1
|
Jack CE, Cope EM, Lemel L, Canals M, Drube J, Hoffmann C, Inoue A, Hislop JN, Thompson D. GRK5 regulates endocytosis of FPR2 independent of β-Arrestins. J Biol Chem 2024:108112. [PMID: 39706266 DOI: 10.1016/j.jbc.2024.108112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/11/2024] [Accepted: 12/09/2024] [Indexed: 12/23/2024] Open
Abstract
The formyl-peptide receptor 2 (FPR2) is a G-protein-coupled receptor (GPCR) that responds to pathogen-derived peptides and regulates both pro-inflammatory and pro-resolution cellular processes. While ligand selectivity and G-protein-signalling of FPR2 have been well characterized, molecular mechanisms controlling subsequent events such as endocytosis and recycling to the plasma membrane are less understood. Here we show the key role of the GPCR kinase 5 (GRK5) in facilitating FPR2 endocytosis and post-endocytic trafficking. We found, in response to activation by a synthetic peptide WKYMVm, the recruitment of β-Arrestins to the receptor requires both putative phosphorylation sites in the C-terminal of FPR2 and the presence of GRKs, predominantly GRK5. Furthermore, although GRKs are required for β-Arrestin recruitment and endocytosis, the recruitment of β-Arrestin is not itself essential for FPR2 endocytosis. Instead, β-Arrestin determines post-endocytic delivery of FPR2 to subcellular compartments and subsequent plasma membrane delivery and controls the magnitude of downstream signal transduction. Collectively, the newly characterized FPR2 molecular pharmacology will facilitate the design of more efficient therapeutics targeting chronic inflammation.
Collapse
Affiliation(s)
- Christine E Jack
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen
| | - Emily M Cope
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen
| | - Laura Lemel
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham
| | - Meritxell Canals
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham
| | - Julia Drube
- Institut für Molekulare Zellbiologie, CMB-Center for Molecular Biomedicine, Universitätsklinikum Jena; Friedrich-Schiller-Universität Jena, Hans-Knöll-Straße 2, D-07745, Jena, Germany
| | - Carsten Hoffmann
- Institut für Molekulare Zellbiologie, CMB-Center for Molecular Biomedicine, Universitätsklinikum Jena; Friedrich-Schiller-Universität Jena, Hans-Knöll-Straße 2, D-07745, Jena, Germany
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, 980-8578, Japan; Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
| | - James N Hislop
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen.
| | - Dawn Thompson
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen.
| |
Collapse
|
2
|
Gao F, Mu W, Fan J, Shen J. β-arrestin2 promotes angiogenesis of liver sinusoidal endothelial cells through the VEGF/VEGFR2 pathway to aggravate cirrhosis. Toxicol Lett 2024; 401:1-12. [PMID: 39197505 DOI: 10.1016/j.toxlet.2024.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/24/2024] [Accepted: 08/21/2024] [Indexed: 09/01/2024]
Abstract
Excessive extracellular matrix deposition and increased intrahepatic angiogenesis are prominent features of cirrhosis. β-arrestin2 is thought to be involved in the pathological processes of various fibrotic diseases. This study aimed to investigate the role and possible mechanism of β-arrestin2 in the angiogenesis of cirrhosis. Firstly, β-arrestin2 expression in liver tissues of cirrhotic patients was detected, and the correlation between β-arrestin2 and α-SMA, CD-31, PDGF, and VEGF indexes was analyzed. Then, after liver cirrhosis induced by CCL4 in Arrb2-KO mice (β-arrestin2 coding gene), liver histopathological changes were observed, and the expressions of α-SMA, CD-31, PDGF, VEGF, and VEGFR2 were detected. Finally, VEGF-A was used to treat human liver sinusoidal endothelial cells (LSECs) to simulate pathological conditions. After transfection with si-ARRB2, the cell activity, MDA and GSH-PX activities, cell invasion, angiogenesis, and the expressions of α-SMA, CD-31, and VEGF/VEGFR2 pathway were detected. Results showed that β-arrestin2 expression in the liver increased significantly during cirrhosis and was positively correlated with angiogenesis. In vivo, Arrb2-KO significantly inhibited fibrosis and angiogenesis in cirrhotic mice, and decreased the expressions of α-SMA, CD31, PDGF, VEGF, and VEGFR2. Studies using LSECs in vitro showed that after intervention of ARRB2, the activity of LSECs and the number of invasions and tubule formations were significantly reduced. Similarly, after transfection with si-ARRB2, the expressions of α-SMA, CD31, PDGF, VEGF, and VEGFR2 in LSECs were significantly decreased. Collectively, β-arrestin2 aggravated cirrhosis by promoting the angiogenesis of LSECs. Blocking β-arrestin2 may be an important target against angiogenesis and fibrosis in cirrhosis.
Collapse
Affiliation(s)
- Feng Gao
- Department of Interventional Therapy, Shanxi Provincial People's Hospital, Taiyuan 030012, China
| | - Wei Mu
- Department of Interventional Therapy, Shanxi Provincial People's Hospital, Taiyuan 030012, China
| | - Jiangbo Fan
- Department of Interventional Therapy, Shanxi Provincial People's Hospital, Taiyuan 030012, China
| | - Jing Shen
- Department of Interventional Therapy, Shanxi Provincial People's Hospital, Taiyuan 030012, China.
| |
Collapse
|
3
|
Tóth AD, Turu G, Hunyady L. Functional consequences of spatial, temporal and ligand bias of G protein-coupled receptors. Nat Rev Nephrol 2024; 20:722-741. [PMID: 39039165 DOI: 10.1038/s41581-024-00869-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2024] [Indexed: 07/24/2024]
Abstract
G protein-coupled receptors (GPCRs) regulate every aspect of kidney function by mediating the effects of various endogenous and exogenous substances. A key concept in GPCR function is biased signalling, whereby certain ligands may selectively activate specific pathways within the receptor's signalling repertoire. For example, different agonists may induce biased signalling by stabilizing distinct active receptor conformations - a concept that is supported by advances in structural biology. However, the processes underlying functional selectivity in receptor signalling are extremely complex, involving differences in subcellular compartmentalization and signalling dynamics. Importantly, the molecular mechanisms of spatiotemporal bias, particularly its connection to ligand binding kinetics, have been detailed for GPCRs critical to kidney function, such as the AT1 angiotensin receptor (AT1R), V2 vasopressin receptor (V2R) and the parathyroid hormone 1 receptor (PTH1R). This expanding insight into the multifaceted nature of biased signalling paves the way for innovative strategies for targeting GPCR functions; the development of novel biased agonists may represent advanced pharmacotherapeutic approaches to the treatment of kidney diseases and related systemic conditions, such as hypertension, diabetes and heart failure.
Collapse
MESH Headings
- Humans
- Ligands
- Receptors, G-Protein-Coupled/metabolism
- Signal Transduction
- Receptor, Angiotensin, Type 1/metabolism
- Receptor, Angiotensin, Type 1/physiology
- Receptors, Vasopressin/metabolism
- Receptors, Vasopressin/physiology
- Animals
- Receptor, Parathyroid Hormone, Type 1/metabolism
- Receptor, Parathyroid Hormone, Type 1/physiology
- Kidney Diseases/metabolism
- Kidney/metabolism
Collapse
Affiliation(s)
- András D Tóth
- Institute of Molecular Life Sciences, Centre of Excellence of the Hungarian Academy of Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
- Department of Internal Medicine and Haematology, Semmelweis University, Budapest, Hungary
| | - Gábor Turu
- Institute of Molecular Life Sciences, Centre of Excellence of the Hungarian Academy of Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - László Hunyady
- Institute of Molecular Life Sciences, Centre of Excellence of the Hungarian Academy of Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary.
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
4
|
Pham U, Chundi A, Stępniewski TM, Darbha S, Eiger DS, Gazula S, Gardner J, Hicks C, Selent J, Rajagopal S. Location-biased β-arrestin conformations direct GPCR signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.24.614742. [PMID: 39386521 PMCID: PMC11463559 DOI: 10.1101/2024.09.24.614742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
β-arrestins are multifunctional intracellular proteins that regulate the desensitization, internalization and signaling of over 800 different G protein-coupled receptors (GPCRs) and interact with a diverse array of cellular partners1,2. Beyond the plasma membrane, GPCRs can initiate unique signaling cascades from various subcellular locations, a phenomenon known as "location bias"3,4. Here, we investigate how β-arrestins direct location-biased signaling of the angiotensin II type I receptor (AT1R). Using novel bioluminescence resonance energy transfer (BRET) conformational biosensors and extracellular signal-regulated kinase (ERK) activity reporters, we reveal that in response to the endogenous agonist Angiotensin II and the β-arrestin-biased agonist TRV023, β-arrestin 1 and β-arrestin 2 adopt distinct conformations across different subcellular locations, which are intricately linked to differential ERK activation profiles. We also uncover a population of receptor-free catalytically activated β-arrestins in the plasma membrane that exhibits insensitivity to different agonists and promotes ERK activation on the plasma membrane independent of G proteins. These findings deepen our understanding of GPCR signaling complexity and also highlight the nuanced roles of β-arrestins beyond traditional G protein pathways.
Collapse
Affiliation(s)
- Uyen Pham
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Anand Chundi
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Tomasz Maciej Stępniewski
- Research Programme on Biomedical Informatics (GRIB), Department of Experimental and Health Sciences of Pompeu Fabra University (UPF)-Hospital del Mar Medical Research Institute (IMIM), 08003 Barcelona, Spain
- InterAx Biotech AG, PARK InnovAARE, 5234 Villigen, Switzerland
| | | | - Dylan Scott Eiger
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA, 02215, USA
- Harvard Medical School, Boston, MA, 02215, USA
| | - Sonia Gazula
- Penn Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Julia Gardner
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Chloe Hicks
- Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Jana Selent
- Research Programme on Biomedical Informatics (GRIB), Department of Experimental and Health Sciences of Pompeu Fabra University (UPF)-Hospital del Mar Medical Research Institute (IMIM), 08003 Barcelona, Spain
| | - Sudarshan Rajagopal
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
5
|
Janicot R, Garcia-Marcos M. Get Ready to Sharpen Your Tools: A Short Guide to Heterotrimeric G Protein Activity Biosensors. Mol Pharmacol 2024; 106:129-144. [PMID: 38991745 PMCID: PMC11331509 DOI: 10.1124/molpharm.124.000949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/13/2024] Open
Abstract
G protein-coupled receptors (GPCRs) are the largest class of transmembrane receptors encoded in the human genome, and they initiate cellular responses triggered by a plethora of extracellular stimuli ranging from neurotransmitters and hormones to photons. Upon stimulation, GPCRs activate heterotrimeric G proteins (Gαβγ) in the cytoplasm, which then convey signals to their effectors to elicit cellular responses. Given the broad biological and biomedical relevance of GPCRs and G proteins in physiology and disease, there is great interest in developing and optimizing approaches to measure their signaling activity with high accuracy and across experimental systems pertinent to their functions in cellular communication. This review provides a historical perspective on approaches to measure GPCR-G protein signaling, from quantification of second messengers and other indirect readouts of activity to biosensors that directly detect the activity of G proteins. The latter is the focus of a more detailed overview of the evolution of design principles for various optical biosensors of G protein activity with different experimental capabilities. We will highlight advantages and limitations of biosensors that detect different G protein activation hallmarks, like dissociation of Gα and Gβγ or nucleotide exchange on Gα, as well as their suitability to detect signaling mediated by endogenous versus exogenous signaling components or in physiologically relevant systems like primary cells. Overall, this review intends to provide an assessment of the state-of-the-art for biosensors that directly measure G protein activity to allow readers to make informed decisions on the selection and implementation of currently available tools. SIGNIFICANCE STATEMENT: G protein activity biosensors have become essential and widespread tools to assess GPCR signaling and pharmacology. Yet, investigators face the challenge of choosing from a growing list of G protein activity biosensors. This review provides an overview of the features and capabilities of different optical biosensor designs for the direct detection of G protein activity in cells, with the aim of facilitating the rational selection of systems that align with the specific scientific questions and needs of investigators.
Collapse
Affiliation(s)
- Remi Janicot
- Department of Biochemistry & Cell Biology, Chobanian & Avedisian School of Medicine (R.J., M.G.-M.) and Department of Biology, College of Arts & Sciences (M.G.-M.), Boston University, Boston, Massachusetts
| | - Mikel Garcia-Marcos
- Department of Biochemistry & Cell Biology, Chobanian & Avedisian School of Medicine (R.J., M.G.-M.) and Department of Biology, College of Arts & Sciences (M.G.-M.), Boston University, Boston, Massachusetts
| |
Collapse
|
6
|
Gareri C, Pfeiffer CT, Jiang X, Paulo JA, Gygi SP, Pham U, Chundi A, Wingler LM, Staus DP, Stepniewski TM, Selent J, Lucero EY, Grogan A, Rajagopal S, Rockman HA. Phosphorylation patterns in the AT1R C-terminal tail specify distinct downstream signaling pathways. Sci Signal 2024; 17:eadk5736. [PMID: 39137246 PMCID: PMC11443182 DOI: 10.1126/scisignal.adk5736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/01/2023] [Accepted: 07/23/2024] [Indexed: 08/15/2024]
Abstract
Different ligands stabilize specific conformations of the angiotensin II type 1 receptor (AT1R) that direct distinct signaling cascades mediated by heterotrimeric G proteins or β-arrestin. These different active conformations are thought to engage distinct intracellular transducers because of differential phosphorylation patterns in the receptor C-terminal tail (the "barcode" hypothesis). Here, we identified the AT1R barcodes for the endogenous agonist AngII, which stimulates both G protein activation and β-arrestin recruitment, and for a synthetic biased agonist that only stimulates β-arrestin recruitment. The endogenous and β-arrestin-biased agonists induced two different ensembles of phosphorylation sites along the C-terminal tail. The phosphorylation of eight serine and threonine residues in the proximal and middle portions of the tail was required for full β-arrestin functionality, whereas phosphorylation of the serine and threonine residues in the distal portion of the tail had little influence on β-arrestin function. Similarly, molecular dynamics simulations showed that the proximal and middle clusters of phosphorylated residues were critical for stable β-arrestin-receptor interactions. These findings demonstrate that ligands that stabilize different receptor conformations induce different phosphorylation clusters in the C-terminal tail as barcodes to evoke distinct receptor-transducer engagement, receptor trafficking, and signaling.
Collapse
Affiliation(s)
- Clarice Gareri
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Conrad T. Pfeiffer
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Xue Jiang
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Joao A. Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Steven P. Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Uyen Pham
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Anand Chundi
- Department of Biomedical Engineering, Duke University, Durham, NC 27710, USA
| | - Laura M. Wingler
- Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Dean P. Staus
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Tomasz Maciej Stepniewski
- Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM) - Pompeu Fabra University (UPF), 08003 Barcelona, Spain
- Faculty of Chemistry, Biological and Chemical Research Center, University of Warsaw, Warsaw, Poland
- InterAx Biotech AG, PARK InnovAARE, 5234 Villigen, Switzerland
| | - Jana Selent
- Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM) - Pompeu Fabra University (UPF), 08003 Barcelona, Spain
| | - Emilio Y. Lucero
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Alyssa Grogan
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Sudarshan Rajagopal
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Howard A. Rockman
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
7
|
Tóth AD, Szalai B, Kovács OT, Garger D, Prokop S, Soltész-Katona E, Balla A, Inoue A, Várnai P, Turu G, Hunyady L. G protein-coupled receptor endocytosis generates spatiotemporal bias in β-arrestin signaling. Sci Signal 2024; 17:eadi0934. [PMID: 38917219 DOI: 10.1126/scisignal.adi0934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/05/2024] [Indexed: 06/27/2024]
Abstract
The stabilization of different active conformations of G protein-coupled receptors is thought to underlie the varying efficacies of biased and balanced agonists. Here, profiling the activation of signal transducers by angiotensin II type 1 receptor (AT1R) agonists revealed that the extent and kinetics of β-arrestin binding exhibited substantial ligand-dependent differences, which were lost when receptor internalization was inhibited. When AT1R endocytosis was prevented, even weak partial agonists of the β-arrestin pathway acted as full or near-full agonists, suggesting that receptor conformation did not exclusively determine β-arrestin recruitment. The ligand-dependent variance in β-arrestin translocation was much larger at endosomes than at the plasma membrane, showing that ligand efficacy in the β-arrestin pathway was spatiotemporally determined. Experimental investigations and mathematical modeling demonstrated how multiple factors concurrently shaped the effects of agonists on endosomal receptor-β-arrestin binding and thus determined the extent of functional selectivity. Ligand dissociation rate and G protein activity had particularly strong, internalization-dependent effects on the receptor-β-arrestin interaction. We also showed that endocytosis regulated the agonist efficacies of two other receptors with sustained β-arrestin binding: the V2 vasopressin receptor and a mutant β2-adrenergic receptor. In the absence of endocytosis, the agonist-dependent variance in β-arrestin2 binding was markedly diminished. Our results suggest that endocytosis determines the spatiotemporal bias in GPCR signaling and can aid in the development of more efficacious, functionally selective compounds.
Collapse
MESH Headings
- Endocytosis/physiology
- Humans
- Signal Transduction
- Receptor, Angiotensin, Type 1/metabolism
- Receptor, Angiotensin, Type 1/genetics
- beta-Arrestins/metabolism
- beta-Arrestins/genetics
- HEK293 Cells
- Receptors, Vasopressin/metabolism
- Receptors, Vasopressin/genetics
- Receptors, Adrenergic, beta-2/metabolism
- Receptors, Adrenergic, beta-2/genetics
- Endosomes/metabolism
- Receptors, G-Protein-Coupled/metabolism
- Receptors, G-Protein-Coupled/genetics
- Animals
- Ligands
- Protein Binding
- Protein Transport
Collapse
Affiliation(s)
- András D Tóth
- Institute of Molecular Life Sciences, Centre of Excellence of the Hungarian Academy of Sciences, HUN-REN Research Centre for Natural Sciences, Magyar tudósok körútja 2, H-1117 Budapest, Hungary
- Department of Physiology, Faculty of Medicine, Semmelweis University, Tűzoltó utca 37-47, H-1094 Budapest, Hungary
- Department of Internal Medicine and Haematology, Semmelweis University, Szentkirályi utca 46, H-1088 Budapest, Hungary
| | - Bence Szalai
- Institute of Molecular Life Sciences, Centre of Excellence of the Hungarian Academy of Sciences, HUN-REN Research Centre for Natural Sciences, Magyar tudósok körútja 2, H-1117 Budapest, Hungary
- Department of Physiology, Faculty of Medicine, Semmelweis University, Tűzoltó utca 37-47, H-1094 Budapest, Hungary
| | - Orsolya T Kovács
- Department of Physiology, Faculty of Medicine, Semmelweis University, Tűzoltó utca 37-47, H-1094 Budapest, Hungary
| | - Dániel Garger
- Department of Physiology, Faculty of Medicine, Semmelweis University, Tűzoltó utca 37-47, H-1094 Budapest, Hungary
- Computational Health Center, Helmholtz Munich, Ingolstaedter Landstraße 1, 85764 Neuherberg, Germany
| | - Susanne Prokop
- Department of Physiology, Faculty of Medicine, Semmelweis University, Tűzoltó utca 37-47, H-1094 Budapest, Hungary
| | - Eszter Soltész-Katona
- Institute of Molecular Life Sciences, Centre of Excellence of the Hungarian Academy of Sciences, HUN-REN Research Centre for Natural Sciences, Magyar tudósok körútja 2, H-1117 Budapest, Hungary
| | - András Balla
- Department of Physiology, Faculty of Medicine, Semmelweis University, Tűzoltó utca 37-47, H-1094 Budapest, Hungary
- HUN-REN-SE Laboratory of Molecular Physiology, Hungarian Research Network, Tűzoltó utca 37-47, H-1094 Budapest, Hungary
| | - Asuka Inoue
- Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8578 Japan
| | - Péter Várnai
- Department of Physiology, Faculty of Medicine, Semmelweis University, Tűzoltó utca 37-47, H-1094 Budapest, Hungary
- HUN-REN-SE Laboratory of Molecular Physiology, Hungarian Research Network, Tűzoltó utca 37-47, H-1094 Budapest, Hungary
| | - Gábor Turu
- Institute of Molecular Life Sciences, Centre of Excellence of the Hungarian Academy of Sciences, HUN-REN Research Centre for Natural Sciences, Magyar tudósok körútja 2, H-1117 Budapest, Hungary
- Department of Physiology, Faculty of Medicine, Semmelweis University, Tűzoltó utca 37-47, H-1094 Budapest, Hungary
| | - László Hunyady
- Institute of Molecular Life Sciences, Centre of Excellence of the Hungarian Academy of Sciences, HUN-REN Research Centre for Natural Sciences, Magyar tudósok körútja 2, H-1117 Budapest, Hungary
- Department of Physiology, Faculty of Medicine, Semmelweis University, Tűzoltó utca 37-47, H-1094 Budapest, Hungary
| |
Collapse
|
8
|
Gurevich VV. Arrestins: A Small Family of Multi-Functional Proteins. Int J Mol Sci 2024; 25:6284. [PMID: 38892473 PMCID: PMC11173308 DOI: 10.3390/ijms25116284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/24/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
The first member of the arrestin family, visual arrestin-1, was discovered in the late 1970s. Later, the other three mammalian subtypes were identified and cloned. The first described function was regulation of G protein-coupled receptor (GPCR) signaling: arrestins bind active phosphorylated GPCRs, blocking their coupling to G proteins. It was later discovered that receptor-bound and free arrestins interact with numerous proteins, regulating GPCR trafficking and various signaling pathways, including those that determine cell fate. Arrestins have no enzymatic activity; they function by organizing multi-protein complexes and localizing their interaction partners to particular cellular compartments. Today we understand the molecular mechanism of arrestin interactions with GPCRs better than the mechanisms underlying other functions. However, even limited knowledge enabled the construction of signaling-biased arrestin mutants and extraction of biologically active monofunctional peptides from these multifunctional proteins. Manipulation of cellular signaling with arrestin-based tools has research and likely therapeutic potential: re-engineered proteins and their parts can produce effects that conventional small-molecule drugs cannot.
Collapse
|
9
|
Maaliki D, Jaffa AA, Nasser S, Sahebkar A, Eid AH. Adrenoceptor Desensitization: Current Understanding of Mechanisms. Pharmacol Rev 2024; 76:358-387. [PMID: 38697858 DOI: 10.1124/pharmrev.123.000831] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 05/05/2024] Open
Abstract
G-protein coupled receptors (GPCRs) transduce a wide range of extracellular signals. They are key players in the majority of biologic functions including vision, olfaction, chemotaxis, and immunity. However, as essential as most of them are to body function and homeostasis, overactivation of GPCRs has been implicated in many pathologic diseases such as cancer, asthma, and heart failure (HF). Therefore, an important feature of G protein signaling systems is the ability to control GPCR responsiveness, and one key process to control overstimulation involves initiating receptor desensitization. A number of steps are appreciated in the desensitization process, including cell surface receptor phosphorylation, internalization, and downregulation. Rapid or short-term desensitization occurs within minutes and involves receptor phosphorylation via the action of intracellular protein kinases, the binding of β-arrestins, and the consequent uncoupling of GPCRs from their cognate heterotrimeric G proteins. On the other hand, long-term desensitization occurs over hours to days and involves receptor downregulation or a decrease in cell surface receptor protein level. Of the proteins involved in this biologic phenomenon, β-arrestins play a particularly significant role in both short- and long-term desensitization mechanisms. In addition, β-arrestins are involved in the phenomenon of biased agonism, where the biased ligand preferentially activates one of several downstream signaling pathways, leading to altered cellular responses. In this context, this review discusses the different patterns of desensitization of the α 1-, α 2- and the β adrenoceptors and highlights the role of β-arrestins in regulating physiologic responsiveness through desensitization and biased agonism. SIGNIFICANCE STATEMENT: A sophisticated network of proteins orchestrates the molecular regulation of GPCR activity. Adrenoceptors are GPCRs that play vast roles in many physiological processes. Without tightly controlled desensitization of these receptors, homeostatic imbalance may ensue, thus precipitating various diseases. Here, we critically appraise the mechanisms implicated in adrenoceptor desensitization. A better understanding of these mechanisms helps identify new druggable targets within the GPCR desensitization machinery and opens exciting therapeutic fronts in the treatment of several pathologies.
Collapse
Affiliation(s)
- Dina Maaliki
- Department of Pharmacology and Toxicology, American University of Beirut, Beirut, Lebanon (D.M.); School of Medicine, University of South Carolina, Columbia, South Carolina (A.A.J.); Keele University, Staffordshire, United Kingdom (S.N.); Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran (A.S.); Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran (A.S.); and Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar (A.H.E.)
| | - Aneese A Jaffa
- Department of Pharmacology and Toxicology, American University of Beirut, Beirut, Lebanon (D.M.); School of Medicine, University of South Carolina, Columbia, South Carolina (A.A.J.); Keele University, Staffordshire, United Kingdom (S.N.); Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran (A.S.); Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran (A.S.); and Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar (A.H.E.)
| | - Suzanne Nasser
- Department of Pharmacology and Toxicology, American University of Beirut, Beirut, Lebanon (D.M.); School of Medicine, University of South Carolina, Columbia, South Carolina (A.A.J.); Keele University, Staffordshire, United Kingdom (S.N.); Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran (A.S.); Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran (A.S.); and Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar (A.H.E.)
| | - Amirhossein Sahebkar
- Department of Pharmacology and Toxicology, American University of Beirut, Beirut, Lebanon (D.M.); School of Medicine, University of South Carolina, Columbia, South Carolina (A.A.J.); Keele University, Staffordshire, United Kingdom (S.N.); Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran (A.S.); Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran (A.S.); and Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar (A.H.E.)
| | - Ali H Eid
- Department of Pharmacology and Toxicology, American University of Beirut, Beirut, Lebanon (D.M.); School of Medicine, University of South Carolina, Columbia, South Carolina (A.A.J.); Keele University, Staffordshire, United Kingdom (S.N.); Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran (A.S.); Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran (A.S.); and Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar (A.H.E.)
| |
Collapse
|
10
|
Mao C, Zhao RJ, Dong YJ, Gao M, Chen LN, Zhang C, Xiao P, Guo J, Qin J, Shen DD, Ji SY, Zang SK, Zhang H, Wang WW, Shen Q, Sun JP, Zhang Y. Conformational transitions and activation of the adhesion receptor CD97. Mol Cell 2024; 84:570-583.e7. [PMID: 38215752 DOI: 10.1016/j.molcel.2023.12.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 09/23/2023] [Accepted: 12/13/2023] [Indexed: 01/14/2024]
Abstract
Adhesion G protein-coupled receptors (aGPCRs) are evolutionarily ancient receptors involved in a variety of physiological and pathophysiological processes. Modulators of aGPCR, particularly antagonists, hold therapeutic promise for diseases like cancer and immune and neurological disorders. Hindered by the inactive state structural information, our understanding of antagonist development and aGPCR activation faces challenges. Here, we report the cryo-electron microscopy structures of human CD97, a prototypical aGPCR that plays crucial roles in immune system, in its inactive apo and G13-bound fully active states. Compared with other family GPCRs, CD97 adopts a compact inactive conformation with a constrained ligand pocket. Activation induces significant conformational changes for both extracellular and intracellular sides, creating larger cavities for Stachel sequence binding and G13 engagement. Integrated with functional and metadynamics analyses, our study provides significant mechanistic insights into the activation and signaling of aGPCRs, paving the way for future drug discovery efforts.
Collapse
Affiliation(s)
- Chunyou Mao
- Center for Structural Pharmacology and Therapeutics Development, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China.
| | - Ru-Jia Zhao
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Ying-Jun Dong
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Mingxin Gao
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Li-Nan Chen
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China
| | - Chao Zhang
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Peng Xiao
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Jia Guo
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China
| | - Jiao Qin
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China
| | - Dan-Dan Shen
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Su-Yu Ji
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Shao-Kun Zang
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Huibing Zhang
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China
| | - Wei-Wei Wang
- Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China
| | - Qingya Shen
- Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China
| | - Jin-Peng Sun
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China.
| | - Yan Zhang
- Center for Structural Pharmacology and Therapeutics Development, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China; Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China; MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Medicine, Hangzhou 310058, China.
| |
Collapse
|
11
|
Lohse MJ, Bock A, Zaccolo M. G Protein-Coupled Receptor Signaling: New Insights Define Cellular Nanodomains. Annu Rev Pharmacol Toxicol 2024; 64:387-415. [PMID: 37683278 DOI: 10.1146/annurev-pharmtox-040623-115054] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2023]
Abstract
G protein-coupled receptors are the largest and pharmacologically most important receptor family and are involved in the regulation of most cell functions. Most of them reside exclusively at the cell surface, from where they signal via heterotrimeric G proteins to control the production of second messengers such as cAMP and IP3 as well as the activity of several ion channels. However, they may also internalize upon agonist stimulation or constitutively reside in various intracellular locations. Recent evidence indicates that their function differs depending on their precise cellular localization. This is because the signals they produce, notably cAMP and Ca2+, are mostly bound to cell proteins that significantly reduce their mobility, allowing the generation of steep concentration gradients. As a result, signals generated by the receptors remain confined to nanometer-sized domains. We propose that such nanometer-sized domains represent the basic signaling units in a cell and a new type of target for drug development.
Collapse
Affiliation(s)
- Martin J Lohse
- ISAR Bioscience Institute, Planegg/Munich, Germany;
- Rudolf Boehm Institute of Pharmacology and Toxicology, Leipzig University, Leipzig, Germany
| | - Andreas Bock
- Rudolf Boehm Institute of Pharmacology and Toxicology, Leipzig University, Leipzig, Germany
| | - Manuela Zaccolo
- Department of Physiology, Anatomy and Genetics and National Institute for Health and Care Research Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom;
| |
Collapse
|
12
|
Demby A, Zaccolo M. Investigating G-protein coupled receptor signalling with light-emitting biosensors. Front Physiol 2024; 14:1310197. [PMID: 38260094 PMCID: PMC10801095 DOI: 10.3389/fphys.2023.1310197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024] Open
Abstract
G protein-coupled receptors (GPCRs) are the most frequent target of currently approved drugs and play a central role in both physiological and pathophysiological processes. Beyond the canonical understanding of GPCR signal transduction, the importance of receptor conformation, beta-arrestin (β-arr) biased signalling, and signalling from intracellular locations other than the plasma membrane is becoming more apparent, along with the tight spatiotemporal compartmentalisation of downstream signals. Fluorescent and bioluminescent biosensors have played a pivotal role in elucidating GPCR signalling events in live cells. To understand the mechanisms of action of the GPCR-targeted drugs currently available, and to develop new and better GPCR-targeted therapeutics, understanding these novel aspects of GPCR signalling is critical. In this review, we present some of the tools available to interrogate each of these features of GPCR signalling, we illustrate some of the key findings which have been made possible by these tools and we discuss their limitations and possible developments.
Collapse
Affiliation(s)
| | - Manuela Zaccolo
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
13
|
Sánchez-Soto M, Boldizsar NM, Schardien KA, Madaras NS, Willette BKA, Inbody LR, Dasaro C, Moritz AE, Drube J, Haider RS, Free RB, Hoffman C, Sibley DR. G Protein-Coupled Receptor Kinase 2 Selectively Enhances β-Arrestin Recruitment to the D 2 Dopamine Receptor through Mechanisms That Are Independent of Receptor Phosphorylation. Biomolecules 2023; 13:1552. [PMID: 37892234 PMCID: PMC10605370 DOI: 10.3390/biom13101552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
The D2 dopamine receptor (D2R) signals through both G proteins and β-arrestins to regulate important physiological processes, such as movement, reward circuitry, emotion, and cognition. β-arrestins are believed to interact with G protein-coupled receptors (GPCRs) at the phosphorylated C-terminal tail or intracellular loops. GPCR kinases (GRKs) are the primary drivers of GPCR phosphorylation, and for many receptors, receptor phosphorylation is indispensable for β-arrestin recruitment. However, GRK-mediated receptor phosphorylation is not required for β-arrestin recruitment to the D2R, and the role of GRKs in D2R-β-arrestin interactions remains largely unexplored. In this study, we used GRK knockout cells engineered using CRISPR-Cas9 technology to determine the extent to which β-arrestin recruitment to the D2R is GRK-dependent. Genetic elimination of all GRK expression decreased, but did not eliminate, agonist-stimulated β-arrestin recruitment to the D2R or its subsequent internalization. However, these processes were rescued upon the re-introduction of various GRK isoforms in the cells with GRK2/3 also enhancing dopamine potency. Further, treatment with compound 101, a pharmacological inhibitor of GRK2/3 isoforms, decreased β-arrestin recruitment and receptor internalization, highlighting the importance of this GRK subfamily for D2R-β-arrestin interactions. These results were recapitulated using a phosphorylation-deficient D2R mutant, emphasizing that GRKs can enhance β-arrestin recruitment and activation independently of receptor phosphorylation.
Collapse
Affiliation(s)
- Marta Sánchez-Soto
- Molecular Neuropharmacology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 35 Convent Drive, Bethesda, MD 20892, USA (R.B.F.)
| | - Noelia M. Boldizsar
- Molecular Neuropharmacology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 35 Convent Drive, Bethesda, MD 20892, USA (R.B.F.)
| | - Kayla A. Schardien
- Molecular Neuropharmacology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 35 Convent Drive, Bethesda, MD 20892, USA (R.B.F.)
| | - Nora S. Madaras
- Molecular Neuropharmacology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 35 Convent Drive, Bethesda, MD 20892, USA (R.B.F.)
| | - Blair K. A. Willette
- Molecular Neuropharmacology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 35 Convent Drive, Bethesda, MD 20892, USA (R.B.F.)
| | - Laura R. Inbody
- Molecular Neuropharmacology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 35 Convent Drive, Bethesda, MD 20892, USA (R.B.F.)
| | - Christopher Dasaro
- Molecular Neuropharmacology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 35 Convent Drive, Bethesda, MD 20892, USA (R.B.F.)
| | - Amy E. Moritz
- Molecular Neuropharmacology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 35 Convent Drive, Bethesda, MD 20892, USA (R.B.F.)
| | - Julia Drube
- Institut für Molekulare Zellbiologie, CMB-Center for Molecular Biomedicine, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Hans-Knöll-Straße 2, D-07745 Jena, Germany (R.S.H.); (C.H.)
| | - Raphael S. Haider
- Institut für Molekulare Zellbiologie, CMB-Center for Molecular Biomedicine, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Hans-Knöll-Straße 2, D-07745 Jena, Germany (R.S.H.); (C.H.)
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen’s Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK
- Centre of Membrane Protein and Receptors, Universities of Birmingham and Nottingham, Birmingham B15 2TT, UK
| | - R. Benjamin Free
- Molecular Neuropharmacology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 35 Convent Drive, Bethesda, MD 20892, USA (R.B.F.)
| | - Carsten Hoffman
- Institut für Molekulare Zellbiologie, CMB-Center for Molecular Biomedicine, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Hans-Knöll-Straße 2, D-07745 Jena, Germany (R.S.H.); (C.H.)
| | - David R. Sibley
- Molecular Neuropharmacology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 35 Convent Drive, Bethesda, MD 20892, USA (R.B.F.)
| |
Collapse
|
14
|
Sarma P, Carino CMC, Seetharama D, Pandey S, Dwivedi-Agnihotri H, Rui X, Cao Y, Kawakami K, Kumari P, Chen YC, Luker KE, Yadav PN, Luker GD, Laporte SA, Chen X, Inoue A, Shukla AK. Molecular insights into intrinsic transducer-coupling bias in the CXCR4-CXCR7 system. Nat Commun 2023; 14:4808. [PMID: 37558722 PMCID: PMC10412580 DOI: 10.1038/s41467-023-40482-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/31/2023] [Indexed: 08/11/2023] Open
Abstract
Chemokine receptors constitute an important subfamily of G protein-coupled receptors (GPCRs), and they are critically involved in a broad range of immune response mechanisms. Ligand promiscuity among these receptors makes them an interesting target to explore multiple aspects of biased agonism. Here, we comprehensively characterize two chemokine receptors namely, CXCR4 and CXCR7, in terms of their transducer-coupling and downstream signaling upon their stimulation by a common chemokine agonist, CXCL12, and a small molecule agonist, VUF11207. We observe that CXCR7 lacks G-protein-coupling while maintaining robust βarr recruitment with a major contribution of GRK5/6. On the other hand, CXCR4 displays robust G-protein activation as expected but exhibits significantly reduced βarr-coupling compared to CXCR7. These two receptors induce distinct βarr conformations even when activated by the same agonist, and CXCR7, unlike CXCR4, fails to activate ERK1/2 MAP kinase. We also identify a key contribution of a single phosphorylation site in CXCR7 for βarr recruitment and endosomal localization. Our study provides molecular insights into intrinsic-bias encoded in the CXCR4-CXCR7 system with broad implications for drug discovery.
Collapse
Affiliation(s)
- Parishmita Sarma
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, 208016, India
| | - Carlo Marion C Carino
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, 980-8578, Japan
| | - Deeksha Seetharama
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, 208016, India
| | - Shubhi Pandey
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, 208016, India
| | - Hemlata Dwivedi-Agnihotri
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, 208016, India
| | - Xue Rui
- Department of Medicinal Chemistry, School of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou, Jiangsu, 213164, China
| | - Yubo Cao
- Department of Pharmacology and Therapeutics, McGill University, Montréal, QC, H3G 1Y6, Canada
| | - Kouki Kawakami
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, 980-8578, Japan
| | - Poonam Kumari
- Neuroscience and Ageing Biology Division, CSIR-Central Drug Research Institute Sector 10, Sitapur Road, Lucknow, 226031, Uttar Pradesh, India
| | - Yu-Chih Chen
- Department of Computational and Systems Biology, Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kathryn E Luker
- Center for Molecular Imaging, Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - Prem N Yadav
- Neuroscience and Ageing Biology Division, CSIR-Central Drug Research Institute Sector 10, Sitapur Road, Lucknow, 226031, Uttar Pradesh, India
| | - Gary D Luker
- Center for Molecular Imaging, Department of Radiology, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
| | - Stéphane A Laporte
- Department of Pharmacology and Therapeutics, McGill University, Montréal, QC, H3G 1Y6, Canada
- Department of Medicine, McGill University Health Center, McGill University, Montréal, QC, H4A 3J1, Canada
| | - Xin Chen
- Department of Medicinal Chemistry, School of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou, Jiangsu, 213164, China
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, 980-8578, Japan
| | - Arun K Shukla
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, 208016, India.
| |
Collapse
|
15
|
Chen K, Zhang C, Lin S, Yan X, Cai H, Yi C, Ma L, Chu X, Liu Y, Zhu Y, Han S, Zhao Q, Wu B. Tail engagement of arrestin at the glucagon receptor. Nature 2023; 620:904-910. [PMID: 37558880 PMCID: PMC10447241 DOI: 10.1038/s41586-023-06420-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/11/2023] [Indexed: 08/11/2023]
Abstract
Arrestins have pivotal roles in regulating G protein-coupled receptor (GPCR) signalling by desensitizing G protein activation and mediating receptor internalization1,2. It has been proposed that the arrestin binds to the receptor in two different conformations, 'tail' and 'core', which were suggested to govern distinct processes of receptor signalling and trafficking3,4. However, little structural information is available for the tail engagement of the arrestins. Here we report two structures of the glucagon receptor (GCGR) bound to β-arrestin 1 (βarr1) in glucagon-bound and ligand-free states. These structures reveal a receptor tail-engaged binding mode of βarr1 with many unique features, to our knowledge, not previously observed. Helix VIII, instead of the receptor core, has a major role in accommodating βarr1 by forming extensive interactions with the central crest of βarr1. The tail-binding pose is further defined by a close proximity between the βarr1 C-edge and the receptor helical bundle, and stabilized by a phosphoinositide derivative that bridges βarr1 with helices I and VIII of GCGR. Lacking any contact with the arrestin, the receptor core is in an inactive state and loosely binds to glucagon. Further functional studies suggest that the tail conformation of GCGR-βarr governs βarr recruitment at the plasma membrane and endocytosis of GCGR, and provides a molecular basis for the receptor forming a super-complex simultaneously with G protein and βarr to promote sustained signalling within endosomes. These findings extend our knowledge about the arrestin-mediated modulation of GPCR functionalities.
Collapse
Affiliation(s)
- Kun Chen
- State Key Laboratory of Drug Research, State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chenhui Zhang
- State Key Laboratory of Drug Research, State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shuling Lin
- State Key Laboratory of Drug Research, State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xinyu Yan
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Heng Cai
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Cuiying Yi
- State Key Laboratory of Drug Research, State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Limin Ma
- State Key Laboratory of Drug Research, State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xiaojing Chu
- State Key Laboratory of Drug Research, State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yuchen Liu
- State Key Laboratory of Drug Research, State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ya Zhu
- Lingang Laboratory, Shanghai, China
| | - Shuo Han
- State Key Laboratory of Drug Research, State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Qiang Zhao
- State Key Laboratory of Drug Research, State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China.
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, China.
| | - Beili Wu
- State Key Laboratory of Drug Research, State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| |
Collapse
|
16
|
Huang SM, Xiong MY, Liu L, Mu J, Wang MW, Jia YL, Cai K, Tie L, Zhang C, Cao S, Wen X, Wang JL, Guo SC, Li Y, Qu CX, He QT, Cai BY, Xue C, Gan S, Xie Y, Cong X, Yang Z, Kong W, Li S, Li Z, Xiao P, Yang F, Yu X, Guan YF, Zhang X, Liu Z, Yang BX, Du Y, Sun JP. Single hormone or synthetic agonist induces G s/G i coupling selectivity of EP receptors via distinct binding modes and propagating paths. Proc Natl Acad Sci U S A 2023; 120:e2216329120. [PMID: 37478163 PMCID: PMC10372679 DOI: 10.1073/pnas.2216329120] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 05/18/2023] [Indexed: 07/23/2023] Open
Abstract
To accomplish concerted physiological reactions, nature has diversified functions of a single hormone at at least two primary levels: 1) Different receptors recognize the same hormone, and 2) different cellular effectors couple to the same hormone-receptor pair [R.P. Xiao, Sci STKE 2001, re15 (2001); L. Hein, J. D. Altman, B.K. Kobilka, Nature 402, 181-184 (1999); Y. Daaka, L. M. Luttrell, R. J. Lefkowitz, Nature 390, 88-91 (1997)]. Not only these questions lie in the heart of hormone actions and receptor signaling but also dissecting mechanisms underlying these questions could offer therapeutic routes for refractory diseases, such as kidney injury (KI) or X-linked nephrogenic diabetes insipidus (NDI). Here, we identified that Gs-biased signaling, but not Gi activation downstream of EP4, showed beneficial effects for both KI and NDI treatments. Notably, by solving Cryo-electron microscope (cryo-EM) structures of EP3-Gi, EP4-Gs, and EP4-Gi in complex with endogenous prostaglandin E2 (PGE2)or two synthetic agonists and comparing with PGE2-EP2-Gs structures, we found that unique primary sequences of prostaglandin E2 receptor (EP) receptors and distinct conformational states of the EP4 ligand pocket govern the Gs/Gi transducer coupling selectivity through different structural propagation paths, especially via TM6 and TM7, to generate selective cytoplasmic structural features. In particular, the orientation of the PGE2 ω-chain and two distinct pockets encompassing agonist L902688 of EP4 were differentiated by their Gs/Gi coupling ability. Further, we identified common and distinct features of cytoplasmic side of EP receptors for Gs/Gi coupling and provide a structural basis for selective and biased agonist design of EP4 with therapeutic potential.
Collapse
Affiliation(s)
- Shen-Ming Huang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing100191, China
| | - Meng-Yao Xiong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing100191, China
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing100191, China
| | - Lei Liu
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong250012, China
| | - Jianqiang Mu
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong518055, China
| | - Ming-Wei Wang
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong250012, China
| | - Ying-Li Jia
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing100191, China
| | - Kui Cai
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing100191, China
| | - Lu Tie
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing100191, China
| | - Chao Zhang
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong250012, China
| | - Sheng Cao
- School of Medicine, Kobilka Institute of Innovative Drug Discovery, Chinese University of Hong Kong, Shenzhen, Guangdong518172, China
| | - Xin Wen
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong250012, China
| | - Jia-Le Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing100191, China
| | - Sheng-Chao Guo
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Physiology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong250012, China
| | - Yu Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing100191, China
| | - Chang-Xiu Qu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing100191, China
| | - Qing-Tao He
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Physiology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong250012, China
| | - Bo-Yang Cai
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing100191, China
| | - Chenyang Xue
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong518055, China
| | - Shiyi Gan
- School of Medicine, Kobilka Institute of Innovative Drug Discovery, Chinese University of Hong Kong, Shenzhen, Guangdong518172, China
| | - Yihe Xie
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing100191, China
| | - Xin Cong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing100191, China
| | - Zhao Yang
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong250012, China
| | - Wei Kong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing100191, China
| | - Shuo Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing100191, China
| | - Zijian Li
- Department of Cardiology, Institute of Vascular Medicine, Peking University Third Hospital, Research, Beijing100191, China
- Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University, Beijing100191, P. R. China
| | - Peng Xiao
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong250012, China
| | - Fan Yang
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Physiology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong250012, China
- Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong250012, China
| | - Xiao Yu
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Physiology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong250012, China
| | - You-Fei Guan
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian116044, China
| | - Xiaoyan Zhang
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian116044, China
| | - Zhongmin Liu
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong518055, China
| | - Bao-Xue Yang
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing100191, China
| | - Yang Du
- School of Medicine, Kobilka Institute of Innovative Drug Discovery, Chinese University of Hong Kong, Shenzhen, Guangdong518172, China
| | - Jin-Peng Sun
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing100191, China
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong250012, China
- Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University, Beijing100191, P. R. China
- Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong250012, China
| |
Collapse
|
17
|
Michinaga S, Nagata A, Ogami R, Ogawa Y, Hishinuma S. Differential regulation of histamine H 1 receptor-mediated ERK phosphorylation by G q proteins and arrestins. Biochem Pharmacol 2023; 213:115595. [PMID: 37201878 DOI: 10.1016/j.bcp.2023.115595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 05/20/2023]
Abstract
Gq protein-coupled histamine H1 receptors play crucial roles in allergic and inflammatory reactions, in which the phosphorylation of extracellular signal-regulated kinase (ERK) appears to mediate the production of inflammatory cytokines. ERK phosphorylation is regulated by G protein- and arrestin-mediated signal transduction pathways. Here, we aimed to explore how H1 receptor-mediated processes of ERK phosphorylation might be differentially regulated by Gq proteins and arrestins. For this purpose, we evaluated the regulatory mechanism(s) of H1 receptor-mediated ERK phosphorylation in Chinese hamster ovary cells expressing Gq protein- and arrestin-biased mutants of human H1 receptors, S487TR and S487A, in which the Ser487 residue in the C-terminal was truncated and mutated to alanine, respectively. Immunoblotting analysis indicated that histamine-induced ERK phosphorylation was prompt and transient in cells expressing Gq protein-biased S487TR, whereas it was slow and sustained in cells expressing arrestin-biased S487A. Inhibitors of Gq proteins (YM-254890) and protein kinase C (PKC) (GF109203X), and an intracellular Ca2+ chelator (BAPTA-AM) suppressed histamine-induced ERK phosphorylation in cells expressing S487TR, but not those expressing S487A. Conversely, inhibitors of G protein-coupled receptor kinases (GRK2/3) (cmpd101), β-arrestin2 (β-arrestin2 siRNA), clathrin (hypertonic sucrose), Raf (LY3009120), and MEK (U0126) suppressed histamine-induced ERK phosphorylation in cells expressing S487A, but not those expressing S487TR. These results suggest that H1 receptor-mediated ERK phosphorylation might be differentially regulated by the Gq protein/Ca2+/PKC and GRK/arrestin/clathrin/Raf/MEK pathways to potentially determine the early and late phases of histamine-induced allergic and inflammatory responses, respectively.
Collapse
Affiliation(s)
- Shotaro Michinaga
- Department of Pharmacodynamics, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan
| | - Ayaka Nagata
- Department of Pharmacodynamics, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan
| | - Ryosuke Ogami
- Department of Pharmacodynamics, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan
| | - Yasuhiro Ogawa
- Department of Pharmacodynamics, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan
| | - Shigeru Hishinuma
- Department of Pharmacodynamics, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan.
| |
Collapse
|
18
|
Guan Y, Du HB, Yang Z, Wang YZ, Ren R, Liu WW, Zhang C, Zhang JH, An WT, Li NN, Zeng XX, Li J, Sun YX, Wang YF, Yang F, Yang J, Xiong W, Yu X, Chai RJ, Tu XM, Sun JP, Xu ZG. Deafness-Associated ADGRV1 Mutation Impairs USH2A Stability through Improper Phosphorylation of WHRN and WDSUB1 Recruitment. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205993. [PMID: 37066759 PMCID: PMC10238197 DOI: 10.1002/advs.202205993] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 02/14/2023] [Indexed: 06/04/2023]
Abstract
The ankle-link complex (ALC) consists of USH2A, WHRN, PDZD7, and ADGRV1 and plays an important role in hair cell development. At present, its architectural organization and signaling role remain unclear. By establishing Adgrv1 Y6236fsX1 mutant mice as a model of the deafness-associated human Y6244fsX1 mutation, the authors show here that the Y6236fsX1 mutation disrupts the interaction between adhesion G protein-coupled receptor V subfamily member 1 (ADGRV1) and other ALC components, resulting in stereocilia disorganization and mechanoelectrical transduction (MET) deficits. Importantly, ADGRV1 inhibits WHRN phosphorylation through regional cAMP-PKA signaling, which in turn regulates the ubiquitination and stability of USH2A via local signaling compartmentalization, whereas ADGRV1 Y6236fsX1 does not. Yeast two-hybrid screening identified the E3 ligase WDSUB1 that binds to WHRN and regulates the ubiquitination of USH2A in a WHRN phosphorylation-dependent manner. Further FlAsH-BRET assay, NMR spectrometry, and mutagenesis analysis provided insights into the architectural organization of ALC and interaction motifs at single-residue resolution. In conclusion, the present data suggest that ALC organization and accompanying local signal transduction play important roles in regulating the stability of the ALC.
Collapse
Affiliation(s)
- Ying Guan
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University , Jinan, 250012, China
| | - Hai-Bo Du
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, Shandong University School of Life Sciences, Qingdao, 266237, China
- Air Force Medical Center, PLA, Beijing, 100142, China
| | - Zhao Yang
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University , Jinan, 250012, China
| | - Yu-Zhu Wang
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, 230022, China
| | - Rui Ren
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, Shandong University School of Life Sciences, Qingdao, 266237, China
| | - Wen-Wen Liu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250014, China
| | - Chao Zhang
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University , Jinan, 250012, China
| | - Jia-Hai Zhang
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, 230022, China
| | - Wen-Tao An
- Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Na-Na Li
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, Shandong University School of Life Sciences, Qingdao, 266237, China
| | - Xiao-Xue Zeng
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University , Jinan, 250012, China
| | - Jie Li
- School of Life Sciences, IDG/McGovern Institute for Brain Research at Tsinghua, Tsinghua University, Beijing, 100084, China
| | - Yi-Xiao Sun
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, Shandong University School of Life Sciences, Qingdao, 266237, China
| | - Yan-Fei Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, Shandong University School of Life Sciences, Qingdao, 266237, China
| | - Fan Yang
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University , Jinan, 250012, China
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Jun Yang
- Department of Ophthalmology and Visual Sciences, Moran Eye Center, University of Utah, Salt Lake City, UT, 84132, USA
| | - Wei Xiong
- School of Life Sciences, IDG/McGovern Institute for Brain Research at Tsinghua, Tsinghua University, Beijing, 100084, China
| | - Xiao Yu
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Ren-Jie Chai
- MOE Key Laboratory for Developmental Genes and Human Disease, Institute of Life Sciences, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Xiao-Ming Tu
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, 230022, China
| | - Jin-Peng Sun
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University , Jinan, 250012, China
- Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, 100191, China
| | - Zhi-Gang Xu
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, Shandong University School of Life Sciences, Qingdao, 266237, China
- Shandong Provincial Collaborative Innovation Center of Cell Biology, Shandong Normal University, Jinan, 250014, China
| |
Collapse
|
19
|
Chen G, Obal D. Detecting and measuring of GPCR signaling - comparison of human induced pluripotent stem cells and immortal cell lines. Front Endocrinol (Lausanne) 2023; 14:1179600. [PMID: 37293485 PMCID: PMC10244570 DOI: 10.3389/fendo.2023.1179600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 04/12/2023] [Indexed: 06/10/2023] Open
Abstract
G protein-coupled receptors (GPCRs) are a large family of transmembrane proteins that play a major role in many physiological processes, and thus GPCR-targeted drug development has been widely promoted. Although research findings generated in immortal cell lines have contributed to the advancement of the GPCR field, the homogenous genetic backgrounds, and the overexpression of GPCRs in these cell lines make it difficult to correlate the results with clinical patients. Human induced pluripotent stem cells (hiPSCs) have the potential to overcome these limitations, because they contain patient specific genetic information and can differentiate into numerous cell types. To detect GPCRs in hiPSCs, highly selective labeling and sensitive imaging techniques are required. This review summarizes existing resonance energy transfer and protein complementation assay technologies, as well as existing and new labeling methods. The difficulties of extending existing detection methods to hiPSCs are discussed, as well as the potential of hiPSCs to expand GPCR research towards personalized medicine.
Collapse
Affiliation(s)
- Gaoxian Chen
- Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University, Stanford, CA, United States
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, United States
| | - Detlef Obal
- Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University, Stanford, CA, United States
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, United States
| |
Collapse
|
20
|
Eiger DS, Smith JS, Shi T, Stepniewski TM, Tsai CF, Honeycutt C, Boldizsar N, Gardner J, Nicora CD, Moghieb AM, Kawakami K, Choi I, Hicks C, Zheng K, Warman A, Alagesan P, Knape NM, Huang O, Silverman JD, Smith RD, Inoue A, Selent J, Jacobs JM, Rajagopal S. Phosphorylation barcodes direct biased chemokine signaling at CXCR3. Cell Chem Biol 2023; 30:362-382.e8. [PMID: 37030291 PMCID: PMC10147449 DOI: 10.1016/j.chembiol.2023.03.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 02/10/2023] [Accepted: 03/13/2023] [Indexed: 04/10/2023]
Abstract
G protein-coupled receptor (GPCR)-biased agonism, selective activation of certain signaling pathways relative to others, is thought to be directed by differential GPCR phosphorylation "barcodes." At chemokine receptors, endogenous chemokines can act as "biased agonists", which may contribute to the limited success when pharmacologically targeting these receptors. Here, mass spectrometry-based global phosphoproteomics revealed that CXCR3 chemokines generate different phosphorylation barcodes associated with differential transducer activation. Chemokine stimulation resulted in distinct changes throughout the kinome in global phosphoproteomics studies. Mutation of CXCR3 phosphosites altered β-arrestin 2 conformation in cellular assays and was consistent with conformational changes observed in molecular dynamics simulations. T cells expressing phosphorylation-deficient CXCR3 mutants resulted in agonist- and receptor-specific chemotactic profiles. Our results demonstrate that CXCR3 chemokines are non-redundant and act as biased agonists through differential encoding of phosphorylation barcodes, leading to distinct physiological processes.
Collapse
Affiliation(s)
- Dylan S Eiger
- Department of Biochemistry, Duke University, Durham, NC 27710, USA
| | - Jeffrey S Smith
- Department of Dermatology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Dermatology, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Dermatology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA; Dermatology Program, Boston Children's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Tujin Shi
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Tomasz Maciej Stepniewski
- Research Program on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM), Department of Experimental and Health Sciences of Pompeu Fabra University (UPF), 08003 Barcelona, Spain
| | - Chia-Feng Tsai
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | | | | | - Julia Gardner
- Trinity College, Duke University, Durham, NC 27710, USA
| | - Carrie D Nicora
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | | | - Kouki Kawakami
- Department of Pharmaceutical Sciences, Tohoku University, Sendai 980-8577, Japan
| | - Issac Choi
- Department of Medicine, Duke University, Durham, NC 27710, USA
| | - Chloe Hicks
- Trinity College, Duke University, Durham, NC 27710, USA
| | - Kevin Zheng
- Harvard Medical School, Boston, MA 02115, USA
| | - Anmol Warman
- Trinity College, Duke University, Durham, NC 27710, USA
| | - Priya Alagesan
- Department of Biochemistry, Duke University, Durham, NC 27710, USA
| | - Nicole M Knape
- Department of Biochemistry, Duke University, Durham, NC 27710, USA
| | - Ouwen Huang
- Department of Biomedical Engineering, Duke University, Durham, NC 27710, USA
| | - Justin D Silverman
- College of Information Sciences and Technology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Richard D Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Asuka Inoue
- Department of Pharmaceutical Sciences, Tohoku University, Sendai 980-8577, Japan
| | - Jana Selent
- Research Program on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM), Department of Experimental and Health Sciences of Pompeu Fabra University (UPF), 08003 Barcelona, Spain
| | - Jon M Jacobs
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Sudarshan Rajagopal
- Department of Biochemistry, Duke University, Durham, NC 27710, USA; Department of Pharmaceutical Sciences, Tohoku University, Sendai 980-8577, Japan.
| |
Collapse
|
21
|
Eiger DS, Smith JS, Shi T, Stepniewski TM, Tsai CF, Honeycutt C, Boldizsar N, Gardner J, Nicora CD, Moghieb AM, Kawakami K, Choi I, Zheng K, Warman A, Alagesan P, Knape NM, Huang O, Silverman JD, Smith RD, Inoue A, Selent J, Jacobs JM, Rajagopal S. Phosphorylation barcodes direct biased chemokine signaling at CXCR3. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.14.532634. [PMID: 36993369 PMCID: PMC10055163 DOI: 10.1101/2023.03.14.532634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
G protein-coupled receptor (GPCR) biased agonism, the activation of some signaling pathways over others, is thought to largely be due to differential receptor phosphorylation, or "phosphorylation barcodes." At chemokine receptors, ligands act as "biased agonists" with complex signaling profiles, which contributes to the limited success in pharmacologically targeting these receptors. Here, mass spectrometry-based global phosphoproteomics revealed that CXCR3 chemokines generate different phosphorylation barcodes associated with differential transducer activation. Chemokine stimulation resulted in distinct changes throughout the kinome in global phosphoproteomic studies. Mutation of CXCR3 phosphosites altered β-arrestin conformation in cellular assays and was confirmed by molecular dynamics simulations. T cells expressing phosphorylation-deficient CXCR3 mutants resulted in agonist- and receptor-specific chemotactic profiles. Our results demonstrate that CXCR3 chemokines are non-redundant and act as biased agonists through differential encoding of phosphorylation barcodes and lead to distinct physiological processes.
Collapse
Affiliation(s)
- Dylan S. Eiger
- Department of Biochemistry, Duke University, Durham, NC, 27710, USA
| | - Jeffrey S. Smith
- Department of Dermatology, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Dermatology, Brigham and Women’s Hospital, Boston, MA, 02115, USA
- Department of Dermatology, Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA
- Dermatology Program, Boston Children’s Hospital, Boston, MA, 02115, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - Tujin Shi
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Tomasz Maciej Stepniewski
- Research Programme on Biomedical Informatics (GRIB), Department of Experimental and Health Sciences of Pompeu Fabra University (UPF)-Hospital del Mar Medical Research Institute (IMIM), Barcelona, 08003, Spain
| | - Chia-Feng Tsai
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | | | | | - Julia Gardner
- Trinity College, Duke University, Durham, NC, 27710, USA
| | - Carrie D. Nicora
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | | | - Kouki Kawakami
- Department of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8577, Japan
| | - Issac Choi
- Department of Medicine, Duke University, Durham, NC 27710 USA
| | - Kevin Zheng
- Trinity College, Duke University, Durham, NC, 27710, USA
| | - Anmol Warman
- Trinity College, Duke University, Durham, NC, 27710, USA
| | - Priya Alagesan
- Department of Biochemistry, Duke University, Durham, NC, 27710, USA
| | - Nicole M. Knape
- Department of Biochemistry, Duke University, Durham, NC, 27710, USA
| | - Ouwen Huang
- Department of Biomedical Engineering, Duke University, Durham, NC, 27710, USA
| | - Justin D. Silverman
- College of Information Sciences and Technology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Richard D. Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Asuka Inoue
- Department of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8577, Japan
| | - Jana Selent
- Research Programme on Biomedical Informatics (GRIB), Department of Experimental and Health Sciences of Pompeu Fabra University (UPF)-Hospital del Mar Medical Research Institute (IMIM), Barcelona, 08003, Spain
| | - Jon M. Jacobs
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Sudarshan Rajagopal
- Department of Biochemistry, Duke University, Durham, NC, 27710, USA
- Department of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8577, Japan
| |
Collapse
|
22
|
Wang Y, Zhu CL, Li P, Liu Q, Li HR, Yu CM, Deng XM, Wang JF. The role of G protein-coupled receptor in neutrophil dysfunction during sepsis-induced acute respiratory distress syndrome. Front Immunol 2023; 14:1112196. [PMID: 36891309 PMCID: PMC9986442 DOI: 10.3389/fimmu.2023.1112196] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/07/2023] [Indexed: 02/22/2023] Open
Abstract
Sepsis is defined as a life-threatening dysfunction due to a dysregulated host response to infection. It is a common and complex syndrome and is the leading cause of death in intensive care units. The lungs are most vulnerable to the challenge of sepsis, and the incidence of respiratory dysfunction has been reported to be up to 70%, in which neutrophils play a major role. Neutrophils are the first line of defense against infection, and they are regarded as the most responsive cells in sepsis. Normally, neutrophils recognize chemokines including the bacterial product N-formyl-methionyl-leucyl-phenylalanine (fMLP), complement 5a (C5a), and lipid molecules Leukotriene B4 (LTB4) and C-X-C motif chemokine ligand 8 (CXCL8), and enter the site of infection through mobilization, rolling, adhesion, migration, and chemotaxis. However, numerous studies have confirmed that despite the high levels of chemokines in septic patients and mice at the site of infection, the neutrophils cannot migrate to the proper target location, but instead they accumulate in the lungs, releasing histones, DNA, and proteases that mediate tissue damage and induce acute respiratory distress syndrome (ARDS). This is closely related to impaired neutrophil migration in sepsis, but the mechanism involved is still unclear. Many studies have shown that chemokine receptor dysregulation is an important cause of impaired neutrophil migration, and the vast majority of these chemokine receptors belong to the G protein-coupled receptors (GPCRs). In this review, we summarize the signaling pathways by which neutrophil GPCR regulates chemotaxis and the mechanisms by which abnormal GPCR function in sepsis leads to impaired neutrophil chemotaxis, which can further cause ARDS. Several potential targets for intervention are proposed to improve neutrophil chemotaxis, and we hope that this review may provide insights for clinical practitioners.
Collapse
Affiliation(s)
- Yi Wang
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Cheng-long Zhu
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Peng Li
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Qiang Liu
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Hui-ru Li
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China
- Faculty of Anesthesiology, Weifang Medical University, Weifang, Shandong, China
| | - Chang-meng Yu
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiao-ming Deng
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Faculty of Anesthesiology, Weifang Medical University, Weifang, Shandong, China
| | - Jia-feng Wang
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
23
|
Roy A. Advances in the molecular level understanding of G-protein coupled receptor. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 196:1-13. [PMID: 36813353 DOI: 10.1016/bs.pmbts.2022.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
G-protein coupled receptors (GPCRs) represent largest family of plasma membrane-bound receptor proteins that are involved in numerous cellular and physiological functions. Many extracellular stimuli such as hormones, lipids and chemokines activate these receptors. Aberrant expression and genetic alteration in GPCR are associated with many human diseases including cancer and cardiovascular disease. GPCRs have emerged as potential therapeutic target and numerous drugs are either approved by FDA or under clinical trial. This chapter provides an update on GPCR research and its significance as a promising therapeutic target.
Collapse
Affiliation(s)
- Adhiraj Roy
- Amity Institute of Molecular Medicine & Stem Cell Research, Amity University, Noida, Uttar Pradesh, India.
| |
Collapse
|
24
|
Nivedha AK, Lee S, Vaidehi N. Biased agonists differentially modulate the receptor conformation ensembles in Angiotensin II type 1 receptor. J Mol Graph Model 2023; 118:108365. [PMID: 36335829 PMCID: PMC9769363 DOI: 10.1016/j.jmgm.2022.108365] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/05/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022]
Abstract
The structural features that contribute to the efficacy of biased agonists targeting G protein-coupled receptors (GPCRs) towards G proteins or β-arrestin (β-arr) signaling pathways is nebulous, although such knowledge is critical in designing biased ligands. The dynamics of the agonist-GPCR complex is one of the critical factors in determining agonist bias. Angiotensin II type I receptor (AT1R) is an ideal model system to study the molecular basis of bias since it has multiple β-arr2 and Gq protein biased agonists as well as experimentally solved three dimensional structures. Using Molecular Dynamics (MD) simulations for the Angiotensin II type I receptor (AT1R) bound to ten different agonists, we infer that the agonist bound receptor samples conformations with different relative weights, from both the inactive and active state ensembles of the receptor. This concept is perhaps extensible to other class A GPCRs. Such a weighted mixed ensemble recapitulates the inter-residue distance distributions measured for different agonists bound AT1R using DEER experiments. The ratio of the calculated relative strength of the allosteric communication to β-arr2 vs Gq coupling sites scale similarly to the experimentally measured bias factors. Analysis of the inter-residue distance distributions of the activation microswitches involved in class A GPCR activation suggests that β-arr2 biased agonists turn on different combination of microswitches with different relative strengths of activation. We put forth a model that activation microswitches behave like rheostats that tune the relative efficacy of the biased agonists toward the two signaling pathways. Finally, based on our data we propose that the agonist specific residue contacts in the binding site elicit a combinatorial response in the microswitches that in turn differentially modulate the receptor conformation ensembles resulting in differences in coupling to Gq and β-arrestin.
Collapse
Affiliation(s)
- Anita K Nivedha
- Department of Computational & Quantitative Medicine, Beckman Research Institute of the City of Hope, 1500 E. Duarte Road, Duarte, California, 91010, USA
| | - Sangbae Lee
- Department of Computational & Quantitative Medicine, Beckman Research Institute of the City of Hope, 1500 E. Duarte Road, Duarte, California, 91010, USA
| | - Nagarajan Vaidehi
- Department of Computational & Quantitative Medicine, Beckman Research Institute of the City of Hope, 1500 E. Duarte Road, Duarte, California, 91010, USA.
| |
Collapse
|
25
|
Janetzko J, Kise R, Barsi-Rhyne B, Siepe DH, Heydenreich FM, Kawakami K, Masureel M, Maeda S, Garcia KC, von Zastrow M, Inoue A, Kobilka BK. Membrane phosphoinositides regulate GPCR-β-arrestin complex assembly and dynamics. Cell 2022; 185:4560-4573.e19. [PMID: 36368322 PMCID: PMC10030194 DOI: 10.1016/j.cell.2022.10.018] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 06/22/2022] [Accepted: 10/14/2022] [Indexed: 11/11/2022]
Abstract
Binding of arrestin to phosphorylated G protein-coupled receptors (GPCRs) is crucial for modulating signaling. Once internalized, some GPCRs remain complexed with β-arrestins, while others interact only transiently; this difference affects GPCR signaling and recycling. Cell-based and in vitro biophysical assays reveal the role of membrane phosphoinositides (PIPs) in β-arrestin recruitment and GPCR-β-arrestin complex dynamics. We find that GPCRs broadly stratify into two groups, one that requires PIP binding for β-arrestin recruitment and one that does not. Plasma membrane PIPs potentiate an active conformation of β-arrestin and stabilize GPCR-β-arrestin complexes by promoting a fully engaged state of the complex. As allosteric modulators of GPCR-β-arrestin complex dynamics, membrane PIPs allow for additional conformational diversity beyond that imposed by GPCR phosphorylation alone. For GPCRs that require membrane PIP binding for β-arrestin recruitment, this provides a mechanism for β-arrestin release upon translocation of the GPCR to endosomes, allowing for its rapid recycling.
Collapse
Affiliation(s)
- John Janetzko
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ryoji Kise
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Benjamin Barsi-Rhyne
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, School of Medicine, San Francisco, CA 94158, USA; Department of Psychiatry, University of California, San Francisco, School of Medicine, San Francisco, CA 94158, USA
| | - Dirk H Siepe
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Franziska M Heydenreich
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kouki Kawakami
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Matthieu Masureel
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Shoji Maeda
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - K Christopher Garcia
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Mark von Zastrow
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, School of Medicine, San Francisco, CA 94158, USA; Department of Psychiatry, University of California, San Francisco, School of Medicine, San Francisco, CA 94158, USA
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578, Japan.
| | - Brian K Kobilka
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
26
|
Benkel T, Zimmermann M, Zeiner J, Bravo S, Merten N, Lim VJY, Matthees ESF, Drube J, Miess-Tanneberg E, Malan D, Szpakowska M, Monteleone S, Grimes J, Koszegi Z, Lanoiselée Y, O'Brien S, Pavlaki N, Dobberstein N, Inoue A, Nikolaev V, Calebiro D, Chevigné A, Sasse P, Schulz S, Hoffmann C, Kolb P, Waldhoer M, Simon K, Gomeza J, Kostenis E. How Carvedilol activates β 2-adrenoceptors. Nat Commun 2022; 13:7109. [PMID: 36402762 PMCID: PMC9675828 DOI: 10.1038/s41467-022-34765-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 11/05/2022] [Indexed: 11/21/2022] Open
Abstract
Carvedilol is among the most effective β-blockers for improving survival after myocardial infarction. Yet the mechanisms by which carvedilol achieves this superior clinical profile are still unclear. Beyond blockade of β1-adrenoceptors, arrestin-biased signalling via β2-adrenoceptors is a molecular mechanism proposed to explain the survival benefits. Here, we offer an alternative mechanism to rationalize carvedilol's cellular signalling. Using primary and immortalized cells genome-edited by CRISPR/Cas9 to lack either G proteins or arrestins; and combining biological, biochemical, and signalling assays with molecular dynamics simulations, we demonstrate that G proteins drive all detectable carvedilol signalling through β2ARs. Because a clear understanding of how drugs act is imperative to data interpretation in basic and clinical research, to the stratification of clinical trials or to the monitoring of drug effects on the target pathway, the mechanistic insight gained here provides a foundation for the rational development of signalling prototypes that target the β-adrenoceptor system.
Collapse
Affiliation(s)
- Tobias Benkel
- Molecular, Cellular and Pharmacobiology Section, Institute of Pharmaceutical Biology, University of Bonn, 53115, Bonn, Germany
- Research Training Group 1873, University of Bonn, 53127, Bonn, Germany
| | | | - Julian Zeiner
- Molecular, Cellular and Pharmacobiology Section, Institute of Pharmaceutical Biology, University of Bonn, 53115, Bonn, Germany
| | - Sergi Bravo
- Molecular, Cellular and Pharmacobiology Section, Institute of Pharmaceutical Biology, University of Bonn, 53115, Bonn, Germany
| | - Nicole Merten
- Molecular, Cellular and Pharmacobiology Section, Institute of Pharmaceutical Biology, University of Bonn, 53115, Bonn, Germany
| | - Victor Jun Yu Lim
- Department of Pharmaceutical Chemistry, Philipps-University of Marburg, 35032, Marburg, Germany
| | - Edda Sofie Fabienne Matthees
- Institute for Molecular Cell Biology, CMB-Center for Molecular Biomedicine, Jena University Hospital, Friedrich Schiller University of Jena, 07745, Jena, Germany
| | - Julia Drube
- Institute for Molecular Cell Biology, CMB-Center for Molecular Biomedicine, Jena University Hospital, Friedrich Schiller University of Jena, 07745, Jena, Germany
| | - Elke Miess-Tanneberg
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich Schiller University of Jena, 07747, Jena, Germany
| | - Daniela Malan
- Institute of Physiology I, Medical Faculty, University of Bonn, 53115, Bonn, Germany
| | - Martyna Szpakowska
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), L-4354, Esch-sur-Alzette, Luxembourg
| | - Stefania Monteleone
- Department of Pharmaceutical Chemistry, Philipps-University of Marburg, 35032, Marburg, Germany
| | - Jak Grimes
- Institute of Metabolism and Systems Research and Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, B15 2TT, UK
| | - Zsombor Koszegi
- Institute of Metabolism and Systems Research and Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, B15 2TT, UK
| | - Yann Lanoiselée
- Institute of Metabolism and Systems Research and Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, B15 2TT, UK
| | - Shannon O'Brien
- Institute of Metabolism and Systems Research and Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, B15 2TT, UK
| | - Nikoleta Pavlaki
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | | | - Asuka Inoue
- Graduate School of Pharmaceutical Science, Tohoku University, Sendai, 980-8578, Japan
| | - Viacheslav Nikolaev
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Davide Calebiro
- Institute of Metabolism and Systems Research and Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, B15 2TT, UK
| | - Andy Chevigné
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), L-4354, Esch-sur-Alzette, Luxembourg
| | - Philipp Sasse
- Institute of Physiology I, Medical Faculty, University of Bonn, 53115, Bonn, Germany
| | - Stefan Schulz
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich Schiller University of Jena, 07747, Jena, Germany
- 7TM Antibodies GmbH, 07745, Jena, Germany
| | - Carsten Hoffmann
- Institute for Molecular Cell Biology, CMB-Center for Molecular Biomedicine, Jena University Hospital, Friedrich Schiller University of Jena, 07745, Jena, Germany
| | - Peter Kolb
- Department of Pharmaceutical Chemistry, Philipps-University of Marburg, 35032, Marburg, Germany
| | - Maria Waldhoer
- InterAx Biotech AG, 5234, Villigen, Switzerland
- Ikherma Consulting Ltd, Hitchin, SG4 0TY, UK
| | - Katharina Simon
- Molecular, Cellular and Pharmacobiology Section, Institute of Pharmaceutical Biology, University of Bonn, 53115, Bonn, Germany
| | - Jesus Gomeza
- Molecular, Cellular and Pharmacobiology Section, Institute of Pharmaceutical Biology, University of Bonn, 53115, Bonn, Germany
| | - Evi Kostenis
- Molecular, Cellular and Pharmacobiology Section, Institute of Pharmaceutical Biology, University of Bonn, 53115, Bonn, Germany.
| |
Collapse
|
27
|
Lin H, Xiao P, Bu RQ, Guo S, Yang Z, Yuan D, Zhu ZL, Zhang CX, He QT, Zhang C, Ping YQ, Zhao RJ, Ma CS, Liu CH, Zhang XN, Jiang D, Huang S, Xi YT, Zhang DL, Xue CY, Yang BS, Li JY, Lin HC, Zeng XH, Zhao H, Xu WM, Yi F, Liu Z, Sun JP, Yu X. Structures of the ADGRG2-G s complex in apo and ligand-bound forms. Nat Chem Biol 2022; 18:1196-1203. [PMID: 35982227 DOI: 10.1038/s41589-022-01084-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 06/10/2022] [Indexed: 01/13/2023]
Abstract
Adhesion G protein-coupled receptors are elusive in terms of their structural information and ligands. Here, we solved the cryogenic-electron microscopy (cryo-EM) structure of apo-ADGRG2, an essential membrane receptor for maintaining male fertility, in complex with a Gs trimer. Whereas the formations of two kinks were determinants of the active state, identification of a potential ligand-binding pocket in ADGRG2 facilitated the screening and identification of dehydroepiandrosterone (DHEA), dehydroepiandrosterone sulfate and deoxycorticosterone as potential ligands of ADGRG2. The cryo-EM structures of DHEA-ADGRG2-Gs provided interaction details for DHEA within the seven transmembrane domains of ADGRG2. Collectively, our data provide a structural basis for the activation and signaling of ADGRG2, as well as characterization of steroid hormones as ADGRG2 ligands, which might be used as useful tools for further functional studies of the orphan ADGRG2.
Collapse
Affiliation(s)
- Hui Lin
- Key Laboratory of Experimental Teratology of the Ministry of Education, Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Clinical Laboratory, The Second Hospital, and Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, China
- Key Laboratory of Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
- Key Laboratory of Molecular Cardiovascular Science of the Ministry of Education, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Peng Xiao
- Department of Clinical Laboratory, The Second Hospital, and Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, China
- Key Laboratory of Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Rui-Qian Bu
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Shengchao Guo
- Key Laboratory of Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zhao Yang
- Key Laboratory of Experimental Teratology of the Ministry of Education, Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
- Key Laboratory of Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Daopeng Yuan
- School of Medicine, Tsinghua University, Beijing, China
| | - Zhong-Liang Zhu
- School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Chuan-Xin Zhang
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qing-Tao He
- Key Laboratory of Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chao Zhang
- Key Laboratory of Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yu-Qi Ping
- Key Laboratory of Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ru-Jia Zhao
- Key Laboratory of Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chuan-Shun Ma
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Chang-Hao Liu
- Key Laboratory of Experimental Teratology of the Ministry of Education, Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiao-Ning Zhang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, China
| | - Dan Jiang
- Key Laboratory of Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shaohui Huang
- Key Laboratory of Experimental Teratology of the Ministry of Education, Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yue-Tong Xi
- Key Laboratory of Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Dao-Lai Zhang
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Chen-Yang Xue
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Bai-Sheng Yang
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Jian-Yuan Li
- Key Laboratory of Male Reproductive Health, National Research Institute for Family Planning, National Health and Family Planning Commission, Beijing, China
| | - Hao-Cheng Lin
- Department of Urology, Peking University Third Hospital, Beijing, China
| | - Xu-Hui Zeng
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, China
| | - Han Zhao
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wen-Ming Xu
- Department of Obstetrics/Gynecology, Joint Laboratory of Reproductive Medicine (SCU-CUHK), Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Fan Yi
- Key Laboratory of Infection and Immunity of Shandong Province, Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, China.
| | - Zhongmin Liu
- Department of Biology, Southern University of Science and Technology, Shenzhen, China.
| | - Jin-Peng Sun
- Department of Clinical Laboratory, The Second Hospital, and Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, China.
- Key Laboratory of Molecular Cardiovascular Science of the Ministry of Education, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China.
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China.
| | - Xiao Yu
- Key Laboratory of Experimental Teratology of the Ministry of Education, Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China.
| |
Collapse
|
28
|
Lupisella J, St-Onge S, Carrier M, Cook EM, Wang T, Sum C, Fernando G, Apgar K, Zhang R, Carson N, Snyder BJ, Ryan CS, Ma X, Dierks EA, Little S, Kick EK, Wurtz NR, Bouvier M, Héroux M, Garcia RA. Molecular Mechanisms of Desensitization Underlying the Differential Effects of Formyl Peptide Receptor 2 Agonists on Cardiac Structure-Function Post Myocardial Infarction. ACS Pharmacol Transl Sci 2022; 5:892-906. [PMID: 36268126 PMCID: PMC9578139 DOI: 10.1021/acsptsci.2c00042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Indexed: 11/30/2022]
Abstract
Formyl peptide receptor 2 (FPR2) plays an integral role in the transition of macrophages from a pro-inflammatory program to one that is pro-resolving. FPR2-mediated stimulation of resolution post myocardial infarction has demonstrated efficacy in rodent models and is hypothesized to reduce progression into heart failure. FPR2 agonists that promote long-lasting receptor internalization can lead to persistent desensitization and diminished therapeutic benefits. In vitro signaling profiles and propensities for receptor desensitization of two clinically studied FPR2 agonists, namely, BMS-986235 and ACT-389949, were evaluated. In contrast to BMS-986235, pre-stimulation with ACT-389949 led to a decrease in its potency to inhibit cAMP production. Moreover, ACT-389949 displayed greater efficacy for β-arrestin recruitment, while efficacy of Gi activation was similar for both agonists. Following agonist-promoted FPR2 internalization, effective recycling to the plasma membrane was observed only with BMS-986235. Use of G protein-coupled receptor kinase (GRK) knock-out cells revealed a differential impact of GRK2 versus GRK5/6 on β-arrestin recruitment and Gi activation promoted by the two FPR2 agonists. In vivo, decreases of granulocytes in circulation were greatly diminished in mice treated with ACT-389949 but not for BMS-986235. With short-term dosing, both compounds induced a pro-resolution polarization state in cardiac monocyte/macrophages post myocardial infarction. By contrast, with long-term dosing, only BMS-986235 preserved the infarct wall thickness and increased left ventricular ejection fraction in a rat model of myocardial infarction. Altogether, the study shows that differences in the desensitization profiles induced by ACT-389949 and BMS-986235 at the molecular level may explain their distinct inflammatory/pro-resolving activities in vivo.
Collapse
Affiliation(s)
- John Lupisella
- Department
of Cardiovascular and Fibrosis Drug Discovery, Bristol Myers Squibb, P.O. Box 4000 Princeton, New Jersey08543-4000, United States
| | - Stéphane St-Onge
- Institute
for Research in Immunology and Cancer, Université
de Montréal, QuebecH3T 1J4, Canada
| | - Marilyn Carrier
- Institute
for Research in Immunology and Cancer, Université
de Montréal, QuebecH3T 1J4, Canada
| | - Erica M. Cook
- Department
of Lead Discovery and Optimization, Bristol
Myers Squibb, P.O. Box 4000 Princeton, New Jersey08543-4000, United States
| | - Tao Wang
- Department
of Lead Discovery and Optimization, Bristol
Myers Squibb, P.O. Box 4000 Princeton, New Jersey08543-4000, United States
| | - Chi Sum
- Department
of Lead Discovery and Optimization, Bristol
Myers Squibb, P.O. Box 4000 Princeton, New Jersey08543-4000, United States
| | - Gayani Fernando
- Department
of Cardiovascular and Fibrosis Drug Discovery, Bristol Myers Squibb, P.O. Box 4000 Princeton, New Jersey08543-4000, United States
| | - Kendra Apgar
- Department
of Cardiovascular and Fibrosis Drug Discovery, Bristol Myers Squibb, P.O. Box 4000 Princeton, New Jersey08543-4000, United States
| | - Rongan Zhang
- Department
of Cardiovascular and Fibrosis Drug Discovery, Bristol Myers Squibb, P.O. Box 4000 Princeton, New Jersey08543-4000, United States
| | - Nancy Carson
- Department
of Cardiovascular and Fibrosis Drug Discovery, Bristol Myers Squibb, P.O. Box 4000 Princeton, New Jersey08543-4000, United States
| | - Bradley J. Snyder
- Department
of Cardiovascular and Fibrosis Drug Discovery, Bristol Myers Squibb, P.O. Box 4000 Princeton, New Jersey08543-4000, United States
| | - Carol S. Ryan
- Department
of Cardiovascular and Fibrosis Drug Discovery, Bristol Myers Squibb, P.O. Box 4000 Princeton, New Jersey08543-4000, United States
| | - Xiuying Ma
- Department
of Cardiovascular and Fibrosis Drug Discovery, Bristol Myers Squibb, P.O. Box 4000 Princeton, New Jersey08543-4000, United States
| | - Elizabeth A. Dierks
- Department
of Drug Metabolism and Pharmacokinetics, Bristol Myers Squibb, P.O. Box 4000 Princeton, New Jersey08543-4000, United States
| | - Sean Little
- Department
of Cardiovascular and Fibrosis Drug Discovery, Bristol Myers Squibb, P.O. Box 4000 Princeton, New Jersey08543-4000, United States
| | - Ellen K. Kick
- Department
of Cardiovascular Discovery Chemistry, Bristol
Myers Squibb, P.O. Box 4000 Princeton, New Jersey08543-4000, United States
| | - Nicholas R. Wurtz
- Department
of Cardiovascular Discovery Chemistry, Bristol
Myers Squibb, P.O. Box 4000 Princeton, New Jersey08543-4000, United States
| | - Michel Bouvier
- Institute
for Research in Immunology and Cancer, Université
de Montréal, QuebecH3T 1J4, Canada
| | - Madeleine Héroux
- Institute
for Research in Immunology and Cancer, Université
de Montréal, QuebecH3T 1J4, Canada
| | - Ricardo A. Garcia
- Department
of Cardiovascular and Fibrosis Drug Discovery, Bristol Myers Squibb, P.O. Box 4000 Princeton, New Jersey08543-4000, United States
| |
Collapse
|
29
|
Eiger DS, Boldizsar N, Honeycutt CC, Gardner J, Kirchner S, Hicks C, Choi I, Pham U, Zheng K, Warman A, Smith JS, Zhang JY, Rajagopal S. Location bias contributes to functionally selective responses of biased CXCR3 agonists. Nat Commun 2022; 13:5846. [PMID: 36195635 PMCID: PMC9532441 DOI: 10.1038/s41467-022-33569-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 09/13/2022] [Indexed: 01/19/2023] Open
Abstract
Some G protein-coupled receptor (GPCR) ligands act as "biased agonists" that preferentially activate specific signaling transducers over others. Although GPCRs are primarily found at the plasma membrane, GPCRs can traffic to and signal from many subcellular compartments. Here, we determine that differential subcellular signaling contributes to the biased signaling generated by three endogenous ligands of the GPCR CXC chemokine receptor 3 (CXCR3). The signaling profile of CXCR3 changes as it traffics from the plasma membrane to endosomes in a ligand-specific manner. Endosomal signaling is critical for biased activation of G proteins, β-arrestins, and extracellular-signal-regulated kinase (ERK). In CD8 + T cells, the chemokines promote unique transcriptional responses predicted to regulate inflammatory pathways. In a mouse model of contact hypersensitivity, β-arrestin-biased CXCR3-mediated inflammation is dependent on receptor internalization. Our work demonstrates that differential subcellular signaling is critical to the overall biased response observed at CXCR3, which has important implications for drugs targeting chemokine receptors and other GPCRs.
Collapse
Affiliation(s)
| | | | | | - Julia Gardner
- Trinity College, Duke University, Durham, NC, 27710, USA
| | - Stephen Kirchner
- Department of Dermatology, Duke University, Durham, NC, 27707, USA
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, 27707, USA
| | - Chloe Hicks
- Trinity College, Duke University, Durham, NC, 27710, USA
| | - Issac Choi
- Department of Medicine, Duke University, Durham, NC, 27710, USA
| | - Uyen Pham
- Department of Biochemistry, Duke University, Durham, NC, 27710, USA
| | - Kevin Zheng
- Harvard Medical School, Boston, MA, 02115, USA
| | - Anmol Warman
- Trinity College, Duke University, Durham, NC, 27710, USA
| | - Jeffrey S Smith
- Harvard Medical School, Boston, MA, 02115, USA
- Department of Dermatology, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Department of Dermatology, Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA
- Dermatology Program, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Dermatology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Jennifer Y Zhang
- Department of Dermatology, Duke University, Durham, NC, 27707, USA
- Department of Pathology, Duke University, Durham, NC, 27710, USA
| | - Sudarshan Rajagopal
- Department of Biochemistry, Duke University, Durham, NC, 27710, USA.
- Department of Medicine, Duke University, Durham, NC, 27710, USA.
| |
Collapse
|
30
|
Kim H, Baek IY, Seong J. Genetically encoded fluorescent biosensors for GPCR research. Front Cell Dev Biol 2022; 10:1007893. [PMID: 36247000 PMCID: PMC9559200 DOI: 10.3389/fcell.2022.1007893] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 09/09/2022] [Indexed: 11/13/2022] Open
Abstract
G protein-coupled receptors (GPCRs) regulate a wide range of physiological and pathophysiological cellular processes, thus it is important to understand how GPCRs are activated and function in various cellular contexts. In particular, the activation process of GPCRs is dynamically regulated upon various extracellular stimuli, and emerging evidence suggests the subcellular functions of GPCRs at endosomes and other organelles. Therefore, precise monitoring of the GPCR activation process with high spatiotemporal resolution is required to investigate the underlying molecular mechanisms of GPCR functions. In this review, we will introduce genetically encoded fluorescent biosensors that can precisely monitor the real-time GPCR activation process in live cells. The process includes the binding of extracellular GPCR ligands, conformational change of GPCR, recruitment of G proteins or β-arrestin, GPCR internalization and trafficking, and the GPCR-related downstream signaling events. We will introduce fluorescent GPCR biosensors based on a variety of strategies such as fluorescent resonance energy transfer (FRET), bioluminescence resonance energy transfer (BRET), circular permuted fluorescent protein (cpFP), and nanobody. We will discuss the pros and cons of these GPCR biosensors as well as their applications in GPCR research.
Collapse
Affiliation(s)
- Hyunbin Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul, South Korea
| | - In-Yeop Baek
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea
- Department of Converging Science and Technology, Kyung Hee University, Seoul, South Korea
| | - Jihye Seong
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul, South Korea
- Department of Converging Science and Technology, Kyung Hee University, Seoul, South Korea
| |
Collapse
|
31
|
Haider RS, Matthees ESF, Drube J, Reichel M, Zabel U, Inoue A, Chevigné A, Krasel C, Deupi X, Hoffmann C. β-arrestin1 and 2 exhibit distinct phosphorylation-dependent conformations when coupling to the same GPCR in living cells. Nat Commun 2022; 13:5638. [PMID: 36163356 PMCID: PMC9512828 DOI: 10.1038/s41467-022-33307-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 09/12/2022] [Indexed: 11/16/2022] Open
Abstract
β-arrestins mediate regulatory processes for over 800 different G protein-coupled receptors (GPCRs) by adopting specific conformations that result from the geometry of the GPCR–β-arrestin complex. However, whether β-arrestin1 and 2 respond differently for binding to the same GPCR is still unknown. Employing GRK knockout cells and β-arrestins lacking the finger-loop-region, we show that the two isoforms prefer to associate with the active parathyroid hormone 1 receptor (PTH1R) in different complex configurations (“hanging” and “core”). Furthermore, the utilisation of advanced NanoLuc/FlAsH-based biosensors reveals distinct conformational signatures of β-arrestin1 and 2 when bound to active PTH1R (P-R*). Moreover, we assess β-arrestin conformational changes that are induced specifically by proximal and distal C-terminal phosphorylation and in the absence of GPCR kinases (GRKs) (R*). Here, we show differences between conformational changes that are induced by P-R* or R* receptor states and further disclose the impact of site-specific GPCR phosphorylation on arrestin-coupling and function. Here the authors present improved intramolecular sensors for β-arrestin2 and 1, which enable assessment of conformational changes of both isoforms in living cells. These reveal that the same GPCR induces differential conformational rearrangements that determine the functional diversity between the two β-arrestins.
Collapse
Affiliation(s)
- Raphael S Haider
- Institut für Molekulare Zellbiologie, CMB-Center for Molecular Biomedicine, Universitätsklinikum Jena; Friedrich-Schiller-Universität Jena, Hans-Knöll-Straße 2, D-07745, Jena, Germany
| | - Edda S F Matthees
- Institut für Molekulare Zellbiologie, CMB-Center for Molecular Biomedicine, Universitätsklinikum Jena; Friedrich-Schiller-Universität Jena, Hans-Knöll-Straße 2, D-07745, Jena, Germany
| | - Julia Drube
- Institut für Molekulare Zellbiologie, CMB-Center for Molecular Biomedicine, Universitätsklinikum Jena; Friedrich-Schiller-Universität Jena, Hans-Knöll-Straße 2, D-07745, Jena, Germany
| | - Mona Reichel
- Institut für Molekulare Zellbiologie, CMB-Center for Molecular Biomedicine, Universitätsklinikum Jena; Friedrich-Schiller-Universität Jena, Hans-Knöll-Straße 2, D-07745, Jena, Germany
| | - Ulrike Zabel
- Institut für Pharmakologie und Toxikologie, Universität Würzburg, Versbacherstraße 9, D-97078, Würzburg, Germany
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, 980-8578, Japan.,Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), Kawaguchi, Saitama, 332-0012, Japan
| | - Andy Chevigné
- Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
| | - Cornelius Krasel
- Philipps-Universität Marburg; Fachbereich Pharmazie; Institut für Pharmakologie und Klinische Pharmazie, Karl-von-Frisch-Str. 1, 35043, Marburg, Germany
| | - Xavier Deupi
- Laboratory of Biomolecular Research, Paul Scherrer Institute, CH-5232, Villigen, Switzerland.,Condensed Matter Theory Group, Paul Scherrer Institute, CH-5232, Villigen, Switzerland
| | - Carsten Hoffmann
- Institut für Molekulare Zellbiologie, CMB-Center for Molecular Biomedicine, Universitätsklinikum Jena; Friedrich-Schiller-Universität Jena, Hans-Knöll-Straße 2, D-07745, Jena, Germany.
| |
Collapse
|
32
|
Xu W, Wu L, Liu S, Liu X, Cao X, Zhou C, Zhang J, Fu Y, Guo Y, Wu Y, Tan Q, Wang L, Liu J, Jiang L, Fan Z, Pei Y, Yu J, Cheng J, Zhao S, Hao X, Liu ZJ, Hua T. Structural basis for strychnine activation of human bitter taste receptor TAS2R46. Science 2022; 377:1298-1304. [DOI: 10.1126/science.abo1633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Taste sensing is a sophisticated chemosensory process, and bitter taste perception is mediated by type 2 taste receptors (TAS2Rs), or class T G protein–coupled receptors. Understanding the detailed molecular mechanisms behind taste sensation is hindered by a lack of experimental receptor structures. Here, we report the cryo–electron microscopy structures of human TAS2R46 complexed with chimeric mini–G protein gustducin, in both strychnine-bound and apo forms. Several features of TAS2R46 are disclosed, including distinct receptor structures that compare with known GPCRs, a new “toggle switch,” activation-related motifs, and precoupling with mini–G protein gustducin. Furthermore, the dynamic extracellular and more-static intracellular parts of TAS2R46 suggest possible diverse ligand-recognition and activation processes. This study provides a basis for further exploration of other bitter taste receptors and their therapeutic applications.
Collapse
Affiliation(s)
- Weixiu Xu
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Lijie Wu
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Shenhui Liu
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xiao Liu
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xiaoling Cao
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Cui Zhou
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jinyi Zhang
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - You Fu
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yu Guo
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Yiran Wu
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Qiwen Tan
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Ling Wang
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Junlin Liu
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Longquan Jiang
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Zhongbo Fan
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yuan Pei
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Jingyi Yu
- School of Information Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jianjun Cheng
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Suwen Zhao
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xiaojiang Hao
- State Key Laboratory of Phytochemistry and Plant Resource in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650210, China
| | - Zhi-Jie Liu
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Tian Hua
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
33
|
Jiang H, Galtes D, Wang J, Rockman HA. G protein-coupled receptor signaling: transducers and effectors. Am J Physiol Cell Physiol 2022; 323:C731-C748. [PMID: 35816644 PMCID: PMC9448338 DOI: 10.1152/ajpcell.00210.2022] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/27/2022] [Accepted: 07/10/2022] [Indexed: 01/14/2023]
Abstract
G protein-coupled receptors (GPCRs) are of considerable interest due to their importance in a wide range of physiological functions and in a large number of Food and Drug Administration (FDA)-approved drugs as therapeutic entities. With continued study of their function and mechanism of action, there is a greater understanding of how effector molecules interact with a receptor to initiate downstream effector signaling. This review aims to explore the signaling pathways, dynamic structures, and physiological relevance in the cardiovascular system of the three most important GPCR signaling effectors: heterotrimeric G proteins, GPCR kinases (GRKs), and β-arrestins. We will first summarize their prominent roles in GPCR pharmacology before transitioning into less well-explored areas. As new technologies are developed and applied to studying GPCR structure and their downstream effectors, there is increasing appreciation for the elegance of the regulatory mechanisms that mediate intracellular signaling and function.
Collapse
Affiliation(s)
- Haoran Jiang
- Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Daniella Galtes
- Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Jialu Wang
- Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Howard A Rockman
- Department of Medicine, Duke University Medical Center, Durham, North Carolina
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
34
|
Abstract
G protein–coupled receptors (GPCRs) constitute the largest and pharmacologically most important family of cell-surface receptors. Some GPCRs interact specifically with receptor-activity-modifying proteins (RAMPs), but the consequences of this interaction for the receptor activation mechanism are not well understood. Using a set of fluorescent biosensors for the parathyroid hormone 1 receptor (PTH1R) and its downstream signaling partners, we show here that RAMP2 induces a unique, preactivated receptor state that shows faster activation and altered downstream signaling. This type of GPCR modulation may open new methods of drug design. Receptor-activity-modifying proteins (RAMPs) are ubiquitously expressed membrane proteins that associate with different G protein–coupled receptors (GPCRs), including the parathyroid hormone 1 receptor (PTH1R), a class B GPCR and an important modulator of mineral ion homeostasis and bone metabolism. However, it is unknown whether and how RAMP proteins may affect PTH1R function. Using different optical biosensors to measure the activation of PTH1R and its downstream signaling, we describe here that RAMP2 acts as a specific allosteric modulator of PTH1R, shifting PTH1R to a unique preactivated state that permits faster activation in a ligand-specific manner. Moreover, RAMP2 modulates PTH1R downstream signaling in an agonist-dependent manner, most notably increasing the PTH-mediated Gi3 signaling sensitivity. Additionally, RAMP2 increases both PTH- and PTHrP-triggered β-arrestin2 recruitment to PTH1R. Employing homology modeling, we describe the putative structural molecular basis underlying our functional findings. These data uncover a critical role of RAMPs in the activation and signaling of a GPCR that may provide a new venue for highly specific modulation of GPCR function and advanced drug design.
Collapse
|
35
|
Zhuo Y, Crecelius JM, Marchese A. G protein-coupled receptor kinase phosphorylation of distal C-tail sites specifies βarrestin1-mediated signaling by chemokine receptor CXCR4. J Biol Chem 2022; 298:102351. [PMID: 35940305 PMCID: PMC9465349 DOI: 10.1016/j.jbc.2022.102351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 07/29/2022] [Accepted: 08/01/2022] [Indexed: 10/25/2022] Open
|
36
|
Heydenreich FM, Plouffe B, Rizk A, Milic D, Zhou J, Breton B, Le Gouill C, Inoue A, Bouvier M, Veprintsev D. Michaelis-Menten quantification of ligand signalling bias applied to the promiscuous Vasopressin V2 receptor. Mol Pharmacol 2022; 102:139-149. [PMID: 35779859 DOI: 10.1124/molpharm.122.000497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 06/06/2022] [Indexed: 11/22/2022] Open
Abstract
Activation of the G protein-coupled receptors by agonists may result in the activation of one or more G proteins and recruitment of arrestins. The extent of the activation of each of these pathways depends on the intrinsic efficacy of the ligand. Quantification of intrinsic efficacy relative to a reference compound is essential for the development of novel compounds. In the operational model, changes in efficacy can be compensated by changes in the "functional" affinity, resulting in poorly defined values. To separate the effects of ligand affinity from the intrinsic activity of the receptor, we developed a Michaelis-Menten based quantification of G protein activation bias that uses experimentally measured ligand affinities and provides a single measure of ligand efficacy. We used it to evaluate the signalling of a promiscuous model receptor, the Vasopressin V2 receptor (V2R). Using BRET-based biosensors, we show that the V2R engages many different G proteins across all G protein subfamilies in response to its primary endogenous agonist, arginine vasopressin (AVP), including Gs and members of the Gi/o and G12/13 families. These signaling pathways are also activated by the synthetic peptide desmopressin, oxytocin, and the non-mammalian hormone vasotocin. We compared bias quantification using the operational model with Michaelis-Menten based quantification, the latter accurately quantified ligand efficacies despite large difference in ligand affinities. Together, these results showed that V2R is promiscuous in its ability to engage several G proteins and that its' signaling profile is biased by small structural changes in the ligand. Significance Statement By modelling the G protein activation as Michaelis-Menten reaction, we developed a novel way of quantifying signalling bias. V2R activates or at least engages G proteins from all G protein subfamilies, including Gi2, Gz, Gq, G12, and G13. Their relative activation may explain its Gs-independent signalling.
Collapse
Affiliation(s)
| | - Bianca Plouffe
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, United Kingdom
| | | | - Dalibor Milic
- Department of Structural and Computational Biology, University of Vienna, Austria
| | - Joris Zhou
- Institute for Research in Immunology and Cancer, University of Montreal, Canada
| | - Billy Breton
- Institute for Research in Immunology and Cancer, University of Montreal, Canada
| | | | | | - Michel Bouvier
- Department of Biochemistry and Molec ular Medicine, University of Montreal, Canada
| | | |
Collapse
|
37
|
Kim GT, Kim EY, Shin SH, Lee H, Lee SH, Sohn KY, Kim JW. Suppression of tumor progression by thioredoxin-interacting protein-dependent adenosine 2B receptor degradation in a PLAG-treated Lewis lung carcinoma-1 model of non-small cell lung cancer. Neoplasia 2022; 31:100815. [PMID: 35728512 PMCID: PMC9209866 DOI: 10.1016/j.neo.2022.100815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 05/23/2022] [Accepted: 06/08/2022] [Indexed: 11/03/2022]
Abstract
PLAG effectively inhibited excessive growth of LLC1 cells in an NSCLC model. PLAG inhibited tumor growth by inducing adenosine 2B receptor (A2BR) degradation. Unlike antagonists, PLAG terminates rather than suppresses signaling pathways. A2BR degradation by PLAG occurs through expression and re-localization of TXNIP.
Extracellular adenosine in the tumor microenvironment plays a vital role in cancer development. Specifically, activation of adenosine receptors affects tumor cell growth and adenosine release. We examined the anti-tumor efficacy of 1-palmitoyl-2-linoleoyl-3-acetyl-rac-glycerol (PLAG) in animal models, revealing the role of PLAG in inhibiting tumor progression by promoting the degradation of adenosine 2B receptors (A2BRs) in tumors. PLAG induced the expression of thioredoxin-interacting protein (TXNIP), a type of α-arrestin that accelerates A2BR internalization by interacting with A2BR complexes containing β-arrestin. Engulfed receptors bound to TXNIP were rapidly degraded after E3 ligase recruitment and ubiquitination, resulting in early termination of intracellular signals that promote tumor overgrowth. However, in control cancer cells, A2BRs bound to protein phosphatase 2A and were returned to the cell membrane instead of being degraded, resulting in continuous receptor-mediated signaling by pathways including the Raf-Erk axis, which promotes tumor proliferation. A TXNIP-silenced cell-implanted mouse model and TXNIP knockout (KO) mice were used to verify that PLAG-mediated suppression of tumor progression is dependent on TXNIP expression. Increased tumor growth was observed in TXNIP-silenced cell-implanted mice, and the anti-tumor effects of PLAG, including delayed tumor overgrowth, were greatly reduced. However, the anti-tumor effects of PLAG were observed in cancer cell-implanted TXNIP-KO mice, which indicates that PLAG produces anti-tumor effects by enhancing TXNIP expression in tumor cells. These essential functions of PLAG, including delaying tumor growth via A2BR degradation, suggest innovative directions for anticancer drug development.
Collapse
Affiliation(s)
- Guen Tae Kim
- Enzychem Lifesciences, 10F aT Center 27 Gangnam-daero, Seoul, South Korea
| | - Eun Young Kim
- Enzychem Lifesciences, 10F aT Center 27 Gangnam-daero, Seoul, South Korea
| | - Su-Hyun Shin
- Enzychem Lifesciences, 10F aT Center 27 Gangnam-daero, Seoul, South Korea
| | - Hyowon Lee
- Enzychem Lifesciences, 10F aT Center 27 Gangnam-daero, Seoul, South Korea
| | - Se Hee Lee
- Enzychem Lifesciences, 10F aT Center 27 Gangnam-daero, Seoul, South Korea
| | - Ki-Young Sohn
- Enzychem Lifesciences, 10F aT Center 27 Gangnam-daero, Seoul, South Korea
| | - Jae Wha Kim
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Kwahak-ro, Daejeon, South Korea.
| |
Collapse
|
38
|
Yang Y, Bai J, Sun JY, Ye T, Zhang L, Wu FY, Nan J, Lan Y. Mechanisms Underlying Mu Opioid Receptor Effects on Parallel Fiber-Purkinje Cell Synaptic Transmission in Mouse Cerebellar Cortex. Front Synaptic Neurosci 2022; 14:862704. [PMID: 35546898 PMCID: PMC9083459 DOI: 10.3389/fnsyn.2022.862704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/25/2022] [Indexed: 11/13/2022] Open
Abstract
μ-opioid receptors (MOR) are widely expressed in the brain, varying in density in different areas. Activation of MORs underlies analgesia, euphoria, but may lead to tolerance, dependence, and ultimately opioid addiction. The Purkinje cell (PC) is the only efferent neuron in the cerebellar cortex and receives glutamatergic synaptic inputs from the parallel fibers formed by the axons of granule cells. Studies have shown that MORs are expressed during the development of cerebellar cells. However, the distribution of MOR and their effects on PF-PC synaptic transmission remain unclear. To examine these questions, we used whole-cell patch clamp recordings and pharmacological methods to determine the effects and mechanisms of MOR activation on synaptic transmission at PF-PC synapses. The MOR-selective agonist DAMGO significantly reduced the amplitude and area under the curve (AUC) of PF-PC evoked (e) EPSCs, and increased the paired-pulse ratio (PPR).DAMGO-induced inhibitory effects on PF-PC eEPSCs and PPR were abolished by MOR specific blocker CTOP. Further, DAMGO significantly reduced the frequency of PF-PC mEPSCs, but had no obvious effect on their amplitude, suggesting a presynaptic site of action. The DAMGO-induced reduction in the frequency of PF-PC mEPSCs also was blocked by CTOP. A protein kinase A (PKA) inhibitor PKI added in the pipette solution did not affect the inhibitory effects on PF-PC mEPSCs induced by DAMGO. Both the PKA inhibitor K5720 and MEK inhibitor U0126 in artificial cerebrospinal fluid (ACSF) prevented the inhibitory effects of DAMGO on PF-PC mEPSCs. These findings reveal that MORs are expressed in presynaptic PF axon terminals, where DAMGO can activate presynaptic MORs to inhibit PF-PC synaptic transmission by regulating the release of glutamate. G-protein-dependent cAMP-PKA signaling pathway may be involved in this process.
Collapse
Affiliation(s)
- Yi Yang
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, China
| | - Jin Bai
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, China
| | - Jia-yue Sun
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, China
| | - Ting Ye
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, China
- Interdisciplinary Program of Biological Functional Molecules, College of Integration Science, Yanbian University, Yanji, China
| | - Lu Zhang
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, China
| | - Feng-ying Wu
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, China
- Interdisciplinary Program of Biological Functional Molecules, College of Integration Science, Yanbian University, Yanji, China
| | - Jun Nan
- Department of Orthopedics, Affiliated Hospital of Yanbian University, Yanji, China
| | - Yan Lan
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, China
- *Correspondence: Yan Lan
| |
Collapse
|
39
|
Progesterone activates GPR126 to promote breast cancer development via the Gi pathway. Proc Natl Acad Sci U S A 2022; 119:e2117004119. [PMID: 35394864 PMCID: PMC9169622 DOI: 10.1073/pnas.2117004119] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The steroid hormone progesterone is highly involved in different physiological–pathophysiological processes, including bone formation and cancer progression. Understanding the working mechanisms, especially identifying the receptors of progesterone hormones, is of great value. In the present study, we identified GPR126 as a membrane receptor for both progesterone and 17-hydroxyprogesterone and triggered its downstream G protein signaling. We further characterized the residues of GPR126 that interact with these two ligands and found that progesterone promoted the progression of a triple-negative breast cancer model through GPR126-dependent Gi-SRC signaling. Therefore, developing antagonists targeting GPR126-Gi may provide an alternative therapeutic option for patients with triple-negative breast cancer. GPR126 is a member of the adhesion G protein-coupled receptors (aGPCRs) that is essential for the normal development of diverse tissues, and its mutations are implicated in various pathological processes. Here, through screening 34 steroid hormones and their derivatives for cAMP production, we found that progesterone (P4) and 17-hydroxyprogesterone (17OHP) could specifically activate GPR126 and trigger its downstream Gi signaling by binding to the ligand pocket in the seven-transmembrane domain of the C-terminal fragment of GPR126. A detailed mutagenesis screening according to a computational simulated structure model indicated that K1001ECL2 and F1012ECL2 are key residues that specifically recognize 17OHP but not progesterone. Finally, functional analysis revealed that progesterone-triggered GPR126 activation promoted cell growth in vitro and tumorigenesis in vivo, which involved Gi-SRC pathways in a triple-negative breast cancer model. Collectively, our work identified a membrane receptor for progesterone/17OHP and delineated the mechanisms by which GPR126 participated in potential tumor progression in triple-negative breast cancer, which will enrich our understanding of the functions and working mechanisms of both the aGPCR member GPR126 and the steroid hormone progesterone.
Collapse
|
40
|
Zheng K, Smith JS, Eiger DS, Warman A, Choi I, Honeycutt CC, Boldizsar N, Gundry JN, Pack TF, Inoue A, Caron MG, Rajagopal S. Biased agonists of the chemokine receptor CXCR3 differentially signal through Gα i:β-arrestin complexes. Sci Signal 2022; 15:eabg5203. [PMID: 35316095 PMCID: PMC9890572 DOI: 10.1126/scisignal.abg5203] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
G protein-coupled receptors (GPCRs) are the largest family of cell surface receptors and signal through the proximal effectors, G proteins and β-arrestins, to influence nearly every biological process. The G protein and β-arrestin signaling pathways have largely been considered separable; however, direct interactions between Gα proteins and β-arrestins have been described that appear to be part of a distinct GPCR signaling pathway. Within these complexes, Gαi/o, but not other Gα protein subtypes, directly interacts with β-arrestin, regardless of the canonical Gα protein that is coupled to the GPCR. Here, we report that the endogenous biased chemokine agonists of CXCR3 (CXCL9, CXCL10, and CXCL11), together with two small-molecule biased agonists, differentially formed Gαi:β-arrestin complexes. Formation of the Gαi:β-arrestin complexes did not correlate well with either G protein activation or β-arrestin recruitment. β-arrestin biosensors demonstrated that ligands that promoted Gαi:β-arrestin complex formation generated similar β-arrestin conformations. We also found that Gαi:β-arrestin complexes did not couple to the mitogen-activated protein kinase ERK, as is observed with other receptors such as the V2 vasopressin receptor, but did couple with the clathrin adaptor protein AP-2, which suggests context-dependent signaling by these complexes. These findings reinforce the notion that Gαi:β-arrestin complex formation is a distinct GPCR signaling pathway and enhance our understanding of the spectrum of biased agonism.
Collapse
Affiliation(s)
- Kevin Zheng
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA.,Harvard Medical School, Boston, MA 02115, USA
| | - Jeffrey S. Smith
- Harvard Medical School, Boston, MA 02115, USA.,Department of Dermatology, Brigham and Women’s Hospital, Boston, MA 02115, USA.,Department of Dermatology, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA.,Dermatology Program, Boston Children’s Hospital, Boston, MA 02115, USA.,Department of Dermatology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Dylan S. Eiger
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | - Anmol Warman
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | - Issac Choi
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | | | - Noelia Boldizsar
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | - Jaimee N. Gundry
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | - Thomas F. Pack
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA.,Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27110, USA
| | - Asuka Inoue
- Department of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Marc G. Caron
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA.,Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Sudarshan Rajagopal
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA.,Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA.,Corresponding author.
| |
Collapse
|
41
|
Reiter E. [β-arrestins, their mechanisms of action and multiple roles in the biology of G protein-coupled receptors]. Biol Aujourdhui 2022; 215:107-118. [PMID: 35275055 DOI: 10.1051/jbio/2021010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Indexed: 06/14/2023]
Abstract
The stimulation of G protein-coupled receptors (GPCRs) induces biological responses to a wide range of extracellular cues. The heterotrimeric G proteins, which are recruited to the active conformation of GPCRs, lead to the generation of various diffusible second messengers. Only two other families of proteins exhibit the remarkable characteristic of recognizing and binding to the active conformation of most GPCRs: GPCR kinases (GRKs) and β-arrestins. These two families of proteins were initially identified as key players in the desensitization of G protein activation by GPCRs. Over the years, β-arrestins have been implicated in an increasing number of interactions with non-receptor proteins, expanding the range of cellular functions in which they are involved. It is now well established that β-arrestins, by scaffolding and recruiting protein complexes in an agonist-dependent manner, directly regulate the trafficking and signaling of GPCRs. Remarkable advances have been made in recent years which have made it possible i) to identify biased ligands capable, by stabilizing particular conformations of a growing number of GPCRs, of activating or blocking the action of β-arrestins independently of that of G proteins, some of these ligands holding great therapeutic interest; ii) to demonstrate β-arrestins' role in the compartmentalization of GPCR signaling within the cell, and iii) to understand the molecular details of their interaction with GPCRs and of their activation through structural and biophysical approaches.
Collapse
Affiliation(s)
- Eric Reiter
- CNRS, IFCE, INRAE, Université de Tours, PRC, 37380 Nouzilly, France - Inria, Centre de recherche Inria Saclay-Île-de-France, 91120 Palaiseau, France
| |
Collapse
|
42
|
Eiger DS, Pham U, Gardner J, Hicks C, Rajagopal S. GPCR Systems Pharmacology: A Different Perspective on the Development of Biased Therapeutics. Am J Physiol Cell Physiol 2022; 322:C887-C895. [PMID: 35196164 PMCID: PMC9037395 DOI: 10.1152/ajpcell.00449.2021] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
G protein-coupled receptors (GPCRs) are the largest family of transmembrane receptors and are the target of approximately one-third of all Food and Drug Administration (FDA)-approved pharmaceutical drugs. GPCRs interact with many transducers, such as heterotrimeric G proteins, GPCR kinases (GRKs), and β-arrestins. Recent experiments have demonstrated that some ligands can activate distinct effector proteins over others, a phenomenon termed biased agonism. These discoveries have raised the potential of developing drugs which preferentially activate therapeutic signaling pathways over those that lead to deleterious side effects. However, to date, only one biased GPCR therapeutic has received FDA approval and many others have either failed to meet their specified primary endpoints and or demonstrate superiority over currently available treatments. Additionally, there is a lack of understanding regarding how biased agonism measured at a GPCR leads to specific downstream physiologic responses. Here, we briefly summarize the history and current status of biased agonism at GPCRs and suggest adoption of a systems pharmacology approach upon which to develop GPCR-targeted drugs that demonstrate heightened therapeutic efficacy with improved side effect profiles.
Collapse
Affiliation(s)
- Dylan Scott Eiger
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, United States
| | - Uyen Pham
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, United States
| | - Julia Gardner
- Trinty College, Duke University, Durham, NC, United States
| | - Chloe Hicks
- Trinty College, Duke University, Durham, NC, United States
| | - Sudarshan Rajagopal
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, United States
- Department of Medicine, Duke University School of Medicine, Durham, NC, United States
| |
Collapse
|
43
|
Visualizing G protein-coupled receptor homomers using photoactivatable dye localization microscopy. Methods Cell Biol 2022; 169:27-41. [DOI: 10.1016/bs.mcb.2021.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
44
|
Gazdarica M, Noda J, Durydivka O, Novosadova V, Mackie K, Pin JP, Prezeau L, Blahos J. SGIP1 modulates kinetics and interactions of the cannabinoid receptor 1 and G protein-coupled receptor kinase 3 signalosome. J Neurochem 2021; 160:625-642. [PMID: 34970999 PMCID: PMC9306533 DOI: 10.1111/jnc.15569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 12/23/2021] [Accepted: 12/23/2021] [Indexed: 12/05/2022]
Abstract
Cannabinoid receptor 1 (CB1R), a G protein‐coupled receptor, plays a fundamental role in synaptic plasticity. Abnormal activity and deregulation of CB1R signaling result in a broad spectrum of pathological conditions. CB1R signaling is regulated by receptor desensitization including phosphorylation of residues within the intracellular C terminus by G protein‐coupled receptor kinases (GRKs) that may lead to endocytosis. Furthermore, CB1R signaling is regulated by the protein Src homology 3‐domain growth factor receptor‐bound 2‐like (SGIP1) that hinders receptor internalization, while enhancing CB1R association with β‐arrestin. It has been postulated that phosphorylation of two clusters of serine/threonine residues, 425SMGDS429 and 460TMSVSTDTS468, within the CB1R C‐tail controls dynamics of the association between receptor and its interaction partners involved in desensitization. Several molecular determinants of these events are still not well understood. We hypothesized that the dynamics of these interactions are modulated by SGIP1. Using a panel of CB1Rs mutated in the aforementioned serine and threonine residues, together with an array of Bioluminescence energy transfer‐based (BRET) sensors, we discovered that GRK3 forms complexes with Gβγ subunits of G proteins that largely independent of GRK3’s interaction with CB1R. Furthermore, CB1R interacts only with activated GRK3. Interestingly, phosphorylation of two specific residues on CB1R triggers GRK3 dissociation from the desensitized receptor. SGIP1 increases the association of GRK3 with Gβγ subunits of G proteins, and with CB1R. Altogether, our data suggest that the CB1R signalosome complex is dynamically controlled by sequential phosphorylation of the receptor C‐tail and is also modified by SGIP1.
Collapse
Affiliation(s)
- Matej Gazdarica
- Institute of Molecular Genetics, Czech Academy of Science, Videnska 1083, 14220, Prague 4, Czech Republic.,Institut de Génomique Fonctionnelle, Université Montpellier 1 and 2, Montpellier, France
| | - Judith Noda
- Institute of Molecular Genetics, Czech Academy of Science, Videnska 1083, 14220, Prague 4, Czech Republic
| | - Oleh Durydivka
- Institute of Molecular Genetics, Czech Academy of Science, Videnska 1083, 14220, Prague 4, Czech Republic
| | - Vendula Novosadova
- The Czech Center for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prumyslova 595, 252 50, Vestec, Czech Republic
| | - Ken Mackie
- Department of Psychological and Brain Sciences, Gill Center for Molecular Bioscience, Indiana University, 1101 E. 10th St, Bloomington, IN, USA, 47405
| | - Jean-Philippe Pin
- Institut de Génomique Fonctionnelle, Université Montpellier 1 and 2, Montpellier, France
| | - Laurent Prezeau
- Institut de Génomique Fonctionnelle, Université Montpellier 1 and 2, Montpellier, France
| | - Jaroslav Blahos
- Institute of Molecular Genetics, Czech Academy of Science, Videnska 1083, 14220, Prague 4, Czech Republic
| |
Collapse
|
45
|
Karnam PC, Vishnivetskiy SA, Gurevich VV. Structural Basis of Arrestin Selectivity for Active Phosphorylated G Protein-Coupled Receptors. Int J Mol Sci 2021; 22:ijms222212481. [PMID: 34830362 PMCID: PMC8621391 DOI: 10.3390/ijms222212481] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/13/2021] [Accepted: 11/15/2021] [Indexed: 02/06/2023] Open
Abstract
Arrestins are a small family of proteins that bind G protein-coupled receptors (GPCRs). Arrestin binds to active phosphorylated GPCRs with higher affinity than to all other functional forms of the receptor, including inactive phosphorylated and active unphosphorylated. The selectivity of arrestins suggests that they must have two sensors, which detect receptor-attached phosphates and the active receptor conformation independently. Simultaneous engagement of both sensors enables arrestin transition into a high-affinity receptor-binding state. This transition involves a global conformational rearrangement that brings additional elements of the arrestin molecule, including the middle loop, in contact with a GPCR, thereby stabilizing the complex. Here, we review structural and mutagenesis data that identify these two sensors and additional receptor-binding elements within the arrestin molecule. While most data were obtained with the arrestin-1-rhodopsin pair, the evidence suggests that all arrestins use similar mechanisms to achieve preferential binding to active phosphorylated GPCRs.
Collapse
|
46
|
Pandey S, Kumari P, Baidya M, Kise R, Cao Y, Dwivedi-Agnihotri H, Banerjee R, Li XX, Cui CS, Lee JD, Kawakami K, Maharana J, Ranjan A, Chaturvedi M, Jhingan GD, Laporte SA, Woodruff TM, Inoue A, Shukla AK. Intrinsic bias at non-canonical, β-arrestin-coupled seven transmembrane receptors. Mol Cell 2021; 81:4605-4621.e11. [PMID: 34582793 PMCID: PMC7612807 DOI: 10.1016/j.molcel.2021.09.007] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 07/13/2021] [Accepted: 09/02/2021] [Indexed: 12/31/2022]
Abstract
G-protein-coupled receptors (GPCRs), also known as seven transmembrane receptors (7TMRs), typically interact with two distinct signal-transducers, i.e., G proteins and β-arrestins (βarrs). Interestingly, there are some non-canonical 7TMRs that lack G protein coupling but interact with barrs, although an understanding of their transducer coupling preference, downstream signaling, and structural mechanism remains elusive. Here, we characterize two such non-canonical 7TMRs, namely, the decoy D6 receptor (D6R) and the complement C5a receptor subtype 2 (C5aR2), in parallel with their canonical GPCR counterparts. We discover that D6R and C5aR2 efficiently couple to βarrs, exhibit distinct engagement of GPCR kinases (GRKs), and activate non-canonical downstream signaling pathways. We also observe that βarrs adopt distinct conformations for D6R and C5aR2, compared to their canonical GPCR counterparts, in response to common natural agonists. Our study establishes D6R and C5aR2 as βarr-coupled 7TMRs and provides key insights into their regulation and signaling with direct implication for biased agonism.
Collapse
Affiliation(s)
- Shubhi Pandey
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Punita Kumari
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Mithu Baidya
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Ryoji Kise
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
| | - Yubo Cao
- Department of Pharmacology and Therapeutics, McGill University, Montréal, QC H3G 1Y6, Canada
| | - Hemlata Dwivedi-Agnihotri
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Ramanuj Banerjee
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Xaria X Li
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane 4072, Australia
| | - Cedric S Cui
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane 4072, Australia
| | - John D Lee
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane 4072, Australia
| | - Kouki Kawakami
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
| | - Jagannath Maharana
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Ashutosh Ranjan
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Madhu Chaturvedi
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | | | - Stéphane A Laporte
- Department of Pharmacology and Therapeutics, McGill University, Montréal, QC H3G 1Y6, Canada; Department of Medicine, McGill University Health Center, McGill University, Montréal, QC H4A 3J1, Canada
| | - Trent M Woodruff
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane 4072, Australia; Queensland Brain Institute, The University of Queensland, Brisbane 4072, Australia
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
| | - Arun K Shukla
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India.
| |
Collapse
|
47
|
Pomorski A, Krężel A. Biarsenical fluorescent probes for multifunctional site-specific modification of proteins applicable in life sciences: an overview and future outlook. Metallomics 2021; 12:1179-1207. [PMID: 32658234 DOI: 10.1039/d0mt00093k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Fluorescent modification of proteins of interest (POI) in living cells is desired to study their behaviour and functions in their natural environment. In a perfect setting it should be easy to perform, inexpensive, efficient and site-selective. Although multiple chemical and biological methods have been developed, only a few of them are applicable for cellular studies thanks to their appropriate physical, chemical and biological characteristics. One such successful system is a tetracysteine tag/motif and its selective biarsenical binders (e.g. FlAsH and ReAsH). Since its discovery in 1998 by Tsien and co-workers, this method has been enhanced and revolutionized in terms of its efficiency, formed complex stability and breadth of application. Here, we overview the whole field of knowledge, while placing most emphasis on recent reports. We showcase the improvements of classical biarsenical probes with various optical properties as well as multifunctional molecules that add new characteristics to proteins. We also present the evolution of affinity tags and motifs of biarsenical probes demonstrating much more possibilities in cellular applications. We summarize protocols and reported observations so both beginners and advanced users of biarsenical probes can troubleshoot their experiments. We address the concerns regarding the safety of biarsenical probe application. We showcase examples in virology, studies on receptors or amyloid aggregation, where application of biarsenical probes allowed observations that previously were not possible. We provide a summary of current applications ranging from bioanalytical sciences to allosteric control of selected proteins. Finally, we present an outlook to encourage more researchers to use these magnificent probes.
Collapse
Affiliation(s)
- Adam Pomorski
- Department of Chemical Biology, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383 Wrocław, Poland.
| | | |
Collapse
|
48
|
Grunhaus D, Friedler A, Hurevich M. Automated Synthesis of Heavily Phosphorylated Peptides. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100691] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Dana Grunhaus
- The Institute of Chemistry The Hebrew University of Jerusalem Edmond J. Safra Campus, Givat Ram Jerusalem 9190401 Israel
| | - Assaf Friedler
- The Institute of Chemistry The Hebrew University of Jerusalem Edmond J. Safra Campus, Givat Ram Jerusalem 9190401 Israel
| | - Mattan Hurevich
- The Institute of Chemistry The Hebrew University of Jerusalem Edmond J. Safra Campus, Givat Ram Jerusalem 9190401 Israel
| |
Collapse
|
49
|
Oyagawa CRM, Grimsey NL. Cannabinoid receptor CB 1 and CB 2 interacting proteins: Techniques, progress and perspectives. Methods Cell Biol 2021; 166:83-132. [PMID: 34752341 DOI: 10.1016/bs.mcb.2021.06.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Cannabinoid receptors 1 and 2 (CB1 and CB2) are implicated in a range of physiological processes and have gained attention as promising therapeutic targets for a number of diseases. Protein-protein interactions play an integral role in modulating G protein-coupled receptor (GPCR) expression, subcellular distribution and signaling, and the identification and characterization of these will not only improve our understanding of GPCR function and biology, but may provide a novel avenue for therapeutic intervention. A variety of techniques are currently being used to investigate GPCR protein-protein interactions, including Förster/fluorescence and bioluminescence resonance energy transfer (FRET and BRET), proximity ligation assay (PLA), and bimolecular fluorescence complementation (BiFC). However, the reliable application of these methodologies is dependent on the use of appropriate controls and the consideration of the physiological context. Though not as extensively characterized as some other GPCRs, the investigation of CB1 and CB2 interacting proteins is a growing area of interest, and a range of interacting partners have been identified to date. This review summarizes the current state of the literature regarding the cannabinoid receptor interactome, provides commentary on the methodologies and techniques utilized, and discusses future perspectives.
Collapse
Affiliation(s)
- Caitlin R M Oyagawa
- Department of Pharmacology and Clinical Pharmacology, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand; Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Natasha L Grimsey
- Department of Pharmacology and Clinical Pharmacology, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand; Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand.
| |
Collapse
|
50
|
Jean-Alphonse FG, Sposini S. Confocal and TIRF microscopy based approaches to visualize arrestin trafficking in living cells. Methods Cell Biol 2021; 166:179-203. [PMID: 34752332 DOI: 10.1016/bs.mcb.2021.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Arrestins are key proteins that serve as versatile scaffolds to control and mediate G protein coupled receptors (GPCR) activity. Arrestin control of GPCR functions involves their recruitment from the cytosol to plasma membrane-localized GPCRs and to endosomal compartments, where they mediate internalization, sorting and signaling of GPCRs. Several methods can be used to monitor trafficking of arrestins; however, live fluorescence imaging remains the method of choice to both assess arrestin recruitment to ligand-activated receptors and to monitor its dynamic subcellular localization. Here, we present two approaches based on Total Internal Fluorescence (TIRF) microscopy and confocal microscopy to visualize arrestin trafficking in live cells in real time and to assess their co-localization with the GPCR of interest and their localization at specific subcellular locations.
Collapse
Affiliation(s)
- Frédéric Gaëtan Jean-Alphonse
- CNRS, IFCE, INRAE, Université de Tours, PRC, Nouzilly, France; Université Paris-Saclay, Inria, Inria Saclay-Île-de-France, Palaiseau, France
| | - Silvia Sposini
- Department of Metabolism, Digestion and Reproduction, Institute of Reproductive and Developmental Biology, Imperial College London, London, United Kingdom; University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, Bordeaux, France.
| |
Collapse
|