1
|
Li Q, Guo Y, Wu Z, Xu X, Jiang Z, Qi S, Liu Z, Wen L, Tang F. scNanoSeq-CUT&Tag: a single-cell long-read CUT&Tag sequencing method for efficient chromatin modification profiling within individual cells. Nat Methods 2024:10.1038/s41592-024-02453-w. [PMID: 39375575 DOI: 10.1038/s41592-024-02453-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 09/08/2024] [Indexed: 10/09/2024]
Abstract
Chromatin modifications are fundamental epigenetic marks that determine genome functions, but it remains challenging to profile those of repetitive elements and complex genomic regions. Here, we develop scNanoSeq-CUT&Tag, a streamlined method, by adapting modified cleavage under targets and tagmentation (CUT&Tag) to the nanopore sequencing platform for genome-wide chromatin modification profiling within individual cells. We show that scNanoSeq-CUT&Tag can accurately profile histone marks and transcription factor occupancy patterns at single-cell resolution as well as distinguish different cell types. scNanoSeq-CUT&Tag efficiently maps the allele-specific chromatin modifications and allows analysis of their neighboring region co-occupancy patterns within individual cells. Moreover, scNanoSeq-CUT&Tag can accurately detect chromatin modifications for individual copies of repetitive elements in both human and mouse genomes. Overall, we prove that scNanoSeq-CUT&Tag is a valuable single-cell tool for efficiently profiling histone marks and transcription factor occupancies, especially for previously poorly studied complex genomic regions and blacklist genomic regions.
Collapse
Affiliation(s)
- Qingqing Li
- School of Life Sciences, Biomedical Pioneering Innovation Center, Peking University, Beijing, China
- Beijing Advanced Innovation Center for Genomics, Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing, China
| | - Yuqing Guo
- School of Life Sciences, Biomedical Pioneering Innovation Center, Peking University, Beijing, China
- Beijing Advanced Innovation Center for Genomics, Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing, China
| | - Zixin Wu
- School of Life Sciences, Biomedical Pioneering Innovation Center, Peking University, Beijing, China
- Beijing Advanced Innovation Center for Genomics, Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Xueqiang Xu
- School of Life Sciences, Biomedical Pioneering Innovation Center, Peking University, Beijing, China
- Beijing Advanced Innovation Center for Genomics, Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Zhenhuan Jiang
- School of Life Sciences, Biomedical Pioneering Innovation Center, Peking University, Beijing, China
- Beijing Advanced Innovation Center for Genomics, Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing, China
- PKU-Tsinghua-NIBS Graduate Program, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Shuyue Qi
- School of Life Sciences, Biomedical Pioneering Innovation Center, Peking University, Beijing, China
- Beijing Advanced Innovation Center for Genomics, Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing, China
| | - Zhenyu Liu
- School of Life Sciences, Biomedical Pioneering Innovation Center, Peking University, Beijing, China
- Beijing Advanced Innovation Center for Genomics, Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing, China
| | - Lu Wen
- School of Life Sciences, Biomedical Pioneering Innovation Center, Peking University, Beijing, China
- Beijing Advanced Innovation Center for Genomics, Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing, China
| | - Fuchou Tang
- School of Life Sciences, Biomedical Pioneering Innovation Center, Peking University, Beijing, China.
- Beijing Advanced Innovation Center for Genomics, Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing, China.
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
- PKU-Tsinghua-NIBS Graduate Program, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
| |
Collapse
|
2
|
Dong Y, Huang L, Liu L. Comparative analysis of testicular fusion in Spodoptera litura (cutworm) and Bombyx mori (silkworm): Histological and transcriptomic insights. Gen Comp Endocrinol 2024; 356:114562. [PMID: 38848820 DOI: 10.1016/j.ygcen.2024.114562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/09/2024]
Abstract
Spodoptera litura commonly known as the cutworm, is among the most destructive lepidopteran pests affecting over 120 plants species. The powerful destructive nature of this lepidopteran is attributable to its high reproductive capacity. The testicular fusion that occurs during metamorphosis from larvae to pupa in S.litura positively influences the reproductive success of the offspring. In contrast, Bombyx mori, the silkworm, retains separate testes throughout its life and does not undergo this fusion process. Microscopic examination reveals that during testicular fusion in S.litura, the peritoneal sheath becomes thinner and more translucent, whereas in B.mori, the analogous region thickens. The outer basement membrane in S.litura exhibits fractures, discontinuity, and uneven thickness accompanied by a significant presence of cellular secretions, large cell size, increased vesicles, liquid droplets, and a proliferation of rough endoplasmic reticulum and mitochondria. In contrast, the testicular peritoneal sheath of B.mori at comparable developmental stage exhibits minimal change. Comparative transcriptomic analysis of the testicular peritoneal sheath reveals a substantial difference in gene expression between the two species. The disparity in differential expressed genes (DEGs) is linked to an enrichment of numerous transcription factors, intracellular signaling pathways involving Ca2+ and GTPase, as well as intracellular protein transport and signaling pathways. Meanwhile, structural proteins including actin, chitin-binding proteins, membrane protein fractions, cell adhesion, extracellular matrix proteins are predominantly identified. Moreover, the study highlights the enrichment of endopeptidases, serine proteases, proteolytic enzymes and matrix metalloproteins, which may play a role in the degradation of the outer membrane. Five transcription factors-Slforkhead, Slproline, Slcyclic, Slsilk, and SlD-ETS were identified, and their expression pattern were confirmed by qRT-PCR. they are candidates for participating in the regulation of testicular fusion. Our findings underscore significant morphological and trancriptomic variation in the testicular peritoneal sheath of S.litura compared to the silkworm, with substantial changes at the transcriptomic level coinciding with testicular fusion. The research provides valuable clues for understanding the complex mechanisms underlying this unique phenomenon in insects.
Collapse
Affiliation(s)
- Yaqun Dong
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Lihua Huang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Lin Liu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
3
|
Nagel S, Meyer C. Identification of Gene Regulatory Networks in B-Cell Progenitor Differentiation and Leukemia. Genes (Basel) 2024; 15:978. [PMID: 39202339 PMCID: PMC11353346 DOI: 10.3390/genes15080978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/09/2024] [Accepted: 07/22/2024] [Indexed: 09/03/2024] Open
Abstract
Pro-B- and pre-B-cells are consecutive entities in early B-cell development, representing cells of origin for B-cell precursor acute lymphoid leukemia (BCP-ALL). Normal B-cell differentiation is critically regulated by specific transcription factors (TFs). Accordingly, TF-encoding genes are frequently deregulated or mutated in BCP-ALL. Recently, we described TF-codes which delineate physiological activities of selected groups of TF-encoding genes in hematopoiesis including B-cell development. Here, we exploited these codes to uncover regulatory connections between particular TFs in pro-B- and pre-B-cells via an analysis of developmental TFs encoded by NKL and TALE homeobox genes and by ETS and T-box genes. Comprehensive expression analyses in BCP-ALL cell lines helped identify validated models to study their mutual regulation in vitro. Knockdown and overexpression experiments and subsequent RNA quantification of TF-encoding genes in selected model cell lines revealed activating, inhibitory or absent connections between nine TFs operating in early B-cell development, including HLX, MSX1, IRX1, MEIS1, ETS2, ERG, SPIB, EOMES, and TBX21. In addition, genomic profiling revealed BCP-ALL subtype-specific copy number alterations of ERG at 21q22, while a deletion of the TGFbeta-receptor gene TGFBR2 at 3p24 resulted in an upregulation of EOMES. Finally, we combined the data to uncover gene regulatory networks which control normal differentiation of early B-cells, collectively endorsing more detailed evaluation of BCP-ALL subtypes.
Collapse
Affiliation(s)
- Stefan Nagel
- Department of Human and Animal Cell Lines, Leibniz-Institute DSMZ, 38124 Braunschweig, Germany
| | | |
Collapse
|
4
|
Salignon J, Millan-Ariño L, Garcia MU, Riedel CG. Cactus: A user-friendly and reproducible ATAC-Seq and mRNA-Seq analysis pipeline for data preprocessing, differential analysis, and enrichment analysis. Genomics 2024; 116:110858. [PMID: 38735595 DOI: 10.1016/j.ygeno.2024.110858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/06/2024] [Accepted: 05/09/2024] [Indexed: 05/14/2024]
Abstract
The ever decreasing cost of Next-Generation Sequencing coupled with the emergence of efficient and reproducible analysis pipelines has rendered genomic methods more accessible. However, downstream analyses are basic or missing in most workflows, creating a significant barrier for non-bioinformaticians. To help close this gap, we developed Cactus, an end-to-end pipeline for analyzing ATAC-Seq and mRNA-Seq data, either separately or jointly. Its Nextflow-, container-, and virtual environment-based architecture ensures efficient and reproducible analyses. Cactus preprocesses raw reads, conducts differential analyses between conditions, and performs enrichment analyses in various databases, including DNA-binding motifs, ChIP-Seq binding sites, chromatin states, and ontologies. We demonstrate the utility of Cactus in a multi-modal and multi-species case study as well as by showcasing its unique capabilities as compared to other ATAC-Seq pipelines. In conclusion, Cactus can assist researchers in gaining comprehensive insights from chromatin accessibility and gene expression data in a quick, user-friendly, and reproducible manner.
Collapse
Affiliation(s)
- Jérôme Salignon
- Department of Bioscience and Nutrition, Karolinska Institute, Blickagången 16, Huddinge SE-141 83, Sweden.
| | - Lluís Millan-Ariño
- Department of Bioscience and Nutrition, Karolinska Institute, Blickagången 16, Huddinge SE-141 83, Sweden
| | - Maxime U Garcia
- National Genomics Infrastructure, Science for Life Laboratory, Tomtebodavägen 23A, Solna SE-171 65, Sweden; Department of Oncology-Pathology, Karolinska Institute, Visionsgatan 4, Solna SE-171 64, Sweden
| | - Christian G Riedel
- Department of Bioscience and Nutrition, Karolinska Institute, Blickagången 16, Huddinge SE-141 83, Sweden.
| |
Collapse
|
5
|
Catela C, Assimacopoulos S, Chen Y, Tsioras K, Feng W, Kratsios P. The Iroquois ( Iro/Irx) homeobox genes are conserved Hox targets involved in motor neuron development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.30.596714. [PMID: 38853975 PMCID: PMC11160718 DOI: 10.1101/2024.05.30.596714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
The Iroquois (Iro/Irx) homeobox genes encode transcription factors with fundamental roles in animal development. Despite their link to various congenital conditions in humans, our understanding of Iro/Irx gene expression, function, and regulation remains incomplete. Here, we conducted a systematic expression analysis of all six mouse Irx genes in the embryonic spinal cord. We found five Irx genes (Irx1, Irx2, Irx3, Irx5, and Irx6) to be confined mostly to ventral spinal domains, offering new molecular markers for specific groups of post-mitotic motor neurons (MNs). Further, we engineered Irx2, Irx5, and Irx6 mouse mutants and uncovered essential but distinct roles for Irx2 and Irx6 in MN development. Last, we found that the highly conserved regulators of MN development across species, the HOX proteins, directly control Irx gene expression both in mouse and C. elegans MNs, critically expanding the repertoire of HOX target genes in the developing nervous system. Altogether, our study provides important insights into Iro/Irx expression and function in the developing spinal cord, and uncovers an ancient gene regulatory relationship between HOX and Iro/Irx genes.
Collapse
Affiliation(s)
- Catarina Catela
- Department of Neurobiology, University of Chicago, Chicago, IL, USA
- Neuroscience Institute, University of Chicago, Chicago, IL, USA
| | - Stavroula Assimacopoulos
- Department of Neurobiology, University of Chicago, Chicago, IL, USA
- Neuroscience Institute, University of Chicago, Chicago, IL, USA
| | - Yihan Chen
- Department of Neurobiology, University of Chicago, Chicago, IL, USA
- Neuroscience Institute, University of Chicago, Chicago, IL, USA
| | - Konstantinos Tsioras
- Department of Neurobiology, University of Chicago, Chicago, IL, USA
- Neuroscience Institute, University of Chicago, Chicago, IL, USA
| | - Weidong Feng
- Department of Neurobiology, University of Chicago, Chicago, IL, USA
- Neuroscience Institute, University of Chicago, Chicago, IL, USA
| | - Paschalis Kratsios
- Department of Neurobiology, University of Chicago, Chicago, IL, USA
- Neuroscience Institute, University of Chicago, Chicago, IL, USA
| |
Collapse
|
6
|
Mitchell DG, Edgar A, Mateu JR, Ryan JF, Martindale MQ. The ctenophore Mnemiopsis leidyi deploys a rapid injury response dating back to the last common animal ancestor. Commun Biol 2024; 7:203. [PMID: 38374160 PMCID: PMC10876535 DOI: 10.1038/s42003-024-05901-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 02/08/2024] [Indexed: 02/21/2024] Open
Abstract
Regenerative potential is widespread but unevenly distributed across animals. However, our understanding of the molecular mechanisms underlying regenerative processes is limited to a handful of model organisms, restricting robust comparative analyses. Here, we conduct a time course of RNA-seq during whole body regeneration in Mnemiopsis leidyi (Ctenophora) to uncover gene expression changes that correspond with key events during the regenerative timeline of this species. We identified several genes highly enriched in this dataset beginning as early as 10 minutes after surgical bisection including transcription factors in the early timepoints, peptidases in the middle timepoints, and cytoskeletal genes in the later timepoints. We validated the expression of early response transcription factors by whole mount in situ hybridization, showing that these genes exhibited high expression in tissues surrounding the wound site. These genes exhibit a pattern of transient upregulation as seen in a variety of other organisms, suggesting that they may be initiators of an ancient gene regulatory network linking wound healing to the initiation of a regenerative response.
Collapse
Affiliation(s)
- Dorothy G Mitchell
- Whitney Laboratory for Marine Bioscience, University of Florida, Saint Augustine, FL, USA
- Department of Biology, University of Florida, Gainesville, FL, USA
| | - Allison Edgar
- Whitney Laboratory for Marine Bioscience, University of Florida, Saint Augustine, FL, USA
| | - Júlia Ramon Mateu
- Whitney Laboratory for Marine Bioscience, University of Florida, Saint Augustine, FL, USA
| | - Joseph F Ryan
- Whitney Laboratory for Marine Bioscience, University of Florida, Saint Augustine, FL, USA
- Department of Biology, University of Florida, Gainesville, FL, USA
| | - Mark Q Martindale
- Whitney Laboratory for Marine Bioscience, University of Florida, Saint Augustine, FL, USA.
- Department of Biology, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
7
|
Kudron M, Gevirtzman L, Victorsen A, Lear BC, Gao J, Xu J, Samanta S, Frink E, Tran-Pearson A, Huynh C, Vafeados D, Hammonds A, Fisher W, Wall M, Wesseling G, Hernandez V, Lin Z, Kasparian M, White K, Allada R, Gerstein M, Hillier L, Celniker SE, Reinke V, Waterston RH. Binding profiles for 954 Drosophila and C. elegans transcription factors reveal tissue specific regulatory relationships. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.18.576242. [PMID: 38293065 PMCID: PMC10827215 DOI: 10.1101/2024.01.18.576242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
A catalog of transcription factor (TF) binding sites in the genome is critical for deciphering regulatory relationships. Here we present the culmination of the modERN (model organism Encyclopedia of Regulatory Networks) consortium that systematically assayed TF binding events in vivo in two major model organisms, Drosophila melanogaster (fly) and Caenorhabditis elegans (worm). We describe key features of these datasets, comprising 604 TFs identifying 3.6M sites in the fly and 350 TFs identifying 0.9 M sites in the worm. Applying a machine learning model to these data identifies sets of TFs with a prominent role in promoting target gene expression in specific cell types. TF binding data are available through the ENCODE Data Coordinating Center and at https://epic.gs.washington.edu/modERNresource, which provides access to processed and summary data, as well as widgets to probe cell type-specific TF-target relationships. These data are a rich resource that should fuel investigations into TF function during development.
Collapse
Affiliation(s)
- Michelle Kudron
- Department of Genetics, Yale University, New Haven, Connecticut 06520
| | - Louis Gevirtzman
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington 98195
| | - Alec Victorsen
- Department of Laboratory Medicine & Pathology, University of Minnesota, Minneapolis, MN 55455
| | - Bridget C. Lear
- Department of Neurobiology, Northwestern University, Evanston IL 60208
| | - Jiahao Gao
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut 06520
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520
| | - Jinrui Xu
- Department of Biology, Howard University, Washington, District of Columbia 20059, USA
- Center for Applied Data Science and Analytics, Howard University, Washington, District of Columbia 20059, USA
| | - Swapna Samanta
- Department of Genetics, Yale University, New Haven, Connecticut 06520
| | - Emily Frink
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington 98195
| | - Adri Tran-Pearson
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington 98195
| | - Chau Huynh
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington 98195
| | - Dionne Vafeados
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington 98195
| | - Ann Hammonds
- Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - William Fisher
- Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Martha Wall
- Institute for Genomics and Systems Biology, Department of Human Genetics, University of Chicago, Illinois 60637
| | - Greg Wesseling
- Department of Neurobiology, Northwestern University, Evanston IL 60208
| | - Vanessa Hernandez
- Department of Neurobiology, Northwestern University, Evanston IL 60208
| | - Zhichun Lin
- Department of Neurobiology, Northwestern University, Evanston IL 60208
| | - Mary Kasparian
- Department of Neurobiology, Northwestern University, Evanston IL 60208
| | - Kevin White
- Department of Biochemistry and Precision Medicine Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597
| | - Ravi Allada
- Department of Neurobiology, Northwestern University, Evanston IL 60208
| | - Mark Gerstein
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut 06520
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520
- Department of Statistics and Data Science, Yale University, New Haven, Connecticut 06520, USA
| | - LaDeana Hillier
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington 98195
| | - Susan E. Celniker
- Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Valerie Reinke
- Department of Genetics, Yale University, New Haven, Connecticut 06520
| | - Robert H. Waterston
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington 98195
| |
Collapse
|
8
|
Alexander KD, Ramachandran S, Biswas K, Lambert CM, Russell J, Oliver DB, Armstrong W, Rettler M, Liu S, Doitsidou M, Bénard C, Walker AK, Francis MM. The homeodomain transcriptional regulator DVE-1 directs a program for synapse elimination during circuit remodeling. Nat Commun 2023; 14:7520. [PMID: 37980357 PMCID: PMC10657367 DOI: 10.1038/s41467-023-43281-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 11/02/2023] [Indexed: 11/20/2023] Open
Abstract
The elimination of synapses during circuit remodeling is critical for brain maturation; however, the molecular mechanisms directing synapse elimination and its timing remain elusive. We show that the transcriptional regulator DVE-1, which shares homology with special AT-rich sequence-binding (SATB) family members previously implicated in human neurodevelopmental disorders, directs the elimination of juvenile synaptic inputs onto remodeling C. elegans GABAergic neurons. Juvenile acetylcholine receptor clusters and apposing presynaptic sites are eliminated during the maturation of wild-type GABAergic neurons but persist into adulthood in dve-1 mutants, producing heightened motor connectivity. DVE-1 localization to GABAergic nuclei is required for synapse elimination, consistent with DVE-1 regulation of transcription. Pathway analysis of putative DVE-1 target genes, proteasome inhibitor, and genetic experiments implicate the ubiquitin-proteasome system in synapse elimination. Together, our findings define a previously unappreciated role for a SATB family member in directing synapse elimination during circuit remodeling, likely through transcriptional regulation of protein degradation processes.
Collapse
Affiliation(s)
- Kellianne D Alexander
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Program in Neuroscience, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Shankar Ramachandran
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Kasturi Biswas
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Program in Neuroscience, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Christopher M Lambert
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Julia Russell
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Devyn B Oliver
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Program in Neuroscience, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - William Armstrong
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Monika Rettler
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Samuel Liu
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Program in Neuroscience, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Maria Doitsidou
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, Scotland
| | - Claire Bénard
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Department of Biological Sciences, Université du Québec à Montréal, Quebec, Canada
| | - Amy K Walker
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Michael M Francis
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA, USA.
- Program in Neuroscience, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
9
|
Mahapatra A, Dhakal A, Noguchi A, Vadlamani P, Hundley HA. ADAR-mediated regulation of PQM-1 expression in neurons impacts gene expression throughout C. elegans and regulates survival from hypoxia. PLoS Biol 2023; 21:e3002150. [PMID: 37747897 PMCID: PMC10553819 DOI: 10.1371/journal.pbio.3002150] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 10/05/2023] [Accepted: 08/23/2023] [Indexed: 09/27/2023] Open
Abstract
The ability to alter gene expression programs in response to changes in environmental conditions is central to the ability of an organism to thrive. For most organisms, the nervous system serves as the master regulator in communicating information about the animal's surroundings to other tissues. The information relay centers on signaling pathways that cue transcription factors in a given cell type to execute a specific gene expression program, but also provide a means to signal between tissues. The transcription factor PQM-1 is an important mediator of the insulin signaling pathway contributing to longevity and the stress response as well as impacting survival from hypoxia. Herein, we reveal a novel mechanism for regulating PQM-1 expression specifically in neural cells of larval animals. Our studies reveal that the RNA-binding protein (RBP), ADR-1, binds to pqm-1 mRNA in neural cells. This binding is regulated by the presence of a second RBP, ADR-2, which when absent leads to reduced expression of both pqm-1 and downstream PQM-1 activated genes. Interestingly, we find that neural pqm-1 expression is sufficient to impact gene expression throughout the animal and affect survival from hypoxia, phenotypes that we also observe in adr mutant animals. Together, these studies reveal an important posttranscriptional gene regulatory mechanism in Caenorhabditis elegans that allows the nervous system to sense and respond to environmental conditions to promote organismal survival from hypoxia.
Collapse
Affiliation(s)
- Ananya Mahapatra
- Genome, Cell and Developmental Biology Graduate Program, Indiana University, Bloomington, Indiana, United States of America
| | - Alfa Dhakal
- Cell, Molecular and Cancer Biology Graduate Program, Indiana University School of Medicine–Bloomington, Bloomington, Indiana, United States of America
| | - Aika Noguchi
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Pranathi Vadlamani
- Medical Sciences Program, Indiana University School of Medicine–Bloomington, Bloomington, Indiana, United States of America
| | - Heather A. Hundley
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| |
Collapse
|
10
|
Mahapatra A, Dhakal A, Noguchi A, Vadlamani P, Hundley HA. ADARs employ a neural-specific mechanism to regulate PQM-1 expression and survival from hypoxia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.05.539519. [PMID: 37205482 PMCID: PMC10187282 DOI: 10.1101/2023.05.05.539519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The ability to alter gene expression programs in response to changes in environmental conditions is central to the ability of an organism to thrive. For most organisms, the nervous system serves as the master regulator in communicating information about the animal's surroundings to other tissues. The information relay centers on signaling pathways that cue transcription factors in a given cell type to execute a specific gene expression program, but also provide a means to signal between tissues. The transcription factor PQM-1 is an important mediator of the insulin signaling pathway contributing to longevity and the stress response as well as impacting survival from hypoxia. Herein, we reveal a novel mechanism for regulating PQM-1 expression specifically in neural cells of larval animals. Our studies reveal that the RNA binding protein, ADR-1, binds to pqm-1 mRNA in neural cells. This binding is regulated by the presence of a second RNA binding protein, ADR-2, which when absent leads to reduced expression of both pqm-1 and downstream PQM-1 activated genes. Interestingly, we find that neural pqm-1 expression is sufficient to impact gene expression throughout the animal and affect survival from hypoxia; phenotypes that we also observe in adr mutant animals. Together, these studies reveal an important post-transcriptional gene regulatory mechanism that allows the nervous system to sense and respond to environmental conditions to promote organismal survival from hypoxia.
Collapse
Affiliation(s)
- Ananya Mahapatra
- Genome, Cell and Developmental Biology Graduate Program, Indiana University, Bloomington IN, 47405 USA
| | - Alfa Dhakal
- Cell, Molecular and Cancer Biology Graduate Program, Indiana University School of Medicine – Bloomington, Bloomington IN, 47405 USA
| | - Aika Noguchi
- Department of Biology, Indiana University, Bloomington IN 47405 USA
| | - Pranathi Vadlamani
- Medical Sciences Program, Indiana University School of Medicine – Bloomington, Bloomington IN, 47405 USA
| | | |
Collapse
|
11
|
Striker SS, Wilferd SF, Lewis EM, O'Connor SA, Plaisier CL. Systematic integration of protein-affecting mutations, gene fusions, and copy number alterations into a comprehensive somatic mutational profile. CELL REPORTS METHODS 2023; 3:100442. [PMID: 37159661 PMCID: PMC10162952 DOI: 10.1016/j.crmeth.2023.100442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 12/21/2022] [Accepted: 03/10/2023] [Indexed: 05/11/2023]
Abstract
Somatic mutations occur as random genetic changes in genes through protein-affecting mutations (PAMs), gene fusions, or copy number alterations (CNAs). Mutations of different types can have a similar phenotypic effect (i.e., allelic heterogeneity) and should be integrated into a unified gene mutation profile. We developed OncoMerge to fill this niche of integrating somatic mutations to capture allelic heterogeneity, assign a function to mutations, and overcome known obstacles in cancer genetics. Application of OncoMerge to TCGA Pan-Cancer Atlas increased detection of somatically mutated genes and improved the prediction of the somatic mutation role as either activating or loss of function. Using integrated somatic mutation matrices increased the power to infer gene regulatory networks and uncovered the enrichment of switch-like feedback motifs and delay-inducing feedforward loops. These studies demonstrate that OncoMerge efficiently integrates PAMs, fusions, and CNAs and strengthens downstream analyses linking somatic mutations to cancer phenotypes.
Collapse
Affiliation(s)
- Shawn S. Striker
- School of Biological and Health Systems Engineering, Fulton Schools of Engineering, Arizona State University, Tempe, AZ 85287-9709, USA
| | - Sierra F. Wilferd
- School of Biological and Health Systems Engineering, Fulton Schools of Engineering, Arizona State University, Tempe, AZ 85287-9709, USA
| | - Erika M. Lewis
- School of Biological and Health Systems Engineering, Fulton Schools of Engineering, Arizona State University, Tempe, AZ 85287-9709, USA
| | - Samantha A. O'Connor
- School of Biological and Health Systems Engineering, Fulton Schools of Engineering, Arizona State University, Tempe, AZ 85287-9709, USA
| | - Christopher L. Plaisier
- School of Biological and Health Systems Engineering, Fulton Schools of Engineering, Arizona State University, Tempe, AZ 85287-9709, USA
| |
Collapse
|
12
|
Marlétaz F, Couloux A, Poulain J, Labadie K, Da Silva C, Mangenot S, Noel B, Poustka AJ, Dru P, Pegueroles C, Borra M, Lowe EK, Lhomond G, Besnardeau L, Le Gras S, Ye T, Gavriouchkina D, Russo R, Costa C, Zito F, Anello L, Nicosia A, Ragusa MA, Pascual M, Molina MD, Chessel A, Di Carlo M, Turon X, Copley RR, Exposito JY, Martinez P, Cavalieri V, Ben Tabou de Leon S, Croce J, Oliveri P, Matranga V, Di Bernardo M, Morales J, Cormier P, Geneviève AM, Aury JM, Barbe V, Wincker P, Arnone MI, Gache C, Lepage T. Analysis of the P. lividus sea urchin genome highlights contrasting trends of genomic and regulatory evolution in deuterostomes. CELL GENOMICS 2023; 3:100295. [PMID: 37082140 PMCID: PMC10112332 DOI: 10.1016/j.xgen.2023.100295] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 12/24/2022] [Accepted: 03/06/2023] [Indexed: 04/22/2023]
Abstract
Sea urchins are emblematic models in developmental biology and display several characteristics that set them apart from other deuterostomes. To uncover the genomic cues that may underlie these specificities, we generated a chromosome-scale genome assembly for the sea urchin Paracentrotus lividus and an extensive gene expression and epigenetic profiles of its embryonic development. We found that, unlike vertebrates, sea urchins retained ancestral chromosomal linkages but underwent very fast intrachromosomal gene order mixing. We identified a burst of gene duplication in the echinoid lineage and showed that some of these expanded genes have been recruited in novel structures (water vascular system, Aristotle's lantern, and skeletogenic micromere lineage). Finally, we identified gene-regulatory modules conserved between sea urchins and chordates. Our results suggest that gene-regulatory networks controlling development can be conserved despite extensive gene order rearrangement.
Collapse
Affiliation(s)
- Ferdinand Marlétaz
- Center for Life’s Origin & Evolution, Department of Genetics, Evolution, & Environment, University College London, WC1 6BT London, UK
- Génomique Métabolique, Genoscope, Institut de Biologie François Jacob, Commissariat à l’Énergie Atomique, CNRS, Université Évry, Université Paris-Saclay, 91057 Évry, France
- Genoscope, Institut de Biologie François-Jacob, Commissariat à l’Énergie Atomique (CEA), Université Paris-Saclay, Évry, France
| | - Arnaud Couloux
- Génomique Métabolique, Genoscope, Institut de Biologie François Jacob, Commissariat à l’Énergie Atomique, CNRS, Université Évry, Université Paris-Saclay, 91057 Évry, France
| | - Julie Poulain
- Génomique Métabolique, Genoscope, Institut de Biologie François Jacob, Commissariat à l’Énergie Atomique, CNRS, Université Évry, Université Paris-Saclay, 91057 Évry, France
| | - Karine Labadie
- Genoscope, Institut de Biologie François-Jacob, Commissariat à l’Énergie Atomique (CEA), Université Paris-Saclay, Évry, France
| | - Corinne Da Silva
- Génomique Métabolique, Genoscope, Institut de Biologie François Jacob, Commissariat à l’Énergie Atomique, CNRS, Université Évry, Université Paris-Saclay, 91057 Évry, France
| | - Sophie Mangenot
- Génomique Métabolique, Genoscope, Institut de Biologie François Jacob, Commissariat à l’Énergie Atomique, CNRS, Université Évry, Université Paris-Saclay, 91057 Évry, France
| | - Benjamin Noel
- Génomique Métabolique, Genoscope, Institut de Biologie François Jacob, Commissariat à l’Énergie Atomique, CNRS, Université Évry, Université Paris-Saclay, 91057 Évry, France
| | - Albert J. Poustka
- Evolution and Development Group, Max-Planck-Institut für Molekulare Genetik, 14195 Berlin, Germany
- Dahlem Center for Genome Research and Medical Systems Biology (Environmental and Phylogenomics Group), 12489 Berlin, Germany
| | - Philippe Dru
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Sorbonne Université, CNRS, 06230 Villefranche-sur-Mer, France
| | - Cinta Pegueroles
- Institute for Research on Biodiversity (IRBio), Department of Genetics, Microbiology, and Statistics, University of Barcelona, 08028 Barcelona, Spain
| | - Marco Borra
- Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
| | - Elijah K. Lowe
- Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
| | - Guy Lhomond
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Sorbonne Université, CNRS, 06230 Villefranche-sur-Mer, France
| | - Lydia Besnardeau
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Sorbonne Université, CNRS, 06230 Villefranche-sur-Mer, France
| | - Stéphanie Le Gras
- Plateforme GenomEast, IGBMC, CNRS UMR7104, INSERM U1258, Université de Strasbourg, 67404 Illirch Cedex, France
| | - Tao Ye
- Plateforme GenomEast, IGBMC, CNRS UMR7104, INSERM U1258, Université de Strasbourg, 67404 Illirch Cedex, France
| | - Daria Gavriouchkina
- Molecular Genetics Unit, Okinawa Institute of Science and Technology, 904-0495 Onna-son, Japan
| | - Roberta Russo
- Consiglio Nazionale delle Ricerche, Istituto per la Ricerca e l’Innovazione Biomedica (IRIB), 90146 Palermo, Italy
| | - Caterina Costa
- Consiglio Nazionale delle Ricerche, Istituto per la Ricerca e l’Innovazione Biomedica (IRIB), 90146 Palermo, Italy
| | - Francesca Zito
- Consiglio Nazionale delle Ricerche, Istituto per la Ricerca e l’Innovazione Biomedica (IRIB), 90146 Palermo, Italy
| | - Letizia Anello
- Consiglio Nazionale delle Ricerche, Istituto per la Ricerca e l’Innovazione Biomedica (IRIB), 90146 Palermo, Italy
| | - Aldo Nicosia
- Consiglio Nazionale delle Ricerche, Istituto per la Ricerca e l’Innovazione Biomedica (IRIB), 90146 Palermo, Italy
| | - Maria Antonietta Ragusa
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90128 Palermo, Italy
| | - Marta Pascual
- Institute for Research on Biodiversity (IRBio), Department of Genetics, Microbiology, and Statistics, University of Barcelona, 08028 Barcelona, Spain
| | - M. Dolores Molina
- Departament de Genètica, Microbiologia, i Estadística, Universitat de Barcelona, 08028 Barcelona, Spain
- Institut Biology Valrose, Université Côte d’Azur, 06108 Nice Cedex 2, France
| | - Aline Chessel
- Institut Biology Valrose, Université Côte d’Azur, 06108 Nice Cedex 2, France
| | - Marta Di Carlo
- Institute for Biomedical Research and Innovation (CNR), 90146 Palermo, Italy
| | - Xavier Turon
- Department of Marine Ecology, Centre d’Estudis Avançats de Blanes (CEAB, CSIC), 17300 Blanes, Spain
| | - Richard R. Copley
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Sorbonne Université, CNRS, 06230 Villefranche-sur-Mer, France
| | - Jean-Yves Exposito
- Laboratoire de Biologie Tissulaire et d’Ingénierie Thérapeutique (LBTI), UMR CNRS 5305, Institut de Biologie et Chimie des Protéines, Université Lyon 1, 69367 Lyon, France
| | - Pedro Martinez
- Departament de Genètica, Microbiologia, i Estadística, Universitat de Barcelona, 08028 Barcelona, Spain
- Institut Català de Recerca i Estudis Avançats (ICREA), 08028 Barcelona, Spain
| | - Vincenzo Cavalieri
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90128 Palermo, Italy
| | - Smadar Ben Tabou de Leon
- Department of Marine Biology, Charney School of Marine Sciences, University of Haifa, 31095 Haifa, Israel
| | - Jenifer Croce
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Sorbonne Université, CNRS, 06230 Villefranche-sur-Mer, France
| | - Paola Oliveri
- Center for Life’s Origin & Evolution, Department of Genetics, Evolution, & Environment, University College London, WC1 6BT London, UK
| | - Valeria Matranga
- Consiglio Nazionale delle Ricerche, Istituto per la Ricerca e l’Innovazione Biomedica (IRIB), 90146 Palermo, Italy
| | - Maria Di Bernardo
- Consiglio Nazionale delle Ricerche, Istituto di Farmacologia Traslazionale, 90146 Palermo, Italy
| | - Julia Morales
- Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff, CNRS, Sorbonne Université, 29680 Roscoff, France
| | - Patrick Cormier
- Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff, CNRS, Sorbonne Université, 29680 Roscoff, France
| | - Anne-Marie Geneviève
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins, BIOM, 66650 Banyuls/Mer, France
| | - Jean Marc Aury
- Génomique Métabolique, Genoscope, Institut de Biologie François Jacob, Commissariat à l’Énergie Atomique, CNRS, Université Évry, Université Paris-Saclay, 91057 Évry, France
| | - Valérie Barbe
- Génomique Métabolique, Genoscope, Institut de Biologie François Jacob, Commissariat à l’Énergie Atomique, CNRS, Université Évry, Université Paris-Saclay, 91057 Évry, France
| | - Patrick Wincker
- Génomique Métabolique, Genoscope, Institut de Biologie François Jacob, Commissariat à l’Énergie Atomique, CNRS, Université Évry, Université Paris-Saclay, 91057 Évry, France
| | - Maria Ina Arnone
- Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
| | - Christian Gache
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Sorbonne Université, CNRS, 06230 Villefranche-sur-Mer, France
| | - Thierry Lepage
- Institut Biology Valrose, Université Côte d’Azur, 06108 Nice Cedex 2, France
| |
Collapse
|
13
|
Zhao Y, Hu J, Wu J, Li Z. ChIP-seq profiling of H3K4me3 and H3K27me3 in an invasive insect, Bactrocera dorsalis. Front Genet 2023; 14:1108104. [PMID: 36911387 PMCID: PMC9996634 DOI: 10.3389/fgene.2023.1108104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/10/2023] [Indexed: 02/25/2023] Open
Abstract
Introduction: While it has been suggested that histone modifications can facilitate animal responses to rapidly changing environments, few studies have profiled whole-genome histone modification patterns in invasive species, leaving the regulatory landscape of histone modifications in invasive species unclear. Methods: Here, we screen genome-wide patterns of two important histone modifications, trimethylated Histone H3 Lysine 4 (H3K4me3) and trimethylated Histone H3 Lysine 27 (H3K27me3), in adult thorax muscles of a notorious invasive pest, the Oriental fruit fly Bactrocera dorsalis (Hendel) (Diptera: Tephritidae), using Chromatin Immunoprecipitation with high-throughput sequencing (ChIP-seq). Results: We identified promoters featured by the occupancy of H3K4me3, H3K27me3 or bivalent histone modifications that were respectively annotated with unique genes key to muscle development and structure maintenance. In addition, we found H3K27me3 occupied the entire body of genes, where the average enrichment was almost constant. Transcriptomic analysis indicated that H3K4me3 is associated with active gene transcription, and H3K27me3 is mostly associated with transcriptional repression. Importantly, we identified genes and putative motifs modified by distinct histone modification patterns that may possibly regulate flight activity. Discussion: These findings provide the first evidence of histone modification signature in B. dorsalis, and will be useful for future studies of epigenetic signature in other invasive insect species.
Collapse
Affiliation(s)
- Yan Zhao
- Key Laboratory of Surveillance and Management for Plant Quarantine Pests, Ministry of Agriculture and Rural Affairs, College of Plant Protection, China Agricultural University, Beijing, China
| | - Juntao Hu
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, Center of Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Jiajiao Wu
- Technology Center of Guangzhou Customs, Guangzhou, China
| | - Zhihong Li
- Key Laboratory of Surveillance and Management for Plant Quarantine Pests, Ministry of Agriculture and Rural Affairs, College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|
14
|
Zhang Y, Li Z, Liu J, Zhang Y, Ye L, Peng Y, Wang H, Diao H, Ma Y, Wang M, Xie Y, Tang T, Zhuang Y, Teng W, Tong Y, Zhang W, Lang Z, Xue Y, Zhang Y. Transposable elements orchestrate subgenome-convergent and -divergent transcription in common wheat. Nat Commun 2022; 13:6940. [PMID: 36376315 PMCID: PMC9663577 DOI: 10.1038/s41467-022-34290-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 10/15/2022] [Indexed: 11/16/2022] Open
Abstract
The success of common wheat as a global staple crop was largely attributed to its genomic diversity and redundancy due to the merge of different genomes, giving rise to the major question how subgenome-divergent and -convergent transcription is mediated and harmonized in a single cell. Here, we create a catalog of genome-wide transcription factor-binding sites (TFBSs) to assemble a common wheat regulatory network on an unprecedented scale. A significant proportion of subgenome-divergent TFBSs are derived from differential expansions of particular transposable elements (TEs) in diploid progenitors, which contribute to subgenome-divergent transcription. Whereas subgenome-convergent transcription is associated with balanced TF binding at loci derived from TE expansions before diploid divergence. These TFBSs have retained in parallel during evolution of each diploid, despite extensive unbalanced turnover of the flanking TEs. Thus, the differential evolutionary selection of paleo- and neo-TEs contribute to subgenome-convergent and -divergent regulation in common wheat, highlighting the influence of TE repertory plasticity on transcriptional plasticity in polyploid.
Collapse
Affiliation(s)
- Yuyun Zhang
- grid.9227.e0000000119573309National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032 China ,grid.410726.60000 0004 1797 8419University of the Chinese Academy of Sciences, Beijing, 100049 China ,grid.8547.e0000 0001 0125 2443State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Zijuan Li
- grid.9227.e0000000119573309National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032 China ,grid.410726.60000 0004 1797 8419University of the Chinese Academy of Sciences, Beijing, 100049 China ,grid.8547.e0000 0001 0125 2443State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Jinyi Liu
- grid.9227.e0000000119573309National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032 China ,grid.410726.60000 0004 1797 8419University of the Chinese Academy of Sciences, Beijing, 100049 China
| | - Yu’e Zhang
- grid.410726.60000 0004 1797 8419University of the Chinese Academy of Sciences, Beijing, 100049 China ,grid.9227.e0000000119573309The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, the Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101 China
| | - Luhuan Ye
- grid.9227.e0000000119573309National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032 China ,grid.410726.60000 0004 1797 8419University of the Chinese Academy of Sciences, Beijing, 100049 China
| | - Yuan Peng
- grid.9227.e0000000119573309National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032 China ,grid.410726.60000 0004 1797 8419University of the Chinese Academy of Sciences, Beijing, 100049 China ,grid.9227.e0000000119573309Shanghai Center for Plant Stress Biology, National Key Laboratory of Plant Molecular Genetics, Center of Excellence in Molecular Plant Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032 China
| | - Haoyu Wang
- grid.9227.e0000000119573309National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032 China ,grid.256922.80000 0000 9139 560XHenan University, School of Life Science, Kaifeng, Henan 457000 China
| | - Huishan Diao
- grid.8547.e0000 0001 0125 2443State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Yu Ma
- grid.9227.e0000000119573309National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032 China ,grid.410726.60000 0004 1797 8419University of the Chinese Academy of Sciences, Beijing, 100049 China ,grid.9227.e0000000119573309Shanghai Center for Plant Stress Biology, National Key Laboratory of Plant Molecular Genetics, Center of Excellence in Molecular Plant Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032 China
| | - Meiyue Wang
- grid.8547.e0000 0001 0125 2443State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Yilin Xie
- grid.9227.e0000000119573309National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032 China ,grid.410726.60000 0004 1797 8419University of the Chinese Academy of Sciences, Beijing, 100049 China
| | - Tengfei Tang
- grid.9227.e0000000119573309National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032 China ,grid.256922.80000 0000 9139 560XHenan University, School of Life Science, Kaifeng, Henan 457000 China
| | - Yili Zhuang
- grid.9227.e0000000119573309National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032 China ,grid.410726.60000 0004 1797 8419University of the Chinese Academy of Sciences, Beijing, 100049 China
| | - Wan Teng
- grid.410726.60000 0004 1797 8419University of the Chinese Academy of Sciences, Beijing, 100049 China ,grid.9227.e0000000119573309The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, the Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101 China
| | - Yiping Tong
- grid.410726.60000 0004 1797 8419University of the Chinese Academy of Sciences, Beijing, 100049 China ,grid.9227.e0000000119573309The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, the Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101 China
| | - Wenli Zhang
- grid.27871.3b0000 0000 9750 7019State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu 210095 China
| | - Zhaobo Lang
- grid.9227.e0000000119573309National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032 China ,grid.410726.60000 0004 1797 8419University of the Chinese Academy of Sciences, Beijing, 100049 China ,grid.9227.e0000000119573309Shanghai Center for Plant Stress Biology, National Key Laboratory of Plant Molecular Genetics, Center of Excellence in Molecular Plant Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032 China ,grid.263817.90000 0004 1773 1790Institute of Advanced Biotechnology and School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055 China
| | - Yongbiao Xue
- grid.410726.60000 0004 1797 8419University of the Chinese Academy of Sciences, Beijing, 100049 China ,grid.9227.e0000000119573309The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, the Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101 China ,grid.9227.e0000000119573309Beijing Institute of Genomics, Chinese Academy of Sciences, and National Centre for Bioinformation, Beijing, 100101 China ,grid.268415.cJiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009 China
| | - Yijing Zhang
- grid.8547.e0000 0001 0125 2443State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438 China
| |
Collapse
|
15
|
Intestine-specific removal of DAF-2 nearly doubles lifespan in Caenorhabditis elegans with little fitness cost. Nat Commun 2022; 13:6339. [PMID: 36284093 PMCID: PMC9596710 DOI: 10.1038/s41467-022-33850-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/05/2022] [Indexed: 12/25/2022] Open
Abstract
Twenty-nine years following the breakthrough discovery that a single-gene mutation of daf-2 doubles Caenorhabditis elegans lifespan, it remains unclear where this insulin/IGF-1 receptor gene is expressed and where it acts to regulate ageing. Using knock-in fluorescent reporters, we determined that daf-2 and its downstream transcription factor daf-16 are expressed ubiquitously. Using tissue-specific targeted protein degradation, we determined that intracellular DAF-2-to-DAF-16 signaling in the intestine plays a major role in lifespan regulation, while that in the hypodermis, neurons, and germline plays a minor role. Notably, intestine-specific loss of DAF-2 activates DAF-16 in and outside the intestine, causes almost no adverse effects on development and reproduction, and extends lifespan by 94% in a way that partly requires non-intestinal DAF-16. Consistent with intestine supplying nutrients to the entire body, evidence from this and other studies suggests that altered metabolism, particularly down-regulation of protein and RNA synthesis, mediates longevity by reduction of insulin/IGF-1 signaling.
Collapse
|
16
|
Feng W, Destain H, Smith JJ, Kratsios P. Maintenance of neurotransmitter identity by Hox proteins through a homeostatic mechanism. Nat Commun 2022; 13:6097. [PMID: 36243871 PMCID: PMC9569373 DOI: 10.1038/s41467-022-33781-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 09/30/2022] [Indexed: 12/24/2022] Open
Abstract
Hox transcription factors play fundamental roles during early patterning, but they are also expressed continuously, from embryonic stages through adulthood, in the nervous system. However, the functional significance of their sustained expression remains unclear. In C. elegans motor neurons (MNs), we find that LIN-39 (Scr/Dfd/Hox4-5) is continuously required during post-embryonic life to maintain neurotransmitter identity, a core element of neuronal function. LIN-39 acts directly to co-regulate genes that define cholinergic identity (e.g., unc-17/VAChT, cho-1/ChT). We further show that LIN-39, MAB-5 (Antp/Hox6-8) and the transcription factor UNC-3 (Collier/Ebf) operate in a positive feedforward loop to ensure continuous and robust expression of cholinergic identity genes. Finally, we identify a two-component design principle for homeostatic control of Hox gene expression in adult MNs: Hox transcriptional autoregulation is counterbalanced by negative UNC-3 feedback. These findings uncover a noncanonical role for Hox proteins during post-embryonic life, critically broadening their functional repertoire from early patterning to the control of neurotransmitter identity.
Collapse
Affiliation(s)
- Weidong Feng
- Department of Neurobiology, University of Chicago, Chicago, IL, USA
- University of Chicago Neuroscience Institute, Chicago, IL, USA
- Committee on Development, Regeneration, and Stem Cell Biology, University of Chicago, Chicago, IL, USA
| | - Honorine Destain
- Department of Neurobiology, University of Chicago, Chicago, IL, USA
- University of Chicago Neuroscience Institute, Chicago, IL, USA
- Committee on Development, Regeneration, and Stem Cell Biology, University of Chicago, Chicago, IL, USA
| | - Jayson J Smith
- Department of Neurobiology, University of Chicago, Chicago, IL, USA
- University of Chicago Neuroscience Institute, Chicago, IL, USA
| | - Paschalis Kratsios
- Department of Neurobiology, University of Chicago, Chicago, IL, USA.
- University of Chicago Neuroscience Institute, Chicago, IL, USA.
- Committee on Development, Regeneration, and Stem Cell Biology, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
17
|
Cheng Y, Yin Y, Zhang A, Bernstein AM, Kawaguchi R, Gao K, Potter K, Gilbert HY, Ao Y, Ou J, Fricano-Kugler CJ, Goldberg JL, He Z, Woolf CJ, Sofroniew MV, Benowitz LI, Geschwind DH. Transcription factor network analysis identifies REST/NRSF as an intrinsic regulator of CNS regeneration in mice. Nat Commun 2022; 13:4418. [PMID: 35906210 PMCID: PMC9338053 DOI: 10.1038/s41467-022-31960-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 07/08/2022] [Indexed: 01/30/2023] Open
Abstract
The inability of neurons to regenerate long axons within the CNS is a major impediment to improving outcome after spinal cord injury, stroke, and other CNS insults. Recent advances have uncovered an intrinsic program that involves coordinate regulation by multiple transcription factors that can be manipulated to enhance growth in the peripheral nervous system. Here, we use a systems genomics approach to characterize regulatory relationships of regeneration-associated transcription factors, identifying RE1-Silencing Transcription Factor (REST; Neuron-Restrictive Silencer Factor, NRSF) as a predicted upstream suppressor of a pro-regenerative gene program associated with axon regeneration in the CNS. We validate our predictions using multiple paradigms, showing that mature mice bearing cell type-specific deletions of REST or expressing dominant-negative mutant REST show improved regeneration of the corticospinal tract and optic nerve after spinal cord injury and optic nerve crush, which is accompanied by upregulation of regeneration-associated genes in cortical motor neurons and retinal ganglion cells, respectively. These analyses identify a role for REST as an upstream suppressor of the intrinsic regenerative program in the CNS and demonstrate the utility of a systems biology approach involving integrative genomics and bio-informatics to prioritize hypotheses relevant to CNS repair.
Collapse
Affiliation(s)
- Yuyan Cheng
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Yuqin Yin
- Department of Neurosurgery, Boston Children's Hospital, Boston, MA, 02115, USA
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Neurosurgery, Harvard Medical School, Boston, MA, 02115, USA
| | - Alice Zhang
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Alexander M Bernstein
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Riki Kawaguchi
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Psychiatry, Semel Institute, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Kun Gao
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Kyra Potter
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Hui-Ya Gilbert
- Department of Neurosurgery, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Yan Ao
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Jing Ou
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Catherine J Fricano-Kugler
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Jeffrey L Goldberg
- Byers Eye Institute and Wu Tsai Neuroscience Institute, Stanford University, Palo Alto, CA, 94305, USA
| | - Zhigang He
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Neurology, Harvard Medical School, Boston, MA, 02115, USA
| | - Clifford J Woolf
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Neurology, Harvard Medical School, Boston, MA, 02115, USA
| | - Michael V Sofroniew
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Larry I Benowitz
- Department of Neurosurgery, Boston Children's Hospital, Boston, MA, 02115, USA.
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, 02115, USA.
- Department of Neurosurgery, Harvard Medical School, Boston, MA, 02115, USA.
- Department of Ophthalmology, Harvard Medical School, Boston, MA, 02115, USA.
| | - Daniel H Geschwind
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Department of Psychiatry, Semel Institute, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
18
|
Development of a 15-Gene Signature Model as a Prognostic Tool in Sex Hormone-Dependent Cancers. BIOMED RESEARCH INTERNATIONAL 2021; 2021:3676107. [PMID: 34869761 PMCID: PMC8635877 DOI: 10.1155/2021/3676107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 05/09/2021] [Accepted: 10/12/2021] [Indexed: 11/30/2022]
Abstract
Sex hormone dependence is associated with tumor progression and prognosis. Here, we explored the molecular basis of luminal A-like phenotype in sex hormone-dependent cancers. RNA-sequencing data from 8 cancer types were obtained from The Cancer Genome Atlas (TCGA). We investigated the enrichment function of differentially expressed genes (DEGs) in luminal A breast cancer (BRCA). Weighted coexpression network analysis (WGCNA) was used to identify gene modules associated with the luminal A-like phenotype, and we calculated the module's preservation in 8 cancer types. Module hub genes screened using least absolute shrinkage and selection operator (LASSO) were used to construct a gene signature model for the luminal A-like phenotype, and we assessed the model's relationship with prognosis, enriched pathways, and immune infiltration using bioinformatics approaches. Compared to other BRCA subtypes, the enrichment functions of upregulated genes in luminal A BRCA were related to hormone biological processes and receptor activity, and the downregulated genes were associated with the cell cycle and nuclear division. A gene module significantly associated with luminal A BRCA was shared by uterine corpus endometrial carcinoma (UCEC), leading to a similar phenotype. Fifteen hub genes were used to construct a gene signature model for the assessment of the luminal A-like phenotype, and the corrected C-statistics and Brier scores were 0.986 and 0.023, respectively. Calibration plots showed good performance, and decision curve analysis indicated a high net benefit of the model. The 15-gene signature model was associated with better overall survival in BRCA and UCEC and was characterized by downregulation of DNA replication, cell cycle and activated CD4 T cells. In conclusion, our study elucidated that BRCA and UCEC share a similar sex hormone-dependent phenotype and constructed a 15-gene signature model for use as a prognostic tool to quantify the probability of the phenotype.
Collapse
|
19
|
Guo X, Rahman JA, Wessels HH, Méndez-Mancilla A, Haro D, Chen X, Sanjana NE. Transcriptome-wide Cas13 guide RNA design for model organisms and viral RNA pathogens. CELL GENOMICS 2021; 1:100001. [PMID: 35664829 PMCID: PMC9164475 DOI: 10.1016/j.xgen.2021.100001] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The recent characterization of RNA-targeting CRISPR nucleases has enabled diverse transcriptome engineering and screening applications that depend crucially on prediction and selection of optimized CRISPR guide RNAs (gRNAs). Previously, we developed a computational model to predict RfxCas13d gRNA activity for all human protein-coding genes. Here, we extend this framework to six model organisms (human, mouse, zebrafish, fly, nematode, and flowering plants) for protein-coding genes and noncoding RNAs (ncRNAs) and also to four RNA virus families (severe acute respiratory syndrome coronavirus 2 [SARS-CoV-2], HIV-1, H1N1 influenza, and Middle East respiratory syndrome [MERS]). We include experimental validation of predictions by testing knockdown of multiple ncRNAs (MALAT1, HOTAIRM1, Gas5, and Pvt1) in human and mouse cells. We developed a freely available web-based platform (cas13design) with pre-scored gRNAs for transcriptome-wide targeting in several organisms and an interactive design tool to predict optimal gRNAs for custom RNA targets entered by the user. This resource will facilitate CRISPR-Cas13 RNA targeting in model organisms, emerging viral threats to human health.
Collapse
Affiliation(s)
- Xinyi Guo
- New York Genome Center, New York, NY 10013, USA,Department of Biology, New York University, New York, NY 10003, USA
| | - Jahan A. Rahman
- New York Genome Center, New York, NY 10013, USA,Department of Biology, New York University, New York, NY 10003, USA
| | - Hans-Hermann Wessels
- New York Genome Center, New York, NY 10013, USA,Department of Biology, New York University, New York, NY 10003, USA
| | - Alejandro Méndez-Mancilla
- New York Genome Center, New York, NY 10013, USA,Department of Biology, New York University, New York, NY 10003, USA
| | - Daniel Haro
- New York Genome Center, New York, NY 10013, USA,Department of Biology, New York University, New York, NY 10003, USA
| | - Xinru Chen
- New York Genome Center, New York, NY 10013, USA,Department of Biology, New York University, New York, NY 10003, USA
| | - Neville E. Sanjana
- New York Genome Center, New York, NY 10013, USA,Department of Biology, New York University, New York, NY 10003, USA,Corresponding author
| |
Collapse
|
20
|
Paul D, Komarova NL. Multi-scale network targeting: A holistic systems-biology approach to cancer treatment. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2021; 165:72-79. [PMID: 34428429 DOI: 10.1016/j.pbiomolbio.2021.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 08/05/2021] [Accepted: 08/10/2021] [Indexed: 11/15/2022]
Abstract
The vulnerabilities of cancer at the cellular and, recently, with the introduction of immunotherapy, at the tissue level, have been exploited with variable success. Evaluating the cancer system vulnerabilities at the organismic level through analysis of network topology and network dynamics can potentially predict novel anti-cancer drug targets directed at the macroscopic cancer networks. Theoretical work analyzing the properties and the vulnerabilities of the multi-scale network of cancer needs to go hand-in-hand with experimental research that uncovers the biological nature of the relevant networks and reveals new targetable vulnerabilities. It is our hope that attacking cancer on different spatial scales, in a concerted integrated approach, may present opportunities for novel ways to prevent treatment resistance.
Collapse
Affiliation(s)
- Doru Paul
- Medical Oncology, Weill Cornell Medicine, 1305 York Avenue 12th Floor, New York, NY, 10021, USA.
| | - Natalia L Komarova
- Department of Mathematics, University of California Irvine, Irvine, CA, 92697, USA.
| |
Collapse
|
21
|
Saint-André V. Computational biology approaches for mapping transcriptional regulatory networks. Comput Struct Biotechnol J 2021; 19:4884-4895. [PMID: 34522292 PMCID: PMC8426465 DOI: 10.1016/j.csbj.2021.08.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 08/16/2021] [Accepted: 08/16/2021] [Indexed: 12/13/2022] Open
Abstract
Transcriptional Regulatory Networks (TRNs) are mainly responsible for the cell-type- or cell-state-specific expression of gene sets from the same DNA sequence. However, so far there are no precise maps of TRNs available for each cell-type or cell-state, and no ideal tool to map those networks clearly and in full from biological samples. In this review, major approaches and tools to map TRNs from high-throughput data are presented, depending on the type of methods or data used to infer them, and their advantages and limitations are discussed. After summarizing the main principles defining the topology and structure–function relationships in TRNs, an overview of the extensive work done to map TRNs from bulk transcriptomic data will be presented by type of methodological approach. Most recent modellings of TRNs using other types of molecular data or integrating different data types, including single-cell RNA-sequencing and chromatin information, will then be discussed, before briefly concluding with improvements expected to come in the field.
Collapse
Affiliation(s)
- Violaine Saint-André
- Hub de Bioinformatique et Biostatistique - Département Biologie Computationnelle, Institut Pasteur, Paris, France
| |
Collapse
|
22
|
Spatiotemporal Gene Expression Profiling and Network Inference: A Roadmap for Analysis, Visualization, and Key Gene Identification. Methods Mol Biol 2021. [PMID: 34251619 DOI: 10.1007/978-1-0716-1534-8_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Gene expression data analysis and the prediction of causal relationships within gene regulatory networks (GRNs) have guided the identification of key regulatory factors and unraveled the dynamic properties of biological systems. However, drawing accurate and unbiased conclusions requires a comprehensive understanding of relevant tools, computational methods, and their workflows. The topics covered in this chapter encompass the entire workflow for GRN inference including: (1) experimental design; (2) RNA sequencing data processing; (3) differentially expressed gene (DEG) selection; (4) clustering prior to inference; (5) network inference techniques; and (6) network visualization and analysis. Moreover, this chapter aims to present a workflow feasible and accessible for plant biologists without a bioinformatics or computer science background. To address this need, TuxNet, a user-friendly graphical user interface that integrates RNA sequencing data analysis with GRN inference, is chosen for the purpose of providing a detailed tutorial.
Collapse
|
23
|
Chen Z, Zhang J, Liu J, Dai Y, Lee D, Min MR, Xu M, Gerstein M. DECODE: a Deep-learning framework for Condensing enhancers and refining boundaries with large-scale functional assays. Bioinformatics 2021; 37:i280-i288. [PMID: 34252960 PMCID: PMC8275369 DOI: 10.1093/bioinformatics/btab283] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2021] [Indexed: 11/13/2022] Open
Abstract
Motivation Mapping distal regulatory elements, such as enhancers, is a cornerstone for elucidating how genetic variations may influence diseases. Previous enhancer-prediction methods have used either unsupervised approaches or supervised methods with limited training data. Moreover, past approaches have implemented enhancer discovery as a binary classification problem without accurate boundary detection, producing low-resolution annotations with superfluous regions and reducing the statistical power for downstream analyses (e.g. causal variant mapping and functional validations). Here, we addressed these challenges via a two-step model called Deep-learning framework for Condensing enhancers and refining boundaries with large-scale functional assays (DECODE). First, we employed direct enhancer-activity readouts from novel functional characterization assays, such as STARR-seq, to train a deep neural network for accurate cell-type-specific enhancer prediction. Second, to improve the annotation resolution, we implemented a weakly supervised object detection framework for enhancer localization with precise boundary detection (to a 10 bp resolution) using Gradient-weighted Class Activation Mapping. Results Our DECODE binary classifier outperformed a state-of-the-art enhancer prediction method by 24% in transgenic mouse validation. Furthermore, the object detection framework can condense enhancer annotations to only 13% of their original size, and these compact annotations have significantly higher conservation scores and genome-wide association study variant enrichments than the original predictions. Overall, DECODE is an effective tool for enhancer classification and precise localization. Availability and implementation DECODE source code and pre-processing scripts are available at decode.gersteinlab.org. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Zhanlin Chen
- Department of Statistics & Data Science, Yale University, New Haven, CT 06520, USA
| | - Jing Zhang
- Department of Computer Science, University of California, Irvine, CA 92617, USA
| | - Jason Liu
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Yi Dai
- Department of Computer Science, University of California, Irvine, CA 92617, USA
| | - Donghoon Lee
- Genetics and Genomic Sciences, The Icahn School of Medicine at Mount Sinai, New York, NY 10029-6574, USA
| | | | - Min Xu
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Mark Gerstein
- Department of Statistics & Data Science, Yale University, New Haven, CT 06520, USA.,Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA.,Department of Computer Science, Yale University, New Haven, CT 06520, USA
| |
Collapse
|
24
|
Xiang G, Giardine BM, Mahony S, Zhang Y, Hardison RC. S3V2-IDEAS: a package for normalizing, denoising and integrating epigenomic datasets across different cell types. Bioinformatics 2021; 37:3011-3013. [PMID: 33681991 PMCID: PMC8479670 DOI: 10.1093/bioinformatics/btab148] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 01/26/2021] [Accepted: 03/01/2021] [Indexed: 02/02/2023] Open
Abstract
SUMMARY Epigenetic modifications reflect key aspects of transcriptional regulation, and many epigenomic datasets have been generated under different biological contexts to provide insights into regulatory processes. However, the technical noise in epigenomic datasets and the many dimensions (features) examined make it challenging to effectively extract biologically meaningful inferences from these datasets. We developed a package that reduces noise while normalizing the epigenomic data by a novel normalization method, followed by integrative dimensional reduction by learning and assigning epigenetic states. This package, called S3V2-IDEAS, can be used to identify epigenetic states for multiple features, or identify discretized signal intensity levels and a master peak list across different cell types for a single feature. We illustrate the outputs and performance of S3V2-IDEAS using 137 epigenomics datasets from the VISION project that provides ValIdated Systematic IntegratiON of epigenomic data in hematopoiesis. AVAILABILITY AND IMPLEMENTATION S3V2-IDEAS pipeline is freely available as open source software released under an MIT license at: https://github.com/guanjue/S3V2_IDEAS_ESMP. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Guanjue Xiang
- The Bioinformatics and Genomics Program, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
- To whom correspondence should be addressed. or
| | - Belinda M Giardine
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Shaun Mahony
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Yu Zhang
- Department of Statistics, The Pennsylvania State University, University Park, PA 16802, USA
| | - Ross C Hardison
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
- To whom correspondence should be addressed. or
| |
Collapse
|
25
|
Vijg J, Dong X. Pathogenic Mechanisms of Somatic Mutation and Genome Mosaicism in Aging. Cell 2021; 182:12-23. [PMID: 32649873 DOI: 10.1016/j.cell.2020.06.024] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 06/03/2020] [Accepted: 06/11/2020] [Indexed: 12/17/2022]
Abstract
Age-related accumulation of postzygotic DNA mutations results in tissue genetic heterogeneity known as somatic mosaicism. Although implicated in aging as early as the 1950s, somatic mutations in normal tissue have been difficult to study because of their low allele fractions. With the recent emergence of cost-effective high-throughput sequencing down to the single-cell level, enormous progress has been made in our capability to quantitatively analyze somatic mutations in human tissue in relation to aging and disease. Here we first review how recent technological progress has opened up this field, providing the first broad sets of quantitative information on somatic mutations in vivo necessary to gain insight into their possible causal role in human aging and disease. We then propose three major mechanisms that can lead from accumulated de novo mutations across tissues to cell functional loss and human disease.
Collapse
Affiliation(s)
- Jan Vijg
- Department of Genetics, Albert Einstein College of Medicine, New York, NY 10461, USA; Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Xiao Dong
- Department of Genetics, Albert Einstein College of Medicine, New York, NY 10461, USA
| |
Collapse
|
26
|
Li Y, Osuma A, Correa E, Okebalama MA, Dao P, Gaylord O, Aburas J, Islam P, Brown AE, Kratsios P. Establishment and maintenance of motor neuron identity via temporal modularity in terminal selector function. eLife 2020; 9:59464. [PMID: 33001031 PMCID: PMC7529460 DOI: 10.7554/elife.59464] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 09/20/2020] [Indexed: 02/06/2023] Open
Abstract
Terminal selectors are transcription factors (TFs) that establish during development and maintain throughout life post-mitotic neuronal identity. We previously showed that UNC-3/Ebf, the terminal selector of C. elegans cholinergic motor neurons (MNs), acts indirectly to prevent alternative neuronal identities (Feng et al., 2020). Here, we globally identify the direct targets of UNC-3. Unexpectedly, we find that the suite of UNC-3 targets in MNs is modified across different life stages, revealing ‘temporal modularity’ in terminal selector function. In all larval and adult stages examined, UNC-3 is required for continuous expression of various protein classes (e.g. receptors, transporters) critical for MN function. However, only in late larvae and adults, UNC-3 is required to maintain expression of MN-specific TFs. Minimal disruption of UNC-3’s temporal modularity via genome engineering affects locomotion. Another C. elegans terminal selector (UNC-30/Pitx) also exhibits temporal modularity, supporting the potential generality of this mechanism for the control of neuronal identity.
Collapse
Affiliation(s)
- Yinan Li
- Department of Neurobiology, University of Chicago, Chicago, United States.,Committee on Neurobiology, University of Chicago, Chicago, United States
| | - Anthony Osuma
- Department of Neurobiology, University of Chicago, Chicago, United States.,Committee on Neurobiology, University of Chicago, Chicago, United States
| | - Edgar Correa
- Department of Neurobiology, University of Chicago, Chicago, United States.,Cell and Molecular Biology Program, University of Chicago, Chicago, United States
| | | | - Pauline Dao
- Department of Neurobiology, University of Chicago, Chicago, United States
| | - Olivia Gaylord
- Committee on Development, Regeneration and Stem Cell Biology, University of Chicago, Chicago, United States
| | - Jihad Aburas
- Department of Neurobiology, University of Chicago, Chicago, United States
| | - Priota Islam
- MRC London Institute of Medical Sciences, London, United Kingdom.,Institute of Clinical Sciences, Imperial College London, London, United Kingdom
| | - André Ex Brown
- MRC London Institute of Medical Sciences, London, United Kingdom.,Institute of Clinical Sciences, Imperial College London, London, United Kingdom
| | - Paschalis Kratsios
- Department of Neurobiology, University of Chicago, Chicago, United States.,Committee on Neurobiology, University of Chicago, Chicago, United States.,Cell and Molecular Biology Program, University of Chicago, Chicago, United States.,Committee on Development, Regeneration and Stem Cell Biology, University of Chicago, Chicago, United States.,The Grossman Institute for Neuroscience, Quantitative Biology, and Human Behavior, University of Chicago, Chicago, United States
| |
Collapse
|
27
|
Overton IM, Sims AH, Owen JA, Heale BSE, Ford MJ, Lubbock ALR, Pairo-Castineira E, Essafi A. Functional Transcription Factor Target Networks Illuminate Control of Epithelial Remodelling. Cancers (Basel) 2020; 12:cancers12102823. [PMID: 33007944 PMCID: PMC7652213 DOI: 10.3390/cancers12102823] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 09/16/2020] [Accepted: 09/24/2020] [Indexed: 12/15/2022] Open
Abstract
Cell identity is governed by gene expression, regulated by transcription factor (TF) binding at cis-regulatory modules. Decoding the relationship between TF binding patterns and gene regulation is nontrivial, remaining a fundamental limitation in understanding cell decision-making. We developed the NetNC software to predict functionally active regulation of TF targets; demonstrated on nine datasets for the TFs Snail, Twist, and modENCODE Highly Occupied Target (HOT) regions. Snail and Twist are canonical drivers of epithelial to mesenchymal transition (EMT), a cell programme important in development, tumour progression and fibrosis. Predicted "neutral" (non-functional) TF binding always accounted for the majority (50% to 95%) of candidate target genes from statistically significant peaks and HOT regions had higher functional binding than most of the Snail and Twist datasets examined. Our results illuminated conserved gene networks that control epithelial plasticity in development and disease. We identified new gene functions and network modules including crosstalk with notch signalling and regulation of chromatin organisation, evidencing networks that reshape Waddington's epigenetic landscape during epithelial remodelling. Expression of orthologous functional TF targets discriminated breast cancer molecular subtypes and predicted novel tumour biology, with implications for precision medicine. Predicted invasion roles were validated using a tractable cell model, supporting our approach.
Collapse
Affiliation(s)
- Ian M. Overton
- MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK; (A.H.S.); (B.S.E.H.); (M.J.F.); (A.L.R.L.); (E.P.-C.); (A.E.)
- Department of Systems Biology, Harvard University, Boston, MA 02115, USA;
- Centre for Synthetic and Systems Biology (SynthSys), University of Edinburgh, Edinburgh EH9 3BF, UK
- Patrick G Johnston Centre for Cancer Research, Queen’s University Belfast, Belfast BT9 7AE, UK
- Correspondence:
| | - Andrew H. Sims
- MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK; (A.H.S.); (B.S.E.H.); (M.J.F.); (A.L.R.L.); (E.P.-C.); (A.E.)
| | - Jeremy A. Owen
- Department of Systems Biology, Harvard University, Boston, MA 02115, USA;
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Bret S. E. Heale
- MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK; (A.H.S.); (B.S.E.H.); (M.J.F.); (A.L.R.L.); (E.P.-C.); (A.E.)
| | - Matthew J. Ford
- MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK; (A.H.S.); (B.S.E.H.); (M.J.F.); (A.L.R.L.); (E.P.-C.); (A.E.)
| | - Alexander L. R. Lubbock
- MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK; (A.H.S.); (B.S.E.H.); (M.J.F.); (A.L.R.L.); (E.P.-C.); (A.E.)
| | - Erola Pairo-Castineira
- MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK; (A.H.S.); (B.S.E.H.); (M.J.F.); (A.L.R.L.); (E.P.-C.); (A.E.)
| | - Abdelkader Essafi
- MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK; (A.H.S.); (B.S.E.H.); (M.J.F.); (A.L.R.L.); (E.P.-C.); (A.E.)
| |
Collapse
|
28
|
Andreani T, Albrecht S, Fontaine JF, Andrade-Navarro MA. Computational identification of cell-specific variable regions in ChIP-seq data. Nucleic Acids Res 2020; 48:e53. [PMID: 32187374 PMCID: PMC7229859 DOI: 10.1093/nar/gkaa180] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 02/04/2020] [Accepted: 03/10/2020] [Indexed: 11/25/2022] Open
Abstract
Chromatin immunoprecipitation followed by sequencing (ChIP-seq) is used to identify genome-wide DNA regions bound by proteins. Given one ChIP-seq experiment with replicates, binding sites not observed in all the replicates will usually be interpreted as noise and discarded. However, the recent discovery of high-occupancy target (HOT) regions suggests that there are regions where binding of multiple transcription factors can be identified. To investigate ChIP-seq variability, we developed a reproducibility score and a method that identifies cell-specific variable regions in ChIP-seq data by integrating replicated ChIP-seq experiments for multiple protein targets on a particular cell type. Using our method, we found variable regions in human cell lines K562, GM12878, HepG2, MCF-7 and in mouse embryonic stem cells (mESCs). These variable-occupancy target regions (VOTs) are CG dinucleotide rich, and show enrichment at promoters and R-loops. They overlap significantly with HOT regions, but are not blacklisted regions producing non-specific binding ChIP-seq peaks. Furthermore, in mESCs, VOTs are conserved among placental species suggesting that they could have a function important for this taxon. Our method can be useful to point to such regions along the genome in a given cell type of interest, to improve the downstream interpretative analysis before follow-up experiments.
Collapse
Affiliation(s)
- Tommaso Andreani
- Faculty of Biology, Johannes Gutenberg University of Mainz, 55128 Mainz, Germany.,Institute of Molecular Biology (IMB), 55128 Mainz, Germany
| | - Steffen Albrecht
- Faculty of Biology, Johannes Gutenberg University of Mainz, 55128 Mainz, Germany
| | - Jean-Fred Fontaine
- Faculty of Biology, Johannes Gutenberg University of Mainz, 55128 Mainz, Germany
| | | |
Collapse
|
29
|
Zhang Q, Liu W, Zhang HM, Xie GY, Miao YR, Xia M, Guo AY. hTFtarget: A Comprehensive Database for Regulations of Human Transcription Factors and Their Targets. GENOMICS PROTEOMICS & BIOINFORMATICS 2020; 18:120-128. [PMID: 32858223 PMCID: PMC7647694 DOI: 10.1016/j.gpb.2019.09.006] [Citation(s) in RCA: 228] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 08/17/2019] [Accepted: 10/23/2019] [Indexed: 01/07/2023]
Abstract
Transcription factors (TFs) as key regulators play crucial roles in biological processes. The identification of TF–target regulatory relationships is a key step for revealing functions of TFs and their regulations on gene expression. The accumulated data of chromatin immunoprecipitation sequencing (ChIP-seq) provide great opportunities to discover the TF–target regulations across different conditions. In this study, we constructed a database named hTFtarget, which integrated huge human TF target resources (7190 ChIP-seq samples of 659 TFs and high-confidence binding sites of 699 TFs) and epigenetic modification information to predict accurate TF–target regulations. hTFtarget offers the following functions for users to explore TF–target regulations: (1) browse or search general targets of a query TF across datasets; (2) browse TF–target regulations for a query TF in a specific dataset or tissue; (3) search potential TFs for a given target gene or non-coding RNA; (4) investigate co-association between TFs in cell lines; (5) explore potential co-regulations for given target genes or TFs; (6) predict candidate TF binding sites on given DNA sequences; (7) visualize ChIP-seq peaks for different TFs and conditions in a genome browser. hTFtarget provides a comprehensive, reliable and user-friendly resource for exploring human TF–target regulations, which will be very useful for a wide range of users in the TF and gene expression regulation community. hTFtarget is available at http://bioinfo.life.hust.edu.cn/hTFtarget.
Collapse
Affiliation(s)
- Qiong Zhang
- Department of Bioinformatics and Systems Biology, Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Wei Liu
- Department of Bioinformatics and Systems Biology, Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Clinical Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Hong-Mei Zhang
- Department of Bioinformatics and Systems Biology, Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Gui-Yan Xie
- Department of Bioinformatics and Systems Biology, Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Ya-Ru Miao
- Department of Bioinformatics and Systems Biology, Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Mengxuan Xia
- Department of Bioinformatics and Systems Biology, Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - An-Yuan Guo
- Department of Bioinformatics and Systems Biology, Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
30
|
Partridge EC, Chhetri SB, Prokop JW, Ramaker RC, Jansen CS, Goh ST, Mackiewicz M, Newberry KM, Brandsmeier LA, Meadows SK, Messer CL, Hardigan AA, Coppola CJ, Dean EC, Jiang S, Savic D, Mortazavi A, Wold BJ, Myers RM, Mendenhall EM. Occupancy maps of 208 chromatin-associated proteins in one human cell type. Nature 2020; 583:720-728. [PMID: 32728244 PMCID: PMC7398277 DOI: 10.1038/s41586-020-2023-4] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 01/09/2020] [Indexed: 01/02/2023]
Abstract
Transcription factors are DNA-binding proteins that have key roles in gene regulation1,2. Genome-wide occupancy maps of transcriptional regulators are important for understanding gene regulation and its effects on diverse biological processes3–6. However, only a minority of the more than 1,600 transcription factors encoded in the human genome has been assayed. Here we present, as part of the ENCODE (Encyclopedia of DNA Elements) project, data and analyses from chromatin immunoprecipitation followed by high-throughput sequencing (ChIP–seq) experiments using the human HepG2 cell line for 208 chromatin-associated proteins (CAPs). These comprise 171 transcription factors and 37 transcriptional cofactors and chromatin regulator proteins, and represent nearly one-quarter of CAPs expressed in HepG2 cells. The binding profiles of these CAPs form major groups associated predominantly with promoters or enhancers, or with both. We confirm and expand the current catalogue of DNA sequence motifs for transcription factors, and describe motifs that correspond to other transcription factors that are co-enriched with the primary ChIP target. For example, FOX family motifs are enriched in ChIP–seq peaks of 37 other CAPs. We show that motif content and occupancy patterns can distinguish between promoters and enhancers. This catalogue reveals high-occupancy target regions at which many CAPs associate, although each contains motifs for only a minority of the numerous associated transcription factors. These analyses provide a more complete overview of the gene regulatory networks that define this cell type, and demonstrate the usefulness of the large-scale production efforts of the ENCODE Consortium. ChIP–seq and CETCh–seq data are used to analyse binding maps for 208 transcription factors and other chromatin-associated proteins in a single human cell type, providing a comprehensive catalogue of the transcription factor landscape and gene regulatory networks in these cells.
Collapse
Affiliation(s)
| | - Surya B Chhetri
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA.,Department of Biological Sciences, The University of Alabama in Huntsville, Huntsville, AL, USA.,Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MA, USA
| | - Jeremy W Prokop
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA.,Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, USA
| | - Ryne C Ramaker
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA.,Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Camden S Jansen
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA, USA
| | - Say-Tar Goh
- Division of Biology, California Institute of Technology, Pasadena, CA, USA
| | - Mark Mackiewicz
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | | | | | - Sarah K Meadows
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - C Luke Messer
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Andrew A Hardigan
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA.,Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Candice J Coppola
- Department of Biological Sciences, The University of Alabama in Huntsville, Huntsville, AL, USA
| | - Emma C Dean
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA.,Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Shan Jiang
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA, USA
| | - Daniel Savic
- Pharmaceutical Sciences Department, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Ali Mortazavi
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA, USA
| | - Barbara J Wold
- Division of Biology, California Institute of Technology, Pasadena, CA, USA
| | - Richard M Myers
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA.
| | - Eric M Mendenhall
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA. .,Department of Biological Sciences, The University of Alabama in Huntsville, Huntsville, AL, USA.
| |
Collapse
|
31
|
Supervised enhancer prediction with epigenetic pattern recognition and targeted validation. Nat Methods 2020; 17:807-814. [PMID: 32737473 PMCID: PMC8073243 DOI: 10.1038/s41592-020-0907-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 06/18/2020] [Indexed: 12/20/2022]
Abstract
Enhancers are important noncoding elements, but they have been traditionally hard to characterize experimentally. The development of massively parallel assays allows the characterization of large numbers of enhancers for the first time. Here, we developed a framework using Drosophila STARR-seq to create shape-matching filters based on meta-profiles of epigenetic features. We integrated these features with supervised machine-learning algorithms to predict enhancers. We further demonstrated our model could be transferred to predict enhancers in mammals. We comprehensively validated the predictions using a combination of in vivo and in vitro approaches, involving transgenic assays in mouse and transduction-based reporter assays in human cell lines (153 enhancers in total). The results confirmed our model can accurately predict enhancers in different species without re-parameterization. Finally, we examined the transcription-factor binding patterns at predicted enhancers versus promoters. We demonstrated that these patterns enable the construction of a secondary model effectively discriminating between enhancers and promoters.
Collapse
|
32
|
Barthez M, Poplineau M, Elrefaey M, Caruso N, Graba Y, Saurin AJ. Human ZKSCAN3 and Drosophila M1BP are functionally homologous transcription factors in autophagy regulation. Sci Rep 2020; 10:9653. [PMID: 32541927 PMCID: PMC7296029 DOI: 10.1038/s41598-020-66377-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 05/20/2020] [Indexed: 01/02/2023] Open
Abstract
Autophagy is an essential cellular process that maintains homeostasis by recycling damaged organelles and nutrients during development and cellular stress. ZKSCAN3 is the sole identified master transcriptional repressor of autophagy in human cell lines. How ZKSCAN3 achieves autophagy repression at the mechanistic or organismal level however still remains to be elucidated. Furthermore, Zkscan3 knockout mice display no discernable autophagy-related phenotypes, suggesting that there may be substantial differences in the regulation of autophagy between normal tissues and tumor cell lines. Here, we demonstrate that vertebrate ZKSCAN3 and Drosophila M1BP are functionally homologous transcription factors in autophagy repression. Expression of ZKSCAN3 in Drosophila prevents premature autophagy onset due to loss of M1BP function and conversely, M1BP expression in human cells can prevent starvation-induced autophagy due to loss of nuclear ZKSCAN3 function. In Drosophila ZKSCAN3 binds genome-wide to sequences targeted by M1BP and transcriptionally regulates the majority of M1BP-controlled genes, demonstrating the evolutionary conservation of the transcriptional repression of autophagy. This study thus allows the potential for transitioning the mechanisms, gene targets and plethora metabolic processes controlled by M1BP onto ZKSCAN3 and opens up Drosophila as a tool in studying the function of ZKSCAN3 in autophagy and tumourigenesis.
Collapse
Affiliation(s)
- Marine Barthez
- Aix Marseille Université, CNRS, IBDM, UMR 7288, Marseille, 13288, Cedex 09, France
| | - Mathilde Poplineau
- Epigenetic Factors in Normal and Malignant Hematopoiesis, Aix Marseille Université, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Marwa Elrefaey
- Aix Marseille Université, CNRS, IBDM, UMR 7288, Marseille, 13288, Cedex 09, France
| | - Nathalie Caruso
- Aix Marseille Université, CNRS, IBDM, UMR 7288, Marseille, 13288, Cedex 09, France
| | - Yacine Graba
- Aix Marseille Université, CNRS, IBDM, UMR 7288, Marseille, 13288, Cedex 09, France
| | - Andrew J Saurin
- Aix Marseille Université, CNRS, IBDM, UMR 7288, Marseille, 13288, Cedex 09, France.
| |
Collapse
|
33
|
IGAP-integrative genome analysis pipeline reveals new gene regulatory model associated with nonspecific TF-DNA binding affinity. Comput Struct Biotechnol J 2020; 18:1270-1286. [PMID: 32612751 PMCID: PMC7303559 DOI: 10.1016/j.csbj.2020.05.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 05/17/2020] [Accepted: 05/19/2020] [Indexed: 11/23/2022] Open
Abstract
The human genome is regulated in a multi-dimensional way. While biophysical factors like Non-specific Transcription factor Binding Affinity (nTBA) act at DNA sequence level, other factors act above sequence levels such as histone modifications and 3-D chromosomal interactions. This multidimensionality of regulation requires many of these factors for a proper understanding of the regulatory landscape of the human genome. Here, we propose a new biophysical model for estimating nTBA. Integration of nTBA with chromatin modifications and chromosomal interactions, using a new Integrative Genome Analysis Pipeline (IGAP), reveals additive effects of nTBA to regulatory DNA sequences and identifies three types of genomic zones in the human genome (Inactive Genomic Zones, Poised Genomic Zones, and Active Genomic Zones). It also unveils a novel long distance gene regulatory model: chromosomal interactions reduce the physical distance between the high occupancy target (HOT) regions that results in high nTBA to DNA in the area, which in turn attract TFs to such regions with higher binding potential. These findings will help to elucidate the three-dimensional diffusion process that TFs use during their search for the right targets.
Collapse
|
34
|
Feng W, Li Y, Dao P, Aburas J, Islam P, Elbaz B, Kolarzyk A, Brown AE, Kratsios P. A terminal selector prevents a Hox transcriptional switch to safeguard motor neuron identity throughout life. eLife 2020; 9:50065. [PMID: 31902393 PMCID: PMC6944445 DOI: 10.7554/elife.50065] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 12/08/2019] [Indexed: 01/01/2023] Open
Abstract
To become and remain functional, individual neuron types must select during development and maintain throughout life their distinct terminal identity features, such as expression of specific neurotransmitter receptors, ion channels and neuropeptides. Here, we report a molecular mechanism that enables cholinergic motor neurons (MNs) in the C. elegans ventral nerve cord to select and maintain their unique terminal identity. This mechanism relies on the dual function of the conserved terminal selector UNC-3 (Collier/Ebf). UNC-3 synergizes with LIN-39 (Scr/Dfd/Hox4-5) to directly co-activate multiple terminal identity traits specific to cholinergic MNs, but also antagonizes LIN-39’s ability to activate terminal features of alternative neuronal identities. Loss of unc-3 causes a switch in the transcriptional targets of LIN-39, thereby alternative, not cholinergic MN-specific, terminal features become activated and locomotion defects occur. The strategy of a terminal selector preventing a transcriptional switch may constitute a general principle for safeguarding neuronal identity throughout life.
Collapse
Affiliation(s)
- Weidong Feng
- Department of Neurobiology, University of Chicago, Chicago, United States.,Committee on Development, Regeneration and Stem Cell Biology, University of Chicago, Chicago, United States
| | - Yinan Li
- Department of Neurobiology, University of Chicago, Chicago, United States.,Committee on Neurobiology, University of Chicago, Chicago, United States
| | - Pauline Dao
- Department of Neurobiology, University of Chicago, Chicago, United States
| | - Jihad Aburas
- Department of Neurobiology, University of Chicago, Chicago, United States
| | - Priota Islam
- MRC London Institute of Medical Sciences, London, United Kingdom.,Institute of Clinical Sciences, Imperial College London, London, United Kingdom
| | - Benayahu Elbaz
- Department of Neurology, Center for Peripheral Neuropathy, University of Chicago, Chicago, United States
| | - Anna Kolarzyk
- Department of Neurology, Center for Peripheral Neuropathy, University of Chicago, Chicago, United States
| | - André Ex Brown
- MRC London Institute of Medical Sciences, London, United Kingdom.,Institute of Clinical Sciences, Imperial College London, London, United Kingdom
| | - Paschalis Kratsios
- Department of Neurobiology, University of Chicago, Chicago, United States.,Committee on Development, Regeneration and Stem Cell Biology, University of Chicago, Chicago, United States.,Committee on Neurobiology, University of Chicago, Chicago, United States.,The Grossman Institute for Neuroscience, Quantitative Biology, and Human Behavior, University of Chicago, Chicago, United States
| |
Collapse
|
35
|
Rago A, Werren JH, Colbourne JK. Sex biased expression and co-expression networks in development, using the hymenopteran Nasonia vitripennis. PLoS Genet 2020; 16:e1008518. [PMID: 31986136 PMCID: PMC7004391 DOI: 10.1371/journal.pgen.1008518] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 02/06/2020] [Accepted: 11/13/2019] [Indexed: 12/17/2022] Open
Abstract
Sexual dimorphism requires regulation of gene expression in developing organisms. These developmental differences are caused by differential expression of genes and isoforms. The effect of expressing a gene is also influenced by which other genes are simultaneously expressed (functional interactions). However, few studies have described how these processes change across development. We compare the dynamics of differential expression, isoform switching and functional interactions in the sexual development of the model parasitoid wasp Nasonia vitripennis, a system that permits genome wide analysis of sex bias from early embryos to adults. We find relatively little sex-bias in embryos and larvae at the gene level, but several sub-networks show sex-biased functional interactions in early developmental stages. These networks provide new candidates for hymenopteran sex determination, including histone modification. In contrast, sex-bias in pupae and adults is driven by the differential expression of genes. We observe sex-biased isoform switching consistently across development, but mostly in genes that are already differentially expressed. Finally, we discover that sex-biased networks are enriched by genes specific to the Nasonia clade, and that those genes possess the topological properties of key regulators. These findings suggest that regulators in sex-biased networks evolve more rapidly than regulators of other developmental networks.
Collapse
Affiliation(s)
- Alfredo Rago
- School of Biosciences, The University of Birmingham, Birmingham, United Kingdom
| | - John H. Werren
- Department of Biology, University of Rochester, Rochester, NY, United States of America
| | - John K. Colbourne
- School of Biosciences, The University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
36
|
Wreczycka K, Franke V, Uyar B, Wurmus R, Bulut S, Tursun B, Akalin A. HOT or not: examining the basis of high-occupancy target regions. Nucleic Acids Res 2019; 47:5735-5745. [PMID: 31114922 PMCID: PMC6582337 DOI: 10.1093/nar/gkz460] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 05/02/2019] [Accepted: 05/13/2019] [Indexed: 01/16/2023] Open
Abstract
High-occupancy target (HOT) regions are segments of the genome with unusually high number of transcription factor binding sites. These regions are observed in multiple species and thought to have biological importance due to high transcription factor occupancy. Furthermore, they coincide with house-keeping gene promoters and consequently associated genes are stably expressed across multiple cell types. Despite these features, HOT regions are solely defined using ChIP-seq experiments and shown to lack canonical motifs for transcription factors that are thought to be bound there. Although, ChIP-seq experiments are the golden standard for finding genome-wide binding sites of a protein, they are not noise free. Here, we show that HOT regions are likely to be ChIP-seq artifacts and they are similar to previously proposed ‘hyper-ChIPable’ regions. Using ChIP-seq data sets for knocked-out transcription factors, we demonstrate presence of false positive signals on HOT regions. We observe sequence characteristics and genomic features that are discriminatory of HOT regions, such as GC/CpG-rich k-mers, enrichment of RNA–DNA hybrids (R-loops) and DNA tertiary structures (G-quadruplex DNA). The artificial ChIP-seq enrichment on HOT regions could be associated to these discriminatory features. Furthermore, we propose strategies to deal with such artifacts for the future ChIP-seq studies.
Collapse
Affiliation(s)
- Katarzyna Wreczycka
- Bioinformatics and Omics Data Science Platform, Berlin Institute for Medical Systems Biology, Max-Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Vedran Franke
- Bioinformatics and Omics Data Science Platform, Berlin Institute for Medical Systems Biology, Max-Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Bora Uyar
- Bioinformatics and Omics Data Science Platform, Berlin Institute for Medical Systems Biology, Max-Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Ricardo Wurmus
- Bioinformatics and Omics Data Science Platform, Berlin Institute for Medical Systems Biology, Max-Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Selman Bulut
- Gene Regulation and Cell Fate Decision in C. elegans, Berlin Institute for Medical Systems Biology, Max-Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Baris Tursun
- Gene Regulation and Cell Fate Decision in C. elegans, Berlin Institute for Medical Systems Biology, Max-Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Altuna Akalin
- Bioinformatics and Omics Data Science Platform, Berlin Institute for Medical Systems Biology, Max-Delbrück Center for Molecular Medicine, Berlin, Germany
| |
Collapse
|
37
|
Huang T, Huang X, Shi B, Yao M. GEREDB: Gene expression regulation database curated by mining abstracts from literature. J Bioinform Comput Biol 2019; 17:1950024. [PMID: 31617460 DOI: 10.1142/s0219720019500240] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Understanding how genes are expressed and regulated in different biological processes are fundamental and challenging issues. Considerable progress has been made in studying the relationship between the expression and regulation of human genes. However, it is difficult to use these resources productively to analyze gene expression data. GEREDB (www.thua45.cn/geredb) has been developed to facilitate analyses that will provide insights into the regulation of genes that govern specific biological responses. GEREDB is a publicly available, manually curated biological database that stores the data regarding relationships between expression and regulation of human genes. To date, more than 39,000 Links have been contextually annotated by reviewing more than 53,000 abstracts. GEREDB can be searched using the official NCBI gene symbol as a query, and it can be downloaded along with the GEREA software package. GEREDB has the ability to analyze user-supplied gene expression data in a causal analysis oriented manner using the GEREA bioinformatics tool.
Collapse
Affiliation(s)
- Tinghua Huang
- College of Animal Science, Yangtze University, Jingzhou, Hubei 434025, P. R. China
| | - Xiali Huang
- College of Animal Science, Yangtze University, Jingzhou, Hubei 434025, P. R. China
| | - Bomei Shi
- College of Animal Science, Yangtze University, Jingzhou, Hubei 434025, P. R. China
| | - Min Yao
- College of Animal Science, Yangtze University, Jingzhou, Hubei 434025, P. R. China
| |
Collapse
|
38
|
Non-coding RNA regulatory networks. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1863:194417. [PMID: 31493559 DOI: 10.1016/j.bbagrm.2019.194417] [Citation(s) in RCA: 245] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 08/13/2019] [Accepted: 08/13/2019] [Indexed: 02/06/2023]
Abstract
It is well established that the vast majority of human RNA transcripts do not encode for proteins and that non-coding RNAs regulate cell physiology and shape cellular functions. A subset of them is involved in gene regulation at different levels, from epigenetic gene silencing to post-transcriptional regulation of mRNA stability. Notably, the aberrant expression of many non-coding RNAs has been associated with aggressive pathologies. Rapid advances in network biology indicates that the robustness of cellular processes is the result of specific properties of biological networks such as scale-free degree distribution and hierarchical modularity, suggesting that regulatory network analyses could provide new insights on gene regulation and dysfunction mechanisms. In this study we present an overview of public repositories where non-coding RNA-regulatory interactions are collected and annotated, we discuss unresolved questions for data integration and we recall existing resources to build and analyse networks.
Collapse
|
39
|
Gheorghe M, Sandve GK, Khan A, Chèneby J, Ballester B, Mathelier A. A map of direct TF-DNA interactions in the human genome. Nucleic Acids Res 2019; 47:e21. [PMID: 30517703 PMCID: PMC6393237 DOI: 10.1093/nar/gky1210] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 10/31/2018] [Accepted: 11/20/2018] [Indexed: 12/11/2022] Open
Abstract
Chromatin immunoprecipitation followed by sequencing (ChIP-seq) is the most popular assay to identify genomic regions, called ChIP-seq peaks, that are bound in vivo by transcription factors (TFs). These regions are derived from direct TF-DNA interactions, indirect binding of the TF to the DNA (through a co-binding partner), nonspecific binding to the DNA, and noise/bias/artifacts. Delineating the bona fide direct TF-DNA interactions within the ChIP-seq peaks remains challenging. We developed a dedicated software, ChIP-eat, that combines computational TF binding models and ChIP-seq peaks to automatically predict direct TF-DNA interactions. Our work culminated with predicted interactions covering >4% of the human genome, obtained by uniformly processing 1983 ChIP-seq peak data sets from the ReMap database for 232 unique TFs. The predictions were a posteriori assessed using protein binding microarray and ChIP-exo data, and were predominantly found in high quality ChIP-seq peaks. The set of predicted direct TF-DNA interactions suggested that high-occupancy target regions are likely not derived from direct binding of the TFs to the DNA. Our predictions derived co-binding TFs supported by protein-protein interaction data and defined cis-regulatory modules enriched for disease- and trait-associated SNPs. We provide this collection of direct TF-DNA interactions and cis-regulatory modules through the UniBind web-interface (http://unibind.uio.no).
Collapse
Affiliation(s)
- Marius Gheorghe
- Centre for Molecular Medicine Norway (NCMM), University of Oslo, Oslo, Norway
| | | | - Aziz Khan
- Centre for Molecular Medicine Norway (NCMM), University of Oslo, Oslo, Norway
| | - Jeanne Chèneby
- Aix Marseille Université, INSERM, TAGC, Marseille, France
| | | | - Anthony Mathelier
- Centre for Molecular Medicine Norway (NCMM), University of Oslo, Oslo, Norway.,Department of Cancer Genetics, Institute for Cancer Research, Radiumhospitalet, Oslo, Norway
| |
Collapse
|
40
|
Defoort J, Van de Peer Y, Vermeirssen V. Function, dynamics and evolution of network motif modules in integrated gene regulatory networks of worm and plant. Nucleic Acids Res 2019; 46:6480-6503. [PMID: 29873777 PMCID: PMC6061849 DOI: 10.1093/nar/gky468] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 05/14/2018] [Indexed: 12/29/2022] Open
Abstract
Gene regulatory networks (GRNs) consist of different molecular interactions that closely work together to establish proper gene expression in time and space. Especially in higher eukaryotes, many questions remain on how these interactions collectively coordinate gene regulation. We study high quality GRNs consisting of undirected protein–protein, genetic and homologous interactions, and directed protein–DNA, regulatory and miRNA–mRNA interactions in the worm Caenorhabditis elegans and the plant Arabidopsis thaliana. Our data-integration framework integrates interactions in composite network motifs, clusters these in biologically relevant, higher-order topological network motif modules, overlays these with gene expression profiles and discovers novel connections between modules and regulators. Similar modules exist in the integrated GRNs of worm and plant. We show how experimental or computational methodologies underlying a certain data type impact network topology. Through phylogenetic decomposition, we found that proteins of worm and plant tend to functionally interact with proteins of a similar age, while at the regulatory level TFs favor same age, but also older target genes. Despite some influence of the duplication mode difference, we also observe at the motif and module level for both species a preference for age homogeneity for undirected and age heterogeneity for directed interactions. This leads to a model where novel genes are added together to the GRNs in a specific biological functional context, regulated by one or more TFs that also target older genes in the GRNs. Overall, we detected topological, functional and evolutionary properties of GRNs that are potentially universal in all species.
Collapse
Affiliation(s)
- Jonas Defoort
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium.,VIB Center for Plant Systems Biology, 9052 Ghent, Belgium.,Bioinformatics Institute Ghent, Ghent University, 9052 Ghent, Belgium
| | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium.,VIB Center for Plant Systems Biology, 9052 Ghent, Belgium.,Bioinformatics Institute Ghent, Ghent University, 9052 Ghent, Belgium.,Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0028, South Africa
| | - Vanessa Vermeirssen
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium.,VIB Center for Plant Systems Biology, 9052 Ghent, Belgium.,Bioinformatics Institute Ghent, Ghent University, 9052 Ghent, Belgium
| |
Collapse
|
41
|
Godini R, Pocock R, Fallahi H. Caenorhabditis elegans hub genes that respond to amyloid beta are homologs of genes involved in human Alzheimer's disease. PLoS One 2019; 14:e0219486. [PMID: 31291334 PMCID: PMC6619800 DOI: 10.1371/journal.pone.0219486] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 06/25/2019] [Indexed: 12/31/2022] Open
Abstract
The prominent characteristic of Alzheimer’s disease (AD) is the accumulation of amyloid beta (Abeta) proteins in the form of plaques that cause molecular and cellular alterations in the brain. Due to the paucity of brain samples of early-stage Abeta aggregation, animal models have been developed to study early events in AD. Caenorhabditis elegans is a genetically tractable animal model for AD. Here, we used transcriptomic data, network-based protein-protein interactions and weighted gene co-expression network analysis (WGCNA), to detect modules and their gene ontology in response to Abeta aggregation in C. elegans. Additionally, hub genes and their orthologues in human and mouse were identified to study their relation to AD. We also found several transcription factors (TFs) responding to Abeta accumulation. Our results show that Abeta expression in C. elegans relates to general processes such as molting cycle, locomotion, and larval development plus AD-associated processes, including protein phosphorylation, and G-protein coupled receptor-regulated pathways. We reveal that many hub genes and TFs including ttbk-2, daf-16, and unc-49 have human and mouse orthologues that are directly or potentially associated with AD and neural development. In conclusion, using systems biology we identified important genes and biological processes in C. elegans that respond to Abeta aggregation, which could be used as potential diagnostic or therapeutic targets. In addition, because of evolutionary relationship to AD in human, we suggest that C. elegans is a useful model for studying early molecular events in AD.
Collapse
Affiliation(s)
- Rasoul Godini
- Department of Biology, School of Sciences, Razi University, Kermanshah, Iran
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Australia
| | - Roger Pocock
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Australia
| | - Hossein Fallahi
- Department of Biology, School of Sciences, Razi University, Kermanshah, Iran
- * E-mail:
| |
Collapse
|
42
|
Diehl AG, Boyle AP. CGIMP: Real-time exploration and covariate projection for self-organizing map datasets. JOURNAL OF OPEN SOURCE SOFTWARE 2019; 4:1520. [PMID: 32500114 PMCID: PMC7272009 DOI: 10.21105/joss.01520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Affiliation(s)
- Adam G Diehl
- Department of Computational Medicine and Bioinformatics, University of Michigan
| | - Alan P Boyle
- Department of Computational Medicine and Bioinformatics, University of Michigan
- Department of Human Genetics, University of Michigan
| |
Collapse
|
43
|
The ENCODE Blacklist: Identification of Problematic Regions of the Genome. Sci Rep 2019; 9:9354. [PMID: 31249361 PMCID: PMC6597582 DOI: 10.1038/s41598-019-45839-z] [Citation(s) in RCA: 845] [Impact Index Per Article: 169.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 06/13/2019] [Indexed: 12/31/2022] Open
Abstract
Functional genomics assays based on high-throughput sequencing greatly expand our ability to understand the genome. Here, we define the ENCODE blacklist- a comprehensive set of regions in the human, mouse, worm, and fly genomes that have anomalous, unstructured, or high signal in next-generation sequencing experiments independent of cell line or experiment. The removal of the ENCODE blacklist is an essential quality measure when analyzing functional genomics data.
Collapse
|
44
|
Lu J, Xu J, Li J, Pan T, Bai J, Wang L, Jin X, Lin X, Zhang Y, Li Y, Sahni N, Li X. FACER: comprehensive molecular and functional characterization of epigenetic chromatin regulators. Nucleic Acids Res 2019; 46:10019-10033. [PMID: 30102398 PMCID: PMC6212842 DOI: 10.1093/nar/gky679] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 08/04/2018] [Indexed: 01/09/2023] Open
Abstract
Epigenetic alterations, a well-recognized cancer hallmark, are driven by chromatin regulators (CRs). However, little is known about the extent of CR deregulation in cancer, and less is known about their common and specialized roles across various cancers. Here, we performed genome-wide analyses and constructed molecular signatures and network profiles of functional CRs in over 10 000 tumors across 33 cancer types. By integration of DNA mutation, genome-wide methylation, transcriptional/post-transcriptional regulation, and protein interaction networks with clinical outcomes, we identified CRs associated with cancer subtypes and clinical prognosis as potential oncogenic drivers. Comparative network analysis revealed principles of CR regulatory specificity and functionality. In addition, we identified common and specific CRs by assessing their prevalence across cancer types. Common CRs tend to be histone modifiers and chromatin remodelers with fundamental roles, whereas specialized CRs are involved in context-dependent functions. Finally, we have made a user-friendly web interface-FACER (Functional Atlas of Chromatin Epigenetic Regulators) available for exploring clinically relevant CRs for the development of CR biomarkers and therapeutic targets. Our integrative analysis reveals specific determinants of CRs across cancer types and presents a resource for investigating disease-associated CRs.
Collapse
Affiliation(s)
- Jianping Lu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Juan Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China.,Key Laboratory of Cardiovascular Medicine Research, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang 150086, China
| | - Junyi Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Tao Pan
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Jing Bai
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Liqiang Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Xiyun Jin
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Xiaoyu Lin
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Yunpeng Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Yongsheng Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China.,Key Laboratory of Cardiovascular Medicine Research, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang 150086, China.,Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Nidhi Sahni
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.,Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA.,Program in Quantitative and Computational Biosciences (QCB), Baylor College of Medicine, Houston, TX 77030, USA.,Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xia Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China.,Key Laboratory of Cardiovascular Medicine Research, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang 150086, China
| |
Collapse
|
45
|
Kim J, Chun JP, Tucker ML. Transcriptional Regulation of Abscission Zones. PLANTS 2019; 8:plants8060154. [PMID: 31174352 PMCID: PMC6631628 DOI: 10.3390/plants8060154] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/29/2019] [Accepted: 06/04/2019] [Indexed: 12/17/2022]
Abstract
Precise and timely regulation of organ separation from the parent plant (abscission) is consequential to improvement of crop productivity as it influences both the timing of harvest and fruit quality. Abscission is tightly associated with plant fitness as unwanted organs (petals, sepals, filaments) are shed after fertilization while seeds, fruits, and leaves are cast off as means of reproductive success or in response to abiotic/biotic stresses. Floral organ abscission in Arabidopsis has been a useful model to elucidate the molecular mechanisms that underlie the separation processes, and multiple abscission signals associated with the activation and downstream pathways have been uncovered. Concomitantly, large-scale analyses of omics studies in diverse abscission systems of various plants have added valuable insights into the abscission process. The results suggest that there are common molecular events linked to the biosynthesis of a new extracellular matrix as well as cell wall disassembly. Comparative analysis between Arabidopsis and soybean abscission systems has revealed shared and yet disparate regulatory modules that affect the separation processes. In this review, we discuss our current understanding of the transcriptional regulation of abscission in several different plants that has improved on the previously proposed four-phased model of organ separation.
Collapse
Affiliation(s)
- Joonyup Kim
- Department of Horticultural Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea.
| | - Jong-Pil Chun
- Department of Horticultural Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea.
| | - Mark L Tucker
- Soybean Genomics and Improvement Laboratory, Agricultural Research Service, USDA Bldg. 006, 10300 Baltimore Ave., Beltsville, MD 20705, USA.
| |
Collapse
|
46
|
Feed-forward regulation adaptively evolves via dynamics rather than topology when there is intrinsic noise. Nat Commun 2019; 10:2418. [PMID: 31160574 PMCID: PMC6546794 DOI: 10.1038/s41467-019-10388-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 05/09/2019] [Indexed: 12/17/2022] Open
Abstract
In transcriptional regulatory networks (TRNs), a canonical 3-node feed-forward loop (FFL) is hypothesized to evolve to filter out short spurious signals. We test this adaptive hypothesis against a novel null evolutionary model. Our mutational model captures the intrinsically high prevalence of weak affinity transcription factor binding sites. We also capture stochasticity and delays in gene expression that distort external signals and intrinsically generate noise. Functional FFLs evolve readily under selection for the hypothesized function but not in negative controls. Interestingly, a 4-node “diamond” motif also emerges as a short spurious signal filter. The diamond uses expression dynamics rather than path length to provide fast and slow pathways. When there is no idealized external spurious signal to filter out, but only internally generated noise, only the diamond and not the FFL evolves. While our results support the adaptive hypothesis, we also show that non-adaptive factors, including the intrinsic expression dynamics, matter. Feed‐forward loops (FFLs) can filter out noise, but whether their overrepresentation in GRNs reflects adaptive evolution for this function is debated. Here, the authors develop a null model of regulatory evolution and find that FFLs evolve readily under selection for the noise filtering function.
Collapse
|
47
|
Wang R, Wang Y, Zhang X, Zhang Y, Du X, Fang Y, Li G. Hierarchical cooperation of transcription factors from integration analysis of DNA sequences, ChIP-Seq and ChIA-PET data. BMC Genomics 2019; 20:296. [PMID: 32039697 PMCID: PMC7226942 DOI: 10.1186/s12864-019-5535-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Background Chromosomal architecture, which is constituted by chromatin loops, plays an important role in cellular functions. Gene expression and cell identity can be regulated by the chromatin loop, which is formed by proximal or distal enhancers and promoters in linear DNA (1D). Enhancers and promoters are fundamental non-coding elements enriched with transcription factors (TFs) to form chromatin loops. However, the specific cooperation of TFs involved in forming chromatin loops is not fully understood. Results Here, we proposed a method for investigating the cooperation of TFs in four cell lines by the integrative analysis of DNA sequences, ChIP-Seq and ChIA-PET data. Results demonstrate that the interaction of enhancers and promoters is a hierarchical and dynamic complex process with cooperative interactions of different TFs synergistically regulating gene expression and chromatin structure. The TF cooperation involved in maintaining and regulating the chromatin loop of cells can be regulated by epigenetic factors, such as other TFs and DNA methylation. Conclusions Such cooperation among TFs provides the potential features that can affect chromatin’s 3D architecture in cells. The regulation of chromatin 3D organization and gene expression is a complex process associated with the hierarchical and dynamic prosperities of TFs. Electronic supplementary material The online version of this article (10.1186/s12864-019-5535-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ruimin Wang
- Agricultural Bioinformatics Key Laboratory of Hubei Province, Wuhan, 430070, China
| | - Yunlong Wang
- Agricultural Bioinformatics Key Laboratory of Hubei Province, Wuhan, 430070, China
| | - Xueying Zhang
- Agricultural Bioinformatics Key Laboratory of Hubei Province, Wuhan, 430070, China
| | - Yaliang Zhang
- Agricultural Bioinformatics Key Laboratory of Hubei Province, Wuhan, 430070, China
| | - Xiaoyong Du
- Agricultural Bioinformatics Key Laboratory of Hubei Province, Wuhan, 430070, China.,Huazhong Agricultural University, Wuhan, 430070, China
| | - Yaping Fang
- Agricultural Bioinformatics Key Laboratory of Hubei Province, Wuhan, 430070, China. .,Huazhong Agricultural University, Wuhan, 430070, China. .,College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Guoliang Li
- Agricultural Bioinformatics Key Laboratory of Hubei Province, Wuhan, 430070, China. .,Huazhong Agricultural University, Wuhan, 430070, China. .,College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
48
|
CEH-60/PBX and UNC-62/MEIS Coordinate a Metabolic Switch that Supports Reproduction in C. elegans. Dev Cell 2019; 49:235-250.e7. [PMID: 30956009 DOI: 10.1016/j.devcel.2019.03.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 11/26/2018] [Accepted: 03/04/2019] [Indexed: 01/08/2023]
Abstract
The molecular basis of how animals integrate metabolic, developmental, and environmental information before committing resources to reproduction is an unresolved issue in developmental biology. In C. elegans, adult animals reallocate fat stores from intestinal cells to the germline via low-density lipoprotein (LDL)-like particles to promote embryogenesis. Here, I demonstrate that two conserved homeodomain transcription factors, CEH-60/PBX and UNC-62/MEIS, coordinate a transcriptional network that supports reproduction while suppressing longevity and stress-response pathways. The CEH-60:UNC-62 heterodimer serves an unanticipated dual function in intestinal nuclei by directly activating the expression of lipoprotein genes while directly repressing stress-responsive genes. Consequently, ceh-60 mutants display fat storage defects, a dramatic lifespan extension, and hyper-activation of innate immunity genes. Finally, CEH-60 associates with PQM-1 at the DAF-16-associated element within the promoters of stress-responsive genes to control gene expression. Thus, CEH-60 governs an elaborate transcriptional network that balances stress responses and longevity against reproduction during developmental transitions.
Collapse
|
49
|
Varshney A, VanRenterghem H, Orchard P, Boyle AP, Stitzel ML, Ucar D, Parker SCJ. Cell Specificity of Human Regulatory Annotations and Their Genetic Effects on Gene Expression. Genetics 2019; 211:549-562. [PMID: 30593493 PMCID: PMC6366912 DOI: 10.1534/genetics.118.301525] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 12/09/2018] [Indexed: 12/19/2022] Open
Abstract
Epigenomic signatures from histone marks and transcription factor (TF)-binding sites have been used to annotate putative gene regulatory regions. However, a direct comparison of these diverse annotations is missing, and it is unclear how genetic variation within these annotations affects gene expression. Here, we compare five widely used annotations of active regulatory elements that represent high densities of one or more relevant epigenomic marks-"super" and "typical" (nonsuper) enhancers, stretch enhancers, high-occupancy target (HOT) regions, and broad domains-across the four matched human cell types for which they are available. We observe that stretch and super enhancers cover cell type-specific enhancer "chromatin states," whereas HOT regions and broad domains comprise more ubiquitous promoter states. Expression quantitative trait loci (eQTL) in stretch enhancers have significantly smaller effect sizes compared to those in HOT regions. Strikingly, chromatin accessibility QTL in stretch enhancers have significantly larger effect sizes compared to those in HOT regions. These observations suggest that stretch enhancers could harbor genetically primed chromatin to enable changes in TF binding, possibly to drive cell type-specific responses to environmental stimuli. Our results suggest that current eQTL studies are relatively underpowered or could lack the appropriate environmental context to detect genetic effects in the most cell type-specific "regulatory annotations," which likely contributes to infrequent colocalization of eQTL with genome-wide association study signals.
Collapse
Affiliation(s)
- Arushi Varshney
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan 48109
| | - Hadley VanRenterghem
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan 48109
| | - Peter Orchard
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan 48109
| | - Alan P Boyle
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan 48109
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan 48109
| | - Michael L Stitzel
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut 06032
| | - Duygu Ucar
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut 06032
| | - Stephen C J Parker
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan 48109
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
50
|
Samee MAH, Bruneau BG, Pollard KS. A De Novo Shape Motif Discovery Algorithm Reveals Preferences of Transcription Factors for DNA Shape Beyond Sequence Motifs. Cell Syst 2019; 8:27-42.e6. [PMID: 30660610 PMCID: PMC6368855 DOI: 10.1016/j.cels.2018.12.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 08/18/2018] [Accepted: 12/03/2018] [Indexed: 12/17/2022]
Abstract
DNA shape adds specificity to sequence motifs but has not been explored systematically outside this context. We hypothesized that DNA-binding proteins (DBPs) preferentially occupy DNA with specific structures ("shape motifs") regardless of whether or not these correspond to high information content sequence motifs. We present ShapeMF, a Gibbs sampling algorithm that identifies de novo shape motifs. Using binding data from hundreds of in vivo and in vitro experiments, we show that most DBPs have shape motifs and can occupy these in the absence of sequence motifs. This "shape-only binding" is common for many DBPs and in regions co-bound by multiple DBPs. When shape and sequence motifs co-occur, they can be overlapping, flanking, or separated by consistent spacing. Finally, DBPs within the same protein family have different shape motifs, explaining their distinct genome-wide occupancy despite having similar sequence motifs. These results suggest that shape motifs not only complement sequence motifs but also facilitate recognition of DNA beyond conventionally defined sequence motifs.
Collapse
Affiliation(s)
| | - Benoit G Bruneau
- Gladstone Institutes, San Francisco, CA 94158, USA; Department of Pediatrics and Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Katherine S Pollard
- Gladstone Institutes, San Francisco, CA 94158, USA; Department of Epidemiology & Biostatistics, Institute for Human Genetics, Quantitative Biology Institute, and Institute for Computational Health Sciences, University of California, San Francisco, San Francisco, CA 94158, USA; Chan-Zuckerberg Biohub, San Francisco, CA 94158, USA.
| |
Collapse
|