1
|
You H, Geng S, Li S, Imani M, Brambilla D, Sun T, Jiang C. Recent advances in biomimetic strategies for the immunotherapy of glioblastoma. Biomaterials 2024; 311:122694. [PMID: 38959533 DOI: 10.1016/j.biomaterials.2024.122694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/22/2024] [Accepted: 06/26/2024] [Indexed: 07/05/2024]
Abstract
Immunotherapy is regarded as one of the most promising approaches for treating tumors, with a multitude of immunotherapeutic thoughts currently under consideration for the lethal glioblastoma (GBM). However, issues with immunotherapeutic agents, such as limited in vivo stability, poor blood-brain barrier (BBB) penetration, insufficient GBM targeting, and represented monotherapy, have hindered the success of immunotherapeutic interventions. Moreover, even with the aid of conventional drug delivery systems, outcomes remain suboptimal. Biomimetic strategies seek to overcome these formidable drug delivery challenges by emulating nature's intelligent structures and functions. Leveraging the variety of biological structures and functions, biomimetic drug delivery systems afford a versatile platform with enhanced biocompatibility for the co-delivery of diverse immunotherapeutic agents. Moreover, their inherent capacity to traverse the BBB and home in on GBM holds promise for augmenting the efficacy of GBM immunotherapy. Thus, this review begins by revisiting the various thoughts and agents on immunotherapy for GBM. Then, the barriers to successful GBM immunotherapy are analyzed, and the corresponding biomimetic strategies are explored from the perspective of function and structure. Finally, the clinical translation's current state and prospects of biomimetic strategy are addressed. This review aspires to provide fresh perspectives on the advancement of immunotherapy for GBM.
Collapse
Affiliation(s)
- Haoyu You
- Key Laboratory of Smart Drug Delivery/Innovative Center for New Drug Development of Immune Inflammatory Diseases (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Shuo Geng
- Key Laboratory of Smart Drug Delivery/Innovative Center for New Drug Development of Immune Inflammatory Diseases (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Shangkuo Li
- Key Laboratory of Smart Drug Delivery/Innovative Center for New Drug Development of Immune Inflammatory Diseases (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Mohammad Imani
- Department of Science, Iran Polymer and Petrochemical Institute, Tehran 14977-13115, Iran; Center for Nanoscience and Nanotechnology, Institute for Convergence Science & Technology, Tehran 14588-89694, Iran
| | - Davide Brambilla
- Faculty of Pharmacy, University of Montreal, Montreal Quebec H3T 1J4, Canada
| | - Tao Sun
- Key Laboratory of Smart Drug Delivery/Innovative Center for New Drug Development of Immune Inflammatory Diseases (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China.
| | - Chen Jiang
- Key Laboratory of Smart Drug Delivery/Innovative Center for New Drug Development of Immune Inflammatory Diseases (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| |
Collapse
|
2
|
Zhang H, Grippin A, Sun M, Ma Y, Kim BYS, Teng L, Jiang W, Yang Z. New avenues for cancer immunotherapy: Cell-mediated drug delivery systems. J Control Release 2024; 375:712-732. [PMID: 39326499 DOI: 10.1016/j.jconrel.2024.09.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/15/2024] [Accepted: 09/22/2024] [Indexed: 09/28/2024]
Abstract
Cancer research has become increasingly complex over the past few decades as knowledge of the heterogeneity of cancer cells, their proliferative ability, and their tumor microenvironments has become available. Although conventional therapies remain the most compelling option for cancer treatment to date, immunotherapy is a promising way to harness natural immune defenses to target and kill cancer cells. Cell-mediated drug delivery systems (CDDSs) have been an active line of research for enhancing the therapeutic efficacy and specificity of cancer immunotherapy. These systems can be tailored to different types of immune cells, allowing immune evasion and accumulation in the tumor microenvironment. By enabling the targeted delivery of therapeutic agents such as immune stimulants, cytokines, antibodies, and antigens, CDDSs have improved the survival of some patients with cancer. This review summarizes the research status of CDDSs, with a focus on their underlying mechanisms of action, biology, and clinical applications. We also discuss opportunities and challenges for implementation of CDDSs into mainstream cancer immunotherapy.
Collapse
Affiliation(s)
- Huan Zhang
- School of Life Sciences, Jilin University, Changchun 130012, China
| | - Adam Grippin
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Man Sun
- School of Life Sciences, Jilin University, Changchun 130012, China
| | - Yifan Ma
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Betty Y S Kim
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lesheng Teng
- School of Life Sciences, Jilin University, Changchun 130012, China
| | - Wen Jiang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Zhaogang Yang
- School of Life Sciences, Jilin University, Changchun 130012, China.
| |
Collapse
|
3
|
Leventhal SS, Bisom T, Clift D, Rao D, Meade-White K, Shaia C, Murray J, Mihalakakos EA, Hinkley T, Reynolds SJ, Best SM, Erasmus JH, James LC, Feldmann H, Hawman DW. Antibodies targeting the Crimean-Congo Hemorrhagic Fever Virus nucleoprotein protect via TRIM21. Nat Commun 2024; 15:9236. [PMID: 39455551 PMCID: PMC11511847 DOI: 10.1038/s41467-024-53362-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
Crimean-Congo Hemorrhagic Fever Virus (CCHFV) is a negative-sense RNA virus spread by Hyalomma genus ticks across Europe, Asia, and Africa. CCHF disease begins as a non-specific febrile illness which may progress into a severe hemorrhagic disease with no widely approved or highly efficacious interventions currently available. Recently, we reported a self-replicating, alphavirus-based RNA vaccine that expresses the CCHFV nucleoprotein and is protective against lethal CCHFV disease in mice. This vaccine induces high titers of non-neutralizing anti-NP antibodies and we show here that protection does not require Fc-gamma receptors or complement. Instead, vaccinated mice deficient in the intracellular Fc-receptor TRIM21 were unable to control the infection despite mounting robust CCHFV-specific immunity. We also show that passive transfer of NP-immune sera confers significant TRIM21-dependent protection against lethal CCHFV challenge. Together our data identifies TRIM21-mediated mechanisms as the Fc effector function of protective antibodies against the CCHFV NP and provides mechanistic insight into how vaccines against the CCHFV NP confer protection.
Collapse
Affiliation(s)
- Shanna S Leventhal
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, 59840, USA
| | - Thomas Bisom
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, 59840, USA
| | - Dean Clift
- Medical Research Council Laboratory of Molecular Biology, Cambridge, CB20QH, UK
| | - Deepashri Rao
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, 59840, USA
| | - Kimberly Meade-White
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, 59840, USA
| | - Carl Shaia
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, 59840, USA
| | - Justin Murray
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, 59840, USA
| | - Evan A Mihalakakos
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, 59840, USA
| | | | - Steven J Reynolds
- Laboratory of Immunoregulation, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Sonja M Best
- Laboratory of Neurological Infections and Immunity, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, 59840, USA
| | | | - Leo C James
- Medical Research Council Laboratory of Molecular Biology, Cambridge, CB20QH, UK
| | - Heinz Feldmann
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, 59840, USA.
| | - David W Hawman
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, 59840, USA.
| |
Collapse
|
4
|
Chen X, Wang Z, Zhu B, Deng M, Qiu J, Feng Y, Ding N, Huang C. Metabolic Reprogramming Induced by Aging Modifies the Tumor Microenvironment. Cells 2024; 13:1721. [PMID: 39451239 PMCID: PMC11506685 DOI: 10.3390/cells13201721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024] Open
Abstract
Aging is an important risk factor for tumorigenesis. Metabolic reprogramming is a hallmark of both aging and tumor initiation. However, the manner in which the crosstalk between aging and metabolic reprogramming affects the tumor microenvironment (TME) to promote tumorigenesis was poorly explored. We utilized a computational approach proposed by our previous work, MMP3C (Modeling Metabolic Plasticity by Pathway Pairwise Comparison), to characterize aging-related metabolic plasticity events using pan-cancer bulk RNA-seq data. Our analysis revealed a high degree of metabolically organized heterogeneity across 17 aging-related cancer types. In particular, a higher degree of several energy generation pathways, i.e., glycolysis and impaired oxidative phosphorylation, was observed in older patients. Similar phenomena were also found via single-cell RNA-seq analysis. Furthermore, those energy generation pathways were found to be weakened in activated T cells and macrophages, whereas they increased in exhausted T cells, immunosuppressive macrophages, and Tregs in older patients. It was suggested that aging-induced metabolic switches alter glucose utilization, thereby influencing immune function and resulting in the remodeling of the TME. This work offers new insights into the associations between tumor metabolism and the TME mediated by aging, linking with novel strategies for cancer therapy.
Collapse
Affiliation(s)
- Xingyu Chen
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery, State Kay Laboratory of Quality Research in Chinese Medicine & Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR 999078, China; (X.C.); (Z.W.); (B.Z.); (J.Q.); (Y.F.); (N.D.)
| | - Zihan Wang
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery, State Kay Laboratory of Quality Research in Chinese Medicine & Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR 999078, China; (X.C.); (Z.W.); (B.Z.); (J.Q.); (Y.F.); (N.D.)
| | - Bo Zhu
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery, State Kay Laboratory of Quality Research in Chinese Medicine & Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR 999078, China; (X.C.); (Z.W.); (B.Z.); (J.Q.); (Y.F.); (N.D.)
| | - Min Deng
- Faculty of Health Sciences, University of Macau, Taipa, Macau SAR 999078, China;
| | - Jiayue Qiu
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery, State Kay Laboratory of Quality Research in Chinese Medicine & Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR 999078, China; (X.C.); (Z.W.); (B.Z.); (J.Q.); (Y.F.); (N.D.)
| | - Yunwen Feng
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery, State Kay Laboratory of Quality Research in Chinese Medicine & Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR 999078, China; (X.C.); (Z.W.); (B.Z.); (J.Q.); (Y.F.); (N.D.)
| | - Ning Ding
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery, State Kay Laboratory of Quality Research in Chinese Medicine & Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR 999078, China; (X.C.); (Z.W.); (B.Z.); (J.Q.); (Y.F.); (N.D.)
| | - Chen Huang
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery, State Kay Laboratory of Quality Research in Chinese Medicine & Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR 999078, China; (X.C.); (Z.W.); (B.Z.); (J.Q.); (Y.F.); (N.D.)
| |
Collapse
|
5
|
Liu Y, Zhou F, Ali H, Lathia JD, Chen P. Immunotherapy for glioblastoma: current state, challenges, and future perspectives. Cell Mol Immunol 2024:10.1038/s41423-024-01226-x. [PMID: 39406966 DOI: 10.1038/s41423-024-01226-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/18/2024] [Indexed: 10/19/2024] Open
Abstract
Glioblastoma (GBM) is an aggressive and lethal type of brain tumor in human adults. The standard of care offers minimal clinical benefit, and most GBM patients experience tumor recurrence after treatment. In recent years, significant advancements have been made in the development of novel immunotherapies or other therapeutic strategies that can overcome immunotherapy resistance in many advanced cancers. However, the benefit of immune-based treatments in GBM is limited because of the unique brain immune profiles, GBM cell heterogeneity, and immunosuppressive tumor microenvironment. In this review, we present a detailed overview of current immunotherapeutic strategies and discuss the challenges and potential molecular mechanisms underlying immunotherapy resistance in GBM. Furthermore, we provide an in-depth discussion regarding the strategies that can overcome immunotherapy resistance in GBM, which will likely require combination therapies.
Collapse
Affiliation(s)
- Yang Liu
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Fei Zhou
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Heba Ali
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Justin D Lathia
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, 44195, USA
- Rose Ella Burkhardt Brain Tumor & Neuro-Oncology Center, Cleveland Clinic, Cleveland, OH, 44195, USA
- Case Comprehensive Cancer Center, Cleveland, OH, 44195, USA
| | - Peiwen Chen
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.
- Case Comprehensive Cancer Center, Cleveland, OH, 44195, USA.
| |
Collapse
|
6
|
Karimi-Sani I, Molavi Z, Naderi S, Mirmajidi SH, Zare I, Naeimzadeh Y, Mansouri A, Tajbakhsh A, Savardashtaki A, Sahebkar A. Personalized mRNA vaccines in glioblastoma therapy: from rational design to clinical trials. J Nanobiotechnology 2024; 22:601. [PMID: 39367418 PMCID: PMC11453023 DOI: 10.1186/s12951-024-02882-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 09/26/2024] [Indexed: 10/06/2024] Open
Abstract
Glioblastomas (GBMs) are the most common and aggressive malignant brain tumors, presenting significant challenges for treatment due to their invasive nature and localization in critical brain regions. Standard treatment includes surgical resection followed by radiation and adjuvant chemotherapy with temozolomide (TMZ). Recent advances in immunotherapy, including the use of mRNA vaccines, offer promising alternatives. This review focuses on the emerging use of mRNA vaccines for GBM treatment. We summarize recent advancements, evaluate current obstacles, and discuss notable successes in this field. Our analysis highlights that while mRNA vaccines have shown potential, their use in GBM treatment is still experimental. Ongoing research and clinical trials are essential to fully understand their therapeutic potential. Future developments in mRNA vaccine technology and insights into GBM-specific immune responses may lead to more targeted and effective treatments. Despite the promise, further research is crucial to validate and optimize the effectiveness of mRNA vaccines in combating GBM.
Collapse
Affiliation(s)
- Iman Karimi-Sani
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Molavi
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samaneh Naderi
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyedeh-Habibeh Mirmajidi
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Iman Zare
- Research and Development Department, Sina Medical Biochemistry Technologies Co. Ltd., Shiraz, 7178795844, Iran
| | - Yasaman Naeimzadeh
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Atena Mansouri
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Amir Tajbakhsh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Savardashtaki
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
- Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
7
|
Yao L, Hatami M, Ma W, Skutella T. Vaccine-based immunotherapy and related preclinical models for glioma. Trends Mol Med 2024; 30:965-981. [PMID: 39013724 DOI: 10.1016/j.molmed.2024.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/16/2024] [Accepted: 06/18/2024] [Indexed: 07/18/2024]
Abstract
Glioma, the most common primary malignant tumor in the central nervous system (CNS), lacks effective treatments, and >60% of cases are glioblastoma (GBM), the most aggressive form. Despite advances in immunotherapy, GBM remains highly resistant. Approaches that target tumor antigens expedite the development of immunotherapies, including personalized tumor-specific vaccines, patient-specific target selection, dendritic cell (DC) vaccines, and chimeric antigen receptor (CAR) and T cell receptor (TCR) T cells. Recent studies show promising results in treating GBM and lower-grade glioma (LGG), fostering hope for future immunotherapy. This review discusses tumor vaccines against glioma, preclinical models in immunological research, and the role of CD4+ T cells in vaccine-induced antitumor immunity. We also summarize clinical approaches, challenges, and future research for creating more effective vaccines.
Collapse
Affiliation(s)
- Longping Yao
- Institute for Anatomy and Cell Biology, Heidelberg Medical Faculty, Heidelberg University, Heidelberg, Germany
| | - Maryam Hatami
- Institute for Anatomy and Cell Biology, Heidelberg Medical Faculty, Heidelberg University, Heidelberg, Germany
| | - Wenbin Ma
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China; State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Thomas Skutella
- Institute for Anatomy and Cell Biology, Heidelberg Medical Faculty, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
8
|
Mao M, Yang W, Zhang X. Current mRNA-based vaccine strategies for glioma treatment. Crit Rev Oncol Hematol 2024; 202:104459. [PMID: 39097247 DOI: 10.1016/j.critrevonc.2024.104459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 07/26/2024] [Accepted: 07/26/2024] [Indexed: 08/05/2024] Open
Abstract
Gliomas are one of the most aggressive types of brain tumors and are associated with high morbidity and mortality rates. Currently, conventional treatments for gliomas such as surgical resection, radiotherapy, and chemotherapy have limited effectiveness, and new approaches are needed to improve patient outcomes. mRNA-based vaccines represent a promising therapeutic strategy for cancer treatment, including gliomas. Recent advances in immunotherapy using mRNA-based dendritic cell vaccines have shown great potential in preclinical and clinical trials. Dendritic cells are professional antigen-presenting cells that play a crucial role in initiating and regulating immune responses. In this review, we summarize the current progress of mRNA-based vaccines for gliomas, with a focus on recent advances in dendritic cell-based mRNA vaccines. We also discuss the feasibility and safety of mRNA-based clinical applications for gliomas.
Collapse
Affiliation(s)
- Mengqian Mao
- Neuroscience & Metabolism Research, Department of Neurosurgery, West China Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Wanchun Yang
- Neuroscience & Metabolism Research, Department of Neurosurgery, West China Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Xuefeng Zhang
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, China.
| |
Collapse
|
9
|
Mercado NB, Real JN, Kaiserman J, Panagioti E, Cook CH, Lawler SE. Clinical implications of cytomegalovirus in glioblastoma progression and therapy. NPJ Precis Oncol 2024; 8:213. [PMID: 39343770 PMCID: PMC11439950 DOI: 10.1038/s41698-024-00709-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 09/16/2024] [Indexed: 10/01/2024] Open
Abstract
Glioblastoma (GBM) is one of the deadliest brain cancers with a median survival of only 15 months. This poor prognosis has prompted exploration of novel therapeutic targets for GBM patients. Human cytomegalovirus (HCMV) has been implicated in GBM; however, its impact remains poorly defined, and there is conflicting data over the presence of HCMV in tumors. Nonetheless, clinical trials targeting HCMV have shown promising initial data, and evidence suggests that HCMV may negatively impact GBM patient survival by multiple mechanisms including changes in GBM cell behavior and the tumor microenvironment (TME) that potentiate tumor progression as well as therapy-induced virus reactivation. Moreover, HCMV has many effects on host immunity that could impact tumor behavior by altering the TME, which are largely unexplored. The goal of this review is to describe these potential interactions between HCMV and GBM. Better understanding of these processes may allow the development of new therapeutic modalities to improve GBM patient outcomes.
Collapse
Affiliation(s)
- Noe B Mercado
- Department of Pathology and Laboratory Medicine, Legorreta Cancer Center, Brown University, Providence, RI, US
- The Warren Alpert Medical School, Brown University, Providence, RI, US
| | - Jacqueline N Real
- Department of Pathology and Laboratory Medicine, Legorreta Cancer Center, Brown University, Providence, RI, US
- The Warren Alpert Medical School, Brown University, Providence, RI, US
| | - Jacob Kaiserman
- Department of Pathology and Laboratory Medicine, Legorreta Cancer Center, Brown University, Providence, RI, US
- The Warren Alpert Medical School, Brown University, Providence, RI, US
| | - Eleni Panagioti
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, US
| | - Charles H Cook
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, US
| | - Sean E Lawler
- Department of Pathology and Laboratory Medicine, Legorreta Cancer Center, Brown University, Providence, RI, US.
- The Warren Alpert Medical School, Brown University, Providence, RI, US.
| |
Collapse
|
10
|
Gao Z, Liu X, Lei Y, Shao J, Zhang G, Hou Z, Zhou G, Wu J, Guo H, Chang H, Liu W. Dendritic cell-based biomimetic nanoparticles for foot-and-mouth disease induce robust cellular immunity. Antiviral Res 2024; 231:106011. [PMID: 39332536 DOI: 10.1016/j.antiviral.2024.106011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 09/23/2024] [Accepted: 09/23/2024] [Indexed: 09/29/2024]
Abstract
Foot-and-mouth disease (FMD) is a highly contagious and economically devastating viral disease of ruminants and swine, badly affecting the livestock industry worldwide. In clinical practice, vaccination is a frequently employed strategy to prevent foot-and-mouth disease (FMDV). However, commercial inactivated vaccines for FMD mainly rely on humoral immunity, exhibiting poor cellular immune responses and causing adverse reactions. Here, we use the double emulsion method to prepare poly (lactic-co-glycolic acid) nanoparticles (PLGA-NP) encapsulated with IL-2 cytokines, wrap the dendritic cell (DC) membrane carrying FMDV antigen information on the surface of the nanoparticles, obtaining a biomimetic nanoparticle vaccine Biom@DC with uniform size. This vaccine can effortlessly move through lymph nodes due to its nanoscale size advantage. It also possesses DC ability to present antigens, and antigen presentation can be made more effective with high biocompatibility. The sustained release of IL-2 encapsulated in the core of PLGA-NP in vivo can effectively promote the body's cellular immune response. Immune tests on mice have shown that Biom@DC may greatly increase T cell activation and proliferation both in vivo and in vitro, while also significantly reducing the fraction of inhibitory Treg cells. Furthermore, in the micro serum neutralization assay for FMDV, it has been demonstrated that the group vaccinated with Biom@DC exhibits a clear neutralizing effect. Given its strong immunogenicity, Biom@DC has the potential to develop into a novel, potent anti-FMDV vaccination.
Collapse
Affiliation(s)
- Zhan Gao
- State Key Laboratory for Animal Disease Control and Prevention, Gansu Province Research Center for Basic Disciplines of Pathogen Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, China; School of Materials Science and Engineering, Key Laboratory for Polymer Composite and Functional Materials of Ministry of Education, GD Research Center for Functional Biomaterials Engineering and Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Xiaoqing Liu
- State Key Laboratory for Animal Disease Control and Prevention, Gansu Province Research Center for Basic Disciplines of Pathogen Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, China
| | - Yao Lei
- State Key Laboratory for Animal Disease Control and Prevention, Gansu Province Research Center for Basic Disciplines of Pathogen Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, China
| | - Junjun Shao
- State Key Laboratory for Animal Disease Control and Prevention, Gansu Province Research Center for Basic Disciplines of Pathogen Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, China.
| | - Guanglei Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Gansu Province Research Center for Basic Disciplines of Pathogen Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, China
| | - Zhuo Hou
- State Key Laboratory for Animal Disease Control and Prevention, Gansu Province Research Center for Basic Disciplines of Pathogen Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, China
| | - Guangqing Zhou
- State Key Laboratory for Animal Disease Control and Prevention, Gansu Province Research Center for Basic Disciplines of Pathogen Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, China
| | - Jin'en Wu
- State Key Laboratory for Animal Disease Control and Prevention, Gansu Province Research Center for Basic Disciplines of Pathogen Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, China
| | - Huichen Guo
- State Key Laboratory for Animal Disease Control and Prevention, Gansu Province Research Center for Basic Disciplines of Pathogen Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, China
| | - Huiyun Chang
- State Key Laboratory for Animal Disease Control and Prevention, Gansu Province Research Center for Basic Disciplines of Pathogen Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, China
| | - Wei Liu
- State Key Laboratory for Animal Disease Control and Prevention, Gansu Province Research Center for Basic Disciplines of Pathogen Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, China.
| |
Collapse
|
11
|
Ijaz M, Ullah Z, Aslam B, Khurshid M, Chen P, Guo B. From promise to progress: the dynamic landscape of glioblastoma immunotherapy. Drug Discov Today 2024; 29:104188. [PMID: 39307298 DOI: 10.1016/j.drudis.2024.104188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 09/09/2024] [Accepted: 09/17/2024] [Indexed: 09/29/2024]
Abstract
Glioblastoma multiforme (GBM) is the most common CNS cancer, it has dismal survival rates despite several effective mediators: intensified cytotoxic therapy, chimeric antigen receptor (CAR)-T cell therapy, viral therapy, adoptive cell therapy, immune checkpoint blockade therapy, radiation therapy and vaccine therapy. This review examines the basic concepts underlying immune targeting and examines products such as checkpoint blockade drugs, CAR-T cells, oncolytic viruses, combinatory multimodal immunotherapy and cancer vaccines. New approaches to overcoming current constraints and challenges in GBM therapy are discussed, based on recent studies into these tactics, findings from ongoing clinical trials, as well as previous trial results.
Collapse
Affiliation(s)
- Muhammad Ijaz
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen 518055, China; Institute of Microbiology, Government College University Faisalabad, Pakistan
| | - Zia Ullah
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen 518055, China
| | - Bilal Aslam
- Institute of Microbiology, Government College University Faisalabad, Pakistan
| | - Mohsin Khurshid
- Institute of Microbiology, Government College University Faisalabad, Pakistan
| | - Pengfei Chen
- Department of Traumatic Orthopedics, Shenzhen Longhua District Central Hospital, Shenzhen, China.
| | - Bing Guo
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen 518055, China.
| |
Collapse
|
12
|
Chandra S, Wilson JC, Good D, Wei MQ. mRNA vaccines: a new era in vaccine development. Oncol Res 2024; 32:1543-1564. [PMID: 39308511 PMCID: PMC11413818 DOI: 10.32604/or.2024.043987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 07/02/2024] [Indexed: 09/25/2024] Open
Abstract
The advent of RNA therapy, particularly through the development of mRNA cancer vaccines, has ushered in a new era in the field of oncology. This article provides a concise overview of the key principles, recent advancements, and potential implications of mRNA cancer vaccines as a groundbreaking modality in cancer treatment. mRNA cancer vaccines represent a revolutionary approach to combatting cancer by leveraging the body's innate immune system. These vaccines are designed to deliver specific mRNA sequences encoding cancer-associated antigens, prompting the immune system to recognize and mount a targeted response against malignant cells. This personalized and adaptive nature of mRNA vaccines holds immense potential for addressing the heterogeneity of cancer and tailoring treatments to individual patients. Recent breakthroughs in the development of mRNA vaccines, exemplified by the success of COVID-19 vaccines, have accelerated their application in oncology. The mRNA platform's versatility allows for the rapid adaptation of vaccine candidates to various cancer types, presenting an agile and promising avenue for therapeutic intervention. Clinical trials of mRNA cancer vaccines have demonstrated encouraging results in terms of safety, immunogenicity, and efficacy. Pioneering candidates, such as BioNTech's BNT111 and Moderna's mRNA-4157, have exhibited promising outcomes in targeting melanoma and solid tumors, respectively. These successes underscore the potential of mRNA vaccines to elicit robust and durable anti-cancer immune responses. While the field holds great promise, challenges such as manufacturing complexities and cost considerations need to be addressed for widespread adoption. The development of scalable and cost-effective manufacturing processes, along with ongoing clinical research, will be pivotal in realizing the full potential of mRNA cancer vaccines. Overall, mRNA cancer vaccines represent a cutting-edge therapeutic approach that holds the promise of transforming cancer treatment. As research progresses, addressing challenges and refining manufacturing processes will be crucial in advancing these vaccines from clinical trials to mainstream oncology practice, offering new hope for patients in the fight against cancer.
Collapse
Affiliation(s)
- Shubhra Chandra
- School of Pharmacy & Medical Sciences, Gold Coast campus, Griffith University, Brisbane, QLD-4222, Australia
- Menzies Health Institute Queensland (MHIQ), Gold Coast Campus, Griffith University, Brisbane, QLD-4215, Australia
| | - Jennifer C Wilson
- School of Pharmacy & Medical Sciences, Gold Coast campus, Griffith University, Brisbane, QLD-4222, Australia
- Menzies Health Institute Queensland (MHIQ), Gold Coast Campus, Griffith University, Brisbane, QLD-4215, Australia
| | - David Good
- School of Allied Health, Australian Catholic University, Brisbane, QLD-4014, Australia
| | - Ming Q Wei
- School of Pharmacy & Medical Sciences, Gold Coast campus, Griffith University, Brisbane, QLD-4222, Australia
- Menzies Health Institute Queensland (MHIQ), Gold Coast Campus, Griffith University, Brisbane, QLD-4215, Australia
| |
Collapse
|
13
|
Andrew Awuah W, Shah MH, Tan JK, Ranganathan S, Sanker V, Darko K, Tenkorang PO, Adageba BB, Ahluwalia A, Shet V, Aderinto N, Kundu M, Abdul‐Rahman T, Atallah O. Immunotherapeutic advances in glioma management: The rise of vaccine-based approaches. CNS Neurosci Ther 2024; 30:e70013. [PMID: 39215399 PMCID: PMC11364516 DOI: 10.1111/cns.70013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 07/23/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Gliomas, particularly glioblastoma multiforme (GBM), are highly aggressive brain tumors that present significant challenges in oncology due to their rapid progression and resistance to conventional therapies. Despite advancements in treatment, the prognosis for patients with GBM remains poor, necessitating the exploration of novel therapeutic approaches. One such emerging strategy is the development of glioma vaccines, which aim to stimulate the immune system to target and destroy tumor cells. AIMS This review aims to provide a comprehensive evaluation of the current landscape of glioma vaccine development, analyzing the types of vaccines under investigation, the outcomes of clinical trials, and the challenges and opportunities associated with their implementation. The goal is to highlight the potential of glioma vaccines in advancing more effective and personalized treatments for glioma patients. MATERIALS AND METHODS This narrative review systematically assessed the role of glioma vaccines by including full-text articles published between 2000 and 2024 in English. Databases such as PubMed/MEDLINE, EMBASE, the Cochrane Library, and Scopus were searched using key terms like "glioma," "brain tumor," "glioblastoma," "vaccine," and "immunotherapy." The review incorporated both pre-clinical and clinical studies, including descriptive studies, animal-model studies, cohort studies, and observational studies. Exclusion criteria were applied to omit abstracts, case reports, posters, and non-peer-reviewed studies, ensuring the inclusion of high-quality evidence. RESULTS Clinical trials investigating various glioma vaccines, including peptide-based, DNA/RNA-based, whole-cell, and dendritic-cell vaccines, have shown promising results. These vaccines demonstrated potential in extending survival rates and managing adverse events in glioma patients. However, significant challenges remain, such as therapeutic resistance due to tumor heterogeneity and immune evasion mechanisms. Moreover, the lack of standardized guidelines for evaluating vaccine responses and issues related to ethical considerations, regulatory hurdles, and vaccine acceptance among patients further complicate the implementation of glioma vaccines. DISCUSSION Addressing the challenges associated with glioma vaccines involves exploring combination therapies, targeted approaches, and personalized medicine. Combining vaccines with traditional therapies like radiotherapy or chemotherapy may enhance efficacy by boosting the immune system's ability to fight tumor cells. Personalized vaccines tailored to individual patient profiles present an opportunity for improved outcomes. Furthermore, global collaboration and equitable distribution are critical for ensuring access to glioma vaccines, especially in low- and middle-income countries with limited healthcare resources CONCLUSION: Glioma vaccines represent a promising avenue in the fight against gliomas, offering hope for improving patient outcomes in a disease that is notoriously difficult to treat. Despite the challenges, continued research and the development of innovative strategies, including combination therapies and personalized approaches, are essential for overcoming current barriers and transforming the treatment landscape for glioma patients.
Collapse
Affiliation(s)
| | | | | | | | - Vivek Sanker
- Department of NeurosurgeryTrivandrum Medical CollegeTrivandrumKeralaIndia
| | - Kwadwo Darko
- Department of NeurosurgeryKorle Bu Teaching HospitalAccraGhana
| | | | - Bryan Badayelba Adageba
- Kwame Nkrumah University of Science and Technology School of Medicine and DentistryKumasiGhana
| | | | - Vallabh Shet
- Faculty of MedicineBangalore Medical College and Research InstituteBangaloreKarnatakaIndia
| | - Nicholas Aderinto
- Department of Internal MedicineLAUTECH Teaching HospitalOgbomosoNigeria
| | - Mrinmoy Kundu
- Institute of Medical Sciences and SUM HospitalBhubaneswarOdishaIndia
| | | | - Oday Atallah
- Department of Neurosurgery, Hannover Medical SchoolHannoverGermany
| |
Collapse
|
14
|
Liu T, Yao W, Sun W, Yuan Y, Liu C, Liu X, Wang X, Jiang H. Components, Formulations, Deliveries, and Combinations of Tumor Vaccines. ACS NANO 2024; 18:18801-18833. [PMID: 38979917 DOI: 10.1021/acsnano.4c05065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Tumor vaccines, an important part of immunotherapy, prevent cancer or kill existing tumor cells by activating or restoring the body's own immune system. Currently, various formulations of tumor vaccines have been developed, including cell vaccines, tumor cell membrane vaccines, tumor DNA vaccines, tumor mRNA vaccines, tumor polypeptide vaccines, virus-vectored tumor vaccines, and tumor-in-situ vaccines. There are also multiple delivery systems for tumor vaccines, such as liposomes, cell membrane vesicles, viruses, exosomes, and emulsions. In addition, to decrease the risk of tumor immune escape and immune tolerance that may exist with a single tumor vaccine, combination therapy of tumor vaccines with radiotherapy, chemotherapy, immune checkpoint inhibitors, cytokines, CAR-T therapy, or photoimmunotherapy is an effective strategy. Given the critical role of tumor vaccines in immunotherapy, here, we look back to the history of tumor vaccines, and we discuss the antigens, adjuvants, formulations, delivery systems, mechanisms, combination therapy, and future directions of tumor vaccines.
Collapse
Affiliation(s)
- Tengfei Liu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Wenyan Yao
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Wenyu Sun
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Yihan Yuan
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Chen Liu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Xiaohui Liu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Xuemei Wang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Hui Jiang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| |
Collapse
|
15
|
Shang L, Jiang X, Zhao X, Huang X, Wang X, Jiang X, Kong X, Yao M, Jiang S, Wong PP. Mitochondrial DNA-boosted dendritic cell-based nanovaccination triggers antitumor immunity in lung and pancreatic cancers. Cell Rep Med 2024; 5:101648. [PMID: 38986624 PMCID: PMC11293323 DOI: 10.1016/j.xcrm.2024.101648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 04/09/2024] [Accepted: 06/17/2024] [Indexed: 07/12/2024]
Abstract
Low migratory dendritic cell (DC) levels pose a challenge in cancer immune surveillance, yet their impact on tumor immune status and immunotherapy responses remains unclear. We present clinical evidence linking reduced migratory DC levels to immune-cold tumor status, resulting in poor patient outcomes. To address this, we develop an autologous DC-based nanovaccination strategy using patient-derived organoid or cancer cell lysate-pulsed cationic nanoparticles (cNPs) to load immunogenic DC-derived microvesicles (cNPcancer cell@MVDC). This approach transforms immune-cold tumors, increases migratory DCs, activates T cells and natural killer cells, reduces tumor growth, and enhances survival in orthotopic pancreatic and lung cancer models, surpassing conventional methods. In vivo imaging reveals superior cNPcancer cell@MVDC accumulation in tumors and lymph nodes, promoting immune cell infiltration. Mechanistically, cNPs enrich mitochondrial DNA, enhancing cGAS-STING-mediated DC activation and migration. Our strategy shifts cold tumors to a hot state, enhancing antitumor immunity for potential personalized cancer treatments.
Collapse
Affiliation(s)
- Lihuan Shang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou 510120, China; Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Xue Jiang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou 510120, China; Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Xinbao Zhao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou 510120, China; Department of Ultrasound, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Xi Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou 510120, China; Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Xiaojuan Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou 510120, China; Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Xue Jiang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou 510120, China; Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Xiangzhan Kong
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou 510120, China; Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Mingkang Yao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou 510120, China; Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Department of Respiratory Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Shanping Jiang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou 510120, China; Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Department of Respiratory Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Ping-Pui Wong
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou 510120, China; Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.
| |
Collapse
|
16
|
Sayour EJ, Boczkowski D, Mitchell DA, Nair SK. Cancer mRNA vaccines: clinical advances and future opportunities. Nat Rev Clin Oncol 2024; 21:489-500. [PMID: 38760500 DOI: 10.1038/s41571-024-00902-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2024] [Indexed: 05/19/2024]
Abstract
mRNA vaccines have been revolutionary in terms of their rapid development and prevention of SARS-CoV-2 infections during the COVID-19 pandemic, and this technology has considerable potential for application to the treatment of cancer. Compared with traditional cancer vaccines based on proteins or peptides, mRNA vaccines reconcile the needs for both personalization and commercialization in a manner that is unique to each patient but not beholden to their HLA haplotype. A further advantage of mRNA vaccines is the availability of engineering strategies to improve their stability while retaining immunogenicity, enabling the induction of complementary innate and adaptive immune responses. Thus far, no mRNA-based cancer vaccines have received regulatory approval, although several phase I-II trials have yielded promising results, including in historically poorly immunogenic tumours. Furthermore, many early phase trials testing a wide range of vaccine designs are currently ongoing. In this Review, we describe the advantages of cancer mRNA vaccines and advances in clinical trials using both cell-based and nanoparticle-based delivery methods, with discussions of future combinations and iterations that might optimize the activity of these agents.
Collapse
Affiliation(s)
- Elias J Sayour
- Preston A. Wells Jr. Center for Brain Tumour Therapy, University of Florida, Gainesville, FL, USA
- Lillian S. Wells Department of Neurosurgery, University of Florida, Gainesville, FL, USA
| | - David Boczkowski
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Duane A Mitchell
- Preston A. Wells Jr. Center for Brain Tumour Therapy, University of Florida, Gainesville, FL, USA
- Lillian S. Wells Department of Neurosurgery, University of Florida, Gainesville, FL, USA
| | - Smita K Nair
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA.
- Department of Neurosurgery, Duke University School of Medicine, Durham, NC, USA.
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA.
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
17
|
Aghajani M, Jalilzadeh N, Aghebati-Maleki A, Yari A, Tabnak P, Mardi A, Saeedi H, Aghebati-Maleki L, Baradaran B. Current approaches in glioblastoma multiforme immunotherapy. Clin Transl Oncol 2024; 26:1584-1612. [PMID: 38512448 DOI: 10.1007/s12094-024-03395-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 01/08/2024] [Indexed: 03/23/2024]
Abstract
Glioblastoma multiform (GBM) is the most prevalent CNS (central nervous system) tumor in adults, with an average survival length shorter than 2 years and rare metastasis to organs other than CNS. Despite extensive attempts at surgical resecting, the inherently permeable nature of this disease has rendered relapse nearly unavoidable. Thus, immunotherapy is a feasible alternative, as stimulated immune cells can enter into the remote and inaccessible tumor cells. Immunotherapy has revolutionized patient upshots in various malignancies and might introduce different effective ways for GBM patients. Currently, researchers are exploring various immunotherapeutic strategies in patients with GBM to target both the innate and acquired immune responses. These approaches include reprogrammed tumor-associated macrophages, the use of specific antibodies to inhibit tumor progression and metastasis, modifying tumor-associated macrophages with antibodies, vaccines that utilize tumor-specific dendritic cells to activate anti-tumor T cells, immune checkpoint inhibitors, and enhanced T cells that function against tumor cells. Despite these findings, there is still room for improving the response faults of the many currently tested immunotherapies. This study aims to review the currently used immunotherapy approaches with their molecular mechanisms and clinical application in GBM.
Collapse
Affiliation(s)
- Marjan Aghajani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nazila Jalilzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Aghebati-Maleki
- Molecular Medicine Department, Faculty of Modern Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amirhossein Yari
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Biology, Islamic Azad University, Tabriz Branch, Tabriz, Iran
| | - Peyman Tabnak
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amirhossein Mardi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Saeedi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leili Aghebati-Maleki
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
18
|
Squalli Houssaini A, Lamrabet S, Nshizirungu JP, Senhaji N, Sekal M, Karkouri M, Bennis S. Glioblastoma Vaccines as Promising Immune-Therapeutics: Challenges and Current Status. Vaccines (Basel) 2024; 12:655. [PMID: 38932383 PMCID: PMC11209492 DOI: 10.3390/vaccines12060655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/02/2024] [Accepted: 05/08/2024] [Indexed: 06/28/2024] Open
Abstract
Glioblastoma (GBM) is the most common and aggressive malignant brain tumor. Standard treatments including surgical resection, radiotherapy, and chemotherapy, have failed to significantly improve the prognosis of glioblastoma patients. Currently, immunotherapeutic approaches based on vaccines, chimeric antigen-receptor T-cells, checkpoint inhibitors, and oncolytic virotherapy are showing promising results in clinical trials. The combination of different immunotherapeutic approaches is proving satisfactory and promising. In view of the challenges of immunotherapy and the resistance of glioblastomas, the treatment of these tumors requires further efforts. In this review, we explore the obstacles that potentially influence the efficacy of the response to immunotherapy and that should be taken into account in clinical trials. This article provides a comprehensive review of vaccine therapy for glioblastoma. In addition, we identify the main biomarkers, including isocitrate dehydrogenase, epidermal growth factor receptor, and telomerase reverse transcriptase, known as potential immunotherapeutic targets in glioblastoma, as well as the current status of clinical trials. This paper also lists proposed solutions to overcome the obstacles facing immunotherapy in glioblastomas.
Collapse
Affiliation(s)
- Asmae Squalli Houssaini
- Laboratory of Biomedical and Translational Research, Faculty of Medicine, Pharmacy and Dental Medicine of Fez, Sidi Mohamed Ben Abdellah University, Fez 30070, Morocco;
| | - Salma Lamrabet
- Laboratory of Biomedical and Translational Research, Faculty of Medicine, Pharmacy and Dental Medicine of Fez, Sidi Mohamed Ben Abdellah University, Fez 30070, Morocco;
| | - Jean Paul Nshizirungu
- Biology Department, School of Science, College of Science and Technology, University of Rwanda, Kigali P.O. Box 3900, Rwanda;
| | - Nadia Senhaji
- Department of Biology, Faculty of Sciences, Moulay Ismail University, Meknes 50000, Morocco;
| | - Mohammed Sekal
- Laboratory of Epidemiology and Research in Health Sciences, Faculty of Medicine, Pharmacy and Dental Medicine of Fez, Sidi Mohamed Ben Abdellah University, Fez 30070, Morocco;
| | - Mehdi Karkouri
- Department of Pathological Anatomy, Ibn Rochd University Hospital of Casablanca, Casablanca 20250, Morocco;
- Laboratory of Cellular and molecular Pathology, Faculty of Medicine and Pharmacy of Casablanca, Hassan II University, Casablanca 20360, Morocco
| | - Sanae Bennis
- Laboratory of Biomedical and Translational Research, Faculty of Medicine, Pharmacy and Dental Medicine of Fez, Sidi Mohamed Ben Abdellah University, Fez 30070, Morocco;
| |
Collapse
|
19
|
Teodoro Da Silva L, Tiaki Tiyo B, de Jesus Mota S, Mazzilli Ortega M, Justamante Handel Schmitz G, Nosomi Taniwaki N, Mitsue Namiyama Nishina G, José da Silva Duarte A, Miyuki Oshiro T. Effects of Injectable Solutions on the Quality of Monocyte-Derived Dendritic Cells for Immunotherapy. J Immunol Res 2024; 2024:6817965. [PMID: 38962578 PMCID: PMC11221978 DOI: 10.1155/2024/6817965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 05/06/2024] [Accepted: 05/17/2024] [Indexed: 07/05/2024] Open
Abstract
Therapeutic vaccines based on monocyte-derived dendritic cells have been shown to be promising strategies and may act as complementary treatments for viral infections, cancers, and, more recently, autoimmune diseases. Alpha-type-1-polarized dendritic cells (aDC1s) have been shown to induce type-1 immunity with a high capacity to produce interleukin-12p70 (IL-12p70). In the clinical use of cell-based therapeutics, injectable solutions can affect the morphology, immunophenotypic profile, and viability of cells before delivery and their survival after injection. In this sense, preparing a cell suspension that maintains the quality of aDC1s is essential to ensure effective immunotherapy. In the present study, monocytes were differentiated into aDC1s in the presence of IL-4 and GM-CSF. On day 5, the cells were matured by the addition of a cytokine cocktail consisting of IFN-α, IFN-γ, IL-1β, TNF-α, and Poly I:C. After 48 hr, mature aDC1s were harvested and suspended in two different solutions: normal saline and Ringer's lactate. The maintenance of cells in suspension was evaluated after 4, 6, and 8 hr of storage. Cell viability, immunophenotyping, and apoptosis analyses were performed by flow cytometry. Cellular morphology was observed by electron microscopy, and the production of IL-12p70 by aDC1s was evaluated by ELISA. Compared with normal saline, Ringer's lactate solution was more effective at maintaining DC viability for up to 8 hr of incubation at 4 or 22°C.
Collapse
Affiliation(s)
- Laís Teodoro Da Silva
- Laboratory of Medical Investigation in Dermatology and Immunodeficiencies (LIM-56)Clinical Hospital HCFMUSPFaculty of MedicineUniversity of Sao Paulo, Sao Paulo, SP, Brazil
| | - Bruna Tiaki Tiyo
- Laboratory of Medical Investigation in Dermatology and Immunodeficiencies (LIM-56)Clinical Hospital HCFMUSPFaculty of MedicineUniversity of Sao Paulo, Sao Paulo, SP, Brazil
| | - Silvia de Jesus Mota
- Laboratory of Medical Investigation in Dermatology and Immunodeficiencies (LIM-56)Clinical Hospital HCFMUSPFaculty of MedicineUniversity of Sao Paulo, Sao Paulo, SP, Brazil
| | - Marina Mazzilli Ortega
- Laboratory of Medical Investigation in Dermatology and Immunodeficiencies (LIM-56)Clinical Hospital HCFMUSPFaculty of MedicineUniversity of Sao Paulo, Sao Paulo, SP, Brazil
| | - Gabriela Justamante Handel Schmitz
- Laboratory of Medical Investigation in Dermatology and Immunodeficiencies (LIM-56)Clinical Hospital HCFMUSPFaculty of MedicineUniversity of Sao Paulo, Sao Paulo, SP, Brazil
| | | | | | - Alberto José da Silva Duarte
- Laboratory of Medical Investigation in Dermatology and Immunodeficiencies (LIM-56)Clinical Hospital HCFMUSPFaculty of MedicineUniversity of Sao Paulo, Sao Paulo, SP, Brazil
| | - Telma Miyuki Oshiro
- Laboratory of Medical Investigation in Dermatology and Immunodeficiencies (LIM-56)Clinical Hospital HCFMUSPFaculty of MedicineUniversity of Sao Paulo, Sao Paulo, SP, Brazil
| |
Collapse
|
20
|
Mendez-Gomez HR, DeVries A, Castillo P, von Roemeling C, Qdaisat S, Stover BD, Xie C, Weidert F, Zhao C, Moor R, Liu R, Soni D, Ogando-Rivas E, Chardon-Robles J, McGuiness J, Zhang D, Chung MC, Marconi C, Michel S, Barpujari A, Jobin GW, Thomas N, Ma X, Campaneria Y, Grippin A, Karachi A, Li D, Sahay B, Elliott L, Foster TP, Coleman KE, Milner RJ, Sawyer WG, Ligon JA, Simon E, Cleaver B, Wynne K, Hodik M, Molinaro AM, Guan J, Kellish P, Doty A, Lee JH, Massini T, Kresak JL, Huang J, Hwang EI, Kline C, Carrera-Justiz S, Rahman M, Gatica S, Mueller S, Prados M, Ghiaseddin AP, Silver NL, Mitchell DA, Sayour EJ. RNA aggregates harness the danger response for potent cancer immunotherapy. Cell 2024; 187:2521-2535.e21. [PMID: 38697107 DOI: 10.1016/j.cell.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 01/09/2024] [Accepted: 04/03/2024] [Indexed: 05/04/2024]
Abstract
Cancer immunotherapy remains limited by poor antigenicity and a regulatory tumor microenvironment (TME). Here, we create "onion-like" multi-lamellar RNA lipid particle aggregates (LPAs) to substantially enhance the payload packaging and immunogenicity of tumor mRNA antigens. Unlike current mRNA vaccine designs that rely on payload packaging into nanoparticle cores for Toll-like receptor engagement in immune cells, systemically administered RNA-LPAs activate RIG-I in stromal cells, eliciting massive cytokine/chemokine response and dendritic cell/lymphocyte trafficking that provokes cancer immunogenicity and mediates rejection of both early- and late-stage murine tumor models. In client-owned canines with terminal gliomas, RNA-LPAs improved survivorship and reprogrammed the TME, which became "hot" within days of a single infusion. In a first-in-human trial, RNA-LPAs elicited rapid cytokine/chemokine release, immune activation/trafficking, tissue-confirmed pseudoprogression, and glioma-specific immune responses in glioblastoma patients. These data support RNA-LPAs as a new technology that simultaneously reprograms the TME while eliciting rapid and enduring cancer immunotherapy.
Collapse
Affiliation(s)
- Hector R Mendez-Gomez
- University of Florida Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, Gainesville, FL 32610, USA
| | - Anna DeVries
- University of Florida Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, Gainesville, FL 32610, USA
| | - Paul Castillo
- University of Florida, Department of Pediatrics, Division of Hematology-Oncology, Gainesville, FL 32610, USA
| | - Christina von Roemeling
- University of Florida Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, Gainesville, FL 32610, USA
| | - Sadeem Qdaisat
- University of Florida Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, Gainesville, FL 32610, USA; University of Florida Genetics Institute, Gainesville, FL 32610, USA
| | - Brian D Stover
- University of Florida, Department of Pediatrics, Division of Hematology-Oncology, Gainesville, FL 32610, USA
| | - Chao Xie
- University of Florida Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, Gainesville, FL 32610, USA
| | - Frances Weidert
- University of Florida Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, Gainesville, FL 32610, USA
| | - Chong Zhao
- University of Florida Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, Gainesville, FL 32610, USA
| | - Rachel Moor
- University of Florida Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, Gainesville, FL 32610, USA
| | - Ruixuan Liu
- University of Florida Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, Gainesville, FL 32610, USA
| | - Dhruvkumar Soni
- University of Florida Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, Gainesville, FL 32610, USA
| | - Elizabeth Ogando-Rivas
- University of Florida Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, Gainesville, FL 32610, USA
| | - Jonathan Chardon-Robles
- University of Florida Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, Gainesville, FL 32610, USA
| | - James McGuiness
- University of Florida Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, Gainesville, FL 32610, USA
| | - Dingpeng Zhang
- University of Florida Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, Gainesville, FL 32610, USA
| | - Michael C Chung
- University of Texas at Austin, College of Pharmacy, Division of Chemical Biology and Medicinal Chemistry, Austin TX 78712
| | - Christiano Marconi
- University of Florida Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, Gainesville, FL 32610, USA
| | - Stephen Michel
- University of Florida Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, Gainesville, FL 32610, USA
| | - Arnav Barpujari
- University of Florida, Department of Pediatrics, Division of Hematology-Oncology, Gainesville, FL 32610, USA
| | - Gabriel W Jobin
- University of Florida, Department of Pediatrics, Division of Hematology-Oncology, Gainesville, FL 32610, USA
| | - Nagheme Thomas
- University of Florida Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, Gainesville, FL 32610, USA
| | - Xiaojie Ma
- University of Florida Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, Gainesville, FL 32610, USA; University of Florida, Department of Pediatrics, Division of Hematology-Oncology, Gainesville, FL 32610, USA
| | - Yodarlynis Campaneria
- University of Florida Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, Gainesville, FL 32610, USA
| | - Adam Grippin
- University of Florida Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, Gainesville, FL 32610, USA
| | - Aida Karachi
- University of Florida Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, Gainesville, FL 32610, USA
| | - Derek Li
- University of Florida, Division of Quantitative Sciences, UF Health Cancer Center, Gainesville, FL 32610, USA
| | - Bikash Sahay
- University of Florida, College of Veterinary Medicine, Gainesville, FL 32610, USA
| | - Leighton Elliott
- University of Florida, Department of Medicine, Division of Hematology-Oncology, Gainesville, FL 32610, USA
| | - Timothy P Foster
- University of Florida, Department of Pediatrics, Division of Hematology-Oncology, Gainesville, FL 32610, USA
| | - Kirsten E Coleman
- University of Florida, Department of Pediatrics, Division of Hematology-Oncology, Gainesville, FL 32610, USA
| | - Rowan J Milner
- University of Florida, College of Veterinary Medicine, Gainesville, FL 32610, USA
| | - W Gregory Sawyer
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - John A Ligon
- University of Florida, Department of Pediatrics, Division of Hematology-Oncology, Gainesville, FL 32610, USA
| | - Eugenio Simon
- University of Florida Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, Gainesville, FL 32610, USA
| | - Brian Cleaver
- University of Florida Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, Gainesville, FL 32610, USA
| | - Kristine Wynne
- University of Florida Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, Gainesville, FL 32610, USA
| | - Marcia Hodik
- University of Florida Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, Gainesville, FL 32610, USA
| | - Annette M Molinaro
- University of California, San Francisco, Department of Neurological Surgery, San Francisco, CA 94158, USA
| | - Juan Guan
- University of Texas at Austin, College of Pharmacy, Division of Chemical Biology and Medicinal Chemistry, Austin TX 78712
| | - Patrick Kellish
- University of Florida Interdisciplinary Center for Biotechnology Research, Gainesville, FL 32610, USA
| | - Andria Doty
- University of Florida Interdisciplinary Center for Biotechnology Research, Gainesville, FL 32610, USA
| | - Ji-Hyun Lee
- University of Florida, Department of Biostatistics, Gainesville, FL 32610, USA
| | - Tara Massini
- University of Florida, Department of Radiology, Gainesville, FL 32610, USA
| | - Jesse L Kresak
- University of Florida, Department of Pathology, Gainesville, FL 32610, USA
| | - Jianping Huang
- University of Florida Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, Gainesville, FL 32610, USA
| | - Eugene I Hwang
- Children's National Hospital, Center for Cancer and Blood Disorders, Washington, DC 20010, USA
| | - Cassie Kline
- University of Pennsylvania Perelman School of Medicine, Children's Hospital of Philadelphia, Department of Pediatrics, Division of Oncology, Philadelphia, PA 19104, USA
| | | | - Maryam Rahman
- University of Florida Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, Gainesville, FL 32610, USA
| | - Sebastian Gatica
- University of Florida, Department of Anesthesiology, Gainesville, FL 32610, USA
| | - Sabine Mueller
- University of California, San Francisco, Department of Neurology, Neurological Surgery, and Pediatrics, San Francisco, CA 94158, USA
| | - Michael Prados
- University of California, San Francisco, Department of Neurological Surgery, San Francisco, CA 94158, USA
| | - Ashley P Ghiaseddin
- University of Florida Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, Gainesville, FL 32610, USA
| | - Natalie L Silver
- Cleveland Clinic, Center of Immunotherapy and Precision Immuno-Oncology/Head and Neck Institute, Cleveland, OH 44106, USA
| | - Duane A Mitchell
- University of Florida Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, Gainesville, FL 32610, USA
| | - Elias J Sayour
- University of Florida Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, Gainesville, FL 32610, USA; University of Florida, Department of Pediatrics, Division of Hematology-Oncology, Gainesville, FL 32610, USA.
| |
Collapse
|
21
|
Lin H, Liu C, Hu A, Zhang D, Yang H, Mao Y. Understanding the immunosuppressive microenvironment of glioma: mechanistic insights and clinical perspectives. J Hematol Oncol 2024; 17:31. [PMID: 38720342 PMCID: PMC11077829 DOI: 10.1186/s13045-024-01544-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 04/10/2024] [Indexed: 05/12/2024] Open
Abstract
Glioblastoma (GBM), the predominant and primary malignant intracranial tumor, poses a formidable challenge due to its immunosuppressive microenvironment, thereby confounding conventional therapeutic interventions. Despite the established treatment regimen comprising surgical intervention, radiotherapy, temozolomide administration, and the exploration of emerging modalities such as immunotherapy and integration of medicine and engineering technology therapy, the efficacy of these approaches remains constrained, resulting in suboptimal prognostic outcomes. In recent years, intensive scrutiny of the inhibitory and immunosuppressive milieu within GBM has underscored the significance of cellular constituents of the GBM microenvironment and their interactions with malignant cells and neurons. Novel immune and targeted therapy strategies have emerged, offering promising avenues for advancing GBM treatment. One pivotal mechanism orchestrating immunosuppression in GBM involves the aggregation of myeloid-derived suppressor cells (MDSCs), glioma-associated macrophage/microglia (GAM), and regulatory T cells (Tregs). Among these, MDSCs, though constituting a minority (4-8%) of CD45+ cells in GBM, play a central component in fostering immune evasion and propelling tumor progression, angiogenesis, invasion, and metastasis. MDSCs deploy intricate immunosuppressive mechanisms that adapt to the dynamic tumor microenvironment (TME). Understanding the interplay between GBM and MDSCs provides a compelling basis for therapeutic interventions. This review seeks to elucidate the immune regulatory mechanisms inherent in the GBM microenvironment, explore existing therapeutic targets, and consolidate recent insights into MDSC induction and their contribution to GBM immunosuppression. Additionally, the review comprehensively surveys ongoing clinical trials and potential treatment strategies, envisioning a future where targeting MDSCs could reshape the immune landscape of GBM. Through the synergistic integration of immunotherapy with other therapeutic modalities, this approach can establish a multidisciplinary, multi-target paradigm, ultimately improving the prognosis and quality of life in patients with GBM.
Collapse
Affiliation(s)
- Hao Lin
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Chaxian Liu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Ankang Hu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Duanwu Zhang
- Children's Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, People's Republic of China.
| | - Hui Yang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, People's Republic of China.
- Institute for Translational Brain Research, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, People's Republic of China.
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
| |
Collapse
|
22
|
Long X, Zhang Z, Li Y, Deng K, Gao W, Huang M, Wang X, Lin X, She X, Zhao Y, Zhang M, Huang C, Wang S, Du Y, Du P, Chen S, Liu Q, Wu M. ScRNA-seq reveals novel immune-suppressive T cells and investigates CMV-TCR-T cells cytotoxicity against GBM. J Immunother Cancer 2024; 12:e008967. [PMID: 38688579 PMCID: PMC11086384 DOI: 10.1136/jitc-2024-008967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND Glioblastoma (GBM) is a fatal primary brain malignancy in adults. Previous studies have shown that cytomegalovirus (CMV) is a risk factor for tumorigenesis and aggressiveness for glioblastoma. However, little is known about how CMV infection affects immune cells in the tumor microenvironment of GBM. Furthermore, there has been almost no engineered T-cell receptor (TCR)-T targeting CMV for GBM research to date. METHODS We evaluated the CMV infection status of patients with GBM's tumor tissue by immune electron microscopy, immunofluorescence, and droplet digital PCR. We performed single-cell RNA sequencing for CMV-infected GBM to investigate the effects of CMV on the GBM immune microenvironment. CellChat was applied to analyze the interaction between cells in the GBM tumor microenvironment. Additionally, we conducted single-cell TCR/B cell receptor (BCR) sequencing and Grouping of Lymphocyte Interactions with Paratope Hotspots 2 algorithms to acquire specific CMV-TCR sequences. Genetic engineering was used to introduce CMV-TCR into primary T cells derived from patients with CMV-infected GBM. Flow cytometry was used to measure the proportion and cytotoxicity status of T cells in vitro. RESULTS We identified two novel immune cell subpopulations in CMV-infected GBM, which were bipositive CD68+SOX2+ tumor-associated macrophages and FXYD6+ T cells. We highlighted that the interaction between bipositive TAMs or cancer cells and T cells was predominantly focused on FXYD6+ T cells rather than regulatory T cells (Tregs), whereas, FXYD6+ T cells were further identified as a group of novel immunosuppressive T cells. CMV-TCR-T cells showed significant therapeutic effects on the human-derived orthotopic GBM mice model. CONCLUSIONS These findings provided an insight into the underlying mechanism of CMV infection promoting the GBM immunosuppression, and provided a novel potential immunotherapy strategy for patients with GBM.
Collapse
Affiliation(s)
- Xinmiao Long
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
- FuRong Laboratory, Central South University, Changsha, Hunan, China
| | - Zuping Zhang
- Department of Pathogeny Biology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Yuzhe Li
- Department of Neurosurgery in Xiangya Hospital, Central South University, Changsha, Hunan, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, Peking University, Beijing, China
| | - Kun Deng
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
- FuRong Laboratory, Central South University, Changsha, Hunan, China
| | - Wei Gao
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
- FuRong Laboratory, Central South University, Changsha, Hunan, China
| | - Meng Huang
- Department of Neurosurgery in Xiangya Hospital, Central South University, Changsha, Hunan, China
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China Medical Research Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiangyu Wang
- Department of Neurosurgery in Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiang Lin
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Xiaoling She
- Department of Pathology in Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yiming Zhao
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Department of Pathogeny Biology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Minfu Zhang
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Cheng Huang
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
- FuRong Laboratory, Central South University, Changsha, Hunan, China
| | - Shiyi Wang
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
- FuRong Laboratory, Central South University, Changsha, Hunan, China
| | - Yinfei Du
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
- FuRong Laboratory, Central South University, Changsha, Hunan, China
| | - Peng Du
- Department of Neurosurgery, The Second Affiliated Hospital, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Shuai Chen
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Qing Liu
- Department of Neurosurgery in Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Minghua Wu
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
- FuRong Laboratory, Central South University, Changsha, Hunan, China
| |
Collapse
|
23
|
De la Cerda-Vargas MF, Pantalone MR, Söderberg Nauclér C, Medrano-Guzman R, Jauregui Renaud K, Nettel Rueda B, Reynoso-Sanchez MDJ, Lopez-Quintana B, Rodriguez-Florido MA, Feria-Romero IA, Trejo-Rosales RR, Arreola-Rosales RL, Candelas-Rangel JA, Navarro-Dominguez P, Meza-Mata E, Muñoz- Hernandez MA, Segura-Lopez F, Gonzalez-Martinez MDR, Delgado-Aguirre HA, Sandoval-Bonilla BA. Focal-to-bilateral tonic-clonic seizures and High-grade CMV-infection are poor survival predictors in Tumor-related Epilepsy Adult-type diffuse gliomas-A single-center study and literature review. Heliyon 2024; 10:e28555. [PMID: 38623248 PMCID: PMC11016600 DOI: 10.1016/j.heliyon.2024.e28555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/11/2024] [Accepted: 03/20/2024] [Indexed: 04/17/2024] Open
Abstract
Introduction Previous studies have reported a correlation between a high-grade CMV-infection and an unfavorable prognosis in glioblastoma (GB). Coversely, epilepsy has been associated with a more favorable outcome in GB patients. Despites epilepsy and CMV share similar molecular mechanisms in GB tumoral microenvironment, the correlation between Tumor-Related-Epilepsy (TRE) and CMVinfection remains unexplored. The aim of our study is to examine the correlation between the dregree of CMV infection and seizure types on the survival of TRE Adult-type-diffuse-glioma. To achieve this objective, we conducted a comprehensive literature review to assess our results regarding previous publications. Methods We conducted a retrospective-observational study on TRE Adult-type-diffuse-gliomas treated at a single center in Mexico from 2010 to 2018. Tumor tissue and cDNA were analyzed by immunochemistry (IHC) for CMV (IE and LA antigens) at the Karolinska Institute in Sweden, and RT-PCR for CMV-gB in Torreon Mexico, respectively. Bivariate analysis (X2-test) was performed to evaluate the association between subtypes of Adult-type-diffuse-glioma (IDH-mut grade 4 astrocytoma vs. IDH-wt glioblastoma) and the following variables: type of hemispheric involvement (mesial vs. neocortical involvement), degree of CMV infection (<25%vs. >25% infected-tumoral cells) and seizure types [Focal awareness, focal impaired awareness, and FBTCS]. Kaplan Meier and Cox analyses were performed to determine the risk, p < 0.05 was considered statistically significant. Results Sixty patients with TRE Adult type diffuse gliomas were included (80% IDH-wt glioblastoma and 20% IDH-mut grade 4astrocytomas). The mean age was 61.5 SD ± 18.4, and 57% were male. Fifty percent of the patients presented with mesial involvement of the hemysphere. Seizure types included focal awareness (15%), focal impaired awareness (43.3%), and FBTCS (41.7%). Ninety percent of cases were treated with Levetiracetam and 33.3% presented Engel-IA postoperative seizure control. More than 90% of samples were positive for CMV-immunohistochemistry (IHC). However, all cDNA analyzed by RT-PCR return negative results. The median of overall survival (OS) was 15 months. High-grade CMV-IE infection (14 vs. 25 months, p<0.001), mesial involvement (12 vs. 18 months, p<0.001), and FBTCS were associated with worse OS (9 vs.18 months for non-FBTCS). Multivariate analysis demonstrated that high-grade CMV infection (HR = 3.689, p=0.002) and FBTCS (HR=7.007, p<0.001) were independent unfavorable survival factors. Conclusions CMV induces a proinflammatory tumoral microenvironment that contributes to the developmet of epilepsy. Tumor progression could be associated not only with a higher degree of CMV infection but also to epileptogenesis, resulting in a seizure phenotype chracterized by FBTCS and poor survival outcomes. This study represents the first survival analysis in Latin America to include a representative sample of TRE Adult-type diffuse gliomas considering CMV-infection-degree and distinguishing features (such as FBTCS) that might have potential clinical relevance in this group of patients. Further prospective studies are required to validate these results.
Collapse
Affiliation(s)
- Maria F. De la Cerda-Vargas
- Department of Neurosurgery and Neurotechnology, Universitätsklinik Tübingen, Tübingen, Germany
- Department of Neurosurgery, Medical Specialties Hospital No. 71, Instituto Mexicano del Seguro Social, Torreon Coahuila, Mexico
| | - Mattia Russel Pantalone
- Department of Medicine, Solna, BioClinicum, Karolinska Institutet, 171 64, Stockholm, Sweden
- Department of Neurology, Karolinska University Hospital, 171 76, Stockholm, Sweden
| | - Cecilia Söderberg Nauclér
- Department of Medicine, Solna, BioClinicum, Karolinska Institutet, 171 64, Stockholm, Sweden
- Department of Biosciences at the University of Turku, InFLAMES Research Flagship Center, MediCity, University of Turku, Finland
| | - Rafael Medrano-Guzman
- Department of Sarcomas, Oncology Hospital, High Specialty Medical Unit (UMAE), National Medical Center, IMSS, Mexico City, Mexico
| | - Kathrine Jauregui Renaud
- Medical Research Unit in Otoneurology, Mexican Institute of Social Security, Mexico City, 06720, Mexico
| | - Barbara Nettel Rueda
- Department of Neurosurgery, Hospital de Especialidades, Centro Médico Nacional (CMN) Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Ma de Jesus Reynoso-Sanchez
- Department of Neuroanesthesiology, CMN Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico, 06720
| | - Brenda Lopez-Quintana
- Department of Neuroanesthesiology, CMN Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico, 06720
| | | | - Iris A. Feria-Romero
- Medical Research Unit in Neurological Diseases, Specialties Hospital, National Medical Center Siglo XXI, Mexican Institute of Social Security, Mexico City, Mexico
| | - Rogelio R. Trejo-Rosales
- Medical Oncology, Hospital de Oncología, Centro Medico Nacional Siglo XXI, Instituto Mexicano Del Seguro Social, Mexico City, 06720, Mexico
| | | | - Jose A. Candelas-Rangel
- Department of Neurosurgery, Medical Specialties Hospital No. 71, Instituto Mexicano del Seguro Social, Torreon Coahuila, Mexico
| | - Pedro Navarro-Dominguez
- Department of Neurosurgery, Medical Specialties Hospital No. 71, Instituto Mexicano del Seguro Social, Torreon Coahuila, Mexico
| | - Elizabeth Meza-Mata
- Department of Pathology, Medical Specialties Hospital No. 71, Instituto Mexicano del Seguro Social, Torreon, Coahuila, Mexico
| | - Melisa A. Muñoz- Hernandez
- Department of Health and Research, Medical Specialties Hospital No. 71, Instituto Mexicano del Seguro Social, Torreón, Coahuila, Mexico
| | - F.K. Segura-Lopez
- Department of Health and Research, Medical Specialties Hospital No. 71, Instituto Mexicano del Seguro Social, Torreón, Coahuila, Mexico
| | | | - Hector A. Delgado-Aguirre
- Department of Transplants, Medical Specialties Hospital No. 71, Instituto Mexicano del Seguro Social, Torreón, Coahuila, Mexico
| | - Bayron A. Sandoval-Bonilla
- Department of Neurosurgery, Epilepsy Surgery Multidisciplinary Board, Functional NeuroOncology Clinic, CMN Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, 06720, Mexico
| |
Collapse
|
24
|
Wang J, Zhu H, Gan J, Liang G, Li L, Zhao Y. Engineered mRNA Delivery Systems for Biomedical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308029. [PMID: 37805865 DOI: 10.1002/adma.202308029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/05/2023] [Indexed: 10/09/2023]
Abstract
Messenger RNA (mRNA)-based therapeutic strategies have shown remarkable promise in preventing and treating a staggering range of diseases. Optimizing the structure and delivery system of engineered mRNA has greatly improved its stability, immunogenicity, and protein expression levels, which has led to a wider range of uses for mRNA therapeutics. Herein, a thorough analysis of the optimization strategies used in the structure of mRNA is first provided and delivery systems are described in great detail. Furthermore, the latest advancements in biomedical engineering for mRNA technology, including its applications in combatting infectious diseases, treating cancer, providing protein replacement therapy, conducting gene editing, and more, are summarized. Lastly, a perspective on forthcoming challenges and prospects concerning the advancement of mRNA therapeutics is offered. Despite these challenges, mRNA-based therapeutics remain promising, with the potential to revolutionize disease treatment and contribute to significant advancements in the biomedical field.
Collapse
Affiliation(s)
- Ji Wang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Haofang Zhu
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Jingjing Gan
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Gaofeng Liang
- Institute of Organoids on Chips Translational Research, Henan Academy of Sciences, Zhengzhou, 450009, China
| | - Ling Li
- Department of Endocrinology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Yuanjin Zhao
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
- Institute of Organoids on Chips Translational Research, Henan Academy of Sciences, Zhengzhou, 450009, China
| |
Collapse
|
25
|
Salvato I, Marchini A. Immunotherapeutic Strategies for the Treatment of Glioblastoma: Current Challenges and Future Perspectives. Cancers (Basel) 2024; 16:1276. [PMID: 38610954 PMCID: PMC11010873 DOI: 10.3390/cancers16071276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/14/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
Despite decades of research and the best up-to-date treatments, grade 4 Glioblastoma (GBM) remains uniformly fatal with a patient median overall survival of less than 2 years. Recent advances in immunotherapy have reignited interest in utilizing immunological approaches to fight cancer. However, current immunotherapies have so far not met the anticipated expectations, achieving modest results in their journey from bench to bedside for the treatment of GBM. Understanding the intrinsic features of GBM is of crucial importance for the development of effective antitumoral strategies to improve patient life expectancy and conditions. In this review, we provide a comprehensive overview of the distinctive characteristics of GBM that significantly influence current conventional therapies and immune-based approaches. Moreover, we present an overview of the immunotherapeutic strategies currently undergoing clinical evaluation for GBM treatment, with a specific emphasis on those advancing to phase 3 clinical studies. These encompass immune checkpoint inhibitors, adoptive T cell therapies, vaccination strategies (i.e., RNA-, DNA-, and peptide-based vaccines), and virus-based approaches. Finally, we explore novel innovative strategies and future prospects in the field of immunotherapy for GBM.
Collapse
Affiliation(s)
- Ilaria Salvato
- NORLUX Neuro-Oncology Laboratory, Department of Cancer Research, Luxembourg Institute of Health (LIH), L-1210 Luxembourg, Luxembourg;
- Laboratory of Oncolytic Virus Immuno-Therapeutics (LOVIT), Department of Cancer Research, Luxembourg Institute of Health (LIH), L-1210 Luxembourg, Luxembourg
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine (FSTM), University of Luxembourg, L-4367 Belvaux, Luxembourg
| | - Antonio Marchini
- Laboratory of Oncolytic Virus Immuno-Therapeutics (LOVIT), Department of Cancer Research, Luxembourg Institute of Health (LIH), L-1210 Luxembourg, Luxembourg
- Laboratory of Oncolytic Virus Immuno-Therapeutics, German Cancer Research Center, 69120 Heidelberg, Germany
| |
Collapse
|
26
|
Parhiz H, Atochina-Vasserman EN, Weissman D. mRNA-based therapeutics: looking beyond COVID-19 vaccines. Lancet 2024; 403:1192-1204. [PMID: 38461842 DOI: 10.1016/s0140-6736(23)02444-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 07/06/2023] [Accepted: 10/30/2023] [Indexed: 03/12/2024]
Abstract
Recent advances in mRNA technology and its delivery have enabled mRNA-based therapeutics to enter a new era in medicine. The rapid, potent, and transient nature of mRNA-encoded proteins, without the need to enter the nucleus or the risk of genomic integration, makes them desirable tools for treatment of a range of diseases, from infectious diseases to cancer and monogenic disorders. The rapid pace and ease of mass-scale manufacturability of mRNA-based therapeutics supported the global response to the COVID-19 pandemic. Nonetheless, challenges remain with regards to mRNA stability, duration of expression, delivery efficiency, and targetability, to broaden the applicability of mRNA therapeutics beyond COVID-19 vaccines. By learning from the rapidly expanding preclinical and clinical studies, we can optimise the mRNA platform to meet the clinical needs of each disease. Here, we will summarise the recent advances in mRNA technology; its use in vaccines, immunotherapeutics, protein replacement therapy, and genomic editing; and its delivery to desired specific cell types and organs for development of a new generation of targeted mRNA-based therapeutics.
Collapse
Affiliation(s)
- Hamideh Parhiz
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Drew Weissman
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
27
|
Ogando-Rivas E, Castillo P, Yang C, Trivedi V, Zhang D, Pohl-Guimarães F, Liu R, Barpujari A, Candelario KM, Mendez-Gomez H, Sayour EJ, Mitchell DA. Expanded specific T cells to hypomutated regions of the SARS-CoV-2 using mRNA electroporated antigen-presenting cells. Mol Ther Methods Clin Dev 2024; 32:101192. [PMID: 38327807 PMCID: PMC10847775 DOI: 10.1016/j.omtm.2024.101192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 01/18/2024] [Indexed: 02/09/2024]
Abstract
The COVID-19 pandemic has caused about seven million deaths worldwide. Preventative vaccines have been developed including Spike gp mRNA-based vaccines that provide protection to immunocompetent patients. However, patients with primary immunodeficiencies, patients with cancer, or hematopoietic stem cell transplant recipients are not able to mount robust immune responses against current vaccine approaches. We propose to target structural SARS-CoV-2 antigens (i.e., Spike gp, Membrane, Nucleocapsid, and Envelope) using circulating human antigen-presenting cells electroporated with full length SARS-CoV-2 structural protein-encoding mRNAs to activate and expand specific T cells. Based on the Th1-type cytokine and cytolytic enzyme secretion upon antigen rechallenge, we were able to generate SARS-CoV-2 specific T cells in up to 70% of unexposed unvaccinated healthy donors (HDs) after 3 subsequent stimulations and in 100% of recovered patients (RPs) after 2 stimulations. By means of SARS-CoV-2 specific TCRβ repertoire analysis, T cells specific to Spike gp-derived hypomutated regions were identified in HDs and RPs despite viral genomic evolution. Hence, we demonstrated that SARS-CoV-2 mRNA-loaded antigen-presenting cells are effective activating and expanding COVID19-specific T cells. This approach represents an alternative to patients who are not able to mount adaptive immune responses to current COVID-19 vaccines with potential protection across new variants that have conserved genetic regions.
Collapse
Affiliation(s)
- Elizabeth Ogando-Rivas
- UF Brain Tumor Immunotherapy Program, Preston A. Wells Center for Brain Tumor Therapy, Lillian S. Wells Department of Neurosurgery, University of Florida, Gainesville, FL, USA
| | - Paul Castillo
- UF Division of Pediatric Hematology Oncology, Department of Pediatrics, University of Florida, Gainesville, FL, USA
| | - Changlin Yang
- UF Brain Tumor Immunotherapy Program, Preston A. Wells Center for Brain Tumor Therapy, Lillian S. Wells Department of Neurosurgery, University of Florida, Gainesville, FL, USA
| | - Vrunda Trivedi
- UF Brain Tumor Immunotherapy Program, Preston A. Wells Center for Brain Tumor Therapy, Lillian S. Wells Department of Neurosurgery, University of Florida, Gainesville, FL, USA
| | - Dingpeng Zhang
- UF Brain Tumor Immunotherapy Program, Preston A. Wells Center for Brain Tumor Therapy, Lillian S. Wells Department of Neurosurgery, University of Florida, Gainesville, FL, USA
| | - Fernanda Pohl-Guimarães
- UF Brain Tumor Immunotherapy Program, Preston A. Wells Center for Brain Tumor Therapy, Lillian S. Wells Department of Neurosurgery, University of Florida, Gainesville, FL, USA
| | - Ruixuan Liu
- UF Brain Tumor Immunotherapy Program, Preston A. Wells Center for Brain Tumor Therapy, Lillian S. Wells Department of Neurosurgery, University of Florida, Gainesville, FL, USA
| | - Arnav Barpujari
- UF Division of Pediatric Hematology Oncology, Department of Pediatrics, University of Florida, Gainesville, FL, USA
| | - Kate M. Candelario
- UF Brain Tumor Immunotherapy Program, Preston A. Wells Center for Brain Tumor Therapy, Lillian S. Wells Department of Neurosurgery, University of Florida, Gainesville, FL, USA
| | - Hector Mendez-Gomez
- UF Brain Tumor Immunotherapy Program, Preston A. Wells Center for Brain Tumor Therapy, Lillian S. Wells Department of Neurosurgery, University of Florida, Gainesville, FL, USA
| | - Elias J. Sayour
- UF Brain Tumor Immunotherapy Program, Preston A. Wells Center for Brain Tumor Therapy, Lillian S. Wells Department of Neurosurgery, University of Florida, Gainesville, FL, USA
- UF Division of Pediatric Hematology Oncology, Department of Pediatrics, University of Florida, Gainesville, FL, USA
| | - Duane A. Mitchell
- UF Brain Tumor Immunotherapy Program, Preston A. Wells Center for Brain Tumor Therapy, Lillian S. Wells Department of Neurosurgery, University of Florida, Gainesville, FL, USA
| |
Collapse
|
28
|
Obrador E, Moreno-Murciano P, Oriol-Caballo M, López-Blanch R, Pineda B, Gutiérrez-Arroyo JL, Loras A, Gonzalez-Bonet LG, Martinez-Cadenas C, Estrela JM, Marqués-Torrejón MÁ. Glioblastoma Therapy: Past, Present and Future. Int J Mol Sci 2024; 25:2529. [PMID: 38473776 DOI: 10.3390/ijms25052529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/10/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
Glioblastoma (GB) stands out as the most prevalent and lethal form of brain cancer. Although great efforts have been made by clinicians and researchers, no significant improvement in survival has been achieved since the Stupp protocol became the standard of care (SOC) in 2005. Despite multimodality treatments, recurrence is almost universal with survival rates under 2 years after diagnosis. Here, we discuss the recent progress in our understanding of GB pathophysiology, in particular, the importance of glioma stem cells (GSCs), the tumor microenvironment conditions, and epigenetic mechanisms involved in GB growth, aggressiveness and recurrence. The discussion on therapeutic strategies first covers the SOC treatment and targeted therapies that have been shown to interfere with different signaling pathways (pRB/CDK4/RB1/P16ink4, TP53/MDM2/P14arf, PI3k/Akt-PTEN, RAS/RAF/MEK, PARP) involved in GB tumorigenesis, pathophysiology, and treatment resistance acquisition. Below, we analyze several immunotherapeutic approaches (i.e., checkpoint inhibitors, vaccines, CAR-modified NK or T cells, oncolytic virotherapy) that have been used in an attempt to enhance the immune response against GB, and thereby avoid recidivism or increase survival of GB patients. Finally, we present treatment attempts made using nanotherapies (nanometric structures having active anti-GB agents such as antibodies, chemotherapeutic/anti-angiogenic drugs or sensitizers, radionuclides, and molecules that target GB cellular receptors or open the blood-brain barrier) and non-ionizing energies (laser interstitial thermal therapy, high/low intensity focused ultrasounds, photodynamic/sonodynamic therapies and electroporation). The aim of this review is to discuss the advances and limitations of the current therapies and to present novel approaches that are under development or following clinical trials.
Collapse
Affiliation(s)
- Elena Obrador
- Scientia BioTech S.L., 46002 Valencia, Spain
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain
| | | | - María Oriol-Caballo
- Scientia BioTech S.L., 46002 Valencia, Spain
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain
| | - Rafael López-Blanch
- Scientia BioTech S.L., 46002 Valencia, Spain
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain
| | - Begoña Pineda
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain
| | | | - Alba Loras
- Department of Medicine, Jaume I University of Castellon, 12071 Castellon, Spain
| | - Luis G Gonzalez-Bonet
- Department of Neurosurgery, Castellon General University Hospital, 12004 Castellon, Spain
| | | | - José M Estrela
- Scientia BioTech S.L., 46002 Valencia, Spain
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain
- Department of Physiology, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Spain
| | | |
Collapse
|
29
|
Xiong Z, Raphael I, Olin M, Okada H, Li X, Kohanbash G. Glioblastoma vaccines: past, present, and opportunities. EBioMedicine 2024; 100:104963. [PMID: 38183840 PMCID: PMC10808938 DOI: 10.1016/j.ebiom.2023.104963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/21/2023] [Accepted: 12/24/2023] [Indexed: 01/08/2024] Open
Abstract
Glioblastoma (GBM) is one of the most lethal central nervous systems (CNS) tumours in adults. As supplements to standard of care (SOC), various immunotherapies improve the therapeutic effect in other cancers. Among them, tumour vaccines can serve as complementary monotherapy or boost the clinical efficacy with other immunotherapies, such as immune checkpoint blockade (ICB) and chimeric antigen receptor T cells (CAR-T) therapy. Previous studies in GBM therapeutic vaccines have suggested that few neoantigens could be targeted in GBM due to low mutation burden, and single-peptide therapeutic vaccination had limited efficacy in tumour control as monotherapy. Combining diverse antigens, including neoantigens, tumour-associated antigens (TAAs), and pathogen-derived antigens, and optimizing vaccine design or vaccination strategy may help with clinical efficacy improvement. In this review, we discussed current GBM therapeutic vaccine platforms, evaluated and potential antigenic targets, current challenges, and perspective opportunities for efficacy improvement.
Collapse
Affiliation(s)
- Zujian Xiong
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15201, USA; Xiangya School of Medicine, Central South University, Changsha, Hunan 410008, PR China
| | - Itay Raphael
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15201, USA
| | - Michael Olin
- Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Hideho Okada
- Department of Neurological Surgery, University of California, San Francisco, CA 94143, USA
| | - Xuejun Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, Hunan 410008 PR China.
| | - Gary Kohanbash
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15201, USA; Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| |
Collapse
|
30
|
Trivedi V, Yang C, Klippel K, Yegorov O, von Roemeling C, Hoang-Minh L, Fenton G, Ogando-Rivas E, Castillo P, Moore G, Long-James K, Dyson K, Doonan B, Flores C, Mitchell DA. mRNA-based precision targeting of neoantigens and tumor-associated antigens in malignant brain tumors. Genome Med 2024; 16:17. [PMID: 38268001 PMCID: PMC10809449 DOI: 10.1186/s13073-024-01281-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 01/02/2024] [Indexed: 01/26/2024] Open
Abstract
BACKGROUND Despite advancements in the successful use of immunotherapy in treating a variety of solid tumors, applications in treating brain tumors have lagged considerably. This is due, at least in part, to the lack of well-characterized antigens expressed within brain tumors that can mediate tumor rejection; the low mutational burden of these tumors that limits the abundance of targetable neoantigens; and the immunologically "cold" tumor microenvironment that hampers the generation of sustained and productive immunologic responses. The field of mRNA-based therapeutics has experienced a boon following the universal approval of COVID-19 mRNA vaccines. mRNA-based immunotherapeutics have also garnered widespread interest for their potential to revolutionize cancer treatment. In this study, we developed a novel and scalable approach for the production of personalized mRNA-based therapeutics that target multiple tumor rejection antigens in a single therapy for the treatment of refractory brain tumors. METHODS Tumor-specific neoantigens and aberrantly overexpressed tumor-associated antigens were identified for glioblastoma and medulloblastoma tumors using our cancer immunogenomics pipeline called Open Reading Frame Antigen Network (O.R.A.N). Personalized tumor antigen-specific mRNA vaccine was developed for each individual tumor model using selective gene capture and enrichment strategy. The immunogenicity and efficacy of the personalized mRNA vaccines was evaluated in combination with anti-PD-1 immune checkpoint blockade therapy or adoptive cellular therapy with ex vivo expanded tumor antigen-specific lymphocytes in highly aggressive murine GBM models. RESULTS Our results demonstrate the effectiveness of the antigen-specific mRNA vaccines in eliciting robust anti-tumor immune responses in GBM hosts. Our findings substantiate an increase in tumor-infiltrating lymphocytes characterized by enhanced effector function, both intratumorally and systemically, after antigen-specific mRNA-directed immunotherapy, resulting in a favorable shift in the tumor microenvironment from immunologically cold to hot. Capacity to generate personalized mRNA vaccines targeting human GBM antigens was also demonstrated. CONCLUSIONS We have established a personalized and customizable mRNA-therapeutic approach that effectively targets a plurality of tumor antigens and demonstrated potent anti-tumor response in preclinical brain tumor models. This platform mRNA technology uniquely addresses the challenge of tumor heterogeneity and low antigen burden, two key deficiencies in targeting the classically immunotherapy-resistant CNS malignancies, and possibly other cold tumor types.
Collapse
Affiliation(s)
- Vrunda Trivedi
- University of Florida, 1333 Center Drive, BSB B1-118, Gainesville, FL, 32610, USA
| | - Changlin Yang
- University of Florida, 1333 Center Drive, BSB B1-118, Gainesville, FL, 32610, USA
| | - Kelena Klippel
- University of Florida, 1333 Center Drive, BSB B1-118, Gainesville, FL, 32610, USA
| | - Oleg Yegorov
- University of Florida, 1333 Center Drive, BSB B1-118, Gainesville, FL, 32610, USA
| | | | - Lan Hoang-Minh
- University of Florida, 1333 Center Drive, BSB B1-118, Gainesville, FL, 32610, USA
| | - Graeme Fenton
- University of Florida, 1333 Center Drive, BSB B1-118, Gainesville, FL, 32610, USA
| | | | - Paul Castillo
- University of Florida, 1333 Center Drive, BSB B1-118, Gainesville, FL, 32610, USA
| | - Ginger Moore
- University of Florida, 1333 Center Drive, BSB B1-118, Gainesville, FL, 32610, USA
| | - Kaytora Long-James
- University of Florida, 1333 Center Drive, BSB B1-118, Gainesville, FL, 32610, USA
| | - Kyle Dyson
- University of Florida, 1333 Center Drive, BSB B1-118, Gainesville, FL, 32610, USA
| | - Bently Doonan
- University of Florida, 1333 Center Drive, BSB B1-118, Gainesville, FL, 32610, USA
| | - Catherine Flores
- University of Florida, 1333 Center Drive, BSB B1-118, Gainesville, FL, 32610, USA
| | - Duane A Mitchell
- University of Florida, 1333 Center Drive, BSB B1-118, Gainesville, FL, 32610, USA.
| |
Collapse
|
31
|
Sauerer T, Albrecht L, Sievers NM, Gerer KF, Hoyer S, Dörrie J, Schaft N. Electroporation of mRNA as a Universal Technology Platform to Transfect a Variety of Primary Cells with Antigens and Functional Proteins. Methods Mol Biol 2024; 2786:219-235. [PMID: 38814397 DOI: 10.1007/978-1-0716-3770-8_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Electroporation (EP) of mRNA into human cells is a broadly applicable method to transiently express proteins of choice in a variety of different cell types. We have spent more than two decades to optimize and adapt this method, first for antigen-loading of dendritic cells (DCs) and subsequently for T cells, B cells, bulk PBMCs, and several cell lines. In this regard, antigens were introduced, processed, and presented in context of MHC class I and II. Next to that, functional proteins like adhesion receptors, T-cell receptors (TCRs), chimeric antigen receptors (CARs), constitutively active signal transducers (i.e. caIKK), and others were successfully expressed. We have also established this protocol under full GMP compliance as part of a manufacturing license to produce mRNA-electroporated DCs and mRNA-electroporated T cells for therapeutic applications in clinical trials. Therefore, we here want to share our universal mRNA electroporation protocol and the experience we have gathered with this method. The advantages of the transfection method presented here are: (1) easy adaptation to different cell types; (2) scalability from 106 to approximately 108 cells per shot; (3) high transfection efficiency (80-99%); (4) homogenous protein expression; (5) GMP compliance if the EP is performed in a class A clean room; and (6) no transgene integration into the genome. The provided protocol involves: OptiMEM® as EP medium, a square-wave pulse with 500 V, and 4 mm cuvettes. To adapt the protocol to differently sized cells, simply the pulse time has to be altered. Thus, we share an overview of proven electroporation settings (including recovery media), which we have established for various cell types. Next to the basic protocol, we also provide an extensive list of hints and tricks, which, in our opinion, are of great value for everyone who intends to use this transfection technique.
Collapse
Affiliation(s)
- Tatjana Sauerer
- RNA-based Immunotherapy, Department of Dermatology, Universitätsklinikum Erlangen (UKER), Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Leoni Albrecht
- RNA-based Immunotherapy, Department of Dermatology, Universitätsklinikum Erlangen (UKER), Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Nico M Sievers
- RNA-based Immunotherapy, Department of Dermatology, Universitätsklinikum Erlangen (UKER), Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Kerstin F Gerer
- RNA-based Immunotherapy, Department of Dermatology, Universitätsklinikum Erlangen (UKER), Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
- Novartis Pharma GmbH, Nuremberg, Germany
| | - Stefanie Hoyer
- RNA-based Immunotherapy, Department of Dermatology, Universitätsklinikum Erlangen (UKER), Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
- Department of Palliative Medicine, Universitätsklinikum Erlangen, Comprehensive Cancer Center CCC Erlangen-EMN, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Jan Dörrie
- RNA-based Immunotherapy, Department of Dermatology, Universitätsklinikum Erlangen (UKER), Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Niels Schaft
- RNA-based Immunotherapy, Department of Dermatology, Universitätsklinikum Erlangen (UKER), Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany.
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), Erlangen, Germany.
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany.
| |
Collapse
|
32
|
Fan T, Zhang M, Yang J, Zhu Z, Cao W, Dong C. Therapeutic cancer vaccines: advancements, challenges, and prospects. Signal Transduct Target Ther 2023; 8:450. [PMID: 38086815 PMCID: PMC10716479 DOI: 10.1038/s41392-023-01674-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 09/08/2023] [Accepted: 09/19/2023] [Indexed: 12/18/2023] Open
Abstract
With the development and regulatory approval of immune checkpoint inhibitors and adoptive cell therapies, cancer immunotherapy has undergone a profound transformation over the past decades. Recently, therapeutic cancer vaccines have shown promise by eliciting de novo T cell responses targeting tumor antigens, including tumor-associated antigens and tumor-specific antigens. The objective was to amplify and diversify the intrinsic repertoire of tumor-specific T cells. However, the complete realization of these capabilities remains an ongoing pursuit. Therefore, we provide an overview of the current landscape of cancer vaccines in this review. The range of antigen selection, antigen delivery systems development the strategic nuances underlying effective antigen presentation have pioneered cancer vaccine design. Furthermore, this review addresses the current status of clinical trials and discusses their strategies, focusing on tumor-specific immunogenicity and anti-tumor efficacy assessment. However, current clinical attempts toward developing cancer vaccines have not yielded breakthrough clinical outcomes due to significant challenges, including tumor immune microenvironment suppression, optimal candidate identification, immune response evaluation, and vaccine manufacturing acceleration. Therefore, the field is poised to overcome hurdles and improve patient outcomes in the future by acknowledging these clinical complexities and persistently striving to surmount inherent constraints.
Collapse
Affiliation(s)
- Ting Fan
- Department of Oncology, East Hospital Affiliated to Tongji University, Tongji University School of Medicine, Shanghai, China
| | - Mingna Zhang
- Postgraduate Training Base, Shanghai East Hospital, Jinzhou Medical University, Shanghai, 200120, China
| | - Jingxian Yang
- Department of Oncology, East Hospital Affiliated to Tongji University, Tongji University School of Medicine, Shanghai, China
| | - Zhounan Zhu
- Department of Oncology, East Hospital Affiliated to Tongji University, Tongji University School of Medicine, Shanghai, China
| | - Wanlu Cao
- Department of Oncology, East Hospital Affiliated to Tongji University, Tongji University School of Medicine, Shanghai, China.
| | - Chunyan Dong
- Department of Oncology, East Hospital Affiliated to Tongji University, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
33
|
Tiwari S, Han Z. Immunotherapy: Advancing glioblastoma treatment-A narrative review of scientific studies. Cancer Rep (Hoboken) 2023; 7:e1947. [PMID: 38069593 PMCID: PMC10849935 DOI: 10.1002/cnr2.1947] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/15/2023] [Accepted: 11/11/2023] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND Glioblastoma (GB) is an aggressive and deadly brain tumor with a poor prognosis despite the current standard of care, including surgery, radiation, and chemotherapy. RECENT FINDINGS In recent years, there has been increasing interest in the potential of immunotherapies, seen to be effective in treating other cancers, in the treatment of GB. This comprehensive review presents an in-depth analysis of the remarkable progress of immunotherapy in GB treatment, focusing on human clinical studies. It also analyzes the current findings, challenges, and limitations that underscore the transformative potential of immunotherapy in managing GB. Of particular significance, it delves into the intriguing interaction of the human microbiome with immunotherapy as a novel avenue for enhancing treatment outcomes of GB. CONCLUSION This study sheds light on the complex GB therapy landscape and the cutting-edge strategies that show promise for enhancing patient prognosis.
Collapse
Affiliation(s)
- Sagun Tiwari
- Net Fresh HospitalChitwanNepal
- Shenzhen Key Laboratory of Immunomodulation for Neurological DiseasesShenzhen Institute of Advanced Technology, Chinese Academy of SciencesShenzhenChina
- University of Chinese Academy of SciencesBeijingChina
| | - Zhenxiang Han
- Department of Neurology and RehabilitationSeventh People's Hospital of Shanghai University of TCMShanghaiChina
| |
Collapse
|
34
|
Li H, Lin WP, Zhang ZN, Sun ZJ. Tailoring biomaterials for monitoring and evoking tertiary lymphoid structures. Acta Biomater 2023; 172:1-15. [PMID: 37739247 DOI: 10.1016/j.actbio.2023.09.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/01/2023] [Accepted: 09/17/2023] [Indexed: 09/24/2023]
Abstract
Despite the remarkable clinical success of immune checkpoint blockade (ICB) in the treatment of cancer, the response rate to ICB therapy remains suboptimal. Recent studies have strongly demonstrated that intratumoral tertiary lymphoid structures (TLSs) are associated with a good prognosis and a successful clinical response to immunotherapy. However, there is still a shortage of efficient and wieldy approaches to image and induce intratumoral TLSs in vivo. Biomaterials have made great strides in overcoming the deficiencies of conventional diagnosis and therapies for cancer, and antitumor therapy has also benefited from biomaterial-based drug delivery models. In this review, we summarize the reported methods for TLS imaging and induction based on biomaterials and provide potential strategies that can further enhance the effectiveness of imaging and stimulating intratumoral TLSs to predict and promote the response rates of ICB therapies for patients. STATEMENT OF SIGNIFICANCE: In this review, we focused on the promising of biomaterials for imaging and induction of TLSs. We reviewed the applications of biomaterials in molecular imaging and immunotherapy, identified the biomaterials that may be suitable for TLS imaging and induction, and provided outlooks for further research. Accurate imaging and effective induction of TLSs are of great significance for understanding the mechanism and clinical application. We highlighted the need for multidisciplinary coordination and cooperation in this field, and proposed the possible future direction of noninvasive imaging and artificial induction of TLSs based on biomaterials. We believe that it can facilitate collaboration and galvanize a broader effort.
Collapse
Affiliation(s)
- Hao Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430079, PR China; Department of Oral Maxillofacial-Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, PR China
| | - Wen-Ping Lin
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430079, PR China
| | - Zhong-Ni Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430079, PR China
| | - Zhi-Jun Sun
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430079, PR China; Department of Oral Maxillofacial-Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, PR China.
| |
Collapse
|
35
|
Nguyen DT, Liu R, Ogando-Rivas E, Pepe A, Pedro D, Qdaisat S, Nguyen NTY, Lavrador JM, Golde GR, Smolchek RA, Ligon J, Jin L, Tao H, Webber A, Phillpot S, Mitchell DA, Sayour EJ, Huang J, Castillo P, Gregory Sawyer W. Bioconjugated liquid-like solid enhances characterization of solid tumor - chimeric antigen receptor T cell interactions. Acta Biomater 2023; 172:466-479. [PMID: 37788737 DOI: 10.1016/j.actbio.2023.09.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 09/23/2023] [Accepted: 09/26/2023] [Indexed: 10/05/2023]
Abstract
Chimeric antigen receptor (CAR) T cell therapy has demonstrated remarkable success as an immunotherapy for hematological malignancies, and its potential for treating solid tumors is an active area of research. However, limited trafficking and mobility of T cells within the tumor microenvironment (TME) present challenges for CAR T cell therapy in solid tumors. To gain a better understanding of CAR T cell function in solid tumors, we subjected CD70-specific CAR T cells to a challenge by evaluating their immune trafficking and infiltration through a confined 3D microchannel network in a bio-conjugated liquid-like solid (LLS) medium. Our results demonstrated successful CAR T cell migration and anti-tumor activity against CD70-expressing glioblastoma and osteosarcoma tumors. Through comprehensive analysis of cytokines and chemokines, combined with in situ imaging, we elucidated that immune recruitment occurred via chemotaxis, and the effector-to-target ratio plays an important role in overall antitumor function. Furthermore, through single-cell collection and transcriptomic profiling, we identified differential gene expression among the immune subpopulations. Our findings provide valuable insights into the complex dynamics of CAR T cell function in solid tumors, informing future research and development in this promising cancer treatment approach. STATEMENT OF SIGNIFICANCE: The use of specialized immune cells named CAR T cells to combat cancers has demonstrated remarkable success against blood cancers. However, this success is not replicated in solid tumors, such as brain or bone cancers, mainly due to the physical barriers of these solid tumors. Currently, preclinical technologies do not allow for reliable evaluation of tumor-immune cell interactions. To better study these specialized CAR T cells, we have developed an innovative in vitro three-dimensional model that promises to dissect the interactions between tumors and CAR T cells at the single-cell level. Our findings provide valuable insights into the complex dynamics of CAR T cell function in solid tumors, informing future research and development in this promising cancer treatment approach.
Collapse
Affiliation(s)
- Duy T Nguyen
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32610, United States
| | - Ruixuan Liu
- Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, McKnight Brain Institute, University of Florida, University of Florida Brain Tumor Immunotherapy Program, Gainesville, FL 32611, United States
| | - Elizabeth Ogando-Rivas
- Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, McKnight Brain Institute, University of Florida, University of Florida Brain Tumor Immunotherapy Program, Gainesville, FL 32611, United States
| | - Alfonso Pepe
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32610, United States
| | - Diego Pedro
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32610, United States
| | - Sadeem Qdaisat
- Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, McKnight Brain Institute, University of Florida, University of Florida Brain Tumor Immunotherapy Program, Gainesville, FL 32611, United States; University of Florida Genetics Institute, Gainesville, FL 32610, United States
| | - Nhi Tran Yen Nguyen
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32610, United States
| | - Julia M Lavrador
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32610, United States
| | - Griffin R Golde
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32610, United States
| | - Ryan A Smolchek
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32610, United States
| | - John Ligon
- Department of Pediatrics, Division of Pediatric Hematology Oncology, University of Florida, 1600 SW Archer Rd, Gainesville, FL 32610, United States
| | - Linchun Jin
- Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, McKnight Brain Institute, University of Florida, University of Florida Brain Tumor Immunotherapy Program, Gainesville, FL 32611, United States
| | - Haipeng Tao
- Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, McKnight Brain Institute, University of Florida, University of Florida Brain Tumor Immunotherapy Program, Gainesville, FL 32611, United States
| | - Alex Webber
- Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL 32610, United States
| | - Simon Phillpot
- Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32610, United States
| | - Duane A Mitchell
- Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, McKnight Brain Institute, University of Florida, University of Florida Brain Tumor Immunotherapy Program, Gainesville, FL 32611, United States
| | - Elias J Sayour
- Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, McKnight Brain Institute, University of Florida, University of Florida Brain Tumor Immunotherapy Program, Gainesville, FL 32611, United States
| | - Jianping Huang
- Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, McKnight Brain Institute, University of Florida, University of Florida Brain Tumor Immunotherapy Program, Gainesville, FL 32611, United States.
| | - Paul Castillo
- Department of Pediatrics, Division of Pediatric Hematology Oncology, University of Florida, 1600 SW Archer Rd, Gainesville, FL 32610, United States.
| | - W Gregory Sawyer
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32610, United States.
| |
Collapse
|
36
|
Yi M, Li T, Niu M, Mei Q, Zhao B, Chu Q, Dai Z, Wu K. Exploiting innate immunity for cancer immunotherapy. Mol Cancer 2023; 22:187. [PMID: 38008741 PMCID: PMC10680233 DOI: 10.1186/s12943-023-01885-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/23/2023] [Indexed: 11/28/2023] Open
Abstract
Immunotherapies have revolutionized the treatment paradigms of various types of cancers. However, most of these immunomodulatory strategies focus on harnessing adaptive immunity, mainly by inhibiting immunosuppressive signaling with immune checkpoint blockade, or enhancing immunostimulatory signaling with bispecific T cell engager and chimeric antigen receptor (CAR)-T cell. Although these agents have already achieved great success, only a tiny percentage of patients could benefit from immunotherapies. Actually, immunotherapy efficacy is determined by multiple components in the tumor microenvironment beyond adaptive immunity. Cells from the innate arm of the immune system, such as macrophages, dendritic cells, myeloid-derived suppressor cells, neutrophils, natural killer cells, and unconventional T cells, also participate in cancer immune evasion and surveillance. Considering that the innate arm is the cornerstone of the antitumor immune response, utilizing innate immunity provides potential therapeutic options for cancer control. Up to now, strategies exploiting innate immunity, such as agonists of stimulator of interferon genes, CAR-macrophage or -natural killer cell therapies, metabolic regulators, and novel immune checkpoint blockade, have exhibited potent antitumor activities in preclinical and clinical studies. Here, we summarize the latest insights into the potential roles of innate cells in antitumor immunity and discuss the advances in innate arm-targeted therapeutic strategies.
Collapse
Affiliation(s)
- Ming Yi
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, People's Republic of China
- Department of Breast Surgery, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310000, People's Republic of China
| | - Tianye Li
- Department of Gynecology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310000, People's Republic of China
| | - Mengke Niu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China
| | - Qi Mei
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, People's Republic of China
| | - Bin Zhao
- Department of Breast Surgery, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310000, People's Republic of China
| | - Qian Chu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China.
| | - Zhijun Dai
- Department of Breast Surgery, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310000, People's Republic of China.
| | - Kongming Wu
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, People's Republic of China.
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China.
| |
Collapse
|
37
|
Lin F, Lin EZ, Anekoji M, Ichim TE, Hu J, Marincola FM, Jones LD, Kesari S, Ashili S. Advancing personalized medicine in brain cancer: exploring the role of mRNA vaccines. J Transl Med 2023; 21:830. [PMID: 37978542 PMCID: PMC10656921 DOI: 10.1186/s12967-023-04724-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/13/2023] [Indexed: 11/19/2023] Open
Abstract
Advancing personalized medicine in brain cancer relies on innovative strategies, with mRNA vaccines emerging as a promising avenue. While the initial use of mRNA vaccines was in oncology, their stunning success in COVID-19 resulted in widespread attention, both positive and negative. Regardless of politically biased opinions, which relate more to the antigenic source than form of delivery, we feel it is important to objectively review this modality as relates to brain cancer. This class of vaccines trigger robust immune responses through MHC-I and MHC-II pathways, in both prophylactic and therapeutic settings. The mRNA platform offers advantages of rapid development, high potency, cost-effectiveness, and safety. This review provides an overview of mRNA vaccine delivery technologies, tumor antigen identification, combination therapies, and recent therapeutic outcomes, with a particular focus on brain cancer. Combinatorial approaches are vital to maximizing mRNA cancer vaccine efficacy, with ongoing clinical trials exploring combinations with adjuvants and checkpoint inhibitors and even adoptive cell therapy. Efficient delivery, neoantigen identification, preclinical studies, and clinical trial results are highlighted, underscoring mRNA vaccines' potential in advancing personalized medicine for brain cancer. Synergistic combinatorial therapies play a crucial role, emphasizing the need for continued research and collaboration in this area.
Collapse
Affiliation(s)
- Feng Lin
- CureScience Institute, 5820 Oberlin Drive Ste 202, San Diego, CA, 92121, USA.
| | - Emma Z Lin
- University of California San Diego, La Jolla, CA, 92093, USA
| | - Misa Anekoji
- CureScience Institute, 5820 Oberlin Drive Ste 202, San Diego, CA, 92121, USA
| | - Thomas E Ichim
- Therapeutic Solutions International, Oceanside, CA, 92056, USA
| | - Joyce Hu
- Sonata Therapeutics, Watertown, MA, 02472, USA
| | | | - Lawrence D Jones
- CureScience Institute, 5820 Oberlin Drive Ste 202, San Diego, CA, 92121, USA
| | - Santosh Kesari
- Saint John's Cancer Institute, Santa Monica, CA, 90404, USA
| | - Shashaanka Ashili
- CureScience Institute, 5820 Oberlin Drive Ste 202, San Diego, CA, 92121, USA
| |
Collapse
|
38
|
Mateus D, Sebastião AI, Frasco MF, Carrascal MA, Falcão A, Gomes CM, Neves B, Sales MGF, Cruz MT. Artificial Dendritic Cells: A New Era of Promising Antitumor Immunotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303940. [PMID: 37469192 DOI: 10.1002/smll.202303940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/03/2023] [Indexed: 07/21/2023]
Abstract
The accelerated development of antitumor immunotherapies in recent years has brought immunomodulation into the spotlight. These include immunotherapeutic treatments with dendritic cell (DC)-based vaccines which can elicit tumor-specific immune responses and prolong survival. However, this personalized treatment has several drawbacks, including being costly, labor-intensive, and time consuming. This has sparked interest in producing artificial dendritic cells (aDCs) to open up the possibility of standardized "off-the-shelf" protocols and circumvent the cumbersome and expensive personalized medicine. aDCs take advantage of materials that can be designed and tailored for specific clinical applications. Here, an overview of the immunobiology underlying antigen presentation by DCs is provided in an attempt to select the key features to be mimicked and/or improved through the development of aDCs. The inherent properties of aDCs that greatly impact their performance in vivo and, consequently, the fate of the triggered immune response are also outlined.
Collapse
Affiliation(s)
- Daniela Mateus
- Faculty of Pharmacy of the University of Coimbra, Coimbra, 3000-548, Portugal
- Center for Neuroscience and Cell Biology-CNC, University of Coimbra, Coimbra, 3004-504, Portugal
- BioMark@UC/CEB - LABBELS Department of Chemical Engineering, Faculty of Sciences and Technology, University of Coimbra, Coimbra, 3030-790, Portugal
| | - Ana I Sebastião
- Faculty of Pharmacy of the University of Coimbra, Coimbra, 3000-548, Portugal
- Center for Neuroscience and Cell Biology-CNC, University of Coimbra, Coimbra, 3004-504, Portugal
| | - Manuela F Frasco
- BioMark@UC/CEB - LABBELS Department of Chemical Engineering, Faculty of Sciences and Technology, University of Coimbra, Coimbra, 3030-790, Portugal
| | | | - Amílcar Falcão
- Faculty of Pharmacy of the University of Coimbra, Coimbra, 3000-548, Portugal
- Coimbra Institute for Biomedical Imaging and Translational Research, CIBIT, University of Coimbra, Coimbra, 3000-548, Portugal
| | - Célia M Gomes
- Coimbra Institute for Clinical and Biomedical Research, iCBR, Faculty of Medicine, University of Coimbra, Coimbra, 3000-548, Portugal
- Center for Innovation in Biomedicine and Biotechnology, CIBB, University of Coimbra, Coimbra, 3000-548, Portugal
| | - Bruno Neves
- Department of Medical Sciences and Institute of Biomedicine, iBiMED, University of Aveiro, Aveiro, 3810-193, Portugal
| | - Maria G F Sales
- BioMark@UC/CEB - LABBELS Department of Chemical Engineering, Faculty of Sciences and Technology, University of Coimbra, Coimbra, 3030-790, Portugal
| | - Maria T Cruz
- Faculty of Pharmacy of the University of Coimbra, Coimbra, 3000-548, Portugal
- Center for Neuroscience and Cell Biology-CNC, University of Coimbra, Coimbra, 3004-504, Portugal
| |
Collapse
|
39
|
Subtirelu RC, Teichner EM, Ashok A, Parikh C, Talasila S, Matache IM, Alnemri AG, Anderson V, Shahid O, Mannam S, Lee A, Werner T, Revheim ME, Alavi A. Advancements in dendritic cell vaccination: enhancing efficacy and optimizing combinatorial strategies for the treatment of glioblastoma. Front Neurol 2023; 14:1271822. [PMID: 38020665 PMCID: PMC10644823 DOI: 10.3389/fneur.2023.1271822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/11/2023] [Indexed: 12/01/2023] Open
Abstract
Glioblastomas (GBM) are highly invasive, malignant primary brain tumors. The overall prognosis is poor, and management of GBMs remains a formidable challenge, necessitating novel therapeutic strategies such as dendritic cell vaccinations (DCVs). While many early clinical trials demonstrate an induction of an antitumoral immune response, outcomes are mixed and dependent on numerous factors that vary between trials. Optimization of DCVs is essential; the selection of GBM-specific antigens and the utilization of 18F-fludeoxyglucose Positron Emission Tomography (FDG-PET) may add significant value and ultimately improve outcomes for patients undergoing treatment for glioblastoma. This review provides an overview of the mechanism of DCV, assesses previous clinical trials, and discusses future strategies for the integration of DCV into glioblastoma treatment protocols. To conclude, the review discusses challenges associated with the use of DCVs and highlights the potential of integrating DCV with standard therapies.
Collapse
Affiliation(s)
- Robert C. Subtirelu
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA, United States
| | - Eric M. Teichner
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
| | - Arjun Ashok
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
| | - Chitra Parikh
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
| | - Sahithi Talasila
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
| | - Irina-Mihaela Matache
- Department of Physiology, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Ahab G. Alnemri
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA, United States
| | - Victoria Anderson
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
| | - Osmaan Shahid
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA, United States
| | - Sricharvi Mannam
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA, United States
| | - Andrew Lee
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA, United States
| | - Thomas Werner
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA, United States
| | - Mona-Elisabeth Revheim
- Division of Technology and Innovation, Oslo University Hospital, Oslo, Norway
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Abass Alavi
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
40
|
Jucht A, Dumont S, Pooley C, Gonzalez Castro LN. Cancer vaccine strategies for the treatment of diffusely infiltrating gliomas. Ther Adv Vaccines Immunother 2023; 11:25151355231206163. [PMID: 37886714 PMCID: PMC10599115 DOI: 10.1177/25151355231206163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 09/19/2023] [Indexed: 10/28/2023] Open
Abstract
Diffusely infiltrating gliomas - including glioblastoma (GBM), isocitrate dehydrogenase (IDH) mutant gliomas, and histone 3 (H3) altered gliomas - are primary brain tumors with an invariably fatal outcome. Despite advances in the understanding of their biology, standard, targeted and immune checkpoint inhibitor immunotherapies have proven ineffective in arresting their inexorable progression and associated morbidity and mortality. Recognizing the unique aspects of the immunogenicity of cancer cells, the last decade has seen the development and evaluation of vaccine-based therapies for the treatment of solid tumors, including gliomas. Here we review the current vaccine strategies for the treatment of GBM, IDH-mutant gliomas and diffuse midline glioma H3 K27M-altered. We discuss potential benefits and challenges of vaccine therapies in these specific patient populations.
Collapse
|
41
|
Van Gool SW, Van de Vliet P, Kampers LFC, Kosmal J, Sprenger T, Reich E, Schirrmacher V, Stuecker W. Methods behind oncolytic virus-based DC vaccines in cancer: Toward a multiphase combined treatment strategy for Glioblastoma (GBM) patients. Methods Cell Biol 2023; 183:51-113. [PMID: 38548421 DOI: 10.1016/bs.mcb.2023.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Glioblastoma (GBM) remains an orphan cancer disease with poor outcome. Novel treatment strategies are needed. Immunotherapy has several modes of action. The addition of active specific immunotherapy with dendritic cell vaccines resulted in improved overall survival of patients. Integration of DC vaccination within the first-line combined treatment became a challenge, and immunogenic cell death immunotherapy during chemotherapy was introduced. We used a retrospective analysis using real world data to evaluate the complex combined treatment, which included individualized multimodal immunotherapy during and after standard of care, and which required adaptations during treatment, and found a further improvement of overall survival. We also discuss the use of real world data as evidence. Novel strategies to move the field of individualized multimodal immunotherapy forward for GBM patients are reviewed.
Collapse
Affiliation(s)
| | | | | | | | | | - Ella Reich
- Immun-onkologisches Zentrum Köln, Cologne, Germany
| | | | | |
Collapse
|
42
|
Hu X, Jiang C, Gao Y, Xue X. Human dendritic cell subsets in the glioblastoma-associated microenvironment. J Neuroimmunol 2023; 383:578147. [PMID: 37643497 DOI: 10.1016/j.jneuroim.2023.578147] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 06/24/2023] [Accepted: 07/05/2023] [Indexed: 08/31/2023]
Abstract
Glioblastoma (GBM) is the most aggressive type of glioma (Grade IV). The presence of cytotoxic T lymphocyte (CTLs) has been associated with improved outcomes in patients with GBM, and it is believed that the activation of CTLs by dendritic cells may play a critical role in controlling the growth of GBM. DCs are professional antigen-presenting cells (APC) that orchestrate innate and adaptive anti-GBM immunity. DCs can subsequently differentiate into plasmacytoid DCs (pDC), conventional DC1 (cDC1), conventional (cDC2), and monocyte-derived DCs (moDC) depending on environmental exposure. The different subsets of DCs exhibit varying functional capabilities in antigen presentation and T cell activation in producing an antitumor response. In this review, we focus on recent studies describing the phenotypic and functional characteristics of DC subsets in humans and their respective antitumor immunity and immunotolerance roles in the GBM-associated microenvironment. The critical components of crosstalk between DC subsets that contribute significantly to GBM-specific immune responses are also highlighted in this review with reference to the latest literature. Since DCs could be prime targets for therapeutic intervention, it is worth summarizing the relevance of DC subsets with respect to GBM-associated immunologic tolerance and their therapeutic potential.
Collapse
Affiliation(s)
- Xiaopeng Hu
- Medical Research Center, People's Hospital of Longhua, The Affiliated Hospital of Southern Medical University, Shenzhen 518000, China; Biosafety Level-3 Laboratory, Life Sciences Institute & Guangxi Collaborative Innovation Center for Biomedicine, Guangxi Medical University, Nanning 530021, China
| | - Chunmei Jiang
- Medical Research Center, People's Hospital of Longhua, The Affiliated Hospital of Southern Medical University, Shenzhen 518000, China
| | - Yang Gao
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Shandong First Medical University, Taian 271000, China.
| | - Xingkui Xue
- Medical Research Center, People's Hospital of Longhua, The Affiliated Hospital of Southern Medical University, Shenzhen 518000, China.
| |
Collapse
|
43
|
Hotchkiss KM, Batich KA, Mohan A, Rahman R, Piantadosi S, Khasraw M. Dendritic cell vaccine trials in gliomas: Untangling the lines. Neuro Oncol 2023; 25:1752-1762. [PMID: 37289203 PMCID: PMC10547519 DOI: 10.1093/neuonc/noad088] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023] Open
Abstract
Glioblastoma is a deadly brain tumor without any significantly successful treatments to date. Tumor antigen-targeted immunotherapy platforms including peptide and dendritic cell (DC) vaccines, have extended survival in hematologic malignancies. The relatively "cold" tumor immune microenvironment and heterogenous nature of glioblastoma have proven to be major limitations to translational application and efficacy of DC vaccines. Furthermore, many DC vaccine trials in glioblastoma are difficult to interpret due to a lack of contemporaneous controls, absence of any control comparison, or inconsistent patient populations. Here we review glioblastoma immunobiology aspects that are relevant to DC vaccines, review the clinical experience with DC vaccines targeting glioblastoma, discuss challenges in clinical trial design, and summarize conclusions and directions for future research for the development of effective DC vaccines for patients.
Collapse
Affiliation(s)
- Kelly M Hotchkiss
- Department of Neurosurgery, The Preston Robert Tisch Brain Tumor Center at Duke, Duke University Medical Center, Durham, North Carolina, USA
| | - Kristen A Batich
- Department of Neurosurgery, The Preston Robert Tisch Brain Tumor Center at Duke, Duke University Medical Center, Durham, North Carolina, USA
| | - Aditya Mohan
- Department of Neurosurgery, The Preston Robert Tisch Brain Tumor Center at Duke, Duke University Medical Center, Durham, North Carolina, USA
| | - Rifaquat Rahman
- Department of Radiation Oncology, Dana-Farber/Brigham and Women’s Cancer Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Steven Piantadosi
- Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA(S.P.)
| | - Mustafa Khasraw
- Department of Neurosurgery, The Preston Robert Tisch Brain Tumor Center at Duke, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
44
|
Feng X, Su Z, Cheng Y, Ma G, Zhang S. Messenger RNA chromatographic purification: advances and challenges. J Chromatogr A 2023; 1707:464321. [PMID: 37639849 DOI: 10.1016/j.chroma.2023.464321] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/16/2023] [Accepted: 08/20/2023] [Indexed: 08/31/2023]
Abstract
Messenger RNA (mRNA) technologies have shown great potential in prophylactic vaccines and therapeutic medicines due to their adaptability, rapidity, efficacy, and safety. The purity of mRNA determines the efficacy and safety of mRNA drugs. Though chromatographic technologies are currently employed in mRNA purification, they are facing challenges, mainly arising from the large size, relatively simple chemical composition, instability, and high resemblance of by-products to the target mRNA. In this review, we will first make a comprehensive analysis of physiochemical properties differences between mRNA and proteins, then the major challenges facing in mRNA purification and general considerations are highlighted. A detailed summary of the state-of-arts in mRNA chromatographic purification will be provided, which are mainly classified into physicochemical property-based (size, charge, and hydrophobicity) and chemical structure-based (phosphate backbone, bases, cap structure, and poly A tail) technologies. Efforts in eliminating dsRNA byproducts via post in vitro transcript (IVT) purification and by manipulating the IVT process to reduce the generation of dsRNA are highlighted. Finally, a brief summary of the current status of chromatographic purification of the emerging circular mRNA (circRNA) is provided. We hope this review will provide some useful guidance for the Quality by Design (QbD) of mRNA downstream process development.
Collapse
Affiliation(s)
- Xue Feng
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinses Academy of Sciences, Beijing 100190, China; Department of Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia; Monash Suzhou Research Institute, Monash University, SIP, Suzhou 215000, China
| | - Zhiguo Su
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinses Academy of Sciences, Beijing 100190, China
| | - Yuan Cheng
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia; Monash Suzhou Research Institute, Monash University, SIP, Suzhou 215000, China
| | - Guanghui Ma
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinses Academy of Sciences, Beijing 100190, China
| | - Songping Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinses Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
45
|
Zhang G, Tang T, Chen Y, Huang X, Liang T. mRNA vaccines in disease prevention and treatment. Signal Transduct Target Ther 2023; 8:365. [PMID: 37726283 PMCID: PMC10509165 DOI: 10.1038/s41392-023-01579-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 07/01/2023] [Accepted: 07/30/2023] [Indexed: 09/21/2023] Open
Abstract
mRNA vaccines have emerged as highly effective strategies in the prophylaxis and treatment of diseases, thanks largely although not totally to their extraordinary performance in recent years against the worldwide plague COVID-19. The huge superiority of mRNA vaccines regarding their efficacy, safety, and large-scale manufacture encourages pharmaceutical industries and biotechnology companies to expand their application to a diverse array of diseases, despite the nonnegligible problems in design, fabrication, and mode of administration. This review delves into the technical underpinnings of mRNA vaccines, covering mRNA design, synthesis, delivery, and adjuvant technologies. Moreover, this review presents a systematic retrospective analysis in a logical and well-organized manner, shedding light on representative mRNA vaccines employed in various diseases. The scope extends across infectious diseases, cancers, immunological diseases, tissue damages, and rare diseases, showcasing the versatility and potential of mRNA vaccines in diverse therapeutic areas. Furthermore, this review engages in a prospective discussion regarding the current challenge and potential direction for the advancement and utilization of mRNA vaccines. Overall, this comprehensive review serves as a valuable resource for researchers, clinicians, and industry professionals, providing a comprehensive understanding of the technical aspects, historical context, and future prospects of mRNA vaccines in the fight against various diseases.
Collapse
Affiliation(s)
- Gang Zhang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang, China
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, 310003, Hangzhou, Zhejiang, China
- The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, 310009, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Tianyu Tang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang, China
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, 310003, Hangzhou, Zhejiang, China
- The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, 310009, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Yinfeng Chen
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang, China
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, 310003, Hangzhou, Zhejiang, China
- The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, 310009, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Xing Huang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, China.
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang, China.
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, 310003, Hangzhou, Zhejiang, China.
- The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, 310009, Hangzhou, Zhejiang, China.
- Cancer Center, Zhejiang University, 310058, Hangzhou, Zhejiang, China.
| | - Tingbo Liang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, China.
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang, China.
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, 310003, Hangzhou, Zhejiang, China.
- The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, 310009, Hangzhou, Zhejiang, China.
- Cancer Center, Zhejiang University, 310058, Hangzhou, Zhejiang, China.
| |
Collapse
|
46
|
Ma X, Mao M, He J, Liang C, Xie HY. Nanoprobe-based molecular imaging for tumor stratification. Chem Soc Rev 2023; 52:6447-6496. [PMID: 37615588 DOI: 10.1039/d3cs00063j] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
The responses of patients to tumor therapies vary due to tumor heterogeneity. Tumor stratification has been attracting increasing attention for accurately distinguishing between responders to treatment and non-responders. Nanoprobes with unique physical and chemical properties have great potential for patient stratification. This review begins by describing the features and design principles of nanoprobes that can visualize specific cell types and biomarkers and release inflammatory factors during or before tumor treatment. Then, we focus on the recent advancements in using nanoprobes to stratify various therapeutic modalities, including chemotherapy, radiotherapy (RT), photothermal therapy (PTT), photodynamic therapy (PDT), chemodynamic therapy (CDT), ferroptosis, and immunotherapy. The main challenges and perspectives of nanoprobes in cancer stratification are also discussed to facilitate probe development and clinical applications.
Collapse
Affiliation(s)
- Xianbin Ma
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Mingchuan Mao
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Jiaqi He
- School of Life Science, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Chao Liang
- School of Life Science, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Hai-Yan Xie
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Chemical Biology Center, Peking University, Beijing, 100191, P. R. China.
| |
Collapse
|
47
|
Zhang R, Tang L, Wang Y, Li Q, Yang L. α-d-Glucose-1,6-Biphosphate Induces Dendritic Cell Homing to Enhance the Antitumor Effect of Neoantigen Vaccines. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:932-943. [PMID: 37556117 DOI: 10.4049/jimmunol.2200687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 01/02/2023] [Indexed: 08/10/2023]
Abstract
Neoantigen vaccines have achieved good therapeutic effects in animal experiments and early clinical trials on certain malignant tumors. However, their overall objective effectiveness in clinical trials still needs to be improved. Low-efficiency dendritic cell (DC) migration (<5%) to lymph nodes is one of the factors that limits vaccine effectiveness. For neoantigen vaccines, improving the homing efficiency of DCs is expected to further improve the immunotherapeutic effect. In this study, we used α-d-glucose-1,6-biphosphate (α-d-Glu), a metabolite that successfully enhanced C57BL/6J mouse bone marrow-derived DC homing induced by neoantigen peptide, mRNA, and DC vaccines during the administration process and improved the antitumor effects in the mouse C57BL/6J model with a neoantigen vaccine. We clarified that α-d-Glu activated MAPK8IP1 by inhibiting the expression of microRNA-10a-5p, thereby activating the MAPK signaling pathway to promote DC homing. Excitingly, the efficiency of α-d-Glu in promoting DC migration is not weaker than that of PGE2, which is the gold standard used to promote DC migration in clinical trials of DC vaccines. Thus, this study lays the foundation for further enhancing the objective clinical response rate of neoantigen vaccines and overcoming the limitation of an insufficient clinical response rate for neoantigen vaccines caused by low DC homing efficiency.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Lin Tang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yusi Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Qing Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Li Yang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
48
|
Zheng Y, Ma X, Feng S, Zhu H, Chen X, Yu X, Shu K, Zhang S. Dendritic cell vaccine of gliomas: challenges from bench to bed. Front Immunol 2023; 14:1259562. [PMID: 37781367 PMCID: PMC10536174 DOI: 10.3389/fimmu.2023.1259562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 08/28/2023] [Indexed: 10/03/2023] Open
Abstract
Gliomas account for the majority of brain malignant tumors. As the most malignant subtype of glioma, glioblastoma (GBM) is barely effectively treated by traditional therapies (surgery combined with radiochemotherapy), resulting in poor prognosis. Meanwhile, due to its "cold tumor" phenotype, GBM fails to respond to multiple immunotherapies. As its capacity to prime T cell response, dendritic cells (DCs) are essential to anti-tumor immunity. In recent years, as a therapeutic method, dendritic cell vaccine (DCV) has been immensely developed. However, there have long been obstacles that limit the use of DCV yet to be tackled. As is shown in the following review, the role of DCs in anti-tumor immunity and the inhibitory effects of tumor microenvironment (TME) on DCs are described, the previous clinical trials of DCV in the treatment of GBM are summarized, and the challenges and possible development directions of DCV are analyzed.
Collapse
Affiliation(s)
- Ye Zheng
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoyu Ma
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shouchang Feng
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongtao Zhu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Chen
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xingjiang Yu
- Department of Histology and Embryology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kai Shu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Suojun Zhang
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
49
|
Nehama D, Woodell AS, Maingi SM, Hingtgen SD, Dotti G. Cell-based therapies for glioblastoma: Promising tools against tumor heterogeneity. Neuro Oncol 2023; 25:1551-1562. [PMID: 37179459 PMCID: PMC10484163 DOI: 10.1093/neuonc/noad092] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Indexed: 05/15/2023] Open
Abstract
Glioblastoma (GBM) is a highly aggressive tumor with a devastating impact on quality-of-life and abysmal survivorship. Patients have very limited effective treatment options. The successes of targeted small molecule drugs and immune checkpoint inhibitors seen in various solid tumors have not translated to GBM, despite significant advances in our understanding of its molecular, immune, and microenvironment landscapes. These discoveries, however, have unveiled GBM's incredible heterogeneity and its role in treatment failure and survival. Novel cellular therapy technologies are finding successes in oncology and harbor characteristics that make them uniquely suited to overcome challenges posed by GBM, such as increased resistance to tumor heterogeneity, modularity, localized delivery, and safety. Considering these advantages, we compiled this review article on cellular therapies for GBM, focusing on cellular immunotherapies and stem cell-based therapies, to evaluate their utility. We categorize them based on their specificity, review their preclinical and clinical data, and extract valuable insights to help guide future cellular therapy development.
Collapse
Affiliation(s)
- Dean Nehama
- Department of Internal Medicine, Montefiore Medical Center, New York, New York, USA
| | - Alex S Woodell
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Spencer M Maingi
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Shawn D Hingtgen
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Gianpietro Dotti
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| |
Collapse
|
50
|
Hu Y, Li Z, Zhang Y, Wu Y, Liu Z, Zeng J, Hao Z, Li J, Ren J, Yao M. The Evolution of Tumor Microenvironment in Gliomas and Its Implication for Target Therapy. Int J Biol Sci 2023; 19:4311-4326. [PMID: 37705736 PMCID: PMC10496508 DOI: 10.7150/ijbs.83531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 08/03/2023] [Indexed: 09/15/2023] Open
Abstract
Gliomas develop in unique and complicated environments that nourish tumor cells. The tumor microenvironment (TME) of gliomas comprises heterogeneous cells, including brain-resident cells, immune cells, and vascular cells. Reciprocal interactions among these cells are involved in the evolution of the TME. Moreover, the study of attractive therapeutic strategies that target the TME is transitioning from basic research to the clinic. Mouse models are indispensable tools for dissecting the processes and mechanisms leading to TME evolution. In this review, we overview the paradoxical roles of the TME, as well as the recent progress of mouse models in TME research. Finally, we summarize recent advances in TME-targeting therapeutic strategies.
Collapse
Affiliation(s)
- Yang Hu
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Disease & China State Key Laboratory of Respiratory Disease, Guangzhou, 510182, China
| | - Zhixing Li
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Disease & China State Key Laboratory of Respiratory Disease, Guangzhou, 510182, China
| | - Yichi Zhang
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Disease & China State Key Laboratory of Respiratory Disease, Guangzhou, 510182, China
| | - Yuzheng Wu
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Disease & China State Key Laboratory of Respiratory Disease, Guangzhou, 510182, China
| | - Zihao Liu
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Disease & China State Key Laboratory of Respiratory Disease, Guangzhou, 510182, China
| | - Jianhao Zeng
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia Health System, Charlottesville, VA 22908, USA
| | - Zhexue Hao
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Disease & China State Key Laboratory of Respiratory Disease, Guangzhou, 510182, China
| | - Jin Li
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Disease & China State Key Laboratory of Respiratory Disease, Guangzhou, 510182, China
| | - Jiaoyan Ren
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Maojin Yao
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Disease & China State Key Laboratory of Respiratory Disease, Guangzhou, 510182, China
| |
Collapse
|