1
|
Chen R, Meng F, Zhang H, Liu Y, Yan S, Xu X, Zhu L, Chen J, Zhou T, Zhou J, Yang F, Ci P, Huang X, Chen X, Zhang T, Cai Y, Dong K, Liu Y, Watanabe K, Taniguchi T, Lin CC, Penumatcha AV, Young I, Chan E, Wu J, Yang L, Ramesh R, Yao J. Room-temperature multiferroicity in sliding van der Waals semiconductors with sub-0.3 V switching. Nat Commun 2025; 16:3648. [PMID: 40246822 DOI: 10.1038/s41467-025-58009-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 03/10/2025] [Indexed: 04/19/2025] Open
Abstract
The search for van der Waals (vdW) multiferroic materials has been challenging but also holds great potential for the next-generation multifunctional nanoelectronics. The group-IV monochalcogenide, with an anisotropic puckered structure and an intrinsic in-plane polarization at room temperature, manifests itself as a promising candidate with coupled ferroelectric and ferroelastic order as the basis for multiferroic behavior. Unlike the intrinsic centrosymmetric AB stacking, we demonstrate a multiferroic phase of tin selenide (SnSe), where the inversion symmetry breaking is maintained in AA-stacked multilayers over a wide range of thicknesses. We observe that an interlayer-sliding-induced out-of-plane (OOP) ferroelectric polarization couples with the in-plane (IP) one, making it possible to control out-of-plane polarization via in-plane electric field and vice versa. Notably, thickness scaling yields a sub-0.3 V ferroelectric switching, which promises future low-power-consumption applications. Furthermore, coexisting armchair- and zigzag-like structural domains are imaged under electron microscopy, providing experimental evidence for the degenerate ferroelastic ground states theoretically predicted. Non-centrosymmetric SnSe, as the first layered multiferroic at room temperature, provides a novel platform not only to explore the interactions between elementary excitations with controlled symmetries, but also to efficiently tune the device performance via external electric and mechanical stress.
Collapse
Affiliation(s)
- Rui Chen
- Department of Materials Science and Engineering, University of California, Berkeley, CA, 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Lab, Berkeley, CA, 94720, USA
| | - Fanhao Meng
- Department of Materials Science and Engineering, University of California, Berkeley, CA, 94720, USA.
- Materials Sciences Division, Lawrence Berkeley National Lab, Berkeley, CA, 94720, USA.
| | - Hongrui Zhang
- Department of Materials Science and Engineering, University of California, Berkeley, CA, 94720, USA
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Yuzi Liu
- Center for Nanoscale Materials, Nanoscience and Technology Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Shancheng Yan
- College of Industry-Education Integration, Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Xilong Xu
- Department of Physics and Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Linghan Zhu
- Department of Physics and Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Jiazhen Chen
- Department of Materials Science and Engineering, University of California, Berkeley, CA, 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Lab, Berkeley, CA, 94720, USA
| | - Tao Zhou
- Center for Nanoscale Materials, Nanoscience and Technology Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Jingcheng Zhou
- Department of Materials Science and Engineering, University of California, Berkeley, CA, 94720, USA
| | - Fuyi Yang
- Department of Materials Science and Engineering, University of California, Berkeley, CA, 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Lab, Berkeley, CA, 94720, USA
| | - Penghong Ci
- Department of Materials Science and Engineering, University of California, Berkeley, CA, 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Lab, Berkeley, CA, 94720, USA
| | - Xiaoxi Huang
- Department of Materials Science and Engineering, University of California, Berkeley, CA, 94720, USA
| | - Xianzhe Chen
- Department of Materials Science and Engineering, University of California, Berkeley, CA, 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Lab, Berkeley, CA, 94720, USA
| | - Tiancheng Zhang
- Department of Materials Science and Engineering, University of California, Berkeley, CA, 94720, USA
| | - Yuhang Cai
- Department of Materials Science and Engineering, University of California, Berkeley, CA, 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Lab, Berkeley, CA, 94720, USA
| | - Kaichen Dong
- Department of Materials Science and Engineering, University of California, Berkeley, CA, 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Lab, Berkeley, CA, 94720, USA
| | - Yin Liu
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC, 27606, USA
| | - Kenji Watanabe
- National Institute for Material Science, Tsukuba, 305-0047, Japan
| | | | - Chia-Ching Lin
- Components Research, Intel Corporation, Hillsboro, OR, 97124, USA
| | | | - Ian Young
- Components Research, Intel Corporation, Hillsboro, OR, 97124, USA
| | - Emory Chan
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Junqiao Wu
- Department of Materials Science and Engineering, University of California, Berkeley, CA, 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Lab, Berkeley, CA, 94720, USA
| | - Li Yang
- Department of Physics and Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Ramamoorthy Ramesh
- Department of Materials Science and Engineering, University of California, Berkeley, CA, 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Lab, Berkeley, CA, 94720, USA
- Department of Physics, University of California, Berkeley, CA, 94720, USA
| | - Jie Yao
- Department of Materials Science and Engineering, University of California, Berkeley, CA, 94720, USA.
- Materials Sciences Division, Lawrence Berkeley National Lab, Berkeley, CA, 94720, USA.
| |
Collapse
|
2
|
Peng R, Yang J, Hu L, Ong WL, Ho P, Lau CS, Liu J, Ang YS. All-electrical layer-spintronics in altermagnetic bilayers. MATERIALS HORIZONS 2025; 12:2197-2207. [PMID: 40067761 DOI: 10.1039/d4mh01509f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/01/2025]
Abstract
Electrical manipulation of spin-polarized current is highly desirable yet tremendously challenging in developing ultracompact spintronic device technology. Here we propose a scheme to realize the all-electrical manipulation of spin-polarized current in an altermagnetic bilayer. Such a bilayer system can host layer-spin locking, in which one layer hosts a spin-polarized current while the other layer hosts a current with opposite spin polarization. An out-of-plane electric field breaks the layer degeneracy, leading to a gate-tunable spin-polarized current whose polarization can be fully reversed upon flipping the polarity of the electric field. Using first-principles calculations, we show that a CrS bilayer with C-type antiferromagnetic exchange interaction exhibits a hidden layer-spin locking mechanism that enables the spin polarization of the transport current to be electrically manipulated via the layer degree of freedom. We demonstrate that sign-reversible spin polarization as high as 87% can be achieved at room temperature. This work presents the pioneering concept of layer-spintronics which synergizes altermagnetism and bilayer stacking to achieve efficient electrical control of spin.
Collapse
Affiliation(s)
- Rui Peng
- Science, Mathematics and Technology (SMT) Cluster, Singapore University of Technology and Design, Singapore, 487372, Singapore.
| | - Jin Yang
- Science, Mathematics and Technology (SMT) Cluster, Singapore University of Technology and Design, Singapore, 487372, Singapore.
- ZJU-UIUC Institute, College of Energy Engineering, Zhejiang University, Jiaxing, Haining, Zhejiang, 314400, China
| | - Lin Hu
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing 100081, China
- Beijing Key Lab of Nanophotonics & Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing 100081, China
- Beijing Computational Science Research Center, Beijing 100193, China
| | - Wee-Liat Ong
- ZJU-UIUC Institute, College of Energy Engineering, Zhejiang University, Jiaxing, Haining, Zhejiang, 314400, China
| | - Pin Ho
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore, 138634, Singapore
| | - Chit Siong Lau
- Science, Mathematics and Technology (SMT) Cluster, Singapore University of Technology and Design, Singapore, 487372, Singapore.
- Quantum Innovation Centre (Q.InC), Agency for Science Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore, 138634, Singapore
| | - Junwei Liu
- Department of Physics, Hong Kong University of Science and Technology, Hong Kong 999077, China
| | - Yee Sin Ang
- Science, Mathematics and Technology (SMT) Cluster, Singapore University of Technology and Design, Singapore, 487372, Singapore.
| |
Collapse
|
3
|
Gong SJ, Gong C. Electrically activating two-dimensional antiferromagnets. NATURE NANOTECHNOLOGY 2025:10.1038/s41565-025-01884-6. [PMID: 40087525 DOI: 10.1038/s41565-025-01884-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/17/2025]
Affiliation(s)
- Shi-Jing Gong
- Engineering Research Center of Nanophotonics & Advanced Instrument, Department of Physics, School of Physics and Electronic Science, East China Normal University, Shanghai, China.
| | - Cheng Gong
- Department of Electrical & Computer Engineering and Quantum Technology Center, University of Maryland, College Park, MD, USA.
| |
Collapse
|
4
|
Cheng L, Bao M, Zhang X, Zhang J, Yang Q, Li Q, Cao H, Qiu D, Li H, Cheng G, Zhou H, Zuo JM, Zhou X, Shen J, Zhu Z, Wang W, Zhai X. Angle-resolved magneto-chiral anisotropy in a non-centrosymmetric atomic layer superlattice. Sci Bull (Beijing) 2025:S2095-9273(25)00250-6. [PMID: 40133150 DOI: 10.1016/j.scib.2025.03.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 01/16/2025] [Accepted: 03/03/2025] [Indexed: 03/27/2025]
Affiliation(s)
- Long Cheng
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Mingrui Bao
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xue Zhang
- School of Information Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jingxian Zhang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China; CAS Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Qun Yang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Qiang Li
- State Key Laboratory of Surface Physics and Institute for Nanoelectronic Devices and Quantum Computing, Fudan University, Shanghai 200433, China
| | - Hui Cao
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Dawei Qiu
- CAS Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Hui Li
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Guanglei Cheng
- CAS Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Hua Zhou
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Jian-Min Zuo
- Department of Materials Science and Engineering and Materials Research Laboratory, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Xiaodong Zhou
- State Key Laboratory of Surface Physics and Institute for Nanoelectronic Devices and Quantum Computing, Fudan University, Shanghai 200433, China
| | - Jian Shen
- State Key Laboratory of Surface Physics and Institute for Nanoelectronic Devices and Quantum Computing, Fudan University, Shanghai 200433, China
| | - Zhifeng Zhu
- School of Information Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| | - Wenbo Wang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China; ShanghaiTech Laboratory for Topological Physics, ShanghaiTech University, Shanghai 201210, China.
| | - Xiaofang Zhai
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
5
|
Zhao HJ, Fu Y, Yang Y, Wang Y, Bellaiche L, Ma Y. Electrically Switchable Longitudinal Nonlinear Conductivity in Magnetic Semiconductors. PHYSICAL REVIEW LETTERS 2025; 134:046801. [PMID: 39951565 DOI: 10.1103/physrevlett.134.046801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 12/13/2024] [Indexed: 02/16/2025]
Abstract
Writing data by electric field (as opposed to electric current) offers promises for energy efficient memory devices. While this data writing scheme is enabled by the magnetoelectric effect, the narrow spectrum of room-temperature magnetoelectrics hinders the design of practical magnetoelectric memories, and the exploration of other mechanisms toward low-power memories is greatly demanding. Here, we propose a mechanism that allows the electric-field writing of data beyond the framework of magnetoelectric effect. By symmetry analysis, we show that electric field can induce longitudinal nonlinear conductivity (LNC) in a wide spectrum of magnetic materials, including ferromagnets, antiferromagnets, magnetoelectrics, and nonmagnetoelectrics. The LNC is electrically switchable by reversing the electric field, where the switched LNC is detectable by transport measurements. Our first-principles simulations combined with transport calculations further predict YFeO_{3} and CuFeS_{2} (room-temperature antiferromagnets) to showcase electrically switchable LNC. Our Letter helps enrich the research avenues in nonlinear charge transport, and offers a pathway for designing energy efficient devices based on LNC.
Collapse
Affiliation(s)
- Hong Jian Zhao
- Jilin University, Key Laboratory of Material Simulation Methods and Software of Ministry of Education, College of Physics, Changchun 130012, China
- Jilin University, Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Changchun 130012, China
- Jilin University, International Center of Future Science, Changchun 130012, China
| | - Yuhao Fu
- Jilin University, Key Laboratory of Material Simulation Methods and Software of Ministry of Education, College of Physics, Changchun 130012, China
| | - Yurong Yang
- Nanjing University, National Laboratory of Solid State Microstructures and Jiangsu Key Laboratory of Artificial Functional Materials, Department of Materials Science and Engineering, Nanjing 210093, China
| | - Yanchao Wang
- Jilin University, Key Laboratory of Material Simulation Methods and Software of Ministry of Education, College of Physics, Changchun 130012, China
- Jilin University, State Key Laboratory of Superhard Materials, College of Physics, Changchun 130012, China
| | - Laurent Bellaiche
- University of Arkansas, Smart Functional Materials Center, Physics Department and Institute for Nanoscience and Engineering, Fayetteville, Arkansas 72701, USA
- Tel Aviv University, Department of Materials Science and Engineering, Ramat Aviv, Tel Aviv 6997801, Israel
| | - Yanming Ma
- Jilin University, Key Laboratory of Material Simulation Methods and Software of Ministry of Education, College of Physics, Changchun 130012, China
- Jilin University, International Center of Future Science, Changchun 130012, China
- Jilin University, State Key Laboratory of Superhard Materials, College of Physics, Changchun 130012, China
| |
Collapse
|
6
|
Wang X, Wang P, Liu X, Wang X, Lu Y, Shen L. Data-Driven Discovery of High-Performance Heterobilayer Transition Metal Dichalcogenide-Based Sliding Ferroelectrics. ACS APPLIED MATERIALS & INTERFACES 2025; 17:7164-7173. [PMID: 39825797 DOI: 10.1021/acsami.4c19017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2025]
Abstract
The development of efficient sliding ferroelectric (FE) materials is crucial for advancing next-generation low-power nanodevices. Currently, most efforts focus on homobilayer two-dimensional materials, except for the experimentally reported heterobilayer sliding FE, MoS2/WS2. Here, we first screened 870 transition metal dichalcogenide (TMD) bilayer heterostructures derived from experimentally characterized monolayer TMDs and systematically investigated their sliding ferroelectric behavior across various stacking configurations using high-throughput calculations. On the basis of the generated data, we developed an efficient descriptor, named the amplitude of Allen electronegativity difference (Δχm), for identifying van der Waals heterobilayers with sliding FE properties. Finally, 16 semiconducting TMD heterobilayers are identified as exhibiting interlayer sliding FE alongside low switching barriers (<21 meV/f.u.), with 10 outperforming the experimental MoS2/WS2 system, showing the largest out-of-plane polarization (OPP) values up to 10 times higher than MoS2/WS2. These materials exhibit favorable band gaps (0.60-1.80 eV) using the HSE06 method, making them suitable for sliding FE applications. Our findings reveal that polarization switching in these heterobilayers is strongly influenced by the interplay of stacking patterns, material electronegativity, charge transfer, and electronic structures. This study provides a robust framework for designing novel sliding ferroelectric materials and offers a theoretical basis for future experimental research.
Collapse
Affiliation(s)
- Xian Wang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| | - Peng Wang
- College of Electronic and Information Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Xiaoqing Liu
- Department of Mechanical Engineering, National University of Singapore, Singapore 117575, Singapore
| | - Xuesen Wang
- Department of Physics, National University of Singapore, Singapore 117551, Singapore
| | - Yunpeng Lu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| | - Lei Shen
- Department of Mechanical Engineering, National University of Singapore, Singapore 117575, Singapore
| |
Collapse
|
7
|
Checa M, Pant B, Puretzky A, Dryzhakov B, Vasudevan RK, Liu Y, Kavle P, Dasgupta A, Martin LW, Cao Y, Collins L, Jesse S, Domingo N, Kelley KP. On-demand nanoengineering of in-plane ferroelectric topologies. NATURE NANOTECHNOLOGY 2025; 20:43-50. [PMID: 39327514 PMCID: PMC11750715 DOI: 10.1038/s41565-024-01792-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 08/19/2024] [Indexed: 09/28/2024]
Abstract
Hierarchical assemblies of ferroelectric nanodomains, so-called super-domains, can exhibit exotic morphologies that lead to distinct behaviours. Controlling these super-domains reliably is critical for realizing states with desired functional properties. Here we reveal the super-switching mechanism by using a biased atomic force microscopy tip, that is, the switching of the in-plane super-domains, of a model ferroelectric Pb0.6Sr0.4TiO3. We demonstrate that the writing process is dominated by a super-domain nucleation and stabilization process. A complex scanning-probe trajectory enables on-demand formation of intricate centre-divergent, centre-convergent and flux-closure polar structures. Correlative piezoresponse force microscopy and optical spectroscopy confirm the topological nature and tunability of the emergent structures. The precise and versatile nanolithography in a ferroic material and the stability of the generated structures, also validated by phase-field modelling, suggests potential for reliable multi-state nanodevice architectures and, thereby, an alternative route for the creation of tunable topological structures for applications in neuromorphic circuits.
Collapse
Affiliation(s)
- Marti Checa
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, USA.
| | - Bharat Pant
- Department of Materials Science and Engineering, University of Texas at Arlington, Arlington, TX, USA
| | - Alexander Puretzky
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Bogdan Dryzhakov
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Rama K Vasudevan
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Yongtao Liu
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Pravin Kavle
- Department of Materials Science and Engineering, University of California Berkeley, Berkeley, CA, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Arvind Dasgupta
- Department of Materials Science and Engineering, University of California Berkeley, Berkeley, CA, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Lane W Martin
- Department of Materials Science and Engineering, University of California Berkeley, Berkeley, CA, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Departments of Materials Science and NanoEngineering, Chemistry, and Physics and Astronomy and the Rice Advanced Materials Institute, Rice University, Houston, TX, USA
| | - Ye Cao
- Department of Materials Science and Engineering, University of Texas at Arlington, Arlington, TX, USA
| | - Liam Collins
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Stephen Jesse
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Neus Domingo
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Kyle P Kelley
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| |
Collapse
|
8
|
Najeeb MA, Morrison R, Mokhtar AH, Porter DG, Lichtenberg F, Bombardi A, Newton MC. Imaging of electric-field-induced domain structure in DyMnO 3 nanocrystals. DISCOVER NANO 2024; 19:203. [PMID: 39674963 DOI: 10.1186/s11671-024-04165-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 12/04/2024] [Indexed: 12/17/2024]
Abstract
Multiferroic materials that exhibit interacting and coexisting properties, like ferroelectricity and ferromagnetism, possess significant potential in the development of novel technologies that can be controlled through the application of external fields. They also exhibit varying regions of polarity, known as domains, with the interfaces that separate the domains referred to as domain walls. In this study, using three-dimensional (3D) bragg coherent diffractive imaging (BCDI), we investigate the dynamics of multiferroic domain walls in a single hexagonal dysprosium manganite (h-DyMnO3 ) nanocrystal under varying applied electric field. Our analysis reveals that domain wall motion is influenced by the pinning effects, and a threshold voltage of +3 V is required to overcome them. Using circular mean analysis and phase gradient mapping, we identified localised phase realignment and high-gradient regions corresponding to domain walls, providing insights into the behaviour of multiferroic systems under external stimuli.
Collapse
Affiliation(s)
- Mansoor A Najeeb
- Department of Physics and Astronomy, University of Southampton, Southampton, SO17 1BJ, UK.
| | - Robbie Morrison
- Department of Physics and Astronomy, University of Southampton, Southampton, SO17 1BJ, UK
| | - Ahmed H Mokhtar
- Department of Physics and Astronomy, University of Southampton, Southampton, SO17 1BJ, UK
| | - Daniel G Porter
- Diamond Light Source, Harwell Oxford Campus, Didcot, OX11 0DE, UK
| | | | | | - Marcus C Newton
- Department of Physics and Astronomy, University of Southampton, Southampton, SO17 1BJ, UK
| |
Collapse
|
9
|
Moore TA. Magnetic domain wall and skyrmion manipulation by static and dynamic strain profiles. NANOTECHNOLOGY 2024; 36:072003. [PMID: 39586112 DOI: 10.1088/1361-6528/ad96c2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 11/25/2024] [Indexed: 11/27/2024]
Abstract
Magnetic domain walls and skyrmions in thin film micro- and nanostructures have been of interest to a growing number of researchers since the turn of the millennium, motivated by the rich interplay of materials, interface and spin physics as well as by the potential for applications in data storage, sensing and computing. This review focuses on the manipulation of magnetic domain walls and skyrmions by piezoelectric strain, which has received increasing attention recently. Static strain profiles generated, for example, by voltage applied to a piezoelectric-ferromagnetic heterostructure, and dynamic strain profiles produced by surface acoustic waves, are reviewed here. As demonstrated by the success of magnetic random access memory, thin magnetic films have been successfully incorporated into complementary metal-oxide-semiconductor back-end of line device fabrication. The purpose of this review is therefore not only to highlight promising piezoelectric and magnetic materials and their properties when combined, but also to galvanise interest in the spin textures in these heterostructures for a variety of spin- and straintronic devices.
Collapse
Affiliation(s)
- Thomas A Moore
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, United Kingdom
| |
Collapse
|
10
|
Ferson ND, Ganiban JR, Arnold DP, Andrew JS. Tunable synthesis of magnetoelectric CoFe 2O 4-BaTiO 3 core-shell nanowires. Chem Commun (Camb) 2024; 60:14073-14076. [PMID: 39526895 DOI: 10.1039/d4cc03701d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
A template-assisted synthesis approach was employed to tune the structure and properties of CoFe2O4-BaTiO3 core-shell magnetoelectric nanowires. By adjusting the composition of the nanowires, we achieved control over the magnetic anisotropy in the CoFe2O4 core phase. This work highlights the potential for enhanced magnetic anisotropy to improve magnetoelectric performance.
Collapse
Affiliation(s)
- Noah D Ferson
- Dept. of Materials Science & Engineering, University of Florida, Gainesville, FL 32611, USA.
| | - John R Ganiban
- Dept. of Materials Science & Engineering, University of Florida, Gainesville, FL 32611, USA.
| | - David P Arnold
- Dept. of Electrical & Computer Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Jennifer S Andrew
- Dept. of Materials Science & Engineering, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
11
|
Meisenheimer P, Ramesh M, Husain S, Harris I, Park HW, Zhou S, Taghinejad H, Zhang H, Martin LW, Analytis J, Stevenson P, Íñiguez-González J, Kim SK, Schlom DG, Caretta L, Yao Z, Ramesh R. Designed Spin-Texture-Lattice to Control Anisotropic Magnon Transport in Antiferromagnets. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404639. [PMID: 39022882 DOI: 10.1002/adma.202404639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/30/2024] [Indexed: 07/20/2024]
Abstract
Spin waves in magnetic materials are promising information carriers for future computing technologies due to their ultra-low energy dissipation and long coherence length. Antiferromagnets are strong candidate materials due, in part, to their stability to external fields and larger group velocities. Multiferroic antiferromagnets, such as BiFeO3 (BFO), have an additional degree of freedom stemming from magnetoelectric coupling, allowing for control of the magnetic structure, and thus spin waves, with the electric field. Unfortunately, spin-wave propagation in BFO is not well understood due to the complexity of the magnetic structure. In this work, long-range spin transport is explored within an epitaxially engineered, electrically tunable, 1D magnonic crystal. A striking anisotropy is discovered in the spin transport parallel and perpendicular to the 1D crystal axis. Multiscale theory and simulation suggest that this preferential magnon conduction emerges from a combination of a population imbalance in its dispersion, as well as anisotropic structural scattering. This work provides a pathway to electrically reconfigurable magnonic crystals in antiferromagnets.
Collapse
Affiliation(s)
- Peter Meisenheimer
- Department of Materials Science and Engineering, University of California, Berkeley, CA, 94720, USA
| | - Maya Ramesh
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Sajid Husain
- Department of Materials Science and Engineering, University of California, Berkeley, CA, 94720, USA
- Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Isaac Harris
- Department of Physics, University of California, Berkeley, CA, 94720, USA
| | - Hyeon Woo Park
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, South Korea
| | - Shiyu Zhou
- Department of Physics, Brown University, Providence, RI, 02912, USA
| | - Hossein Taghinejad
- Department of Physics, University of California, Berkeley, CA, 94720, USA
| | - Hongrui Zhang
- Department of Materials Science and Engineering, University of California, Berkeley, CA, 94720, USA
- Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Lane W Martin
- Departments of Physics and Astronomy and Materials Science and NanoEngineering and Rice Advanced Materials Institute, Rice University, Houston, TX, 77005, USA
- Department of Chemistry, Rice University, Houston, TX, 77005, USA
| | - James Analytis
- Department of Physics, University of California, Berkeley, CA, 94720, USA
| | - Paul Stevenson
- Department of Physics, Northeastern University, Boston, MA, 02115, USA
| | - Jorge Íñiguez-González
- Materials Research and Technology Department, Luxembourg Institute of Science and Technology (LIST), Esch-sur-Alzette, Luxembourg
- Department of Physics and Materials Science, University of Luxembourg, Esch-sur-Alzette, Belvaux, 1511, Luxembourg
| | - Se Kwon Kim
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, South Korea
| | - Darrell G Schlom
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, 14853, USA
- Kavli Institute for Nanoscale Science, Cornell University, Ithaca, NY, 14853, USA
- Leibniz-Institut für Kristallzüchtung, 12489, Berlin, Germany
| | - Lucas Caretta
- School of Engineering, Brown University, Providence, RI, 02912, USA
| | - Zhi Yao
- Applied Mathematics and Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Ramamoorthy Ramesh
- Department of Materials Science and Engineering, University of California, Berkeley, CA, 94720, USA
- Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Department of Physics, University of California, Berkeley, CA, 94720, USA
- Departments of Physics and Astronomy and Materials Science and NanoEngineering and Rice Advanced Materials Institute, Rice University, Houston, TX, 77005, USA
| |
Collapse
|
12
|
Zhang RW, Cui C, Li R, Duan J, Li L, Yu ZM, Yao Y. Predictable Gate-Field Control of Spin in Altermagnets with Spin-Layer Coupling. PHYSICAL REVIEW LETTERS 2024; 133:056401. [PMID: 39159119 DOI: 10.1103/physrevlett.133.056401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 01/22/2024] [Accepted: 06/06/2024] [Indexed: 08/21/2024]
Abstract
Spintronics, a technology harnessing electron spin for information transmission, offers a promising avenue to surpass the limitations of conventional electronic devices. While the spin directly interacts with the magnetic field, its control through the electric field is generally more practical, and has become a focal point in the field. Here, we propose a mechanism to realize static and almost uniform effective magnetic field by gate-electric field. Our method employs two-dimensional altermagnets with valley-mediated spin-layer coupling (SLC), in which electronic states display valley-contrasted spin and layer polarization. For the low-energy valley electrons, a uniform gate field is approximately identical to a uniform magnetic field, leading to predictable control of spin. Through symmetry analysis and ab initio calculations, we predict altermagnetic monolayer Ca(CoN)_{2} and its family materials as potential candidates hosting SLC. We show that an almost uniform magnetic field (B_{z}) indeed is generated by gate field (E_{z}) in Ca(CoN)_{2} with B_{z}∝E_{z} in a wide range, and B_{z} reaches as high as about 10^{3} T when E_{z}=0.2 eV/Å. Furthermore, owing to the clean band structure and SLC, one can achieve perfect and switchable spin and valley currents and significant tunneling magnetoresistance in Ca(CoN)_{2} solely using the gate field. Our work provides new opportunities to generate predictable control of spin and design spintronic devices that can be controlled by purely electric means.
Collapse
Affiliation(s)
| | - Chaoxi Cui
- Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), Beijing Key Lab of Nanophotonics & Ultrafine Optoelectronic Systems, and School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Runze Li
- Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), Beijing Key Lab of Nanophotonics & Ultrafine Optoelectronic Systems, and School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Jingyi Duan
- Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), Beijing Key Lab of Nanophotonics & Ultrafine Optoelectronic Systems, and School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Lei Li
- Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), Beijing Key Lab of Nanophotonics & Ultrafine Optoelectronic Systems, and School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | | | | |
Collapse
|
13
|
Xu S, Wang X, Bellaiche L, Xu B. Electric Control of Magnetism in Multiferroic Rare-Earth-Substituted BiFeO_{3} with Ferrielectricity. PHYSICAL REVIEW LETTERS 2024; 133:046801. [PMID: 39121429 DOI: 10.1103/physrevlett.133.046801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 04/23/2024] [Accepted: 06/05/2024] [Indexed: 08/11/2024]
Abstract
The multiferroic rare-earth-substituted BiFeO_{3} has emerged as a promising candidate to achieve ultralow-energy-dissipation logic or memory devices, but the fundamental details of the switching mechanism involving the electrical, structural, and magnetic degrees of freedom is not fully understood, in particular, in its single-phase form. Here, a first-principles-based computational scheme is used to study Nd-doped BiFeO_{3} as a model system. The structure that yields a reduced P-E hysteresis loop is found to be ferrielectric with modulated octahedral tiltings, and it is shown that both the in-plane and out-of-plane ferromagnetization can be controlled by an applied electric field. The switching behaviors can be well interpreted by a Landau-type model, in which the magnetoelectric coupling is indirect and mediated by octahedral tiltings. The effects of varied composition and temperature are further discussed, revealing important correlations between the polarization switching and the robustness of the control of magnetization.
Collapse
Affiliation(s)
- Shiji Xu
- Jiangsu Key Laboratory of Frontier Material Physics and Devices, Institute of Theoretical and Applied Physics, School of Physical Science and Technology, Soochow University, Suzhou 215006, China
| | - Xin Wang
- Jiangsu Key Laboratory of Frontier Material Physics and Devices, Institute of Theoretical and Applied Physics, School of Physical Science and Technology, Soochow University, Suzhou 215006, China
| | - L Bellaiche
- Smart Ferroic Materials Center, Physics Department and Institute for Nanoscience and Engineering, University of Arkansas, Fayetteville, Arkansas 72701, USA
- Department of Materials Science and Engineering, Tel Aviv University, Ramat Aviv, Tel Aviv 6997801, Israel
| | - Bin Xu
- Jiangsu Key Laboratory of Frontier Material Physics and Devices, Institute of Theoretical and Applied Physics, School of Physical Science and Technology, Soochow University, Suzhou 215006, China
| |
Collapse
|
14
|
Rajib MM, Bindal N, Raj RK, Kaushik BK, Atulasimha J. Skyrmion-mediated nonvolatile ternary memory. Sci Rep 2024; 14:17199. [PMID: 39060298 PMCID: PMC11282189 DOI: 10.1038/s41598-024-66853-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
Multistate memory systems have the ability to store and process more data in the same physical space as binary memory systems, making them a potential alternative to existing binary memory systems. In the past, it has been demonstrated that voltage-controlled magnetic anisotropy (VCMA) based writing is highly energy-efficient compared to other writing methods used in non-volatile nano-magnetic binary memory systems. In this study, we introduce a new, VCMA-based and skyrmion-mediated non-volatile ternary memory system using a perpendicular magnetic tunnel junction (p-MTJ) in the presence of room temperature thermal perturbation. We have also shown that ternary states {- 1, 0, + 1} can be implemented with three magnetoresistance values obtained from a p-MTJ corresponding to ferromagnetic up, down, and skyrmion state, with 99% switching probability in the presence of room temperature thermal noise in an energy-efficient way, requiring ~ 2 fJ energy on an average for each switching operation. Additionally, we show that our proposed ternary memory demonstrates an improvement in area and energy by at least 2X and ~ 104X respectively, compared to state-of-the-art spin-transfer torque (STT)-based non-volatile magnetic multistate memories. Furthermore, these three states can be potentially utilized for energy-efficient, high-density in-memory quantized deep neural network implementation.
Collapse
Affiliation(s)
- Md Mahadi Rajib
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, VA, 23284, USA
| | - Namita Bindal
- Department of Electronics and Communication Engineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
- Department of Electronics and Communication Engineering, MVJ College of Engineering, Bangalore, 560067, India
| | - Ravish Kumar Raj
- Department of Electronics and Communication Engineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Brajesh Kumar Kaushik
- Department of Electronics and Communication Engineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Jayasimha Atulasimha
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, VA, 23284, USA.
- Department of Electrical and Computer Engineering, Virginia Commonwealth University, Richmond, VA, 23284, USA.
| |
Collapse
|
15
|
Husain S, Harris I, Meisenheimer P, Mantri S, Li X, Ramesh M, Behera P, Taghinejad H, Kim J, Kavle P, Zhou S, Kim TY, Zhang H, Stevenson P, Analytis JG, Schlom D, Salahuddin S, Íñiguez-González J, Xu B, Martin LW, Caretta L, Han Y, Bellaiche L, Yao Z, Ramesh R. Non-volatile magnon transport in a single domain multiferroic. Nat Commun 2024; 15:5966. [PMID: 39013862 PMCID: PMC11252442 DOI: 10.1038/s41467-024-50180-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 07/02/2024] [Indexed: 07/18/2024] Open
Abstract
Antiferromagnets have attracted significant attention in the field of magnonics, as promising candidates for ultralow-energy carriers for information transfer for future computing. The role of crystalline orientation distribution on magnon transport has received very little attention. In multiferroics such as BiFeO3 the coupling between antiferromagnetic and polar order imposes yet another boundary condition on spin transport. Thus, understanding the fundamentals of spin transport in such systems requires a single domain, a single crystal. We show that through Lanthanum (La) substitution, a single ferroelectric domain can be engineered with a stable, single-variant spin cycloid, controllable by an electric field. The spin transport in such a single domain displays a strong anisotropy, arising from the underlying spin cycloid lattice. Our work shows a pathway to understanding the fundamental origins of magnon transport in such a single domain multiferroic.
Collapse
Affiliation(s)
- Sajid Husain
- Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| | - Isaac Harris
- Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Physics, University of California, Berkeley, CA, USA
| | - Peter Meisenheimer
- Department of Materials Science and Engineering, University of California, Berkeley, CA, USA
| | - Sukriti Mantri
- Smart Ferroic Materials Center, Physics Department and Institute for Nanoscience and Engineering, University of Arkansas, Fayetteville, Arkansas, USA
| | - Xinyan Li
- Materials Science and NanoEngineering, Rice University, Houston, Texas, USA
| | - Maya Ramesh
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, USA
| | - Piush Behera
- Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Materials Science and Engineering, University of California, Berkeley, CA, USA
| | - Hossein Taghinejad
- Department of Physics, University of California, Berkeley, CA, USA
- Heising-Simons Junior Fellow, Kavli Energy NanoScience Institute (ENSI), University of California, Berkeley, CA, USA
| | - Jaegyu Kim
- Department of Materials Science and Engineering, University of California, Berkeley, CA, USA
| | - Pravin Kavle
- Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Materials Science and Engineering, University of California, Berkeley, CA, USA
| | - Shiyu Zhou
- Department of Physics, Brown University, Providence, RI, USA
| | - Tae Yeon Kim
- Department of Materials Science and Engineering, University of California, Berkeley, CA, USA
| | - Hongrui Zhang
- Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Materials Science and Engineering, University of California, Berkeley, CA, USA
| | - Paul Stevenson
- Department of Physics, Northeastern University, Boston, MA, USA
| | - James G Analytis
- Department of Physics, University of California, Berkeley, CA, USA
| | - Darrell Schlom
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, USA
| | - Sayeef Salahuddin
- Department of Materials Science and Engineering, University of California, Berkeley, CA, USA
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA, USA
| | - Jorge Íñiguez-González
- Department of Materials Research and Technology, Luxembourg Institute of Science and Technology, Esch/Alzette, Luxembourg
- Department of Physics and Materials Science, University of Luxembourg, Belvaux, Luxembourg
| | - Bin Xu
- Jiangsu Key Laboratory of Frontier Material Physics and Devices, School of Physical Science and Technology, Soochow University, Suzhou, China
| | - Lane W Martin
- Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Materials Science and Engineering, University of California, Berkeley, CA, USA
- Materials Science and NanoEngineering, Rice University, Houston, Texas, USA
- Departments of Chemistry, and Physics and Astronomy, Rice University, Houston, TX, USA
- Rice Advanced Materials Institute, Rice University, Houston, TX, USA
| | - Lucas Caretta
- School of Engineering, Brown University, Providence, RI, USA
| | - Yimo Han
- Materials Science and NanoEngineering, Rice University, Houston, Texas, USA
| | - Laurent Bellaiche
- Smart Ferroic Materials Center, Physics Department and Institute for Nanoscience and Engineering, University of Arkansas, Fayetteville, Arkansas, USA
- Department of Materials Science and Engineering, Tel Aviv University, Ramat Aviv, Tel Aviv, 6997801, Israel
| | - Zhi Yao
- Applied Mathematics and Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| | - Ramamoorthy Ramesh
- Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- Department of Physics, University of California, Berkeley, CA, USA.
- Department of Materials Science and Engineering, University of California, Berkeley, CA, USA.
- Materials Science and NanoEngineering, Rice University, Houston, Texas, USA.
- Departments of Chemistry, and Physics and Astronomy, Rice University, Houston, TX, USA.
- Rice Advanced Materials Institute, Rice University, Houston, TX, USA.
| |
Collapse
|
16
|
Chai Y, Liang Y, Xiao C, Wang Y, Li B, Jiang D, Pal P, Tang Y, Chen H, Zhang Y, Bai H, Xu T, Jiang W, Skowroński W, Zhang Q, Gu L, Ma J, Yu P, Tang J, Lin YH, Yi D, Ralph DC, Eom CB, Wu H, Nan T. Voltage control of multiferroic magnon torque for reconfigurable logic-in-memory. Nat Commun 2024; 15:5975. [PMID: 39013854 PMCID: PMC11252438 DOI: 10.1038/s41467-024-50372-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 07/09/2024] [Indexed: 07/18/2024] Open
Abstract
Magnons, bosonic quasiparticles carrying angular momentum, can flow through insulators for information transmission with minimal power dissipation. However, it remains challenging to develop a magnon-based logic due to the lack of efficient electrical manipulation of magnon transport. Here we show the electric excitation and control of multiferroic magnon modes in a spin-source/multiferroic/ferromagnet structure. We demonstrate that the ferroelectric polarization can electrically modulate the magnon-mediated spin-orbit torque by controlling the non-collinear antiferromagnetic structure in multiferroic bismuth ferrite thin films with coupled antiferromagnetic and ferroelectric orders. In this multiferroic magnon torque device, magnon information is encoded to ferromagnetic bits by the magnon-mediated spin torque. By manipulating the two coupled non-volatile state variables-ferroelectric polarization and magnetization-we further present reconfigurable logic operations in a single device. Our findings highlight the potential of multiferroics for controlling magnon information transport and offer a pathway towards room-temperature voltage-controlled, low-power, scalable magnonics for in-memory computing.
Collapse
Affiliation(s)
- Yahong Chai
- School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, China
| | - Yuhan Liang
- School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, China
- School of Materials Science and Engineering, Tsinghua University, Beijing, China
| | - Cancheng Xiao
- School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, China
| | - Yue Wang
- School of Materials Science and Engineering, Tsinghua University, Beijing, China
| | - Bo Li
- Institute for Advanced Study, Tsinghua University, Beijing, China
| | - Dingsong Jiang
- School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, China
| | - Pratap Pal
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Yongjian Tang
- Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY, USA
| | - Hetian Chen
- School of Materials Science and Engineering, Tsinghua University, Beijing, China
| | - Yuejie Zhang
- School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, China
| | - Hao Bai
- Department of Physics, Tsinghua University, Beijing, China
| | - Teng Xu
- Department of Physics, Tsinghua University, Beijing, China
| | - Wanjun Jiang
- Department of Physics, Tsinghua University, Beijing, China
| | - Witold Skowroński
- Institute of Electronics, AGH University of Science and Technology, Kraków, Poland
| | - Qinghua Zhang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Lin Gu
- School of Materials Science and Engineering, Tsinghua University, Beijing, China
| | - Jing Ma
- School of Materials Science and Engineering, Tsinghua University, Beijing, China
| | - Pu Yu
- Department of Physics, Tsinghua University, Beijing, China
| | - Jianshi Tang
- School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, China
| | - Yuan-Hua Lin
- School of Materials Science and Engineering, Tsinghua University, Beijing, China.
| | - Di Yi
- School of Materials Science and Engineering, Tsinghua University, Beijing, China.
| | - Daniel C Ralph
- Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY, USA
- Kavli Institute at Cornell for Nanoscale Science, Ithaca, NY, USA
| | - Chang-Beom Eom
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Huaqiang Wu
- School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, China
| | - Tianxiang Nan
- School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, China.
| |
Collapse
|
17
|
Kang J, Hu Q, Zhang R, Gao A, Huang Z, Su Z, Pei K, Zhang Q, Liu LM, Che R, Gu L, Guo EJ, Guo L. NiS ultrafine nanorod with translational and rotational symmetry. Natl Sci Rev 2024; 11:nwae175. [PMID: 38883296 PMCID: PMC11173186 DOI: 10.1093/nsr/nwae175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/04/2024] [Accepted: 05/15/2024] [Indexed: 06/18/2024] Open
Abstract
Anisotropy is a significant and prevalent characteristic of materials, conferring orientation-dependent properties, meaning that the creation of original symmetry enables key functionality that is not found in nature. Even with the advancements in atomic machining, synthesis of separated symmetry in different directions within a single structure remains an extraordinary challenge. Here, we successfully fabricate NiS ultrafine nanorods with separated symmetry along two directions. The atomic structure of the nanorod exhibits rotational symmetry in the radial direction, while its axial direction is characterized by divergent translational symmetry, surpassing the conventional crystalline structures known to date. It does not fit the traditional description of the space group and the point group in three dimensions, so we define it as a new structure in which translational symmetry and rotational symmetry are separated. Further corroborating the atomic symmetric separation in the electronic structure, we observed the combination of stripe and vortex magnetic domains in a single nanorod with different directions, in accordance with the atomic structure. The manipulation of nanostructure at the atomic level introduces a novel approach to regulate new properties finely, leading to the proposal of new nanotechnology mechanisms.
Collapse
Affiliation(s)
- Jianxin Kang
- School of Chemistry, Beihang University, Beijing 100191, China
| | - Qi Hu
- School of Chemistry, Beihang University, Beijing 100191, China
| | - Ruixuan Zhang
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Academy for Engineering & Technology, Fudan University, Shanghai 200438, China
- Zhejiang Laboratory, Hangzhou 311500, China
| | - Ang Gao
- Beijing National Center for Electron Microscopy and Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Zhongning Huang
- School of Chemistry, Beihang University, Beijing 100191, China
| | - Ziming Su
- School of Chemistry, Beihang University, Beijing 100191, China
| | - Ke Pei
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Academy for Engineering & Technology, Fudan University, Shanghai 200438, China
| | - Qinghua Zhang
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Li-Min Liu
- School of Physics, Beihang University, Beijing 100191, China
| | - Renchao Che
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Academy for Engineering & Technology, Fudan University, Shanghai 200438, China
- Zhejiang Laboratory, Hangzhou 311500, China
| | - Lin Gu
- Beijing National Center for Electron Microscopy and Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Er-Jia Guo
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Lin Guo
- School of Chemistry, Beihang University, Beijing 100191, China
| |
Collapse
|
18
|
Huang X, Chen X, Li Y, Mangeri J, Zhang H, Ramesh M, Taghinejad H, Meisenheimer P, Caretta L, Susarla S, Jain R, Klewe C, Wang T, Chen R, Hsu CH, Harris I, Husain S, Pan H, Yin J, Shafer P, Qiu Z, Rodrigues DR, Heinonen O, Vasudevan D, Íñiguez J, Schlom DG, Salahuddin S, Martin LW, Analytis JG, Ralph DC, Cheng R, Yao Z, Ramesh R. Manipulating chiral spin transport with ferroelectric polarization. NATURE MATERIALS 2024; 23:898-904. [PMID: 38622325 DOI: 10.1038/s41563-024-01854-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 03/07/2024] [Indexed: 04/17/2024]
Abstract
A magnon is a collective excitation of the spin structure in a magnetic insulator and can transmit spin angular momentum with negligible dissipation. This quantum of a spin wave has always been manipulated through magnetic dipoles (that is, by breaking time-reversal symmetry). Here we report the experimental observation of chiral spin transport in multiferroic BiFeO3 and its control by reversing the ferroelectric polarization (that is, by breaking spatial inversion symmetry). The ferroelectrically controlled magnons show up to 18% modulation at room temperature. The spin torque that the magnons in BiFeO3 carry can be used to efficiently switch the magnetization of adjacent magnets, with a spin-torque efficiency comparable to the spin Hall effect in heavy metals. Utilizing such controllable magnon generation and transmission in BiFeO3, an all-oxide, energy-scalable logic is demonstrated composed of spin-orbit injection, detection and magnetoelectric control. Our observations open a new chapter of multiferroic magnons and pave another path towards low-dissipation nanoelectronics.
Collapse
Affiliation(s)
- Xiaoxi Huang
- Department of Materials Science and Engineering, University of California, Berkeley, CA, USA
| | - Xianzhe Chen
- Department of Materials Science and Engineering, University of California, Berkeley, CA, USA.
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| | - Yuhang Li
- Department of Electrical and Computer Engineering, University of California, Riverside, CA, USA
| | - John Mangeri
- Materials Research and Technology Department, Luxembourg Institute of Science and Technology, Esch/Alzette, Luxembourg
| | - Hongrui Zhang
- Department of Materials Science and Engineering, University of California, Berkeley, CA, USA
| | - Maya Ramesh
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, USA
| | | | - Peter Meisenheimer
- Department of Materials Science and Engineering, University of California, Berkeley, CA, USA
| | - Lucas Caretta
- Department of Materials Science and Engineering, University of California, Berkeley, CA, USA
| | - Sandhya Susarla
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, USA
| | - Rakshit Jain
- Department of Physics, Cornell University, Ithaca, NY, USA
- Kavli Institute at Cornell for Nanoscale Science, Ithaca, NY, USA
| | - Christoph Klewe
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Tianye Wang
- Department of Physics, University of California, Berkeley, CA, USA
| | - Rui Chen
- Department of Materials Science and Engineering, University of California, Berkeley, CA, USA
| | - Cheng-Hsiang Hsu
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA, USA
| | - Isaac Harris
- Department of Physics, University of California, Berkeley, CA, USA
| | - Sajid Husain
- Department of Materials Science and Engineering, University of California, Berkeley, CA, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Hao Pan
- Department of Materials Science and Engineering, University of California, Berkeley, CA, USA
| | - Jia Yin
- Applied Mathematics and Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Padraic Shafer
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Ziqiang Qiu
- Department of Physics, University of California, Berkeley, CA, USA
| | - Davi R Rodrigues
- Department of Electrical Engineering, Politecnico di Bari, Bari, Italy
| | - Olle Heinonen
- Materials Science Division, Argonne National Laboratory, Lemont, IL, USA
| | - Dilip Vasudevan
- Applied Mathematics and Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jorge Íñiguez
- Materials Research and Technology Department, Luxembourg Institute of Science and Technology, Esch/Alzette, Luxembourg
- Department of Physics and Materials Science, University of Luxembourg, Belvaux, Luxembourg
| | - Darrell G Schlom
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, USA
| | - Sayeef Salahuddin
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA, USA
| | - Lane W Martin
- Department of Materials Science and Engineering, University of California, Berkeley, CA, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - James G Analytis
- Department of Physics, University of California, Berkeley, CA, USA
- CIFAR Quantum Materials, CIFAR, Toronto, Ontario, Canada
| | - Daniel C Ralph
- Department of Physics, Cornell University, Ithaca, NY, USA
- Kavli Institute at Cornell for Nanoscale Science, Ithaca, NY, USA
| | - Ran Cheng
- Department of Electrical and Computer Engineering, University of California, Riverside, CA, USA
- Department of Physics and Astronomy, University of California, Riverside, CA, USA
| | - Zhi Yao
- Applied Mathematics and Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Ramamoorthy Ramesh
- Department of Materials Science and Engineering, University of California, Berkeley, CA, USA.
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- Department of Physics, University of California, Berkeley, CA, USA.
| |
Collapse
|
19
|
Sun F, Wu M, Ren J, Wang X, Yang H, Zhang X, Chen W, Zheng Y. Reversible Mechanical Switching of Ferroelastic Stripe Domains in Multiferroic Thin Films. ACS APPLIED MATERIALS & INTERFACES 2024; 16:32425-32433. [PMID: 38865279 DOI: 10.1021/acsami.4c04405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
The application potential of ferroelectric thin films largely relies on the controllability of their domain structure. Among the various proposed strategies, mechanical switching is being considered as a potential alternative to replace electrical switching for control of the domain structure of ferroelectric thin films via, e.g., the flexoelectric effect. So far, studies on mechanical switching are confined to out-of-plane polarization switching in ferroelectric thin films, which are in pristine or prepoled single-domain states. In this work, we report reversible in-plane mechanical switching of the monoclinic phase (MC phase) stripe domains in BiFeO3 thin films can be realized by scanning tip force. Via controlling the fast scan direction of the scanning probe microscopy tip and the magnitude of the tip force, the effective trailing field induced by the local tip force can be rotated to consequently switch the net in-plane polarization of the two-variant stripe domain patterns by either 90° or 180°. Moreover, the monoclinic to rhombohedral (MC-R) phase transition occurs during mechanical switching with the distribution of R-phase domains dependent on the switching paths. These results extend our current understanding of the mechanical switching behavior in ferroelectric thin films and should be instructive for their future applications.
Collapse
Affiliation(s)
- Fei Sun
- Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices, School of Physics, Sun Yat-sen University, Guangzhou 510275, China
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-sen University, Guangzhou 510275, China
- Centre for Physical Mechanics and Biophysics, School of Physics, Sun Yat-sen University, Guangzhou 510275, China
| | - Mengjun Wu
- Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices, School of Physics, Sun Yat-sen University, Guangzhou 510275, China
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-sen University, Guangzhou 510275, China
- Centre for Physical Mechanics and Biophysics, School of Physics, Sun Yat-sen University, Guangzhou 510275, China
- School of Materials, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Jianhua Ren
- Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices, School of Physics, Sun Yat-sen University, Guangzhou 510275, China
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-sen University, Guangzhou 510275, China
- Centre for Physical Mechanics and Biophysics, School of Physics, Sun Yat-sen University, Guangzhou 510275, China
| | - Xintong Wang
- Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices, School of Physics, Sun Yat-sen University, Guangzhou 510275, China
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-sen University, Guangzhou 510275, China
- Centre for Physical Mechanics and Biophysics, School of Physics, Sun Yat-sen University, Guangzhou 510275, China
| | - Hui Yang
- Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices, School of Physics, Sun Yat-sen University, Guangzhou 510275, China
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-sen University, Guangzhou 510275, China
- Centre for Physical Mechanics and Biophysics, School of Physics, Sun Yat-sen University, Guangzhou 510275, China
| | - Xiaoyue Zhang
- Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices, School of Physics, Sun Yat-sen University, Guangzhou 510275, China
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-sen University, Guangzhou 510275, China
- Centre for Physical Mechanics and Biophysics, School of Physics, Sun Yat-sen University, Guangzhou 510275, China
| | - Weijin Chen
- Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices, School of Physics, Sun Yat-sen University, Guangzhou 510275, China
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-sen University, Guangzhou 510275, China
- Centre for Physical Mechanics and Biophysics, School of Physics, Sun Yat-sen University, Guangzhou 510275, China
- School of Materials, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Yue Zheng
- Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices, School of Physics, Sun Yat-sen University, Guangzhou 510275, China
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-sen University, Guangzhou 510275, China
- Centre for Physical Mechanics and Biophysics, School of Physics, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
20
|
Liu Z, Zhou B, Wang X. Two-dimensional multiferroic RuClF/AgBiP 2S 6 van der Waals heterostructures with valley splitting properties and controllable magnetic anisotropy. Phys Chem Chem Phys 2024; 26:17869-17881. [PMID: 38887794 DOI: 10.1039/d4cp01059k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
The investigation of new properties in two-dimensional (2D) multiferroic heterostructures is significant. In this work, the electronic properties and magnetic anisotropy energies (MAEs) of 2D multiferroic RuClF/AgBiP2S6 van der Waals (vdW) heterostructures are systematically studied by first principles calculations based on density functional theory (DFT). The Hubbard on-site Coulomb parameter (U) of Ru atoms is necessary to account for the strong correlation among the three-dimensional electrons of Ru. RuClF/AgBiP2S6 heterostructures in different polarizations (RuClF/AgBiP2S6-P↑ and RuClF/AgBiP2S6-P↓) are ferromagnetic semiconductors with stable structures. Valley polarizations are present in the band structures of RuClF/AgBiP2S6 heterostructures with spin-orbit coupling (SOC), the valley splitting energies of which are 279 meV and 263 meV, respectively. The MAEs of RuClF/AgBiP2S6 heterostructures indicate perpendicular magnetic anisotropy (PMA), which are primarily attributed to the differences in matrix elements within Ru (dyz, dz2) orbitals. In addition, valley splittings and MAEs of RuClF/AgBiP2S6 heterostructures are modified at different biaxial strains. Specifically, the highest valley splittings are 283 meV and 287 meV at ε = 2%, while they disappear at ε = -6%. The PMA of RuClF/AgBiP2S6-P↑ is gradually decreased at biaxial strains of -6% to 2%, and MAE is transformed into in-plane magnetic anisotropy (IMA) at ε = 4%. RuClF/AgBiP2S6-P↓ maintains PMA at different strains. The study of non-volatile electrical control of valley splitting phenomena in multiferroic RuClF/AgBiP2S6 heterostructures is crucial in the field of valleytronic devices, which has important theoretical significance.
Collapse
Affiliation(s)
- Ziyu Liu
- Tianjin Key Laboratory of Film Electronic & Communicate Devices, School of Integrated Circuit Science and Engineering, Tianjin University of Technology, Tianjin 300384, China.
| | - Baozeng Zhou
- Tianjin Key Laboratory of Film Electronic & Communicate Devices, School of Integrated Circuit Science and Engineering, Tianjin University of Technology, Tianjin 300384, China.
| | - Xiaocha Wang
- Tianjin Key Laboratory of Film Electronic & Communicate Devices, School of Integrated Circuit Science and Engineering, Tianjin University of Technology, Tianjin 300384, China.
| |
Collapse
|
21
|
Wu Y, Zhang D, Zhang YN, Deng L, Peng B. Nonreciprocal and Nonvolatile Electric-Field Switching of Magnetism in van der Waals Heterostructure Multiferroics. NANO LETTERS 2024; 24:5929-5936. [PMID: 38655909 DOI: 10.1021/acs.nanolett.3c03970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Multiferroic materials provide robust and efficient routes for the control of magnetism by electric fields, which have been diligently sought after for a long time. Construction of two-dimensional (2D) vdW multiferroics is a more exciting endeavor. To date, the nonvolatile manipulation of magnetism through ferroelectric polarization still remains challenging in a 2D vdW heterostructure multiferroic. Here, we report a van der Waals (vdW) heterostructure multiferroic comprising the atomically thin layered antiferromagnet (AFM) CrI3 and ferroelectric (FE) α-In2Se3. We demonstrate anomalously nonreciprocal and nonvolatile electric-field control of magnetization by ferroelectric polarization. The nonreciprocal electric control originates from an intriguing antisymmetric enhancement of interlayer ferromagnetic coupling in the opposite ferroelectric polarization configurations of α-In2Se3. Our work provides numerous possibilities for creating diverse heterostructure multiferroics at the limit of a few atomic layers for multistage magnetic memories and brain-inspired in-memory computing.
Collapse
Affiliation(s)
- Yangliu Wu
- National Engineering Research Center of Electromagnetic Radiation Control Materials, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, People's Republic of China
- Key Laboratory of Multi Spectral Absorbing Materials and Structures of Ministry of Education, University of Electronic Science and Technology of China, Chengdu 611731, People's Republic of China
| | - Deju Zhang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, People's Republic of China
| | - Yan-Ning Zhang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, People's Republic of China
| | - Longjiang Deng
- National Engineering Research Center of Electromagnetic Radiation Control Materials, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, People's Republic of China
- Key Laboratory of Multi Spectral Absorbing Materials and Structures of Ministry of Education, University of Electronic Science and Technology of China, Chengdu 611731, People's Republic of China
| | - Bo Peng
- National Engineering Research Center of Electromagnetic Radiation Control Materials, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, People's Republic of China
- Key Laboratory of Multi Spectral Absorbing Materials and Structures of Ministry of Education, University of Electronic Science and Technology of China, Chengdu 611731, People's Republic of China
| |
Collapse
|
22
|
Wang Z, Wang Q, Gong W, Chen A, Islam A, Quan L, Woehl TJ, Yan Q, Ren S. Magnet-in-ferroelectric crystals exhibiting photomultiferroicity. Proc Natl Acad Sci U S A 2024; 121:e2322361121. [PMID: 38625947 PMCID: PMC11046584 DOI: 10.1073/pnas.2322361121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 03/18/2024] [Indexed: 04/18/2024] Open
Abstract
Growing crystallographically incommensurate and dissimilar organic materials is fundamentally intriguing but challenging for the prominent cross-correlation phenomenon enabling unique magnetic, electronic, and optical functionalities. Here, we report the growth of molecular layered magnet-in-ferroelectric crystals, demonstrating photomanipulation of interfacial ferroic coupling. The heterocrystals exhibit striking photomagnetization and magnetoelectricity, resulting in photomultiferroic coupling and complete change of their color while inheriting ferroelectricity and magnetism from the parent phases. Under a light illumination, ferromagnetic resonance shifts of 910 Oe are observed in heterocrystals while showing a magnetization change of 0.015 emu/g. In addition, a noticeable magnetization change (8% of magnetization at a 1,000 Oe external field) in the vicinity of ferro-to-paraelectric transition is observed. The mechanistic electric-field-dependent studies suggest the photoinduced ferroelectric field effect responsible for the tailoring of photo-piezo-magnetism. The crystallographic analyses further evidence the lattice coupling of a magnet-in-ferroelectric heterocrystal system.
Collapse
Affiliation(s)
- Zhongxuan Wang
- Department of Materials Science and Engineering, University of Maryland, College Park, MD20742
| | - Qian Wang
- Department of Chemistry, Virginia Tech, Blacksburg, VA24060
| | - Weiyi Gong
- Department of Physics, Northeastern University, Boston, MA02115
| | - Amy Chen
- Department of Materials Science and Engineering, University of Maryland, College Park, MD20742
| | - Abdullah Islam
- Department of Materials Science and Engineering, University of Maryland, College Park, MD20742
| | - Lina Quan
- Department of Chemistry, Virginia Tech, Blacksburg, VA24060
- Department of Materials and Science Engineering, Virginia Tech, Blacksburg, VA24060
| | - Taylor J. Woehl
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD20742
| | - Qimin Yan
- Department of Physics, Northeastern University, Boston, MA02115
| | - Shenqiang Ren
- Department of Materials Science and Engineering, University of Maryland, College Park, MD20742
| |
Collapse
|
23
|
Jo J, Mañas-Valero S, Coronado E, Casanova F, Gobbi M, Hueso LE. Nonvolatile Electric Control of Antiferromagnet CrSBr. NANO LETTERS 2024; 24:4471-4477. [PMID: 38587318 DOI: 10.1021/acs.nanolett.4c00348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
van der Waals magnets are emerging as a promising material platform for electric field control of magnetism, offering a pathway toward the elimination of external magnetic fields from spintronic devices. A further step is the integration of such magnets with electrical gating components that would enable nonvolatile control of magnetic states. However, this approach remains unexplored for antiferromagnets, despite their growing significance in spintronics. Here, we demonstrate nonvolatile electric field control of magnetoelectric characteristics in van der Waals antiferromagnet CrSBr. We integrate a CrSBr channel in a flash-memory architecture featuring charge trapping graphene multilayers. The electrical gate operation triggers a nonvolatile 200% change in the antiferromagnetic state of CrSBr resistance by manipulating electron accumulation/depletion. Moreover, the nonvolatile gate modulates the metamagnetic transition field of CrSBr and the magnitude of magnetoresistance. Our findings highlight the potential of manipulating magnetic properties of antiferromagnetic semiconductors in a nonvolatile way.
Collapse
Affiliation(s)
- Junhyeon Jo
- CIC nanoGUNE BRTA, 20018 Donostia-San Sebastian, Basque Country, Spain
| | - Samuel Mañas-Valero
- Instituto de Ciencia Molecular (ICMol) Universitat de València, Catedrático José Beltrán 2, Paterna 46980, Spain
| | - Eugenio Coronado
- Instituto de Ciencia Molecular (ICMol) Universitat de València, Catedrático José Beltrán 2, Paterna 46980, Spain
| | - Fèlix Casanova
- CIC nanoGUNE BRTA, 20018 Donostia-San Sebastian, Basque Country, Spain
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Basque Country, Spain
| | - Marco Gobbi
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Basque Country, Spain
- Centro de Física de Materiales (CFM-MPC) Centro Mixto CSIC-UPV/EHU, 20018 Donostia-San Sebastián, Basque Country, Spain
| | - Luis E Hueso
- CIC nanoGUNE BRTA, 20018 Donostia-San Sebastian, Basque Country, Spain
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Basque Country, Spain
| |
Collapse
|
24
|
Meisenheimer P, Moore G, Zhou S, Zhang H, Huang X, Husain S, Chen X, Martin LW, Persson KA, Griffin S, Caretta L, Stevenson P, Ramesh R. Switching the spin cycloid in BiFeO 3 with an electric field. Nat Commun 2024; 15:2903. [PMID: 38575570 PMCID: PMC10995181 DOI: 10.1038/s41467-024-47232-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/26/2024] [Indexed: 04/06/2024] Open
Abstract
Bismuth ferrite (BiFeO3) is a multiferroic material that exhibits both ferroelectricity and canted antiferromagnetism at room temperature, making it a unique candidate in the development of electric-field controllable magnetic devices. The magnetic moments in BiFeO3 are arranged into a spin cycloid, resulting in unique magnetic properties which are tied to the ferroelectric order. Previous understanding of this coupling has relied on average, mesoscale measurements. Using nitrogen vacancy-based diamond magnetometry, we observe the magnetic spin cycloid structure of BiFeO3 in real space. This structure is magnetoelectrically coupled through symmetry to the ferroelectric polarization and this relationship is maintained through electric field switching. Through a combination of in-plane and out-of-plane electrical switching, coupled with ab initio studies, we have discovered that the epitaxy from the substrate imposes a magnetoelastic anisotropy on the spin cycloid, which establishes preferred cycloid propagation directions. The energy landscape of the cycloid is shaped by both the ferroelectric degree of freedom and strain-induced anisotropy, restricting the spin spiral propagation vector to changes to specific switching events.
Collapse
Affiliation(s)
- Peter Meisenheimer
- Department of Materials Science and Engineering, University of California, Berkeley, CA, USA.
| | - Guy Moore
- Department of Materials Science and Engineering, University of California, Berkeley, CA, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Shiyu Zhou
- Department of Physics, Brown University, Providence, RI, USA
| | - Hongrui Zhang
- Department of Materials Science and Engineering, University of California, Berkeley, CA, USA
| | - Xiaoxi Huang
- Department of Materials Science and Engineering, University of California, Berkeley, CA, USA
| | - Sajid Husain
- Department of Materials Science and Engineering, University of California, Berkeley, CA, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Xianzhe Chen
- Department of Materials Science and Engineering, University of California, Berkeley, CA, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Lane W Martin
- Department of Materials Science and Engineering, University of California, Berkeley, CA, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Physics and Astronomy, Department of Materials Science and Nanoengineering, Rice Advanced Materials Institute, Rice University, Houston, TX, USA
- Department of Chemistry, Rice University, Houston, TX, USA
| | - Kristin A Persson
- Department of Materials Science and Engineering, University of California, Berkeley, CA, USA
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Sinéad Griffin
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Lucas Caretta
- School of Engineering, Brown University, Providence, RI, USA
| | - Paul Stevenson
- Department of Physics, Northeastern University, Boston, MA, USA.
| | - Ramamoorthy Ramesh
- Department of Materials Science and Engineering, University of California, Berkeley, CA, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Physics and Astronomy, Department of Materials Science and Nanoengineering, Rice Advanced Materials Institute, Rice University, Houston, TX, USA
- Department of Physics, University of California, Berkeley, CA, USA
| |
Collapse
|
25
|
Wu H, Fang Z, Jiang P, Yang T. The impact of A-site cations on the crystal structure and magnetism of the new double perovskites ALaCoTeO 6 (A = Na and K). Dalton Trans 2024; 53:5382-5390. [PMID: 38415362 DOI: 10.1039/d3dt04016j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
In this work, we report the structural and magnetic characterization of two new B-site rock-salt ordered double perovskites ALaCoTeO6 (A = K+ and Na+) with mixed A-site cations. KLaCoTeO6 crystallizes in the space group P4/nmm with a long-range ordering degree of 84.8% for the A-site K+/La3+ cations, whereas NaLaCoTeO6 adopts an unexpected triclinically distorted I1̄-structure with Na/La3+ disordering, validated by combined Rietveld refinements against high-resolution neutron diffraction data and Cu Kα1 X-ray powder diffraction data. Magnetic susceptibility at low temperatures shows clear antiferromagnetic (AFM) transitions for both compounds. KLaCoTeO6 exhibits the highest AFM transition temperature of 20 K amongst all the Co/Te-ordered 3C-type A2CoTeO6 (A = Pb2+, Sr2+, and Ca2+) and ALaCoTeO6 double perovskites due to its larger Co2+-O-Te6+ bond angle and A-site cationic ordering-induced larger distortion of the Co2+-based face-centered cubic sublattice. Moreover, we found that the average radius of the A-site cations plays a decisive role in the AFM transition temperatures of all these ordered double perovskites, that is, a larger A-site cation always results in a higher AFM transition temperature. This provides a strategy to subtly manipulate the magnetic properties of ordered double perovskites.
Collapse
Affiliation(s)
- Haoyu Wu
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China.
| | - Zhilin Fang
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China.
| | - Pengfei Jiang
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China.
| | - Tao Yang
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China.
| |
Collapse
|
26
|
Ma X, Shi Y, Cheng Z, Liu X, Liu J, Guo Z, Cui X, Sun X, Zhao J, Tan S, Wang B. Unveiling diverse coordination-defined electronic structures of reconstructed anatase TiO 2(001)-(1 × 4) surface. Nat Commun 2024; 15:2326. [PMID: 38485720 PMCID: PMC10940315 DOI: 10.1038/s41467-024-46570-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 02/27/2024] [Indexed: 03/18/2024] Open
Abstract
Transition metal oxides (TMOs) exhibit fascinating physicochemical properties, which originate from the diverse coordination structures between the transition metal and oxygen atoms. Accurate determination of such structure-property relationships of TMOs requires to correlate structural and electronic properties by capturing the global parameters with high resolution in energy, real, and momentum spaces, but it is still challenging. Herein, we report the determination of characteristic electronic structures from diverse coordination environments on the prototypical anatase-TiO2(001) with (1 × 4) reconstruction, using high-resolution angle-resolved photoemission spectroscopy and scanning tunneling microscopy/atomic force microscopy, in combination with density functional theory calculation. We unveil that the shifted positions of O 2s and 2p levels and the gap-state Ti 3p levels can sensitively characterize the O and Ti coordination environments in the (1 × 4) reconstructed surface, which show distinguishable features from those in bulk. Our findings provide a paradigm to interrogate the intricate reconstruction-relevant properties in many other TMO surfaces.
Collapse
Affiliation(s)
- Xiaochuan Ma
- Hefei National Research Center for Physical Sciences at the Microscale and New Cornerstone Science Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui, 230088, China
| | - Yongliang Shi
- Hefei National Research Center for Physical Sciences at the Microscale and New Cornerstone Science Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Zhengwang Cheng
- School of Science and Hubei Engineering Technology Research Center of Energy Photoelectric Device and System, Hubei University of Technology, Wuhan, Hubei, 430068, China
| | - Xiaofeng Liu
- School of Physics, Hefei University of Technology, Hefei, Auhui, 230009, China
| | - Jianyi Liu
- Hefei National Research Center for Physical Sciences at the Microscale and New Cornerstone Science Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Ziyang Guo
- Hefei National Research Center for Physical Sciences at the Microscale and New Cornerstone Science Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui, 230088, China
| | - Xuefeng Cui
- Hefei National Research Center for Physical Sciences at the Microscale and New Cornerstone Science Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui, 230088, China
| | - Xia Sun
- Hefei National Research Center for Physical Sciences at the Microscale and New Cornerstone Science Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui, 230088, China
| | - Jin Zhao
- Hefei National Research Center for Physical Sciences at the Microscale and New Cornerstone Science Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui, 230088, China
| | - Shijing Tan
- Hefei National Research Center for Physical Sciences at the Microscale and New Cornerstone Science Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026, China.
- Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui, 230088, China.
| | - Bing Wang
- Hefei National Research Center for Physical Sciences at the Microscale and New Cornerstone Science Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026, China.
- Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui, 230088, China.
| |
Collapse
|
27
|
Vaz DC, Lin CC, Plombon JJ, Choi WY, Groen I, Arango IC, Chuvilin A, Hueso LE, Nikonov DE, Li H, Debashis P, Clendenning SB, Gosavi TA, Huang YL, Prasad B, Ramesh R, Vecchiola A, Bibes M, Bouzehouane K, Fusil S, Garcia V, Young IA, Casanova F. Voltage-based magnetization switching and reading in magnetoelectric spin-orbit nanodevices. Nat Commun 2024; 15:1902. [PMID: 38429273 PMCID: PMC10907725 DOI: 10.1038/s41467-024-45868-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 02/06/2024] [Indexed: 03/03/2024] Open
Abstract
As CMOS technologies face challenges in dimensional and voltage scaling, the demand for novel logic devices has never been greater, with spin-based devices offering scaling potential, at the cost of significantly high switching energies. Alternatively, magnetoelectric materials are predicted to enable low-power magnetization control, a solution with limited device-level results. Here, we demonstrate voltage-based magnetization switching and reading in nanodevices at room temperature, enabled by exchange coupling between multiferroic BiFeO3 and ferromagnetic CoFe, for writing, and spin-to-charge current conversion between CoFe and Pt, for reading. We show that, upon the electrical switching of the BiFeO3, the magnetization of the CoFe can be reversed, giving rise to different voltage outputs. Through additional microscopy techniques, magnetization reversal is linked with the polarization state and antiferromagnetic cycloid propagation direction in the BiFeO3. This study constitutes the building block for magnetoelectric spin-orbit logic, opening a new avenue for low-power beyond-CMOS technologies.
Collapse
Affiliation(s)
- Diogo C Vaz
- CIC nanoGUNE BRTA, 20018, Donostia-San Sebastian, Basque Country, Spain.
| | - Chia-Ching Lin
- Components Research, Intel Corp., Hillsboro, OR, 97124, USA
| | - John J Plombon
- Components Research, Intel Corp., Hillsboro, OR, 97124, USA
| | - Won Young Choi
- CIC nanoGUNE BRTA, 20018, Donostia-San Sebastian, Basque Country, Spain
- VanaM Inc., 21-1 Doshin-ro 4-gil, Yeongdeungpo-gu, Seoul, Republic of Korea
| | - Inge Groen
- CIC nanoGUNE BRTA, 20018, Donostia-San Sebastian, Basque Country, Spain
| | - Isabel C Arango
- CIC nanoGUNE BRTA, 20018, Donostia-San Sebastian, Basque Country, Spain
| | - Andrey Chuvilin
- CIC nanoGUNE BRTA, 20018, Donostia-San Sebastian, Basque Country, Spain
- IKERBASQUE, Basque Foundation for Science, 48009, Bilbao, Basque Country, Spain
| | - Luis E Hueso
- CIC nanoGUNE BRTA, 20018, Donostia-San Sebastian, Basque Country, Spain
- IKERBASQUE, Basque Foundation for Science, 48009, Bilbao, Basque Country, Spain
| | | | - Hai Li
- Components Research, Intel Corp., Hillsboro, OR, 97124, USA
| | | | | | - Tanay A Gosavi
- Components Research, Intel Corp., Hillsboro, OR, 97124, USA
| | - Yen-Lin Huang
- Department of Physics, University of California, Berkeley, CA, 94720, USA
| | - Bhagwati Prasad
- Materials Engineering Department, Indian Institute of Science, Bengaluru, 560012, Karnataka, India
| | - Ramamoorthy Ramesh
- Department of Physics, University of California, Berkeley, CA, 94720, USA
- Department of Physics and Astronomy, Rice University, Houston, TX, 77005, USA
| | - Aymeric Vecchiola
- Laboratoire Albert Fert, CNRS, Thales, Université Paris-Saclay, 91767, Palaiseau, France
| | - Manuel Bibes
- Laboratoire Albert Fert, CNRS, Thales, Université Paris-Saclay, 91767, Palaiseau, France
| | - Karim Bouzehouane
- Laboratoire Albert Fert, CNRS, Thales, Université Paris-Saclay, 91767, Palaiseau, France
| | - Stephane Fusil
- Laboratoire Albert Fert, CNRS, Thales, Université Paris-Saclay, 91767, Palaiseau, France
| | - Vincent Garcia
- Laboratoire Albert Fert, CNRS, Thales, Université Paris-Saclay, 91767, Palaiseau, France
| | - Ian A Young
- Components Research, Intel Corp., Hillsboro, OR, 97124, USA
| | - Fèlix Casanova
- CIC nanoGUNE BRTA, 20018, Donostia-San Sebastian, Basque Country, Spain.
- IKERBASQUE, Basque Foundation for Science, 48009, Bilbao, Basque Country, Spain.
| |
Collapse
|
28
|
Butcher TA, Phillips NW, Chiu CC, Wei CC, Ho SZ, Chen YC, Fröjdh E, Baruffaldi F, Carulla M, Zhang J, Bergamaschi A, Vaz CAF, Kleibert A, Finizio S, Yang JC, Huang SW, Raabe J. Ptychographic Nanoscale Imaging of the Magnetoelectric Coupling in Freestanding BiFeO 3. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2311157. [PMID: 38402421 DOI: 10.1002/adma.202311157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/23/2023] [Indexed: 02/26/2024]
Abstract
Understanding the magnetic and ferroelectric ordering of magnetoelectric multiferroic materials at the nanoscale necessitates a versatile imaging method with high spatial resolution. Here, soft X-ray ptychography is employed to simultaneously image the ferroelectric and antiferromagnetic domains in an 80 nm thin freestanding film of the room-temperature multiferroic BiFeO3 (BFO). The antiferromagnetic spin cycloid of period 64 nm is resolved by reconstructing the corresponding resonant elastic X-ray scattering in real space and visualized together with mosaic-like ferroelectric domains in a linear dichroic contrast image at the Fe L3 edge. The measurements reveal a near perfect coupling between the antiferromagnetic and ferroelectric ordering by which the propagation direction of the spin cycloid is locked orthogonally to the ferroelectric polarization. In addition, the study evinces both a preference for in-plane propagation of the spin cycloid and changes of the ferroelectric polarization by 71° between multiferroic domains in the epitaxial strain-free, freestanding BFO film. The results provide a direct visualization of the strong magnetoelectric coupling in BFO and of its fine multiferroic domain structure, emphasizing the potential of ptychographic imaging for the study of multiferroics and non-collinear magnetic materials with soft X-rays.
Collapse
Affiliation(s)
- Tim A Butcher
- Paul Scherrer Institut, Villigen PSI, 5232, Switzerland
| | | | - Chun-Chien Chiu
- Department of Physics, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Chia-Chun Wei
- Department of Physics, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Sheng-Zhu Ho
- Department of Physics, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Yi-Chun Chen
- Department of Physics, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Erik Fröjdh
- Paul Scherrer Institut, Villigen PSI, 5232, Switzerland
| | | | - Maria Carulla
- Paul Scherrer Institut, Villigen PSI, 5232, Switzerland
| | - Jiaguo Zhang
- Paul Scherrer Institut, Villigen PSI, 5232, Switzerland
| | | | | | | | | | - Jan-Chi Yang
- Department of Physics, National Cheng Kung University, Tainan, 70101, Taiwan
- Center for Quantum Frontiers of Research & Technology (QFort), National Cheng Kung University, Tainan, 70101, Taiwan
| | | | - Jörg Raabe
- Paul Scherrer Institut, Villigen PSI, 5232, Switzerland
| |
Collapse
|
29
|
Tang A, Li C, Xu T, Dong Y, Ma J, Yu P, Nan CW, Lin YH, Nan T, Jiang W, Yi D. Electric-Field Control of Perpendicularly Magnetized Ferrimagnetic Order and Giant Magnetoresistance in Multiferroic Heterostructures. NANO LETTERS 2024; 24:632-639. [PMID: 38175932 DOI: 10.1021/acs.nanolett.3c03704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Electrical control of magnetism is highly desirable for energy-efficient spintronic applications. Realizing electric-field-driven perpendicular magnetization switching has been a long-standing goal, which, however, remains a major challenge. Here, electric-field control of perpendicularly magnetized ferrimagnetic order via strain-mediated magnetoelectric coupling is reported. We show that the gate voltages isothermally toggle the dominant magnetic sublattice of the compensated ferrimagnet FeTb at room temperature, showing high reversibility and good endurance under ambient conditions. By implementing this strategy in FeTb/Pt/Co spin valves with giant magnetoresistance (GMR), we demonstrate that the distinct high and low resistance states can be selectively controlled by the gate voltages with assisting magnetic fields. Our results provide a promising route to use ferrimagnets for developing electric-field-controlled, low-power memory and logic devices.
Collapse
Affiliation(s)
- Aihua Tang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Chao Li
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Teng Xu
- State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, China
- Frontier Science Center for Quantum Information, Tsinghua University, Beijing 100084, China
| | - Yiqing Dong
- State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, China
- Frontier Science Center for Quantum Information, Tsinghua University, Beijing 100084, China
| | - Jing Ma
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Pu Yu
- State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, China
- Frontier Science Center for Quantum Information, Tsinghua University, Beijing 100084, China
| | - Ce-Wen Nan
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Yuan-Hua Lin
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Tianxiang Nan
- School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Wanjun Jiang
- State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, China
- Frontier Science Center for Quantum Information, Tsinghua University, Beijing 100084, China
| | - Di Yi
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
30
|
Cai X, Chen C, Xie L, Wang C, Gui Z, Gao Y, Kentsch U, Zhou G, Gao X, Chen Y, Zhou S, Gao W, Liu JM, Zhu Y, Chen D. In-plane charged antiphase boundary and 180° domain wall in a ferroelectric film. Nat Commun 2023; 14:8174. [PMID: 38071396 PMCID: PMC10710403 DOI: 10.1038/s41467-023-44091-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 11/30/2023] [Indexed: 11/01/2024] Open
Abstract
The deterministic creation and modification of domain walls in ferroelectric films have attracted broad interest due to their unprecedented potential as the active element in non-volatile memory, logic computation and energy-harvesting technologies. However, the correlation between charged and antiphase states, and their hybridization into a single domain wall still remain elusive. Here we demonstrate the facile fabrication of antiphase boundaries in BiFeO3 thin films using a He-ion implantation process. Cross-sectional electron microscopy, spectroscopy and piezoresponse force measurement reveal the creation of a continuous in-plane charged antiphase boundaries around the implanted depth and a variety of atomic bonding configurations at the antiphase interface, showing the atomically sharp 180° polarization reversal across the boundary. Therefore, this work not only inspires a domain-wall fabrication strategy using He-ion implantation, which is compatible with the wafer-scale patterning, but also provides atomic-scale structural insights for its future utilization in domain-wall nanoelectronics.
Collapse
Affiliation(s)
- Xiangbin Cai
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, and Institute for Advanced Materials, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, China.
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore.
| | - Chao Chen
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, and Institute for Advanced Materials, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, China
| | - Lin Xie
- Department of Physics, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Changan Wang
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Ion Beam Physics and Materials Research, Dresden, 01328, Germany
- School of Electronics & Communication, Guangdong Mechanical and Electrical Polytechnic, Guangzhou, 510515, China
| | - Zixin Gui
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, and Institute for Advanced Materials, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, China
| | - Yuan Gao
- State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing, 100871, China
| | - Ulrich Kentsch
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Ion Beam Physics and Materials Research, Dresden, 01328, Germany
| | - Guofu Zhou
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, and Institute for Advanced Materials, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, China
| | - Xingsen Gao
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, and Institute for Advanced Materials, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, China
| | - Yu Chen
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Shengqiang Zhou
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Ion Beam Physics and Materials Research, Dresden, 01328, Germany
| | - Weibo Gao
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Jun-Ming Liu
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, and Institute for Advanced Materials, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, China
- Laboratory of Solid State Microstructures and Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Ye Zhu
- Department of Applied Physics, Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hong Kong, China
| | - Deyang Chen
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, and Institute for Advanced Materials, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, China.
| |
Collapse
|
31
|
Zhang J, Kosaka W, Liu Q, Amamizu N, Kitagawa Y, Miyasaka H. CO 2-Sensitive Porous Magnet: Antiferromagnet Creation from a Paramagnetic Charge-Transfer Layered Metal-Organic Framework. J Am Chem Soc 2023; 145:26179-26189. [PMID: 38053496 DOI: 10.1021/jacs.3c08583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Porous magnets that undergo a magnetic phase transition in response to gaseous adsorbates are desirable for the development of sustainable sensing and memory devices. Familiar gases such as O2 and CO2 are one class of target adsorbates because of their close association with life sciences and environmental issues; however, it is not easy to develop magnetic devices that respond to these ubiquitous gases. To date, only three examples of gas-responsive magnetic phase transitions have been demonstrated: (i) from a ferrimagnet to an antiferromagnet, (ii) its vice versa (i.e., change of magnetic phase), and (iii) from a ferrimagnet to a paramagnet (i.e., erasure of the magnetic phase). However, the creation of a magnet, meaning the change from a nonmagnet to a magnet by O2 or CO2 gas adsorption and magnetic switching by this phenomenon have not yet been explored. Herein, we report a CO2-induced antiferromagnet modified from a paramagnetic charge-flexible layered compound, [{Ru2(2,4-F2PhCO2)4}2TCNQ(OEt)2] (1; 2,4-F2PhCO2- = 2,4-difluorobenzoate; TCNQ(OEt)2 = 2,5-diethoxy-7,7,8,8-tetracyanoquinodimethane), where three molar equivalents of CO2 was accommodated at a CO2 pressure of 100 kPa. The magnetic change originates from charge fluctuation due to the transfer of electrons moving from the electron-donor to the electron-acceptor unit or vice versa, resulting in a change in the electron distribution induced by CO2 adsorption/desorption in the donor-acceptor-type charge transfer framework. Owing to the reversible electronic state change upon CO2 adsorption/desorption, these magnetic phases are switched, accompanied by modification of the electrical conductivity, which is boosted by the CO2 accommodation. This is the first example of the creation of a CO2-responsive magnet, which is promising for novel molecular multifunctional devices.
Collapse
Affiliation(s)
- Jun Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Wataru Kosaka
- Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Sendai, Aoba-ku 980-8577, Japan
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aramaki-Aza-Aoba, Sendai, Aoba-ku 980-8578, Japan
| | - Qingxin Liu
- Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Sendai, Aoba-ku 980-8577, Japan
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aramaki-Aza-Aoba, Sendai, Aoba-ku 980-8578, Japan
| | - Naoka Amamizu
- Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-chou, Toyonaka, Osaka 560-8531, Japan
| | - Yasutaka Kitagawa
- Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-chou, Toyonaka, Osaka 560-8531, Japan
| | - Hitoshi Miyasaka
- Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Sendai, Aoba-ku 980-8577, Japan
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aramaki-Aza-Aoba, Sendai, Aoba-ku 980-8578, Japan
| |
Collapse
|
32
|
Wang Z, Dong S. Alterferroicity with seesaw-type magnetoelectricity. Proc Natl Acad Sci U S A 2023; 120:e2305197120. [PMID: 38015837 PMCID: PMC10710059 DOI: 10.1073/pnas.2305197120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 10/10/2023] [Indexed: 11/30/2023] Open
Abstract
Primary ferroicities like ferroelectricity and ferromagnetism are essential physical properties of matter. Multiferroics, with coexisting multiple ferroic orders in a single phase, provide a convenient route to magnetoelectricity. Even so, the general trade-off between magnetism and polarity remains inevitable, which prevents practicable magnetoelectric cross-control in the multiferroic framework. Here, an alternative strategy, i.e., the so-called alterferroicity, is proposed to circumvent the magnetoelectric exclusiveness, which exhibits multiple but noncoexisting ferroic orders. The natural exclusion between magnetism and polarity, as an insurmountable weakness of multiferroicity, becomes a distinct advantage in alterferroicity, making it an inborn rich ore for intrinsic strong magnetoelectricity. The general design rules for alterferroic materials rely on the competition between the instabilities of phononic and electronic structures in covalent systems. Based on primary density functional theory calculations, Ti-based trichalcogenides are predicted to be alterferroic candidates, which exhibit unique seesaw-type magnetoelectricity. This alterferroicity, as an emerging branch of the ferroic family, reshapes the framework of magnetoelectricity, going beyond the established scenario based on multiferroicity.
Collapse
Affiliation(s)
- Ziwen Wang
- School of Physics, Southeast University, Nanjing211189, China
| | - Shuai Dong
- School of Physics, Southeast University, Nanjing211189, China
| |
Collapse
|
33
|
Saez G, Castro MA, Allende S, Nunez AS. Model for Nonrelativistic Topological Multiferroic Matter. PHYSICAL REVIEW LETTERS 2023; 131:226801. [PMID: 38101376 DOI: 10.1103/physrevlett.131.226801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/23/2023] [Accepted: 10/24/2023] [Indexed: 12/17/2023]
Abstract
We provide a model capable of accounting for the multiferroicity in certain materials. The model's base is on free electrons and spin moments coupled within nonrelativistic quantum mechanics. The synergistic interplay between the magnetic and electric degrees of freedom that turns into the multiferroic phenomena occurs at a profound quantum mechanical level, conjured by Berry's phases and the quantum theory of polarization. Our results highlight the geometrical nature of the multiferroic order parameter that naturally leads to magnetoelectric domain walls, with promising technological potential.
Collapse
Affiliation(s)
- Guidobeth Saez
- Departamento de Física, Facultad de ciencias físicas y matemáticas, Universidad de Chile, Santiago 8370449, Chile
- Centro de Nanociencia y Nanotecnología CEDENNA, Avda. Ecuador 3493, Santiago, Chile
| | - Mario A Castro
- Centro de Nanociencia y Nanotecnología CEDENNA, Avda. Ecuador 3493, Santiago, Chile
- Departamento de Física, Universidad de Santiago de Chile, 9170124, Santiago, Chile
| | - Sebastian Allende
- Centro de Nanociencia y Nanotecnología CEDENNA, Avda. Ecuador 3493, Santiago, Chile
- Departamento de Física, Universidad de Santiago de Chile, 9170124, Santiago, Chile
| | - Alvaro S Nunez
- Departamento de Física, Facultad de ciencias físicas y matemáticas, Universidad de Chile, Santiago 8370449, Chile
- Centro de Nanociencia y Nanotecnología CEDENNA, Avda. Ecuador 3493, Santiago, Chile
| |
Collapse
|
34
|
Lu XZ, Zhang HM, Zhou Y, Zhu T, Xiang H, Dong S, Kageyama H, Rondinelli JM. Out-of-plane ferroelectricity and robust magnetoelectricity in quasi-two-dimensional materials. SCIENCE ADVANCES 2023; 9:eadi0138. [PMID: 37992171 PMCID: PMC10665001 DOI: 10.1126/sciadv.adi0138] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 10/23/2023] [Indexed: 11/24/2023]
Abstract
Thin-film ferroelectrics have been pursued for capacitive and nonvolatile memory devices. They rely on polarizations that are oriented in an out-of-plane direction to facilitate integration and addressability with complementary metal-oxide semiconductor architectures. The internal depolarization field, however, formed by surface charges can suppress the out-of-plane polarization in ultrathin ferroelectric films that could otherwise exhibit lower coercive fields and operate with lower power. Here, we unveil stabilization of a polar longitudinal optical (LO) mode in the n = 2 Ruddlesden-Popper family that produces out-of-plane ferroelectricity, persists under open-circuit boundary conditions, and is distinct from hyperferroelectricity. Our first-principles calculations show the stabilization of the LO mode is ubiquitous in chalcogenides and halides and relies on anharmonic trilinear mode coupling. We further show that the out-of-plane ferroelectricity can be predicted with a crystallographic tolerance factor, and we use these insights to design a room-temperature multiferroic with strong magnetoelectric coupling suitable for magneto-electric spin-orbit transistors.
Collapse
Affiliation(s)
- Xue-Zeng Lu
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing 211189, People’s Republic of China
| | - Hui-Min Zhang
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing 211189, People’s Republic of China
| | - Ying Zhou
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing 211189, People’s Republic of China
| | - Tong Zhu
- Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Hongjun Xiang
- Key Laboratory of Computational Physical Sciences (Ministry of Education), Institute of Computational Physical Sciences, and Department of Physics, Fudan University, Shanghai 200433, People’s Republic of China
- Shanghai Qi Zhi Institute, Shanghai 200030, People’s Republic of China
| | - Shuai Dong
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing 211189, People’s Republic of China
| | - Hiroshi Kageyama
- Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - James M. Rondinelli
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
35
|
Du Y, Zhao Y, Wang L, He Z, Wu Y, Wang C, Zhao L, Jiang Z, Liu M, Zhou Z. Deterministic Magnetization Reversal in Synthetic Antiferromagnets using Natural Light. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302884. [PMID: 37403297 DOI: 10.1002/smll.202302884] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/31/2023] [Indexed: 07/06/2023]
Abstract
Traditional current-driven spintronics is limited by localized heating issues and large energy consumption, restricting their data storage density and operation speed. Meanwhile, voltage-driven spintronics with much lower energy dissipation also suffers from charge-induced interfacial corrosion. Thereby finding a novel way of tuning ferromagnetism is crucial for spintronics with energy-saving and good reliability. Here, a visible light tuning of interfacial exchange interaction via photoelectron doping into synthetic antiferromagnetic heterostructure of CoFeB/Cu/CoFeB/PN Si substrate is demonstrated. Then, a complete, reversible magnetism switching between antiferromagnetic (AFM) and ferromagnetic (FM) states with visible light on and off is realized. Moreover, a visible light control of 180° deterministic magnetization switching with a tiny magnetic bias field is achieved. The magnetic optical Kerr effect results further reveal the magnetic domain switching pathway between AFM and FM domains. The first-principle calculations conclude that the photoelectrons fill in the unoccupied band and raise the Fermi energy, which increases the exchange interaction. Lastly, a prototype device with visible light control of two states switching with a 0.35% giant magnetoresistance ratio change (maximal 0.4%), paving the way toward fast, compact, and energy-efficient solar-driven memories is fabricated.
Collapse
Affiliation(s)
- Yujing Du
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, School of Electronic Science and Engineering, State Key Laboratory for Manufacturing Systems Engineering, The International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yifan Zhao
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, School of Electronic Science and Engineering, State Key Laboratory for Manufacturing Systems Engineering, The International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Lei Wang
- Center for Spintronics and Quantum Systems, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, No. 28 Xianning West Road Xi'an, Shaanxi, 710049, China
| | - Zhexi He
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, School of Electronic Science and Engineering, State Key Laboratory for Manufacturing Systems Engineering, The International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yangyang Wu
- School of Mathematical Sciences, Tiangong University, Tianjin, 300387, China
| | - Chenying Wang
- State Key Laboratory for Manufacturing Systems Engineering, Collaborative Innovation Center of High-End Manufacturing Equipment, The International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Libo Zhao
- State Key Laboratory for Manufacturing Systems Engineering, Collaborative Innovation Center of High-End Manufacturing Equipment, The International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zhuangde Jiang
- State Key Laboratory for Manufacturing Systems Engineering, Collaborative Innovation Center of High-End Manufacturing Equipment, The International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Ming Liu
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, School of Electronic Science and Engineering, State Key Laboratory for Manufacturing Systems Engineering, The International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Ziyao Zhou
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, School of Electronic Science and Engineering, State Key Laboratory for Manufacturing Systems Engineering, The International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
36
|
Yun C, Liang Z, Hrabec A, Liu Z, Huang M, Wang L, Xiao Y, Fang Y, Li W, Yang W, Hou Y, Yang J, Heyderman LJ, Gambardella P, Luo Z. Electrically programmable magnetic coupling in an Ising network exploiting solid-state ionic gating. Nat Commun 2023; 14:6367. [PMID: 37821464 PMCID: PMC10567909 DOI: 10.1038/s41467-023-41830-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 09/20/2023] [Indexed: 10/13/2023] Open
Abstract
Two-dimensional arrays of magnetically coupled nanomagnets provide a mesoscopic platform for exploring collective phenomena as well as realizing a broad range of spintronic devices. In particular, the magnetic coupling plays a critical role in determining the nature of the cooperative behavior and providing new functionalities in nanomagnet-based devices. Here, we create coupled Ising-like nanomagnets in which the coupling between adjacent nanomagnetic regions can be reversibly converted between parallel and antiparallel through solid-state ionic gating. This is achieved with the voltage-control of the magnetic anisotropy in a nanosized region where the symmetric exchange interaction favors parallel alignment and the antisymmetric exchange interaction, namely the Dzyaloshinskii-Moriya interaction, favors antiparallel alignment of the nanomagnet magnetizations. Applying this concept to a two-dimensional lattice, we demonstrate a voltage-controlled phase transition in artificial spin ices. Furthermore, we achieve an addressable control of the individual couplings and realize an electrically programmable Ising network, which opens up new avenues to design nanomagnet-based logic devices and neuromorphic computers.
Collapse
Affiliation(s)
- Chao Yun
- State Key Laboratory of Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, 100871, Beijing, China
- School of Materials Science and Engineering, Peking University, 100871, Beijing, China
| | - Zhongyu Liang
- State Key Laboratory of Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, 100871, Beijing, China
| | - Aleš Hrabec
- Laboratory for Mesoscopic Systems, Department of Materials, ETH Zurich, 8093, Zurich, Switzerland
- Laboratory for Multiscale Materials Experiments, Paul Scherrer Institute, 5232, Villigen PSI, Switzerland
- Laboratory for Magnetism and Interface Physics, Department of Materials, ETH Zurich, 8093, Zurich, Switzerland
| | - Zhentao Liu
- Laboratory for Mesoscopic Systems, Department of Materials, ETH Zurich, 8093, Zurich, Switzerland
- Laboratory for Multiscale Materials Experiments, Paul Scherrer Institute, 5232, Villigen PSI, Switzerland
| | - Mantao Huang
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Leran Wang
- State Key Laboratory of Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, 100871, Beijing, China
| | - Yifei Xiao
- Division of Functional Materials, Central Iron and Steel Research Institute Group, 100081, Beijing, China
| | - Yikun Fang
- Division of Functional Materials, Central Iron and Steel Research Institute Group, 100081, Beijing, China
| | - Wei Li
- Division of Functional Materials, Central Iron and Steel Research Institute Group, 100081, Beijing, China
| | - Wenyun Yang
- State Key Laboratory of Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, 100871, Beijing, China
| | - Yanglong Hou
- School of Materials Science and Engineering, Peking University, 100871, Beijing, China
| | - Jinbo Yang
- State Key Laboratory of Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, 100871, Beijing, China
| | - Laura J Heyderman
- Laboratory for Mesoscopic Systems, Department of Materials, ETH Zurich, 8093, Zurich, Switzerland.
- Laboratory for Multiscale Materials Experiments, Paul Scherrer Institute, 5232, Villigen PSI, Switzerland.
| | - Pietro Gambardella
- Laboratory for Magnetism and Interface Physics, Department of Materials, ETH Zurich, 8093, Zurich, Switzerland.
| | - Zhaochu Luo
- State Key Laboratory of Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, 100871, Beijing, China.
| |
Collapse
|
37
|
Dufour P, Abdelsamie A, Fischer J, Finco A, Haykal A, Sarott MF, Varotto S, Carrétéro C, Collin S, Godel F, Jaouen N, Viret M, Trassin M, Bouzehouane K, Jacques V, Chauleau JY, Fusil S, Garcia V. Onset of Multiferroicity in Prototypical Single-Spin Cycloid BiFeO 3 Thin Films. NANO LETTERS 2023; 23:9073-9079. [PMID: 37737821 DOI: 10.1021/acs.nanolett.3c02875] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
In the room-temperature magnetoelectric multiferroic BiFeO3, the noncollinear antiferromagnetic state is coupled to the ferroelectric order, opening applications for low-power electric-field-controlled magnetic devices. While several strategies have been explored to simplify the ferroelectric landscape, here we directly stabilize a single-domain ferroelectric and spin cycloid state in epitaxial BiFeO3 (111) thin films grown on orthorhombic DyScO3 (011). Comparing them with films grown on SrTiO3 (111), we identify anisotropic in-plane strain as a powerful handle for tailoring the single antiferromagnetic state. In this single-domain multiferroic state, we establish the thickness limit of the coexisting electric and magnetic orders and directly visualize the suppression of the spin cycloid induced by the magnetoelectric interaction below the ultrathin limit of 1.4 nm. This as-grown single-domain multiferroic configuration in BiFeO3 thin films opens an avenue both for fundamental investigations and for electrically controlled noncollinear antiferromagnetic spintronics.
Collapse
Affiliation(s)
- Pauline Dufour
- Unité Mixte de Physique, CNRS, Thales, Université Paris-Saclay, 91767 Palaiseau, France
| | - Amr Abdelsamie
- Unité Mixte de Physique, CNRS, Thales, Université Paris-Saclay, 91767 Palaiseau, France
- Laboratoire Charles Coulomb, Université de Montpellier and CNRS, 34095 Montpellier, France
| | - Johanna Fischer
- Unité Mixte de Physique, CNRS, Thales, Université Paris-Saclay, 91767 Palaiseau, France
| | - Aurore Finco
- Laboratoire Charles Coulomb, Université de Montpellier and CNRS, 34095 Montpellier, France
| | - Angela Haykal
- Laboratoire Charles Coulomb, Université de Montpellier and CNRS, 34095 Montpellier, France
| | - Martin F Sarott
- Department of Materials, ETH Zurich, 8093 Zurich, Switzerland
| | - Sara Varotto
- Unité Mixte de Physique, CNRS, Thales, Université Paris-Saclay, 91767 Palaiseau, France
| | - Cécile Carrétéro
- Unité Mixte de Physique, CNRS, Thales, Université Paris-Saclay, 91767 Palaiseau, France
| | - Sophie Collin
- Unité Mixte de Physique, CNRS, Thales, Université Paris-Saclay, 91767 Palaiseau, France
| | - Florian Godel
- Unité Mixte de Physique, CNRS, Thales, Université Paris-Saclay, 91767 Palaiseau, France
| | | | - Michel Viret
- SPEC, CEA, CNRS, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - Morgan Trassin
- Department of Materials, ETH Zurich, 8093 Zurich, Switzerland
| | - Karim Bouzehouane
- Unité Mixte de Physique, CNRS, Thales, Université Paris-Saclay, 91767 Palaiseau, France
| | - Vincent Jacques
- Laboratoire Charles Coulomb, Université de Montpellier and CNRS, 34095 Montpellier, France
| | | | - Stéphane Fusil
- Unité Mixte de Physique, CNRS, Thales, Université Paris-Saclay, 91767 Palaiseau, France
- Université d'Evry, Université Paris-Saclay, 91000 Evry, France
| | - Vincent Garcia
- Unité Mixte de Physique, CNRS, Thales, Université Paris-Saclay, 91767 Palaiseau, France
| |
Collapse
|
38
|
Eom J, Lee IH, Kee JY, Cho M, Seo J, Suh H, Choi HJ, Sim Y, Chen S, Chang HJ, Baek SH, Petrovic C, Ryu H, Jang C, Kim YD, Yang CH, Seong MJ, Lee JH, Park SY, Choi JW. Voltage control of magnetism in Fe 3-xGeTe 2/In 2Se 3 van der Waals ferromagnetic/ferroelectric heterostructures. Nat Commun 2023; 14:5605. [PMID: 37699895 PMCID: PMC10497543 DOI: 10.1038/s41467-023-41382-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 09/03/2023] [Indexed: 09/14/2023] Open
Abstract
We investigate the voltage control of magnetism in a van der Waals (vdW) heterostructure device consisting of two distinct vdW materials, the ferromagnetic Fe3-xGeTe2 and the ferroelectric In2Se3. It is observed that gate voltages applied to the Fe3-xGeTe2/In2Se3 heterostructure device modulate the magnetic properties of Fe3-xGeTe2 with significant decrease in coercive field for both positive and negative voltages. Raman spectroscopy on the heterostructure device shows voltage-dependent increase in the in-plane In2Se3 and Fe3-xGeTe2 lattice constants for both voltage polarities. Thus, the voltage-dependent decrease in the Fe3-xGeTe2 coercive field, regardless of the gate voltage polarity, can be attributed to the presence of in-plane tensile strain. This is supported by density functional theory calculations showing tensile-strain-induced reduction of the magnetocrystalline anisotropy, which in turn decreases the coercive field. Our results demonstrate an effective method to realize low-power voltage-controlled vdW spintronic devices utilizing the magnetoelectric effect in vdW ferromagnetic/ferroelectric heterostructures.
Collapse
Affiliation(s)
- Jaeun Eom
- Center for Spintronics, Korea Institute of Science and Technology (KIST), Seoul, 02792, Korea
- Department of Physics and Astronomy, Seoul National University, Seoul, 08826, Korea
| | - In Hak Lee
- Center for Spintronics, Korea Institute of Science and Technology (KIST), Seoul, 02792, Korea
| | - Jung Yun Kee
- Center for Spintronics, Korea Institute of Science and Technology (KIST), Seoul, 02792, Korea
- Department of Physics, Soongsil University, Seoul, 06978, Korea
| | - Minhyun Cho
- Department of Physics and Department of Information Display, Kyung Hee University, Seoul, 02447, Korea
| | - Jeongdae Seo
- Department of Physics, KAIST, Daejeon, 34141, Korea
| | - Hoyoung Suh
- Advanced Analysis Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Hyung-Jin Choi
- Electronic Materials Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Korea
| | - Yumin Sim
- Department of Physics, Chung-Ang University, Seoul, 06974, Korea
| | - Shuzhang Chen
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY, 11794-3800, USA
| | - Hye Jung Chang
- Advanced Analysis Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Seung-Hyub Baek
- Electronic Materials Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Korea
| | - Cedomir Petrovic
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY, 11794-3800, USA
| | - Hyejin Ryu
- Center for Spintronics, Korea Institute of Science and Technology (KIST), Seoul, 02792, Korea
| | - Chaun Jang
- Center for Spintronics, Korea Institute of Science and Technology (KIST), Seoul, 02792, Korea
| | - Young Duck Kim
- Department of Physics and Department of Information Display, Kyung Hee University, Seoul, 02447, Korea
| | - Chan-Ho Yang
- Department of Physics, KAIST, Daejeon, 34141, Korea
| | - Maeng-Je Seong
- Department of Physics, Chung-Ang University, Seoul, 06974, Korea
| | - Jin Hong Lee
- Center for Spintronics, Korea Institute of Science and Technology (KIST), Seoul, 02792, Korea.
| | - Se Young Park
- Department of Physics, Soongsil University, Seoul, 06978, Korea.
- Origin of Matter and Evolution of Galaxies (OMEG) Institute, Soongsil University, Seoul, 06978, Korea.
| | - Jun Woo Choi
- Center for Spintronics, Korea Institute of Science and Technology (KIST), Seoul, 02792, Korea.
| |
Collapse
|
39
|
Gareeva Z, Shulga N, Doroshenko R, Zvezdin A. Electric field control of magnetic states in ferromagnetic-multiferroic nanostructures. Phys Chem Chem Phys 2023; 25:22380-22387. [PMID: 37581207 DOI: 10.1039/d3cp02913a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
Multiferroic oxides are considered as key elements of energy-consuming devices required for the development of scalable logic and information storage technologies. In this regard, understanding the mechanisms of magnetoelectric switching and finding the optimal way to switch magnetization by an electric field is of crucial importance. In this study, we develop a model for studying magnetic states in a nanoscale exchange-coupled ferromagnetic-multiferroic heterostructure subjected to the action of an electric field. Based on bias effects emerging due to the coupling between a ferromagnetic subsystem and an antiferromagnetically ordered multiferroic material, we explore the magnetic textures and the magnetization reversal processes in a ferromagnet. As the multiferroic material, we consider BiFeO3, where magnetic ordering and ferroelectric ordering are determined by the mutually perpendicular antiferromagnetic (L), weak ferromagnetic (M) and polarization (P) vectors. Application of an electric voltage removes degeneration from eight energetically equivalent positions of P|| 〈111〉, allocates the definite directions of vectors P, M, and L and as a consequence the unidirectional magnetic anisotropy axis in the reference ferromagnetic layer. Our study reveals the features of the magnetic configurations in systems of different geometries, with varying exchange and magnetic anisotropy, necessary to determine the optimal conditions for switching magnetic states in a multiferroic bi-layer by an electric field.
Collapse
Affiliation(s)
- Zukhra Gareeva
- Institute of Molecule and Crystal Physics, Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, 450075, Ufa, Russia.
| | - Nikolai Shulga
- Institute of Molecule and Crystal Physics, Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, 450075, Ufa, Russia.
| | - Rurik Doroshenko
- Institute of Molecule and Crystal Physics, Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, 450075, Ufa, Russia.
| | - Anatoly Zvezdin
- HSE University, 101000, Moscow, Russia.
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991, Moscow, Russia
- "New spintronic technologies" Limited Liability Company, 121205, Skolkovo, Moscow, Russia
| |
Collapse
|
40
|
Pau LF, Borza P. Quantum computing architectures with signaling and control mimicking biological processes. Heliyon 2023; 9:e18593. [PMID: 37576268 PMCID: PMC10413076 DOI: 10.1016/j.heliyon.2023.e18593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 08/15/2023] Open
Abstract
Earlier reports have described a quantum computing architecture, in which key elements are derived from control functions in biology. In this further continuing research, focus is on the signaling and control of a flow of qubits in that architecture, mimicking synapse signals and neurological controls. After a short description of that architecture, and of quantum sensing elements, it is first shown how the coloring of quantum particle flows, implemented as in mathematical colored algebras, can reduce decoherence and enhance the decidability of quantum processing elements. Next, after reviewing specific human biology functions, and exploiting experimental results on excitation modes in live animals, it is shown how to achieve separation of the quantum control & signaling signals. Technologies and designs from particle physics are discussed as well as open research issues towards a realization of a quantum computing architecture with decidable signaling.
Collapse
Affiliation(s)
- L.-F. Pau
- CBS, Copenhagen, Denmark
- Upgötva AB, Stockholm, Sweden
- Sophia Antipolis, France
| | - P.N. Borza
- Transylvania University, Brasov, Romania
| |
Collapse
|
41
|
Itoh T, Shigematsu K, Nishikubo T, Azuma M. Out-of-plane polarization reversal and changes in in-plane ferroelectric and ferromagnetic domains of multiferroic BiFe 0.9Co 0.1O 3 thin films by water printing. Sci Rep 2023; 13:7236. [PMID: 37142756 PMCID: PMC10160096 DOI: 10.1038/s41598-023-34386-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 04/28/2023] [Indexed: 05/06/2023] Open
Abstract
BiFe0.9Co0.1O3 is a promising material for an ultra-low-power-consumption nonvolatile magnetic memory device because local magnetization reversal is possible through application of an electric field. Here, changes in ferroelectric and ferromagnetic domain structures in a multiferroic BiFe0.9Co0.1O3 thin film induced by "water printing", which is a polarization reversal method involving chemical bonding and charge accumulation at the interface between the liquid and the film, was investigated. Water printing using pure water with pH = 6.2 resulted in an out-of-plane polarization reversal from upward to downward. The in-plane domain structure remained unchanged after the water printing process, indicating that 71° switching was achieved in 88.4% of the observation area. However, magnetization reversal was observed in only 50.1% of the area, indicating a loss of correlation between the ferroelectric and magnetic domains because of the slow polarization reversal due to nucleation growth.
Collapse
Affiliation(s)
- Takuma Itoh
- Laboratory for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, 226-8503, Japan.
- Research Center for Magnetic and Spintronics Materials, National Institute for Materials Science, Tsukuba, 305-0047, Japan.
| | - Kei Shigematsu
- Laboratory for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, 226-8503, Japan.
- Kanagawa Institute of Industrial Science and Technology, Ebina, 243-0435, Japan.
| | - Takumi Nishikubo
- Laboratory for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, 226-8503, Japan
- Kanagawa Institute of Industrial Science and Technology, Ebina, 243-0435, Japan
| | - Masaki Azuma
- Laboratory for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, 226-8503, Japan
- Kanagawa Institute of Industrial Science and Technology, Ebina, 243-0435, Japan
- Living Systems Materialogy Research Group, International Research Frontiers Initiative, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| |
Collapse
|
42
|
Kang KT, Corey ZJ, Hwang J, Sharma Y, Paudel B, Roy P, Collins L, Wang X, Lee JW, Oh YS, Kim Y, Yoo J, Lee J, Htoon H, Jia Q, Chen A. Heterogeneous Integration of Freestanding Bilayer Oxide Membrane for Multiferroicity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207481. [PMID: 37012611 DOI: 10.1002/advs.202207481] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/02/2023] [Indexed: 05/27/2023]
Abstract
Transition metal oxides exhibit a plethora of electrical and magnetic properties described by their order parameters. In particular, ferroic orderings offer access to a rich spectrum of fundamental physics phenomena, in addition to a range of technological applications. The heterogeneous integration of ferroelectric and ferromagnetic materials is a fruitful way to design multiferroic oxides. The realization of freestanding heterogeneous membranes of multiferroic oxides is highly desirable. In this study, epitaxial BaTiO3 /La0.7 Sr0.3 MnO3 freestanding bilayer membranes are fabricated using pulsed laser epitaxy. The membrane displays ferroelectricity and ferromagnetism above room temperature accompanying the finite magnetoelectric coupling constant. This study reveals that a freestanding heterostructure can be used to manipulate the structural and emergent properties of the membrane. In the absence of the strain caused by the substrate, the change in orbital occupancy of the magnetic layer leads to the reorientation of the magnetic easy-axis, that is, perpendicular magnetic anisotropy. These results of designing multiferroic oxide membranes open new avenues to integrate such flexible membranes for electronic applications.
Collapse
Affiliation(s)
- Kyeong Tae Kang
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
- Department of Physics, Kyungpook National University, Daegu, 41566, South Korea
| | - Zachary J Corey
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
- Department of Materials Design and Innovation, University of Buffalo - The State University of New York, Buffalo, NY, 14260, USA
| | - Jaejin Hwang
- Department of Physics, Pusan National University, Busan, 46241, South Korea
| | - Yogesh Sharma
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Binod Paudel
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Pinku Roy
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
- Department of Materials Design and Innovation, University of Buffalo - The State University of New York, Buffalo, NY, 14260, USA
| | - Liam Collins
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Xueijing Wang
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Joon Woo Lee
- Department of Physics, Ulsan National Institute of Science and Technology, Ulsan, 44919, South Korea
| | - Yoon Seok Oh
- Department of Physics, Ulsan National Institute of Science and Technology, Ulsan, 44919, South Korea
| | - Yeonhoo Kim
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
- Interdisciplinary Materials Measurement Institute, Korea Research Institute of Standards and Science (KRISS), Daejeon, 34133, South Korea
| | - Jinkyoung Yoo
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Jaekwang Lee
- Department of Physics, Pusan National University, Busan, 46241, South Korea
| | - Han Htoon
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Quanxi Jia
- Department of Materials Design and Innovation, University of Buffalo - The State University of New York, Buffalo, NY, 14260, USA
| | - Aiping Chen
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| |
Collapse
|
43
|
Xu S, Wang J, Chen P, Jin K, Ma C, Wu S, Guo E, Ge C, Wang C, Xu X, Yao H, Wang J, Xie D, Wang X, Chang K, Bai X, Yang G. Magnetoelectric coupling in multiferroics probed by optical second harmonic generation. Nat Commun 2023; 14:2274. [PMID: 37080982 PMCID: PMC10119081 DOI: 10.1038/s41467-023-38055-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 04/13/2023] [Indexed: 04/22/2023] Open
Abstract
Magnetoelectric coupling, as a fundamental physical nature and with the potential to add functionality to devices while also reducing energy consumption, has been challenging to be probed in freestanding membranes or two-dimensional materials due to their instability and fragility. In this paper, we report a magnetoelectric coupling probed by optical second harmonic generation with external magnetic field, and show the manipulation of the ferroelectric and antiferromagnetic orders by the magnetic and thermal fields in BiFeO3 films epitaxially grown on the substrates and in the freestanding ones. Here we define an optical magnetoelectric-coupling constant, denoting the ability of controlling light-induced nonlinear polarization by the magnetic field, and found the magnetoelectric-coupling was suppressed by strain releasing but remain robust against thermal fluctuation for freestanding BiFeO3.
Collapse
Affiliation(s)
- Shuai Xu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Jiesu Wang
- Beijing Academy of Quantum Information Sciences, 100193, Beijing, China
| | - Pan Chen
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China
| | - Kuijuan Jin
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
- Songshan Lake Materials Laboratory, 523808, Dongguan, Guangdong, China.
| | - Cheng Ma
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Shiyao Wu
- Beijing Academy of Quantum Information Sciences, 100193, Beijing, China
| | - Erjia Guo
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Chen Ge
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Can Wang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
- Songshan Lake Materials Laboratory, 523808, Dongguan, Guangdong, China
| | - Xiulai Xu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, 100871, Beijing, China
| | - Hongbao Yao
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Jingyi Wang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China
| | - Donggang Xie
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China
| | - Xinyan Wang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Kai Chang
- Beijing Academy of Quantum Information Sciences, 100193, Beijing, China
| | - Xuedong Bai
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
- Songshan Lake Materials Laboratory, 523808, Dongguan, Guangdong, China
| | - Guozhen Yang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| |
Collapse
|
44
|
Li Z, Chen B, Shan S, Zhang Y. Magnetization reversal of perpendicular magnetic anisotropy regulated by ferroelectric polarization in CoFe 3N/BaTiO 3 heterostructures: first-principles calculations. RSC Adv 2023; 13:9924-9931. [PMID: 37034450 PMCID: PMC10075283 DOI: 10.1039/d3ra01842c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 03/29/2023] [Indexed: 04/11/2023] Open
Abstract
Exploring the electric-field switching of perpendicular magnetic anisotropy (PMA) in multiferroic heterostructures has important physical significance, which attracts great interest due to its promising application for energy-efficient information storage. Herewith, we investigate the effect of ferroelectric polarization on magnetic anisotropy in CoFe3N/BaTiO3 heterostructures using first-principles calculations. The calculations reveal that the magnetic anisotropy of CoFe3N can be regulated by ferroelectric polarization of BaTiO3. When the ferroelectric polarization reverses, the PMA of FeCo-TiO2 and FeN-BaO configurations remains, but in the FeN-TiO2 and FeCo-BaO cases, magnetic anisotropy inverses between out-of-plane and in-plane direction. Further orbital-resolved analysis indicates that the transition of magnetic anisotropy is mainly attributed to the orbital hybridization of interfacial Fe/Co atoms with O atoms induced by the magnetoelectric effect. This study may open an effective approach toward modulating PMA and lays a foundation to the development of low energy consumption memory devices.
Collapse
Affiliation(s)
- Zirun Li
- School of Semiconductor and Physics, North University of China Taiyuan 030051 China
| | - Bo Chen
- School of Semiconductor and Physics, North University of China Taiyuan 030051 China
| | - Shimin Shan
- School of Semiconductor and Physics, North University of China Taiyuan 030051 China
| | - Yongmei Zhang
- School of Semiconductor and Physics, North University of China Taiyuan 030051 China
| |
Collapse
|
45
|
Zhao Z, Fang Z, Han X, Yang S, Zhou C, Zeng Y, Zhang B, Li W, Wang Z, Zhang Y, Zhou J, Zhou J, Ye Y, Hou X, Zhao X, Gao S, Hou Y. A general thermodynamics-triggered competitive growth model to guide the synthesis of two-dimensional nonlayered materials. Nat Commun 2023; 14:958. [PMID: 36810290 PMCID: PMC9944324 DOI: 10.1038/s41467-023-36619-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 02/08/2023] [Indexed: 02/23/2023] Open
Abstract
Two-dimensional (2D) nonlayered materials have recently provoked a surge of interest due to their abundant species and attractive properties with promising applications in catalysis, nanoelectronics, and spintronics. However, their 2D anisotropic growth still faces considerable challenges and lacks systematic theoretical guidance. Here, we propose a general thermodynamics-triggered competitive growth (TTCG) model providing a multivariate quantitative criterion to predict and guide 2D nonlayered materials growth. Based on this model, we design a universal hydrate-assisted chemical vapor deposition strategy for the controllable synthesis of various 2D nonlayered transition metal oxides. Four unique phases of iron oxides with distinct topological structures have also been selectively grown. More importantly, ultra-thin oxides display high-temperature magnetic ordering and large coercivity. MnxFeyCo3-x-yO4 alloy is also demonstrated to be a promising room-temperature magnetic semiconductor. Our work sheds light on the synthesis of 2D nonlayered materials and promotes their application for room-temperature spintronic devices.
Collapse
Affiliation(s)
- Zijing Zhao
- grid.11135.370000 0001 2256 9319School of Materials Science and Engineering, Beijing Key Laboratory for Magnetoelectric Materials and Devices, Beijing Innovation Center for Engineering Science and Advanced Technology, Peking University, Beijing, 100871 China ,grid.11135.370000 0001 2256 9319Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871 China
| | - Zhi Fang
- grid.11135.370000 0001 2256 9319School of Materials Science and Engineering, Beijing Key Laboratory for Magnetoelectric Materials and Devices, Beijing Innovation Center for Engineering Science and Advanced Technology, Peking University, Beijing, 100871 China
| | - Xiaocang Han
- grid.11135.370000 0001 2256 9319School of Materials Science and Engineering, Beijing Key Laboratory for Magnetoelectric Materials and Devices, Beijing Innovation Center for Engineering Science and Advanced Technology, Peking University, Beijing, 100871 China
| | - Shiqi Yang
- grid.11135.370000 0001 2256 9319State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-Optoelectronics, School of Physics, Peking University, Beijing, 100871 China
| | - Cong Zhou
- grid.43169.390000 0001 0599 1243Center for Alloy Innovation and Design, State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an, 710049 China
| | - Yi Zeng
- grid.11135.370000 0001 2256 9319School of Materials Science and Engineering, Beijing Key Laboratory for Magnetoelectric Materials and Devices, Beijing Innovation Center for Engineering Science and Advanced Technology, Peking University, Beijing, 100871 China
| | - Biao Zhang
- grid.11135.370000 0001 2256 9319School of Materials Science and Engineering, Beijing Key Laboratory for Magnetoelectric Materials and Devices, Beijing Innovation Center for Engineering Science and Advanced Technology, Peking University, Beijing, 100871 China
| | - Wei Li
- grid.11135.370000 0001 2256 9319School of Materials Science and Engineering, Beijing Key Laboratory for Magnetoelectric Materials and Devices, Beijing Innovation Center for Engineering Science and Advanced Technology, Peking University, Beijing, 100871 China
| | - Zhan Wang
- grid.9227.e0000000119573309Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190 China
| | - Ying Zhang
- grid.9227.e0000000119573309Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190 China
| | - Jian Zhou
- grid.43169.390000 0001 0599 1243Center for Alloy Innovation and Design, State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an, 710049 China
| | - Jiadong Zhou
- grid.43555.320000 0000 8841 6246Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement, School of Physics, Beijing Institute of Technology, Beijing, 100081 China
| | - Yu Ye
- grid.11135.370000 0001 2256 9319State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-Optoelectronics, School of Physics, Peking University, Beijing, 100871 China
| | - Xinmei Hou
- grid.69775.3a0000 0004 0369 0705Innovation Research Institute for Carbon Neutrality, University of Science and Technology Beijing, Beijing, 100083 China
| | - Xiaoxu Zhao
- School of Materials Science and Engineering, Beijing Key Laboratory for Magnetoelectric Materials and Devices, Beijing Innovation Center for Engineering Science and Advanced Technology, Peking University, Beijing, 100871, China.
| | - Song Gao
- grid.79703.3a0000 0004 1764 3838Institute of Spin-X Science and Technology, South China University of Technology, Guangzhou, 510641 China
| | - Yanglong Hou
- School of Materials Science and Engineering, Beijing Key Laboratory for Magnetoelectric Materials and Devices, Beijing Innovation Center for Engineering Science and Advanced Technology, Peking University, Beijing, 100871, China. .,Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China.
| |
Collapse
|
46
|
Yu D, Ga Y, Liang J, Jia C, Yang H. Voltage-Controlled Dzyaloshinskii-Moriya Interaction Torque Switching of Perpendicular Magnetization. PHYSICAL REVIEW LETTERS 2023; 130:056701. [PMID: 36800473 DOI: 10.1103/physrevlett.130.056701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/30/2022] [Accepted: 12/20/2022] [Indexed: 06/18/2023]
Abstract
Magnetization switching is the most important operation in spintronic devices. In modern nonvolatile magnetic random-access memory (MRAM), it is usually realized by spin-transfer torque (STT) or spin-orbit torque (SOT). However, both STT and SOT MRAM require current to drive magnetization switching, which will cause Joule heating. Here, we report an alternative mechanism, Dzyaloshinskii-Moriya interaction (DMI) torque, that can realize magnetization switching fully controlled by voltage pulses. We find that a consequential voltage-controlled reversal of DMI chirality in multiferroics can lead to continued expansion of a skyrmion thanks to the DMI torque. Enough DMI torque will eventually make the skyrmion burst into a quasiuniform ferromagnetic state with reversed magnetization, thus realizing the switching of a perpendicular magnet. The discovery is demonstrated in two-dimensional multiferroics, CuCrP_{2}Se_{6} and CrN, using first-principles calculations and micromagnetic simulations. As an example, we applied the DMI torque for simulating leaky-integrate-fire functionality of biological neurons. Our discovery of DMI torque switching of perpendicular magnetization provides tremendous potential toward magnetic-field-free and current-free spintronic devices, and neuromorphic computing as well.
Collapse
Affiliation(s)
- Dongxing Yu
- National Laboratory of Solid State Microstructures, School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Yonglong Ga
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Jinghua Liang
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Chenglong Jia
- Key Laboratory for Magnetism and Magnetic Materials of MOE and Lanzhou Center for Theoretical Physics, Lanzhou University, Lanzhou 730000, China
| | - Hongxin Yang
- National Laboratory of Solid State Microstructures, School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| |
Collapse
|
47
|
Li Z, Liu H, Zhao Z, Zhang Q, Fu X, Li X, Gu F, Zhong H, Pan Y, Chen G, Li Q, Li H, Chen Y, Gu L, Jin K, Yan S, Miao GX, Ge C, Li Q. Space-Charge Control of Magnetism in Ferromagnetic Metals: Coupling Giant Magnitude and Robust Endurance. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207353. [PMID: 36479745 DOI: 10.1002/adma.202207353] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Ferromagnetic metals show great prospects in ultralow-power-consumption spintronic devices, due to their high Curie temperature and robust magnetization. However, there is still a lack of reliable solutions for giant and reversible voltage control of magnetism in ferromagnetic metal films. Here, a novel space-charge approach is proposed which allows for achieving a modulation of 30.3 emu/g under 1.3 V in Co/TiO2 multilayer granular films. The robust endurance with more than 5000 cycles is demonstrated. Similar phenomena exist in Ni/TiO2 and Fe/TiO2 multilayer granular films, which shows its universality. The magnetic change of 107% in Ni/TiO2 underlines its potential in a voltage-driven ON-OFF magnetism. Such giant and reversible voltage control of magnetism can be ascribed to space-charge effect at the ferromagnetic metals/TiO2 interfaces, in which spin-polarized electrons are injected into the ferromagnetic metal layer with the adsorption of lithium-ions on the TiO2 surface. These results open the door for a promising method to modulate the magnetization in ferromagnetic metals, paving the way toward the development of ionic-magnetic-electric coupled applications.
Collapse
Affiliation(s)
- Zhaohui Li
- University-Industry Joint Center for Ocean Observation and Broadband Communication, State Key Laboratory of Bio-Fibers and Eco-Textiles, Weihai Innovation Research Institute, College of Materials, College of Physics, Qingdao University, Qingdao, 266071, China
| | - Hengjun Liu
- University-Industry Joint Center for Ocean Observation and Broadband Communication, State Key Laboratory of Bio-Fibers and Eco-Textiles, Weihai Innovation Research Institute, College of Materials, College of Physics, Qingdao University, Qingdao, 266071, China
| | - Zhiqiang Zhao
- University-Industry Joint Center for Ocean Observation and Broadband Communication, State Key Laboratory of Bio-Fibers and Eco-Textiles, Weihai Innovation Research Institute, College of Materials, College of Physics, Qingdao University, Qingdao, 266071, China
| | - Qinghua Zhang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xingke Fu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xiangkun Li
- University-Industry Joint Center for Ocean Observation and Broadband Communication, State Key Laboratory of Bio-Fibers and Eco-Textiles, Weihai Innovation Research Institute, College of Materials, College of Physics, Qingdao University, Qingdao, 266071, China
| | - Fangchao Gu
- University-Industry Joint Center for Ocean Observation and Broadband Communication, State Key Laboratory of Bio-Fibers and Eco-Textiles, Weihai Innovation Research Institute, College of Materials, College of Physics, Qingdao University, Qingdao, 266071, China
| | - Hai Zhong
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yuanyuan Pan
- University-Industry Joint Center for Ocean Observation and Broadband Communication, State Key Laboratory of Bio-Fibers and Eco-Textiles, Weihai Innovation Research Institute, College of Materials, College of Physics, Qingdao University, Qingdao, 266071, China
| | - Guihuan Chen
- University-Industry Joint Center for Ocean Observation and Broadband Communication, State Key Laboratory of Bio-Fibers and Eco-Textiles, Weihai Innovation Research Institute, College of Materials, College of Physics, Qingdao University, Qingdao, 266071, China
| | - Qinghao Li
- University-Industry Joint Center for Ocean Observation and Broadband Communication, State Key Laboratory of Bio-Fibers and Eco-Textiles, Weihai Innovation Research Institute, College of Materials, College of Physics, Qingdao University, Qingdao, 266071, China
| | - Hongsen Li
- University-Industry Joint Center for Ocean Observation and Broadband Communication, State Key Laboratory of Bio-Fibers and Eco-Textiles, Weihai Innovation Research Institute, College of Materials, College of Physics, Qingdao University, Qingdao, 266071, China
| | - Yanxue Chen
- State Key Laboratory of Crystal Materials, School of Physics, Shandong University, Jinan, 250100, China
| | - Lin Gu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Kuijuan Jin
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Shishen Yan
- State Key Laboratory of Crystal Materials, School of Physics, Shandong University, Jinan, 250100, China
| | - Guo-Xing Miao
- University-Industry Joint Center for Ocean Observation and Broadband Communication, State Key Laboratory of Bio-Fibers and Eco-Textiles, Weihai Innovation Research Institute, College of Materials, College of Physics, Qingdao University, Qingdao, 266071, China
- Department of Electrical and Computer Engineering & Institute for Quantum Computing, University of Waterloo, Ontario, N2L 3G1, Canada
| | - Chen Ge
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Qiang Li
- University-Industry Joint Center for Ocean Observation and Broadband Communication, State Key Laboratory of Bio-Fibers and Eco-Textiles, Weihai Innovation Research Institute, College of Materials, College of Physics, Qingdao University, Qingdao, 266071, China
- Department of Electrical and Computer Engineering & Institute for Quantum Computing, University of Waterloo, Ontario, N2L 3G1, Canada
| |
Collapse
|
48
|
Aldulaimi WAS, Okatan MB, Sendur K, Onbasli MC, Misirlioglu IB. Size driven barrier to chirality reversal in electric control of magnetic vortices in ferromagnetic nanodiscs. NANOSCALE 2023; 15:707-717. [PMID: 36516064 DOI: 10.1039/d2nr02768b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
New high density storage media and spintronic devices come about with a progressing demand for the miniaturization of ferromagnetic structures. Vortex ordering of magnetic dipoles in such structures has been repeatedly observed as a stable state, offering the possibility of chirality in these states as a means to store information at high density. Electric pulses and magnetoelectric coupling are attractive options to control the chirality of such states in a deterministic manner. Here, we demonstrate the chirality reversal of vortex states in ferromagnetic nanodiscs via pulsed electric fields using a micromagnetic approach and focus on the analysis of the energetics of the reversal process. A strong thickness dependence of the chirality reversal in the nanodiscs is found that emanates from the anisotropy of the demagnetizing fields. Our results indicate that chiral switching of the magnetic moments in thin discs can give rise to a transient vortex-antivortex lattice not observed in thicker discs. This difference in the chirality reversal mechanism emanates from profoundly different energy barriers to overcome in thin and thicker discs. We also report the polarity-chirality correlation of a vortex that appears to depend on the aspect ratio of the nanodiscs.
Collapse
Affiliation(s)
- W A S Aldulaimi
- Faculty of Engineering and Natural Sciences, Sabanci University, Orhanli/Tuzla, 34956 Istanbul, Turkey.
| | - M B Okatan
- Department of Materials Science and Engineering, Izmir Institute of Technology, Gulbahce/Urla, 35430 Izmir, Turkey
| | - K Sendur
- Faculty of Engineering and Natural Sciences, Sabanci University, Orhanli/Tuzla, 34956 Istanbul, Turkey.
- Center of Excellence for Functional Surfaces and Interfaces for Nano-Diagnostics (EFSUN), Sabanci University, Orhanli, 34956, Tuzla, Istanbul, Turkey
| | - M C Onbasli
- Department of Electrical & Electronics Engineering, Koc University, 34450 Istanbul, Turkey
| | - I B Misirlioglu
- Faculty of Engineering and Natural Sciences, Sabanci University, Orhanli/Tuzla, 34956 Istanbul, Turkey.
- Center of Excellence for Functional Surfaces and Interfaces for Nano-Diagnostics (EFSUN), Sabanci University, Orhanli, 34956, Tuzla, Istanbul, Turkey
| |
Collapse
|
49
|
Kim J, Kim Y, Mun J, Choi W, Chang Y, Kim JR, Gil B, Lee JH, Hahn S, Kim H, Chang SH, Lee GD, Kim M, Kim C, Noh TW. Defect Engineering in A 2 BO 4 Thin Films via Surface-Reconstructed LaSrAlO 4 Substrates. SMALL METHODS 2022; 6:e2200880. [PMID: 36250995 DOI: 10.1002/smtd.202200880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Ruddlesden-Popper oxides (A2 BO4 ) have attracted significant attention regarding their potential application in novel electronic and energy devices. However, practical uses of A2 BO4 thin films have been limited by extended defects such as out-of-phase boundaries (OPBs). OPBs disrupt the layered structure of A2 BO4 , which restricts functionality. OPBs are ubiquitous in A2 BO4 thin films but inhomogeneous interfaces make them difficult to suppress. Here, OPBs in A2 BO4 thin films are suppressed using a novel method to control the substrate surface termination. To demonstrate the technique, epitaxial thin films of cuprate superconductor La2- x Srx CuO4 (x = 0.15) are grown on surface-reconstructed LaSrAlO4 substrates, which are terminated with self-limited perovskite double layers. To date, La2- x Srx CuO4 thin films are grown on LaSrAlO4 substrates with mixed-termination and exhibit multiple interfacial structures resulting in many OPBs. In contrast, La2- x Srx CuO4 thin films grown on surface-reconstructed LaSrAlO4 substrates energetically favor only one interfacial structure, thus inhibiting OPB formation. OPB-suppressed La2- x Srx CuO4 thin films exhibit significantly enhanced superconducting properties compared with OPB-containing La2- x Srx CuO4 thin films. Defect engineering in A2 BO4 thin films will allow for the elimination of various types of defects in other complex oxides and facilitate next-generation quantum device applications.
Collapse
Affiliation(s)
- Jinkwon Kim
- Center for Correlated Electron Systems, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- Department of Physics and Astronomy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Youngdo Kim
- Center for Correlated Electron Systems, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- Department of Physics and Astronomy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Junsik Mun
- Department of Materials Science and Engineering and Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
| | - Woojin Choi
- Department of Materials Science and Engineering and Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yunyeong Chang
- Department of Materials Science and Engineering and Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jeong Rae Kim
- Center for Correlated Electron Systems, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- Department of Physics and Astronomy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Byeongjun Gil
- Department of Materials Science and Engineering and Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jong Hwa Lee
- Center for Correlated Electron Systems, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- Department of Physics and Astronomy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sungsoo Hahn
- Center for Correlated Electron Systems, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- Department of Physics and Astronomy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hongjoon Kim
- Center for Correlated Electron Systems, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- Department of Physics and Astronomy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Seo Hyoung Chang
- Department of Physics, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Gun-Do Lee
- Department of Materials Science and Engineering and Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
| | - Miyoung Kim
- Department of Materials Science and Engineering and Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
| | - Changyoung Kim
- Center for Correlated Electron Systems, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- Department of Physics and Astronomy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Tae Won Noh
- Center for Correlated Electron Systems, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- Department of Physics and Astronomy, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
50
|
Valiulin VE, Chtchelkatchev NM, Mikheyenkov AV, Vinokur VM. Time-dependent exchange creates the time-frustrated state of matter. Sci Rep 2022; 12:16177. [PMID: 36171223 PMCID: PMC9519972 DOI: 10.1038/s41598-022-19751-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 09/02/2022] [Indexed: 12/02/2022] Open
Abstract
Magnetic systems governed by exchange interactions between magnetic moments harbor frustration that leads to ground state degeneracy and results in the new topological state often referred to as a frustrated state of matter (FSM). The frustration in the commonly discussed magnetic systems has a spatial origin. Here we demonstrate that an array of nanomagnets coupled by the real retarded exchange interactions develops a new state of matter, time frustrated matter (TFM). In a spin system with the time-dependent retarded exchange interaction, a single spin-flip influences other spins not instantly but after some delay. This implies that the sign of the exchange interaction changes, leading to either ferro- or antiferromagnetic interaction, depends on time. As a result, the system’s temporal evolution is essentially non-Markovian. The emerging competition between different magnetic orders leads to a new kind of time-core frustration. To establish this paradigmatic shift, we focus on the exemplary system, a granular multiferroic, where the exchange transferring medium has a pronounced frequency dispersion and hence develops the TFM.
Collapse
Affiliation(s)
- V E Valiulin
- Vereshchagin Institute of High Pressure Physics, Russian Academy of Sciences, 108840, Troitsk, Moscow, Russia.,Moscow Institute of Physics and Technology, 141701, Dolgoprudny, Russia
| | - N M Chtchelkatchev
- Vereshchagin Institute of High Pressure Physics, Russian Academy of Sciences, 108840, Troitsk, Moscow, Russia
| | - A V Mikheyenkov
- Vereshchagin Institute of High Pressure Physics, Russian Academy of Sciences, 108840, Troitsk, Moscow, Russia.,Moscow Institute of Physics and Technology, 141701, Dolgoprudny, Russia
| | - V M Vinokur
- Terra Quantum AG, Kornhausstrasse 25, 9000, St. Gallen, Switzerland. .,Physics Department, City College of the City University of New York, 160 Convent Ave, New York, NY, 10031, USA.
| |
Collapse
|