1
|
Ivancová I, Quirante TS, Ondruš M, Pohl R, Vlková M, Žilecká E, Bouřa E, Hocek M. Enzymatic synthesis of reactive RNA probes containing squaramate-linked cytidine or adenosine for bioconjugations and cross-linking with lysine-containing peptides and proteins. Commun Chem 2025; 8:1. [PMID: 39748090 PMCID: PMC11696893 DOI: 10.1038/s42004-024-01399-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 12/18/2024] [Indexed: 01/04/2025] Open
Abstract
Protein-RNA interactions play important biological roles and hence reactive RNA probes for cross-linking with proteins are important tools in their identification and study. To this end, we designed and synthesized 5'-O-triphosphates bearing a reactive squaramate group attached to position 5 of cytidine or position 7 of 7-deazaadenosine and used them as substrates for polymerase synthesis of modified RNA. In vitro transcription with T7 RNA polymerase or primer extension using TGK polymerase was used for synthesis of squaramate-modified RNA probes which underwent covalent bioconjugations with amine-linked fluorophore and lysine-containing peptides and proteins including several viral RNA polymerases or HIV reverse transcriptase. Inhibition of RNA-depending RNA polymerases from Japanese Encephalitis virus was observed through formation of covalent cross-link which was partially identified by MS/MS analysis. Thus, the squaramate-linked NTP analogs are useful building blocks for the synthesis of reactive RNA probes for bioconjugations with primary amines and cross-linking with lysine residues.
Collapse
Affiliation(s)
- Ivana Ivancová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000 Prague 6, Prague, Czech Republic
| | - Tania Sánchez Quirante
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000 Prague 6, Prague, Czech Republic
- Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 8, CZ-12843 Prague 2, Prague, Czech Republic
| | - Marek Ondruš
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000 Prague 6, Prague, Czech Republic
| | - Radek Pohl
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000 Prague 6, Prague, Czech Republic
| | - Marta Vlková
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000 Prague 6, Prague, Czech Republic
| | - Eva Žilecká
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000 Prague 6, Prague, Czech Republic
| | - Evžen Bouřa
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000 Prague 6, Prague, Czech Republic
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000 Prague 6, Prague, Czech Republic.
- Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 8, CZ-12843 Prague 2, Prague, Czech Republic.
| |
Collapse
|
2
|
Lee YT. Nexus between RNA conformational dynamics and functional versatility. Curr Opin Struct Biol 2024; 89:102942. [PMID: 39413483 PMCID: PMC11602372 DOI: 10.1016/j.sbi.2024.102942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 09/08/2024] [Accepted: 09/16/2024] [Indexed: 10/18/2024]
Abstract
RNA conformational dynamics is pivotal for functional regulations in biology. RNA can function as versatile as protein but adopts multiple distinct structures. In this review, we provide a focused review of the recent advances in studies of RNA conformational dynamics and address some of the misconceptions about RNA structure and its conformational dynamics. We discuss why the traditional methods for structure determination come up short in describing RNA conformational space. The examples discussed provide illustrations of the structure-based mechanisms of RNAs with diverse roles, including viral, long noncoding, and catalytic RNAs, one of which focuses on the debated area of conformational heterogeneity of an RNA structural element in the HIV-1 genome.
Collapse
Affiliation(s)
- Yun-Tzai Lee
- Protein-Nucleic Acid Interaction Section, Center for Structural Biology, National Cancer Institute, Frederick, MD 21702, USA.
| |
Collapse
|
3
|
Liang X, Chen D, Su A, Liu Y. Divergent molecular assembly and catalytic mechanisms between bacterial and archaeal RNase P in pre-tRNA cleavage. Proc Natl Acad Sci U S A 2024; 121:e2407579121. [PMID: 39413135 PMCID: PMC11513950 DOI: 10.1073/pnas.2407579121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 08/30/2024] [Indexed: 10/18/2024] Open
Abstract
Ribonuclease P (RNase P) plays a vital role in the maturation of tRNA across bacteria, archaea, and eukaryotes. However, how RNase P assembles various components to achieve specific cleavage of precursor tRNA (pre-tRNA) in different organisms remains elusive. In this study, we employed single-molecule fluorescence resonance energy transfer to probe the dynamics of RNase P from E. coli (Escherichia coli) and Mja (Methanocaldococcus jannaschii) during pre-tRNA cleavage by incorporating five Cy3-Cy5 pairs into pre-tRNA and RNase P. Our results revealed significant differences in the assembly and catalytic mechanisms of RNase P between E. coli and Mja at both the RNA and protein levels. Specifically, the RNA of E. coli RNase P (EcoRPR) can adopt an active conformation that is capable of binding and cleaving pre-tRNA with high specificity independently. The addition of the protein component of E. coli RNase P (RnpA) enhances and accelerates pre-tRNA cleavage efficiency by increasing and stabilizing the active conformation. In contrast, Mja RPR is unable to form the catalytically active conformation on its own, and at least four proteins are required to induce the correct folding of Mja RPR. Mutation experiments suggest that the functional deficiency of Mja RPR arises from the absence of the second structural layer, and proper intermolecular assembly is essential for Mja RNase P to be functional over a broad temperature range. We propose models to illustrate the distinct catalytic patterns and RNA-protein interactions of RNase P in these two organisms.
Collapse
Affiliation(s)
- Xiaoge Liang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai200240, China
| | - Dian Chen
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai200240, China
| | - Aimin Su
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai200240, China
| | - Yu Liu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai200240, China
| |
Collapse
|
4
|
Brunderová M, Havlíček V, Matyašovský J, Pohl R, Poštová Slavětínská L, Krömer M, Hocek M. Expedient production of site specifically nucleobase-labelled or hypermodified RNA with engineered thermophilic DNA polymerases. Nat Commun 2024; 15:3054. [PMID: 38594306 PMCID: PMC11004144 DOI: 10.1038/s41467-024-47444-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 03/26/2024] [Indexed: 04/11/2024] Open
Abstract
Innovative approaches to controlled nucleobase-modified RNA synthesis are urgently needed to support RNA biology exploration and to synthesize potential RNA therapeutics. Here we present a strategy for enzymatic construction of nucleobase-modified RNA based on primer-dependent engineered thermophilic DNA polymerases - SFM4-3 and TGK. We demonstrate introduction of one or several different base-modified nucleotides in one strand including hypermodified RNA containing all four modified nucleotides bearing four different substituents, as well as strategy for primer segment removal. We also show facile site-specific or segmented introduction of fluorophores or other functional groups at defined positions in variety of RNA molecules, including structured or long mRNA. Intriguing translation efficacy of single-site modified mRNAs underscores the necessity to study isolated modifications placed at designer positions to disentangle their biological effects and enable development of improved mRNA therapeutics. Our toolbox paves the way for more precise dissecting RNA structures and functions, as well as for construction of diverse types of base-functionalized RNA for therapeutic applications and diagnostics.
Collapse
Affiliation(s)
- Mária Brunderová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000, Prague, 6, Czech Republic
- Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 8, CZ-12843, Prague, 2, Czech Republic
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, UK
| | - Vojtěch Havlíček
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000, Prague, 6, Czech Republic
- Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 8, CZ-12843, Prague, 2, Czech Republic
| | - Ján Matyašovský
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000, Prague, 6, Czech Republic
| | - Radek Pohl
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000, Prague, 6, Czech Republic
| | - Lenka Poštová Slavětínská
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000, Prague, 6, Czech Republic
| | - Matouš Krömer
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000, Prague, 6, Czech Republic.
- The Rosalind Franklin Institute, Harwell Campus, Didcot, Oxfordshire, UK.
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000, Prague, 6, Czech Republic.
- Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 8, CZ-12843, Prague, 2, Czech Republic.
| |
Collapse
|
5
|
Haslecker R, Pham VV, Glänzer D, Kreutz C, Dayie TK, D'Souza VM. Extending the toolbox for RNA biology with SegModTeX: a polymerase-driven method for site-specific and segmental labeling of RNA. Nat Commun 2023; 14:8422. [PMID: 38110450 PMCID: PMC10728113 DOI: 10.1038/s41467-023-44254-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 12/06/2023] [Indexed: 12/20/2023] Open
Abstract
RNA performs a wide range of functions regulated by its structure, dynamics, and often post-transcriptional modifications. While NMR is the leading method for understanding RNA structure and dynamics, it is currently limited by the inability to reduce spectral crowding by efficient segmental labeling. Furthermore, because of the challenging nature of RNA chemistry, the tools being developed to introduce site-specific modifications are increasingly complex and laborious. Here we use a previously designed Tgo DNA polymerase mutant to present SegModTeX - a versatile, one-pot, copy-and-paste approach to address these challenges. By precise, stepwise construction of a diverse set of RNA molecules, we demonstrate the technique to be superior to RNA polymerase driven and ligation methods owing to its substantially high yield, fidelity, and selectivity. We also show the technique to be useful for incorporating some fluorescent- and a wide range of other probes, which significantly extends the toolbox of RNA biology in general.
Collapse
Affiliation(s)
- Raphael Haslecker
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Vincent V Pham
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, 02138, USA
| | - David Glänzer
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria
| | - Christoph Kreutz
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria
| | - Theodore Kwaku Dayie
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20782, USA
| | - Victoria M D'Souza
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, 02138, USA.
| |
Collapse
|
6
|
Niu X, Xu Z, Zhang Y, Zuo X, Chen C, Fang X. Structural and dynamic mechanisms for coupled folding and tRNA recognition of a translational T-box riboswitch. Nat Commun 2023; 14:7394. [PMID: 37968328 PMCID: PMC10651847 DOI: 10.1038/s41467-023-43232-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 11/03/2023] [Indexed: 11/17/2023] Open
Abstract
T-box riboswitches are unique riboregulators where gene regulation is mediated through interactions between two highly structured RNAs. Despite extensive structural insights, how RNA-RNA interactions drive the folding and structural transitions of T-box to achieve functional conformations remains unclear. Here, by combining SAXS, single-molecule FRET and computational modeling, we elaborate the folding energy landscape of a translational T-box aptamer consisting of stems I, II and IIA/B, which Mg2+-induced global folding and tRNA binding are cooperatively coupled. smFRET measurements reveal that high Mg2+ stabilizes IIA/B and its stacking on II, which drives the pre-docking of I and II into a competent conformation, subsequent tRNA binding promotes docking of I and II to form a high-affinity tRNA binding groove, of which the essentiality of IIA/B and S-turn in II is substantiated with mutational analysis. We highlight a delicate balance among Mg2+, the intra- and intermolecular RNA-RNA interactions in modulating RNA folding and function.
Collapse
Affiliation(s)
- Xiaolin Niu
- Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Zhonghe Xu
- Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yufan Zhang
- Key Laboratory of RNA Science and Engineering, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiaobing Zuo
- X-ray Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Chunlai Chen
- Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
- State Key Laboratory of Membrane Biology, Tsinghua University, Beijing, 100084, China.
| | - Xianyang Fang
- Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
- Key Laboratory of RNA Science and Engineering, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
7
|
Benčić P, Keppler M, Kuge M, Qiu D, Schütte LM, Häner M, Strack K, Jessen HJ, Andexer JN, Loenarz C. Non-canonical nucleosides: Biomimetic triphosphorylation, incorporation into mRNA and effects on translation and structure. FEBS J 2023; 290:4899-4920. [PMID: 37329249 DOI: 10.1111/febs.16889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/24/2023] [Accepted: 06/14/2023] [Indexed: 06/18/2023]
Abstract
Recent advances in mRNA therapeutics demand efficient toolkits for the incorporation of nucleoside analogues into mRNA suitable for downstream applications. Herein, we report the application of a versatile enzyme cascade for the triphosphorylation of a broad range of nucleoside analogues, including unprotected nucleobases containing chemically labile moieties. Our biomimetic system was suitable for the preparation of nucleoside triphosphates containing adenosine, cytidine, guanosine, uridine and non-canonical core structures, as determined by capillary electrophoresis coupled to mass spectrometry. This enabled us to establish an efficient workflow for transcribing and purifying functional mRNA containing these nucleoside analogues, combined with mass spectrometric verification of analogue incorporation. Our combined methodology allows for analyses of how incorporation of nucleoside analogues that are commercially unavailable as triphosphates affect mRNA properties: The translational fidelity of the produced mRNA was demonstrated in analyses of how incorporated adenosine analogues impact translational recoding. For the SARS-CoV-2 frameshifting site, analyses of the mRNA pseudoknot structure using circular dichroism spectroscopy allowed insight into how the pharmacologically active 7-deazaadenosine destabilises RNA secondary structure, consistent with observed changes in recoding efficiency.
Collapse
Affiliation(s)
- Patricia Benčić
- Institute of Pharmaceutical Sciences, University of Freiburg, Germany
| | - Michael Keppler
- Institute of Pharmaceutical Sciences, University of Freiburg, Germany
| | - Marco Kuge
- Institute of Pharmaceutical Sciences, University of Freiburg, Germany
| | - Danye Qiu
- Institute of Organic Chemistry, University of Freiburg, Germany
| | - Lena M Schütte
- Institute of Pharmaceutical Sciences, University of Freiburg, Germany
| | - Markus Häner
- Institute of Organic Chemistry, University of Freiburg, Germany
| | - Katharina Strack
- Institute of Pharmaceutical Sciences, University of Freiburg, Germany
| | | | | | - Christoph Loenarz
- Institute of Pharmaceutical Sciences, University of Freiburg, Germany
| |
Collapse
|
8
|
Cao Y, Bai J, Zou J, Du Y, Chen T. One-Pot Enzymatic Preparation of Oligonucleotides with an Expanded Genetic Alphabet via Controlled Pause and Restart of Primer Extension: Making Unnatural Out of Natural. ACS Synth Biol 2023; 12:2691-2706. [PMID: 37672623 DOI: 10.1021/acssynbio.3c00258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
The genetic alphabet of life has been dramatically expanded via the development of unnatural base pairs (UBPs) that work as efficiently as natural base pairs in the storage and retrieval of genetic information. Among the most predominant UBPs, dNaM-dTPT3 and its analogues have been successfully employed to build semisynthetic cells with a functional six-letter genome. With the rapidly growing applications of UBPs in vitro and in vivo, there is an ever-increasing demand for DNA oligonucleotides containing unnatural bases (UBs) at desired positions. Conventional solid-phase synthesis of oligonucleotides has intrinsic limitations and needs to use unstable unnatural phosphoramidites and a DNA synthesizer, so it does not meet the daily urgent requirement for a few UB-containing DNA oligonucleotides in the laboratory. In this work, we develop a one-pot enzymatic method for preparing dNaM- or dTPT3-containing DNA oligonucleotides via controlled pause and restart of primer extension mediated by Klenow fragment (exo-). By systematic optimization of the reaction conditions, high efficiencies and product purities have been achieved. The universality of this method for preparing DNA oligonucleotides containing dNaM or dTPT3 in different sequence contexts is also demonstrated. This method allows convenient production of an arbitrary UB-containing DNA oligonucleotide in a single test tube with only two natural DNA oligonucleotides, stable nucleoside triphosphates, Klenow fragment (exo-), and other common reagents in the laboratory, providing the lowest cost and the highest simplicity for the enzymatic preparation of UB-containing oligonucleotides. Clearly, this method has great potential to facilitate the in vitro and in vivo applications of the UBPs.
Collapse
Affiliation(s)
- Yijun Cao
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
| | - Jingsi Bai
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
| | - Jinrong Zou
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
| | - Yuhui Du
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
| | - Tingjian Chen
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
| |
Collapse
|
9
|
Huang X, Li A, Xu P, Yu Y, Li S, Hu L, Feng S. Current and prospective strategies for advancing the targeted delivery of CRISPR/Cas system via extracellular vesicles. J Nanobiotechnology 2023; 21:184. [PMID: 37291577 DOI: 10.1186/s12951-023-01952-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 06/02/2023] [Indexed: 06/10/2023] Open
Abstract
Extracellular vesicles (EVs) have emerged as a promising platform for gene delivery owing to their natural properties and phenomenal functions, being able to circumvent the significant challenges associated with toxicity, problematic biocompatibility, and immunogenicity of the standard approaches. These features are of particularly interest for targeted delivery of the emerging clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated (Cas) systems. However, the current efficiency of EV-meditated transport of CRISPR/Cas components remains insufficient due to numerous exogenous and endogenous barriers. Here, we comprehensively reviewed the current status of EV-based CRISPR/Cas delivery systems. In particular, we explored various strategies and methodologies available to potentially improve the loading capacity, safety, stability, targeting, and tracking for EV-based CRISPR/Cas system delivery. Additionally, we hypothesise the future avenues for the development of EV-based delivery systems that could pave the way for novel clinically valuable gene delivery approaches, and may potentially bridge the gap between gene editing technologies and the laboratory/clinical application of gene therapies.
Collapse
Affiliation(s)
- Xiaowen Huang
- Medical College, Henan University of Chinese Medicine, Zhengzhou, 450056, Henan, China
| | - Aifang Li
- Medical College, Henan University of Chinese Medicine, Zhengzhou, 450056, Henan, China
| | - Peng Xu
- Medical College, Henan University of Chinese Medicine, Zhengzhou, 450056, Henan, China
| | - Yangfan Yu
- Medical College, Henan University of Chinese Medicine, Zhengzhou, 450056, Henan, China
| | - Shuxuan Li
- Medical College, Henan University of Chinese Medicine, Zhengzhou, 450056, Henan, China
| | - Lina Hu
- Medical College, Henan University of Chinese Medicine, Zhengzhou, 450056, Henan, China
| | - Shuying Feng
- Medical College, Henan University of Chinese Medicine, Zhengzhou, 450056, Henan, China.
- Department of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan, China.
| |
Collapse
|
10
|
Xue Y, Li J, Chen D, Zhao X, Hong L, Liu Y. Observation of structural switch in nascent SAM-VI riboswitch during transcription at single-nucleotide and single-molecule resolution. Nat Commun 2023; 14:2320. [PMID: 37087479 PMCID: PMC10122661 DOI: 10.1038/s41467-023-38042-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 04/13/2023] [Indexed: 04/24/2023] Open
Abstract
Growing RNAs fold differently as they are transcribed, which modulates their finally adopted structures. Riboswitches regulate gene expression by structural change, which are sensitive to co-transcriptionally structural biology. Here we develop a strategy to track the structural change of RNAs during transcription at single-nucleotide and single-molecule resolution and use it to monitor individual transcripts of the SAM-VI riboswitch (riboSAM) as transcription proceeds, observing co-existence of five states in riboSAM. We report a bifurcated helix in one newly identified state from NMR and single-molecule FRET (smFRET) results, and its presence directs the translation inhibition in our cellular translation experiments. A model is proposed to illustrate the distinct switch patterns and gene-regulatory outcome of riboSAM when SAM is present or absent. Our strategy enables the precise mapping of RNAs' conformational landscape during transcription, and may combine with detection methods other than smFRET for structural studies of RNAs in general.
Collapse
Affiliation(s)
- Yanyan Xue
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jun Li
- School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Dian Chen
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xizhu Zhao
- Zhiyuan College, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Liang Hong
- School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China.
- Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China.
- Shanghai Artificial Intelligence Laboratory, Shanghai, 200232, China.
| | - Yu Liu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
- Shanghai Artificial Intelligence Laboratory, Shanghai, 200232, China.
| |
Collapse
|
11
|
Chien PY, Gao L, Liu Y. Quantitative Analysis of Transcription Termination via Position-Selective Labeling of RNA (PLOR) Method. Int J Mol Sci 2023; 24:ijms24054934. [PMID: 36902367 PMCID: PMC10003555 DOI: 10.3390/ijms24054934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
T7 RNA polymerase is the most widely used enzyme in RNA synthesis, and it is also used for RNA labeling in position-selective labeling of RNA (PLOR). PLOR is a liquid-solid hybrid phase method that has been developed to introduce labels to specific positions of RNA. Here, we applied PLOR as a single-round transcription method to quantify the terminated and read-through products in transcription for the first time. Various factors, including pausing strategies, Mg2+, ligand and the NTP concentration at the transcriptional termination of adenine riboswitch RNA have been characterized. This helps to understand transcription termination, which is one of the least understood processes in transcription. Additionally, our strategy can potentially be used to study the co-transcription behavior of general RNA, especially when continuous transcription is not desired.
Collapse
|
12
|
Lander AJ, Jin Y, Luk LYP. D-Peptide and D-Protein Technology: Recent Advances, Challenges, and Opportunities. Chembiochem 2023; 24:e202200537. [PMID: 36278392 PMCID: PMC10805118 DOI: 10.1002/cbic.202200537] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/23/2022] [Indexed: 11/08/2022]
Abstract
Total chemical protein synthesis provides access to entire D-protein enantiomers enabling unique applications in molecular biology, structural biology, and bioactive compound discovery. Key enzymes involved in the central dogma of molecular biology have been prepared in their D-enantiomeric forms facilitating the development of mirror-image life. Crystallization of a racemic mixture of L- and D-protein enantiomers provides access to high-resolution X-ray structures of polypeptides. Additionally, D-enantiomers of protein drug targets can be used in mirror-image phage display allowing discovery of non-proteolytic D-peptide ligands as lead candidates. This review discusses the unique applications of D-proteins including the synthetic challenges and opportunities.
Collapse
Affiliation(s)
- Alexander J. Lander
- School of ChemistryCardiff UniversityMain Building, Park PlaceCardiffCF10 3ATUK
| | - Yi Jin
- Manchester Institute of BiotechnologyThe University of ManchesterManchesterM1 7DNUK
| | - Louis Y. P. Luk
- School of ChemistryCardiff UniversityMain Building, Park PlaceCardiffCF10 3ATUK
| |
Collapse
|
13
|
Brunderová M, Krömer M, Vlková M, Hocek M. Chloroacetamide-Modified Nucleotide and RNA for Bioconjugations and Cross-Linking with RNA-Binding Proteins. Angew Chem Int Ed Engl 2023; 62:e202213764. [PMID: 36533569 PMCID: PMC10107093 DOI: 10.1002/anie.202213764] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 12/04/2022] [Accepted: 12/19/2022] [Indexed: 12/23/2022]
Abstract
Reactive RNA probes are useful for studying and identifying RNA-binding proteins. To that end, we designed and synthesized chloroacetamide-linked 7-deaza-ATP which was a good substrate for T7 RNA polymerase in in vitro transcription assay to synthesize reactive RNA probes bearing one or several reactive modifications. Modified RNA probes reacted with thiol-containing molecules as well as with cysteine- or histidine-containing peptides to form stable covalent products. They also reacted selectively with RNA-binding proteins to form cross-linked conjugates in high conversions thanks to proximity effect. Our modified nucleotide and RNA probes are promising tools for applications in RNA (bio)conjugations or RNA proteomics.
Collapse
Affiliation(s)
- Mária Brunderová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of SciencesFlemingovo nám. 216000Prague 6Czech Republic
- Department of Organic ChemistryFaculty of ScienceCharles UniversityHlavova 812843Prague 2Czech Republic
| | - Matouš Krömer
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of SciencesFlemingovo nám. 216000Prague 6Czech Republic
- Department of Organic ChemistryFaculty of ScienceCharles UniversityHlavova 812843Prague 2Czech Republic
| | - Marta Vlková
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of SciencesFlemingovo nám. 216000Prague 6Czech Republic
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of SciencesFlemingovo nám. 216000Prague 6Czech Republic
- Department of Organic ChemistryFaculty of ScienceCharles UniversityHlavova 812843Prague 2Czech Republic
| |
Collapse
|
14
|
Graczyk A, Radzikowska-Cieciura E, Kaczmarek R, Pawlowska R, Chworos A. Modified Nucleotides for Chemical and Enzymatic Synthesis of Therapeutic RNA. Curr Med Chem 2023; 30:1320-1347. [PMID: 36239720 DOI: 10.2174/0929867330666221014111403] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/22/2022] [Accepted: 05/16/2022] [Indexed: 11/22/2022]
Abstract
In recent years, RNA has emerged as a medium with a broad spectrum of therapeutic potential, however, for years, a group of short RNA fragments was studied and considered therapeutic molecules. In nature, RNA plays both functions, with coding and non-coding potential. For RNA, like any other therapeutic, to be used clinically, certain barriers must be crossed. Among them, there are biocompatibility, relatively low toxicity, bioavailability, increased stability, target efficiency and low off-target effects. In the case of RNA, most of these obstacles can be overcome by incorporating modified nucleotides into its structure. This may be achieved by both, in vitro and in vivo biosynthetic methods, as well as chemical synthesis. Some advantages and disadvantages of each approach are summarized here. The wide range of nucleotide analogues has been tested for their utility as monomers for RNA synthesis. Many of them have been successfully implemented, and a lot of pre-clinical and clinical studies involving modified RNA have been carried out. Some of these medications have already been introduced into clinics. After the huge success of RNA-based vaccines that were introduced into widespread use in 2020, and the introduction to the market of some RNA-based drugs, RNA therapeutics containing modified nucleotides appear to be the future of medicine.
Collapse
Affiliation(s)
- Anna Graczyk
- Department of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | - Ewa Radzikowska-Cieciura
- Department of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | - Renata Kaczmarek
- Department of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | - Roza Pawlowska
- Department of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | - Arkadiusz Chworos
- Department of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| |
Collapse
|
15
|
Li J, Zhang X, Hong L, Liu Y. Entropy Driving the Mg 2+-Induced Folding of TPP Riboswitch RNA. J Phys Chem B 2022; 126:9457-9464. [PMID: 36379020 DOI: 10.1021/acs.jpcb.2c03688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mg2+ is well known to facilitate the structural folding of RNA. However, the thermodynamic and dynamic roles of Mg2+ in RNA folding remain elusive. Here, we exploit single-molecule fluorescence resonance energy transfer (smFRET) and isothermal titration calorimetry (ITC) to study the mechanism of Mg2+ in facilitating the folding of thiamine pyrophosphate (TPP) riboswitch RNA. The results of smFRET identify that the presence of Mg2+ compacts the RNA and enlarges the conformational dispersity among individual RNA molecules, resulting in a large gain of entropy. The compact yet flexible conformations triggered by Mg2+ may help the riboswitch recognize its specific ligand and further fold. This is supported by the ITC experiments, in which the Mg2+-induced RNA folding is driven by entropy (ΔS) instead of enthalpy (ΔH). Our results complement the understanding of the Mg2+-induced RNA folding. The strategy developed in this work can be used to model other RNAs' folding under different conditions.
Collapse
Affiliation(s)
- Jun Li
- School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaoyu Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Liang Hong
- School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China.,Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yu Liu
- State Key Laboratory of Microbial Metabolism, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
16
|
Zhao S, Li X, Wen Z, Zou M, Yu G, Liu X, Mao J, Zhang L, Xue Y, Fu R, Wang S. Dynamics of base pairs with low stability in RNA by solid-state nuclear magnetic resonance exchange spectroscopy. iScience 2022; 25:105322. [DOI: 10.1016/j.isci.2022.105322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/07/2022] [Accepted: 10/07/2022] [Indexed: 11/28/2022] Open
|
17
|
Xu Y, Zhu TF. Mirror-image T7 transcription of chirally inverted ribosomal and functional RNAs. Science 2022; 378:405-412. [DOI: 10.1126/science.abm0646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
To synthesize a chirally inverted ribosome with the goal of building mirror-image biology systems requires the preparation of kilobase-long mirror-image ribosomal RNAs that make up the structural and catalytic core and about two-thirds of the molecular mass of the mirror-image ribosome. Here, we chemically synthesized a 100-kilodalton mirror-image T7 RNA polymerase, which enabled efficient and faithful transcription of the full-length mirror-image 5
S
, 16
S
, and 23
S
ribosomal RNAs from enzymatically assembled long mirror-image genes. We further exploited the versatile mirror-image T7 transcription system for practical applications such as biostable mirror-image riboswitch sensor, long-term storage of unprotected kilobase-long
l
-RNA in water, and
l
-ribozyme–catalyzed
l
-RNA polymerization to serve as a model system for basic RNA research.
Collapse
Affiliation(s)
- Yuan Xu
- School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, China
- School of Life Sciences, Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
| | - Ting F. Zhu
- School of Life Sciences, Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
| |
Collapse
|
18
|
Dayie TK, Olenginski LT, Taiwo KM. Isotope Labels Combined with Solution NMR Spectroscopy Make Visible the Invisible Conformations of Small-to-Large RNAs. Chem Rev 2022; 122:9357-9394. [PMID: 35442658 PMCID: PMC9136934 DOI: 10.1021/acs.chemrev.1c00845] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Indexed: 02/07/2023]
Abstract
RNA is central to the proper function of cellular processes important for life on earth and implicated in various medical dysfunctions. Yet, RNA structural biology lags significantly behind that of proteins, limiting mechanistic understanding of RNA chemical biology. Fortunately, solution NMR spectroscopy can probe the structural dynamics of RNA in solution at atomic resolution, opening the door to their functional understanding. However, NMR analysis of RNA, with only four unique ribonucleotide building blocks, suffers from spectral crowding and broad linewidths, especially as RNAs grow in size. One effective strategy to overcome these challenges is to introduce NMR-active stable isotopes into RNA. However, traditional uniform labeling methods introduce scalar and dipolar couplings that complicate the implementation and analysis of NMR measurements. This challenge can be circumvented with selective isotope labeling. In this review, we outline the development of labeling technologies and their application to study biologically relevant RNAs and their complexes ranging in size from 5 to 300 kDa by NMR spectroscopy.
Collapse
Affiliation(s)
- Theodore K. Dayie
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Lukasz T. Olenginski
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Kehinde M. Taiwo
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
19
|
Wang S, Chen D, Gao L, Liu Y. Short Oligonucleotides Facilitate Co-transcriptional Labeling of RNA at Specific Positions. J Am Chem Soc 2022; 144:5494-5502. [PMID: 35293210 DOI: 10.1021/jacs.2c00020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Labeling RNA molecules at specific positions is critical for RNA research and applications. Such methods are in high demand but still a challenge, especially those that enable native co-synthesis rather than post-synthesis labeling of long RNAs. The method we developed in this work meets these requirements, in which a leader RNA is extended on the hybrid solid-liquid phase by an engineered transcriptional complex following the pause-restart mode. A custom-designed short oligonucleotide is used to functionalize the engineered complex. This remarkable co-transcriptional labeling method incorporates labels into RNAs in high yields with great flexibility. We demonstrate the method by successfully introducing natural modifications, a fluorescent nucleotide analogue and a donor-acceptor fluorophore pair to specific sites located at an internal loop, a pseudoknot, a junction, a helix, and the middle of consecutive identical nucleotides of various RNAs. This newly developed method overcomes efficiency and position-choosing constraints that have hampered routine strategies to label RNAs beyond 200 nucleotides (nt).
Collapse
Affiliation(s)
- Siyu Wang
- State Key Laboratory of Microbial Metabolism, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Dian Chen
- State Key Laboratory of Microbial Metabolism, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lingzhi Gao
- State Key Laboratory of Microbial Metabolism, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yu Liu
- State Key Laboratory of Microbial Metabolism, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.,Shanghai Artificial Intelligence Laboratory, Shanghai 200232, China
| |
Collapse
|
20
|
Xue Y, Liu Y. Incorporation of a FRET Pair into a Riboswitch RNA to Measure Mg 2+ Concentration and RNA Conformational Change in Cell. Int J Mol Sci 2022; 23:ijms23031493. [PMID: 35163416 PMCID: PMC8835884 DOI: 10.3390/ijms23031493] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/20/2022] [Accepted: 01/26/2022] [Indexed: 02/06/2023] Open
Abstract
Riboswitches are natural biosensors that can regulate gene expression by sensing small molecules. Knowledge of the structural dynamics of riboswitches is crucial to elucidate their regulatory mechanism and develop RNA biosensors. In this work, we incorporated the fluorophore, Cy3, and its quencher, TQ3, into a full-length adenine riboswitch RNA and its isolated aptamer domain to monitor the dynamics of the RNAs in vitro and in cell. The adenine riboswitch was sensitive to Mg2+ concentrations and could be used as a biosensor to measure cellular Mg2+ concentrations. Additionally, the TQ3/Cy3-labeled adenine riboswitch yielded a Mg2+ concentration that was similar to that measured using a commercial assay kit. Furthermore, the fluorescence response to the adenine of the TQ3/Cy3-labeled riboswitch RNA was applied to determine the proportions of multiple RNA conformational changes in cells. The strategy developed in this work can be used to probe the dynamics of other RNAs in cells and may facilitate the developments of RNA biosensors, drugs and engineering.
Collapse
|
21
|
Lin Y, Wagner E, Lächelt U. Non-viral delivery of the CRISPR/Cas system: DNA versus RNA versus RNP. Biomater Sci 2022; 10:1166-1192. [DOI: 10.1039/d1bm01658j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Since its discovery, the CRISPR/Cas technology has rapidly become an essential tool in modern biomedical research. The opportunities to specifically modify and correct genomic DNA has also raised big hope...
Collapse
|
22
|
A transient conformation facilitates ligand binding to the adenine riboswitch. iScience 2021; 24:103512. [PMID: 34927032 PMCID: PMC8652005 DOI: 10.1016/j.isci.2021.103512] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/14/2021] [Accepted: 11/22/2021] [Indexed: 11/29/2022] Open
Abstract
RNAs adopt various conformations to perform different functions in cells. Incapable of acquiring intermediates, the key initiations of ligand recognition in the adenine riboswitch have not been characterized. In this work, stopped-flow fluorescence was used to track structural switches in the full-length adenine riboswitch in real time. We used PLOR (position-selective labeling of RNA) to incorporate fluorophores into desired positions in the RNA. The switching sequence P1 responded to adenine more rapidly than helix P4 and the binding pocket, followed by stabilization of the binding pocket, P4, and annealing of P1. Moreover, a transient intermediate consisting of an unwound P1 was detected during adenine binding. These events were observed in both the WT riboswitch and a functional mutant. The findings provide insight into the conformational changes of the riboswitch RNA triggered by a ligand. Real-time tracking of the adenine riboswitch at nucleotide resolution A transient conformation with unwound P1 is identified in the adenine riboswitch Helix P1 responds to ligand quicker than the binding pocket or expression platform
Collapse
|
23
|
Fan C, Deng Q, Zhu TF. Bioorthogonal information storage in L-DNA with a high-fidelity mirror-image Pfu DNA polymerase. Nat Biotechnol 2021; 39:1548-1555. [PMID: 34326549 DOI: 10.1038/s41587-021-00969-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 05/31/2021] [Indexed: 02/07/2023]
Abstract
Natural DNA is exquisitely evolved to store genetic information. The chirally inverted L-DNA, possessing the same informational capacity but resistant to biodegradation, may serve as a robust, bioorthogonal information repository. Here we chemically synthesize a 90-kDa high-fidelity mirror-image Pfu DNA polymerase that enables accurate assembly of a kilobase-sized mirror-image gene. We use the polymerase to encode in L-DNA an 1860 paragraph by Louis Pasteur that first proposed a mirror-image world of biology. We realize chiral steganography by embedding a chimeric D-DNA/L-DNA key molecule in a D-DNA storage library, which conveys a false or secret message depending on the chirality of reading. Furthermore, we show that a trace amount of an L-DNA barcode preserved in water from a local pond remains amplifiable and sequenceable for 1 year, whereas a D-DNA barcode under the same conditions could not be amplified after 1 day. These next-generation mirror-image molecular tools may transform the development of advanced mirror-image biology systems and pave the way for the realization of the mirror-image central dogma and exploration of their applications.
Collapse
Affiliation(s)
- Chuyao Fan
- School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, Center for Synthetic and Systems Biology, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Ministry of Education Key Laboratory of Bioinformatics, Tsinghua University, Beijing, China
| | - Qiang Deng
- School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, Center for Synthetic and Systems Biology, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Ministry of Education Key Laboratory of Bioinformatics, Tsinghua University, Beijing, China
| | - Ting F Zhu
- School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, Center for Synthetic and Systems Biology, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Ministry of Education Key Laboratory of Bioinformatics, Tsinghua University, Beijing, China.
| |
Collapse
|
24
|
Depmeier H, Hoffmann E, Bornewasser L, Kath‐Schorr S. Strategies for Covalent Labeling of Long RNAs. Chembiochem 2021; 22:2826-2847. [PMID: 34043861 PMCID: PMC8518768 DOI: 10.1002/cbic.202100161] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 05/26/2021] [Indexed: 12/17/2022]
Abstract
The introduction of chemical modifications into long RNA molecules at specific positions for visualization, biophysical investigations, diagnostic and therapeutic applications still remains challenging. In this review, we present recent approaches for covalent internal labeling of long RNAs. Topics included are the assembly of large modified RNAs via enzymatic ligation of short synthetic oligonucleotides and synthetic biology approaches preparing site-specifically modified RNAs via in vitro transcription using an expanded genetic alphabet. Moreover, recent approaches to employ deoxyribozymes (DNAzymes) and ribozymes for RNA labeling and RNA methyltransferase based labeling strategies are presented. We discuss the potentials and limits of the individual methods, their applicability for RNAs with several hundred to thousands of nucleotides in length and indicate future directions in the field.
Collapse
Affiliation(s)
- Hannah Depmeier
- University of CologneDepartment of ChemistryGreinstr. 450939CologneGermany
| | - Eva Hoffmann
- University of CologneDepartment of ChemistryGreinstr. 450939CologneGermany
| | - Lisa Bornewasser
- University of CologneDepartment of ChemistryGreinstr. 450939CologneGermany
| | | |
Collapse
|
25
|
Olenginski LT, Taiwo KM, LeBlanc RM, Dayie TK. Isotope-Labeled RNA Building Blocks for NMR Structure and Dynamics Studies. Molecules 2021; 26:5581. [PMID: 34577051 PMCID: PMC8466439 DOI: 10.3390/molecules26185581] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/05/2021] [Accepted: 09/07/2021] [Indexed: 01/19/2023] Open
Abstract
RNA structural research lags behind that of proteins, preventing a robust understanding of RNA functions. NMR spectroscopy is an apt technique for probing the structures and dynamics of RNA molecules in solution at atomic resolution. Still, RNA analysis by NMR suffers from spectral overlap and line broadening, both of which worsen for larger RNAs. Incorporation of stable isotope labels into RNA has provided several solutions to these challenges. In this review, we summarize the benefits and limitations of various methods used to obtain isotope-labeled RNA building blocks and how they are used to prepare isotope-labeled RNA for NMR structure and dynamics studies.
Collapse
Affiliation(s)
- Lukasz T. Olenginski
- Center for Biomolecular Structure and Organization, Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA; (L.T.O.); (K.M.T.); (R.M.L.)
| | - Kehinde M. Taiwo
- Center for Biomolecular Structure and Organization, Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA; (L.T.O.); (K.M.T.); (R.M.L.)
| | - Regan M. LeBlanc
- Center for Biomolecular Structure and Organization, Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA; (L.T.O.); (K.M.T.); (R.M.L.)
- Vertex Pharmaceuticals, 50 Northern Avenue, Boston, MA 02210, USA
| | - Theodore K. Dayie
- Center for Biomolecular Structure and Organization, Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA; (L.T.O.); (K.M.T.); (R.M.L.)
| |
Collapse
|
26
|
Through the looking glass: milestones on the road towards mirroring life. Trends Biochem Sci 2021; 46:931-943. [PMID: 34294544 DOI: 10.1016/j.tibs.2021.06.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 06/05/2021] [Accepted: 06/18/2021] [Indexed: 12/24/2022]
Abstract
Naturally occurring DNA, RNA, and proteins predominantly exist in only one enantiomeric form (homochirality). Advances in biotechnology and chemical synthesis allow the production of the respective alternate enantiomeric form, enabling access to mirror-image versions of these natural biopolymers. Exploiting the unique properties of such mirror molecules has already led to many applications, such as biostable and nonimmunogenic therapeutics or sensors. However, a 'roadblock' for unlocking the mirror world is the lack of biological systems capable of synthesizing critical building blocks including mirror oligonucleotides and oligopeptides to reducing cost and improve purity. Here, we provide an overview of the current progress, applications, and challenges of the molecular mirror world by identifying milestones towards mirroring life.
Collapse
|
27
|
Dziuba D, Didier P, Ciaco S, Barth A, Seidel CAM, Mély Y. Fundamental photophysics of isomorphic and expanded fluorescent nucleoside analogues. Chem Soc Rev 2021; 50:7062-7107. [PMID: 33956014 DOI: 10.1039/d1cs00194a] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Fluorescent nucleoside analogues (FNAs) are structurally diverse mimics of the natural essentially non-fluorescent nucleosides which have found numerous applications in probing the structure and dynamics of nucleic acids as well as their interactions with various biomolecules. In order to minimize disturbance in the labelled nucleic acid sequences, the FNA chromophoric groups should resemble the natural nucleobases in size and hydrogen-bonding patterns. Isomorphic and expanded FNAs are the two groups that best meet the criteria of non-perturbing fluorescent labels for DNA and RNA. Significant progress has been made over the past decades in understanding the fundamental photophysics that governs the spectroscopic and environmentally sensitive properties of these FNAs. Herein, we review recent advances in the spectroscopic and computational studies of selected isomorphic and expanded FNAs. We also show how this information can be used as a rational basis to design new FNAs, select appropriate sequences for optimal spectroscopic response and interpret fluorescence data in FNA applications.
Collapse
Affiliation(s)
- Dmytro Dziuba
- Laboratoire de Bioimagerie et Pathologies, UMR 7021, Université de Strasbourg, 74 route du Rhin, 67401 Illkirch, France.
| | - Pascal Didier
- Laboratoire de Bioimagerie et Pathologies, UMR 7021, Université de Strasbourg, 74 route du Rhin, 67401 Illkirch, France.
| | - Stefano Ciaco
- Laboratoire de Bioimagerie et Pathologies, UMR 7021, Université de Strasbourg, 74 route du Rhin, 67401 Illkirch, France. and Department of Biotechnology, Chemistry and Pharmacy, University of Siena, via Aldo Moro 2, 53100 Siena, Italy
| | - Anders Barth
- Institut für Physikalische Chemie, Lehrstuhl für Molekulare Physikalische Chemie, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
| | - Claus A M Seidel
- Institut für Physikalische Chemie, Lehrstuhl für Molekulare Physikalische Chemie, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
| | - Yves Mély
- Laboratoire de Bioimagerie et Pathologies, UMR 7021, Université de Strasbourg, 74 route du Rhin, 67401 Illkirch, France.
| |
Collapse
|
28
|
Zhao M, Börner R, Sigel RKO, Freisinger E. Site-Specific Dual-Color Labeling of Long RNAs. Methods Mol Biol 2021; 2106:253-270. [PMID: 31889263 DOI: 10.1007/978-1-0716-0231-7_16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Labeling of large RNAs with reporting entities, e.g., fluorophores, has significant impact on RNA studies in vitro and in vivo. Here, we describe a minimally invasive RNA labeling method featuring nucleotide and position selectivity, which solves the long-standing challenge of how to achieve accurate site-specific labeling of large RNAs with a least possible influence on folding and/or function. We use a custom-designed reactive DNA strand to hybridize to the RNA and transfer the alkyne group onto the targeted adenine or cytosine. Simultaneously, the 3'-terminus of RNA is converted to a dialdehyde moiety under the experimental condition applied. The incorporated functionalities at the internal and the 3'-terminal sites can then be conjugated with reporting entities via bioorthogonal chemistry. This method is particularly valuable for, but not limited to, single-molecule fluorescence applications. We demonstrate the method on an RNA construct of 275 nucleotides, the btuB riboswitch of Escherichia coli.
Collapse
Affiliation(s)
- Meng Zhao
- Department of Chemistry, University of Zurich, Zurich, Switzerland
- Department of Physics, University of Alberta, Edmonton, AB, Canada
| | - Richard Börner
- Department of Chemistry, University of Zurich, Zurich, Switzerland
- Laserinstitut Hochschule Mittweida, University of Applied Sciences Mittweida, Mittweida, Germany
| | - Roland K O Sigel
- Department of Chemistry, University of Zurich, Zurich, Switzerland
| | - Eva Freisinger
- Department of Chemistry, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
29
|
Li M. Optimization of N-hydroxysuccinimide ester coupling with aminoallyl-modified RNA for fluorescent labeling. Bioengineered 2021; 11:599-606. [PMID: 32449472 PMCID: PMC8291868 DOI: 10.1080/21655979.2020.1765487] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Site-specific fluorescent labeling of RNA is crucial for obtaining the structural and dynamic information of RNAs by fluorescence techniques. Post-synthetic modification of RNA based on N-hydroxysuccinimide (NHS) coupling reaction is an economic, efficient and simple strategy to introduce fluorophore to samples. However, this strategy are not that frequently used in RNA molecules, and the reported reaction conditions and yields varied among different systems. This study results mainly focused on screening the reaction conditions (reactants concentrations, dimethylsulfoxide concentration, solution conditions, pH and reaction time) between NHS-linked fluorophore and aminoallyl-RNA (aa-RNA) to optimize the yield of fluorescent RNA up to 55%, doubled the initial yield. What's more, as low as one tenth of fluorescent reagent was used in our protocol compared with the reported protocols, greatly reducing the experimental cost. The protocol can be applied as a general guide potentially for RNA labeling by NHS-ester coupling reaction.
Collapse
Affiliation(s)
- Mengyang Li
- State Key Laboratory of Microbial Metabolism, School of Life Science and Biotechnology, Shanghai Jiao Tong University , Shanghai, P. R. China
| |
Collapse
|
30
|
Sanders JC, Holmstrom ED. Integrating single-molecule FRET and biomolecular simulations to study diverse interactions between nucleic acids and proteins. Essays Biochem 2021; 65:37-49. [PMID: 33600559 PMCID: PMC8052285 DOI: 10.1042/ebc20200022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 01/17/2021] [Accepted: 01/26/2021] [Indexed: 12/12/2022]
Abstract
The conformations of biological macromolecules are intimately related to their cellular functions. Conveniently, the well-characterized dipole-dipole distance-dependence of Förster resonance energy transfer (FRET) makes it possible to measure and monitor the nanoscale spatial dimensions of these conformations using fluorescence spectroscopy. For this reason, FRET is often used in conjunction with single-molecule detection to study a wide range of conformationally dynamic biochemical processes. Written for those not yet familiar with the subject, this review aims to introduce biochemists to the methodology associated with single-molecule FRET, with a particular emphasis on how it can be combined with biomolecular simulations to study diverse interactions between nucleic acids and proteins. In the first section, we highlight several conceptual and practical considerations related to this integrative approach. In the second section, we review a few recent research efforts wherein various combinations of single-molecule FRET and biomolecular simulations were used to study the structural and dynamic properties of biochemical systems involving different types of nucleic acids (e.g., DNA and RNA) and proteins (e.g., folded and disordered).
Collapse
Affiliation(s)
- Joshua C Sanders
- Department of Chemistry, University of Kansas, Lawrence, KS, U.S.A
| | - Erik D Holmstrom
- Department of Chemistry, University of Kansas, Lawrence, KS, U.S.A
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS, U.S.A
| |
Collapse
|
31
|
Wu L, Liu Z, Liu Y. Thermal adaptation of structural dynamics and regulatory function of adenine riboswitch. RNA Biol 2021; 18:2007-2015. [PMID: 33573442 DOI: 10.1080/15476286.2021.1886755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Ligand binding and temperature play important roles in riboswitch RNAs' structures and functions. However, most studies focused on studying structural dynamics or gene-regulation function of riboswitches from the aspect of ligand, instead of temperature. Here we combined NMR, ITC, stopped-flow and in vivo assays to investigate the ligand-triggered switch of adenine riboswitch from 10 to 45°C. Our results demonstrated that at single-nucleotide resolution, structural regions sensed ligand and temperature diversely. Temperature had opposite effects on ligand-binding and gene-regulation of adenine riboswitch. Compared with higher temperature, the RNA bound with its cognate ligand obviously stronger, while its regulatory capacity was weakened at lower temperature. In addition, application of specific-labelled RNAs to the stopped-flow experiments identified the real-time folding of the specific positions upon ligand addition at different temperatures. The kissing loop and internal loop at the riboswitch responded to ligand and temperature differently. The distinct thermo-dynamics of adenine riboswitch exposed here may contribute to the fields of RNA sensors and drug design.
Collapse
Affiliation(s)
- Lin Wu
- State Key Laboratory of Microbial Metabolism, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Zhijun Liu
- National Facility for Protein Science (Shanghai), Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai, China
| | - Yu Liu
- State Key Laboratory of Microbial Metabolism, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
32
|
Chen Q, Zhang Y, Yin H. Recent advances in chemical modifications of guide RNA, mRNA and donor template for CRISPR-mediated genome editing. Adv Drug Deliv Rev 2021; 168:246-258. [PMID: 33122087 DOI: 10.1016/j.addr.2020.10.014] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 10/19/2020] [Accepted: 10/21/2020] [Indexed: 12/14/2022]
Abstract
The discovery and applications of clustered regularly interspaced short palindromic repeat (CRISPR) systems have revolutionized our ability to track and manipulate specific nucleic acid sequences in many cell types of various organisms. The robustness and simplicity of these platforms have rapidly extended their applications from basic research to the development of therapeutics. However, many hurdles remain on the path to translation of the CRISPR systems to therapeutic applications: efficient delivery, detectable off-target effects, potential immunogenicity, and others. Chemical modifications provide a variety of protection options for guide RNA, Cas9 mRNA and donor templates. For example, chemically modified gRNA demonstrated enhanced on-target editing efficiency, minimized immune response and decreased off-target genome editing. In this review, we summarize the use of chemically modified nucleotides for CRISPR-mediated genome editing and emphasize open questions that remain to be addressed in clinical applications.
Collapse
Affiliation(s)
- Qiubing Chen
- Department of Urology, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China; Department of Pathology, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Ying Zhang
- Medical Research Institute, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China.
| | - Hao Yin
- Department of Urology, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China; Department of Pathology, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China.
| |
Collapse
|
33
|
Advanced approaches for elucidating structures of large RNAs using NMR spectroscopy and complementary methods. Methods 2020; 183:93-107. [DOI: 10.1016/j.ymeth.2020.01.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 11/11/2019] [Accepted: 01/16/2020] [Indexed: 11/23/2022] Open
|
34
|
Boyd PS, Brown JB, Brown JD, Catazaro J, Chaudry I, Ding P, Dong X, Marchant J, O’Hern CT, Singh K, Swanson C, Summers MF, Yasin S. NMR Studies of Retroviral Genome Packaging. Viruses 2020; 12:v12101115. [PMID: 33008123 PMCID: PMC7599994 DOI: 10.3390/v12101115] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/18/2020] [Accepted: 09/26/2020] [Indexed: 12/03/2022] Open
Abstract
Nearly all retroviruses selectively package two copies of their unspliced RNA genomes from a cellular milieu that contains a substantial excess of non-viral and spliced viral RNAs. Over the past four decades, combinations of genetic experiments, phylogenetic analyses, nucleotide accessibility mapping, in silico RNA structure predictions, and biophysical experiments were employed to understand how retroviral genomes are selected for packaging. Genetic studies provided early clues regarding the protein and RNA elements required for packaging, and nucleotide accessibility mapping experiments provided insights into the secondary structures of functionally important elements in the genome. Three-dimensional structural determinants of packaging were primarily derived by nuclear magnetic resonance (NMR) spectroscopy. A key advantage of NMR, relative to other methods for determining biomolecular structure (such as X-ray crystallography), is that it is well suited for studies of conformationally dynamic and heterogeneous systems—a hallmark of the retrovirus packaging machinery. Here, we review advances in understanding of the structures, dynamics, and interactions of the proteins and RNA elements involved in retroviral genome selection and packaging that are facilitated by NMR.
Collapse
|
35
|
Xiao L, Habibian M, Kool ET. Site-Selective RNA Functionalization via DNA-Induced Structure. J Am Chem Soc 2020; 142:16357-16363. [PMID: 32865995 PMCID: PMC7962339 DOI: 10.1021/jacs.0c06824] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Methods for RNA functionalization at specific sites are in high demand but remain a challenge, particularly for RNAs produced by transcription rather than by total synthesis. Recent studies have described acylimidazole reagents that react in high yields at 2'-OH groups stochastically at nonbase-paired regions, covering much of the RNA in scattered acyl esters. Localized reactions, if possible, could prove useful in many applications, providing functional handles at specific sites and sequences of the biopolymer. Here, we describe a DNA-directed strategy for in vitro functionalization of RNA at site-localized 2'-OH groups. The method, RNA Acylation at Induced Loops (RAIL), utilizes complementary helper DNA oligonucleotides that expose gaps or loops at selected positions while protecting the remainder in DNA-RNA duplexes. Reaction with an acylimidazole reagent is then carried out, providing high yields of 2'-OH conjugation at predetermined sites. Experiments reveal optimal helper oligodeoxynucleotide designs and conditions for the reaction, and tests of the approach are carried out to control localized ribozyme activities and to label RNAs with dual-color fluorescent dyes. The RAIL approach offers a simple and novel strategy for site-selective labeling and control of RNAs, potentially of any length and origin.
Collapse
Affiliation(s)
- Lu Xiao
- Department of Chemistry, ChEM-H Institute and Stanford Cancer Institute, Stanford University, Stanford, California 94305, United States
| | - Maryam Habibian
- Department of Chemistry, ChEM-H Institute and Stanford Cancer Institute, Stanford University, Stanford, California 94305, United States
| | - Eric T. Kool
- Department of Chemistry, ChEM-H Institute and Stanford Cancer Institute, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
36
|
Chemo-enzymatic synthesis of [2-13C, 7-15 N]-ATP for facile NMR analysis of RNA. MONATSHEFTE FUR CHEMIE 2020. [DOI: 10.1007/s00706-020-02667-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
37
|
Abramov G, Velyvis A, Rennella E, Wong LE, Kay LE. A methyl-TROSY approach for NMR studies of high-molecular-weight DNA with application to the nucleosome core particle. Proc Natl Acad Sci U S A 2020; 117:12836-12846. [PMID: 32457157 PMCID: PMC7293644 DOI: 10.1073/pnas.2004317117] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The development of methyl-transverse relaxation-optimized spectroscopy (methyl-TROSY)-based NMR methods, in concert with robust strategies for incorporation of methyl-group probes of structure and dynamics into the protein of interest, has facilitated quantitative studies of high-molecular-weight protein complexes. Here we develop a one-pot in vitro reaction for producing NMR quantities of methyl-labeled DNA at the C5 and N6 positions of cytosine (5mC) and adenine (6mA) nucleobases, respectively, enabling the study of high-molecular-weight DNA molecules using TROSY approaches originally developed for protein applications. Our biosynthetic strategy exploits the large number of naturally available methyltransferases to specifically methylate DNA at a desired number of sites that serve as probes of structure and dynamics. We illustrate the methodology with studies of the 153-base pair Widom DNA molecule that is simultaneously methyl-labeled at five sites, showing that high-quality 13C-1H spectra can be recorded on 100 μM samples in a few minutes. NMR spin relaxation studies of labeled methyl groups in both DNA and the H2B histone protein component of the 200-kDa nucleosome core particle (NCP) establish that methyl groups at 5mC and 6mA positions are, in general, more rigid than Ile, Leu, and Val methyl probes in protein side chains. Studies focusing on histone H2B of NCPs wrapped with either wild-type DNA or DNA methylated at all 26 CpG sites highlight the utility of NMR in investigating the structural dynamics of the NCP and how its histone core is affected through DNA methylation, an important regulator of transcription.
Collapse
Affiliation(s)
- Gili Abramov
- Department of Molecular Genetics, The University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Biochemistry, The University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Chemistry, The University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Algirdas Velyvis
- Department of Molecular Genetics, The University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Biochemistry, The University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Chemistry, The University of Toronto, Toronto, ON M5S 1A8, Canada
- Bioscience Department, Syngenta, Jealott's Hill Research Centre, Bracknell RG42 6EY, United Kingdom
| | - Enrico Rennella
- Department of Molecular Genetics, The University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Biochemistry, The University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Chemistry, The University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Leo E Wong
- Department of Molecular Genetics, The University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Biochemistry, The University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Chemistry, The University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Lewis E Kay
- Department of Molecular Genetics, The University of Toronto, Toronto, ON M5S 1A8, Canada;
- Department of Biochemistry, The University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Chemistry, The University of Toronto, Toronto, ON M5S 1A8, Canada
- Program in Molecular Medicine, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| |
Collapse
|
38
|
Zhang X, Li M, Liu Y. Optimization and characterization of position-selective labelling of RNA (PLOR) for diverse RNA and DNA sequences. RNA Biol 2020; 17:1009-1017. [PMID: 32249673 DOI: 10.1080/15476286.2020.1749797] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Modifications of short RNAs at specific sites can be achieved commercially by solid-phase chemical synthesis method. However, labelling long RNAs is still challenging for the routine methods. Position-selective Labelling of RNA (PLOR) is a hybrid phase transcription method that allows to label RNAs at desired sites with great flexibility and decent efficiency. In principle, PLOR is a promising method for synthesis of long modified RNAs that are unable to be generated by solid-phase chemical synthesis and other methods. However, as a recently developed method, PLOR has been only applied to label a 71nt and a 104nt RNA, and the limited sequence applications of PLOR may hinder its potential usages. To extend PLOR to more RNAs, we tested the PLOR performances for various RNA sequences. Considering that the controlled transcriptional pauses at the initiation stage in PLOR may lead to different preferences on RNA sequences from in vitro transcription method, we here focused on identifying the effects of the 5'-end and initiated lengths of RNA on PLOR. In addition, our work demonstrated that PLOR efficiencies also varied with linker sizes of DNA templates. This work can facilitate PLOR to be the choice of synthesizing long modified RNAs for more users in the near future.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Science and Biotechnology, Shanghai Jiao Tong University , Shanghai, P. R. China
| | - Mengyang Li
- State Key Laboratory of Microbial Metabolism, School of Life Science and Biotechnology, Shanghai Jiao Tong University , Shanghai, P. R. China
| | - Yu Liu
- State Key Laboratory of Microbial Metabolism, School of Life Science and Biotechnology, Shanghai Jiao Tong University , Shanghai, P. R. China
| |
Collapse
|
39
|
Self‐Assembly of DNA and RNA Building Blocks Explored by Nitrogen‐14 NMR Crystallography: Structure and Dynamics. Chemphyschem 2020; 21:1044-1051. [DOI: 10.1002/cphc.201901214] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 03/18/2020] [Indexed: 12/20/2022]
|
40
|
Ling J, Fan C, Qin H, Wang M, Chen J, Wittung‐Stafshede P, Zhu TF. Mirror‐Image 5S Ribonucleoprotein Complexes. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201914799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jun‐Jie Ling
- School of Life SciencesTsinghua-Peking Center for Life SciencesBeijing Frontier Research Center for Biological StructureCenter for Synthetic and Systems BiologyMinistry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical BiologyMinistry of Education Key Laboratory of BioinformaticsTsinghua University Beijing 100084 China
| | - Chuyao Fan
- School of Life SciencesTsinghua-Peking Center for Life SciencesBeijing Frontier Research Center for Biological StructureCenter for Synthetic and Systems BiologyMinistry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical BiologyMinistry of Education Key Laboratory of BioinformaticsTsinghua University Beijing 100084 China
| | - Hong Qin
- School of Life SciencesTsinghua-Peking Center for Life SciencesBeijing Frontier Research Center for Biological StructureCenter for Synthetic and Systems BiologyMinistry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical BiologyMinistry of Education Key Laboratory of BioinformaticsTsinghua University Beijing 100084 China
| | - Min Wang
- School of Life SciencesTsinghua-Peking Center for Life SciencesBeijing Frontier Research Center for Biological StructureCenter for Synthetic and Systems BiologyMinistry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical BiologyMinistry of Education Key Laboratory of BioinformaticsTsinghua University Beijing 100084 China
| | - Ji Chen
- School of Life SciencesTsinghua-Peking Center for Life SciencesBeijing Frontier Research Center for Biological StructureCenter for Synthetic and Systems BiologyMinistry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical BiologyMinistry of Education Key Laboratory of BioinformaticsTsinghua University Beijing 100084 China
| | - Pernilla Wittung‐Stafshede
- Chemical Biology DivisionDepartment of Biology and Biological EngineeringChalmers University of Technology 41296 Gothenburg Sweden
| | - Ting F. Zhu
- School of Life SciencesTsinghua-Peking Center for Life SciencesBeijing Frontier Research Center for Biological StructureCenter for Synthetic and Systems BiologyMinistry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical BiologyMinistry of Education Key Laboratory of BioinformaticsTsinghua University Beijing 100084 China
| |
Collapse
|
41
|
Ling J, Fan C, Qin H, Wang M, Chen J, Wittung‐Stafshede P, Zhu TF. Mirror-Image 5S Ribonucleoprotein Complexes. Angew Chem Int Ed Engl 2020; 59:3724-3731. [PMID: 31841243 PMCID: PMC7217020 DOI: 10.1002/anie.201914799] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Indexed: 12/01/2022]
Abstract
After realizing mirror-image genetic replication, transcription, and reverse transcription, the biggest challenge in establishing a mirror-image version of the central dogma is to build a mirror-image ribosome-based translation machine. Here, we chemically synthesized the natural and mirror-image versions of three ribosomal proteins (L5, L18, and L25) in the large subunit of the Escherichia coli ribosome with post-translational modifications. We show that the synthetic mirror-image proteins can fold in vitro despite limited efficiency and assemble with enzymatically transcribed mirror-image 5S ribosomal RNA into ribonucleoprotein complexes. In addition, the RNA-protein interactions are chiral-specific in that the mirror-image ribosomal proteins do not bind with natural 5S ribosomal RNA and vice versa. The synthesis and assembly of mirror-image 5S ribonucleoprotein complexes are important steps towards building a functional mirror-image ribosome.
Collapse
Affiliation(s)
- Jun‐Jie Ling
- School of Life SciencesTsinghua-Peking Center for Life SciencesBeijing Frontier Research Center for Biological StructureCenter for Synthetic and Systems BiologyMinistry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical BiologyMinistry of Education Key Laboratory of BioinformaticsTsinghua UniversityBeijing100084China
| | - Chuyao Fan
- School of Life SciencesTsinghua-Peking Center for Life SciencesBeijing Frontier Research Center for Biological StructureCenter for Synthetic and Systems BiologyMinistry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical BiologyMinistry of Education Key Laboratory of BioinformaticsTsinghua UniversityBeijing100084China
| | - Hong Qin
- School of Life SciencesTsinghua-Peking Center for Life SciencesBeijing Frontier Research Center for Biological StructureCenter for Synthetic and Systems BiologyMinistry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical BiologyMinistry of Education Key Laboratory of BioinformaticsTsinghua UniversityBeijing100084China
| | - Min Wang
- School of Life SciencesTsinghua-Peking Center for Life SciencesBeijing Frontier Research Center for Biological StructureCenter for Synthetic and Systems BiologyMinistry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical BiologyMinistry of Education Key Laboratory of BioinformaticsTsinghua UniversityBeijing100084China
| | - Ji Chen
- School of Life SciencesTsinghua-Peking Center for Life SciencesBeijing Frontier Research Center for Biological StructureCenter for Synthetic and Systems BiologyMinistry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical BiologyMinistry of Education Key Laboratory of BioinformaticsTsinghua UniversityBeijing100084China
| | - Pernilla Wittung‐Stafshede
- Chemical Biology DivisionDepartment of Biology and Biological EngineeringChalmers University of Technology41296GothenburgSweden
| | - Ting F. Zhu
- School of Life SciencesTsinghua-Peking Center for Life SciencesBeijing Frontier Research Center for Biological StructureCenter for Synthetic and Systems BiologyMinistry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical BiologyMinistry of Education Key Laboratory of BioinformaticsTsinghua UniversityBeijing100084China
| |
Collapse
|
42
|
Asadi-Atoi P, Barraud P, Tisne C, Kellner S. Benefits of stable isotope labeling in RNA analysis. Biol Chem 2020; 400:847-865. [PMID: 30893050 DOI: 10.1515/hsz-2018-0447] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 03/11/2019] [Indexed: 02/07/2023]
Abstract
RNAs are key players in life as they connect the genetic code (DNA) with all cellular processes dominated by proteins. They contain a variety of chemical modifications and many RNAs fold into complex structures. Here, we review recent progress in the analysis of RNA modification and structure on the basis of stable isotope labeling techniques. Mass spectrometry (MS) and nuclear magnetic resonance (NMR) spectroscopy are the key tools and many breakthrough developments were made possible by the analysis of stable isotope labeled RNA. Therefore, we discuss current stable isotope labeling techniques such as metabolic labeling, enzymatic labeling and chemical synthesis. RNA structure analysis by NMR is challenging due to two major problems that become even more salient when the size of the RNA increases, namely chemical shift overlaps and line broadening leading to complete signal loss. Several isotope labeling strategies have been developed to provide solutions to these major issues, such as deuteration, segmental isotope labeling or site-specific labeling. Quantification of modified nucleosides in RNA by MS is only possible through the application of stable isotope labeled internal standards. With nucleic acid isotope labeling coupled mass spectrometry (NAIL-MS), it is now possible to analyze the dynamic processes of post-transcriptional RNA modification and demodification. The trend, in both NMR and MS RNA analytics, is without doubt shifting from the analysis of snapshot moments towards the development and application of tools capable of analyzing the dynamics of RNA structure and modification profiles.
Collapse
Affiliation(s)
- Paria Asadi-Atoi
- Department of Chemistry, Ludwig-Maximilians-University Munich, Butenandtstr. 5-13, D-81377 Munich, Germany
| | - Pierre Barraud
- Institut de Biologie Physico-Chimique (IBPC), UMR 8261, CNRS, Université Paris Diderot, 13 rue Pierre et Marie Curie, F-75005 Paris, France
| | - Carine Tisne
- Institut de Biologie Physico-Chimique (IBPC), UMR 8261, CNRS, Université Paris Diderot, 13 rue Pierre et Marie Curie, F-75005 Paris, France
| | - Stefanie Kellner
- Department of Chemistry, Ludwig-Maximilians-University Munich, Butenandtstr. 5-13, D-81377 Munich, Germany
| |
Collapse
|
43
|
Steffen FD, Khier M, Kowerko D, Cunha RA, Börner R, Sigel RKO. Metal ions and sugar puckering balance single-molecule kinetic heterogeneity in RNA and DNA tertiary contacts. Nat Commun 2020; 11:104. [PMID: 31913262 PMCID: PMC6949254 DOI: 10.1038/s41467-019-13683-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 11/15/2019] [Indexed: 11/13/2022] Open
Abstract
The fidelity of group II intron self-splicing and retrohoming relies on long-range tertiary interactions between the intron and its flanking exons. By single-molecule FRET, we explore the binding kinetics of the most important, structurally conserved contact, the exon and intron binding site 1 (EBS1/IBS1). A comparison of RNA-RNA and RNA-DNA hybrid contacts identifies transient metal ion binding as a major source of kinetic heterogeneity which typically appears in the form of degenerate FRET states. Molecular dynamics simulations suggest a structural link between heterogeneity and the sugar conformation at the exon-intron binding interface. While Mg2+ ions lock the exon in place and give rise to long dwell times in the exon bound FRET state, sugar puckering alleviates this structural rigidity and likely promotes exon release. The interplay of sugar puckering and metal ion coordination may be an important mechanism to balance binding affinities of RNA and DNA interactions in general.
Collapse
Affiliation(s)
- Fabio D Steffen
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Mokrane Khier
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Danny Kowerko
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
- Department of Informatics, Technical University Chemnitz, Straße der Nationen 62, 09111, Chemnitz, Germany
| | - Richard A Cunha
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Richard Börner
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
- Laserinstitut Hochschule Mittweida, University of Applied Sciences Mittweida, Technikumplatz 17, 09648, Mittweida, Germany.
| | - Roland K O Sigel
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
| |
Collapse
|
44
|
Schnieders R, Keyhani S, Schwalbe H, Fürtig B. More than Proton Detection-New Avenues for NMR Spectroscopy of RNA. Chemistry 2020; 26:102-113. [PMID: 31454110 PMCID: PMC6973061 DOI: 10.1002/chem.201903355] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Indexed: 12/16/2022]
Abstract
Ribonucleic acid oligonucleotides (RNAs) play pivotal roles in cellular function (riboswitches), chemical biology applications (SELEX-derived aptamers), cell biology and biomedical applications (transcriptomics). Furthermore, a growing number of RNA forms (long non-coding RNAs, circular RNAs) but also RNA modifications are identified, showing the ever increasing functional diversity of RNAs. To describe and understand this functional diversity, structural studies of RNA are increasingly important. However, they are often more challenging than protein structural studies as RNAs are substantially more dynamic and their function is often linked to their structural transitions between alternative conformations. NMR is a prime technique to characterize these structural dynamics with atomic resolution. To extend the NMR size limitation and to characterize large RNAs and their complexes above 200 nucleotides, new NMR techniques have been developed. This Minireview reports on the development of NMR methods that utilize detection on low-γ nuclei (heteronuclei like 13 C or 15 N with lower gyromagnetic ratio than 1 H) to obtain unique structural and dynamic information for large RNA molecules in solution. Experiments involve through-bond correlations of nucleobases and the phosphodiester backbone of RNA for chemical shift assignment and make information on hydrogen bonding uniquely accessible. Previously unobservable NMR resonances of amino groups in RNA nucleobases are now detected in experiments involving conformational exchange-resistant double-quantum 1 H coherences, detected by 13 C NMR spectroscopy. Furthermore, 13 C and 15 N chemical shifts provide valuable information on conformations. All the covered aspects point to the advantages of low-γ nuclei detection experiments in RNA.
Collapse
Affiliation(s)
- Robbin Schnieders
- Institute for Organic Chemistry and Chemical BiologyCenter for Biomolecular Magnetic Resonance (BMRZ)Johann Wolfgang Goethe-Universität FrankfurtMax-von-Laue-Str. 760438FrankfurtGermany
| | - Sara Keyhani
- Institute for Organic Chemistry and Chemical BiologyCenter for Biomolecular Magnetic Resonance (BMRZ)Johann Wolfgang Goethe-Universität FrankfurtMax-von-Laue-Str. 760438FrankfurtGermany
| | - Harald Schwalbe
- Institute for Organic Chemistry and Chemical BiologyCenter for Biomolecular Magnetic Resonance (BMRZ)Johann Wolfgang Goethe-Universität FrankfurtMax-von-Laue-Str. 760438FrankfurtGermany
| | - Boris Fürtig
- Institute for Organic Chemistry and Chemical BiologyCenter for Biomolecular Magnetic Resonance (BMRZ)Johann Wolfgang Goethe-Universität FrankfurtMax-von-Laue-Str. 760438FrankfurtGermany
| |
Collapse
|
45
|
Zhang K, Frank AT. Conditional Prediction of Ribonucleic Acid Secondary Structure Using Chemical Shifts. J Phys Chem B 2019; 124:470-478. [DOI: 10.1021/acs.jpcb.9b09814] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
46
|
Ghaem Maghami M, Scheitl CPM, Höbartner C. Direct in Vitro Selection of Trans-Acting Ribozymes for Posttranscriptional, Site-Specific, and Covalent Fluorescent Labeling of RNA. J Am Chem Soc 2019; 141:19546-19549. [PMID: 31778306 DOI: 10.1021/jacs.9b10531] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
General and efficient tools for site-specific fluorescent or bioorthogonal labeling of RNA are in high demand. Here, we report direct in vitro selection, characterization, and application of versatile trans-acting 2'-5' adenylyl transferase ribozymes for covalent and site-specific RNA labeling. The design of our partially structured RNA pool allowed for in vitro evolution of ribozymes that modify a predetermined nucleotide in cis (i.e., intramolecular reaction) and can then be easily engineered for applications in trans (i.e., in an intermolecular setup). The resulting ribozymes are readily designed for specific target sites in small and large RNAs and accept a wide variety of N6-modified ATP analogues as small-molecule substrates. The most efficient new ribozyme (FH14) shows excellent specificity toward its target sequence also in the context of total cellular RNA.
Collapse
Affiliation(s)
- Mohammad Ghaem Maghami
- Institute of Organic Chemistry , University of Würzburg , Am Hubland , 97074 Würzburg , Germany.,International Max Planck Research School for Molecular Biology , University Göttingen , 37077 Göttingen , Germany
| | - Carolin P M Scheitl
- Institute of Organic Chemistry , University of Würzburg , Am Hubland , 97074 Würzburg , Germany
| | - Claudia Höbartner
- Institute of Organic Chemistry , University of Würzburg , Am Hubland , 97074 Würzburg , Germany.,International Max Planck Research School for Molecular Biology , University Göttingen , 37077 Göttingen , Germany
| |
Collapse
|
47
|
Zhao S, Yang Y, Zhao Y, Li X, Xue Y, Wang S. High-resolution solid-state NMR spectroscopy of hydrated non-crystallized RNA. Chem Commun (Camb) 2019; 55:13991-13994. [PMID: 31687672 DOI: 10.1039/c9cc06552k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We highlight that sufficient hydration of non-crystallized RNA could provide high-resolution solid-state NMR (SSNMR) spectra, with similar spectral quality to the crystallized RNA. This leads to a greatly simplified RNA preparation approach by ethanol precipitation for high-resolution SSNMR studies. It will greatly broaden the scope of SSNMR applications to the characterization of RNAs.
Collapse
Affiliation(s)
- Sha Zhao
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.
| | | | | | | | | | | |
Collapse
|
48
|
Choi J, Grosely R, Puglisi EV, Puglisi JD. Expanding single-molecule fluorescence spectroscopy to capture complexity in biology. Curr Opin Struct Biol 2019; 58:233-240. [PMID: 31213390 PMCID: PMC6778503 DOI: 10.1016/j.sbi.2019.05.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 05/03/2019] [Accepted: 05/08/2019] [Indexed: 11/16/2022]
Abstract
Fundamental biological processes are driven by diverse molecular machineries. In recent years, single-molecule fluorescence spectroscopy has matured as a unique tool in biology to study how structural dynamics of molecular complexes drive various biochemical reactions. In this review, we highlight underlying developments in single-molecule fluorescence methods that enable deep biological investigations. Recent progress in these methods points toward increasing complexity of measurements to capture biological processes in a living cell, where multiple processes often occur simultaneously and are mechanistically coupled.
Collapse
Affiliation(s)
- Junhong Choi
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305-5126, USA; Department of Applied Physics, Stanford University, Stanford, CA 94305-4090, USA
| | - Rosslyn Grosely
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305-5126, USA
| | - Elisabetta V Puglisi
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305-5126, USA.
| | - Joseph D Puglisi
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305-5126, USA.
| |
Collapse
|
49
|
Solid-Phase Chemical Synthesis of Stable Isotope-Labeled RNA to Aid Structure and Dynamics Studies by NMR Spectroscopy. Molecules 2019; 24:molecules24193476. [PMID: 31557861 PMCID: PMC6804060 DOI: 10.3390/molecules24193476] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 09/22/2019] [Accepted: 09/23/2019] [Indexed: 02/05/2023] Open
Abstract
RNA structure and dynamic studies by NMR spectroscopy suffer from chemical shift overlap and line broadening, both of which become worse as RNA size increases. Incorporation of stable isotope labels into RNA has provided several solutions to these limitations. Nevertheless, the only method to circumvent the problem of spectral overlap completely is the solid-phase chemical synthesis of RNA with labeled RNA phosphoramidites. In this review, we summarize the practical aspects of this methodology for NMR spectroscopy studies of RNA. These types of investigations lie at the intersection of chemistry and biophysics and highlight the need for collaborative efforts to tackle the integrative structural biology problems that exist in the RNA world. Finally, examples of RNA structure and dynamic studies using labeled phosphoramidites are highlighted.
Collapse
|
50
|
Ding J, Swain M, Yu P, Stagno JR, Wang YX. Conformational flexibility of adenine riboswitch aptamer in apo and bound states using NMR and an X-ray free electron laser. JOURNAL OF BIOMOLECULAR NMR 2019; 73:509-518. [PMID: 31606878 PMCID: PMC6817744 DOI: 10.1007/s10858-019-00278-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 09/12/2019] [Indexed: 06/10/2023]
Abstract
Riboswitches are structured cis-regulators mainly found in the untranslated regions of messenger RNA. The aptamer domain of a riboswitch serves as a sensor for its ligand, the binding of which triggers conformational changes that regulate the behavior of its expression platform. As a model system for understanding riboswitch structures and functions, the add adenine riboswitch has been studied extensively. However, there is a need for further investigation of the conformational dynamics of the aptamer in light of the recent real-time crystallographic study at room temperature (RT) using an X-ray free electron laser (XFEL) and femtosecond X-ray crystallography (SFX). Herein, we investigate the conformational motions of the add adenine riboswitch aptamer domain, in the presence or absence of adenine, using nuclear magnetic resonance relaxation measurements and analysis of RT atomic displacement factors (B-factors). In the absence of ligand, the P1 duplex undergoes a fast exchange where the overall molecule exhibits a motion at kex ~ 319 s-1, based on imino signals. In the presence of ligand, the P1 duplex adopts a highly ordered conformation, with kex~ 83 s-1, similar to the global motion of the molecule, excluding the loops and binding pocket, at 84 s-1. The µs-ms motions in both the apo and bound states are consistent with RT B-factors. Reduced spatial atomic fluctuation, ~ 50%, in P1 upon ligand binding coincides with significantly attenuated temporal dynamic exchanges. The binding pocket is structured in the absence or presence of ligand, as evidenced by relatively low and similar RT B-factors. Therefore, despite the dramatic rearrangement of the binding pocket, those residues exhibit similar spatial thermal fluctuation before and after binding.
Collapse
Affiliation(s)
- Jienv Ding
- Protein-Nucleic Acid Interaction Section, Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, National Institute of Health, Frederick, MD, 21702, USA.
| | - Monalisa Swain
- Protein-Nucleic Acid Interaction Section, Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, National Institute of Health, Frederick, MD, 21702, USA
| | - Ping Yu
- Protein-Nucleic Acid Interaction Section, Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, National Institute of Health, Frederick, MD, 21702, USA
| | - Jason R Stagno
- Protein-Nucleic Acid Interaction Section, Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, National Institute of Health, Frederick, MD, 21702, USA
| | - Yun-Xing Wang
- Protein-Nucleic Acid Interaction Section, Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, National Institute of Health, Frederick, MD, 21702, USA.
| |
Collapse
|