [PMID: 39904401 DOI: 10.1016/j.pharmthera.2025.108804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/10/2025] [Accepted: 01/21/2025] [Indexed: 02/06/2025]
Abstract
Receptors are crucial for converting chemical and environmental signals into cellular responses, making them prime targets in drug discovery, with about 70% of drugs targeting these receptors. Biased signaling, or functional selectivity, has revolutionized drug development by enabling precise modulation of receptor signaling pathways. This concept is more firmly established in G protein-coupled receptor and has now been applied to other receptor types, including ion channels, receptor tyrosine kinases, and nuclear receptors. Advances in structural biology have further refined our understanding of biased signaling. This targeted approach enhances therapeutic efficacy and potentially reduces side effects. Numerous biased drugs have been developed and approved as therapeutics to treat various diseases, demonstrating their significant therapeutic potential. This review provides a comprehensive overview of biased signaling in drug discovery and disease treatment, highlighting recent advancements and exploring the therapeutic potential of these innovative modulators across various diseases.
Collapse
Affiliation(s)
- Ren-Lei Ji
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, United States.
| | - Ya-Xiong Tao
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, United States.
| |
Collapse
|
2
|
Cannone G, Berto L, Malhaire F, Ferguson G, Fouillen A, Balor S, Font-Ingles J, Llebaria A, Goudet C, Kotecha A, K R V, Lebon G. Conformational diversity in class C GPCR positive allosteric modulation. Nat Commun 2025; 16:619. [PMID: 39805839 PMCID: PMC11730304 DOI: 10.1038/s41467-024-55439-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 12/10/2024] [Indexed: 01/16/2025] Open
Abstract
The metabotropic glutamate receptors (mGlus) are class C G protein-coupled receptors (GPCR) that form obligate dimers activated by the major excitatory neurotransmitter L-glutamate. The architecture of mGlu receptor comprises an extracellular Venus-Fly Trap domain (VFT) connected to the transmembrane domain (7TM) through a Cysteine-Rich Domain (CRD). The binding of L-glutamate in the VFTs and subsequent conformational change results in the signal being transmitted to the 7TM inducing G protein binding and activation. The mGlu receptors signal transduction can be allosterically potentiated by positive allosteric modulators (PAMs) binding to the 7TMs, which are of therapeutic interest in various neurological disorders. Here, we report the cryoEM structures of metabotropic glutamate receptor 5 (mGlu5) purified with three chemically and pharmacologically distinct PAMs. We find that the PAMs modulate the receptor equilibrium through their different binding modes, revealing how their interactions in the 7TMs impact the mGlu5 receptor conformational landscape and function. In addition, we identified a PAM-free but agonist-bound intermediate state that also reveals interactions mediated by intracellular loop 2. The activation of mGlu5 receptor is a multi-step process in which the binding of the PAMs in the 7TM modulates the equilibrium towards the active state.
Collapse
Affiliation(s)
| | - Ludovic Berto
- IGF, Université de Montpellier, CNRS, INSERM, 34094, Montpellier, France
| | - Fanny Malhaire
- IGF, Université de Montpellier, CNRS, INSERM, 34094, Montpellier, France
| | - Gavin Ferguson
- IGF, Université de Montpellier, CNRS, INSERM, 34094, Montpellier, France
| | - Aurelien Fouillen
- IGF, Université de Montpellier, CNRS, INSERM, 34094, Montpellier, France
| | - Stéphanie Balor
- METi, Centre de Biologie Intégrative, Université de Touluse, CNRS, UPS, 31062, Toulouse, France
| | - Joan Font-Ingles
- MCS, Laboratory of Medicinal Chemistry & Synthesis, Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, 08034, Barcelona, Spain
| | - Amadeu Llebaria
- MCS, Laboratory of Medicinal Chemistry & Synthesis, Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, 08034, Barcelona, Spain
| | - Cyril Goudet
- IGF, Université de Montpellier, CNRS, INSERM, 34094, Montpellier, France
| | - Abhay Kotecha
- Material and Structure Analysis Division, Thermo Fisher Scientific, Eindhoven, The Netherlands
| | - Vinothkumar K R
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Post, Bengaluru, 560065, India.
| | - Guillaume Lebon
- IGF, Université de Montpellier, CNRS, INSERM, 34094, Montpellier, France.
| |
Collapse
|
3
|
Conflitti P, Lyman E, Sansom MSP, Hildebrand PW, Gutiérrez-de-Terán H, Carloni P, Ansell TB, Yuan S, Barth P, Robinson AS, Tate CG, Gloriam D, Grzesiek S, Eddy MT, Prosser S, Limongelli V. Functional dynamics of G protein-coupled receptors reveal new routes for drug discovery. Nat Rev Drug Discov 2025:10.1038/s41573-024-01083-3. [PMID: 39747671 DOI: 10.1038/s41573-024-01083-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2024] [Indexed: 01/04/2025]
Abstract
G protein-coupled receptors (GPCRs) are the largest human membrane protein family that transduce extracellular signals into cellular responses. They are major pharmacological targets, with approximately 26% of marketed drugs targeting GPCRs, primarily at their orthosteric binding site. Despite their prominence, predicting the pharmacological effects of novel GPCR-targeting drugs remains challenging due to the complex functional dynamics of these receptors. Recent advances in X-ray crystallography, cryo-electron microscopy, spectroscopic techniques and molecular simulations have enhanced our understanding of receptor conformational dynamics and ligand interactions with GPCRs. These developments have revealed novel ligand-binding modes, mechanisms of action and druggable pockets. In this Review, we highlight such aspects for recently discovered small-molecule drugs and drug candidates targeting GPCRs, focusing on three categories: allosteric modulators, biased ligands, and bivalent and bitopic compounds. Although studies so far have largely been retrospective, integrating structural data on ligand-induced receptor functional dynamics into the drug discovery pipeline has the potential to guide the identification of drug candidates with specific abilities to modulate GPCR interactions with intracellular effector proteins such as G proteins and β-arrestins, enabling more tailored selectivity and efficacy profiles.
Collapse
Affiliation(s)
- Paolo Conflitti
- Euler Institute, Faculty of Biomedical Sciences, Università della Svizzera italiana (USI), Lugano, Switzerland
| | - Edward Lyman
- Department of Physics and Astronomy, University of Delaware, Newark, DE, USA
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, USA
| | - Mark S P Sansom
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Peter W Hildebrand
- Institute of Medical Physics and Biophysics, Faculty of Medicine, Leipzig University, Leipzig, Germany
| | - Hugo Gutiérrez-de-Terán
- Department of Cell and Molecular Biology, Uppsala University, Biomedical Centre, Uppsala, Sweden
| | - Paolo Carloni
- INM-9/IAS-5 Computational Biomedicine, Forschungszentrum Jülich, Jülich, Germany
- Department of Physics, RWTH Aachen University, Aachen, Germany
| | - T Bertie Ansell
- Department of Biochemistry, University of Oxford, Oxford, UK
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Shuguang Yuan
- Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Patrick Barth
- Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Ludwig Institute for Cancer Research Lausanne, Lausanne, Switzerland
| | - Anne S Robinson
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | | | - David Gloriam
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, Copenhagen, Denmark
| | - Stephan Grzesiek
- Focal Area Structural Biology and Biophysics, Biozentrum, University of Basel, Basel, Switzerland
| | - Matthew T Eddy
- Department of Chemistry, College of Liberal Arts and Sciences, University of Florida, Gainesville, FL, USA
| | - Scott Prosser
- Department of Chemistry, University of Toronto, Mississauga, Ontario, Canada
| | - Vittorio Limongelli
- Euler Institute, Faculty of Biomedical Sciences, Università della Svizzera italiana (USI), Lugano, Switzerland.
| |
Collapse
|
4
|
Manengu C, Zhu CH, Zhang GD, Tian MM, Lan XB, Tao LJ, Ma L, Liu Y, Yu JQ, Liu N. Metabotropic Glutamate Receptor 5: A Potential Target for Neuropathic Pain Treatment. Curr Neuropharmacol 2025; 23:276-294. [PMID: 39411936 PMCID: PMC11808587 DOI: 10.2174/1570159x23666241011163035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 06/13/2024] [Accepted: 06/20/2024] [Indexed: 02/12/2025] Open
Abstract
Neuropathic pain, a multifaceted and incapacitating disorder, impacts a significant number of individuals globally. Despite thorough investigation, the development of efficacious remedies for neuropathic pain continues to be a formidable task. Recent research has revealed the potential of metabotropic glutamate receptor 5 (mGlu5) as a target for managing neuropathic pain. mGlu5 is a receptor present in the central nervous system that has a vital function in regulating synaptic transmission and the excitability of neurons. This article seeks to investigate the importance of mGlu5 in neuropathic pain pathways, analyze the pharmacological approach of targeting mGlu5 for neuropathic pain treatment, and review the negative allosteric mGlu5 modulators used to target mGlu5. By comprehending the role of mGlu5 in neuropathic pain, we can discover innovative treatment approaches to ease the distress endured by persons afflicted with this incapacitating ailment.
Collapse
Affiliation(s)
- Chalton Manengu
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, Ningxia Hui Autonomous Region, China
- School of International Education, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Chun-Hao Zhu
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, Ningxia Hui Autonomous Region, China
| | - Guo-Dong Zhang
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, Ningxia Hui Autonomous Region, China
| | - Miao-Miao Tian
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, Ningxia Hui Autonomous Region, China
| | - Xiao-Bing Lan
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, Ningxia Hui Autonomous Region, China
| | - Li-Jun Tao
- Department of Pharmacy, People’s Hospital of Ningxia Hui Autonomous Region, Yinchuan, 750004, China
| | - Lin Ma
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, Ningxia Hui Autonomous Region, China
| | - Yue Liu
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, Ningxia Hui Autonomous Region, China
| | - Jian-Qiang Yu
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, Ningxia Hui Autonomous Region, China
| | - Ning Liu
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, Ningxia Hui Autonomous Region, China
| |
Collapse
|
5
|
Ma X, Chen LN, Liao M, Zhang L, Xi K, Guo J, Shen C, Shen DD, Cai P, Shen Q, Qi J, Zhang H, Zang SK, Dong YJ, Miao L, Qin J, Ji SY, Li Y, Liu J, Mao C, Zhang Y, Chai R. Molecular insights into the activation mechanism of GPR156 in maintaining auditory function. Nat Commun 2024; 15:10601. [PMID: 39638804 PMCID: PMC11621567 DOI: 10.1038/s41467-024-54681-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 11/18/2024] [Indexed: 12/07/2024] Open
Abstract
The class C orphan G-protein-coupled receptor (GPCR) GPR156, which lacks the large extracellular region, plays a pivotal role in auditory function through Gi2/3. Here, we firstly demonstrate that GPR156 with high constitutive activity is essential for maintaining auditory function, and further reveal the structural basis of the sustained role of GPR156. We present the cryo-EM structures of human apo GPR156 and the GPR156-Gi3 complex, unveiling a small extracellular region formed by extracellular loop 2 (ECL2) and the N-terminus. The GPR156 dimer in both apo state and Gi3 protein-coupled state adopt a transmembrane (TM)5/6-TM5/6 interface, indicating the high constitutive activity of GPR156 in the apo state. Furthermore, C-terminus in G-bound subunit of GPR156 plays a dual role in promoting G protein binding within G-bound subunit while preventing the G-free subunit from binding to additional G protein. Together, these results explain how GPR156 constitutive activity is maintained through dimerization and provide a mechanistic insight into the sustained role of GPR156 in maintaining auditory function.
Collapse
Affiliation(s)
- Xiangyu Ma
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
| | - Li-Nan Chen
- Department of Pharmacology and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
| | - Menghui Liao
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
| | - Liyan Zhang
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
| | - Kun Xi
- Department of Pharmacology and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiamin Guo
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
| | - Cangsong Shen
- Key Laboratory of Molecular Biophysics of MOE, International Research Center for Sensory Biology and Technology of MOST, College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, China
- Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Dan-Dan Shen
- Department of Pharmacology and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
| | - Pengjun Cai
- Analytical Research Center for Organic and Biological Molecules, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Media, Chinese Academy of Sciences, Shanghai, China
| | - Qingya Shen
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
| | - Jieyu Qi
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
- Department of Neurology, Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Huibing Zhang
- Department of Pharmacology and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
| | - Shao-Kun Zang
- Department of Pharmacology and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
| | - Ying-Jun Dong
- Department of Pharmacology and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
| | - Luwei Miao
- Department of Pharmacology and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
| | - Jiao Qin
- Department of Pharmacology and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
| | - Su-Yu Ji
- Department of Pharmacology and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
| | - Yue Li
- Analytical Research Center for Organic and Biological Molecules, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Media, Chinese Academy of Sciences, Shanghai, China
| | - Jianfeng Liu
- Key Laboratory of Molecular Biophysics of MOE, International Research Center for Sensory Biology and Technology of MOST, College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, China.
- Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China.
| | - Chunyou Mao
- Center for Structural Pharmacology and Therapeutics Development, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Yan Zhang
- Department of Pharmacology and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China.
- Center for Structural Pharmacology and Therapeutics Development, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Medicine, Hangzhou, China.
| | - Renjie Chai
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China.
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China.
- Department of Neurology, Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing, China.
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
- Southeast University Shenzhen Research Institute, Shenzhen, China.
| |
Collapse
|
6
|
Li P, Lei W, Dong Y, Wang X, Ye X, Tian Y, Yang Y, Liu J, Li N, Niu X, Wang X, Tian Y, Xu L, Yang Y, Liu J. mGluR7: The new player protecting the central nervous system. Ageing Res Rev 2024; 102:102554. [PMID: 39454762 DOI: 10.1016/j.arr.2024.102554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/16/2024] [Accepted: 10/20/2024] [Indexed: 10/28/2024]
Abstract
Metabotropic glutamate receptor 7 (mGluR7) belongs to the family of type III mGluR receptor, playing an important part in the central nervous system (CNS) through response to neurotransmitter regulation, reduction of excitatory toxicity, and early neuronal development. Drugs targeting mGluR7 (mGluR7 agonists, antagonists, and allosteric modulators) may be among the most promising agents for the treatment of CNS disorders, such as psychiatric disorders, neurodegenerative diseases, and neurodevelopmental impairments, though these potential therapies are at early stages and the data are still limited. In this review, we summarized the structure and function of mGluR7 and discussed recent progress on mGluR7 agonists and antagonists. A deeper understanding of mGluR7 will contribute to uncovering the molecular mechanisms of neuroprotection and providing a theoretical basis for the formulation of therapeutic strategies.
Collapse
Affiliation(s)
- Pan Li
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an 710032, China; Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China; Department of Ophthalmology, Xi'an No.1 Hospital, Faculty of Life Sciences and Medicine, Northwest University, 30 Fenxiang Road, Xi'an 710002, China
| | - Wangrui Lei
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Yushu Dong
- Department of Neurosurgery, General Hospital of Northern Theater Command, No.83, Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Xiaowu Wang
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an 710032, China
| | - Xingyan Ye
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Ye Tian
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Yaru Yang
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Jie Liu
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Ning Li
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Xiaochen Niu
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Xin Wang
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Yifan Tian
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Lu Xu
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Yang Yang
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China.
| | - Jincheng Liu
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an 710032, China.
| |
Collapse
|
7
|
Huang Y, Zhang Z, Hattori M. Recent Advances in Expression Screening and Sample Evaluation for Structural Studies of Membrane Proteins. J Mol Biol 2024; 436:168809. [PMID: 39362625 DOI: 10.1016/j.jmb.2024.168809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/05/2024]
Abstract
Membrane proteins are involved in numerous biological processes and represent more than half of all drug targets; thus, structural information on these proteins is invaluable. However, the low expression level of membrane proteins, as well as their poor stability in solution and tendency to precipitate and aggregate, are major bottlenecks in the preparation of purified membrane proteins for structural studies. Traditionally, the evaluation of membrane protein constructs for structural studies has been quite time consuming and expensive since it is necessary to express and purify the proteins on a large scale, particularly for X-ray crystallography. The emergence of fluorescence detection size exclusion chromatography (FSEC) has drastically changed this situation, as this method can be used to rapidly evaluate the expression and behavior of membrane proteins on a small scale without the need for purification. FSEC has become the most widely used method for the screening of expression conditions and sample evaluation for membrane proteins, leading to the successful determination of numerous structures. Even in the era of cryo-EM, FSEC and the new generation of FSEC derivative methods are being widely used in various manners to facilitate structural analysis. In addition, the application of FSEC is not limited to structural analysis; this method is also widely used for functional analysis of membrane proteins, including for analysis of oligomerization state, screening of antibodies and ligands, and affinity profiling. This review presents the latest advances and applications in membrane protein expression screening and sample evaluation, with a particular focus on FSEC methods.
Collapse
Affiliation(s)
- Yichen Huang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Physiology and Neurobiology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Ziyi Zhang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Physiology and Neurobiology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Motoyuki Hattori
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Physiology and Neurobiology, School of Life Sciences, Fudan University, Shanghai 200438, China.
| |
Collapse
|
8
|
Li JL, Zhu CH, Tian MM, Liu Y, Ma L, Tao LJ, Zheng P, Yu JQ, Liu N. Negative allosteric modulator of Group Ⅰ mGluRs: Recent advances and therapeutic perspective for neuropathic pain. Neuroscience 2024; 560:406-421. [PMID: 39368605 DOI: 10.1016/j.neuroscience.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/26/2024] [Accepted: 10/01/2024] [Indexed: 10/07/2024]
Abstract
Neuropathic pain (NP) is a widespread public health problem that existing therapeutic treatments cannot manage adequately; therefore, novel treatment strategies are urgently required. G-protein-coupled receptors are important for intracellular signal transduction, and widely participate in physiological and pathological processes, including pain perception. Group I metabotropic glutamate receptors (mGluRs), including mGluR1 and mGluR5, are predominantly implicated in central sensitization, which can lead to hyperalgesia and allodynia. Many orthosteric site antagonists targeting Group I mGluRs have been found to alleviate NP, but their poor efficacy, low selectivity, and numerous side effects limit their development in NP treatment. Here we reviewed the advantages of Group I mGluRs negative allosteric modulators (NAMs) over orthosteric site antagonists based on allosteric modulation mechanism, and the challenges and opportunities of Group I mGluRs NAMs in NP treatment. This article aims to elucidate the advantages and future development potential of Group I mGluRs NAMs in the treatment of NP.
Collapse
Affiliation(s)
- Jia-Ling Li
- School of Pharmacy, Ningxia Medical University, Yinchuan 750000, China
| | - Chun-Hao Zhu
- School of Pharmacy, Ningxia Medical University, Yinchuan 750000, China
| | - Miao-Miao Tian
- School of Pharmacy, Ningxia Medical University, Yinchuan 750000, China
| | - Yue Liu
- School of Pharmacy, Ningxia Medical University, Yinchuan 750000, China
| | - Lin Ma
- School of Pharmacy, Ningxia Medical University, Yinchuan 750000, China
| | - Li-Jun Tao
- Department of Pharmacy, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan 750000, China
| | - Ping Zheng
- School of Pharmacy, Ningxia Medical University, Yinchuan 750000, China.
| | - Jian-Qiang Yu
- School of Pharmacy, Ningxia Medical University, Yinchuan 750000, China.
| | - Ning Liu
- School of Pharmacy, Ningxia Medical University, Yinchuan 750000, China; School of Basic Medical Science, Ningxia Medical University, Yinchuan 750000, China.
| |
Collapse
|
9
|
Li N, Zheng G, Fu L, Liu N, Chen T, Lu S. Designed dualsteric modulators: A novel route for drug discovery. Drug Discov Today 2024; 29:104141. [PMID: 39168404 DOI: 10.1016/j.drudis.2024.104141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/01/2024] [Accepted: 08/14/2024] [Indexed: 08/23/2024]
Abstract
Orthosteric and allosteric modulators, which constitute the majority of current drugs, bind to the orthosteric and allosteric sites of target proteins, respectively. However, the clinical efficacy of these agents is frequently compromised by poor selectivity or reduced potency. Dualsteric modulators feature two linked pharmacophores that bind to orthosteric and allosteric sites of the target proteins simultaneously, thereby offering a promising avenue to achieve both potency and specificity. In this review, we summarize recent structures available for dualsteric modulators in complex with their target proteins, elucidating detailed drug-target interactions and dualsteric action patterns. Moreover, we provide a design and optimization strategy for dualsteric modulators based on structure-based drug design approaches.
Collapse
Affiliation(s)
- Nuan Li
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Guodong Zheng
- Department of VIP Clinic, Changhai Hospital, Affiliated to Naval Medical University, Shanghai 200433, China
| | - Lili Fu
- Department of Nephrology, People's Hospital of Pudong New Area, Shanghai University of Medicine & Health Sciences, Shanghai 201299, China
| | - Ning Liu
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Ting Chen
- Department of Cardiology, Changzheng Hospital, Affiliated to Naval Medical University, Shanghai 200003, China.
| | - Shaoyong Lu
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
10
|
Yun Y, Jeong H, Laboute T, Martemyanov KA, Lee HH. Cryo-EM structure of human class C orphan GPCR GPR179 involved in visual processing. Nat Commun 2024; 15:8299. [PMID: 39333506 PMCID: PMC11437087 DOI: 10.1038/s41467-024-52584-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 09/12/2024] [Indexed: 09/29/2024] Open
Abstract
GPR179, an orphan class C GPCR, is expressed at the dendritic tips of ON-bipolar cells in the retina. It plays a pivotal role in the initial synaptic transmission of visual signals from photoreceptors, and its deficiency is known to be the cause of complete congenital stationary night blindness. Here, we present the cryo-electron microscopy structure of human GPR179. Notably, the transmembrane domain (TMD) of GPR179 forms a homodimer through the TM1/7 interface with a single inter-protomer disulfide bond, adopting a noncanonical dimerization mode. Furthermore, the TMD dimer exhibits architecture well-suited for the highly curved membrane of the dendritic tip and distinct from the flat membrane arrangement observed in other class C GPCR dimers. Our structure reveals unique structural features of GPR179 TMD, setting it apart from other class C GPCRs. These findings provide a foundation for understanding signal transduction through GPR179 in visual processing and offers insights into the underlying causes of ocular diseases.
Collapse
Affiliation(s)
- Yaejin Yun
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyeongseop Jeong
- Center for Research Equipment, Korea Basic Science Institute, Chungcheongbuk-do, 28119, Republic of Korea
| | - Thibaut Laboute
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL, 33458, USA
- Université de Tours, INSERM, Imaging Brain & Neuropsychiatry iBraiN U1253, 37032, Tours, France
| | - Kirill A Martemyanov
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL, 33458, USA.
| | - Hyung Ho Lee
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
11
|
Li M, Lan X, Shi X, Zhu C, Lu X, Pu J, Lu S, Zhang J. Delineating the stepwise millisecond allosteric activation mechanism of the class C GPCR dimer mGlu5. Nat Commun 2024; 15:7519. [PMID: 39209876 PMCID: PMC11362167 DOI: 10.1038/s41467-024-51999-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
Two-thirds of signaling hormones and one-third of approved drugs exert their effects by binding and modulating the G protein-coupled receptors (GPCRs) activation. While the activation mechanism for monomeric GPCRs has been well-established, little is known about GPCRs in dimeric form. Here, by combining transition pathway generation, extensive atomistic simulation-based Markov state models, and experimental signaling assays, we reveal an asymmetric, stepwise millisecond allosteric activation mechanism for the metabotropic glutamate receptor subtype 5 receptor (mGlu5), an obligate dimeric class C GPCR. The dynamic picture is presented that agonist binding induces dimeric ectodomains compaction, amplified by the precise association of the cysteine-rich domains, ultimately loosely bringing the intracellular 7-transmembrane (7TM) domains into proximity and establishing an asymmetric TM6-TM6 interface. The active inter-domain interface enhances their intra-domain flexibility, triggering the activation of micro-switches crucial for downstream signal transduction. Furthermore, we show that the positive allosteric modulator stabilizes both the active inter-domain 7TM interface and an open, extended intra-domain ICL2 conformation. This stabilization leads to the formation of a pseudo-cavity composed of the ICL2, ICL3, TM3, and C-terminus, which facilitates G protein coordination. Our strategy may be generalizable for characterizing millisecond events in other allosteric systems.
Collapse
Affiliation(s)
- Mingyu Li
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Medicinal Chemistry and Bioinformatics Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China
| | - Xiaobing Lan
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China
| | - Xinchao Shi
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Medicinal Chemistry and Bioinformatics Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Chunhao Zhu
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China
| | - Xun Lu
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Medicinal Chemistry and Bioinformatics Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jun Pu
- Department of Cardiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200120, China
| | - Shaoyong Lu
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Medicinal Chemistry and Bioinformatics Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China.
| | - Jian Zhang
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Medicinal Chemistry and Bioinformatics Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China.
| |
Collapse
|
12
|
Kogut-Günthel MM, Zara Z, Nicoli A, Steuer A, Lopez-Balastegui M, Selent J, Karanth S, Koehler M, Ciancetta A, Abiko LA, Hagn F, Di Pizio A. The path to the G protein-coupled receptor structural landscape: Major milestones and future directions. Br J Pharmacol 2024. [PMID: 39209310 DOI: 10.1111/bph.17314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 06/14/2024] [Accepted: 06/28/2024] [Indexed: 09/04/2024] Open
Abstract
G protein-coupled receptors (GPCRs) play a crucial role in cell function by transducing signals from the extracellular environment to the inside of the cell. They mediate the effects of various stimuli, including hormones, neurotransmitters, ions, photons, food tastants and odorants, and are renowned drug targets. Advancements in structural biology techniques, including X-ray crystallography and cryo-electron microscopy (cryo-EM), have driven the elucidation of an increasing number of GPCR structures. These structures reveal novel features that shed light on receptor activation, dimerization and oligomerization, dichotomy between orthosteric and allosteric modulation, and the intricate interactions underlying signal transduction, providing insights into diverse ligand-binding modes and signalling pathways. However, a substantial portion of the GPCR repertoire and their activation states remain structurally unexplored. Future efforts should prioritize capturing the full structural diversity of GPCRs across multiple dimensions. To do so, the integration of structural biology with biophysical and computational techniques will be essential. We describe in this review the progress of nuclear magnetic resonance (NMR) to examine GPCR plasticity and conformational dynamics, of atomic force microscopy (AFM) to explore the spatial-temporal dynamics and kinetic aspects of GPCRs, and the recent breakthroughs in artificial intelligence for protein structure prediction to characterize the structures of the entire GPCRome. In summary, the journey through GPCR structural biology provided in this review illustrates how far we have come in decoding these essential proteins architecture and function. Looking ahead, integrating cutting-edge biophysics and computational tools offers a path to navigating the GPCR structural landscape, ultimately advancing GPCR-based applications.
Collapse
Affiliation(s)
| | - Zeenat Zara
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
- Faculty of Science, University of South Bohemia in Ceske Budejovice, České Budějovice, Czech Republic
| | - Alessandro Nicoli
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
- Professorship for Chemoinformatics and Protein Modelling, Department of Molecular Life Science, School of Life Science, Technical University of Munich, Freising, Germany
| | - Alexandra Steuer
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
- Professorship for Chemoinformatics and Protein Modelling, Department of Molecular Life Science, School of Life Science, Technical University of Munich, Freising, Germany
| | - Marta Lopez-Balastegui
- Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute & Pompeu Fabra University, Barcelona, Spain
| | - Jana Selent
- Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute & Pompeu Fabra University, Barcelona, Spain
| | - Sanjai Karanth
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
| | - Melanie Koehler
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
- TUM Junior Fellow at the Chair of Nutritional Systems Biology, Technical University of Munich, Freising, Germany
| | - Antonella Ciancetta
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - Layara Akemi Abiko
- Focal Area Structural Biology and Biophysics, Biozentrum, University of Basel, Basel, Switzerland
| | - Franz Hagn
- Structural Membrane Biochemistry, Bavarian NMR Center, Dept. Bioscience, School of Natural Sciences, Technical University of Munich, Munich, Germany
- Institute of Structural Biology (STB), Helmholtz Munich, Neuherberg, Germany
| | - Antonella Di Pizio
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
- Professorship for Chemoinformatics and Protein Modelling, Department of Molecular Life Science, School of Life Science, Technical University of Munich, Freising, Germany
| |
Collapse
|
13
|
Strauss A, Gonzalez-Hernandez AJ, Lee J, Abreu N, Selvakumar P, Salas-Estrada L, Kristt M, Arefin A, Huynh K, Marx DC, Gilliland K, Melancon BJ, Filizola M, Meyerson J, Levitz J. Structural basis of positive allosteric modulation of metabotropic glutamate receptor activation and internalization. Nat Commun 2024; 15:6498. [PMID: 39090128 PMCID: PMC11294631 DOI: 10.1038/s41467-024-50548-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/12/2024] [Indexed: 08/04/2024] Open
Abstract
The metabotropic glutamate receptors (mGluRs) are neuromodulatory family C G protein coupled receptors which assemble as dimers and allosterically couple extracellular ligand binding domains (LBDs) to transmembrane domains (TMDs) to drive intracellular signaling. Pharmacologically, mGluRs can be targeted at the LBDs by glutamate and synthetic orthosteric compounds or at the TMDs by allosteric modulators. Despite the potential of allosteric compounds as therapeutics, an understanding of the functional and structural basis of their effects is limited. Here we use multiple approaches to dissect the functional and structural effects of orthosteric versus allosteric ligands. We find, using electrophysiological and live cell imaging assays, that both agonists and positive allosteric modulators (PAMs) can drive activation and internalization of group II and III mGluRs. The effects of PAMs are pleiotropic, boosting the maximal response to orthosteric agonists and serving independently as internalization-biased agonists across mGluR subtypes. Motivated by this and intersubunit FRET analyses, we determine cryo-electron microscopy structures of mGluR3 in the presence of either an agonist or antagonist alone or in combination with a PAM. These structures reveal PAM-driven re-shaping of intra- and inter-subunit conformations and provide evidence for a rolling TMD dimer interface activation pathway that controls G protein and beta-arrestin coupling.
Collapse
Affiliation(s)
- Alexa Strauss
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, 10065, USA
- Tri-Institutional Program in Chemical Biology, New York, NY, 10065, USA
| | | | - Joon Lee
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Nohely Abreu
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Purushotham Selvakumar
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Leslie Salas-Estrada
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Melanie Kristt
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Anisul Arefin
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Kevin Huynh
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Dagan C Marx
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Kristen Gilliland
- Warren Center for Neuroscience Drug Discovery at Vanderbilt University, Vanderbilt University, Nashville, TN, 37232, USA
| | - Bruce J Melancon
- Warren Center for Neuroscience Drug Discovery at Vanderbilt University, Vanderbilt University, Nashville, TN, 37232, USA
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Marta Filizola
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Joel Meyerson
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Joshua Levitz
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, 10065, USA.
- Tri-Institutional Program in Chemical Biology, New York, NY, 10065, USA.
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, 10065, USA.
| |
Collapse
|
14
|
Mancinelli CD, Marx DC, Gonzalez-Hernandez AJ, Huynh K, Mancinelli L, Arefin A, Khelashvilli G, Levitz J, Eliezer D. Control of G protein-coupled receptor function via membrane-interacting intrinsically disordered C-terminal domains. Proc Natl Acad Sci U S A 2024; 121:e2407744121. [PMID: 38985766 PMCID: PMC11260148 DOI: 10.1073/pnas.2407744121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 06/07/2024] [Indexed: 07/12/2024] Open
Abstract
G protein-coupled receptors (GPCRs) control intracellular signaling cascades via agonist-dependent coupling to intracellular transducers including heterotrimeric G proteins, GPCR kinases (GRKs), and arrestins. In addition to their critical interactions with the transmembrane core of active GPCRs, all three classes of transducers have also been reported to interact with receptor C-terminal domains (CTDs). An underexplored aspect of GPCR CTDs is their possible role as lipid sensors given their proximity to the membrane. CTD-membrane interactions have the potential to control the accessibility of key regulatory CTD residues to downstream effectors and transducers. Here, we report that the CTDs of two closely related family C GPCRs, metabotropic glutamate receptor 2 (mGluR2) and mGluR3, bind to membranes and that this interaction can regulate receptor function. We first characterize CTD structure with NMR spectroscopy, revealing lipid composition-dependent modes of membrane binding. Using molecular dynamics simulations and structure-guided mutagenesis, we then identify key conserved residues and cancer-associated mutations that modulate CTD-membrane binding. Finally, we provide evidence that mGluR3 transducer coupling is controlled by CTD-membrane interactions in live cells, which may be subject to regulation by CTD phosphorylation and changes in membrane composition. This work reveals an additional mechanism of GPCR modulation, suggesting that CTD-membrane binding may be a general regulatory mode throughout the broad GPCR superfamily.
Collapse
Affiliation(s)
| | - Dagan C. Marx
- Department of Biochemistry, Weill Cornell Medicine, New York, NY10065
| | | | - Kevin Huynh
- Department of Biochemistry, Weill Cornell Medicine, New York, NY10065
| | - Lucia Mancinelli
- Department of Biochemistry, Weill Cornell Medicine, New York, NY10065
| | - Anisul Arefin
- Department of Biochemistry, Weill Cornell Medicine, New York, NY10065
| | - George Khelashvilli
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY10065
| | - Joshua Levitz
- Department of Biochemistry, Weill Cornell Medicine, New York, NY10065
- Department of Psychiatry, Weill Cornell Medicine, New York, NY10065
| | - David Eliezer
- Department of Biochemistry, Weill Cornell Medicine, New York, NY10065
- Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY10065
| |
Collapse
|
15
|
Yan P, Lin X, Wu L, Xu L, Li F, Liu J, Xu F. The binding mechanism of an anti-multiple myeloma antibody to the human GPRC5D homodimer. Nat Commun 2024; 15:5255. [PMID: 38898050 PMCID: PMC11187071 DOI: 10.1038/s41467-024-49625-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 06/12/2024] [Indexed: 06/21/2024] Open
Abstract
GPRC5D is an atypical Class C orphan G protein-coupled receptor. Its high expression on the surface of multiple myeloma cells has rendered it an attractive target for therapeutic interventions, including monoclonal antibodies, CAR-T cells, and T-cell engagers. Despite its therapeutic potential, the insufficient understanding regarding of the receptor's structure and antibody recognition mechanism has impeded the progress of effective therapeutic development. Here, we present the structure of GPRC5D in complex with a preclinical-stage single-chain antibody (scFv). Our structural analysis reveals that the GPRC5D presents a close resemblance to the typical Class C GPCRs in the transmembrane region. We identify a distinct head-to-head homodimer arrangement and interface mainly involving TM4, setting it apart from other Class C homo- or hetero-dimers. Furthermore, we elucidate the binding site engaging a sizable extracellular domain on GPRC5D for scFv recognition. These insights not only unveil the distinctive dimer organization of this unconventional Class C GPCR but also hold the potential to advance drug development targeting GPRC5D for the treatment of multiple myeloma.
Collapse
Affiliation(s)
- Pengfei Yan
- iHuman Institute, ShanghaiTech University, Shanghai, China
- School of Life Science and Technology, Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai, China
| | - Xi Lin
- iHuman Institute, ShanghaiTech University, Shanghai, China
| | - Lijie Wu
- iHuman Institute, ShanghaiTech University, Shanghai, China
| | - Lu Xu
- iHuman Institute, ShanghaiTech University, Shanghai, China
- JiKang Therapeutics, Shanghai, China
| | - Fei Li
- iHuman Institute, ShanghaiTech University, Shanghai, China
| | - Junlin Liu
- iHuman Institute, ShanghaiTech University, Shanghai, China
| | - Fei Xu
- iHuman Institute, ShanghaiTech University, Shanghai, China.
- School of Life Science and Technology, Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai, China.
- Shanghai Clinical Research and Trial Center, Shanghai, China.
| |
Collapse
|
16
|
Fernández R, Ramírez K, Lorente-Bermúdez R, Gómez-Gil E, Mora M, Guillamon A, Pásaro E. Analysis of single nucleotide polymorphisms of the metabotropic glutamate receptors in a transgender population. Front Endocrinol (Lausanne) 2024; 15:1382861. [PMID: 38919484 PMCID: PMC11196815 DOI: 10.3389/fendo.2024.1382861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 05/21/2024] [Indexed: 06/27/2024] Open
Abstract
Introduction Gender incongruence (GI) is characterized by a marked incongruence between an individual's experienced/expressed gender and the assigned sex at birth. It includes strong displeasure about his or her sexual anatomy and secondary sex characteristics. In some people, this condition produces a strong distress with anxiety and depression named gender dysphoria (GD). This condition appears to be associated with genetic, epigenetics, hormonal as well as social factors. Given that L-glutamate is the major excitatory neurotransmitter in the central nervous system, also associated with male sexual behavior as well as depression, we aimed to determine whether metabotropic glutamate receptors are involved in GD. Methods We analyzed 74 single nucleotide polymorphisms located at the metabotropic glutamate receptors (mGluR1, mGluR3, mGluR4, mGluR5, mGluR7 and mGluR8) in 94 transgender versus 94 cisgender people. The allele and genotype frequencies were analyzed by c2 test contrasting male and female cisgender and transgender populations. The strength of the associations was measured by binary logistic regression, estimating the odds ratio (OR) for each genotype. Measurement of linkage disequilibrium, and subsequent measurement of haplotype frequencies were also performed considering three levels of significance: P ≤ 0.05, P ≤ 0.005 and P ≤ 0.0005. Furthermore, false positives were controlled with the Bonferroni correction (P ≤ 0.05/74 = 0.00067). Results After analysis of allele and genotypic frequencies, we found twenty-five polymorphisms with significant differences at level P ≤ 0.05, five at P ≤ 0.005 and two at P ≤ 0.0005. Furthermore, the only two polymorphisms (rs9838094 and rs1818033) that passed the Bonferroni correction were both related to the metabotropic glutamate receptor 7 (mGluR7) and showed significant differences for multiple patterns of inheritance. Moreover, the haplotype T/G [OR=0.34 (0.19-0.62); P<0.0004] had a lower representation in the transgender population than in the cisgender population, with no evidence of sex cross-interaction. Conclusion We provide genetic evidence that the mGluR7, and therefore glutamatergic neurotransmission, may be involved in GI and GD.
Collapse
Affiliation(s)
- Rosa Fernández
- Department of Psychology, Interdisciplinary Center for Chemistry and Biology Institute, Centro Interdisciplinar de Química e Bioloxía (CICA), Diagnóstico Conductual y Molecular Aplicado a la Salud (DICOMOSA) Group, University of A Coruña, A Coruña, Spain
- Department of Psychology, Institute for Biomedical Research of A Coruña (INIBIC), A Coruña, Spain
| | - Karla Ramírez
- Department of Psychology, Interdisciplinary Center for Chemistry and Biology Institute, Centro Interdisciplinar de Química e Bioloxía (CICA), Diagnóstico Conductual y Molecular Aplicado a la Salud (DICOMOSA) Group, University of A Coruña, A Coruña, Spain
- Department of Psychology, Institute for Biomedical Research of A Coruña (INIBIC), A Coruña, Spain
| | - Roberto Lorente-Bermúdez
- Department of Psychology, Interdisciplinary Center for Chemistry and Biology Institute, Centro Interdisciplinar de Química e Bioloxía (CICA), Diagnóstico Conductual y Molecular Aplicado a la Salud (DICOMOSA) Group, University of A Coruña, A Coruña, Spain
| | - Esther Gómez-Gil
- Gender Identity Unit, Psychiatry Service, Institute of Neurosciences, Hospital Clínic Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Mireia Mora
- Department of Endocrinology and Nutrition, Hospital Clínic Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Antonio Guillamon
- Department of Psychobiology, Faculty of Psychology, National University of Distance Education (UNED), Madrid, Spain
| | - Eduardo Pásaro
- Department of Psychology, Interdisciplinary Center for Chemistry and Biology Institute, Centro Interdisciplinar de Química e Bioloxía (CICA), Diagnóstico Conductual y Molecular Aplicado a la Salud (DICOMOSA) Group, University of A Coruña, A Coruña, Spain
- Department of Psychology, Institute for Biomedical Research of A Coruña (INIBIC), A Coruña, Spain
| |
Collapse
|
17
|
Agyemang E, Gonneville AN, Tiruvadi-Krishnan S, Lamichhane R. Exploring GPCR conformational dynamics using single-molecule fluorescence. Methods 2024; 226:35-48. [PMID: 38604413 PMCID: PMC11098685 DOI: 10.1016/j.ymeth.2024.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 04/13/2024] Open
Abstract
G protein-coupled receptors (GPCRs) are membrane proteins that transmit specific external stimuli into cells by changing their conformation. This conformational change allows them to couple and activate G-proteins to initiate signal transduction. A critical challenge in studying and inferring these structural dynamics arises from the complexity of the cellular environment, including the presence of various endogenous factors. Due to the recent advances in cell-expression systems, membrane-protein purification techniques, and labeling approaches, it is now possible to study the structural dynamics of GPCRs at a single-molecule level both in vitro and in live cells. In this review, we discuss state-of-the-art techniques and strategies for expressing, purifying, and labeling GPCRs in the context of single-molecule research. We also highlight four recent studies that demonstrate the applications of single-molecule microscopy in revealing the dynamics of GPCRs. These techniques are also useful as complementary methods to verify the results obtained from other structural biology tools like cryo-electron microscopy and x-ray crystallography.
Collapse
Affiliation(s)
- Eugene Agyemang
- UT-ORNL Graduate School of Genome Science and Technology, The University of Tennessee, Knoxville, TN 37996, USA
| | - Alyssa N Gonneville
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Sriram Tiruvadi-Krishnan
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Rajan Lamichhane
- UT-ORNL Graduate School of Genome Science and Technology, The University of Tennessee, Knoxville, TN 37996, USA; Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA.
| |
Collapse
|
18
|
Duan J, He XH, Li SJ, Xu HE. Cryo-electron microscopy for GPCR research and drug discovery in endocrinology and metabolism. Nat Rev Endocrinol 2024; 20:349-365. [PMID: 38424377 DOI: 10.1038/s41574-024-00957-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/29/2024] [Indexed: 03/02/2024]
Abstract
G protein-coupled receptors (GPCRs) are the largest family of cell surface receptors, with many GPCRs having crucial roles in endocrinology and metabolism. Cryogenic electron microscopy (cryo-EM) has revolutionized the field of structural biology, particularly regarding GPCRs, over the past decade. Since the first pair of GPCR structures resolved by cryo-EM were published in 2017, the number of GPCR structures resolved by cryo-EM has surpassed the number resolved by X-ray crystallography by 30%, reaching >650, and the number has doubled every ~0.63 years for the past 6 years. At this pace, it is predicted that the structure of 90% of all human GPCRs will be completed within the next 5-7 years. This Review highlights the general structural features and principles that guide GPCR ligand recognition, receptor activation, G protein coupling, arrestin recruitment and regulation by GPCR kinases. The Review also highlights the diversity of GPCR allosteric binding sites and how allosteric ligands could dictate biased signalling that is selective for a G protein pathway or an arrestin pathway. Finally, the authors use the examples of glycoprotein hormone receptors and glucagon-like peptide 1 receptor to illustrate the effect of cryo-EM on understanding GPCR biology in endocrinology and metabolism, as well as on GPCR-related endocrine diseases and drug discovery.
Collapse
Affiliation(s)
- Jia Duan
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, China.
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Xin-Heng He
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shu-Jie Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- Department of Traditional Chinese Medicine, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - H Eric Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| |
Collapse
|
19
|
Zhu X, Luo M, An K, Shi D, Hou T, Warshel A, Bai C. Exploring the activation mechanism of metabotropic glutamate receptor 2. Proc Natl Acad Sci U S A 2024; 121:e2401079121. [PMID: 38739800 PMCID: PMC11126994 DOI: 10.1073/pnas.2401079121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/12/2024] [Indexed: 05/16/2024] Open
Abstract
Homomeric dimerization of metabotropic glutamate receptors (mGlus) is essential for the modulation of their functions and represents a promising avenue for the development of novel therapeutic approaches to address central nervous system diseases. Yet, the scarcity of detailed molecular and energetic data on mGlu2 impedes our in-depth comprehension of their activation process. Here, we employ computational simulation methods to elucidate the activation process and key events associated with the mGlu2, including a detailed analysis of its conformational transitions, the binding of agonists, Gi protein coupling, and the guanosine diphosphate (GDP) release. Our results demonstrate that the activation of mGlu2 is a stepwise process and several energy barriers need to be overcome. Moreover, we also identify the rate-determining step of the mGlu2's transition from the agonist-bound state to its active state. From the perspective of free-energy analysis, we find that the conformational dynamics of mGlu2's subunit follow coupled rather than discrete, independent actions. Asymmetric dimerization is critical for receptor activation. Our calculation results are consistent with the observation of cross-linking and fluorescent-labeled blot experiments, thus illustrating the reliability of our calculations. Besides, we also identify potential key residues in the Gi protein binding position on mGlu2, mGlu2 dimer's TM6-TM6 interface, and Gi α5 helix by the change of energy barriers after mutation. The implications of our findings could lead to a more comprehensive grasp of class C G protein-coupled receptor activation.
Collapse
Affiliation(s)
- Xiaohong Zhu
- Warshel Institute for Computational Biology, School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong518172, People’s Republic of China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei230026, People's Republic of China
| | - Mengqi Luo
- College of Management, Shenzhen University, Shenzhen518060, People's Republic of China
| | - Ke An
- Chenzhu (MoMeD) Biotechnology Co., Ltd, Hangzhou, Zhejiang310005, People's Republic of China
| | - Danfeng Shi
- Warshel Institute for Computational Biology, School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong518172, People’s Republic of China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei230026, People's Republic of China
| | - Tingjun Hou
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou310058, People's Republic of China
| | - Arieh Warshel
- Department of Chemistry, University of Southern California, Los Angeles, CA90089-1062
| | - Chen Bai
- Warshel Institute for Computational Biology, School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong518172, People’s Republic of China
- Chenzhu (MoMeD) Biotechnology Co., Ltd, Hangzhou, Zhejiang310005, People's Republic of China
| |
Collapse
|
20
|
Mancinelli C, Marx DC, Gonzalez-Hernandez AJ, Huynh K, Mancinelli L, Arefin A, Khelashvilli G, Levitz J, Eliezer D. Control of G protein-coupled receptor function via membrane-interacting intrinsically disordered C-terminal domains. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.16.553551. [PMID: 37645938 PMCID: PMC10462050 DOI: 10.1101/2023.08.16.553551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
G protein-coupled receptors (GPCRs) control intracellular signaling cascades via agonist-dependent coupling to intracellular transducers including heterotrimeric G proteins, GPCR kinases (GRKs), and arrestins. In addition to their critical interactions with the transmembrane core of active GPCRs, all three classes of transducers have also been reported to interact with receptor C-terminal domains (CTDs). An underexplored aspect of GPCR CTDs is their possible role as lipid sensors given their proximity to the membrane. CTD-membrane interactions have the potential to control the accessibility of key regulatory CTD residues to downstream effectors and transducers. Here we report that the CTDs of two closely related family C GPCRs, metabotropic glutamate receptor 2 (mGluR2) and mGluR3, bind to membranes and that this interaction can regulate receptor function. We first characterize CTD structure with NMR spectroscopy, revealing lipid composition-dependent modes of membrane binding. Using molecular dynamics simulations and structure-guided mutagenesis, we then identify key conserved residues and cancer-associated mutations that modulate CTD-membrane binding. Finally, we provide evidence that mGluR3 transducer coupling is controlled by CTD-membrane interactions in live cells, which may be subject to regulation by CTD phosphorylation and changes in membrane composition. This work reveals a novel mechanism of GPCR modulation, suggesting that CTD-membrane binding may be a general regulatory mode throughout the broad GPCR superfamily.
Collapse
Affiliation(s)
- Chiara Mancinelli
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA
- equal contribution
| | - Dagan C. Marx
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA
- equal contribution
| | | | - Kevin Huynh
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Lucia Mancinelli
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Anisul Arefin
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA
| | - George Khelashvilli
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, USA
| | - Joshua Levitz
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA
- Department of Psychiatry, Weill Cornell Medicine, New York, NY 10065, USA
| | - David Eliezer
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA
- Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| |
Collapse
|
21
|
Krishna Kumar K, Wang H, Habrian C, Latorraca NR, Xu J, O'Brien ES, Zhang C, Montabana E, Koehl A, Marqusee S, Isacoff EY, Kobilka BK. Stepwise activation of a metabotropic glutamate receptor. Nature 2024; 629:951-956. [PMID: 38632403 DOI: 10.1038/s41586-024-07327-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 03/15/2024] [Indexed: 04/19/2024]
Abstract
Metabotropic glutamate receptors belong to a family of G protein-coupled receptors that are obligate dimers and possess a large extracellular ligand-binding domain that is linked via a cysteine-rich domain to their 7-transmembrane domain1. Upon activation, these receptors undergo a large conformational change to transmit the ligand binding signal from the extracellular ligand-binding domain to the G protein-coupling 7-transmembrane domain2. In this manuscript, we propose a model for a sequential, multistep activation mechanism of metabotropic glutamate receptor subtype 5. We present a series of structures in lipid nanodiscs, from inactive to fully active, including agonist-bound intermediate states. Further, using bulk and single-molecule fluorescence imaging, we reveal distinct receptor conformations upon allosteric modulator and G protein binding.
Collapse
Affiliation(s)
- Kaavya Krishna Kumar
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA.
| | - Haoqing Wang
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | - Chris Habrian
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Naomi R Latorraca
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Jun Xu
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Evan S O'Brien
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Chensong Zhang
- Division of CryoEM and Bioimaging, Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Elizabeth Montabana
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Antoine Koehl
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
- Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA, USA
| | - Susan Marqusee
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- QB3 Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA, USA
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA
| | - Ehud Y Isacoff
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Brian K Kobilka
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
22
|
Zhang M, Chen T, Lu X, Lan X, Chen Z, Lu S. G protein-coupled receptors (GPCRs): advances in structures, mechanisms, and drug discovery. Signal Transduct Target Ther 2024; 9:88. [PMID: 38594257 PMCID: PMC11004190 DOI: 10.1038/s41392-024-01803-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 02/19/2024] [Accepted: 03/13/2024] [Indexed: 04/11/2024] Open
Abstract
G protein-coupled receptors (GPCRs), the largest family of human membrane proteins and an important class of drug targets, play a role in maintaining numerous physiological processes. Agonist or antagonist, orthosteric effects or allosteric effects, and biased signaling or balanced signaling, characterize the complexity of GPCR dynamic features. In this study, we first review the structural advancements, activation mechanisms, and functional diversity of GPCRs. We then focus on GPCR drug discovery by revealing the detailed drug-target interactions and the underlying mechanisms of orthosteric drugs approved by the US Food and Drug Administration in the past five years. Particularly, an up-to-date analysis is performed on available GPCR structures complexed with synthetic small-molecule allosteric modulators to elucidate key receptor-ligand interactions and allosteric mechanisms. Finally, we highlight how the widespread GPCR-druggable allosteric sites can guide structure- or mechanism-based drug design and propose prospects of designing bitopic ligands for the future therapeutic potential of targeting this receptor family.
Collapse
Affiliation(s)
- Mingyang Zhang
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ting Chen
- Department of Cardiology, Changzheng Hospital, Affiliated to Naval Medical University, Shanghai, 200003, China
| | - Xun Lu
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xiaobing Lan
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China
| | - Ziqiang Chen
- Department of Orthopedics, Changhai Hospital, Affiliated to Naval Medical University, Shanghai, 200433, China.
| | - Shaoyong Lu
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China.
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
23
|
Velloso JPL, Kovacs AS, Pires DEV, Ascher DB. AI-driven GPCR analysis, engineering, and targeting. Curr Opin Pharmacol 2024; 74:102427. [PMID: 38219398 DOI: 10.1016/j.coph.2023.102427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 01/16/2024]
Abstract
This article investigates the role of recent advances in Artificial Intelligence (AI) to revolutionise the study of G protein-coupled receptors (GPCRs). AI has been applied to many areas of GPCR research, including the application of machine learning (ML) in GPCR classification, prediction of GPCR activation levels, modelling GPCR 3D structures and interactions, understanding G-protein selectivity, aiding elucidation of GPCRs structures, and drug design. Despite progress, challenges in predicting GPCR structures and addressing the complex nature of GPCRs remain, providing avenues for future research and development.
Collapse
Affiliation(s)
- João P L Velloso
- Structural Biology and Bioinformatics, Department of Biochemistry and Pharmacology, University of Melbourne, Melbourne, Victoria, Australia; Systems and Computational Biology, Bio21 Institute, University of Melbourne, Melbourne, Victoria, Australia; Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia; School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
| | - Aaron S Kovacs
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia; School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
| | - Douglas E V Pires
- Structural Biology and Bioinformatics, Department of Biochemistry and Pharmacology, University of Melbourne, Melbourne, Victoria, Australia; Systems and Computational Biology, Bio21 Institute, University of Melbourne, Melbourne, Victoria, Australia; Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia; School of Computing and Information Systems, University of Melbourne, Melbourne, Victoria, Australia.
| | - David B Ascher
- Structural Biology and Bioinformatics, Department of Biochemistry and Pharmacology, University of Melbourne, Melbourne, Victoria, Australia; Systems and Computational Biology, Bio21 Institute, University of Melbourne, Melbourne, Victoria, Australia; Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia; School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia.
| |
Collapse
|
24
|
Elmeseiny OSA, Müller HK. A molecular perspective on mGluR5 regulation in the antidepressant effect of ketamine. Pharmacol Res 2024; 200:107081. [PMID: 38278430 DOI: 10.1016/j.phrs.2024.107081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/16/2024] [Accepted: 01/23/2024] [Indexed: 01/28/2024]
Abstract
Ketamine, a non-competitive N-methyl-D-aspartate receptor (NMDAR) antagonist, has received much attention for its rapid antidepressant effects. A single administration of ketamine elicits rapid and sustained antidepressant effects in both humans and animals. Current efforts are focused on uncovering molecular mechanisms responsible for ketamine's antidepressant activity. Ketamine primarily acts via the glutamatergic pathway, and increasing evidence suggests that ketamine induces synaptic and structural plasticity through increased translation and release of neurotrophic factors, activation of mammalian target of rapamycin (mTOR), and α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor (AMPAR)-mediated synaptic potentiation. However, the initial events triggering activation of intracellular signaling cascades and the mechanisms responsible for the sustained antidepressant effects of ketamine remain poorly understood. Over the last few years, it has become apparent that in addition to the fast actions of the ligand-gated AMPARs and NMDARs, metabotropic glutamate receptors (mGluRs), and particularly mGluR5, may also play a role in the antidepressant action of ketamine. Although research on mGluR5 in relation to the beneficial actions of ketamine is still in its infancy, a careful evaluation of the existing literature can identify converging trends and provide new interpretations. Here, we review the current literature on mGluR5 regulation in response to ketamine from a molecular perspective and propose a possible mechanism linking NMDAR inhibition to mGluR5 modulation.
Collapse
Affiliation(s)
- Ola Sobhy A Elmeseiny
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Heidi Kaastrup Müller
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
25
|
Li M, Lan X, Lu X, Zhang J. A Structure-Based Allosteric Modulator Design Paradigm. HEALTH DATA SCIENCE 2023; 3:0094. [PMID: 38487194 PMCID: PMC10904074 DOI: 10.34133/hds.0094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 10/11/2023] [Indexed: 03/17/2024]
Abstract
Importance: Allosteric drugs bound to topologically distal allosteric sites hold a substantial promise in modulating therapeutic targets deemed undruggable at their orthosteric sites. Traditionally, allosteric modulator discovery has predominantly relied on serendipitous high-throughput screening. Nevertheless, the landscape has undergone a transformative shift due to recent advancements in our understanding of allosteric modulation mechanisms, coupled with a significant increase in the accessibility of allosteric structural data. These factors have extensively promoted the development of various computational methodologies, especially for machine-learning approaches, to guide the rational design of structure-based allosteric modulators. Highlights: We here presented a comprehensive structure-based allosteric modulator design paradigm encompassing 3 critical stages: drug target acquisition, allosteric binding site, and modulator discovery. The recent advances in computational methods in each stage are encapsulated. Furthermore, we delve into analyzing the successes and obstacles encountered in the rational design of allosteric modulators. Conclusion: The structure-based allosteric modulator design paradigm holds immense potential for the rational design of allosteric modulators. We hope that this review would heighten awareness of the use of structure-based computational methodologies in advancing the field of allosteric drug discovery.
Collapse
Affiliation(s)
- Mingyu Li
- College of Pharmacy,
Ningxia Medical University, Yinchuan, NingxiaHui Autonomous Region, China
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital,
Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Medicinal Chemistry and Bioinformatics Center,
Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xiaobin Lan
- College of Pharmacy,
Ningxia Medical University, Yinchuan, NingxiaHui Autonomous Region, China
- Medicinal Chemistry and Bioinformatics Center,
Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xun Lu
- College of Pharmacy,
Ningxia Medical University, Yinchuan, NingxiaHui Autonomous Region, China
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital,
Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Medicinal Chemistry and Bioinformatics Center,
Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jian Zhang
- College of Pharmacy,
Ningxia Medical University, Yinchuan, NingxiaHui Autonomous Region, China
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital,
Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Medicinal Chemistry and Bioinformatics Center,
Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
26
|
Du Y, Gao F, Sun H, Wu C, Zhu G, Zhu M. Novel substituted 4-(Arylethynyl)-Pyrrolo[2,3-d]pyrimidines negative allosteric modulators (NAMs) of the metabotropic glutamate receptor subtype 5 (mGlu5) Treat depressive disorder in mice. Eur J Med Chem 2023; 261:115855. [PMID: 37847955 DOI: 10.1016/j.ejmech.2023.115855] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 09/13/2023] [Accepted: 10/04/2023] [Indexed: 10/19/2023]
Abstract
In view of the fact that the G-protein-coupled receptors (GPCRs) sit at the top of the signaling pathways triggering a diverse range of signaling cascades towards a cellular event, GPCRs are regarded as central drug targets. mGlu5, a type of classical GPCRs, is highly expressed in the central nervous system (CNS) and responds to the neurotransmitter glutamate. Researches show that mGlu5 is a potential drug target for the treatment of depression. Up to now, multiple mGlu5 negative allosteric modulators (NAMs) have entered clinical trials, but no small molecule mGlu5 NAM has yet to reach market. Herein, we report the structural optimization and structure-activity relationship studies of a series of novel mGlu5 NAMs. Among them, the novel compound 10b is a high-affinity mGluR5 antagonist, with an IC50 value of 11.5 nM. Besides, we evaluated the anti-depressant effect of compound 10b using the chronic unpredictable mild stress (CUMS)-induced depression model. The data showed that the mice in CUMS group were featured by decreased level of serum 5-HT and increased level of serum CORT, and the expression of synaptic proteins were reduced, including GluA1, GluA2, p-PKA, BDNF and TrkB. However, those factors for identifying sensitivity to depression-like behaviors could be improved by compound 10b treatment. The preliminary toxicology evaluations indicated that compound 10b had a good safety profile in vivo. Collectively, the compound 10b represents a promising lead compound for the treatment of depressive disorder.
Collapse
Affiliation(s)
- Yonglei Du
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui, 230601, China
| | - Feng Gao
- Key Laboratory of Xin'an Medicine, the Ministry of Education and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Hongwei Sun
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui, 230601, China
| | - Chenglin Wu
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China.
| | - Guoqi Zhu
- Key Laboratory of Xin'an Medicine, the Ministry of Education and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei, 230012, China.
| | - Manzhou Zhu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui, 230601, China.
| |
Collapse
|
27
|
Papadourakis M, Sinenka H, Matricon P, Hénin J, Brannigan G, Pérez-Benito L, Pande V, van Vlijmen H, de Graaf C, Deflorian F, Tresadern G, Cecchini M, Cournia Z. Alchemical Free Energy Calculations on Membrane-Associated Proteins. J Chem Theory Comput 2023; 19:7437-7458. [PMID: 37902715 PMCID: PMC11017255 DOI: 10.1021/acs.jctc.3c00365] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Indexed: 10/31/2023]
Abstract
Membrane proteins have diverse functions within cells and are well-established drug targets. The advances in membrane protein structural biology have revealed drug and lipid binding sites on membrane proteins, while computational methods such as molecular simulations can resolve the thermodynamic basis of these interactions. Particularly, alchemical free energy calculations have shown promise in the calculation of reliable and reproducible binding free energies of protein-ligand and protein-lipid complexes in membrane-associated systems. In this review, we present an overview of representative alchemical free energy studies on G-protein-coupled receptors, ion channels, transporters as well as protein-lipid interactions, with emphasis on best practices and critical aspects of running these simulations. Additionally, we analyze challenges and successes when running alchemical free energy calculations on membrane-associated proteins. Finally, we highlight the value of alchemical free energy calculations calculations in drug discovery and their applicability in the pharmaceutical industry.
Collapse
Affiliation(s)
- Michail Papadourakis
- Biomedical
Research Foundation, Academy of Athens, 4 Soranou Ephessiou, 11527 Athens, Greece
| | - Hryhory Sinenka
- Institut
de Chimie de Strasbourg, UMR7177, CNRS, Université de Strasbourg, F-67083 Strasbourg Cedex, France
| | - Pierre Matricon
- Sosei
Heptares, Steinmetz Building,
Granta Park, Great Abington, Cambridge CB21 6DG, United
Kingdom
| | - Jérôme Hénin
- Laboratoire
de Biochimie Théorique UPR 9080, CNRS and Université Paris Cité, 75005 Paris, France
| | - Grace Brannigan
- Center
for Computational and Integrative Biology, Rutgers University−Camden, Camden, New Jersey 08103, United States of America
- Department
of Physics, Rutgers University−Camden, Camden, New Jersey 08102, United States
of America
| | - Laura Pérez-Benito
- CADD,
In Silico Discovery, Janssen Research &
Development, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Vineet Pande
- CADD,
In Silico Discovery, Janssen Research &
Development, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Herman van Vlijmen
- CADD,
In Silico Discovery, Janssen Research &
Development, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Chris de Graaf
- Sosei
Heptares, Steinmetz Building,
Granta Park, Great Abington, Cambridge CB21 6DG, United
Kingdom
| | - Francesca Deflorian
- Sosei
Heptares, Steinmetz Building,
Granta Park, Great Abington, Cambridge CB21 6DG, United
Kingdom
| | - Gary Tresadern
- CADD,
In Silico Discovery, Janssen Research &
Development, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Marco Cecchini
- Institut
de Chimie de Strasbourg, UMR7177, CNRS, Université de Strasbourg, F-67083 Strasbourg Cedex, France
| | - Zoe Cournia
- Biomedical
Research Foundation, Academy of Athens, 4 Soranou Ephessiou, 11527 Athens, Greece
| |
Collapse
|
28
|
Kumar KK, Wang H, Habrian C, Latorraca NR, Xu J, O’Brien ES, Zhang C, Montabana E, Koehl A, Marqusee S, Isacoff EY, Kobilka BK. Step-wise activation of a Family C GPCR. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.29.555158. [PMID: 37693614 PMCID: PMC10491200 DOI: 10.1101/2023.08.29.555158] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Metabotropic glutamate receptors belong to a family of G protein-coupled receptors that are obligate dimers and possess a large extracellular ligand-binding domain (ECD) that is linked via a cysteine-rich domain (CRDs) to their 7-transmembrane (TM) domain. Upon activation, these receptors undergo a large conformational change to transmit the ligand binding signal from the ECD to the G protein-coupling TM. In this manuscript, we propose a model for a sequential, multistep activation mechanism of metabotropic glutamate receptor subtype 5. We present a series of structures in lipid nanodiscs, from inactive to fully active, including agonist-bound intermediate states. Further, using bulk and single-molecule fluorescence imaging we reveal distinct receptor conformations upon allosteric modulator and G protein binding.
Collapse
Affiliation(s)
- Kaavya Krishna Kumar
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, 279 Campus Drive, Stanford, California 94305, USA
| | - Haoqing Wang
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, 279 Campus Drive, Stanford, California 94305, USA
- Sarafin ChEM-H, 290 Jane Stanford Way, Stanford, California 94305, USA
| | - Chris Habrian
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, 279 Campus Drive, Stanford, California 94305, USA
| | - Naomi R. Latorraca
- Department of Molecular and Cell Biology, University of California Berkeley, CA 94720, USA
| | - Jun Xu
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, 279 Campus Drive, Stanford, California 94305, USA
| | - Evan S. O’Brien
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, 279 Campus Drive, Stanford, California 94305, USA
| | - Chensong Zhang
- Division of CryoEM and Bioimaging, Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Elizabeth Montabana
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, 279 Campus Drive, Stanford, California 94305, USA
| | - Antoine Koehl
- Department of Statistics, University of California, Berkeley, CA 94720, USA
| | - Susan Marqusee
- Department of Molecular and Cell Biology, University of California Berkeley, CA 94720, USA; QB3 Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley CA 94720, USA; Department of Chemistry, University of California, Berkeley, Berkeley CA 94720, USA
| | - Ehud Y. Isacoff
- Department of Molecular and Cell Biology, University of California Berkeley, CA 94720, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley CA 94720, USA
| | - Brian K. Kobilka
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, 279 Campus Drive, Stanford, California 94305, USA
| |
Collapse
|
29
|
Strauss A, Gonzalez-Hernandez AJ, Lee J, Abreu N, Selvakumar P, Salas-Estrada L, Kristt M, Marx DC, Gilliland K, Melancon BJ, Filizola M, Meyerson J, Levitz J. Structural basis of allosteric modulation of metabotropic glutamate receptor activation and desensitization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.13.552748. [PMID: 37645747 PMCID: PMC10461995 DOI: 10.1101/2023.08.13.552748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
The metabotropic glutamate receptors (mGluRs) are neuromodulatory family C G protein coupled receptors which assemble as dimers and allosterically couple extracellular ligand binding domains (LBDs) to transmembrane domains (TMDs) to drive intracellular signaling. Pharmacologically, mGluRs can be targeted either at the LBDs by glutamate and synthetic orthosteric compounds or at the TMDs by allosteric modulators. Despite the potential of allosteric TMD-targeting compounds as therapeutics, an understanding of the functional and structural basis of their effects on mGluRs is limited. Here we use a battery of approaches to dissect the distinct functional and structural effects of orthosteric versus allosteric ligands. We find using electrophysiological and live cell imaging assays that both agonists and positive allosteric modulators (PAMs) can drive activation and desensitization of mGluRs. The effects of PAMs are pleiotropic, including both the ability to boost the maximal response to orthosteric agonists and to serve independently as desensitization-biased agonists across mGluR subtypes. Conformational sensors reveal PAM-driven inter-subunit re-arrangements at both the LBD and TMD. Motivated by this, we determine cryo-electron microscopy structures of mGluR3 in the presence of either an agonist or antagonist alone or in combination with a PAM. These structures reveal PAM-driven re-shaping of intra- and inter-subunit conformations and provide evidence for a rolling TMD dimer interface activation pathway that controls G protein and beta-arrestin coupling. Highlights -Agonists and PAMs drive mGluR activation, desensitization, and endocytosis-PAMs are desensitization-biased and synergistic with agonists-Four combinatorial ligand conditions reveal an ensemble of full-length mGluR structures with novel interfaces-Activation and desensitization involve rolling TMD interfaces which are re-shaped by PAM.
Collapse
|
30
|
Dupont AC, Arlicot N, Vercouillie J, Serrière S, Maia S, Bonnet-Brilhault F, Santiago-Ribeiro MJ. Metabotropic Glutamate Receptor Subtype 5 Positron-Emission-Tomography Radioligands as a Tool for Central Nervous System Drug Development: Between Progress and Setbacks. Pharmaceuticals (Basel) 2023; 16:1127. [PMID: 37631042 PMCID: PMC10458693 DOI: 10.3390/ph16081127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/03/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
The metabotropic glutamate receptor subtype 5 (mGluR5) is a class C G-protein-coupled receptor (GPCR) that has been implicated in various neuronal processes and, consequently, in several neuropsychiatric or neurodevelopmental disorders. Over the past few decades, mGluR5 has become a major focus for pharmaceutical companies, as an attractive target for drug development, particularly through the therapeutic potential of its modulators. In particular, allosteric binding sites have been targeted for better specificity and efficacy. In this context, Positron Emission Tomography (PET) appears as a useful tool for making decisions along a drug candidate's development process, saving time and money. Thus, PET provides quantitative information about a potential drug candidate and its target at the molecular level. However, in this area, particular attention has to be given to the interpretation of the PET signal and its conclusions. Indeed, the complex pharmacology of both mGluR5 and radioligands, allosterism, the influence of endogenous glutamate and the choice of pharmacokinetic model are all factors that may influence the PET signal. This review focuses on mGluR5 PET radioligands used at several stages of central nervous system drug development, highlighting advances and setbacks related to the complex pharmacology of these radiotracers.
Collapse
Affiliation(s)
- Anne-Claire Dupont
- Radiopharmacie, CHRU de Tours, 37000 Tours, France
- UMR 1253, iBrain, Tours University, INSERM, 37000 Tours, France
| | - Nicolas Arlicot
- Radiopharmacie, CHRU de Tours, 37000 Tours, France
- UMR 1253, iBrain, Tours University, INSERM, 37000 Tours, France
- CIC 1415, Tours University, INSERM, 37000 Tours, France
| | | | - Sophie Serrière
- UMR 1253, iBrain, Tours University, INSERM, 37000 Tours, France
| | - Serge Maia
- Radiopharmacie, CHRU de Tours, 37000 Tours, France
- UMR 1253, iBrain, Tours University, INSERM, 37000 Tours, France
| | - Frédérique Bonnet-Brilhault
- UMR 1253, iBrain, Tours University, INSERM, 37000 Tours, France
- Excellence Center for Autism and Neurodevelopmental Disorders, CHRU de Tours, 37000 Tours, France
| | - Maria-Joao Santiago-Ribeiro
- UMR 1253, iBrain, Tours University, INSERM, 37000 Tours, France
- Nuclear Medicine Department, CHRU de Tours, 37000 Tours, France
| |
Collapse
|
31
|
Amer M, Leka O, Jasko P, Frey D, Li X, Kammerer RA. A coiled-coil-based design strategy for the thermostabilization of G-protein-coupled receptors. Sci Rep 2023; 13:10159. [PMID: 37349348 PMCID: PMC10287670 DOI: 10.1038/s41598-023-36855-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/11/2023] [Indexed: 06/24/2023] Open
Abstract
Structure elucidation of inactive-state GPCRs still mostly relies on X-ray crystallography. The major goal of our work was to create a new GPCR tool that would provide receptor stability and additional soluble surface for crystallization. Towards this aim, we selected the two-stranded antiparallel coiled coil as a domain fold that satisfies both criteria. A selection of antiparallel coiled coils was used for structure-guided substitution of intracellular loop 3 of the β3 adrenergic receptor. Unexpectedly, only the two GPCR variants containing thermostable coiled coils were expressed. We showed that one GPCR chimera is stable upon purification in detergent, retains ligand-binding properties, and can be crystallized. However, the quality of the crystals was not suitable for structure determination. By using two other examples, 5HTR2C and α2BAR, we demonstrate that our approach is generally suitable for the stabilization of GPCRs. To provide additional surface for promoting crystal contacts, we replaced in a structure-based approach the loop connecting the antiparallel coiled coil by T4L. We found that the engineered GPCR is even more stable than the coiled-coil variant. Negative-staining TEM revealed a homogeneous distribution of particles, indicating that coiled-coil-T4L receptor variants might also be promising candidate proteins for structure elucidation by cryo-EM. Our approach should be of interest for applications that benefit from stable GPCRs.
Collapse
Affiliation(s)
- Marwa Amer
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institute, 5232, Villigen PSI, Switzerland
| | - Oneda Leka
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institute, 5232, Villigen PSI, Switzerland
| | - Piotr Jasko
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institute, 5232, Villigen PSI, Switzerland
| | - Daniel Frey
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institute, 5232, Villigen PSI, Switzerland
| | - Xiaodan Li
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institute, 5232, Villigen PSI, Switzerland
| | - Richard A Kammerer
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institute, 5232, Villigen PSI, Switzerland.
| |
Collapse
|
32
|
Huh E, Agosto MA, Wensel TG, Lichtarge O. Coevolutionary signals in metabotropic glutamate receptors capture residue contacts and long-range functional interactions. J Biol Chem 2023; 299:103030. [PMID: 36806686 PMCID: PMC10060750 DOI: 10.1016/j.jbc.2023.103030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/18/2023] Open
Abstract
Upon ligand binding to a G protein-coupled receptor, extracellular signals are transmitted into a cell through sets of residue interactions that translate ligand binding into structural rearrangements. These interactions needed for functions impose evolutionary constraints so that, on occasion, mutations in one position may be compensated by other mutations at functionally coupled positions. To quantify the impact of amino acid substitutions in the context of major evolutionary divergence in the G protein-coupled receptor subfamily of metabotropic glutamate receptors (mGluRs), we combined two phylogenetic-based algorithms, Evolutionary Trace and covariation Evolutionary Trace, to infer potential structure-function couplings and roles in mGluRs. We found a subset of evolutionarily important residues at known functional sites and evidence of coupling among distinct structural clusters in mGluR. In addition, experimental mutagenesis and functional assays confirmed that some highly covariant residues are coupled, revealing their synergy. Collectively, these findings inform a critical step toward understanding the molecular and structural basis of amino acid variation patterns within mGluRs and provide insight for drug development, protein engineering, and analysis of naturally occurring variants.
Collapse
Affiliation(s)
- Eunna Huh
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Melina A Agosto
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, USA; Retina and Optic Nerve Research Laboratory, Department of Physiology and Biophysics, Dalhousie University, Halifax, Canada
| | - Theodore G Wensel
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Olivier Lichtarge
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.
| |
Collapse
|
33
|
Shen JK, Zhang HT. Function and structure of bradykinin receptor 2 for drug discovery. Acta Pharmacol Sin 2023; 44:489-498. [PMID: 36075965 PMCID: PMC9453710 DOI: 10.1038/s41401-022-00982-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/11/2022] [Indexed: 11/08/2022] Open
Abstract
Type 2 bradykinin receptor (B2R) is an essential G protein-coupled receptor (GPCR) that regulates the cardiovascular system as a vasodepressor. Dysfunction of B2R is also closely related to cancers and hereditary angioedema (HAE). Although several B2R agonists and antagonists have been developed, icatibant is the only B2R antagonist clinically used for treating HAE. The recently determined structures of B2R have provided molecular insights into the functions and regulation of B2R, which shed light on structure-based drug design for the treatment of B2R-related diseases. In this review, we summarize the structure and function of B2R in relation to drug discovery and discuss future research directions to elucidate the remaining unknown functions of B2R dimerization.
Collapse
Affiliation(s)
- Jin-Kang Shen
- Hangzhou Institute of Innovative Medicine, Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Hai-Tao Zhang
- Hangzhou Institute of Innovative Medicine, Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China.
| |
Collapse
|
34
|
Shen S, Zhao C, Wu C, Sun S, Li Z, Yan W, Shao Z. Allosteric modulation of G protein-coupled receptor signaling. Front Endocrinol (Lausanne) 2023; 14:1137604. [PMID: 36875468 PMCID: PMC9978769 DOI: 10.3389/fendo.2023.1137604] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 01/31/2023] [Indexed: 02/18/2023] Open
Abstract
G protein-coupled receptors (GPCRs), the largest family of transmembrane proteins, regulate a wide array of physiological processes in response to extracellular signals. Although these receptors have proven to be the most successful class of drug targets, their complicated signal transduction pathways (including different effector G proteins and β-arrestins) and mediation by orthosteric ligands often cause difficulties for drug development, such as on- or off-target effects. Interestingly, identification of ligands that engage allosteric binding sites, which are different from classic orthosteric sites, can promote pathway-specific effects in cooperation with orthosteric ligands. Such pharmacological properties of allosteric modulators offer new strategies to design safer GPCR-targeted therapeutics for various diseases. Here, we explore recent structural studies of GPCRs bound to allosteric modulators. Our inspection of all GPCR families reveals recognition mechanisms of allosteric regulation. More importantly, this review highlights the diversity of allosteric sites and presents how allosteric modulators control specific GPCR pathways to provide opportunities for the development of new valuable agents.
Collapse
Affiliation(s)
| | | | | | | | | | - Wei Yan
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhenhua Shao
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
35
|
Liu H, Li Y, Gao Y. Asymmetric activation of class C GPCRs. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 195:77-87. [PMID: 36707156 DOI: 10.1016/bs.pmbts.2022.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Class C G-protein-coupled receptors (GPCRs) comprise a unique GPCR subfamily with large ligand-binding extracellular domains and function as obligate dimers. The recently resolved cryo-EM structures of full-length GABAB, CaSR, and mGlus have revealed that these receptors are activated in an asymmetric manner, leading to G-protein-coupling on one protomer within the receptor dimer. In this review we discuss the mechanisms of asymmetric activation in class C GPCRs and the unique mode of interaction with the inhibitory Gi protein. Upon activation, the two seven-transmembrane domains (7TMs) of class C GPCRs rearrange to form a conserved asymmetric TM6-TM6 interface. In contrast to class A and B GPCRs, G-protein coupling does not involve the cytoplasmic opening of TM6, but is facilitated through the coordination of intracellular loops. Furthermore, positive and negative allosteric modulators (PAMs and NAMs) adopt distinct conformations to regulate the activity of class C GPCRs. Taken together, these recent findings on the mechanism of asymmetric activation of class C GPCRs highlight a novel mechanism of G protein activation and provide new insights into the design of therapeutics targeting these receptors.
Collapse
Affiliation(s)
- Hongnan Liu
- Department of Cardiology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
| | - Yanjun Li
- Department of Cardiology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
| | - Yang Gao
- Department of Cardiology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China; Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
36
|
Krzyczmonik A, Grafinger KE, Keller T, Pfeifer L, Forsback S, Haaparanta-Solin M, Gouverneur V, López-Picón F, Solin O. Evaluation of [ 18F]FMTEB in Sprague Dawley rats as a PET tracer for metabotropic glutamate receptor 5. Nucl Med Biol 2023; 116-117:108309. [PMID: 36521341 DOI: 10.1016/j.nucmedbio.2022.108309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 10/31/2022] [Accepted: 11/17/2022] [Indexed: 11/27/2022]
Abstract
INTRODUCTION [18F]FMTEB, along with other tracers, was developed as a promising PET radioligand for imaging metabotropic glutamate receptor subtype 5 (mGluR5). Despite favorable preliminary results, it has not been used further for studies of mGluR5. This paper presents an in-depth preclinical evaluation of [18F]FMTEB in healthy Sprague Dawley rats. METHODS [18F]FMTEB was synthesized from a boronic ester precursor using copper-mediated fluorination. In vivo PET imaging was performed on six rats, of which three were pre-treated with a high affinity mGluR5 receptor antagonist. An additional 18 rats were used for ex vivo experiments for metabolite analyses in plasma, brain and urine, and for biodistribution and ex vivo brain autoradiography at different time points. RESULTS [18F]FMTEB was synthesized in adequate radiochemical yield and a molar activity of 154 ± 64 GBq/μmol. Both in vivo imaging and ex vivo brain autoradiography showed high specificity for mGluR5, and the blocking experiments showed a clear decrease in radioactivity in mGluR5-rich brain areas. Metabolite analyses confirmed fast metabolism of the tracer in plasma. The percentage of parent compound in brain tissue exceeded 90 % up to 90 min after injection. CONCLUSION [18F]FMTEB produced via copper-mediated 18F-fluorination fulfilled the requirements for preclinical evaluation in rats. The absence of specific uptake in cerebellum and absence of defluorination of the tracer allowed cerebellum to be used as a reference tissue. Due to the fast kinetics in rats, the region-to-cerebellum ratios equilibrated within 30 min. These results prove [18F]FMTEB to be a good candidate for mapping mGluR5 in rat brain and a suitable alternative to [18F]FPEB.
Collapse
Affiliation(s)
- Anna Krzyczmonik
- Turku PET Centre, Radiopharmaceutical Chemistry Laboratory, University of Turku, Turku, Finland
| | - Katharina E Grafinger
- Turku PET Centre, Preclinical Imaging, University of Turku, Turku, Finland; MediCity Research Laboratory, University of Turku, Turku, Finland
| | - Thomas Keller
- Turku PET Centre, Radiopharmaceutical Chemistry Laboratory, University of Turku, Turku, Finland
| | - Lukas Pfeifer
- University of Oxford, Chemistry Research Laboratory, Oxford, United Kingdom
| | - Sarita Forsback
- Turku PET Centre, Radiopharmaceutical Chemistry Laboratory, University of Turku, Turku, Finland; Department of Chemistry, University of Turku, Turku, Finland
| | - Merja Haaparanta-Solin
- Turku PET Centre, Preclinical Imaging, University of Turku, Turku, Finland; MediCity Research Laboratory, University of Turku, Turku, Finland
| | | | - Francisco López-Picón
- Turku PET Centre, Preclinical Imaging, University of Turku, Turku, Finland; MediCity Research Laboratory, University of Turku, Turku, Finland
| | - Olof Solin
- Turku PET Centre, Radiopharmaceutical Chemistry Laboratory, University of Turku, Turku, Finland; Department of Chemistry, University of Turku, Turku, Finland; Turku PET Centre, Accelerator Laboratory, Åbo Akademi University, Turku, Finland.
| |
Collapse
|
37
|
Ben Abu N, Ben Shoshan-Galeczki Y, Malach E, Y Niv M. The T1R3 subunit of the sweet taste receptor is activated by D2O in transmembrane domain-dependent manner. Chem Senses 2023; 48:bjad032. [PMID: 37589415 DOI: 10.1093/chemse/bjad032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Indexed: 08/18/2023] Open
Abstract
Deuterium oxide (D2O) is water in which the heavier and rare isotope deuterium replaces both hydrogens. We have previously shown that D2O has a distinctly sweet taste, mediated by the T1R2/T1R3 sweet taste receptor. Here, we explore the effect of heavy water on T1R2 and T1R3 subunits. We show that D2O activates T1R3-transfected HEK293T cells similarly to T1R2/T1R3-transfected cells. The response to glucose dissolved in D2O is higher than in water. Mutations of phenylalanine at position 7305.40 in the transmembrane domain of T1R3 to alanine, leucine, or tyrosine impair or diminish activation by D2O, suggesting a critical role for T1R3 TMD domain in relaying the heavy water signal.
Collapse
Affiliation(s)
- Natalie Ben Abu
- The Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot 76100, Israel
| | - Yaron Ben Shoshan-Galeczki
- The Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot 76100, Israel
| | - Einav Malach
- The Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot 76100, Israel
| | - Masha Y Niv
- The Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot 76100, Israel
| |
Collapse
|
38
|
Kampen S, Rodríguez D, Jørgensen M, Kruszyk-Kujawa M, Huang X, Collins M, Boyle N, Maurel D, Rudling A, Lebon G, Carlsson J. Structure-Based Discovery of Negative Allosteric Modulators of the Metabotropic Glutamate Receptor 5. ACS Chem Biol 2022; 17:2744-2752. [PMID: 36149353 PMCID: PMC9594040 DOI: 10.1021/acschembio.2c00234] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Recently determined structures of class C G protein-coupled receptors (GPCRs) revealed the location of allosteric binding sites and opened new opportunities for the discovery of novel modulators. In this work, molecular docking screens for allosteric modulators targeting the metabotropic glutamate receptor 5 (mGlu5) were performed. The mGlu5 receptor is activated by the main excitatory neurotransmitter of the nervous central system, L-glutamate, and mGlu5 receptor activity can be allosterically modulated by negative or positive allosteric modulators. The mGlu5 receptor is a promising target for the treatment of psychiatric and neurodegenerative diseases, and several allosteric modulators of this GPCR have been evaluated in clinical trials. Chemical libraries containing fragment- (1.6 million molecules) and lead-like (4.6 million molecules) compounds were docked to an allosteric binding site of mGlu5 identified in X-ray crystal structures. Among the top-ranked compounds, 59 fragments and 59 lead-like compounds were selected for experimental evaluation. Of these, four fragment- and seven lead-like compounds were confirmed to bind to the allosteric site with affinities ranging from 0.43 to 8.6 μM, corresponding to a hit rate of 9%. The four compounds with the highest affinities were demonstrated to be negative allosteric modulators of mGlu5 signaling in functional assays. The results demonstrate that virtual screens of fragment- and lead-like chemical libraries have complementary advantages and illustrate how access to high-resolution structures of GPCRs in complex with allosteric modulators can accelerate lead discovery.
Collapse
Affiliation(s)
- Stefanie Kampen
- Science
for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, SE-751 24 Uppsala, Sweden
| | - David Rodríguez
- Science
for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, SE-171 21 Solna, Sweden,H.
Lundbeck A/S, Ottiliavej
9, DK-2500 Valby, Denmark
| | | | | | - Xinyan Huang
- Lundbeck
Research USA, 215 College Road, Paramus, New Jersey 07652 - 1431, United States
| | - Michael Collins
- Lundbeck
Research USA, 215 College Road, Paramus, New Jersey 07652 - 1431, United States
| | - Noel Boyle
- Lundbeck
Research USA, 215 College Road, Paramus, New Jersey 07652 - 1431, United States
| | - Damien Maurel
- IGF,
Université de Montpellier, CNRS, INSERM, 34094 Montpellier, France
| | - Axel Rudling
- Science
for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, SE-171 21 Solna, Sweden
| | - Guillaume Lebon
- IGF,
Université de Montpellier, CNRS, INSERM, 34094 Montpellier, France
| | - Jens Carlsson
- Science
for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, SE-751 24 Uppsala, Sweden,
| |
Collapse
|
39
|
Uba AI, Chea J, Hoag H, Hryb M, Bui-Linh C, Wu C. Binding of a positive allosteric modulator CDPPB to metabotropic glutamate receptor type 5 (mGluR5) probed by all-atom molecular dynamics simulations. Life Sci 2022; 309:121014. [PMID: 36179814 DOI: 10.1016/j.lfs.2022.121014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/20/2022] [Accepted: 09/26/2022] [Indexed: 11/29/2022]
Abstract
Positive allosteric modulators (PAMs) of metabotropic glutamate receptor type 5 (mGluR5) potentiate positive receptor response and may be effective for the treatment of schizophrenia and cognitive disorders. Although crystal structures of mGluR5 complexed with the negative allosteric modulators (NAMs) are available, no crystal structure of mGluR5 complexed with PAM has been reported to date. Thus, conformational changes associated with the binding of PAMs to mGluR5 remain elusive. Here, a PAM CDPPB, and two NAMs MTEP and MFZ10-7 used as a negative control, were docked to the crystal structure. The docked complexes were submitted to molecular dynamics simulations to examine the activation of the PAM system. An MM/GBSA binding energy calculation was performed to estimate binding strength. Furthermore, molecular switch analysis was done to get insights into conformational changes of the receptor. The PAM CDPPB displays a stronger binding affinity for mGluR5 and induces conformational changes. Also, a salt bridge between TM3 and TM7, corresponding to the ionic lock switch in class A GPCRs is found to be broken. The PAM-induced receptor conformation is more like the agonist-induced conformation than the antagonist-induced conformation, suggesting that PAM works by inducing conformation change and stabilizing the active receptor conformation.
Collapse
Affiliation(s)
- Abdullahi Ibrahim Uba
- College of Science and Mathematics, Rowan University, Glassboro, NJ 08028, United States
| | - John Chea
- College of Engineering, Rowan University, Glassboro, NJ 08028, United States
| | - Hannah Hoag
- College of Science and Mathematics, Rowan University, Glassboro, NJ 08028, United States
| | - Mariya Hryb
- College of Science and Mathematics, Rowan University, Glassboro, NJ 08028, United States
| | - Candice Bui-Linh
- College of Science and Mathematics, Rowan University, Glassboro, NJ 08028, United States
| | - Chun Wu
- College of Science and Mathematics, Rowan University, Glassboro, NJ 08028, United States.
| |
Collapse
|
40
|
Yang MY, Kim SK, Goddard WA. G protein coupling and activation of the metabotropic GABA B heterodimer. Nat Commun 2022; 13:4612. [PMID: 35941188 PMCID: PMC9360005 DOI: 10.1038/s41467-022-32213-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 07/21/2022] [Indexed: 11/22/2022] Open
Abstract
Metabotropic γ-aminobutyric acid receptor (GABABR), a class C G protein-coupled receptor (GPCR) heterodimer, plays a crucial role in the central nervous system. Cryo-electron microscopy studies revealed a drastic conformational change upon activation and a unique G protein (GP) binding mode. However, little is known about the mechanism for GP coupling and activation for class C GPCRs. Here, we use molecular metadynamics computations to predict the mechanism by which the inactive GP induces conformational changes in the GABABR transmembrane domain (TMD) to form an intermediate pre-activated state. We find that the inactive GP first interacts with TM3, which further leads to the TMD rearrangement and deeper insertion of the α5 helix that causes the Gα subunit to open, releasing GDP, and forming the experimentally observed activated structure. This mechanism provides fresh insights into the mechanistic details of class C GPCRs activation expected to be useful for designing selective agonists and antagonists.
Collapse
Affiliation(s)
- Moon Young Yang
- Materials and Process Simulation Center, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Soo-Kyung Kim
- Materials and Process Simulation Center, California Institute of Technology, Pasadena, CA, 91125, USA
| | - William A Goddard
- Materials and Process Simulation Center, California Institute of Technology, Pasadena, CA, 91125, USA.
| |
Collapse
|
41
|
Zimmermann M, Minuzzi L, Aliaga Aliaga A, Guiot MC, Hall JA, Soucy JP, Massarweh G, El Mestikawy S, Rosa-Neto P, Kobayashi E. Reduced Metabotropic Glutamate Receptor Type 5 Availability in the Epileptogenic Hippocampus: An in vitro Study. Front Neurol 2022; 13:888479. [PMID: 35937057 PMCID: PMC9355376 DOI: 10.3389/fneur.2022.888479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 06/02/2022] [Indexed: 11/23/2022] Open
Abstract
Abnormalities in the expression of metabotropic glutamate receptor type 5 (mGluR5) have been observed in the hippocampus of patients with drug-resistant mesial Temporal Lobe Epilepsy (mTLE). Ex-vivo studies in mTLE hippocampal surgical specimens have shown increased mGluR5 immunoreactivity, while in vivo whole brain imaging using positron emission tomography (PET) demonstrated reduced hippocampal mGluR5 availability. To further understand mGluR5 abnormalities in mTLE, we performed a saturation autoradiography study with [3H]ABP688 (a negative mGluR5 allosteric modulator). We aimed to evaluate receptor density (Bmax) and dissociation constants (KD) in hippocampal mTLE surgical specimens and in non-epilepsy hippocampi from necropsy controls. mTLE specimens showed a 43.4% reduction in receptor density compared to control hippocampi, which was independent of age, sex and KD (multiple linear regression analysis). There was no significant difference in KD between the groups, which suggests that the decreased mGluR5 availability found in vivo with PET cannot be attributed to reduced affinity between ligand and binding site. The present study supports that changes within the epileptogenic tissue include mGluR5 internalization or conformational changes that reduce [3H]ABP688 binding, as previously suggested in mTLE patients studied in vivo.
Collapse
Affiliation(s)
- Maria Zimmermann
- Department of Neurology and Neurosurgery, Montréal Neurological Institute, McGill University, Montréal, QC, Canada
- Translational Neuroimaging Laboratory, Douglas Research Institute, McGill University, Montréal, QC, Canada
| | - Luciano Minuzzi
- Translational Neuroimaging Laboratory, Douglas Research Institute, McGill University, Montréal, QC, Canada
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Arturo Aliaga Aliaga
- Translational Neuroimaging Laboratory, Douglas Research Institute, McGill University, Montréal, QC, Canada
- PET Unit, McConnell Brain Imaging Centre, Montréal, QC, Canada
| | | | - Jeffery A. Hall
- Department of Neurology and Neurosurgery, Montréal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Jean-Paul Soucy
- Department of Neurology and Neurosurgery, Montréal Neurological Institute, McGill University, Montréal, QC, Canada
- PET Unit, McConnell Brain Imaging Centre, Montréal, QC, Canada
| | | | - Salah El Mestikawy
- Department of Psychiatry, Douglas Research Institute, McGill University, Montréal, QC, Canada
| | - Pedro Rosa-Neto
- Department of Neurology and Neurosurgery, Montréal Neurological Institute, McGill University, Montréal, QC, Canada
- Translational Neuroimaging Laboratory, Douglas Research Institute, McGill University, Montréal, QC, Canada
| | - Eliane Kobayashi
- Department of Neurology and Neurosurgery, Montréal Neurological Institute, McGill University, Montréal, QC, Canada
- *Correspondence: Eliane Kobayashi
| |
Collapse
|
42
|
Liauw BWH, Foroutan A, Schamber MR, Lu W, Samareh Afsari H, Vafabakhsh R. Conformational fingerprinting of allosteric modulators in metabotropic glutamate receptor 2. eLife 2022; 11:e78982. [PMID: 35775730 PMCID: PMC9299836 DOI: 10.7554/elife.78982] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
Activation of G protein-coupled receptors (GPCRs) is an allosteric process. It involves conformational coupling between the orthosteric ligand binding site and the G protein binding site. Factors that bind at non-cognate ligand binding sites to alter the allosteric activation process are classified as allosteric modulators and represent a promising class of therapeutics with distinct modes of binding and action. For many receptors, how modulation of signaling is represented at the structural level is unclear. Here, we developed fluorescence resonance energy transfer (FRET) sensors to quantify receptor modulation at each of the three structural domains of metabotropic glutamate receptor 2 (mGluR2). We identified the conformational fingerprint for several allosteric modulators in live cells. This approach enabled us to derive a receptor-centric representation of allosteric modulation and to correlate structural modulation to the standard signaling modulation metrics. Single-molecule FRET analysis revealed that a NAM (egative allosteric modulator) increases the occupancy of one of the intermediate states while a positive allosteric modulator increases the occupancy of the active state. Moreover, we found that the effect of allosteric modulators on the receptor dynamics is complex and depend on the orthosteric ligand. Collectively, our findings provide a structural mechanism of allosteric modulation in mGluR2 and suggest possible strategies for design of future modulators.
Collapse
Affiliation(s)
| | - Arash Foroutan
- Department of Molecular Biosciences, Northwestern UniversityEvanstonUnited States
| | - Michael R Schamber
- Department of Molecular Biosciences, Northwestern UniversityEvanstonUnited States
| | - Weifeng Lu
- Department of Molecular Biosciences, Northwestern UniversityEvanstonUnited States
| | - Hamid Samareh Afsari
- Department of Molecular Biosciences, Northwestern UniversityEvanstonUnited States
| | - Reza Vafabakhsh
- Department of Molecular Biosciences, Northwestern UniversityEvanstonUnited States
| |
Collapse
|
43
|
Fu X, Wei S, Wang T, Fan H, Zhang Y, Costa CD, Brandner S, Yang G, Pan Y, He Y, Li N. Research Status of the Orphan G Protein Coupled Receptor 158 and Future Perspectives. Cells 2022; 11:cells11081334. [PMID: 35456013 PMCID: PMC9027133 DOI: 10.3390/cells11081334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/10/2022] [Accepted: 04/11/2022] [Indexed: 02/01/2023] Open
Abstract
G-protein-coupled receptors (GPCRs) remain one of the most successful targets for therapeutic drugs approved by the US Food and Drug Administration (FDA). Many novel orphan GPCRs have been identified by human genome sequencing and considered as putative targets for refractory diseases. Of note, a series of studies have been carried out involving GPCR 158 (or GPR158) since its identification in 2005, predominantly focusing on the characterization of its roles in the progression of cancer and mental illness. However, advances towards an in-depth understanding of the biological mechanism(s) involved for clinical application of GPR158 are lacking. In this paper, we clarify the origin of the GPR158 evolution in different species and summarize the relationship between GPR158 and different diseases towards potential drug target identification, through an analysis of the sequences and substructures of GPR158. Further, we discuss how recent studies set about unraveling the fundamental features and principles, followed by future perspectives and thoughts, which may lead to prospective therapies involving GPR158.
Collapse
Affiliation(s)
- Xianan Fu
- Tomas Lindhal Nobel Laureate Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University (SYSU), No.628, Zhenyuan Rd., Guangming Dist., Shenzhen 518107, China; (X.F.); (S.W.); (T.W.); (H.F.); (Y.Z.); (Y.P.)
| | - Shoupeng Wei
- Tomas Lindhal Nobel Laureate Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University (SYSU), No.628, Zhenyuan Rd., Guangming Dist., Shenzhen 518107, China; (X.F.); (S.W.); (T.W.); (H.F.); (Y.Z.); (Y.P.)
| | - Tao Wang
- Tomas Lindhal Nobel Laureate Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University (SYSU), No.628, Zhenyuan Rd., Guangming Dist., Shenzhen 518107, China; (X.F.); (S.W.); (T.W.); (H.F.); (Y.Z.); (Y.P.)
| | - Hengxin Fan
- Tomas Lindhal Nobel Laureate Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University (SYSU), No.628, Zhenyuan Rd., Guangming Dist., Shenzhen 518107, China; (X.F.); (S.W.); (T.W.); (H.F.); (Y.Z.); (Y.P.)
| | - Ying Zhang
- Tomas Lindhal Nobel Laureate Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University (SYSU), No.628, Zhenyuan Rd., Guangming Dist., Shenzhen 518107, China; (X.F.); (S.W.); (T.W.); (H.F.); (Y.Z.); (Y.P.)
| | - Clive Da Costa
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK;
| | - Sebastian Brandner
- Department of Neurodegenerative Disease, Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK;
| | - Guang Yang
- Department of Burn and Plastic Surgery, Institute of Translational Medicine, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen 518039, China;
| | - Yihang Pan
- Tomas Lindhal Nobel Laureate Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University (SYSU), No.628, Zhenyuan Rd., Guangming Dist., Shenzhen 518107, China; (X.F.); (S.W.); (T.W.); (H.F.); (Y.Z.); (Y.P.)
| | - Yulong He
- Tomas Lindhal Nobel Laureate Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University (SYSU), No.628, Zhenyuan Rd., Guangming Dist., Shenzhen 518107, China; (X.F.); (S.W.); (T.W.); (H.F.); (Y.Z.); (Y.P.)
- Center for Digestive Disease, The Seventh Affiliated Hospital of Sun Yat-sen University (SYSU), No.628, Zhenyuan Rd., Guangming Dist., Shenzhen 518107, China
- Correspondence: (Y.H.); (N.L.)
| | - Ningning Li
- Tomas Lindhal Nobel Laureate Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University (SYSU), No.628, Zhenyuan Rd., Guangming Dist., Shenzhen 518107, China; (X.F.); (S.W.); (T.W.); (H.F.); (Y.Z.); (Y.P.)
- China-UK Institute for Frontier Science, Shenzhen 518107, China
- Correspondence: (Y.H.); (N.L.)
| |
Collapse
|
44
|
Azam S, Jakaria M, Kim J, Ahn J, Kim IS, Choi DK. Group I mGluRs in Therapy and Diagnosis of Parkinson’s Disease: Focus on mGluR5 Subtype. Biomedicines 2022; 10:biomedicines10040864. [PMID: 35453614 PMCID: PMC9032558 DOI: 10.3390/biomedicines10040864] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 11/16/2022] Open
Abstract
Metabotropic glutamate receptors (mGluRs; members of class C G-protein-coupled receptors) have been shown to modulate excitatory neurotransmission, regulate presynaptic extracellular glutamate levels, and modulate postsynaptic ion channels on dendritic spines. mGluRs were found to activate myriad signalling pathways to regulate synapse formation, long-term potentiation, autophagy, apoptosis, necroptosis, and pro-inflammatory cytokines release. A notorious expression pattern of mGluRs has been evident in several neurodegenerative diseases, including Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, and schizophrenia. Among the several mGluRs, mGluR5 is one of the most investigated types of considered prospective therapeutic targets and potential diagnostic tools in neurodegenerative diseases and neuropsychiatric disorders. Recent research showed mGluR5 radioligands could be a potential tool to assess neurodegenerative disease progression and trace respective drugs’ kinetic properties. This article provides insight into the group I mGluRs, specifically mGluR5, in the progression and possible therapy for PD.
Collapse
Affiliation(s)
- Shofiul Azam
- Department of Applied Life Science, Graduate School, BK21 Program, Konkuk University, Chungju 27478, Korea; (S.A.); (M.J.); (J.K.); (J.A.)
| | - Md. Jakaria
- Department of Applied Life Science, Graduate School, BK21 Program, Konkuk University, Chungju 27478, Korea; (S.A.); (M.J.); (J.K.); (J.A.)
- Melbourne Dementia Research Centre, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3052, Australia
| | - JoonSoo Kim
- Department of Applied Life Science, Graduate School, BK21 Program, Konkuk University, Chungju 27478, Korea; (S.A.); (M.J.); (J.K.); (J.A.)
| | - Jaeyong Ahn
- Department of Applied Life Science, Graduate School, BK21 Program, Konkuk University, Chungju 27478, Korea; (S.A.); (M.J.); (J.K.); (J.A.)
| | - In-Su Kim
- Department of Biotechnology, College of Biomedical and Health Science, Research Institute of Inflammatory Disease (RID), Konkuk University, Chungju 27478, Korea
- Correspondence: (I.-S.K.); (D.-K.C.); Tel.: +82-43-840-3905 (I.-S.K.); +82-43-840-3610 (D.-K.C.); Fax: +82-43-840-3872 (D.-K.C.)
| | - Dong-Kug Choi
- Department of Applied Life Science, Graduate School, BK21 Program, Konkuk University, Chungju 27478, Korea; (S.A.); (M.J.); (J.K.); (J.A.)
- Department of Biotechnology, College of Biomedical and Health Science, Research Institute of Inflammatory Disease (RID), Konkuk University, Chungju 27478, Korea
- Correspondence: (I.-S.K.); (D.-K.C.); Tel.: +82-43-840-3905 (I.-S.K.); +82-43-840-3610 (D.-K.C.); Fax: +82-43-840-3872 (D.-K.C.)
| |
Collapse
|
45
|
Berto L, Dumazer A, Malhaire F, Cannone G, Kutti Ragunath V, Goudet C, Lebon G. [Recent advances in the structural biology of the class C G protein-coupled receptors: The metabotropic Glutamate receptor 5]. Biol Aujourdhui 2022; 215:85-94. [PMID: 35275053 DOI: 10.1051/jbio/2021013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Indexed: 06/14/2023]
Abstract
Class C GPCRs, that include metabotropic glutamate receptors (mGlu), taste receptors, GABAB receptor and Calcium-sensing receptor, are unusual in terms of their molecular architecture and allosteric regulation. They all form obligatory dimers, dimerization being fundamental for their function. More specifically, the mGlu are activated by the main excitatory neurotransmitter, L-glutamate. mGlu activation by glutamate binding in the venus flytrap domain (VFT) triggers conformational changes that are transmitted, through the Cystein-Rich Domain (CRD), to the conserved fold of 7 transmembrane helices (7TM), that couples to intracellular G protein. mGlu activity can also be allosterically modulated by positive (PAM) or negative (NAM) allosteric modulators binding to the 7TM. Recent progress in cryo-electron microscopy (cryoEM) has allowed unprecedented advances in deciphering the structural and molecular basis of their activation mechanism. The agonist induces a large movement between the subunits, bringing the 7TMs together and stabilizing a 7TM conformation structurally similar to the inactive state. The diversity of inactive conformations for the class C was unexpected but allows PAM stabilising a 7TM active conformation independent of the conformational changes induced by agonists, representing an alternative mode of mGlu activation. Here we present and discuss recent structural characterisation of mGlu receptors, highlighting findings that make the class C of GPCR unique. Understanding the structural basis of mGlu dimer signaling represents a landmark achievement and paves the way for structural investigation of GPCR dimer signaling in general. Structural information will open new avenues for structure-based drug design.
Collapse
Affiliation(s)
- Ludovic Berto
- IGF, Université de Montpellier, CNRS, INSERM, 34094 Montpellier, France
| | - Anaëlle Dumazer
- IGF, Université de Montpellier, CNRS, INSERM, 34094 Montpellier, France
| | - Fanny Malhaire
- IGF, Université de Montpellier, CNRS, INSERM, 34094 Montpellier, France
| | | | | | - Cyril Goudet
- IGF, Université de Montpellier, CNRS, INSERM, 34094 Montpellier, France
| | - Guillaume Lebon
- IGF, Université de Montpellier, CNRS, INSERM, 34094 Montpellier, France
| |
Collapse
|
46
|
Mullin BH, Pavlos NJ, Brown SJ, Walsh JP, McKellar RA, Wilson SG, Ward BK. Functional Assessment of Calcium-Sensing Receptor Variants Confirms Familial Hypocalciuric Hypercalcaemia. J Endocr Soc 2022; 6:bvac025. [PMID: 35356007 PMCID: PMC8962451 DOI: 10.1210/jendso/bvac025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Indexed: 11/26/2022] Open
Abstract
Context In the clinic it is important to differentiate primary hyperparathyroidism (PHPT) from the more benign, inherited disorder, familial hypocalciuric hypercalcemia (FHH). Since the conditions may sometimes overlap biochemically, identification of calcium-sensing receptor (CASR) gene variants causative of FHH (but not PHPT) is the most decisive diagnostic aid. When novel variants are identified, bioinformatics and functional assessment are required to establish pathogenicity. Objective We identified 3 novel CASR transmembrane domain missense variants, Thr699Asn, Arg701Gly, and Thr808Pro, in 3 probands provisionally diagnosed with FHH and examined the variants using bioinformatics and functional analysis. Methods Bioinformatics assessment utilized wANNOVAR software. For functional characterization, each variant was cloned into a mammalian expression vector; wild-type and variant receptors were transfected into HEK293 cells, and their expression and cellular localization were assessed by Western blotting and confocal immunofluorescence, respectively. Receptor activation in HEK293 cells was determined using an IP-One ELISA assay following stimulation with Ca++ ions. Results Bioinformatics analysis of the variants was unable to definitively assign pathogenicity. Compared with wild-type receptor, all variants demonstrated impaired expression of mature receptor reaching the cell surface and diminished activation at physiologically relevant Ca++ concentrations. Conclusion Three CASR missense variants identified in probands provisionally diagnosed with FHH result in receptor inactivation and are therefore likely causative of FHH. Inactivation may be due to inadequate processing/trafficking of mature receptor and/or conformational changes induced by the variants affecting receptor signaling. This study demonstrates the value of functional studies in assessing genetic variants identified in hypercalcemic patients.
Collapse
Affiliation(s)
- Benjamin H Mullin
- Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, WA, Australia
- School of Biomedical Sciences, University of Western Australia, Nedlands, WA, Australia
| | - Nathan J Pavlos
- School of Biomedical Sciences, University of Western Australia, Nedlands, WA, Australia
| | - Suzanne J Brown
- Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, WA, Australia
| | - John P Walsh
- Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, WA, Australia
- Medical School, University of Western Australia, Nedlands, WA, Australia
| | - Ross A McKellar
- Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, WA, Australia
| | - Scott G Wilson
- Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, WA, Australia
- School of Biomedical Sciences, University of Western Australia, Nedlands, WA, Australia
- Department of Twin Research and Genetic Epidemiology, King’s College London, London, UK
| | - Bryan K Ward
- Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, WA, Australia
- Harry Perkins Institute of Medical Research, Centre for Medical Research, QEII Medical Centre, University of Western Australia, Nedlands, WA, Australia
| |
Collapse
|
47
|
Yuan G, Dhaynaut M, Lan Y, Guehl NJ, Huynh D, Iyengar SM, Afshar S, Jain MK, Pickett JE, Kang HJ, Wang H, Moon SH, Ondrechen MJ, Wang C, Shoup TM, El Fakhri G, Normandin MD, Brownell AL. Synthesis and Characterization of 5-(2-Fluoro-4-[ 11C]methoxyphenyl)-2,2-dimethyl-3,4-dihydro-2 H-pyrano[2,3- b]pyridine-7-carboxamide as a PET Imaging Ligand for Metabotropic Glutamate Receptor 2. J Med Chem 2022; 65:2593-2609. [PMID: 35089713 PMCID: PMC9434702 DOI: 10.1021/acs.jmedchem.1c02004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Metabotropic glutamate receptor 2 (mGluR2) is a therapeutic target for several neuropsychiatric disorders. An mGluR2 function in etiology could be unveiled by positron emission tomography (PET). In this regard, 5-(2-fluoro-4-[11C]methoxyphenyl)-2,2-dimethyl-3,4-dihydro-2H-pyrano[2,3-b]pyridine-7-carboxamide ([11C]13, [11C]mG2N001), a potent negative allosteric modulator (NAM), was developed to support this endeavor. [11C]13 was synthesized via the O-[11C]methylation of phenol 24 with a high molar activity of 212 ± 76 GBq/μmol (n = 5) and excellent radiochemical purity (>99%). PET imaging of [11C]13 in rats demonstrated its superior brain heterogeneity and reduced accumulation with pretreatment of mGluR2 NAMs, VU6001966 (9) and MNI-137 (26), the extent of which revealed a time-dependent drug effect of the blocking agents. In a nonhuman primate, [11C]13 selectively accumulated in mGluR2-rich regions and resulted in high-contrast brain images. Therefore, [11C]13 is a potential candidate for translational PET imaging of the mGluR2 function.
Collapse
Affiliation(s)
- Gengyang Yuan
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, 3rd Avenue, Charlestown, Massachusetts 02129, United States
| | - Maeva Dhaynaut
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, 3rd Avenue, Charlestown, Massachusetts 02129, United States
| | - Yu Lan
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Nicolas J Guehl
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, 3rd Avenue, Charlestown, Massachusetts 02129, United States
| | - Dalena Huynh
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, 3rd Avenue, Charlestown, Massachusetts 02129, United States
| | - Suhasini M Iyengar
- Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Sepideh Afshar
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, 3rd Avenue, Charlestown, Massachusetts 02129, United States
| | - Manish Kumar Jain
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina 27599, United States
| | - Julie E Pickett
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina 27599, United States
| | - Hye Jin Kang
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina 27599, United States
| | - Hao Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Sung-Hyun Moon
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, 3rd Avenue, Charlestown, Massachusetts 02129, United States
| | - Mary Jo Ondrechen
- Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Changning Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Timothy M Shoup
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, 3rd Avenue, Charlestown, Massachusetts 02129, United States
| | - Georges El Fakhri
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, 3rd Avenue, Charlestown, Massachusetts 02129, United States
| | - Marc D Normandin
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, 3rd Avenue, Charlestown, Massachusetts 02129, United States
| | - Anna-Liisa Brownell
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, 3rd Avenue, Charlestown, Massachusetts 02129, United States
| |
Collapse
|
48
|
Chou KJ, Hsu CY, Huang CW, Chen HJ, Ou SH, Chen CL, Lee PT, Fang HC. A new missense mutation of calcium sensing receptor with isoleucine replaced by serine at codon 857 leading to type V Bartter syndrome. Exp Cell Res 2022; 414:113080. [DOI: 10.1016/j.yexcr.2022.113080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/29/2022] [Accepted: 02/10/2022] [Indexed: 02/05/2023]
|
49
|
Devadiga SJ, Bharate SS. Recent developments in the management of Huntington's disease. Bioorg Chem 2022; 120:105642. [PMID: 35121553 DOI: 10.1016/j.bioorg.2022.105642] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 01/19/2022] [Accepted: 01/22/2022] [Indexed: 12/21/2022]
Abstract
Huntington's disease (HD) is a rare, incurable, inheritedneurodegenerative disorder manifested by chorea, hyperkinetic, and hypokinetic movements. The FDA has approved only two drugs, viz. tetrabenazine, and deutetrabenazine, to manage the chorea associated with HD. However, several other drugs are used as an off-label to manage chorea and other symptoms such as depression, anxiety, muscle tremors, and cognitive dysfunction associated with HD. So far, there is no disease-modifying treatment available. Drug repurposing has been a primary drive to search for new anti-HD drugs. Numerous molecular targets along with a wide range of small molecules and gene therapies are currently under clinical investigation. More than 200 clinical studies are underway for HD, 75% are interventional, and 25% are observational studies. The present review discusses the small molecule clinical pipeline and molecular targets for HD. Furthermore, the biomarkers, diagnostic tests, gene therapies, behavioral and observational studies for HD were also deliberated.
Collapse
Affiliation(s)
- Shanaika J Devadiga
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai 400056, India
| | - Sonali S Bharate
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai 400056, India.
| |
Collapse
|
50
|
Jarończyk M, Walory J. Novel Molecular Targets of Antidepressants. Molecules 2022; 27:533. [PMID: 35056845 PMCID: PMC8778443 DOI: 10.3390/molecules27020533] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/10/2022] [Accepted: 01/12/2022] [Indexed: 12/12/2022] Open
Abstract
Antidepressants target a variety of proteins in the central nervous system (CNS), the most important belonging to the family of G-protein coupled receptors and the family of neurotransmitter transporters. The increasing number of crystallographic structures of these proteins have significantly contributed to the knowledge of their mechanism of action, as well as to the design of new drugs. Several computational approaches such as molecular docking, molecular dynamics, and virtual screening are useful for elucidating the mechanism of drug action and are important for drug design. This review is a survey of molecular targets for antidepressants in the CNS and computer based strategies to discover novel compounds with antidepressant activity.
Collapse
|