1
|
Zhao Q, Han B, Wang L, Wu J, Wang S, Ren Z, Wang S, Yang H, Carbone M, Dong C, Melino G, Chen WL, Jia W. AKR1B1-dependent fructose metabolism enhances malignancy of cancer cells. Cell Death Differ 2024:10.1038/s41418-024-01393-4. [PMID: 39406918 DOI: 10.1038/s41418-024-01393-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/15/2024] [Accepted: 09/27/2024] [Indexed: 10/18/2024] Open
Abstract
Fructose metabolism has emerged as a significant contributor to cancer cell proliferation, yet the underlying mechanisms and sources of fructose for cancer cells remain incompletely understood. In this study, we demonstrate that cancer cells can convert glucose into fructose through a process called the AKR1B1-mediated polyol pathway. Inhibiting the endogenous production of fructose through AKR1B1 deletion dramatically suppressed glycolysis, resulting in reduced cancer cell migration, inhibited growth, and the induction of apoptosis and cell cycle arrest. Conversely, the acceleration of endogenous fructose through AKR1B1 overexpression has been shown to significantly enhance cancer cell proliferation and migration with increased S cell cycle progression. Our findings highlight the crucial role of endogenous fructose in cancer cell malignancy and support the need for further investigation into AKR1B1 as a potential cancer therapeutic target.
Collapse
Affiliation(s)
- Qing Zhao
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Bing Han
- Mayo Clinic, 4500 San Pablo Rd S, Jacksonville, FL, 32224, USA
| | - Lu Wang
- Department of Pharmacology and Pharmacy, University of Hong Kong, Hong Kong, China
| | - Jia Wu
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Siliang Wang
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Zhenxing Ren
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Shouli Wang
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Haining Yang
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, HI, 96813, USA
| | - Michele Carbone
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, HI, 96813, USA
| | - Changsheng Dong
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Gerry Melino
- Department of Experimental Medicine, University of Rome "Tor Vergata", 00133, Rome, Italy.
| | - Wen-Lian Chen
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| | - Wei Jia
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
- Department of Pharmacology and Pharmacy, University of Hong Kong, Hong Kong, China.
| |
Collapse
|
2
|
Mottola S, Viscusi G, González-Garcinuño Á, Tabernero A, Cardea S, Martín Del Valle EM, Gorrasi G, De Marco I. Controlling particle size of levan in powder form with different technologies. Int J Biol Macromol 2024; 280:135768. [PMID: 39299431 DOI: 10.1016/j.ijbiomac.2024.135768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/16/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
Levan is a fructose polysaccharide with multiple applications in different fields, but its obtaining in powdered form with a narrow particle size distribution is a complicated task. Two techniques, electrospraying and supercritical antisolvent (SAS) precipitation, were used to process levan that was first obtained enzymatically. The SAS process was able to micronize the polymer (at experimental conditions far above the mixture critical point of the solvent-antisolvent system) to obtain spherical particles between 0.30 and 0.50 μm with a proper particle size distribution. In this case, the Peng-Robinson equation of state was used to theoretically determine the mixture critical point. Bigger and elongated particles were obtained with electrospraying (0.60 μm). According to solution properties, mainly rheology, solubility and conductivity, the best solvent for levan electrospraying, in order to avoid problems of solvent evaporation and jet formation, was a mixture of water and ethanol with a polymer concentration of 50 mg·cm-3. Indeed, that solution has a viscous behavior (according to the oscillatory analysis), a low degree of pseudo-plasticity (based on the shear flow analysis), and the highest value of conductivity. Therefore, the particle size distribution of levan in powdered form can be tuned depending on the technique used.
Collapse
Affiliation(s)
- Stefania Mottola
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Salerno, Italy
| | - Gianluca Viscusi
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Salerno, Italy
| | - Álvaro González-Garcinuño
- Department of Chemical Engineering, University of Salamanca, Plaza de los Caídos s/n, 37001, Salamanca, Spain
| | - Antonio Tabernero
- Department of Chemical Engineering, University of Salamanca, Plaza de los Caídos s/n, 37001, Salamanca, Spain.
| | - Stefano Cardea
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Salerno, Italy
| | - Eva M Martín Del Valle
- Department of Chemical Engineering, University of Salamanca, Plaza de los Caídos s/n, 37001, Salamanca, Spain
| | - Giuliana Gorrasi
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Salerno, Italy
| | - Iolanda De Marco
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Salerno, Italy.
| |
Collapse
|
3
|
Baharuddin B. The Impact of Fructose Consumption on Human Health: Effects on Obesity, Hyperglycemia, Diabetes, Uric Acid, and Oxidative Stress With a Focus on the Liver. Cureus 2024; 16:e70095. [PMID: 39355469 PMCID: PMC11444807 DOI: 10.7759/cureus.70095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2024] [Indexed: 10/03/2024] Open
Abstract
Excessive fructose consumption, primarily through processed foods and beverages, has become a significant public health concern due to its association with various metabolic disorders. This review examines the impact of fructose on human health, focusing on its role in obesity, insulin resistance, hyperglycemia, type 2 diabetes, uric acid production, and oxidative stress. Fructose metabolism, distinct from glucose, predominantly occurs in the liver, where it bypasses normal insulin regulation, leading to increased fat synthesis through de novo lipogenesis. This process contributes to the development of non-alcoholic fatty liver disease and elevates the risk of cardiovascular disease. Furthermore, fructose-induced adenosine triphosphate depletion activates purine degradation, increasing uric acid levels and exacerbating hyperuricemia. The overproduction of reactive oxygen species during fructose metabolism also drives oxidative stress, promoting inflammation and cellular damage. By synthesizing recent findings, this review underscores the importance of regulating fructose intake, implementing public health policies, and adopting lifestyle changes to mitigate these adverse effects.
Collapse
|
4
|
He J, Liu G, Kong F, Tan Q, Wang Z, Yang M, He Y, Jia X, Yan C, Wang C, Qian H. Structural basis for the transport and substrate selection of human urate transporter 1. Cell Rep 2024; 43:114628. [PMID: 39146184 DOI: 10.1016/j.celrep.2024.114628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/17/2024] [Accepted: 07/30/2024] [Indexed: 08/17/2024] Open
Abstract
High serum urate levels are the major risk factor for gout. URAT1, the primary transporter for urate absorption in the kidneys, is well known as an anti-hyperuricemia drug target. However, the clinical application of URAT1-targeted drugs is limited because of their low specificity and severe side effects. The lack of structural information impedes elucidation of the transport mechanism and the development of new drugs. Here, we present the cryoelectron microscopy (cryo-EM) structures of human URAT1(R477S), its complex with urate, and its closely related homolog OAT4. URAT1(R477S) and OAT4 exhibit major facilitator superfamily (MFS) folds with outward- and inward-open conformations, respectively. Structural comparison reveals a 30° rotation between the N-terminal and C-terminal domains, supporting an alternating access mechanism. A conserved arginine (OAT4-Arg473/URAT1-Arg477) is found to be essential for chloride-mediated inhibition. The URAT1(R477S)-urate complex reveals the specificity of urate recognition. Taken together, our study promotes our understanding of the transport mechanism and substrate selection of URAT1.
Collapse
Affiliation(s)
- Jingjing He
- Department of Cardiology, First Affiliated Hospital of USTC, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Guoyun Liu
- Department of Cardiology, First Affiliated Hospital of USTC, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Fang Kong
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Qiulong Tan
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518107, China
| | - Zhenzhou Wang
- Department of Cardiology, First Affiliated Hospital of USTC, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Meng Yang
- Department of Cardiology, First Affiliated Hospital of USTC, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Yonglin He
- Department of Cardiology, First Affiliated Hospital of USTC, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Xiaoxiao Jia
- Department of Cardiology, First Affiliated Hospital of USTC, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Chuangye Yan
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Chao Wang
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518107, China
| | - Hongwu Qian
- Department of Cardiology, First Affiliated Hospital of USTC, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China.
| |
Collapse
|
5
|
Lee SS, Kim S, Jin MS. Cryo-EM structure of the human glucose transporter GLUT7. Biochem Biophys Res Commun 2024; 738:150544. [PMID: 39163817 DOI: 10.1016/j.bbrc.2024.150544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 08/08/2024] [Accepted: 08/12/2024] [Indexed: 08/22/2024]
Abstract
GLUT7 is a Class II glucose transporter predominantly expressed at the apical membrane of enterocytes in the small intestine. Here, we report the cryo-EM structure of nanodisc-reconstituted human GLUT7 in the apo state at 3.3 Å resolution. Our atomic model reveals a typical major facilitator superfamily fold, with the substrate-binding site open to the extracellular side of the membrane. Despite the nearly identical conformation to its closest family member, rat GLUT5, our structure unveils distinct features of the substrate-binding cavity that may influence substrate specificity and binding mode. A homology model of the inward-open human GLUT7 indicates that similar to other members of the GLUT family, it may undergo a global rocker-switch-like reorientation of the transmembrane bundles to facilitate substrate translocation across the membrane. Our work enhances the current structural understanding of the GLUT family, and lays a foundation for rational design of regulators of GLUTs and other sugar transporters.
Collapse
Affiliation(s)
- Sang Soo Lee
- School of Life Sciences, GIST, 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, Republic of Korea
| | - Subin Kim
- School of Life Sciences, GIST, 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, Republic of Korea
| | - Mi Sun Jin
- School of Life Sciences, GIST, 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, Republic of Korea.
| |
Collapse
|
6
|
Shen Z, Xu L, Wu T, Wang H, Wang Q, Ge X, Kong F, Huang G, Pan X. Structural basis for urate recognition and apigenin inhibition of human GLUT9. Nat Commun 2024; 15:5039. [PMID: 38866775 PMCID: PMC11169512 DOI: 10.1038/s41467-024-49420-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 06/03/2024] [Indexed: 06/14/2024] Open
Abstract
Urate, the physiological form of uric acid and a potent antioxidant in serum, plays a pivotal role in scavenging reactive oxygen species. Yet excessive accumulation of urate, known as hyperuricemia, is the primary risk factor for the development of gout. The high-capacity urate transporter GLUT9 represents a promising target for gout treatment. Here, we present cryo-electron microscopy structures of human GLUT9 in complex with urate or its inhibitor apigenin at overall resolutions of 3.5 Å and 3.3 Å, respectively. In both structures, GLUT9 exhibits an inward open conformation, wherein the substrate binding pocket faces the intracellular side. These structures unveil the molecular basis for GLUT9's substrate preference of urate over glucose, and show that apigenin acts as a competitive inhibitor by occupying the substrate binding site. Our findings provide critical information for the development of specific inhibitors targeting GLUT9 as potential therapeutics for gout and hyperuricemia.
Collapse
Affiliation(s)
- Zilin Shen
- Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Li Xu
- Institute of Bio-Architecture and Bio-Interactions (IBABI), Shenzhen Medical Academy of Research and Translation (SMART), Shenzhen, 518107, Guangdong, China
| | - Tong Wu
- Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Huan Wang
- Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Qifan Wang
- Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Xiaofei Ge
- Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Fang Kong
- Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Gaoxingyu Huang
- Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, 310024, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, 310024, Zhejiang, China
| | - Xiaojing Pan
- Institute of Bio-Architecture and Bio-Interactions (IBABI), Shenzhen Medical Academy of Research and Translation (SMART), Shenzhen, 518107, Guangdong, China.
| |
Collapse
|
7
|
Zhang R, Jadhav DA, Kim N, Kramer B, Gonzalez-Vicente A. Profiling Cell Heterogeneity and Fructose Transporter Expression in the Rat Nephron by Integrating Single-Cell and Microdissected Tubule Segment Transcriptomes. Int J Mol Sci 2024; 25:3071. [PMID: 38474316 PMCID: PMC10931557 DOI: 10.3390/ijms25053071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024] Open
Abstract
Single-cell RNA sequencing (scRNAseq) is a crucial tool in kidney research. These technologies cluster cells based on transcriptome similarity, irrespective of the anatomical location and order within the nephron. Thus, a transcriptome cluster may obscure the heterogeneity of the cell population within a nephron segment. Elevated dietary fructose leads to salt-sensitive hypertension, in part, through fructose reabsorption in the proximal tubule (PT). However, the organization of the four known fructose transporters in apical PTs (SGLT4, SGLT5, GLUT5, and NaGLT1) remains poorly understood. We hypothesized that cells within each subsegment of the proximal tubule exhibit complex, heterogeneous fructose transporter expression patterns. To test this hypothesis, we analyzed rat kidney transcriptomes and proteomes from publicly available scRNAseq and tubule microdissection databases. We found that microdissected PT-S1 segments consist of 81% ± 12% cells with scRNAseq-derived transcriptional characteristics of S1, whereas PT-S2 express a mixture of 18% ± 9% S1, 58% ± 8% S2, and 19% ± 5% S3 transcripts, and PT-S3 consists of 75% ± 9% S3 transcripts. The expression of all four fructose transporters was detectable in all three PT segments, but key fructose transporters SGLT5 and GLUT5 progressively increased from S1 to S3, and both were significantly upregulated in S3 vs. S1/S2 (Slc5a10: 1.9 log2FC, p < 1 × 10-299; Scl2a5: 1.4 log2FC, p < 4 × 10-105). A similar distribution was found in human kidneys. These data suggest that S3 is the primary site of fructose reabsorption in both humans and rats. Finally, because of the multiple scRNAseq transcriptional phenotypes found in each segment, our findings also imply that anatomical labels applied to scRNAseq clusters may be misleading.
Collapse
Affiliation(s)
- Ronghao Zhang
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA 30332, USA
| | - Darshan Aatmaram Jadhav
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Najeong Kim
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Benjamin Kramer
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Agustin Gonzalez-Vicente
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Department of Kidney Medicine, Glickman Urological & Kidney Institute, Cleveland Clinic, Cleveland, OH 44106, USA
| |
Collapse
|
8
|
Kim JH, Mailloux L, Bloor D, Tae H, Nguyen H, McDowell M, Padilla J, DeWaard A. Multiple roles for the cytoplasmic C-terminal domains of the yeast cell surface receptors Rgt2 and Snf3 in glucose sensing and signaling. Sci Rep 2024; 14:4055. [PMID: 38374219 PMCID: PMC10876965 DOI: 10.1038/s41598-024-54628-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 02/14/2024] [Indexed: 02/21/2024] Open
Abstract
The plasma membrane proteins Rgt2 and Snf3 are glucose sensing receptors (GSRs) that generate an intracellular signal for the induction of gene expression in response to high and low extracellular glucose concentrations, respectively. The GSRs consist of a 12-transmembrane glucose recognition domain and a cytoplasmic C-terminal signaling tail. The GSR tails are dissimilar in length and sequence, but their distinct roles in glucose signal transduction are poorly understood. Here, we show that swapping the tails between Rgt2 and Snf3 does not alter the signaling activity of the GSRs, so long as their tails are phosphorylated in a Yck-dependent manner. Attachment of the GSR tails to Hxt1 converts the transporter into a glucose receptor; however, the tails attached to Hxt1 are not phosphorylated by the Ycks, resulting in only partial signaling. Moreover, in response to non-fermentable carbon substrates, Rgt2 and Hxt1-RT (RT, Rgt2-tail) are efficiently endocytosed, whereas Snf3 and Hxt1-ST (ST, Snf3-tail) are endocytosis-impaired. Thus, the tails are important regulatory domains required for the endocytosis of the Rgt2 and Snf3 glucose sensing receptors triggered by different cellular stimuli. Taken together, these results suggest multiple roles for the tail domains in GSR-mediated glucose sensing and signaling.
Collapse
Affiliation(s)
- Jeong-Ho Kim
- Department of Biology and Chemistry, Liberty University, 1971 University Blvd, Lynchburg, VA, 24502, USA.
| | - Levi Mailloux
- Department of Biology and Chemistry, Liberty University, 1971 University Blvd, Lynchburg, VA, 24502, USA
| | - Daniel Bloor
- Department of Biology and Chemistry, Liberty University, 1971 University Blvd, Lynchburg, VA, 24502, USA
| | - Haeun Tae
- Department of Biology and Chemistry, Liberty University, 1971 University Blvd, Lynchburg, VA, 24502, USA
| | - Han Nguyen
- Department of Biology and Chemistry, Liberty University, 1971 University Blvd, Lynchburg, VA, 24502, USA
| | - Morgan McDowell
- Department of Biology and Chemistry, Liberty University, 1971 University Blvd, Lynchburg, VA, 24502, USA
| | - Jaqueline Padilla
- Department of Biology and Chemistry, Liberty University, 1971 University Blvd, Lynchburg, VA, 24502, USA
| | - Anna DeWaard
- Department of Biology and Chemistry, Liberty University, 1971 University Blvd, Lynchburg, VA, 24502, USA
| |
Collapse
|
9
|
Zhang R, Jadhav DA, Kramer B, Gonzalez-Vicente A. Profiling cellular heterogeneity and fructose transporter expression in the rat nephron by integrating single-cell and microdissected tubule segment transcriptomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.20.572656. [PMID: 38187558 PMCID: PMC10769391 DOI: 10.1101/2023.12.20.572656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Single-cell RNA sequencing (scRNAseq) is a crucial tool in kidney research. These technologies cluster cells according to transcriptome similarity, irrespective of the anatomical location and ordering within the nephron. Thus, a cluster transcriptome may obscure heterogeneity of the cell population within a nephron segment. Elevated dietary fructose leads to salt-sensitive hypertension, in part by fructose reabsorption in the proximal tubule (PT). However, organization of the four known fructose transporters in apical PTs (SGLT4, SGLT5, GLUT5 and NaGLT1) remains poorly understood. We hypothesized that cells within each subsegment of the proximal tubule exhibit complex, heterogenous fructose transporter expression patterns. To test this hypothesis we analyzed rat and kidney transcriptomes and proteomes from publicly available scRNAseq and tubule microdissection databases. We found that microdissected PT-S1 segments consist of 81±12% cells with scRNAseq-derived transcriptional characteristics of S1, whereas PT-S2 express a mixture of 18±9% S1, 58±8% S2, and 19±5% S3 transcripts, and PT-S3 consists of 75±9% S3 transcripts. The expression of all four fructose transporters was detectable in all three PT segments, but key fructose transporters SGLT5 and GLUT5 progressively increased from S1 to S3, and both were significantly upregulated in S3 vs. S1/S2 (Slc5a10: 1.9 log 2 FC, p<1×10 -299 ; Scl2a5: 1.4 log 2 FC, p<4×10 -105 ). A similar distribution was found in human kidneys. These data suggest that S3 is the primary site of fructose reabsorption in both humans and rats. Finally, because of the multiple scRNAseq transcriptional phenotypes found in each segment our findings also imply that anatomic labels applied to scRNAseq clusters may be misleading.
Collapse
|
10
|
Jormakka M. Structural insights into ferroportin mediated iron transport. Biochem Soc Trans 2023; 51:BST20230594. [PMID: 38115725 DOI: 10.1042/bst20230594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/08/2023] [Accepted: 12/11/2023] [Indexed: 12/21/2023]
Abstract
Iron is a vital trace element for almost all organisms, and maintaining iron homeostasis is critical for human health. In mammals, the only known gatekeeper between intestinally absorbed iron and circulatory blood plasma is the membrane transporter ferroportin (Fpn). As such, dysfunction of Fpn or its regulation is a key driver of iron-related pathophysiology. This review focuses on discussing recent insights from high-resolution structural studies of the Fpn protein family. While these studies have unveiled crucial details of Fpn regulation and structural architecture, the associated functional studies have also at times provided conflicting data provoking more questions than answers. Here, we summarize key findings and illuminate important remaining questions and contradictions.
Collapse
Affiliation(s)
- Mika Jormakka
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
11
|
Gou R, Zhang X. Glycolysis: A fork in the path of normal and pathological pregnancy. FASEB J 2023; 37:e23263. [PMID: 37889786 DOI: 10.1096/fj.202301230r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/17/2023] [Accepted: 10/04/2023] [Indexed: 10/29/2023]
Abstract
Glucose metabolism is vital to the survival of living organisms. Since the discovery of the Warburg effect in the 1920s, glycolysis has become a major research area in the field of metabolism. Glycolysis has been extensively studied in the field of cancer and is considered as a promising therapeutic target. However, research on the role of glycolysis in pregnancy is limited. Recent evidence suggests that blastocysts, trophoblasts, decidua, and tumors all acquire metabolic energy at specific stages in a highly similar manner. Glycolysis, carefully controlled throughout pregnancy, maintains a dynamic and coordinated state, so as to maintain the homeostasis of the maternal-fetal interface and ensure normal gestation. In the present review, we investigate metabolic remodeling and the selective propensity of the embryo and placenta for glycolysis. We then address dysregulated glycolysis that occurs in the cellular interactive network at the maternal-fetal interface in miscarriage, preeclampsia, fetal growth restriction, and gestational diabetes mellitus. We provide new insights into the field of maternal-fetal medicine from a metabolic perspective, thus revealing the mystery of human pregnancy.
Collapse
Affiliation(s)
- Rui Gou
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing, P.R. China
| | - Xiaohong Zhang
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing, P.R. China
| |
Collapse
|
12
|
Kim JH, Mailloux L, Bloor D, Maddox B, Humble J. The role of salt bridge networks in the stability of the yeast hexose transporter 1. Biochim Biophys Acta Gen Subj 2023; 1867:130490. [PMID: 37844739 DOI: 10.1016/j.bbagen.2023.130490] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/06/2023] [Accepted: 10/12/2023] [Indexed: 10/18/2023]
Abstract
BACKGROUND The yeast S. cerevisiae preferably metabolizes glucose through aerobic glycolysis. Glucose transport is facilitated by multiple hexose transporters (Hxts), and their expression and activity are tightly regulated by multiple mechanisms. However, detailed structural and functional analyses of Hxts remain limited, largely due to the lack of crystal structure. METHODS Homology modeling was used to build a 3D structural model for the yeast glucose transporter Hxt1 and investigate the effects of site directed mutations on Hxt1 stability and glucose transport activity. RESULTS The conserved salt bridge-forming residues observed in the human Glut4 and the yeast glucose receptor Rgt2 were identified within and between the two 6-transmembrane spanning segments of Hxt1. Most of the RGT2 mutations that disrupt the salt bridge networks were known to cause constitutive signal generation, whereas the corresponding substitutions in HXT1 were shown to decrease Hxt1 stability. While substitutions of the two residues in the salt bridge 2 in Glut4-E329Q and E393D-were reported to abolish glucose transport, the equivalent substitutions in Hxt1 (D382Q and E454D) did not affect Hxt1 glucose transport activity. CONCLUSIONS Substitutions of equivalent salt bridge-forming residues in Hxt1, Rgt2, and Glut4 are predicted to lock them in an inward-facing conformation but lead to different functional consequences. GENERAL SIGNIFICANCE The salt bridge networks in yeast and human glucose transporters and yeast glucose receptors may play different roles in maintaining their structural and functional integrity.
Collapse
Affiliation(s)
- Jeong-Ho Kim
- Department of Biology and Chemistry, Liberty University, 1971 University Blvd, Lynchburg, VA 24502, USA.
| | - Levi Mailloux
- Department of Biology and Chemistry, Liberty University, 1971 University Blvd, Lynchburg, VA 24502, USA
| | - Daniel Bloor
- Department of Biology and Chemistry, Liberty University, 1971 University Blvd, Lynchburg, VA 24502, USA
| | - Bradley Maddox
- Department of Biology and Chemistry, Liberty University, 1971 University Blvd, Lynchburg, VA 24502, USA
| | - Julia Humble
- Department of Biology and Chemistry, Liberty University, 1971 University Blvd, Lynchburg, VA 24502, USA
| |
Collapse
|
13
|
Yeo H, Mehta V, Gulati A, Drew D. Structure and electromechanical coupling of a voltage-gated Na +/H + exchanger. Nature 2023; 623:193-201. [PMID: 37880360 PMCID: PMC10620092 DOI: 10.1038/s41586-023-06518-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 08/04/2023] [Indexed: 10/27/2023]
Abstract
Voltage-sensing domains control the activation of voltage-gated ion channels, with a few exceptions1. One such exception is the sperm-specific Na+/H+ exchanger SLC9C1, which is the only known transporter to be regulated by voltage-sensing domains2-5. After hyperpolarization of sperm flagella, SLC9C1 becomes active, causing pH alkalinization and CatSper Ca2+ channel activation, which drives chemotaxis2,6. SLC9C1 activation is further regulated by cAMP2,7, which is produced by soluble adenyl cyclase (sAC). SLC9C1 is therefore an essential component of the pH-sAC-cAMP signalling pathway in metazoa8,9, required for sperm motility and fertilization4. Despite its importance, the molecular basis of SLC9C1 voltage activation is unclear. Here we report cryo-electron microscopy (cryo-EM) structures of sea urchin SLC9C1 in detergent and nanodiscs. We show that the voltage-sensing domains are positioned in an unusual configuration, sandwiching each side of the SLC9C1 homodimer. The S4 segment is very long, 90 Å in length, and connects the voltage-sensing domains to the cytoplasmic cyclic-nucleotide-binding domains. The S4 segment is in the up configuration-the inactive state of SLC9C1. Consistently, although a negatively charged cavity is accessible for Na+ to bind to the ion-transporting domains of SLC9C1, an intracellular helix connected to S4 restricts their movement. On the basis of the differences in the cryo-EM structure of SLC9C1 in the presence of cAMP, we propose that, upon hyperpolarization, the S4 segment moves down, removing this constriction and enabling Na+/H+ exchange.
Collapse
Affiliation(s)
- Hyunku Yeo
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | - Ved Mehta
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | - Ashutosh Gulati
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | - David Drew
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Stockholm, Sweden.
| |
Collapse
|
14
|
Song A, Mao Y, Wei H. GLUT5: structure, functions, diseases and potential applications. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1519-1538. [PMID: 37674366 PMCID: PMC10582729 DOI: 10.3724/abbs.2023158] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 05/19/2023] [Indexed: 09/08/2023] Open
Abstract
Glucose transporter 5 (GLUT5) is a membrane transporter that specifically transports fructose and plays a key role in dietary fructose uptake and metabolism. In recent years, a high fructose diet has occupied an important position in the daily intake of human beings, resulting in a significant increase in the incidence of obesity and metabolic diseases worldwide. Over the past few decades, GLUT5 has been well understood to play a significant role in the pathogenesis of human digestive diseases. Recently, the role of GLUT5 in human cancer has received widespread attention, and a large number of studies have focused on exploring the effects of changes in GLUT5 expression levels on cancer cell survival, metabolism and metastasis. However, due to various difficulties and shortcomings, the molecular structure and mechanism of GLUT5 have not been fully elucidated, which to some extent prevents us from revealing the relationship between GLUT5 expression and cell carcinogenesis at the protein molecular level. In this review, we summarize the current understanding of the structure and function of mammalian GLUT5 and its relationship to intestinal diseases and cancer and suggest that GLUT5 may be an important target for cancer therapy.
Collapse
Affiliation(s)
- Aqian Song
- Department of GastroenterologyBeijing Ditan HospitalCapital Medical UniversityBeijing100015China
| | - Yuanpeng Mao
- Department of GastroenterologyPeking University Ditan Teaching HospitalBeijing100015China
| | - Hongshan Wei
- Department of GastroenterologyBeijing Ditan HospitalCapital Medical UniversityBeijing100015China
- Department of GastroenterologyPeking University Ditan Teaching HospitalBeijing100015China
| |
Collapse
|
15
|
Soma Nyansa M, Oronova A, Gora N, Geborkoff MR, Ostlund NR, Fritz DR, Werner T, Tanasova M. Turn-on Rhodamine Glycoconjugates Enable Real-Time GLUT Activity Monitoring in Live Cells and In Vivo. CHEMICAL & BIOMEDICAL IMAGING 2023; 1:637-647. [PMID: 37873027 PMCID: PMC10593130 DOI: 10.1021/cbmi.3c00063] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/14/2023] [Accepted: 08/16/2023] [Indexed: 10/25/2023]
Abstract
The direct relationship between facilitative glucose transporters (GLUTs) and metabolic diseases opens new avenues for sensing metabolic deregulations and drives the development of molecular probes for GLUT-targeted detection of metabolic diseases. Radiotracer-based molecular imaging probes have been effectively utilized in reporting alterations in sugar uptake as an indication of metabolic deregulations, cancer development, or inflammation. Progress in developing fluorophore-based tools facilitated GLUT-specific analyses using more accessible fluorescence-based instrumentation. However, restrictions on the emission range of fluorophores and the requirement for substantial post-treatments to reduce background fluorescence have brought to light the critical directions for improvement of the technology for broader use in screening applications. Here we present turn-on GLUT activity reporters activated upon cells' internalization. We demonstrate a specific delivery of a sizable rhodamine B fluorophore through GLUT5 and showcase a stringent requirement in conjugate structure for maintaining a GLUT-specific uptake. With the turn-on GLUT probes, we demonstrate the feasibility of high-throughput fluorescence microscopy and flow cytometry-based GLUT activity screening in live cells and the probes' applicability for assessing sugar uptake alterations in vivo.
Collapse
Affiliation(s)
- Monica
Mame Soma Nyansa
- Department
of Chemistry, Michigan Technological University,1400 Townsend Drive, Houghton, Michigan 49931, United States
| | - Adelina Oronova
- Department
of Chemistry, Michigan Technological University,1400 Townsend Drive, Houghton, Michigan 49931, United States
- Health
Research Institute, Michigan Technological
University, 1400 Townsend Drive, Houghton, Michigan 49931, United States
| | - Nazar Gora
- Department
of Chemistry, Michigan Technological University,1400 Townsend Drive, Houghton, Michigan 49931, United States
- Health
Research Institute, Michigan Technological
University, 1400 Townsend Drive, Houghton, Michigan 49931, United States
| | - Micaela Rayne Geborkoff
- Department
of Biological Sciences, Michigan Technological
University, 1400 Townsend Drive, Houghton, Michigan 49931, United States
| | - Nathan Randal Ostlund
- Department
of Biological Sciences, Michigan Technological
University, 1400 Townsend Drive, Houghton, Michigan 49931, United States
| | - Delaney Raine Fritz
- Department
of Biological Sciences, Michigan Technological
University, 1400 Townsend Drive, Houghton, Michigan 49931, United States
| | - Thomas Werner
- Department
of Biological Sciences, Michigan Technological
University, 1400 Townsend Drive, Houghton, Michigan 49931, United States
- Health
Research Institute, Michigan Technological
University, 1400 Townsend Drive, Houghton, Michigan 49931, United States
| | - Marina Tanasova
- Department
of Chemistry, Michigan Technological University,1400 Townsend Drive, Houghton, Michigan 49931, United States
- Health
Research Institute, Michigan Technological
University, 1400 Townsend Drive, Houghton, Michigan 49931, United States
| |
Collapse
|
16
|
Suades A, Qureshi A, McComas SE, Coinçon M, Rudling A, Chatzikyriakidou Y, Landreh M, Carlsson J, Drew D. Establishing mammalian GLUT kinetics and lipid composition influences in a reconstituted-liposome system. Nat Commun 2023; 14:4070. [PMID: 37429918 DOI: 10.1038/s41467-023-39711-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 06/26/2023] [Indexed: 07/12/2023] Open
Abstract
Glucose transporters (GLUTs) are essential for organism-wide glucose homeostasis in mammals, and their dysfunction is associated with numerous diseases, such as diabetes and cancer. Despite structural advances, transport assays using purified GLUTs have proven to be difficult to implement, hampering deeper mechanistic insights. Here, we have optimized a transport assay in liposomes for the fructose-specific isoform GLUT5. By combining lipidomic analysis with native MS and thermal-shift assays, we replicate the GLUT5 transport activities seen in crude lipids using a small number of synthetic lipids. We conclude that GLUT5 is only active under a specific range of membrane fluidity, and that human GLUT1-4 prefers a similar lipid composition to GLUT5. Although GLUT3 is designated as the high-affinity glucose transporter, in vitro D-glucose kinetics demonstrates that GLUT1 and GLUT3 actually have a similar KM, but GLUT3 has a higher turnover. Interestingly, GLUT4 has a high KM for D-glucose and yet a very slow turnover, which may have evolved to ensure uptake regulation by insulin-dependent trafficking. Overall, we outline a much-needed transport assay for measuring GLUT kinetics and our analysis implies that high-levels of free fatty acid in membranes, as found in those suffering from metabolic disorders, could directly impair glucose uptake.
Collapse
Affiliation(s)
- Albert Suades
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius v. 16c, SE-106 91, Stockholm, Sweden
| | - Aziz Qureshi
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius v. 16c, SE-106 91, Stockholm, Sweden
| | - Sarah E McComas
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius v. 16c, SE-106 91, Stockholm, Sweden
| | - Mathieu Coinçon
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius v. 16c, SE-106 91, Stockholm, Sweden
| | - Axel Rudling
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, BMC, Box 596, SE-751 24, Uppsala, Sweden
| | - Yurie Chatzikyriakidou
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius v. 16c, SE-106 91, Stockholm, Sweden
| | - Michael Landreh
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solnavägen 9, SE-171 65, Solna, Sweden
| | - Jens Carlsson
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, BMC, Box 596, SE-751 24, Uppsala, Sweden
| | - David Drew
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius v. 16c, SE-106 91, Stockholm, Sweden.
| |
Collapse
|
17
|
McComas SE, Reichenbach T, Mitrovic D, Alleva C, Bonaccorsi M, Delemotte L, Drew D. Determinants of sugar-induced influx in the mammalian fructose transporter GLUT5. eLife 2023; 12:e84808. [PMID: 37405832 PMCID: PMC10322154 DOI: 10.7554/elife.84808] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 06/21/2023] [Indexed: 07/06/2023] Open
Abstract
In mammals, glucose transporters (GLUT) control organism-wide blood-glucose homeostasis. In human, this is accomplished by 14 different GLUT isoforms, that transport glucose and other monosaccharides with varying substrate preferences and kinetics. Nevertheless, there is little difference between the sugar-coordinating residues in the GLUT proteins and even the malarial Plasmodium falciparum transporter PfHT1, which is uniquely able to transport a wide range of different sugars. PfHT1 was captured in an intermediate 'occluded' state, revealing how the extracellular gating helix TM7b has moved to break and occlude the sugar-binding site. Sequence difference and kinetics indicated that the TM7b gating helix dynamics and interactions likely evolved to enable substrate promiscuity in PfHT1, rather than the sugar-binding site itself. It was unclear, however, if the TM7b structural transitions observed in PfHT1 would be similar in the other GLUT proteins. Here, using enhanced sampling molecular dynamics simulations, we show that the fructose transporter GLUT5 spontaneously transitions through an occluded state that closely resembles PfHT1. The coordination of D-fructose lowers the energetic barriers between the outward- and inward-facing states, and the observed binding mode for D-fructose is consistent with biochemical analysis. Rather than a substrate-binding site that achieves strict specificity by having a high affinity for the substrate, we conclude GLUT proteins have allosterically coupled sugar binding with an extracellular gate that forms the high-affinity transition-state instead. This substrate-coupling pathway presumably enables the catalysis of fast sugar flux at physiological relevant blood-glucose concentrations.
Collapse
Affiliation(s)
- Sarah E McComas
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm UniversityStockholmSweden
| | - Tom Reichenbach
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm UniversityStockholmSweden
| | - Darko Mitrovic
- Department of Applied Physics, Science for Life Laboratory, KTH Royal Institute of TechnologyStockholmSweden
| | - Claudia Alleva
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm UniversityStockholmSweden
| | - Marta Bonaccorsi
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm UniversityStockholmSweden
| | - Lucie Delemotte
- Department of Applied Physics, Science for Life Laboratory, KTH Royal Institute of TechnologyStockholmSweden
| | - David Drew
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm UniversityStockholmSweden
| |
Collapse
|
18
|
Chen H, Ahmed S, Zhao H, Elghobashi-Meinhardt N, Dai Y, Kim JH, McDonald JG, Li X, Lee CH. Structural and functional insights into Spns2-mediated transport of sphingosine-1-phosphate. Cell 2023; 186:2644-2655.e16. [PMID: 37224812 PMCID: PMC10330195 DOI: 10.1016/j.cell.2023.04.028] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/23/2023] [Accepted: 04/19/2023] [Indexed: 05/26/2023]
Abstract
Sphingosine-1-phosphate (S1P) is an important signaling sphingolipid that regulates the immune system, angiogenesis, auditory function, and epithelial and endothelial barrier integrity. Spinster homolog 2 (Spns2) is an S1P transporter that exports S1P to initiate lipid signaling cascades. Modulating Spns2 activity can be beneficial in treatments of cancer, inflammation, and immune diseases. However, the transport mechanism of Spns2 and its inhibition remain unclear. Here, we present six cryo-EM structures of human Spns2 in lipid nanodiscs, including two functionally relevant intermediate conformations that link the inward- and outward-facing states, to reveal the structural basis of the S1P transport cycle. Functional analyses suggest that Spns2 exports S1P via facilitated diffusion, a mechanism distinct from other MFS lipid transporters. Finally, we show that the Spns2 inhibitor 16d attenuates the transport activity by locking Spns2 in the inward-facing state. Our work sheds light on Spns2-mediated S1P transport and aids the development of advanced Spns2 inhibitors.
Collapse
Affiliation(s)
- Hongwen Chen
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Shahbaz Ahmed
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Hongtu Zhao
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | | - Yaxin Dai
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jae Hun Kim
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jeffrey G McDonald
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xiaochun Li
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Chia-Hsueh Lee
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
19
|
Gora N, Weselinski LJ, Begoyan VV, Cooper A, Choe JY, Tanasova M. Discrimination of GLUTs by Fructose Isomers Enables Simultaneous Screening of GLUT5 and GLUT2 Activity in Live Cells. ACS Chem Biol 2023; 18:1089-1100. [PMID: 37116192 PMCID: PMC10566446 DOI: 10.1021/acschembio.2c00682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Abstract
Facilitative carbohydrate transporters (GLUTs, SLC2 gene family) are transmembrane proteins transporting hexoses and other sugars based on cellular metabolic demands. While a direct link between GLUTs and metabolic disorders has framed them as important biological and medicinal targets, targeting disease-relevant GLUTs remains challenging. In this study, we aimed to identify substrate-GLUT interactions that would discriminate between major fructose transporters. We examined the uptake distribution for conformational and configurational isomers of fructose using the corresponding conformationally locked fluorescently labeled mimetics as probes for assessing GLUT preferences in real time. Through comparative analysis of the uptake of the probes in the yeast-based single GLUT expression systems and the multi-GLUT mammalian cell environment, we established the ability of fructose transporters to discriminate between fructose conformers and epimers. We demonstrated that recreating the conformational and configurational mixture of fructose with molecular probes allows for the specific probe distribution, with fructofuranose mimetic being taken up preferentially through GLUT5 and β-d-fructopyranose mimetic passing through GLUT2. The uptake of α-d-fructopyranose mimetic was found to be independent of GLUT5 or GLUT2. The results of this study provide a new approach to analyzing GLUT5 and GLUT2 activity in live cells, and the findings can be used as a proof-of-concept for multi-GLUT activity screening in live cells. The research also provides new knowledge on substrate-GLUT interactions and new tools for monitoring alterations in GLUT activities.
Collapse
Affiliation(s)
- Nazar Gora
- Department of Chemistry, Michigan Technological University, 1400 Townsend Drive, Houghton, Michigan 49931, United States
- Health Research Institute, Michigan Technological University, 1400 Townsend Drive, Houghton, Michigan 49931, United States
| | - Lukasz J Weselinski
- Department of Chemistry, Michigan Technological University, 1400 Townsend Drive, Houghton, Michigan 49931, United States
| | - Vagarshak V Begoyan
- Department of Chemistry, Michigan Technological University, 1400 Townsend Drive, Houghton, Michigan 49931, United States
| | - Andrew Cooper
- Department of Chemistry, Michigan Technological University, 1400 Townsend Drive, Houghton, Michigan 49931, United States
| | - Jun-Yong Choe
- Department of Chemistry, East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, North Carolina 27834, United States
- Department of Biochemistry and Molecular Biology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois 60064, United States
| | - Marina Tanasova
- Department of Chemistry, Michigan Technological University, 1400 Townsend Drive, Houghton, Michigan 49931, United States
- Health Research Institute, Michigan Technological University, 1400 Townsend Drive, Houghton, Michigan 49931, United States
| |
Collapse
|
20
|
Gershman A, Hauck Q, Dick M, Jamison JM, Tassia M, Agirrezabala X, Muhammad S, Ali R, Workman RE, Valle M, Wong GW, Welch KC, Timp W. Genomic insights into metabolic flux in hummingbirds. Genome Res 2023; 33:703-714. [PMID: 37156619 PMCID: PMC10317124 DOI: 10.1101/gr.276779.122] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 04/26/2023] [Indexed: 05/10/2023]
Abstract
Hummingbirds are very well adapted to sustain efficient and rapid metabolic shifts. They oxidize ingested nectar to directly fuel flight when foraging but have to switch to oxidizing stored lipids derived from ingested sugars during the night or long-distance migratory flights. Understanding how this organism moderates energy turnover is hampered by a lack of information regarding how relevant enzymes differ in sequence, expression, and regulation. To explore these questions, we generated a chromosome-scale genome assembly of the ruby-throated hummingbird (A. colubris) using a combination of long- and short-read sequencing, scaffolding it using existing assemblies. We then used hybrid long- and short-read RNA sequencing of liver and muscle tissue in fasted and fed metabolic states for a comprehensive transcriptome assembly and annotation. Our genomic and transcriptomic data found positive selection of key metabolic genes in nectivorous avian species and deletion of critical genes (SLC2A4, GCK) involved in glucostasis in other vertebrates. We found expression of a fructose-specific version of SLC2A5 putatively in place of insulin-sensitive SLC2A5, with predicted protein models suggesting affinity for both fructose and glucose. Alternative isoforms may even act to sequester fructose to preclude limitations from transport in metabolism. Finally, we identified differentially expressed genes from fasted and fed hummingbirds, suggesting key pathways for the rapid metabolic switch hummingbirds undergo.
Collapse
Affiliation(s)
- Ariel Gershman
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
- Department of Molecular Biology and Genetics, Johns Hopkins University, Baltimore, Maryland 21287, USA
| | - Quinn Hauck
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Morag Dick
- Cell & Systems Biology, University of Toronto, Toronto, Ontario M5S 3G5, Canada
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, M1C 1A4, Canada
| | - Jerrica M Jamison
- Cell & Systems Biology, University of Toronto, Toronto, Ontario M5S 3G5, Canada
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, M1C 1A4, Canada
| | - Michael Tassia
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Xabier Agirrezabala
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), 48160 Derio, Spain
| | - Saad Muhammad
- Cell & Systems Biology, University of Toronto, Toronto, Ontario M5S 3G5, Canada
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, M1C 1A4, Canada
| | - Raafay Ali
- Cell & Systems Biology, University of Toronto, Toronto, Ontario M5S 3G5, Canada
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, M1C 1A4, Canada
| | - Rachael E Workman
- Department of Molecular Biology and Genetics, Johns Hopkins University, Baltimore, Maryland 21287, USA
| | - Mikel Valle
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), 48160 Derio, Spain
| | - G William Wong
- Department of Physiology and Center for Metabolism and Obesity Research, School of Medicine, The Johns Hopkins University, Baltimore, Maryland 21205, USA
| | - Kenneth C Welch
- Cell & Systems Biology, University of Toronto, Toronto, Ontario M5S 3G5, Canada
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, M1C 1A4, Canada
| | - Winston Timp
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA;
- Department of Molecular Biology and Genetics, Johns Hopkins University, Baltimore, Maryland 21287, USA
| |
Collapse
|
21
|
Sauve S, Williamson J, Polasa A, Moradi M. Ins and Outs of Rocker Switch Mechanism in Major Facilitator Superfamily of Transporters. MEMBRANES 2023; 13:membranes13050462. [PMID: 37233523 DOI: 10.3390/membranes13050462] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/20/2023] [Accepted: 04/23/2023] [Indexed: 05/27/2023]
Abstract
The major facilitator superfamily (MFS) of transporters consists of three classes of membrane transporters: symporters, uniporters, and antiporters. Despite such diverse functions, MFS transporters are believed to undergo similar conformational changes within their distinct transport cycles, known as the rocker-switch mechanism. While the similarities between conformational changes are noteworthy, the differences are also important since they could potentially explain the distinct functions of symporters, uniporters, and antiporters of the MFS superfamily. We reviewed a variety of experimental and computational structural data on a select number of antiporters, symporters, and uniporters from the MFS family to compare the similarities and differences of the conformational dynamics of three different classes of transporters.
Collapse
Affiliation(s)
- Stephanie Sauve
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA
| | - Joseph Williamson
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA
| | - Adithya Polasa
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA
| | - Mahmoud Moradi
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA
| |
Collapse
|
22
|
Jaunet-Lahary T, Shimamura T, Hayashi M, Nomura N, Hirasawa K, Shimizu T, Yamashita M, Tsutsumi N, Suehiro Y, Kojima K, Sudo Y, Tamura T, Iwanari H, Hamakubo T, Iwata S, Okazaki KI, Hirai T, Yamashita A. Structure and mechanism of oxalate transporter OxlT in an oxalate-degrading bacterium in the gut microbiota. Nat Commun 2023; 14:1730. [PMID: 37012268 PMCID: PMC10070484 DOI: 10.1038/s41467-023-36883-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 02/20/2023] [Indexed: 04/05/2023] Open
Abstract
An oxalate-degrading bacterium in the gut microbiota absorbs food-derived oxalate to use this as a carbon and energy source, thereby reducing the risk of kidney stone formation in host animals. The bacterial oxalate transporter OxlT selectively uptakes oxalate from the gut to bacterial cells with a strict discrimination from other nutrient carboxylates. Here, we present crystal structures of oxalate-bound and ligand-free OxlT in two distinct conformations, occluded and outward-facing states. The ligand-binding pocket contains basic residues that form salt bridges with oxalate while preventing the conformational switch to the occluded state without an acidic substrate. The occluded pocket can accommodate oxalate but not larger dicarboxylates, such as metabolic intermediates. The permeation pathways from the pocket are completely blocked by extensive interdomain interactions, which can be opened solely by a flip of a single side chain neighbouring the substrate. This study shows the structural basis underlying metabolic interactions enabling favourable symbiosis.
Collapse
Affiliation(s)
- Titouan Jaunet-Lahary
- Research Center for Computational Science, Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki, 444-8585, Japan
| | - Tatsuro Shimamura
- Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan.
| | - Masahiro Hayashi
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, 700-8530, Japan
| | - Norimichi Nomura
- Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
| | - Kouta Hirasawa
- Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
| | | | | | - Naotaka Tsutsumi
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, 700-8530, Japan
- School of Pharmaceutical Sciences, Okayama University, Okayama, 700-8530, Japan
| | - Yuta Suehiro
- School of Pharmaceutical Sciences, Okayama University, Okayama, 700-8530, Japan
| | - Keiichi Kojima
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, 700-8530, Japan
| | - Yuki Sudo
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, 700-8530, Japan
| | - Takashi Tamura
- Graduate School of Environmental and Life Sciences, Okayama University, Okayama, 700-8530, Japan
| | - Hiroko Iwanari
- Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, 153-8904, Japan
| | - Takao Hamakubo
- Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, 153-8904, Japan
| | - So Iwata
- Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
| | - Kei-Ichi Okazaki
- Research Center for Computational Science, Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki, 444-8585, Japan.
| | | | - Atsuko Yamashita
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, 700-8530, Japan.
- RIKEN SPring-8 Center, Sayo, 679-5148, Japan.
- School of Pharmaceutical Sciences, Okayama University, Okayama, 700-8530, Japan.
| |
Collapse
|
23
|
Xu HL, Zhou X, Chen S, Xu S, Li Z, Nakanishi H, Gao XD. Rare sugar L-sorbose exerts antitumor activity by impairing glucose metabolism. Commun Biol 2023; 6:259. [PMID: 36906698 PMCID: PMC10008635 DOI: 10.1038/s42003-023-04638-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 02/28/2023] [Indexed: 03/13/2023] Open
Abstract
Rare sugars are monosaccharides with low natural abundance. They are structural isomers of dietary sugars, but hardly be metabolized. Here, we report that rare sugar L-sorbose induces apoptosis in various cancer cells. As a C-3 epimer of D-fructose, L-sorbose is internalized via the transporter GLUT5 and phosphorylated by ketohexokinase (KHK) to produce L-sorbose-1-phosphate (S-1-P). Cellular S-1-P inactivates the glycolytic enzyme hexokinase resulting in attenuated glycolysis. Consequently, mitochondrial function is impaired and reactive oxygen species are produced. Moreover, L-sorbose downregulates the transcription of KHK-A, a splicing variant of KHK. Since KHK-A is a positive inducer of antioxidation genes, the antioxidant defense mechanism in cancer cells can be attenuated by L-sorbose-treatment. Thus, L-sorbose performs multiple anticancer activities to induce cell apoptosis. In mouse xenograft models, L-sorbose enhances the effect of tumor chemotherapy in combination with other anticancer drugs. These results demonstrate L-sorbose as an attractive therapeutic reagent for cancer treatment.
Collapse
Affiliation(s)
- Hui-Lin Xu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Xiaoman Zhou
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Shuai Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Si Xu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Zijie Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
| | - Hideki Nakanishi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
| | - Xiao-Dong Gao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China.
| |
Collapse
|
24
|
Rana N, Aziz MA, Serya RAT, Lasheen DS, Samir N, Wuest F, Abouzid KAM, West FG. A Fluorescence-Based Assay to Probe Inhibitory Effect of Fructose Mimics on GLUT5 Transport in Breast Cancer Cells. ACS BIO & MED CHEM AU 2023; 3:51-61. [PMID: 37101605 PMCID: PMC10125380 DOI: 10.1021/acsbiomedchemau.2c00056] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/20/2022] [Accepted: 10/20/2022] [Indexed: 04/28/2023]
Abstract
Rapid cell division and reprogramming of energy metabolism are two crucial hallmarks of cancer cells. In humans, hexose trafficking into cancer cells is mainly mediated through a family of glucose transporters (GLUTs), which are facilitative transmembrane hexose transporter proteins. In several breast cancers, fructose can functionally substitute glucose as an alternative energy supply supporting rapid proliferation. GLUT5, the principal fructose transporter, is overexpressed in human breast cancer cells, providing valuable targets for breast cancer detection as well as selective targeting of anticancer drugs using structurally modified fructose mimics. Herein, a novel fluorescence assay was designed aiming to screen a series of C-3 modified 2,5-anhydromannitol (2,5-AM) compounds as d-fructose analogues to explore GLUT5 binding site requirements. The synthesized probes were evaluated for their ability to inhibit the uptake of the fluorescently labeled d-fructose derivative 6-NBDF into EMT6 murine breast cancer cells. A few of the compounds screened demonstrated highly potent single-digit micromolar inhibition of 6-NBDF cellular uptake, which was substantially more potent than the natural substrate d-fructose, at a level of 100-fold or more. The results of this assay are consistent with those obtained from a previous study conducted for some selected compounds against 18F-labeled d-fructose-based probe 6-[18F]FDF, indicating the reproducibility of the current non-radiolabeled assay. These highly potent compounds assessed against 6-NBDF open avenues for the development of more potent probes targeting GLUT5-expressing cancerous cells.
Collapse
Affiliation(s)
- Natasha Rana
- Department
of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
- Department
of Oncology, University of Alberta—Cross
Cancer Institute, Edmonton, AB T6G IZ2, Canada
- Cancer
Research Institute of Northern Alberta, University of Alberta, 2-132 Li Ka Shing, Edmonton, AB T6G 2E1, Canada
| | - Marwa A. Aziz
- Department
of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Ain Shams University, Abassia, P.O. Box 11566, Cairo 11566, Egypt
| | - Rabah A. T. Serya
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Ain Shams University, Abassia, P.O. Box 11566, Cairo 11566, Egypt
| | - Deena S. Lasheen
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Ain Shams University, Abassia, P.O. Box 11566, Cairo 11566, Egypt
| | - Nermin Samir
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Ain Shams University, Abassia, P.O. Box 11566, Cairo 11566, Egypt
| | - Frank Wuest
- Department
of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
- Department
of Oncology, University of Alberta—Cross
Cancer Institute, Edmonton, AB T6G IZ2, Canada
| | - Khaled A. M. Abouzid
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Ain Shams University, Abassia, P.O. Box 11566, Cairo 11566, Egypt
| | - F. G. West
- Department
of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
- Department
of Oncology, University of Alberta—Cross
Cancer Institute, Edmonton, AB T6G IZ2, Canada
- Cancer
Research Institute of Northern Alberta, University of Alberta, 2-132 Li Ka Shing, Edmonton, AB T6G 2E1, Canada
| |
Collapse
|
25
|
Blaimschein N, Hariharan P, Manioglu S, Guan L, Müller DJ. Substrate-binding guides individual melibiose permeases MelB to structurally soften and to destabilize cytoplasmic middle-loop C3. Structure 2023; 31:58-67.e4. [PMID: 36525976 PMCID: PMC9825662 DOI: 10.1016/j.str.2022.11.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/06/2022] [Accepted: 11/18/2022] [Indexed: 12/23/2022]
Abstract
The melibiose permease MelB is a well-studied Na+-coupled transporter of the major facilitator superfamily. However, the symport mechanism of galactosides and cations is still not fully understood, especially at structural levels. Here, we use single-molecule force spectroscopy to investigate substrate-induced structural changes of MelB from Salmonella typhimurium. In the absence of substrate, MelB equally populates two different states, from which one shows higher mechanical structural stability with additional stabilization of the cytoplasmic middle-loop C3. In the presence of either melibiose or a coupling Na+-cation, however, MelB increasingly populates the mechanically less stable state, which shows a destabilized middle-loop C3. In the presence of both substrate and co-substrate, this mechanically less stable state of MelB is predominant. Our findings describe how both substrates guide MelB transporters to populate two different mechanically stabilized states, and contribute mechanistic insights to the alternating-access action for the galactoside/cation symport catalyzed by MelB.
Collapse
Affiliation(s)
- Nina Blaimschein
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zürich, 4058 Basel, Switzerland
| | - Parameswaran Hariharan
- Department of Cell Physiology and Molecular Biophysics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Selen Manioglu
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zürich, 4058 Basel, Switzerland
| | - Lan Guan
- Department of Cell Physiology and Molecular Biophysics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | - Daniel J Müller
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zürich, 4058 Basel, Switzerland.
| |
Collapse
|
26
|
Integrative transcriptome analysis of SARS-CoV-2 human-infected cells combined with deep learning algorithms identifies two potential cellular targets for the treatment of coronavirus disease. Braz J Microbiol 2022; 54:53-68. [PMID: 36435956 PMCID: PMC9702651 DOI: 10.1007/s42770-022-00875-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 11/14/2022] [Indexed: 11/27/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) quickly spread worldwide, leading coronavirus disease 2019 (COVID-19) to hit pandemic level less than 4 months after the first official cases. Hence, the search for drugs and vaccines that could prevent or treat infections by SARS-CoV-2 began, intending to reduce a possible collapse of health systems. After 2 years, efforts to find therapies to treat COVID-19 continue. However, there is still much to be understood about the virus' pathology. Tools such as transcriptomics have been used to understand the impact of SARS-CoV-2 on different cells isolated from various tissues, leaving datasets in the databases that integrate genes and differentially expressed pathways during SARS-CoV-2 infection. After retrieving transcriptome datasets from different human cells infected with SARS-CoV-2 available in the database, we performed an integrative analysis associated with deep learning algorithms to determine differentially expressed targets mainly after infection. The targets found represented a fructose transporter (GLUT5) and a component of proteasome 26s. These targets were then molecularly modeled, followed by molecular docking that identified potential inhibitors for both structures. Once the inhibition of structures that have the expression increased by the virus can represent a strategy for reducing the viral replication by selecting infected cells, associating these bioinformatics tools, therefore, can be helpful in the screening of molecules being tested for new uses, saving financial resources, time, and making a personalized screening for each infectious disease.
Collapse
|
27
|
Boakes JC, Harborne SPD, Ngo JTS, Pliotas C, Goldman A. Novel variants provide differential stabilisation of human equilibrative nucleoside transporter 1 states. Front Mol Biosci 2022; 9:970391. [DOI: 10.3389/fmolb.2022.970391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 10/27/2022] [Indexed: 11/10/2022] Open
Abstract
Human equilibrative nucleoside transporters represent a major pharmaceutical target for cardiac, cancer and viral therapies. Understanding the molecular basis for transport is crucial for the development of improved therapeutics through structure-based drug design. ENTs have been proposed to utilise an alternating access mechanism of action, similar to that of the major facilitator superfamily. However, ENTs lack functionally-essential features of that superfamily, suggesting that they may use a different transport mechanism. Understanding the molecular basis of their transport requires insight into diverse conformational states. Differences between intermediate states may be discrete and mediated by subtle gating interactions, such as salt bridges. We identified four variants of human equilibrative nucleoside transporter isoform 1 (hENT1) at the large intracellular loop (ICL6) and transmembrane helix 7 (TM7) that stabilise the apo-state (∆Tm 0.7–1.5°C). Furthermore, we showed that variants K263A (ICL6) and I282V (TM7) specifically stabilise the inhibitor-bound state of hENT1 (∆∆Tm 5.0 ± 1.7°C and 3.0 ± 1.8°C), supporting the role of ICL6 in hENT1 gating. Finally, we showed that, in comparison with wild type, variant T336A is destabilised by nitrobenzylthioinosine (∆∆Tm -4.7 ± 1.1°C) and binds it seven times worse. This residue may help determine inhibitor and substrate sensitivity. Residue K263 is not present in the solved structures, highlighting the need for further structural data that include the loop regions.
Collapse
|
28
|
Temre MK, Kumar A, Singh SM. An appraisal of the current status of inhibition of glucose transporters as an emerging antineoplastic approach: Promising potential of new pan-GLUT inhibitors. Front Pharmacol 2022; 13:1035510. [PMID: 36386187 PMCID: PMC9663470 DOI: 10.3389/fphar.2022.1035510] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/18/2022] [Indexed: 07/23/2023] Open
Abstract
Neoplastic cells displayed altered metabolism with accelerated glycolysis. Therefore, these cells need a mammoth supply of glucose for which they display an upregulated expression of various glucose transporters (GLUT). Thus, novel antineoplastic strategies focus on inhibiting GLUT to intersect the glycolytic lifeline of cancer cells. This review focuses on the current status of various GLUT inhibition scenarios. The GLUT inhibitors belong to both natural and synthetic small inhibitory molecules category. As neoplastic cells express multiple GLUT isoforms, it is necessary to use pan-GLUT inhibitors. Nevertheless, it is also necessary that such pan-GLUT inhibitors exert their action at a low concentration so that normal healthy cells are left unharmed and minimal injury is caused to the other vital organs and systems of the body. Moreover, approaches are also emerging from combining GLUT inhibitors with other chemotherapeutic agents to potentiate the antineoplastic action. A new pan-GLUT inhibitor named glutor, a piperazine-one derivative, has shown a potent antineoplastic action owing to its inhibitory action exerted at nanomolar concentrations. The review discusses the merits and limitations of the existing GLUT inhibitory approach with possible future outcomes.
Collapse
Affiliation(s)
- Mithlesh Kumar Temre
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Ajay Kumar
- Deparment of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Sukh Mahendra Singh
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
29
|
Maternal Fructose Intake, Programmed Mitochondrial Function and Predisposition to Adult Disease. Int J Mol Sci 2022; 23:ijms232012215. [DOI: 10.3390/ijms232012215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/27/2022] [Accepted: 10/06/2022] [Indexed: 11/16/2022] Open
Abstract
Fructose consumption is now recognised as a major risk factor in the development of metabolic diseases, such as hyperlipidaemia, diabetes, non-alcoholic fatty liver disease and obesity. In addition to environmental, social, and genetic factors, an unfavourable intrauterine environment is now also recognised as an important factor in the progression of, or susceptibility to, metabolic disease during adulthood. Developmental trajectory in the short term, in response to nutrient restriction or excessive nutrient availability, may promote adaptation that serves to maintain organ functionality necessary for immediate survival and foetal development. Consequently, this may lead to decreased function of organ systems when presented with an unfavourable neonatal, adolescent and/or adult nutritional environment. These early events may exacerbate susceptibility to later-life disease since sub-optimal maternal nutrition increases the risk of non-communicable diseases (NCDs) in future generations. Earlier dietary interventions, implemented in pregnant mothers or those considering pregnancy, may have added benefit. Although, the mechanisms by which maternal diets high in fructose and the vertical transmission of maternal metabolic phenotype may lead to the predisposition to adult disease are poorly understood. In this review, we will discuss the potential contribution of excessive fructose intake during pregnancy and how this may lead to developmental reprogramming of mitochondrial function and predisposition to metabolic disease in offspring.
Collapse
|
30
|
Groenendyk J, Stoletov K, Paskevicius T, Li W, Dai N, Pujol M, Busaan E, Ng HH, Boukouris AE, Saleme B, Haromy A, Cui K, Hu M, Yan Y, Zhang R, Michelakis E, Chen XZ, Lewis JD, Tang J, Agellon LB, Michalak M. Loss of the fructose transporter SLC2A5 inhibits cancer cell migration. Front Cell Dev Biol 2022; 10:896297. [PMID: 36268513 PMCID: PMC9578049 DOI: 10.3389/fcell.2022.896297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 09/09/2022] [Indexed: 11/13/2022] Open
Abstract
Metastasis is the primary cause of cancer patient death and the elevation of SLC2A5 gene expression is often observed in metastatic cancer cells. Here we evaluated the importance of SLC2A5 in cancer cell motility by silencing its gene. We discovered that CRISPR/Cas9-mediated inactivation of the SLC2A5 gene inhibited cancer cell proliferation and migration in vitro as well as metastases in vivo in several animal models. Moreover, SLC2A5-attenuated cancer cells exhibited dramatic alterations in mitochondrial architecture and localization, uncovering the importance of SLC2A5 in directing mitochondrial function for cancer cell motility and migration. The direct association of increased abundance of SLC2A5 in cancer cells with metastatic risk in several types of cancers identifies SLC2A5 as an important therapeutic target to reduce or prevent cancer metastasis.
Collapse
Affiliation(s)
- Jody Groenendyk
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | | | | | - Wenjuan Li
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - Ning Dai
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - Myriam Pujol
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - Erin Busaan
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - Hoi Hei Ng
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | | | - Bruno Saleme
- Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Alois Haromy
- Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Kaisa Cui
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Miao Hu
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, China
| | - Yanan Yan
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, China
| | - Rui Zhang
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, China
| | | | - Xing-Zhen Chen
- Department of Physiology, University of Alberta, Edmonton, AB, Canada
| | - John D. Lewis
- Department of Oncology, University of Alberta, Edmonton, AB, Canada
| | - Jingfeng Tang
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, China
| | - Luis B. Agellon
- School of Human Nutrition, McGill University, Montreal, QC, Canada
- *Correspondence: Luis B. Agellon, ; Marek Michalak,
| | - Marek Michalak
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
- *Correspondence: Luis B. Agellon, ; Marek Michalak,
| |
Collapse
|
31
|
Jiang X, Yan N, Deng D, Yan C. Structural aspects of the glucose and monocarboxylate transporters involved in the Warburg effect. IUBMB Life 2022; 74:1180-1199. [PMID: 36082803 DOI: 10.1002/iub.2668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/02/2022] [Indexed: 11/11/2022]
Abstract
Cancer cells shift their glucose catabolism from aerobic respiration to lactic fermentation even in the presence of oxygen, and this is known as the "Warburg effect". To accommodate the high glucose demands and to avoid lactate accumulation, the expression levels of human glucose transporters (GLUTs) and human monocarboxylate transporters (MCTs) are elevated to maintain metabolic homeostasis. Therefore, inhibition of GLUTs and/or MCTs provides potential therapeutic strategies for cancer treatment. Here, we summarize recent advances in the structural characterization of GLUTs and MCTs, providing a comprehensive understanding of their transport and inhibition mechanisms to facilitate further development of anticancer therapies.
Collapse
Affiliation(s)
- Xin Jiang
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, Australia
| | - Nieng Yan
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Dong Deng
- Department of Obstetrics, Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University, Chengdu, China
| | - Chuangye Yan
- Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
32
|
Alberge JB, Kraeber-Bodéré F, Jamet B, Touzeau C, Caillon H, Wuilleme S, Béné MC, Kampfenkel T, Sonneveld P, van Duin M, Avet-Loiseau H, Corre J, Magrangeas F, Carlier T, Bodet-Milin C, Chérel M, Moreau P, Minvielle S, Bailly C. Molecular Signature of 18F-FDG PET Biomarkers in Newly Diagnosed Multiple Myeloma Patients: A Genome-Wide Transcriptome Analysis from the CASSIOPET Study. J Nucl Med 2022; 63:1008-1013. [PMID: 35086897 PMCID: PMC9258580 DOI: 10.2967/jnumed.121.262884] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/14/2021] [Indexed: 01/03/2023] Open
Abstract
The International Myeloma Working Group recently fully incorporated 18F-FDG PET into multiple myeloma (MM) diagnosis and response evaluation. Moreover, a few studies demonstrated the prognostic value of several biomarkers extracted from this imaging at baseline. Before these 18F-FDG PET biomarkers could be fully endorsed as risk classifiers by the hematologist community, further characterization of underlying molecular aspects was necessary. Methods: Reported prognostic biomarkers (18F-FDG avidity, SUVmax, number of focal lesions, presence of paramedullary disease [PMD] or extramedullary disease) were extracted from 18F-FDG PET imaging at baseline in a group of 139 patients from CASSIOPET, a companion study of the CASSIOPEIA cohort (ClinicalTrials.gov identifier NCT02541383). Transcriptomic analyses using RNA sequencing were realized on sorted bone marrow plasma cells from the same patients. An association with a high-risk gene expression signature (IFM15), molecular classification, progression-free survival, a stringent clinical response, and minimal residual disease negativity were explored. Results:18F-FDG PET results were positive in 79.4% of patients; 14% and 11% of them had PMD and extramedullary disease, respectively. Negative 18F-FDG PET results were associated with lower levels of expression of hexokinase 2 (HK2) (fold change, 2.1; adjusted P = 0.04) and showed enrichment for a subgroup of patients with a low level of bone disease. Positive 18F-FDG PET results displayed 2 distinct signatures: either high levels of expression of proliferation genes or high levels of expression of GLUT5 and lymphocyte antigens. PMD and IFM15 were independently associated with a lower level of progression-free survival, and the presence of both biomarkers defined a group of "double-positive" patients at very high risk of progression. PMD and IFM15 were related neither to minimal residual disease assessment nor to a stringent clinical response. Conclusion: Our study confirmed and extended the association between imaging biomarkers and transcriptomic programs in MM. The combined prognostic value of PMD and a high-risk IFM15 signature may help define MM patients with a very high risk of progression.
Collapse
Affiliation(s)
- Jean-Baptiste Alberge
- Université de Nantes, CHU Nantes, CNRS, Inserm, CRCINA, Nantes, France;,Site de Recherche Intégrée sur le Cancer (SIRIC), Imaging and Longitudinal Investigations to Ameliorate Decision-Making (ILIAD), INCA-DGOS-Inserm 12558, Nantes, France
| | - Françoise Kraeber-Bodéré
- Université de Nantes, CHU Nantes, CNRS, Inserm, CRCINA, Nantes, France;,Site de Recherche Intégrée sur le Cancer (SIRIC), Imaging and Longitudinal Investigations to Ameliorate Decision-Making (ILIAD), INCA-DGOS-Inserm 12558, Nantes, France;,Nuclear Medicine Unit, University Hospital, Nantes, France;,Nuclear Medicine Unit, ICO-Gauducheau, Nantes-Saint-Herblain, France;,Haematology Department, University Hospital, Nantes, France
| | - Bastien Jamet
- Site de Recherche Intégrée sur le Cancer (SIRIC), Imaging and Longitudinal Investigations to Ameliorate Decision-Making (ILIAD), INCA-DGOS-Inserm 12558, Nantes, France;,Nuclear Medicine Unit, University Hospital, Nantes, France
| | - Cyrille Touzeau
- Université de Nantes, CHU Nantes, CNRS, Inserm, CRCINA, Nantes, France;,Site de Recherche Intégrée sur le Cancer (SIRIC), Imaging and Longitudinal Investigations to Ameliorate Decision-Making (ILIAD), INCA-DGOS-Inserm 12558, Nantes, France;,Haematology Department, University Hospital, Nantes, France
| | - Hélène Caillon
- Haematology Department, University Hospital, Nantes, France
| | | | | | | | - Pieter Sonneveld
- Erasmus University Medical Center Cancer Institute, Rotterdam, The Netherlands; and
| | - Mark van Duin
- Erasmus University Medical Center Cancer Institute, Rotterdam, The Netherlands; and
| | - Herve Avet-Loiseau
- Unité de Génomique du Myélome, Institut Universitaire du Cancer de Toulouse, Institut National de la Santé, Oncopole, Toulouse, France
| | - Jill Corre
- Unité de Génomique du Myélome, Institut Universitaire du Cancer de Toulouse, Institut National de la Santé, Oncopole, Toulouse, France
| | - Florence Magrangeas
- Université de Nantes, CHU Nantes, CNRS, Inserm, CRCINA, Nantes, France;,Site de Recherche Intégrée sur le Cancer (SIRIC), Imaging and Longitudinal Investigations to Ameliorate Decision-Making (ILIAD), INCA-DGOS-Inserm 12558, Nantes, France;,Haematology Department, University Hospital, Nantes, France
| | - Thomas Carlier
- Université de Nantes, CHU Nantes, CNRS, Inserm, CRCINA, Nantes, France;,Site de Recherche Intégrée sur le Cancer (SIRIC), Imaging and Longitudinal Investigations to Ameliorate Decision-Making (ILIAD), INCA-DGOS-Inserm 12558, Nantes, France;,Nuclear Medicine Unit, University Hospital, Nantes, France
| | - Caroline Bodet-Milin
- Université de Nantes, CHU Nantes, CNRS, Inserm, CRCINA, Nantes, France;,Site de Recherche Intégrée sur le Cancer (SIRIC), Imaging and Longitudinal Investigations to Ameliorate Decision-Making (ILIAD), INCA-DGOS-Inserm 12558, Nantes, France;,Nuclear Medicine Unit, University Hospital, Nantes, France
| | - Michel Chérel
- Université de Nantes, CHU Nantes, CNRS, Inserm, CRCINA, Nantes, France;,Site de Recherche Intégrée sur le Cancer (SIRIC), Imaging and Longitudinal Investigations to Ameliorate Decision-Making (ILIAD), INCA-DGOS-Inserm 12558, Nantes, France;,Nuclear Medicine Unit, ICO-Gauducheau, Nantes-Saint-Herblain, France
| | - Philippe Moreau
- Université de Nantes, CHU Nantes, CNRS, Inserm, CRCINA, Nantes, France;,Site de Recherche Intégrée sur le Cancer (SIRIC), Imaging and Longitudinal Investigations to Ameliorate Decision-Making (ILIAD), INCA-DGOS-Inserm 12558, Nantes, France;,Haematology Department, University Hospital, Nantes, France
| | - Stéphane Minvielle
- Université de Nantes, CHU Nantes, CNRS, Inserm, CRCINA, Nantes, France;,Site de Recherche Intégrée sur le Cancer (SIRIC), Imaging and Longitudinal Investigations to Ameliorate Decision-Making (ILIAD), INCA-DGOS-Inserm 12558, Nantes, France;,Haematology Department, University Hospital, Nantes, France
| | - Clément Bailly
- Université de Nantes, CHU Nantes, CNRS, Inserm, CRCINA, Nantes, France;,Site de Recherche Intégrée sur le Cancer (SIRIC), Imaging and Longitudinal Investigations to Ameliorate Decision-Making (ILIAD), INCA-DGOS-Inserm 12558, Nantes, France;,Nuclear Medicine Unit, University Hospital, Nantes, France
| |
Collapse
|
33
|
Yuan Y, Kong F, Xu H, Zhu A, Yan N, Yan C. Cryo-EM structure of human glucose transporter GLUT4. Nat Commun 2022; 13:2671. [PMID: 35562357 PMCID: PMC9106701 DOI: 10.1038/s41467-022-30235-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 04/22/2022] [Indexed: 12/28/2022] Open
Abstract
GLUT4 is the primary glucose transporter in adipose and skeletal muscle tissues. Its cellular trafficking is regulated by insulin signaling. Failed or reduced plasma membrane localization of GLUT4 is associated with diabetes. Here, we report the cryo-EM structures of human GLUT4 bound to a small molecule inhibitor cytochalasin B (CCB) at resolutions of 3.3 Å in both detergent micelles and lipid nanodiscs. CCB-bound GLUT4 exhibits an inward-open conformation. Despite the nearly identical conformation of the transmembrane domain to GLUT1, the cryo-EM structure reveals an extracellular glycosylation site and an intracellular helix that is invisible in the crystal structure of GLUT1. The structural study presented here lays the foundation for further mechanistic investigation of the modulation of GLUT4 trafficking. Our methods for cryo-EM analysis of GLUT4 will also facilitate structural determination of many other small size solute carriers. Small solute carriers remain difficult to study by single particle cryo-EM. Here, the authors report the cryo-EM structure of human insulin-responsive glucose transporter GLUT4 (55 kDa) without rigid soluble domains or binders.
Collapse
Affiliation(s)
- Yafei Yuan
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Fang Kong
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Hanwen Xu
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Angqi Zhu
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Nieng Yan
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China. .,Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA.
| | - Chuangye Yan
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
34
|
Wu Z, Han Z, Zhou W, Sun X, Chen L, Yang S, Hu J, Li C. Insight into the Nucleoside Transport and Inhibition of Human ENT1. Curr Res Struct Biol 2022; 4:192-205. [PMID: 35677775 PMCID: PMC9168172 DOI: 10.1016/j.crstbi.2022.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/02/2022] [Accepted: 05/18/2022] [Indexed: 12/03/2022] Open
Abstract
The human equilibrative nucleoside transporter 1 (hENT1) is an effective controller of adenosine signaling by regulating its extracellular and intracellular concentration, and has become a solid drug target of clinical used adenosine reuptake inhibitors (AdoRIs). Currently, the mechanisms of adenosine transport and inhibition for hENT1 remain unclear, which greatly limits the in-depth understanding of its inner workings as well as the development of novel inhibitors. In this work, the dynamic details of hENT1 underlie adenosine transport and the inhibition mechanism of the non-nucleoside AdoRIs dilazep both were investigated by comparative long-time unbiased molecular dynamics simulations. The calculation results show that the conformational transitions of hENT1 from the outward open to metastable occluded state are mainly driven by TM1, TM2, TM7 and TM9. One of the trimethoxyphenyl rings in dilazep serves as the adenosyl moiety of the endogenous adenosine substrate to competitively occupy the orthosteric site of hENT1. Due to extensive and various VDW interactions with N30, M33, M84, P308 and F334, the other trimethoxyphenyl ring is stuck in the opportunistic site near the extracellular side preventing the complete occlusion of thin gate simultaneously. Obviously, dilazep shows significant inhibitory activity by disrupting the local induce-fit action in substrate binding cavity and blocking the transport cycle of whole protein. This study not only reveals the nucleoside transport mechanism by hENT1 at atomic level, but also provides structural guidance for the subsequent design of novel non-nucleoside AdoRIs with enhanced pharmacologic properties. The transitions of hENT1 from the outward open to metastable occluded state are mainly driven by TM1, TM2, TM7 and TM9. The induce-fit action by adenosine recognition precedes. inward contraction of the extracellular side. Dilazep exerts its special hENT1 inhibitory function through competitive binding and allosteric regulation. A gating strategy of extracellular loop is revealed to ensure adenosine is firmly located in the transport cavity.
Collapse
Affiliation(s)
- Zhixiang Wu
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing, China
| | - Zhongjie Han
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing, China
| | - Wenxue Zhou
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing, China
| | - Xiaohan Sun
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing, China
| | - Lei Chen
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing, China
| | - Shuang Yang
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing, China
| | - Jianping Hu
- Key Laboratory of Medicinal and Edible Plants Resources, Development of Sichuan Education Department, School of Pharmacy, Chengdu University, Chengdu, China
- Corresponding author. Key Laboratory of Medicinal and Edible Plants Resources, Development of Sichuan Education Department, School of Pharmacy, Chengdu University, Chengdu, 610106, China.
| | - Chunhua Li
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing, China
- Corresponding author. Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing, 100124, China.
| |
Collapse
|
35
|
Insights into the structure and function of the human organic anion transporter 1 in lipid bilayer membranes. Sci Rep 2022; 12:7057. [PMID: 35488116 PMCID: PMC9054760 DOI: 10.1038/s41598-022-10755-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 04/12/2022] [Indexed: 01/27/2023] Open
Abstract
The human SLC22A6/OAT1 plays an important role in the elimination of a broad range of endogenous substances and xenobiotics thus attracting attention from the pharmacological community. Furthermore, OAT1 is also involved in key physiological events such as the remote inter-organ communication. Despite its significance, the knowledge about hOAT1 structure and the transport mechanism at the atomic level remains fragmented owing to the lack of resolved structures. By means of protein-threading modeling refined by μs-scaled Molecular Dynamics simulations, the present study provides the first robust model of hOAT1 in outward-facing conformation. Taking advantage of the AlphaFold 2 predicted structure of hOAT1 in inward-facing conformation, we here provide the essential structural and functional features comparing both states. The intracellular motifs conserved among Major Facilitator Superfamily members create a so-called “charge-relay system” that works as molecular switches modulating the conformation. The principal element of the event points at interactions of charged residues that appear crucial for the transporter dynamics and function. Moreover, hOAT1 model was embedded in different lipid bilayer membranes highlighting the crucial structural dependence on lipid-protein interactions. MD simulations supported the pivotal role of phosphatidylethanolamine components to the protein conformation stability. The present model is made available to decipher the impact of any observed polymorphism and mutation on drug transport as well as to understand substrate binding modes.
Collapse
|
36
|
Wright NJ, Lee SY. Recent advances on the inhibition of human solute carriers: Therapeutic implications and mechanistic insights. Curr Opin Struct Biol 2022; 74:102378. [PMID: 35487145 DOI: 10.1016/j.sbi.2022.102378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/02/2022] [Accepted: 03/18/2022] [Indexed: 11/03/2022]
Abstract
Solute carriers (SLCs) are membrane transport proteins tasked with mediating passage of hydrophilic molecules across lipid bilayers. Despite the extensive roles played in all aspects of human biology, SLCs remain vastly under-explored as therapeutic targets. In this brief review, we first discuss a few successful cases of drugs that exert their mechanisms of action through inhibition of human SLCs, and introduce select examples of human SLCs that have untapped therapeutic potential. We then highlight two recent structural studies which uncovered detailed structural mechanisms of inhibition exhibited against two different human major facilitator superfamily (MFS) transporters of clinical relevance.
Collapse
Affiliation(s)
- Nicholas J Wright
- Department of Biochemistry, Duke University Medical Center, 303 Research Drive, Durham, NC, 27710, USA. https://twitter.com/@nick_rite
| | - Seok-Yong Lee
- Department of Biochemistry, Duke University Medical Center, 303 Research Drive, Durham, NC, 27710, USA.
| |
Collapse
|
37
|
Peng C, Jian X, Xie Y, Li L, Ouyang J, Tang L, Zhang X, Su J, Zhao S, Liu H, Yin M, Wu D, Wan M, Xie L, Chen X. Genomic alterations of dermatofibrosarcoma protuberans revealed by whole-genome sequencing. Br J Dermatol 2022; 186:997-1009. [PMID: 35441365 PMCID: PMC9325047 DOI: 10.1111/bjd.20976] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 12/18/2021] [Accepted: 12/30/2021] [Indexed: 11/29/2022]
Abstract
Background Dermatofibrosarcoma protuberans (DFSP) is a rare and marginal cutaneous sarcoma of intermediate‐grade malignancy, for which the genomic landscape remains unclear. Understanding the landscape of DFSP will help to further classify the genomic pathway of malignant development in soft tissue. Objectives To identify the comprehensive molecular pathogenesis of DFSP. Methods In this study, the comprehensive genomic features, with 53 tumour‐normal pairs of DFSP, were revealed by whole‐genome sequencing. Results The mutational signature 1 (C > T mutation at CpG dinucleotides) is featured in DFSP, resulting in higher mutations in DNA replication. Interestingly, the recurrence of DFSP is correlated with low tumour mutation burden. Novel mutation genes in DFSP were identified, including MUC4/6, KMT2C and BRCA1, and subsequently, three molecular subtypes of DFSP were classified on the basis of MUC4 and MUC6 mutations. Various structural aberrations including genomic rearrangements were identified in DSFPs, particularly in 17q and 22q, which cause oncogene amplification (AKT1, SPHK1, COL1A1, PDGFβ) or tumour suppressor deletion (CDKN2A/B). In addition to gene fusion of COL1A1‐PDGFβ [t(17;22)], we identified gene fusion of SLC2A5‐BTBD7 [t(1;14)] in DFSP through whole‐genome sequencing, and verified it experimentally. Enrichment analysis of altered molecules revealed that DNA repair, cell cycle, phosphoinositide 3‐kinase and Janus kinase pathways were primarily involved in DFSP. Conclusions This is the first large‐scale whole‐genome sequencing for DFSP, and our findings describe the comprehensive genomic landscape, highlighting the molecular complexity and genomic aberrations of DFSP. Our findings also provide novel potential diagnostic and therapeutic targets for this disease. What is already known about this topic?Chromosomal translocation between chromosome 17 and chromosome 22 is the main feature in the pathogenesis of dermatofibrosarcoma protuberans (DFSP).
What does this study add?We describe the comprehensive genomic landscape of DFSP, highlighting the molecular complexity and genomic aberrations. Our findings provide novel potential diagnostic and therapeutic targets for this disease.
What is the translational message?Our study revealed novel molecular subtypes of DFSP based on genetic mutations, which benefits precision diagnosis. We also found oncogene amplification, including AKT1 and SPHK1, which provides novel potential target molecules for further DFSP treatment. In addition to gene fusion of COL1A1‐PDGFβ, we identified a novel gene fusion of SLC2A5‐BTBD7 in DFSP, which is a novel potential diagnostic and therapeutic target for this disease.
Collapse
Affiliation(s)
- Cong Peng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, Hunan, China.,Hunan Engineering Research Center of Skin Health and Disease, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
| | - Xingxing Jian
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China.,Shanghai-MOST Key Laboratory of Health and Disease Genomics, Institute for Genome and Bioinformatics, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China
| | - Yang Xie
- Department of Dermatology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Lingfeng Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, Hunan, China.,Hunan Engineering Research Center of Skin Health and Disease, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
| | - Jian Ouyang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Institute for Genome and Bioinformatics, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China
| | - Ling Tang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, Hunan, China.,Hunan Engineering Research Center of Skin Health and Disease, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
| | - Xu Zhang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, Hunan, China.,Hunan Engineering Research Center of Skin Health and Disease, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
| | - Juan Su
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, Hunan, China.,Hunan Engineering Research Center of Skin Health and Disease, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
| | - Shuang Zhao
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, Hunan, China.,Hunan Engineering Research Center of Skin Health and Disease, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
| | - Hong Liu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, Hunan, China.,Hunan Engineering Research Center of Skin Health and Disease, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
| | - Mingzhu Yin
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, Hunan, China.,Hunan Engineering Research Center of Skin Health and Disease, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
| | - Dan Wu
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Institute for Genome and Bioinformatics, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China
| | - Miaojian Wan
- Department of Dermatology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Lu Xie
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Institute for Genome and Bioinformatics, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, Hunan, China.,Hunan Engineering Research Center of Skin Health and Disease, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
| |
Collapse
|
38
|
Rana N, Aziz MA, Oraby AK, Wuest M, Dufour J, Abouzid KAM, Wuest F, West FG. Towards Selective Binding to the GLUT5 Transporter: Synthesis, Molecular Dynamics and In Vitro Evaluation of Novel C-3-Modified 2,5-Anhydro-D-mannitol Analogs. Pharmaceutics 2022; 14:828. [PMID: 35456662 PMCID: PMC9032776 DOI: 10.3390/pharmaceutics14040828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/27/2022] [Accepted: 04/07/2022] [Indexed: 02/03/2023] Open
Abstract
Deregulation and changes in energy metabolism are emergent and important biomarkers of cancer cells. The uptake of hexoses in cancer cells is mediated by a family of facilitative hexose membrane-transporter proteins known as Glucose Transporters (GLUTs). In the clinic, numerous breast cancers do not show elevated glucose metabolism (which is mediated mainly through the GLUT1 transporter) and may use fructose as an alternative energy source. The principal fructose transporter in most cancer cells is GLUT5, and its mRNA was shown to be elevated in human breast cancer. This offers an alternative strategy for early detection using fructose analogs. In order to selectively scout GLUT5 binding-pocket requirements, we designed, synthesized and screened a new class of fructose mimics based upon the 2,5-anhydromannitol scaffold. Several of these compounds display low millimolar IC50 values against the known high-affinity 18F-labeled fructose-based probe 6-deoxy-6-fluoro-D-fructose (6-FDF) in murine EMT6 breast cancer cells. In addition, this work used molecular docking and molecular dynamics simulations (MD) with previously reported GLUT5 structures to gain better insight into hexose-GLUT interactions with selected ligands governing their preference for GLUT5 compared to other GLUTs. The improved inhibition of these compounds, and the refined model for their binding, set the stage for the development of high-affinity molecular imaging probes targeting cancers that express the GLUT5 biomarker.
Collapse
Affiliation(s)
- Natasha Rana
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
- Department of Oncology, University of Alberta-Cross Cancer Institute, Edmonton, AB T6G IZ2, Canada
- Cancer Research Institute of Northern Alberta, University of Alberta, 2-132 Li Ka Shing, Edmonton, AB T6G 2E1, Canada
| | - Marwa A Aziz
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ain Shams University, Abassia, Cairo P.O. Box 11566, Egypt
| | - Ahmed K Oraby
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Misr University of Science & Technology, Al-Motamayez District, 6th of October City P.O. Box 77, Egypt
| | - Melinda Wuest
- Department of Oncology, University of Alberta-Cross Cancer Institute, Edmonton, AB T6G IZ2, Canada
- Cancer Research Institute of Northern Alberta, University of Alberta, 2-132 Li Ka Shing, Edmonton, AB T6G 2E1, Canada
| | - Jennifer Dufour
- Department of Oncology, University of Alberta-Cross Cancer Institute, Edmonton, AB T6G IZ2, Canada
| | - Khaled A M Abouzid
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ain Shams University, Abassia, Cairo P.O. Box 11566, Egypt
- Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Sadat City, Sadat City P.O. Box 32897, Egypt
| | - Frank Wuest
- Department of Oncology, University of Alberta-Cross Cancer Institute, Edmonton, AB T6G IZ2, Canada
- Cancer Research Institute of Northern Alberta, University of Alberta, 2-132 Li Ka Shing, Edmonton, AB T6G 2E1, Canada
| | - F G West
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
- Cancer Research Institute of Northern Alberta, University of Alberta, 2-132 Li Ka Shing, Edmonton, AB T6G 2E1, Canada
| |
Collapse
|
39
|
Yen HY, Abramsson ML, Agasid MT, Lama D, Gault J, Liko I, Kaldmäe M, Saluri M, Qureshi AA, Suades A, Drew D, Degiacomi MT, Marklund EG, Allison TM, Robinson CV, Landreh M. Electrospray ionization of native membrane proteins proceeds via a charge equilibration step. RSC Adv 2022; 12:9671-9680. [PMID: 35424940 PMCID: PMC8972943 DOI: 10.1039/d2ra01282k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 03/21/2022] [Indexed: 11/21/2022] Open
Abstract
Electrospray ionization mass spectrometry is increasingly applied to study the structures and interactions of membrane protein complexes. However, the charging mechanism is complicated by the presence of detergent micelles during ionization. Here, we show that the final charge of membrane proteins can be predicted by their molecular weight when released from the non-charge reducing saccharide detergents. Our data indicate that PEG detergents lower the charge depending on the number of detergent molecules in the surrounding micelle, whereas fos-choline detergents may additionally participate in ion–ion reactions after desolvation. The supercharging reagent sulfolane, on the other hand, has no discernible effect on the charge of detergent-free membrane proteins. Taking our observations into the context of protein-detergent interactions in the gas phase, we propose a charge equilibration model for the generation of native-like membrane protein ions. During ionization of the protein-detergent complex, the ESI charges are distributed between detergent and protein according to proton affinity of the detergent, number of detergent molecules, and surface area of the protein. Charge equilibration influenced by detergents determines the final charge state of membrane proteins. This process likely contributes to maintaining a native-like fold after detergent release and can be harnessed to stabilize particularly labile membrane protein complexes in the gas phase. The electrospray ionization mechanism contributes to preserving the structures and interactions of membrane protein complexes in native mass spectrometry.![]()
Collapse
Affiliation(s)
- Hsin-Yung Yen
- Department of Chemistry, University of Oxford South Parks Road Oxford OX1 3QZ UK .,Institute of Biological Chemistry, Academia Sinica 128, Academia Road Sec. 2, Nankang Taipei 115 Taiwan
| | - Mia L Abramsson
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet Tomtebodavägen 23A 17165 Stockholm Sweden
| | - Mark T Agasid
- Department of Chemistry, University of Oxford South Parks Road Oxford OX1 3QZ UK
| | - Dilraj Lama
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet Tomtebodavägen 23A 17165 Stockholm Sweden
| | - Joseph Gault
- Department of Chemistry, University of Oxford South Parks Road Oxford OX1 3QZ UK
| | - Idlir Liko
- Department of Chemistry, University of Oxford South Parks Road Oxford OX1 3QZ UK
| | - Margit Kaldmäe
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet Tomtebodavägen 23A 17165 Stockholm Sweden
| | - Mihkel Saluri
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet Tomtebodavägen 23A 17165 Stockholm Sweden
| | - Abdul Aziz Qureshi
- Department of Chemistry, University of Oxford South Parks Road Oxford OX1 3QZ UK .,Department of Biochemistry and Biophysics, Stockholm University 10691 Stockholm Sweden
| | - Albert Suades
- Department of Biochemistry and Biophysics, Stockholm University 10691 Stockholm Sweden
| | - David Drew
- Department of Biochemistry and Biophysics, Stockholm University 10691 Stockholm Sweden
| | | | - Erik G Marklund
- Department of Chemistry - BMC, Uppsala University Box 576 75123 Uppsala Sweden
| | - Timothy M Allison
- Biomolecular Interaction Centre, School of Physical and Chemical Sciences, University of Canterbury Christchurch 8140 New Zealand
| | - Carol V Robinson
- Department of Chemistry, University of Oxford South Parks Road Oxford OX1 3QZ UK
| | - Michael Landreh
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet Tomtebodavägen 23A 17165 Stockholm Sweden
| |
Collapse
|
40
|
Lambert E, Mehdipour AR, Schmidt A, Hummer G, Perez C. Evidence for a trap-and-flip mechanism in a proton-dependent lipid transporter. Nat Commun 2022; 13:1022. [PMID: 35197476 PMCID: PMC8866510 DOI: 10.1038/s41467-022-28361-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 01/23/2022] [Indexed: 02/08/2023] Open
Abstract
Transport of lipids across membranes is fundamental for diverse biological pathways in cells. Multiple ion-coupled transporters take part in lipid translocation, but their mechanisms remain largely unknown. Major facilitator superfamily (MFS) lipid transporters play central roles in cell wall synthesis, brain development and function, lipids recycling, and cell signaling. Recent structures of MFS lipid transporters revealed overlapping architectural features pointing towards a common mechanism. Here we used cysteine disulfide trapping, molecular dynamics simulations, mutagenesis analysis, and transport assays in vitro and in vivo, to investigate the mechanism of LtaA, a proton-dependent MFS lipid transporter essential for lipoteichoic acid synthesis in the pathogen Staphylococcus aureus. We reveal that LtaA displays asymmetric lateral openings with distinct functional relevance and that cycling through outward- and inward-facing conformations is essential for transport activity. We demonstrate that while the entire amphipathic central cavity of LtaA contributes to lipid binding, its hydrophilic pocket dictates substrate specificity. We propose that LtaA catalyzes lipid translocation by a ‘trap-and-flip’ mechanism that might be shared among MFS lipid transporters. LtaA catalyzes glycolipid translocation by a ‘trap-and-flip’ mechanism, pointing to a shared mechanistic model among MFS lipid transporters. Asymmetric lateral openings allow access of the entire lipid substrate to the amphipathic central cavity.
Collapse
Affiliation(s)
| | | | - Alexander Schmidt
- Proteomics Core Facility, Biozentrum, University of Basel, Basel, Switzerland
| | - Gerhard Hummer
- Institute of Biophysics, Goethe University Frankfurt, Frankfurt am Main, Germany.,Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Camilo Perez
- Biozentrum, University of Basel, Basel, Switzerland.
| |
Collapse
|
41
|
Wu CJ, Cheng PW, Kung MH, Ho CY, Pan JY, Tseng CJ, Chen HH. Glut5 Knockdown in the Nucleus Tractus Solitarii Alleviates Fructose-Induced Hypertension in Rats. J Nutr 2022; 152:448-457. [PMID: 34687200 DOI: 10.1093/jn/nxab374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/30/2021] [Accepted: 10/20/2021] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Several studies have suggested mechanisms whereby excessive fructose intake increases blood pressure (BP). Glucose transporter 5 (GLUT5) is a fructose transporter expressed on enterocytes, and its involvement in the nucleus tractus solitarius (NTS)-modulated increase in BP following fructose intake remains unclear. OBJECTIVES Herein, we investigated whether NTS Glut5 knockdown (KD) can alleviate fructose-induced hypertension in rat models. METHODS Male Wistar-Kyoto rats (6-8 weeks old; average weight: 230 g) were randomly assigned into 4 groups [control (Con), fructose (Fru), fructose + scrambled (Fru + S), and Fru + KD]. The Con group rats had ad libitum access to regular water, and the other 3 groups were provided 10% fructose water ad libitum for 4 weeks (2 weeks before lentiviral transfection in the Fru + S and Fru + KD groups). Glut5 short hairpin RNA was delivered into the NTS of rats using a lentivirus system. Fructose-induced hypertension was assessed via the tail-cuff technique, a noninvasive blood pressure measurement approach. GLUT5-associated and other insulin signaling pathways in the NTS of rats were assessed using immunofluorescence and immunoblotting analyses. We evaluated between-group differences using the Mann-Whitney U test or Kruskal-Wallis 1-way ANOVA. RESULTS Compared with the Fru + S group, the Fru + KD group had reduced sympathetic nerve hyperactivity (48.8 ± 3.2 bursts/min; P < 0.05), improved central insulin signaling, upregulated protein kinase B (AKT; 3.0-fold) and neuronal NO synthase (nNOS; 2.78-fold) expression, and lowered BP (17 ± 1 mmHg, P < 0.05). Moreover, Glut5 KD restored signaling dependent on adenosine 5'-monophosphate-activated protein kinase and reduced fructose-induced oxidative stress 2.0-fold, and thus decreased NAD(P)H oxidase in p67-phox 1.9-fold within the NTS. CONCLUSIONS Fructose-induced reactive oxygen species generates in the NTS of rats through GLUT5 and receptor for advanced glycation end products signaling, thus impairing the AKT-nNOS-NO signaling pathway and ultimately causing hypertension.
Collapse
Affiliation(s)
- Chieh-Jen Wu
- Division of Cardiovascular Surgery, Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.,Department of Optometry, Shu-Zen Junior College of Medicine and Management, Kaohsiung, Taiwan
| | - Pei-Wen Cheng
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.,Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Ming-Hsiang Kung
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Chiu-Yi Ho
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.,Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Jun-Yen Pan
- Division of Cardiovascular Surgery, Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Ching-Jiunn Tseng
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.,Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Hsin-Hung Chen
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| |
Collapse
|
42
|
GLUT3 inhibitor discovery through in silico ligand screening and in vivo validation in eukaryotic expression systems. Sci Rep 2022; 12:1429. [PMID: 35082341 PMCID: PMC8791944 DOI: 10.1038/s41598-022-05383-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 01/06/2022] [Indexed: 12/30/2022] Open
Abstract
The passive transport of glucose and related hexoses in human cells is facilitated by members of the glucose transporter family (GLUT, SLC2 gene family). GLUT3 is a high-affinity glucose transporter primarily responsible for glucose entry in neurons. Changes in its expression have been implicated in neurodegenerative diseases and cancer. GLUT3 inhibitors can provide new ways to probe the pathophysiological role of GLUT3 and tackle GLUT3-dependent cancers. Through in silico screening of an ~ 8 million compounds library against the inward- and outward-facing models of GLUT3, we selected ~ 200 ligand candidates. These were tested for in vivo inhibition of GLUT3 expressed in hexose transporter-deficient yeast cells, resulting in six new GLUT3 inhibitors. Examining their specificity for GLUT1-5 revealed that the most potent GLUT3 inhibitor (G3iA, IC50 ~ 7 µM) was most selective for GLUT3, inhibiting less strongly only GLUT2 (IC50 ~ 29 µM). None of the GLUT3 inhibitors affected GLUT5, three inhibited GLUT1 with equal or twofold lower potency, and four showed comparable or two- to fivefold better inhibition of GLUT4. G3iD was a pan-Class 1 GLUT inhibitor with the highest preference for GLUT4 (IC50 ~ 3.9 µM). Given the prevalence of GLUT1 and GLUT3 overexpression in many cancers and multiple myeloma’s reliance on GLUT4, these GLUT3 inhibitors may discriminately hinder glucose entry into various cancer cells, promising novel therapeutic avenues in oncology.
Collapse
|
43
|
Hou Z, Gangjee A, Matherly LH. The evolving biology of the proton‐coupled folate transporter: New insights into regulation, structure, and mechanism. FASEB J 2022; 36:e22164. [PMID: 35061292 PMCID: PMC8978580 DOI: 10.1096/fj.202101704r] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/15/2021] [Accepted: 01/03/2022] [Indexed: 01/19/2023]
Abstract
The human proton‐coupled folate transporter (PCFT; SLC46A1) or hPCFT was identified in 2006 as the principal folate transporter involved in the intestinal absorption of dietary folates. A rare autosomal recessive hereditary folate malabsorption syndrome is attributable to human SLC46A1 variants. The recognition that hPCFT was highly expressed in many tumors stimulated substantial interest in its potential for cytotoxic drug targeting, taking advantage of its high‐level transport activity under acidic pH conditions that characterize many tumors and its modest expression in most normal tissues. To better understand the basis for variations in hPCFT levels between tissues including human tumors, studies have examined the transcriptional regulation of hPCFT including the roles of CpG hypermethylation and critical transcription factors and cis elements. Additional focus involved identifying key structural and functional determinants of hPCFT transport that, combined with homology models based on structural homologies to the bacterial transporters GlpT and LacY, have enabled new structural and mechanistic insights. Recently, cryo‐electron microscopy structures of chicken PCFT in a substrate‐free state and in complex with the antifolate pemetrexed were reported, providing further structural insights into determinants of (anti)folate recognition and the mechanism of pH‐regulated (anti)folate transport by PCFT. Like many major facilitator proteins, hPCFT exists as a homo‐oligomer, and evidence suggests that homo‐oligomerization of hPCFT monomeric proteins may be important for its intracellular trafficking and/or transport function. Better understanding of the structure, function and regulation of hPCFT should facilitate the rational development of new therapeutic strategies for conditions associated with folate deficiency, as well as cancer.
Collapse
Affiliation(s)
- Zhanjun Hou
- Molecular Therapeutics Program Barbara Ann Karmanos Cancer Institute Detroit Michigan USA
- Department of Oncology Wayne State University School of Medicine Detroit Michigan USA
| | - Aleem Gangjee
- Division of Medicinal Chemistry Graduate School of Pharmaceutical Sciences Duquesne University Pittsburgh Pennsylvania USA
| | - Larry H. Matherly
- Molecular Therapeutics Program Barbara Ann Karmanos Cancer Institute Detroit Michigan USA
- Department of Oncology Wayne State University School of Medicine Detroit Michigan USA
- Department of Pharmacology Wayne State University School of Medicine Detroit Michigan USA
| |
Collapse
|
44
|
Zhang C, Hu J, Jiang Y, Tan S, Zhu K, Xue C, Dai Y, Chen F. Biomineralization-inspired synthesis of amorphous manganese phosphates for GLUT5-targeted drug-free catalytic therapy of osteosarcoma. NANOSCALE 2022; 14:898-909. [PMID: 34985483 DOI: 10.1039/d1nr06220d] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Osteosarcoma, occurring most frequently in children, teens, and young adults, is a lethal bone cancer with a high incidence of distant metastases and drug resistance. Developing a therapeutic platform that integrates targeting, curing and imaging is highly desirable for enhanced osteosarcoma therapy, yet quite challenging. In this work, we demonstrate a novel biomineralization-inspired strategy for the synthesis of a fructose incorporated manganese phosphate (Fru-MnP) nanoplatform for tumour targeting, drug-free therapy, and MRI imaging. Benefitting from the glucose transporter 5 (GLUT5)-mediated endocytosis, our Fru-MnP nanoplatform produces a high level of reactive oxygen species (ROS) via the Mn2+-driven Fenton reaction within osteosarcoma cells, leading to efficient cancer cell killing due to caspase-mediated apoptosis. By virtue of the T1 signal enhancement of Mn2+, our Fru-MnP nanoplatform also acts as an effective tumour-specific MRI contrast agent, realizing the MRI-monitored chemodynamic therapy. The proposed synergistic therapeutic platform opens new possibilities for high efficacy therapy for osteosarcoma.
Collapse
Affiliation(s)
- Chunlin Zhang
- Department of Orthopaedic, Institute of Bone Tumour, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, PR China.
| | - Jianping Hu
- Department of Orthopaedic, Institute of Bone Tumour, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, PR China.
| | - Yingying Jiang
- Department of Orthopaedic, Institute of Bone Tumour, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, PR China.
| | - Shuo Tan
- Department of Orthopaedic, Institute of Bone Tumour, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, PR China.
| | - Kunpeng Zhu
- Department of Orthopaedic, Institute of Bone Tumour, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, PR China.
| | - Chao Xue
- Department of Orthopaedic, Institute of Bone Tumour, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, PR China.
| | - Yunlu Dai
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR, 999078 China
| | - Feng Chen
- Department of Orthopaedic, Institute of Bone Tumour, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, PR China.
| |
Collapse
|
45
|
Zeng L, Huang J, Feng P, Zhao X, Si Z, Long X, Cheng Q, Yi Y. Transcriptomic analysis of formic acid stress response in Saccharomyces cerevisiae. World J Microbiol Biotechnol 2022; 38:34. [PMID: 34989900 DOI: 10.1007/s11274-021-03222-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 12/26/2021] [Indexed: 12/23/2022]
Abstract
Formic acid is a representative small molecule acid in lignocellulosic hydrolysate that can inhibit the growth of Saccharomyces cerevisiae cells during alcohol fermentation. However, the mechanism of formic acid cytotoxicity remains largely unknown. In this study, RNA-Seq technology was used to study the response of S. cerevisiae to formic acid stress at the transcriptional level. Scanning electron microscopy and Fourier transform infrared spectroscopy were conducted to observe the surface morphology of yeast cells. A total of 1504 genes were identified as being differentially expressed, with 797 upregulated and 707 downregulated genes. Transcriptomic analysis showed that most genes related to glycolysis, glycogen synthesis, protein degradation, the cell cycle, the MAPK signaling pathway, and redox regulation were significantly induced under formic acid stress and were involved in protein translation and synthesis amino acid synthesis genes were significantly suppressed. Formic acid stress can induce oxidative stress, inhibit protein biosynthesis, cause cells to undergo autophagy, and activate the intracellular metabolic pathways of energy production. The increase of glycogen and the decrease of energy consumption metabolism may be important in the adaptation of S. cerevisiae to formic acid. In addition, formic acid can also induce sexual reproduction and spore formation. This study through transcriptome analysis has preliminarily reveal the molecular response mechanism of S. cerevisiae to formic acid stress and has provided a basis for further research on methods used to improve the tolerance to cell inhibitors in lignocellulose hydrolysate.
Collapse
Affiliation(s)
- Lingjie Zeng
- College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, 545006, China
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Liuzhou, 545006, China
| | - Jinxiang Huang
- College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, 545006, China
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Liuzhou, 545006, China
| | - Pixue Feng
- College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, 545006, China
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Liuzhou, 545006, China
| | - Xuemei Zhao
- College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, 545006, China
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Liuzhou, 545006, China
| | - Zaiyong Si
- College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, 545006, China
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Liuzhou, 545006, China
| | - Xiufeng Long
- College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, 545006, China
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Liuzhou, 545006, China
| | - Qianwei Cheng
- College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, 545006, China
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Liuzhou, 545006, China
| | - Yi Yi
- College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, 545006, China.
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Liuzhou, 545006, China.
| |
Collapse
|
46
|
Structural basis of the selective sugar transport in sodium-glucose cotransporters. J Mol Biol 2022; 434:167464. [DOI: 10.1016/j.jmb.2022.167464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 11/23/2022]
|
47
|
Afshar N, Safaei S, Nickerson DP, Hunter PJ, Suresh V. Computational Modelling of Glucose Uptake by SGLT1 and Apical GLUT2 in the Enterocyte. Front Physiol 2021; 12:699152. [PMID: 34950044 PMCID: PMC8688934 DOI: 10.3389/fphys.2021.699152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 11/04/2021] [Indexed: 11/18/2022] Open
Abstract
It has been suggested that glucose absorption in the small intestine depends on both constitutively expressed SGLT1 and translocated GLUT2 in the brush border membrane, especially in the presence of high levels of luminal glucose. Here, we present a computational model of non-isotonic glucose uptake by small intestinal epithelial cells. The model incorporates apical uptake via SGLT1 and GLUT2, basolateral efflux into the blood via GLUT2, and cellular volume changes in response to non-isotonic conditions. The dependence of glucose absorption on luminal glucose, blood flow rate, and inlet blood glucose concentration is studied. Uptake via apical GLUT2 is found to be sensitive to all these factors. Under a range of conditions, the maximum apical GLUT2 flux is about half of the SGLT1 flux and is achieved at high luminal glucose (> 50 mM), high blood flow rates, and low inlet blood concentrations. In contrast, SGLT1 flux is less sensitive to these factors. When luminal glucose concentration is less than 10 mM, apical GLUT2 serves as an efflux pathway for glucose to move from the blood to the lumen. The model results indicate that translocation of GLUT2 from the basolateral to the apical membrane increases glucose uptake into the cell; however, the reduction of efflux capacity results in a decrease in net absorption. Recruitment of GLUT2 from a cytosolic pool elicits a 10–20% increase in absorption for luminal glucose levels in the a 20–100 mM range. Increased SGLT1 activity also leads to a roughly 20% increase in absorption. A concomitant increase in blood supply results in a larger increase in absorption. Increases in apical glucose transporter activity help to minimise cell volume changes by reducing the osmotic gradient between the cell and the lumen.
Collapse
Affiliation(s)
- Nima Afshar
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Soroush Safaei
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - David P Nickerson
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Peter J Hunter
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Vinod Suresh
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand.,Department of Engineering Science, University of Auckland, Auckland, New Zealand
| |
Collapse
|
48
|
Skagen C, Nyman TA, Peng XR, O'Mahony G, Kase ET, Rustan AC, Thoresen GH. Chronic treatment with terbutaline increases glucose and oleic acid oxidation and protein synthesis in cultured human myotubes. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2021; 2:100039. [PMID: 34909668 PMCID: PMC8663959 DOI: 10.1016/j.crphar.2021.100039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/28/2021] [Accepted: 06/02/2021] [Indexed: 12/04/2022] Open
Abstract
Objective In vivo studies have reported several beneficial metabolic effects of β-adrenergic receptor agonist administration in skeletal muscle, including increased glucose uptake, fatty acid metabolism, lipolysis and mitochondrial biogenesis. Although these effects have been widely studied in vivo, the in vitro data are limited to mouse and rat cell lines. Therefore, we sought to discover the effects of the β2-adrenergic receptor agonist terbutaline on metabolism and protein synthesis in human primary skeletal muscle cells. Methods Human cultured myotubes were exposed to terbutaline in various concentrations (0.01–30 μM) for 4 or 96 h. Thereafter uptake of [14C]deoxy-D-glucose, oxydation of [14C]glucose and [14C]oleic acid were measured. Incorporation of [14C]leucine, gene expression by qPCR and proteomics analyses by mass spectrometry by the STAGE-TIP method were performed after 96 h exposure to 1 and 10 μM of terbutaline. Results The results showed that 4 h treatment with terbutaline in concentrations up to 1 μM increased glucose uptake in human myotubes, but also decreased both glucose and oleic acid oxidation along with oleic acid uptake in concentrations of 10–30 μM. Moreover, administration of terbutaline for 96 h increased glucose uptake (in terbutaline concentrations up to 1 μM) and oxidation (1 μM), as well as oleic acid oxidation (0.1–30 μM), leucine incorporation into cellular protein (1–10 μM) and upregulated several pathways related to mitochondrial metabolism (1 μM). Data are available via ProteomeXchange with identifier PXD024063. Conclusion These results suggest that β2-adrenergic receptor have direct effects in human skeletal muscle affecting fuel metabolism and net protein synthesis, effects that might be favourable for both type 2 diabetes and muscle wasting disorders. The metabolic effects of terbutaline were studied in human primary myotubes. Acute treatment with terbutaline increased glucose uptake. Chronic treatment with terbutaline increased glucose and oleic acid oxidation. Chronic treatment with terbutaline increased protein synthesis. Proteomics analysis revealed an increase in mitochondrial proteins.
Collapse
Affiliation(s)
- Christine Skagen
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Norway
| | - Tuula A Nyman
- Department of Immunology, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, Norway
| | - Xiao-Rong Peng
- Bioscience Metabolism, Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Gavin O'Mahony
- Medicinal Chemsitry, Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Eili Tranheim Kase
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Norway
| | - Arild Chr Rustan
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Norway
| | - G Hege Thoresen
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Norway.,Department of Pharmacology, Institute of Clinical Medicine, University of Oslo, Norway
| |
Collapse
|
49
|
Yu S, Li C, Ji G, Zhang L. The Contribution of Dietary Fructose to Non-alcoholic Fatty Liver Disease. Front Pharmacol 2021; 12:783393. [PMID: 34867414 PMCID: PMC8637741 DOI: 10.3389/fphar.2021.783393] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 11/02/2021] [Indexed: 12/26/2022] Open
Abstract
Fructose, especially industrial fructose (sucrose and high fructose corn syrup) is commonly used in all kinds of beverages and processed foods. Liver is the primary organ for fructose metabolism, recent studies suggest that excessive fructose intake is a driving force in non-alcoholic fatty liver disease (NAFLD). Dietary fructose metabolism begins at the intestine, along with its metabolites, may influence gut barrier and microbiota community, and contribute to increased nutrient absorption and lipogenic substrates overflow to the liver. Overwhelming fructose and the gut microbiota-derived fructose metabolites (e.g., acetate, butyric acid, butyrate and propionate) trigger the de novo lipogenesis in the liver, and result in lipid accumulation and hepatic steatosis. Fructose also reprograms the metabolic phenotype of liver cells (hepatocytes, macrophages, NK cells, etc.), and induces the occurrence of inflammation in the liver. Besides, there is endogenous fructose production that expands the fructose pool. Considering the close association of fructose metabolism and NAFLD, the drug development that focuses on blocking the absorption and metabolism of fructose might be promising strategies for NAFLD. Here we provide a systematic discussion of the underlying mechanisms of dietary fructose in contributing to the development and progression of NAFLD, and suggest the possible targets to prevent the pathogenetic process.
Collapse
Affiliation(s)
- Siyu Yu
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chunlin Li
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guang Ji
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Li Zhang
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
50
|
Dykstra H, LaRose C, Fisk C, Waldhart A, Meng X, Zhao G, Wu N. TXNIP interaction with GLUT1 depends on PI(4,5)P 2. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2021; 1863:183757. [PMID: 34478732 DOI: 10.1016/j.bbamem.2021.183757] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 08/12/2021] [Accepted: 08/24/2021] [Indexed: 12/31/2022]
Abstract
GLUT1 is a major glucose facilitator expressed ubiquitously among tissues. Upregulation of its expression plays an important role in the development of many types of cancer and metabolic diseases. Thioredoxin-interacting protein (TXNIP) is an α-arrestin that acts as an adaptor for GLUT1 in clathrin-mediated endocytosis. It regulates cellular glucose uptake in response to both intracellular and extracellular signals via its control on GLUT1-4. In order to understand the interaction between GLUT1 and TXNIP, we generated GLUT1 lipid nanodiscs and carried out isothermal titration calorimetry and single-particle electron microscopy experiments. We found that GLUT1 lipid nanodiscs and TXNIP interact in a 1:1 ratio and that this interaction requires phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2 or PIP2).
Collapse
Affiliation(s)
| | - Cassi LaRose
- Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Chelsea Fisk
- Van Andel Institute, Grand Rapids, MI 49503, USA
| | | | - Xing Meng
- Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Gongpu Zhao
- Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Ning Wu
- Van Andel Institute, Grand Rapids, MI 49503, USA.
| |
Collapse
|