1
|
Kinreich S, Bialer-Tsypin A, Viner-Breuer R, Keshet G, Suhler R, Lim PSL, Golan-Lev T, Yanuka O, Turjeman A, Ram O, Meshorer E, Egli D, Yilmaz A, Benvenisty N. Genome-wide screening reveals essential roles for HOX genes and imprinted genes during caudal neurogenesis of human embryonic stem cells. Stem Cell Reports 2024; 19:1598-1619. [PMID: 39486407 PMCID: PMC11589199 DOI: 10.1016/j.stemcr.2024.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 09/30/2024] [Accepted: 09/30/2024] [Indexed: 11/04/2024] Open
Abstract
Mapping the essential pathways for neuronal differentiation can uncover new therapeutics and models for neurodevelopmental disorders. We thus utilized a genome-wide loss-of-function library in haploid human embryonic stem cells, differentiated into caudal neuronal cells. We show that essential genes for caudal neurogenesis are enriched for secreted and membrane proteins and that a large group of neurological conditions, including neurodegenerative disorders, manifest early neuronal phenotypes. Furthermore, essential transcription factors are enriched with homeobox (HOX) genes demonstrating synergistic regulation and surprising non-redundant functions between HOXA6 and HOXB6 paralogs. Moreover, we establish the essentialome of imprinted genes during neurogenesis, demonstrating that maternally expressed genes are non-essential in pluripotent cells and their differentiated germ layers, yet several are essential for neuronal development. These include Beckwith-Wiedemann syndrome- and Angelman syndrome-related genes, for which we suggest a novel regulatory pathway. Overall, our work identifies essential pathways for caudal neuronal differentiation and stage-specific phenotypes of neurological disorders.
Collapse
Affiliation(s)
- Shay Kinreich
- The Azrieli Center for Stem Cells and Genetic Research, Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel; Department of Genetics, Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel
| | - Anna Bialer-Tsypin
- The Azrieli Center for Stem Cells and Genetic Research, Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel; Department of Genetics, Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel
| | - Ruth Viner-Breuer
- The Azrieli Center for Stem Cells and Genetic Research, Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel; Department of Genetics, Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel
| | - Gal Keshet
- The Azrieli Center for Stem Cells and Genetic Research, Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel; Department of Genetics, Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel
| | - Roni Suhler
- The Azrieli Center for Stem Cells and Genetic Research, Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel; Department of Genetics, Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel
| | - Patrick Siang Lin Lim
- Department of Genetics, Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel
| | - Tamar Golan-Lev
- The Azrieli Center for Stem Cells and Genetic Research, Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel; Department of Genetics, Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel
| | - Ofra Yanuka
- The Azrieli Center for Stem Cells and Genetic Research, Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel; Department of Genetics, Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel
| | - Adi Turjeman
- The Center for Genomic Technologies, Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel
| | - Oren Ram
- Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel
| | - Eran Meshorer
- Department of Genetics, Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel; The Edmond and Lily Center for Brain Sciences (ELSC), The Hebrew University, Jerusalem 91904, Israel
| | - Dieter Egli
- Naomi Berrie Diabetes Center & Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Atilgan Yilmaz
- Leuven Stem Cell Institute, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium.
| | - Nissim Benvenisty
- The Azrieli Center for Stem Cells and Genetic Research, Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel; Department of Genetics, Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel.
| |
Collapse
|
2
|
Nissenbaum J, Segal E, Philip H, Cashman R, Golan-Lev T, Reubinoff BE, Turjeman A, Yanuka O, Lezmi E, Kopper O, Benvenisty N. Predicting tumour resistance to paclitaxel and carboplatin utilising genome-wide screening in haploid human embryonic stem cells. Cell Prolif 2024:e13771. [PMID: 39523021 DOI: 10.1111/cpr.13771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/02/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Taxanes and platinum molecules, specifically paclitaxel and carboplatin, are widely used anticancer drugs that induce cell death and serve as first-line chemotherapy for various cancer types. Despite the efficient effect of both drugs on cancer cell proliferation, many tumours have innate resistance against paclitaxel and carboplatin, which leads to inefficient treatment and poor survival rates. Haploid human embryonic stem cells (hESCs) are a novel and robust platform for genetic screening. To gain a comprehensive view of genes that affect or regulate paclitaxel and carboplatin resistance, genome-wide loss-of-function screens in haploid hESCs were performed. Both paclitaxel and carboplatin screens have yielded selected plausible gene lists and pathways relevant to resistance prediction. The effects of mutations in selected genes on the resistance to the drugs were demonstrated. Based on the results, an algorithm that can predict resistance to paclitaxel or carboplatin was developed. Applying the algorithm to the DNA mutation profile of patients' tumours enabled the separation of sensitive versus resistant patients, thus, providing a prediction tool. As the anticancer drugs arsenal can offer alternatives in case of resistance to either paclitaxel or carboplatin, an early prediction can provide a significant advantage and should improve treatment. The algorithm assists this unmet need and helps predict whether a patient will respond to the treatment and may have an immediate clinically actionable application.
Collapse
Affiliation(s)
| | - Emanuel Segal
- The Azrieli Center for Stem Cells and Genetic Research, Department of Genetics, Silberman Institute of Life Sciences, The Hebrew University, Jerusalem, Israel
- Hadassah Stem Cell Research Center, Goldyne Savad Institute of Gene Therapy, Department of Obstetrics and Gynecology, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | | | | | - Tamar Golan-Lev
- The Azrieli Center for Stem Cells and Genetic Research, Department of Genetics, Silberman Institute of Life Sciences, The Hebrew University, Jerusalem, Israel
| | - Benjamin E Reubinoff
- Hadassah Stem Cell Research Center, Goldyne Savad Institute of Gene Therapy, Department of Obstetrics and Gynecology, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Adi Turjeman
- The Center for Genomic Technologies, The Hebrew University, Jerusalem, Israel
| | - Ofra Yanuka
- The Azrieli Center for Stem Cells and Genetic Research, Department of Genetics, Silberman Institute of Life Sciences, The Hebrew University, Jerusalem, Israel
| | | | | | - Nissim Benvenisty
- NewStem LTD, Jerusalem, Israel
- The Azrieli Center for Stem Cells and Genetic Research, Department of Genetics, Silberman Institute of Life Sciences, The Hebrew University, Jerusalem, Israel
| |
Collapse
|
3
|
Ishida-Ishihara S, Yaguchi K, Miura S, Nomura R, Wang Q, Yoshizawa K, Sato K, Yang G, Veszelyi K, Banhegyi G, Margittai E, Uehara R. Fragility of ER homeostatic regulation underlies haploid instability in human somatic cells. J Biol Chem 2024; 300:107909. [PMID: 39433129 DOI: 10.1016/j.jbc.2024.107909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 09/29/2024] [Accepted: 10/08/2024] [Indexed: 10/23/2024] Open
Abstract
Mammalian somatic cells are generally unstable in the haploid state, resulting in haploid-to-diploid conversion within a short time frame. However, cellular and molecular principles that limit the sustainability of somatic haploidy remain unknown. In this study, we found the haploidy-linked vulnerability to endoplasmic reticulum (ER) stress as a critical cause of haploid intolerance in human somatic cells. Pharmacological induction of ER stress selectively induced apoptosis in haploid cells, facilitating the replacement of haploids by coexisting diploidized cells in a caspase-dependent manner. Biochemical analyses revealed that unfolded protein response (UPR) was activated with similar dynamics between haploids and diploids upon ER stress induction. However, haploids were less efficient in solving proteotoxic stress, resulting in a bias toward a proapoptotic mode of UPR signaling. Artificial replenishment of chaperone function substantially alleviated the haploidy-linked upregulation of proapoptotic signaling and improved haploid cell retention under tunicamycin-induced ER stress. These data demonstrate that the ER stress-driven haploid instability stems from inefficient proteostatic control that alters the functionality of UPR to cause apoptosis selectively in haploids. Interestingly, haploids suffered a higher level of protein aggregation even in unperturbed conditions, and the long-term stability of the haploid state was significantly improved by alleviating their natural proteotoxicity. Based on these results, we propose that the haploidy-specific vulnerability to ER stress creates a fundamental cause of haploid intolerance in mammalian somatic cells. Our findings provide new insight into the principle that places a stringent restriction on the evolution of animal life cycles.
Collapse
Affiliation(s)
- Sumire Ishida-Ishihara
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan; Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Kan Yaguchi
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan; Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Sena Miura
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Ryoto Nomura
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - QiJiao Wang
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Koya Yoshizawa
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Kimino Sato
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Guang Yang
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Krisztina Veszelyi
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Gabor Banhegyi
- Institute of Biochemistry and Molecular Biology, Semmelweis University, Budapest, Hungary
| | - Eva Margittai
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Ryota Uehara
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan; Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
4
|
Yaguchi K, Saito D, Menon T, Matsura A, Hosono M, Mizutani T, Kotani T, Nair S, Uehara R. Haploidy-linked cell proliferation defects limit larval growth in zebrafish. Open Biol 2024; 14:240126. [PMID: 39378986 PMCID: PMC11461072 DOI: 10.1098/rsob.240126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 10/10/2024] Open
Abstract
Haploid larvae in non-mammalian vertebrates are lethal, with characteristic organ growth retardation collectively called 'haploid syndrome'. In contrast to mammals, whose haploid intolerance is attributed to imprinting misregulation, the cellular principle of haploidy-linked defects in non-mammalian vertebrates remains unknown. Here, we investigated cellular defects that disrupt the ontogeny of gynogenetic haploid zebrafish larvae. Unlike diploid control larvae, haploid larvae manifested unscheduled cell death at the organogenesis stage, attributed to haploidy-linked p53 upregulation. Moreover, we found that haploid larvae specifically suffered the gradual aggravation of mitotic spindle monopolarization during 1-3 days post-fertilization, causing spindle assembly checkpoint-mediated mitotic arrest throughout the entire body. High-resolution imaging revealed that this mitotic defect accompanied the haploidy-linked centrosome loss occurring concomitantly with the gradual decrease in larval cell size. Either resolution of mitotic arrest or depletion of p53 partially improved organ growth in haploid larvae. Based on these results, we propose that haploidy-linked mitotic defects and cell death are parts of critical cellular causes shared among vertebrates that limit the larval growth in the haploid state, contributing to an evolutionary constraint on allowable ploidy status in the vertebrate life cycle.
Collapse
Affiliation(s)
- Kan Yaguchi
- Graduate School of Life Science, Hokkaido University, Kita 21, Nishi 11, Kita-Ku, Sapporo001-0021, Japan
- Faculty of Advanced Life Science, Hokkaido University, Kita 21, Nishi 11, Kita-Ku, Sapporo001-0021, Japan
| | - Daiki Saito
- Graduate School of Life Science, Hokkaido University, Kita 21, Nishi 11, Kita-Ku, Sapporo001-0021, Japan
| | - Triveni Menon
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Akira Matsura
- Graduate School of Life Science, Hokkaido University, Kita 21, Nishi 11, Kita-Ku, Sapporo001-0021, Japan
| | - Miyu Hosono
- Graduate School of Life Science, Hokkaido University, Kita 21, Nishi 11, Kita-Ku, Sapporo001-0021, Japan
| | - Takeomi Mizutani
- Department of Life Science and Technology, Faculty of Engineering, Hokkai-Gakuen University, Minami 26, Nishi 11, Chuo-ku, Sapporo064-0926, Japan
| | - Tomoya Kotani
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Kita 10, Nishi 8, Kita-Ku, Sapporo060-0810, Japan
| | - Sreelaja Nair
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai400076, India
| | - Ryota Uehara
- Graduate School of Life Science, Hokkaido University, Kita 21, Nishi 11, Kita-Ku, Sapporo001-0021, Japan
- Faculty of Advanced Life Science, Hokkaido University, Kita 21, Nishi 11, Kita-Ku, Sapporo001-0021, Japan
| |
Collapse
|
5
|
Chadha Y, Khurana A, Schmoller KM. Eukaryotic cell size regulation and its implications for cellular function and dysfunction. Physiol Rev 2024; 104:1679-1717. [PMID: 38900644 PMCID: PMC11495193 DOI: 10.1152/physrev.00046.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 05/24/2024] [Accepted: 06/19/2024] [Indexed: 06/22/2024] Open
Abstract
Depending on cell type, environmental inputs, and disease, the cells in the human body can have widely different sizes. In recent years, it has become clear that cell size is a major regulator of cell function. However, we are only beginning to understand how the optimization of cell function determines a given cell's optimal size. Here, we review currently known size control strategies of eukaryotic cells and the intricate link of cell size to intracellular biomolecular scaling, organelle homeostasis, and cell cycle progression. We detail the cell size-dependent regulation of early development and the impact of cell size on cell differentiation. Given the importance of cell size for normal cellular physiology, cell size control must account for changing environmental conditions. We describe how cells sense environmental stimuli, such as nutrient availability, and accordingly adapt their size by regulating cell growth and cell cycle progression. Moreover, we discuss the correlation of pathological states with misregulation of cell size and how for a long time this was considered a downstream consequence of cellular dysfunction. We review newer studies that reveal a reversed causality, with misregulated cell size leading to pathophysiological phenotypes such as senescence and aging. In summary, we highlight the important roles of cell size in cellular function and dysfunction, which could have major implications for both diagnostics and treatment in the clinic.
Collapse
Affiliation(s)
- Yagya Chadha
- Institute of Functional Epigenetics, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München, Neuherberg, Germany
| | - Arohi Khurana
- Institute of Functional Epigenetics, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München, Neuherberg, Germany
| | - Kurt M Schmoller
- Institute of Functional Epigenetics, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München, Neuherberg, Germany
| |
Collapse
|
6
|
Edwards MM, Wang N, Sagi I, Kinreich S, Benvenisty N, Gerhardt J, Egli D, Koren A. Parent-of-origin-specific DNA replication timing is confined to large imprinted regions. Cell Rep 2024; 43:114700. [PMID: 39235941 DOI: 10.1016/j.celrep.2024.114700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/19/2024] [Accepted: 08/14/2024] [Indexed: 09/07/2024] Open
Abstract
Genomic imprinting involves differential DNA methylation and gene expression between homologous paternal and maternal loci. It remains unclear, however, whether DNA replication also shows parent-of-origin-specific patterns at imprinted or other genomic regions. Here, we investigate genome-wide asynchronous DNA replication utilizing uniparental human embryonic stem cells containing either maternal-only (parthenogenetic) or paternal-only (androgenetic) DNA. Four clusters of imprinted genes exhibited differential replication timing based on parent of origin, while the remainder of the genome, 99.82%, showed no significant replication asynchrony between parental origins. Active alleles in imprinted gene clusters replicated earlier than their inactive counterparts. At the Prader-Willi syndrome locus, replication asynchrony spanned virtually the entirety of S phase. Replication asynchrony was carried through differentiation to neuronal precursor cells in a manner consistent with gene expression. This study establishes asynchronous DNA replication as a hallmark of large imprinted gene clusters.
Collapse
Affiliation(s)
- Matthew M Edwards
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Ning Wang
- Department of Pediatrics and Naomi Berrie Diabetes Center, Columbia University, New York, NY 10032, USA; Columbia University Stem Cell Initiative, New York, NY 10032, USA
| | - Ido Sagi
- The Azrieli Center for Stem Cells and Genetic Research, Department of Genetics, Silberman Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel
| | - Shay Kinreich
- The Azrieli Center for Stem Cells and Genetic Research, Department of Genetics, Silberman Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel
| | - Nissim Benvenisty
- The Azrieli Center for Stem Cells and Genetic Research, Department of Genetics, Silberman Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel.
| | - Jeannine Gerhardt
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, New York, NY 10065, USA; Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY 10065, USA.
| | - Dieter Egli
- Department of Pediatrics and Naomi Berrie Diabetes Center, Columbia University, New York, NY 10032, USA; Columbia University Stem Cell Initiative, New York, NY 10032, USA.
| | - Amnon Koren
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA; Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA.
| |
Collapse
|
7
|
Zhang W, Chen H, Liu W, Jia K, Yi M. Characterizing Marine Medaka ( Oryzias melastigma) Haploid Embryonic Stem Cells: A Valuable Tool for Marine Fish Genetic Research. Animals (Basel) 2024; 14:2739. [PMID: 39335329 PMCID: PMC11428384 DOI: 10.3390/ani14182739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/14/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024] Open
Abstract
Haploid embryonic stem cells (ESCs), which combine the properties of haploidy and pluripotency, hold significant potential for advancing developmental biology and reproductive technology. However, while previous research has largely focused on haploid ESCs in freshwater species like Japanese medaka (Oryzias latipes), little is known about their counterparts in marine species. This study hypothesizes that haploid ESCs from marine fish could offer unique insights and tools for genetic and virological research. To address this, we successfully established and characterized a novel haploid ESC line, hMMES1, derived from marine medaka (Oryzias melastigma). The hMMES1 cells contain 24 chromosomes, exhibit core stem cell characteristics, and express key pluripotency markers. In vitro, hMMES1 cells form embryonic bodies (EBs) capable of differentiating into the three germ layers. In vivo, hMMES1 cells were successfully transplanted into marine medaka and zebrafish, resulting in the generation of interspecies and interordinal chimeras. Additionally, hMMES1 cells demonstrate high efficiency in transfection and transduction, and show susceptibility to major aquaculture viruses, nodavirus (NNV) and iridovirus (SGIV). These findings suggest that hMMES1 cells represent a valuable model for genetic manipulation and virological studies in marine fish species.
Collapse
Affiliation(s)
- Wanwan Zhang
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 519082, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou 519082, China
| | - Huiquan Chen
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 519082, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou 519082, China
| | - Wei Liu
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 519082, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou 519082, China
| | - Kuntong Jia
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 519082, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou 519082, China
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou 519082, China
| | - Meisheng Yi
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 519082, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou 519082, China
| |
Collapse
|
8
|
Smith LC, Paredes LA, Sampaio RV, Nociti RP, Therrien J, Meirelles FV. Haploid embryos and embryonic stem cells to produce offspring with predetermined parental genomes in cattle. Anim Reprod 2024; 21:e20240030. [PMID: 39175994 PMCID: PMC11340792 DOI: 10.1590/1984-3143-ar2024-0030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/13/2024] [Indexed: 08/24/2024] Open
Abstract
Selection strategies are performed post-fertilization when the random combination of paternal and maternal genomes has already occurred. It would be greatly advantageous to eliminate meiotic uncertainty by selecting genetically superior gametes before fertilization. To achieve this goal, haploid embryonic cells and embryonic stem cell lineages could be derived, genotyped, and used to substitute gametes. On the paternal side, androgenetic development can be achieved by removing the maternal chromosomes from the oocyte before or after fertilization. We have shown that once developed into an embryo, haploid cells can be removed for genotyping and, if carrying the selected genome, be used to replace sperm at fertilization. A similar strategy can be used on the maternal side by activating the oocyte parthenogenetically and using some embryonic cells for genotyping while the remaining are used to produce diploid embryos by fertilization. Placed together, both androgenetic and parthenogenetic haploid cells that have been genotyped to identify optimal genomes can be used to produce offspring with predetermined genomes. Successes and problems in developing such a breeding platform to achieve this goal are described and discussed below.
Collapse
Affiliation(s)
- Lawrence Charles Smith
- Centre de Recherche en Reproduction et Fértilité, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada
- Laboratório de Morfofisiologia Molecular e Desenvolvimento, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo – USP, Pirassununga, SP, Brasil
| | - Luis Aguila Paredes
- Laboratory of Reproduction, Centre of Reproductive Biotechnology – CEBIOR-BIOREN, Faculty of Agriculture and Environmental Sciences, Universidad de la Frontera, Temuco, Chile
| | - Rafael Vilar Sampaio
- Centre de Recherche en Reproduction et Fértilité, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada
| | - Ricardo Perecin Nociti
- Centre de Recherche en Reproduction et Fértilité, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada
| | - Jacinthe Therrien
- Centre de Recherche en Reproduction et Fértilité, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada
| | - Flavio Vieira Meirelles
- Laboratório de Morfofisiologia Molecular e Desenvolvimento, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo – USP, Pirassununga, SP, Brasil
| |
Collapse
|
9
|
Zhou H, Ye P, Xiong W, Duan X, Jing S, He Y, Zeng Z, Wei Y, Ye Q. Genome-scale CRISPR-Cas9 screening in stem cells: theories, applications and challenges. Stem Cell Res Ther 2024; 15:218. [PMID: 39026343 PMCID: PMC11264826 DOI: 10.1186/s13287-024-03831-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 07/02/2024] [Indexed: 07/20/2024] Open
Abstract
Due to the rapid development of stem cell technology, there have been tremendous advances in molecular biological and pathological research, cell therapy as well as organoid technologies over the past decades. Advances in genome editing technology, particularly the discovery of clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-related protein 9 (Cas9), have further facilitated the rapid development of stem cell researches. The CRISPR-Cas9 technology now goes beyond creating single gene editing to enable the inhibition or activation of endogenous gene loci by fusing inhibitory (CRISPRi) or activating (CRISPRa) domains with deactivated Cas9 proteins (dCas9). These tools have been utilized in genome-scale CRISPRi/a screen to recognize hereditary modifiers that are synergistic or opposing to malady mutations in an orderly and fair manner, thereby identifying illness mechanisms and discovering novel restorative targets to accelerate medicinal discovery investigation. However, the application of this technique is still relatively rare in stem cell research. There are numerous specialized challenges in applying large-scale useful genomics approaches to differentiated stem cell populations. Here, we present the first comprehensive review on CRISPR-based functional genomics screening in the field of stem cells, as well as practical considerations implemented in a range of scenarios, and exploration of the insights of CRISPR-based screen into cell fates, disease mechanisms and cell treatments in stem cell models. This review will broadly benefit scientists, engineers and medical practitioners in the areas of stem cell research.
Collapse
Affiliation(s)
- Heng Zhou
- Center of Regenerative Medicine and Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China
| | - Peng Ye
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China
| | - Wei Xiong
- Center of Regenerative Medicine and Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China
| | - Xingxiang Duan
- Center of Regenerative Medicine and Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China
| | - Shuili Jing
- Center of Regenerative Medicine and Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China
| | - Yan He
- Institute of Regenerative and Translational Medicine, Tianyou Hospital of Wuhan University of Science and Technology, Wuhan, 430064, Hubei, People's Republic of China
- Department of Oral and Maxillofacial Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Zhi Zeng
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China.
| | - Yen Wei
- The Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, People's Republic of China.
| | - Qingsong Ye
- Center of Regenerative Medicine and Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China.
| |
Collapse
|
10
|
He W, Tang H, Li Y, Wang M, Li Y, Chen J, Gao S, Han Z. Overexpression of Let-7a mitigates diploidization in mouse androgenetic haploid embryonic stem cells. iScience 2024; 27:109769. [PMID: 38711447 PMCID: PMC11070717 DOI: 10.1016/j.isci.2024.109769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/23/2024] [Accepted: 04/15/2024] [Indexed: 05/08/2024] Open
Abstract
Mouse androgenetic haploid embryonic stem cells (mAG-haESCs) can be utilized to uncover gene functions, especially those of genes with recessive effects, and to produce semicloned mice when injected into mature oocytes. However, mouse haploid cells undergo rapid diploidization during long-term culture in vitro and subsequently lose the advantages of haploidy, and the factors that drive diploidization are poorly understood. In this study, we compared the small RNAs (sRNAs) of mAG-haESCs, normal embryonic stem cells (ESCs), and mouse round spermatids by high-throughput sequencing and identified distinct sRNA profiles. Several let-7 family members and miR-290-295 cluster microRNAs (miRNAs) were found significantly differentially transcribed. Knockdown and overexpression experiments showed that let-7a and let-7g suppress diploidization while miR-290a facilitates diploidization. Our study revealed the unique sRNA profile of mAG-haESCs and demonstrated that let-7a overexpression can mitigate diploidization in mAG-haESCs. These findings will help us to better understand mAG-haESCs and utilize them as tools in the future.
Collapse
Affiliation(s)
- Wenteng He
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200120, China
| | - Hongming Tang
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200120, China
| | - Yuanyuan Li
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200120, China
| | - Mingzhu Wang
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200120, China
| | - Yuanyuan Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jiayu Chen
- Clinical and Translation Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Shaorong Gao
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200120, China
- Clinical and Translation Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Zhiming Han
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| |
Collapse
|
11
|
Wang HS, Ma XR, Guo YH. Development and application of haploid embryonic stem cells. Stem Cell Res Ther 2024; 15:116. [PMID: 38654389 PMCID: PMC11040874 DOI: 10.1186/s13287-024-03727-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 04/10/2024] [Indexed: 04/25/2024] Open
Abstract
Haploid cells are a kind of cells with only one set of chromosomes. Compared with traditional diploid cells, haploid cells have unique advantages in gene screening and drug-targeted therapy, due to their phenotype being equal to the genotype. Embryonic stem cells are a kind of cells with strong differentiation potential that can differentiate into various types of cells under specific conditions in vitro. Therefore, haploid embryonic stem cells have the characteristics of both haploid cells and embryonic stem cells, which makes them have significant advantages in many aspects, such as reproductive developmental mechanism research, genetic screening, and drug-targeted therapy. Consequently, establishing haploid embryonic stem cell lines is of great significance. This paper reviews the progress of haploid embryonic stem cell research and briefly discusses the applications of haploid embryonic stem cells.
Collapse
Affiliation(s)
- Hai-Song Wang
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, No. 40 Daxue Road, 450052, Zhengzhou, Henan Province, China.
| | - Xin-Rui Ma
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, No. 40 Daxue Road, 450052, Zhengzhou, Henan Province, China
| | - Yi-Hong Guo
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, No. 40 Daxue Road, 450052, Zhengzhou, Henan Province, China.
| |
Collapse
|
12
|
Li H, Bartke R, Zhao L, Verma Y, Horacek A, Rechav Ben-Natan A, Pangilinan GR, Krishnappa N, Nielsen R, Hockemeyer D. Functional annotation of variants of the BRCA2 gene via locally haploid human pluripotent stem cells. Nat Biomed Eng 2024; 8:165-176. [PMID: 37488236 PMCID: PMC10878975 DOI: 10.1038/s41551-023-01065-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 06/15/2023] [Indexed: 07/26/2023]
Abstract
Mutations in the BRCA2 gene are associated with sporadic and familial cancer, cause genomic instability and sensitize cancer cells to inhibition by the poly(ADP-ribose) polymerase (PARP). Here we show that human pluripotent stem cells (hPSCs) with one copy of BRCA2 deleted can be used to annotate variants of this gene and to test their sensitivities to PARP inhibition. By using Cas9 to edit the functional BRCA2 allele in the locally haploid hPSCs and in fibroblasts differentiated from them, we characterized essential regions in the gene to identify permissive and loss-of-function mutations. We also used Cas9 to directly test the function of individual amino acids, including amino acids encoded by clinical BRCA2 variants of uncertain significance, and identified alleles that are sensitive to PARP inhibitors used as a standard of care in BRCA2-deficient cancers. Locally haploid human pluripotent stem cells can facilitate detailed structure-function analyses of genes and the rapid functional evaluation of clinically observed mutations.
Collapse
Affiliation(s)
- Hanqin Li
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
| | - Rebecca Bartke
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
| | - Lei Zhao
- Section for GeoGenetics, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Yogendra Verma
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
| | - Anna Horacek
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
| | - Alma Rechav Ben-Natan
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
| | - Gabriella R Pangilinan
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
| | | | - Rasmus Nielsen
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
- Section for GeoGenetics, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Dirk Hockemeyer
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA.
- Innovative Genomics Institute, University of California, Berkeley, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
13
|
Agarwala S, Dhabal S, Mitra K. Significance of quantitative analyses of the impact of heterogeneity in mitochondrial content and shape on cell differentiation. Open Biol 2024; 14:230279. [PMID: 38228170 PMCID: PMC10791538 DOI: 10.1098/rsob.230279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 12/15/2023] [Indexed: 01/18/2024] Open
Abstract
Mitochondria, classically known as the powerhouse of cells, are unique double membrane-bound multifaceted organelles carrying a genome. Mitochondrial content varies between cell types and precisely doubles within cells during each proliferating cycle. Mitochondrial content also increases to a variable degree during cell differentiation triggered after exit from the proliferating cycle. The mitochondrial content is primarily maintained by the regulation of mitochondrial biogenesis, while damaged mitochondria are eliminated from the cells by mitophagy. In any cell with a given mitochondrial content, the steady-state mitochondrial number and shape are determined by a balance between mitochondrial fission and fusion processes. The increase in mitochondrial content and alteration in mitochondrial fission and fusion are causatively linked with the process of differentiation. Here, we critically review the quantitative aspects in the detection methods of mitochondrial content and shape. Thereafter, we quantitatively link these mitochondrial properties in differentiating cells and highlight the implications of such quantitative link on stem cell functionality. Finally, we discuss an example of cell size regulation predicted from quantitative analysis of mitochondrial shape and content. To highlight the significance of quantitative analyses of these mitochondrial properties, we propose three independent rationale based hypotheses and the relevant experimental designs to test them.
Collapse
Affiliation(s)
- Swati Agarwala
- Department of Biology, Ashoka University, Delhi (NCR), India
| | - Sukhamoy Dhabal
- Department of Biology, Ashoka University, Delhi (NCR), India
| | - Kasturi Mitra
- Department of Biology, Ashoka University, Delhi (NCR), India
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
14
|
Sun S, Zhao Q, Zhao Y, Geng M, Wang Q, Gao Q, Zhang X, Zhang W, Shuai L. BCL2 is a major regulator of haploidy maintenance in murine embryonic stem cells. Cell Prolif 2023; 56:e13498. [PMID: 37144356 PMCID: PMC10693186 DOI: 10.1111/cpr.13498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/19/2023] [Accepted: 04/25/2023] [Indexed: 05/06/2023] Open
Abstract
Mammalian haploid cells are important resources for forward genetic screening and are important in genetic medicine and drug development. However, the self-diploidization of murine haploid embryonic stem cells (haESCs) during daily culture or differentiation jeopardizes their use in genetic approaches. Here, we show that overexpression (OE) of an antiapoptosis gene, BCL2, in haESCs robustly ensures their haploidy maintenance in various situations, even under strict differentiation in vivo (embryonic 10.5 chimeric fetus or 21-day teratoma). Haploid cell lines of many lineages, including epiblasts, trophectodermal lineages, and neuroectodermal lineages, can be easily derived by the differentiation of BCL2-OE haESCs in vitro. Transcriptome analysis revealed that BCL2-OE activates another regulatory gene, Has2, which is also sufficient for haploidy maintenance. Together, our findings provide an effective and secure strategy to reduce diploidization during differentiation, which will contribute to the generation of haploid cell lines of the desired lineage and related genetic screening.
Collapse
Affiliation(s)
- Shengyi Sun
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Central Hospital of Gynecology Obstetrics/Tianjin Key Laboratory of Human Development and Reproductive RegulationNankai UniversityTianjinChina
| | - Qin Zhao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Central Hospital of Gynecology Obstetrics/Tianjin Key Laboratory of Human Development and Reproductive RegulationNankai UniversityTianjinChina
| | - Yiding Zhao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Central Hospital of Gynecology Obstetrics/Tianjin Key Laboratory of Human Development and Reproductive RegulationNankai UniversityTianjinChina
| | - Mengyang Geng
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Central Hospital of Gynecology Obstetrics/Tianjin Key Laboratory of Human Development and Reproductive RegulationNankai UniversityTianjinChina
| | - Qing Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Central Hospital of Gynecology Obstetrics/Tianjin Key Laboratory of Human Development and Reproductive RegulationNankai UniversityTianjinChina
| | - Qian Gao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Central Hospital of Gynecology Obstetrics/Tianjin Key Laboratory of Human Development and Reproductive RegulationNankai UniversityTianjinChina
| | - Xiao‐Ou Zhang
- Shanghai Key Laboratory of Maternal and Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life and Science and TechnologyTongji UniversityShanghaiChina
| | - Wenhao Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Central Hospital of Gynecology Obstetrics/Tianjin Key Laboratory of Human Development and Reproductive RegulationNankai UniversityTianjinChina
- Chongqing Key Laboratory of Human Embryo EngineeringChongqing Health Center for Women and ChildrenChongqingChina
| | - Ling Shuai
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Central Hospital of Gynecology Obstetrics/Tianjin Key Laboratory of Human Development and Reproductive RegulationNankai UniversityTianjinChina
- National Clinical Research Center for Obstetrics and GynecologyPeking University Third HospitalBeijingChina
| |
Collapse
|
15
|
Pagis A, Alfi O, Kinreich S, Yilmaz A, Hamdan M, Gadban A, Panet A, Wolf DG, Benvenisty N. Genome-wide loss-of-function screen using human pluripotent stem cells to study virus-host interactions for SARS-CoV-2. Stem Cell Reports 2023; 18:1766-1774. [PMID: 37703821 PMCID: PMC10545482 DOI: 10.1016/j.stemcr.2023.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 09/15/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019, has become a global health concern. Therefore, there is an immense need to understand the network of virus-host interactions by using human disease-relevant cells. We have thus conducted a loss-of-function genome-wide screen using haploid human embryonic stem cells (hESCs) to identify genes involved in SARS-CoV-2 infection. Although the undifferentiated hESCs are resistant to SARS-CoV-2, their differentiated definitive endoderm (DE) progenies, which express high levels of ACE2, are highly sensitive to the virus. Our genetic screening was able to identify the well-established entry receptor ACE2 as a host factor, along with additional potential novel modulators of SARS-CoV-2. Two such novel screen hits, the transcription factor MAFG and the transmembrane protein TMEM86A, were further validated as conferring resistance against SARS-CoV-2 by using CRISPR-mediated mutagenesis in hESCs, followed by differentiation of mutant lines into DE cells and infection by SARS-CoV-2. Our genome-wide genetic screening investigated SARS-CoV-2 host factors in non-cancerous human cells with endogenous ACE2 expression, providing a unique platform to identify novel modulators of SARS-CoV-2 cytopathology in human cells.
Collapse
Affiliation(s)
- Ariel Pagis
- The Azrieli Center for Stem Cells and Genetic Research, Department of Genetics, The Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Or Alfi
- Clinical Virology Unit, Hadassah Hebrew University Medical Center, Jerusalem 91120, Israel; Lautenberg Center for General and Tumor Immunology, The Hebrew University, Jerusalem 91121, Israel
| | - Shay Kinreich
- The Azrieli Center for Stem Cells and Genetic Research, Department of Genetics, The Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Atilgan Yilmaz
- The Azrieli Center for Stem Cells and Genetic Research, Department of Genetics, The Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel; Leuven Stem Cell Institute, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
| | - Marah Hamdan
- Clinical Virology Unit, Hadassah Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Aseel Gadban
- The Azrieli Center for Stem Cells and Genetic Research, Department of Genetics, The Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Amos Panet
- Department of Biochemistry, Faculty of Medicine, The Hebrew University, Jerusalem 91121, Israel
| | - Dana G Wolf
- Clinical Virology Unit, Hadassah Hebrew University Medical Center, Jerusalem 91120, Israel; Lautenberg Center for General and Tumor Immunology, The Hebrew University, Jerusalem 91121, Israel.
| | - Nissim Benvenisty
- The Azrieli Center for Stem Cells and Genetic Research, Department of Genetics, The Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| |
Collapse
|
16
|
Zheng W, Wang L, He W, Hu X, Zhu Q, Gu L, Jiang C. Transcriptome profiles and chromatin states in mouse androgenetic haploid embryonic stem cells. Cell Prolif 2023; 56:e13436. [PMID: 36855927 PMCID: PMC10472531 DOI: 10.1111/cpr.13436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/12/2023] [Accepted: 02/17/2023] [Indexed: 03/02/2023] Open
Abstract
Haploid embryonic stem cells (haESCs) are derived from the inner cell mass of the haploid blastocyst, containing only one set of chromosomes. Extensive and accurate chromatin remodelling occurs during haESC derivation, but the intrinsic transcriptome profiles and chromatin structure of haESCs have not been fully explored. We profiled the transcriptomes, nucleosome positioning, and key histone modifications of four mouse haESC lines, and compared these profiles with those of other closely-related stem cell lines, MII oocytes, round spermatids, sperm, and mouse embryonic fibroblasts. haESCs had transcriptome profiles closer to those of naïve pluripotent stem cells. Consistent with the one X chromosome in haESCs, Xist was repressed, indicating no X chromosome inactivation. haESCs and ESCs shared a similar global chromatin structure. However, a nucleosome depletion region was identified in 2056 promoters in ESCs, which was absent in haESCs. Furthermore, three characteristic spatial relationships were formed between transcription factor motifs and nucleosomes in both haESCs and ESCs, specifically in the linker region, on the nucleosome central surface, and nucleosome borders. Furthermore, the chromatin state of 4259 enhancers was off in haESCs but active in ESCs. Functional annotation of these enhancers revealed enrichment in regulation of the cell cycle, a predominantly reported mechanism of haESC self-diploidization. Notably, the transcriptome profiles and chromatin structure of haESCs were highly preserved during passaging but different from those of differentiated cell types.
Collapse
Affiliation(s)
- Weisheng Zheng
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and TechnologyTongji UniversityShanghaiChina
| | - Liping Wang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and TechnologyTongji UniversityShanghaiChina
| | - Wenteng He
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and TechnologyTongji UniversityShanghaiChina
| | - Xinjie Hu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and TechnologyTongji UniversityShanghaiChina
| | - Qianshu Zhu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and TechnologyTongji UniversityShanghaiChina
| | - Liang Gu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and TechnologyTongji UniversityShanghaiChina
| | - Cizhong Jiang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and TechnologyTongji UniversityShanghaiChina
- Frontier Science Center for Stem Cell ResearchTongji UniversityShanghaiChina
| |
Collapse
|
17
|
Wang HS, Ma XR, Niu WB, Shi H, Liu YD, Ma NZ, Zhang N, Jiang ZW, Sun YP. Generation of a human haploid neural stem cell line for genome-wide genetic screening. World J Stem Cells 2023; 15:734-750. [PMID: 37545755 PMCID: PMC10401418 DOI: 10.4252/wjsc.v15.i7.734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/01/2023] [Accepted: 06/21/2023] [Indexed: 07/25/2023] Open
Abstract
BACKGROUND Haploid embryonic stem cells (haESCs) have been established in many species. Differentiated haploid cell line types in mammals are lacking due to spontaneous diploidization during differentiation that compromises lineage-specific screens.
AIM To derive human haploid neural stem cells (haNSCs) to carry out lineage-specific screens.
METHODS Human haNSCs were differentiated from human extended haESCs with the help of Y27632 (ROCK signaling pathway inhibitor) and a series of cytokines to reduce diploidization. Neuronal differentiation of haNSCs was performed to examine their neural differentiation potency. Global gene expression analysis was con-ducted to compare haNSCs with diploid NSCs and haESCs. Fluorescence activated cell sorting was performed to assess the diploidization rate of extended haESCs and haNSCs. Genetic manipulation and screening were utilized to evaluate the significance of human haNSCs as genetic screening tools.
RESULTS Human haESCs in extended pluripotent culture medium showed more compact and smaller colonies, a higher efficiency in neural differentiation, a higher cell survival ratio and higher stability in haploidy maintenance. These characteristics effectively facilitated the derivation of human haNSCs. These human haNSCs can be generated by differentiation and maintain haploidy and multipotency to neurons and glia in the long term in vitro. After PiggyBac transfection, there were multiple insertion sites in the human haNSCs’ genome, and the insertion sites were evenly spread across all chromosomes. In addition, after the cells were treated with manganese, we were able to generate a list of manganese-induced toxicity genes, demonstrating their utility as genetic screening tools.
CONCLUSION This is the first report of a generated human haploid somatic cell line with a complete genome, proliferative ability and neural differentiation potential that provides cell resources for recessive inheritance and drug targeted screening.
Collapse
Affiliation(s)
- Hai-Song Wang
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Xin-Rui Ma
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Wen-Bin Niu
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Hao Shi
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Yi-Dong Liu
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Ning-Zhao Ma
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Nan Zhang
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Zi-Wei Jiang
- Basic Medical School, Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Ying-Pu Sun
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, Henan Province, China
| |
Collapse
|
18
|
Viner-Breuer R, Golan-Lev T, Benvenisty N, Goldberg M. Genome-Wide Screening in Human Embryonic Stem Cells Highlights the Hippo Signaling Pathway as Granting Synthetic Viability in ATM Deficiency. Cells 2023; 12:1503. [PMID: 37296624 PMCID: PMC10253227 DOI: 10.3390/cells12111503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/18/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
ATM depletion is associated with the multisystemic neurodegenerative syndrome ataxia-telangiectasia (A-T). The exact linkage between neurodegeneration and ATM deficiency has not been established yet, and no treatment is currently available. In this study, we aimed to identify synthetic viable genes in ATM deficiency to highlight potential targets for the treatment of neurodegeneration in A-T. We inhibited ATM kinase activity using the background of a genome-wide haploid pluripotent CRISPR/Cas9 loss-of-function library and examined which mutations confer a growth advantage on ATM-deficient cells specifically. Pathway enrichment analysis of the results revealed the Hippo signaling pathway as a major negative regulator of cellular growth upon ATM inhibition. Indeed, genetic perturbation of the Hippo pathway genes SAV1 and NF2, as well as chemical inhibition of this pathway, specifically promoted the growth of ATM-knockout cells. This effect was demonstrated in both human embryonic stem cells and neural progenitor cells. Therefore, we suggest the Hippo pathway as a candidate target for the treatment of the devastating cerebellar atrophy associated with A-T. In addition to the Hippo pathway, our work points out additional genes, such as the apoptotic regulator BAG6, as synthetic viable with ATM-deficiency. These genes may help to develop drugs for the treatment of A-T patients as well as to define biomarkers for resistance to ATM inhibition-based chemotherapies and to gain new insights into the ATM genetic network.
Collapse
Affiliation(s)
- Ruth Viner-Breuer
- The Azrieli Center for Stem Cells and Genetic Research, The Hebrew University, Givat-Ram, Jerusalem 9190401, Israel; (R.V.-B.); (T.G.-L.)
- Department of Genetics, Institute of Life Sciences, The Hebrew University, Givat-Ram, Jerusalem 9190401, Israel
| | - Tamar Golan-Lev
- The Azrieli Center for Stem Cells and Genetic Research, The Hebrew University, Givat-Ram, Jerusalem 9190401, Israel; (R.V.-B.); (T.G.-L.)
- Department of Genetics, Institute of Life Sciences, The Hebrew University, Givat-Ram, Jerusalem 9190401, Israel
| | - Nissim Benvenisty
- The Azrieli Center for Stem Cells and Genetic Research, The Hebrew University, Givat-Ram, Jerusalem 9190401, Israel; (R.V.-B.); (T.G.-L.)
- Department of Genetics, Institute of Life Sciences, The Hebrew University, Givat-Ram, Jerusalem 9190401, Israel
| | - Michal Goldberg
- Department of Genetics, Institute of Life Sciences, The Hebrew University, Givat-Ram, Jerusalem 9190401, Israel
| |
Collapse
|
19
|
Tian CM, Zhang Y, Yang MF, Xu HM, Zhu MZ, Yao J, Wang LS, Liang YJ, Li DF. Stem Cell Therapy in Inflammatory Bowel Disease: A Review of Achievements and Challenges. J Inflamm Res 2023; 16:2089-2119. [PMID: 37215379 PMCID: PMC10199681 DOI: 10.2147/jir.s400447] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 05/03/2023] [Indexed: 05/24/2023] Open
Abstract
Inflammatory bowel disease (IBD), including Crohn's disease (CD) and ulcerative colitis (UC), is a group of chronic inflammatory diseases of the gastrointestinal tract. Repeated inflammation can lead to complications, such as intestinal fistula, obstruction, perforation, and bleeding. Unfortunately, achieving durable remission and mucosal healing (MH) with current treatments is difficult. Stem cells (SCs) have the potential to modulate immunity, suppress inflammation, and have anti-apoptotic and pro-angiogenic effects, making them an ideal therapeutic strategy to target chronic inflammation and intestinal damage in IBD. In recent years, hematopoietic stem cells (HSCs) and adult mesenchymal stem cells (MSCs) have shown efficacy in treating IBD. In addition, numerous clinical trials have evaluated the efficiency of MSCs in treating the disease. This review summarizes the current research progress on the safety and efficacy of SC-based therapy for IBD in both preclinical models and clinical trials. We discuss potential mechanisms of SC therapy, including tissue repair, paracrine effects, and the promotion of angiogenesis, immune regulation, and anti-inflammatory effects. We also summarize current SC engineering strategies aimed at enhancing the immunosuppressive and regenerative capabilities of SCs for treating intestinal diseases. Additionally, we highlight current limitations and future perspectives of SC-related therapy for IBD.
Collapse
Affiliation(s)
- Cheng-Mei Tian
- Department of Gastroenterology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, People’s Republic of China
- Department of Emergency, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, People’s Republic of China
| | - Yuan Zhang
- Department of Medical Administration, Huizhou Institute of Occupational Diseases Control and Prevention, Huizhou, Guangdong, People’s Republic of China
| | - Mei-Feng Yang
- Department of Hematology, Yantian District People’s Hospital, Shenzhen, Guangdong, People’s Republic of China
| | - Hao-Ming Xu
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, People’s Republic of China
| | - Min-Zheng Zhu
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, People’s Republic of China
| | - Jun Yao
- Department of Gastroenterology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, People’s Republic of China
| | - Li-Sheng Wang
- Department of Gastroenterology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, People’s Republic of China
| | - Yu-Jie Liang
- Department of Child and Adolescent Psychiatry, Shenzhen Kangning Hospital, Shenzhen, Guangdong, People’s Republic of China
| | - De-Feng Li
- Department of Gastroenterology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, People’s Republic of China
| |
Collapse
|
20
|
Cadart C, Bartz J, Oaks G, Liu MZ, Heald R. Polyploidy in Xenopus lowers metabolic rate by decreasing total cell surface area. Curr Biol 2023; 33:1744-1752.e7. [PMID: 37080197 PMCID: PMC10184464 DOI: 10.1016/j.cub.2023.03.071] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/22/2023] [Accepted: 03/24/2023] [Indexed: 04/22/2023]
Abstract
Although polyploidization is frequent in development, cancer, and evolution, impacts on animal metabolism are poorly understood. In Xenopus frogs, the number of genome copies (ploidy) varies across species and can be manipulated within a species. Here, we show that triploid tadpoles contain fewer, larger cells than diploids and consume oxygen at a lower rate. Drug treatments revealed that the major processes accounting for tadpole energy expenditure include cell proliferation, biosynthesis, and maintenance of plasma membrane potential. While inhibiting cell proliferation did not abolish the oxygen consumption difference between diploids and triploids, treatments that altered cellular biosynthesis or electrical potential did. Combining these results with a simple mathematical framework, we propose that the decrease in total cell surface area lowered production and activity of plasma membrane components including the Na+/K+ ATPase, reducing energy consumption in triploids. Comparison of Xenopus species that evolved through polyploidization revealed that metabolic differences emerged during development when cell size scaled with genome size. Thus, ploidy affects metabolism by altering the cell surface area to volume ratio in a multicellular organism.
Collapse
Affiliation(s)
- Clotilde Cadart
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3200, USA.
| | - Julianne Bartz
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3200, USA
| | - Gillian Oaks
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3200, USA
| | - Martin Ziyuan Liu
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3200, USA
| | - Rebecca Heald
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3200, USA.
| |
Collapse
|
21
|
Haim-Abadi G, Golan-Lev T, Koren A, Benvenisty N. Generation, genomic characterization, and differentiation of triploid human embryonic stem cells. Stem Cell Reports 2023; 18:1049-1060. [PMID: 37116485 DOI: 10.1016/j.stemcr.2023.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 04/30/2023] Open
Abstract
Humans are diploid organisms, and triploidy in human embryos is responsible for ∼10% of spontaneous miscarriages. Surprisingly, some pregnancies proceed to triploid newborns that suffer from many neuro-developmental disorders. To investigate the impact of triploidy on human development, we generate triploid human embryonic stem cells (hESCs) by fusing isogenic haploid and diploid hESCs. Comparison of the transcriptome, methylome, and genome-wide replication timing shows general similarity between diploid and triploid hESCs. However, triploid cells have a larger volume than diploid cells, demonstrating decreased surface-area-to-volume ratio. This leads to a significant downregulation of cell surface ion channel genes, which are more essential in neural progenitors than in undifferentiated cells, leading to inhibition of differentiation, and it affects the neuronal differentiation ability of triploid hESCs, both in vitro and in vivo. Notably, our research establishes a platform to study triploidy in humans and points to their pathology as observed in triploid embryos.
Collapse
Affiliation(s)
- Guy Haim-Abadi
- The Azrieli Center for Stem Cells and Genetic Research, Department of Genetics, Silberman Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel
| | - Tamar Golan-Lev
- The Azrieli Center for Stem Cells and Genetic Research, Department of Genetics, Silberman Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel
| | - Amnon Koren
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Nissim Benvenisty
- The Azrieli Center for Stem Cells and Genetic Research, Department of Genetics, Silberman Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel.
| |
Collapse
|
22
|
Keshet G, Bar S, Sarel-Gallily R, Yanuka O, Benvenisty N, Eldar-Geva T. Differentiation of uniparental human embryonic stem cells into granulosa cells reveals a paternal contribution to gonadal development. Stem Cell Reports 2023; 18:817-828. [PMID: 37001516 PMCID: PMC10147827 DOI: 10.1016/j.stemcr.2023.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 04/03/2023] Open
Abstract
Genomic imprinting underlies the mammalian requirement for sexual reproduction. Nonetheless, the relative contribution of the two parental genomes during human development is not fully understood. Specifically, a fascinating question is whether the formation of the gonad, which holds the ability to reproduce, depends on equal contribution from both parental genomes. Here, we differentiated androgenetic and parthenogenetic human pluripotent stem cells (hPSCs) into ovarian granulosa-like cells (GLCs). We show that in contrast to biparental and androgenetic cells, parthenogenetic hPSCs present a reduced capacity to differentiate into GLCs. We further identify the paternally expressed gene IGF2 as the most upregulated imprinted gene upon differentiation. Remarkably, while IGF2 knockout androgenetic cells fail to differentiate into GLCs, the differentiation of parthenogenetic cells supplemented with IGF2 is partly rescued. Thus, our findings unravel a surprising essentiality of genes that are only expressed from the paternal genome to the development of the female reproductive system.
Collapse
Affiliation(s)
- Gal Keshet
- The Azrieli Center for Stem Cells and Genetic Research, Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, Israel.
| | - Shiran Bar
- The Azrieli Center for Stem Cells and Genetic Research, Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, Israel
| | - Roni Sarel-Gallily
- The Azrieli Center for Stem Cells and Genetic Research, Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, Israel
| | - Ofra Yanuka
- The Azrieli Center for Stem Cells and Genetic Research, Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, Israel
| | - Nissim Benvenisty
- The Azrieli Center for Stem Cells and Genetic Research, Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, Israel.
| | - Talia Eldar-Geva
- Reproductive Endocrinology and Genetics Unit, Division of Obstetrics and Gynecology, Shaare Zedek Medical Center, Jerusalem, Israel; The Hebrew University School of Medicine, Jerusalem, Israel.
| |
Collapse
|
23
|
Zimmerman O, Holmes AC, Kafai NM, Adams LJ, Diamond MS. Entry receptors - the gateway to alphavirus infection. J Clin Invest 2023; 133:e165307. [PMID: 36647825 PMCID: PMC9843064 DOI: 10.1172/jci165307] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Alphaviruses are enveloped, insect-transmitted, positive-sense RNA viruses that infect humans and other animals and cause a range of clinical manifestations, including arthritis, musculoskeletal disease, meningitis, encephalitis, and death. Over the past four years, aided by CRISPR/Cas9-based genetic screening approaches, intensive research efforts have focused on identifying entry receptors for alphaviruses to better understand the basis for cellular and species tropism. Herein, we review approaches to alphavirus receptor identification and how these were used for discovery. The identification of new receptors advances our understanding of viral pathogenesis, tropism, and evolution and is expected to contribute to the development of novel strategies for prevention and treatment of alphavirus infection.
Collapse
Affiliation(s)
| | | | | | | | - Michael S. Diamond
- Department of Medicine
- Department of Pathology and Immunology
- Department of Molecular Microbiology, and
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
24
|
Wang H, Ma X, Niu W, Shi H, Liu Y, Ma N, Zhang N, Sun Y. Generation of human haploid neural stem cells from parthenogenetic embryonic stem cells.. [DOI: 10.21203/rs.3.rs-2332761/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Abstract
Recently, haploid embryonic stem cells (haESCs) have been established in many species and widely used in forward and reverse genetic screening. Differentiated haploid cell line types in mammals are lacking due to spontaneous diploidization during differentiation that compromises lineage-specific screens. Human embryonic stem cells are widely used in basic and preclinical research. In this work, we report that human haESCs in extended pluripotent culture medium showed more compact colonies, higher efficiency in neural differentiation, and higher stability in haploidy maintenance, which effectively facilitated the derivation of haNSCs. Human haploid neural stem cells (haNSCs) can be generated by differentiation and maintain haploidy and multipotency to neurons and glia in the long term in vitro. After PiggyBac transfection, there were multiple insertion sites in the haNSC genome and the insertion sites evenly spread across all chromosomes. This is the first human haploid somatic cell line with a complete genome, proliferative ability and neural differentiation potential, which provides cell resources for recessive inheritance and drug targeted screening.
Collapse
Affiliation(s)
- Haisong Wang
- The First Affiliated Hospital of Zhengzhou University
| | - Xinrui Ma
- The First Affiliated Hospital of Zhengzhou University
| | - Wenbin Niu
- The First Affiliated Hospital of Zhengzhou University
| | - Hao Shi
- The First Affiliated Hospital of Zhengzhou University
| | - Yidong Liu
- The First Affiliated Hospital of Zhengzhou University
| | - Ningzhao Ma
- The First Affiliated Hospital of Zhengzhou University
| | - Nan Zhang
- The First Affiliated Hospital of Zhengzhou University
| | - Ying-Pu Sun
- The First Affiliated Hospital of zhengzhou university
| |
Collapse
|
25
|
Wang LB, Li ZK, Wang LY, Xu K, Ji TT, Mao YH, Ma SN, Liu T, Tu CF, Zhao Q, Fan XN, Liu C, Wang LY, Shu YJ, Yang N, Zhou Q, Li W. A sustainable mouse karyotype created by programmed chromosome fusion. Science 2022; 377:967-975. [PMID: 36007034 DOI: 10.1126/science.abm1964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Chromosome engineering has been attempted successfully in yeast but remains challenging in higher eukaryotes, including mammals. Here, we report programmed chromosome ligation in mice that resulted in the creation of new karyotypes in the lab. Using haploid embryonic stem cells and gene editing, we fused the two largest mouse chromosomes, chromosomes 1 and 2, and two medium-size chromosomes, chromosomes 4 and 5. Chromatin conformation and stem cell differentiation were minimally affected. However, karyotypes carrying fused chromosomes 1 and 2 resulted in arrested mitosis, polyploidization, and embryonic lethality, whereas a smaller fused chromosome composed of chromosomes 4 and 5 was able to be passed on to homozygous offspring. Our results suggest the feasibility of chromosome-level engineering in mammals.
Collapse
Affiliation(s)
- Li-Bin Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.,Bejing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Zhi-Kun Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.,Bejing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Le-Yun Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.,Bejing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Kai Xu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.,Bejing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Tian-Tian Ji
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi-Huan Mao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.,Bejing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Si-Nan Ma
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Tao Liu
- Annoroad Gene Technology (Beijing) Co., Ltd., Beijing 100176, China
| | - Cheng-Fang Tu
- Annoroad Gene Technology (Beijing) Co., Ltd., Beijing 100176, China
| | - Qian Zhao
- Annoroad Gene Technology (Beijing) Co., Ltd., Beijing 100176, China
| | - Xu-Ning Fan
- Annoroad Gene Technology (Beijing) Co., Ltd., Beijing 100176, China
| | - Chao Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.,Bejing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Li-Ying Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - You-Jia Shu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ning Yang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qi Zhou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.,Bejing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Wei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.,Bejing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| |
Collapse
|
26
|
Caballero M, Ge T, Rebelo AR, Seo S, Kim S, Brooks K, Zuccaro M, Kanagaraj R, Vershkov D, Kim D, Smogorzewska A, Smolka M, Benvenisty N, West SC, Egli D, Mace EM, Koren A. Comprehensive analysis of DNA replication timing across 184 cell lines suggests a role for MCM10 in replication timing regulation. Hum Mol Genet 2022; 31:2899-2917. [PMID: 35394024 PMCID: PMC9433724 DOI: 10.1093/hmg/ddac082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/18/2022] [Accepted: 04/03/2022] [Indexed: 11/14/2022] Open
Abstract
Cellular proliferation depends on the accurate and timely replication of the genome. Several genetic diseases are caused by mutations in key DNA replication genes; however, it remains unclear whether these genes influence the normal program of DNA replication timing. Similarly, the factors that regulate DNA replication dynamics are poorly understood. To systematically identify trans-acting modulators of replication timing, we profiled replication in 184 cell lines from three cell types, encompassing 60 different gene knockouts or genetic diseases. Through a rigorous approach that considers the background variability of replication timing, we concluded that most samples displayed normal replication timing. However, mutations in two genes showed consistently abnormal replication timing. The first gene was RIF1, a known modulator of replication timing. The second was MCM10, a highly conserved member of the pre-replication complex. Cells from a single patient carrying MCM10 mutations demonstrated replication timing variability comprising 46% of the genome and at different locations than RIF1 knockouts. Replication timing alterations in the mutated MCM10 cells were predominantly comprised of replication delays and initiation site gains and losses. Taken together, this study demonstrates the remarkable robustness of the human replication timing program and reveals MCM10 as a novel candidate modulator of DNA replication timing.
Collapse
Affiliation(s)
- Madison Caballero
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Tiffany Ge
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Ana Rita Rebelo
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Seungmae Seo
- Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Sean Kim
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Kayla Brooks
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Michael Zuccaro
- Department of Pediatrics and Naomi Berrie Diabetes Center, Columbia University, New York, NY 10032, USA
- Columbia University Stem Cell Initiative, New York, NY 10032, USA
| | | | - Dan Vershkov
- The Azrieli Center for Stem Cells and Genetic Research, Department of Genetics, Silberman Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel
| | - Dongsung Kim
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
| | - Agata Smogorzewska
- Laboratory of Genome Maintenance, The Rockefeller University, New York, NY, USA
| | - Marcus Smolka
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
| | - Nissim Benvenisty
- The Azrieli Center for Stem Cells and Genetic Research, Department of Genetics, Silberman Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel
| | | | - Dieter Egli
- Department of Pediatrics and Naomi Berrie Diabetes Center, Columbia University, New York, NY 10032, USA
- Columbia University Stem Cell Initiative, New York, NY 10032, USA
| | - Emily M Mace
- Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Amnon Koren
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
27
|
Cadart C, Heald R. Scaling of biosynthesis and metabolism with cell size. Mol Biol Cell 2022; 33:pe5. [PMID: 35862496 PMCID: PMC9582640 DOI: 10.1091/mbc.e21-12-0627] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 11/17/2022] Open
Abstract
Cells adopt a size that is optimal for their function, and pushing them beyond this limit can cause cell aging and death by senescence or reduce proliferative potential. However, by increasing their genome copy number (ploidy), cells can increase their size dramatically and homeostatically maintain physiological properties such as biosynthesis rate. Recent studies investigating the relationship between cell size and rates of biosynthesis and metabolism under normal, polyploid, and pathological conditions are revealing new insights into how cells attain the best function or fitness for their size by tuning processes including transcription, translation, and mitochondrial respiration. A new frontier is to connect single-cell scaling relationships with tissue and whole-organism physiology, which promises to reveal molecular and evolutionary principles underlying the astonishing diversity of size observed across the tree of life.
Collapse
Affiliation(s)
- Clotilde Cadart
- Molecular and Cell Biology Department, University of California, Berkeley, Berkeley, CA 94720-3200
| | - Rebecca Heald
- Molecular and Cell Biology Department, University of California, Berkeley, Berkeley, CA 94720-3200
| |
Collapse
|
28
|
Chen G, Yin S, Zeng H, Li H, Wan X. Regulation of Embryonic Stem Cell Self-Renewal. LIFE (BASEL, SWITZERLAND) 2022; 12:life12081151. [PMID: 36013330 PMCID: PMC9410528 DOI: 10.3390/life12081151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/12/2022] [Accepted: 07/21/2022] [Indexed: 11/16/2022]
Abstract
Embryonic stem cells (ESCs) are a type of cells capable of self-renewal and multi-directional differentiation. The self-renewal of ESCs is regulated by factors including signaling pathway proteins, transcription factors, epigenetic regulators, cytokines, and small molecular compounds. Similarly, non-coding RNAs, small RNAs, and microRNAs (miRNAs) also play an important role in the process. Functionally, the core transcription factors interact with helper transcription factors to activate the expression of genes that contribute to maintaining pluripotency, while suppressing the expression of differentiation-related genes. Additionally, cytokines such as leukemia suppressor factor (LIF) stimulate downstream signaling pathways and promote self-renewal of ESCs. Particularly, LIF binds to its receptor (LIFR/gp130) to trigger the downstream Jak-Stat3 signaling pathway. BMP4 activates the downstream pathway and acts in combination with Jak-Stat3 to promote pluripotency of ESCs in the absence of serum. In addition, activation of the Wnt-FDZ signaling pathway has been observed to facilitate the self-renewal of ESCs. Small molecule modulator proteins of the pathway mentioned above are widely used in in vitro culture of stem cells. Multiple epigenetic regulators are involved in the maintenance of ESCs self-renewal, making the epigenetic status of ESCs a crucial factor in this process. Similarly, non-coding RNAs and cellular energetics have been described to promote the maintenance of the ESC's self-renewal. These factors regulate the self-renewal and differentiation of ESCs by forming signaling networks. This review focused on the role of major transcription factors, signaling pathways, small molecular compounds, epigenetic regulators, non-coding RNAs, and cellular energetics in ESC's self-renewal.
Collapse
Affiliation(s)
- Guofang Chen
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, China;
- Correspondence: (G.C.); (H.L.); (X.W.); Tel./Fax: +86-021-20261000 (ext. 1379) (G.C.)
| | - Shasha Yin
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, China;
| | - Hongliang Zeng
- Institute of Chinese Materia Medica, Hunan Academy of Chinese Medicine, Changsha 410013, China;
| | - Haisen Li
- School of Medicine, Wayne State University, Detroit, MI 48201, USA
- Correspondence: (G.C.); (H.L.); (X.W.); Tel./Fax: +86-021-20261000 (ext. 1379) (G.C.)
| | - Xiaoping Wan
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, China;
- Correspondence: (G.C.); (H.L.); (X.W.); Tel./Fax: +86-021-20261000 (ext. 1379) (G.C.)
| |
Collapse
|
29
|
Liu C, Li W. Advances in haploid embryonic stem cell research. Biol Reprod 2022; 107:250-260. [PMID: 35639627 DOI: 10.1093/biolre/ioac110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 05/12/2022] [Accepted: 05/25/2022] [Indexed: 11/14/2022] Open
Abstract
Haploid embryonic stem cells are embryonic stem cells of a special type. Their nuclei contain one complete set of genetic material, and they are capable of self-renewal and differentiation. The emergence of haploid embryonic stem cells has aided research in functional genomics, genetic imprinting, parthenogenesis, genetic screening, and somatic cell nuclear transfer. This article reviews current issues in haploid stem cell research based on reports published in recent years and assesses the potential applications of these cells in somatic cell nuclear transfer, genome imprinting, and parthenogenesis.
Collapse
Affiliation(s)
- Chao Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing 100101, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Wei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing 100101, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
30
|
Efficient method for generating homozygous embryonic stem cells in mice. JOURNAL OF ANIMAL REPRODUCTION AND BIOTECHNOLOGY 2022. [DOI: 10.12750/jarb.37.1.48] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
31
|
Genome-wide screening for genes involved in the epigenetic basis of fragile X syndrome. Stem Cell Reports 2022; 17:1048-1058. [PMID: 35427485 PMCID: PMC9133649 DOI: 10.1016/j.stemcr.2022.03.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 11/23/2022] Open
Abstract
Fragile X syndrome (FXS), the most prevalent heritable form of intellectual disability, is caused by the transcriptional silencing of the FMR1 gene. The epigenetic factors responsible for FMR1 inactivation are largely unknown. Here, we initially demonstrated the feasibility of FMR1 reactivation by targeting a single epigenetic factor, DNMT1. Next, we established a model system for FMR1 silencing using a construct containing the FXS-related mutation upstream to a reporter gene. This construct was methylated in vitro and introduced into a genome-wide loss-of-function (LOF) library established in haploid human pluripotent stem cells (PSCs), allowing the identification of genes whose functional loss reversed the methylation-induced silencing of the FMR1 reporter. Selected candidate genes were further analyzed in haploid- and FXS-patient-derived PSCs, highlighting the epigenetic and metabolic pathways involved in FMR1 regulation. Our work sheds light on the mechanisms responsible for CGG-expansion-mediated FMR1 inactivation and offers novel targets for therapeutic FMR1 reactivation. Perturbation of a single gene, DNMT1, reactivates FMR1 in fragile X human PSCs. FX mutation containing reporter recapitulates FMR1 silencing in haploid ESCs. Genome-wide CRISPR screening reveals epigenetic modulators of FMR1 inactivation. Novel genes regulating mutated-FMR1 expression were validated in FX-iPSCs.
Collapse
|
32
|
Sarel-Gallily R, Golan-Lev T, Yilmaz A, Sagi I, Benvenisty N. Genome-wide analysis of haploinsufficiency in human embryonic stem cells. Cell Rep 2022; 38:110573. [PMID: 35354027 DOI: 10.1016/j.celrep.2022.110573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 01/16/2022] [Accepted: 03/03/2022] [Indexed: 11/03/2022] Open
Abstract
Haploinsufficiency describes a phenomenon where one functioning allele is insufficient for a normal phenotype, underlying several human diseases. The effect of haploinsufficiency on human embryonic stem cells (hESC) has not been thoroughly studied. To establish a genome-wide loss-of-function screening for heterozygous mutations, we fuse normal haploid hESCs with a library of mutant haploid hESCs. We identify over 600 genes with a negative effect on hESC growth in a haploinsufficient manner and characterize them as genes showing less tolerance to mutations, conservation during evolution, and depletion from telomeres and X chromosome. Interestingly, a large fraction of these genes is associated with extracellular matrix and plasma membrane and enriched for genes within WNT and TGF-β pathways. We thus identify haploinsufficiency-related genes that show growth retardation in early embryonic cells, suggesting dosage-dependent phenotypes in hESCs. Overall, we construct a unique model for studying haploinsufficiency and identified important dosage-dependent pathways involved in hESC growth and survival.
Collapse
Affiliation(s)
- Roni Sarel-Gallily
- The Azrieli Center for Stem Cells and Genetic Research, Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Tamar Golan-Lev
- The Azrieli Center for Stem Cells and Genetic Research, Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Atilgan Yilmaz
- The Azrieli Center for Stem Cells and Genetic Research, Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Ido Sagi
- The Azrieli Center for Stem Cells and Genetic Research, Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Nissim Benvenisty
- The Azrieli Center for Stem Cells and Genetic Research, Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| |
Collapse
|
33
|
Zhang H, Li Y, Ma Y, Lai C, Yu Q, Shi G, Li J. Epigenetic integrity of paternal imprints enhances the developmental potential of androgenetic haploid embryonic stem cells. Protein Cell 2021; 13:102-119. [PMID: 34865203 PMCID: PMC8783938 DOI: 10.1007/s13238-021-00890-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/26/2021] [Indexed: 11/24/2022] Open
Abstract
The use of two inhibitors of Mek1/2 and Gsk3β (2i) promotes the generation of mouse diploid and haploid embryonic stem cells (ESCs) from the inner cell mass of biparental and uniparental blastocysts, respectively. However, a system enabling long-term maintenance of imprints in ESCs has proven challenging. Here, we report that the use of a two-step a2i (alternative two inhibitors of Src and Gsk3β, TSa2i) derivation/culture protocol results in the establishment of androgenetic haploid ESCs (AG-haESCs) with stable DNA methylation at paternal DMRs (differentially DNA methylated regions) up to passage 60 that can efficiently support generating mice upon oocyte injection. We also show coexistence of H3K9me3 marks and ZFP57 bindings with intact DMR methylations. Furthermore, we demonstrate that TSa2i-treated AG-haESCs are a heterogeneous cell population regarding paternal DMR methylation. Strikingly, AG-haESCs with late passages display increased paternal-DMR methylations and improved developmental potential compared to early-passage cells, in part through the enhanced proliferation of H19-DMR hypermethylated cells. Together, we establish AG-haESCs that can long-term maintain paternal imprints.
Collapse
Affiliation(s)
- Hongling Zhang
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yuanyuan Li
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yongjian Ma
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Chongping Lai
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Qian Yu
- Animal Core Facility, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Guangyong Shi
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jinsong Li
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China. .,School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China. .,School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China.
| |
Collapse
|
34
|
Edwards MM, Zuccaro MV, Sagi I, Ding Q, Vershkov D, Benvenisty N, Egli D, Koren A. Delayed DNA replication in haploid human embryonic stem cells. Genome Res 2021; 31:2155-2169. [PMID: 34810218 PMCID: PMC8647822 DOI: 10.1101/gr.275953.121] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/20/2021] [Indexed: 11/25/2022]
Abstract
Haploid human embryonic stem cells (ESCs) provide a powerful genetic system but diploidize at high rates. We hypothesized that diploidization results from aberrant DNA replication. To test this, we profiled DNA replication timing in isogenic haploid and diploid ESCs. The greatest difference was the earlier replication of the X Chromosome in haploids, consistent with the lack of X-Chromosome inactivation. We also identified 21 autosomal regions that had delayed replication in haploids, extending beyond the normal S phase and into G2/M. Haploid-delays comprised a unique set of quiescent genomic regions that are also underreplicated in polyploid placental cells. The same delays were observed in female ESCs with two active X Chromosomes, suggesting that increased X-Chromosome dosage may cause delayed autosomal replication. We propose that incomplete replication at the onset of mitosis could prevent cell division and result in re-entry into the cell cycle and whole genome duplication.
Collapse
Affiliation(s)
- Matthew M Edwards
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
| | - Michael V Zuccaro
- Department of Pediatrics and Naomi Berrie Diabetes Center, Columbia University, New York, New York 10032, USA
- Columbia University Stem Cell Initiative, New York, New York 10032, USA
| | - Ido Sagi
- The Azrieli Center for Stem Cells and Genetic Research, Department of Genetics, Silberman Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel
| | - Qiliang Ding
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
| | - Dan Vershkov
- The Azrieli Center for Stem Cells and Genetic Research, Department of Genetics, Silberman Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel
| | - Nissim Benvenisty
- The Azrieli Center for Stem Cells and Genetic Research, Department of Genetics, Silberman Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel
| | - Dieter Egli
- Department of Pediatrics and Naomi Berrie Diabetes Center, Columbia University, New York, New York 10032, USA
- Columbia University Stem Cell Initiative, New York, New York 10032, USA
| | - Amnon Koren
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
35
|
Generation of developmentally competent oocytes and fertile mice from parthenogenetic embryonic stem cells. Protein Cell 2021; 12:947-964. [PMID: 34845589 PMCID: PMC8674391 DOI: 10.1007/s13238-021-00865-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 06/20/2021] [Indexed: 12/11/2022] Open
Abstract
Parthenogenetic embryos, created by activation and diploidization of oocytes, arrest at mid-gestation for defective paternal imprints, which impair placental development. Also, viable offspring has not been obtained without genetic manipulation from parthenogenetic embryonic stem cells (pESCs) derived from parthenogenetic embryos, presumably attributable to their aberrant imprinting. We show that an unlimited number of oocytes can be derived from pESCs and produce healthy offspring. Moreover, normal expression of imprinted genes is found in the germ cells and the mice. pESCs exhibited imprinting consistent with exclusively maternal lineage, and higher X-chromosome activation compared to female ESCs derived from the same mouse genetic background. pESCs differentiated into primordial germ cell-like cells (PGCLCs) and formed oocytes following in vivo transplantation into kidney capsule that produced fertile pups and reconstituted ovarian endocrine function. The transcriptome and methylation of imprinted and X-linked genes in pESC-PGCLCs closely resembled those of in vivo produced PGCs, consistent with efficient reprogramming of methylation and genomic imprinting. These results demonstrate that amplification of germ cells through parthenogenesis faithfully maintains maternal imprinting, offering a promising route for deriving functional oocytes and having potential in rebuilding ovarian endocrine function.
Collapse
|
36
|
Identifying regulators of parental imprinting by CRISPR/Cas9 screening in haploid human embryonic stem cells. Nat Commun 2021; 12:6718. [PMID: 34795250 PMCID: PMC8602306 DOI: 10.1038/s41467-021-26949-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 10/28/2021] [Indexed: 12/13/2022] Open
Abstract
In mammals, imprinted genes are regulated by differentially methylated regions (DMRs) that are inherited from germ cells, leading to monoallelic expression in accordance with parent-of-origin. Yet, it is largely unknown how imprinted DMRs are maintained in human embryos despite global DNA demethylation following fertilization. Here, we explored the mechanisms involved in imprinting regulation by employing human parthenogenetic embryonic stem cells (hpESCs), which lack paternal alleles. We show that although global loss of DNA methylation in hpESCs affects most imprinted DMRs, many paternally-expressed genes (PEGs) remain repressed. To search for factors regulating PEGs, we performed a genome-wide CRISPR/Cas9 screen in haploid hpESCs. This revealed ATF7IP as an essential repressor of a set of PEGs, which we further show is also required for silencing sperm-specific genes. Our study reinforces an important role for histone modifications in regulating imprinted genes and suggests a link between parental imprinting and germ cell identity. Genetic imprinting ensures monoallelic gene expression critical for normal embryonic development. Here the authors take advantage of human haploid parthenogenic embryonic stem cells lacking paternal alleles to identify, by genome-wide screening, factors involved in the regulation of imprinted genes.
Collapse
|
37
|
Jaiswal SK, Raj S, DePamphilis ML. Developmental Acquisition of p53 Functions. Genes (Basel) 2021; 12:genes12111675. [PMID: 34828285 PMCID: PMC8622856 DOI: 10.3390/genes12111675] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/14/2021] [Accepted: 10/21/2021] [Indexed: 12/12/2022] Open
Abstract
Remarkably, the p53 transcription factor, referred to as “the guardian of the genome”, is not essential for mammalian development. Moreover, efforts to identify p53-dependent developmental events have produced contradictory conclusions. Given the importance of pluripotent stem cells as models of mammalian development, and their applications in regenerative medicine and disease, resolving these conflicts is essential. Here we attempt to reconcile disparate data into justifiable conclusions predicated on reports that p53-dependent transcription is first detected in late mouse blastocysts, that p53 activity first becomes potentially lethal during gastrulation, and that apoptosis does not depend on p53. Furthermore, p53 does not regulate expression of genes required for pluripotency in embryonic stem cells (ESCs); it contributes to ESC genomic stability and differentiation. Depending on conditions, p53 accelerates initiation of apoptosis in ESCs in response to DNA damage, but cell cycle arrest as well as the rate and extent of apoptosis in ESCs are p53-independent. In embryonic fibroblasts, p53 induces cell cycle arrest to allow repair of DNA damage, and cell senescence to prevent proliferation of cells with extensive damage.
Collapse
Affiliation(s)
- Sushil K. Jaiswal
- National Institute of Child Health and Human Development, Bethesda, MD 20892, USA;
- National Human Genome Research Institute, Bethesda, MD 20892, USA
| | - Sonam Raj
- National Cancer Institute, Bethesda, MD 20892, USA;
| | - Melvin L. DePamphilis
- National Institute of Child Health and Human Development, Bethesda, MD 20892, USA;
- Correspondence:
| |
Collapse
|
38
|
Hang Y, Ma X, Liu C, Li S, Zhang S, Feng R, Shang Q, Liu Q, Ding Z, Zhang X, Yu L, Lu Q, Shao C, Chen H, Shi Y, He J, Kaplan DL. Blastocyst-Inspired Hydrogels to Maintain Undifferentiation of Mouse Embryonic Stem Cells. ACS NANO 2021; 15:14162-14173. [PMID: 34516077 DOI: 10.1021/acsnano.0c10468] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Stem cell fate is determined by specific niches that provide multiple physical, chemical, and biological cues. However, the hierarchy or cascade of impact of these cues remains elusive due to their spatiotemporal complexity. Here, anisotropic silk protein nanofiber-based hydrogels with suitable cell adhesion capacity are developed to mimic the physical microenvironment inside the blastocele. The hydrogels enable mouse embryonic stem cells (mESCs) to maintain stemness in vitro in the absence of both leukemia inhibitory factor (LIF) and mouse embryonic fibroblasts (MEFs), two critical factors in the standard protocol for mESC maintenance. The mESCs on hydrogels can achieve superior pluripotency, genetic stability, developmental capacity, and germline transmission to those cultured with the standard protocol. Such biomaterials establish an improved dynamic niche through stimulating the secretion of autocrine factors and are sufficient to maintain the pluripotency and propagation of ESCs. The mESCs on hydrogels are distinct in their expression profiles and more resemble ESCs in vivo. The physical cues can thus initiate a self-sustaining stemness-maintaining program. In addition to providing a relatively simple and low-cost option for expansion and utility of ESCs in biological research and therapeutic applications, this biomimetic material helps gain more insights into the underpinnings of early mammalian embryogenesis.
Collapse
Affiliation(s)
- Yingjie Hang
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, People's Republic of China
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China
| | - Xiaoliang Ma
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China
| | - Chunxiao Liu
- State Key Laboratory of Radiation Medicine and Radiation Protection, Institutes for Translational Medicine, Soochow University, Suzhou 215123, People's Republic of China
| | - Siyuan Li
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, People's Republic of China
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China
| | - Sixuan Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China
| | - Ruyan Feng
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China
| | - Qianwen Shang
- State Key Laboratory of Radiation Medicine and Radiation Protection, Institutes for Translational Medicine, Soochow University, Suzhou 215123, People's Republic of China
| | - Qi Liu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China
| | - Zhaozhao Ding
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, People's Republic of China
| | - Xiaoyi Zhang
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, People's Republic of China
| | - Liyin Yu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China
| | - Qiang Lu
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, People's Republic of China
| | - Changshun Shao
- State Key Laboratory of Radiation Medicine and Radiation Protection, Institutes for Translational Medicine, Soochow University, Suzhou 215123, People's Republic of China
| | - Hong Chen
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China
| | - Yufang Shi
- State Key Laboratory of Radiation Medicine and Radiation Protection, Institutes for Translational Medicine, Soochow University, Suzhou 215123, People's Republic of China
| | - Jiuyang He
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute Academy of Science, Beijing 100101, People's Republic of China
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
39
|
Applications of piggyBac Transposons for Genome Manipulation in Stem Cells. Stem Cells Int 2021; 2021:3829286. [PMID: 34567130 PMCID: PMC8460389 DOI: 10.1155/2021/3829286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 08/16/2021] [Indexed: 12/20/2022] Open
Abstract
Transposons are mobile genetic elements in the genome. The piggyBac (PB) transposon system is increasingly being used for stem cell research due to its high transposition efficiency and seamless excision capacity. Over the past few decades, forward genetic screens based on PB transposons have been successfully established to identify genes associated with drug resistance and stem cell-related characteristics. Moreover, PB transposon is regarded as a promising gene therapy vector and has been used in some clinically relevant stem cells. Here, we review the recent progress on the basic biology of PB, highlight its applications in current stem cell research, and discuss its advantages and challenges.
Collapse
|
40
|
Sun X, Tong X, Hao Y, Li C, Zhang Y, Pan Y, Dai Y, Liu L, Zhang T, Zhang S. Abnormal Cullin1 neddylation-mediated p21 accumulation participates in the pathogenesis of recurrent spontaneous abortion by regulating trophoblast cell proliferation and differentiation. Mol Hum Reprod 2021; 26:327-339. [PMID: 32186736 PMCID: PMC7227182 DOI: 10.1093/molehr/gaaa021] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 02/29/2020] [Indexed: 01/07/2023] Open
Abstract
The study explores the role of neddylation in early trophoblast development and its alteration during the pathogenesis of recurrent spontaneous abortion (RSA). Immunofluorescence and western blot were conducted to evaluate the expression pattern of NEDD8 protein in the first-trimester placentas of healthy control and RSA patients. Neddylated-cullins, especially neddylated-cullin1, were downregulated and their substrate, p21, was accumulated in RSA samples. NEDD8 cytoplasmic recruitment was observed in extravillous trophoblast (EVT) progenitors of RSA placentas. Consistent with the results of clinical samples, neddylation inhibition using MLN4924 in trophoblast cell lines caused obvious p21 accumulation and free NEDD8 cytoplasmic recruitment. Further in vitro study demonstrated neddylation inhibition attenuated proliferation of Jeg-3 cells via p21 accumulation. Moreover, when trophoblast stem (TS) cells derived from first-trimester placentas were cultured for differentiation analyses. MLN4924 impaired the differentiation of TS cells towards EVTs by downregulating HLA-G and GATA3. p21 knockdown could partly rescue MLN4924-suppressed HLA-G and GATA3 expression. In conclusion, cullin1 neddylation-mediated p21 degradation is required for trophoblast proliferation and can affect trophoblast plasticity by affecting HLA-G and GATA3 expression. The results provide insights into the pathological mechanism of RSA and the biological regulation of trophoblast development.
Collapse
Affiliation(s)
- Xiaohe Sun
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Xiaomei Tong
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Yanqing Hao
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Chao Li
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Yinli Zhang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Yibin Pan
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Yongdong Dai
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Liu Liu
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Tai Zhang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Songying Zhang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| |
Collapse
|
41
|
Song B, Fu H, Liu J, Ren K, Weir MD, Schneider A, Wang P, Song Y, Zhao L, Xu H. Bioactive small molecules in calcium phosphate scaffold enhanced osteogenic differentiation of human induced pluripotent stem cells. Dent Mater J 2021; 40:615-624. [PMID: 33814531 DOI: 10.4012/dmj.2019-263] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Human induced pluripotent stem cells (hiPSCs) are exciting for regenerative medicine due to their multi-potent differentiation. SB431542 bioactive molecule can activate bone morphogenetic protein-signalling in osteoblasts. The objectives were to: (1) develop a novel injectable calcium phosphate cement (CPC)-SB431542 scaffold for dental/craniofacial bone engineering; and (2) investigate cell proliferation and osteo-differentiation of hiPSC-derived mesenchymal stem cells (hiPSC-MSCs) on CPC-SB431542 scaffold. Three groups were tested: CPC control; CPC with SB431542 inside CPC (CPCSM); CPC with SB431542 in osteogenic medium (CPC+SMM). SB431542 in CPC promoted stem cell proliferation and viability. hiPSC-MSCs differentiated into osteogenic lineage and synthesized bone minerals. CPC with SB431542 showed much greater osteo-expressions and more bone minerals than those without SB431542. In conclusion, hiPSC-MSCs on CPC scaffold containing SB431542 showed excellent osteo-differentiation and bone mineral synthesis for the first time. CPC was a suitable scaffold for delivering stem cells and SB431542 to promote bone regeneration in dental/craniofacial applications.
Collapse
Affiliation(s)
- Bing Song
- Department of Orthopedic Surgery, Shunde Hospital of Southern Medical University.,Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry
| | - Haijun Fu
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Sun Yat-sen University; Guangdong Provincial Key Laboratory of Stomatology
| | - Jianwei Liu
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Sun Yat-sen University; Guangdong Provincial Key Laboratory of Stomatology
| | - Ke Ren
- Department of Neural and Pain Sciences, University of Maryland School of Dentistry
| | - Michael D Weir
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry
| | - Abraham Schneider
- Department of Oncology and Diagnostic Sciences, University of Maryland School of Dentistry
| | - Ping Wang
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry
| | - Yang Song
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry.,Department of Prosthodontics, Guanghua School of Stomatology, Sun Yat-sen University
| | - Liang Zhao
- Department of Orthopedic Surgery, Shunde Hospital of Southern Medical University.,Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry
| | - Huakun Xu
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry.,Center for Stem Cell Biology and Regenerative Medicine, University of Maryland School of Medicine.,University of Maryland Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine
| |
Collapse
|
42
|
Turocy J, Adashi EY, Egli D. Heritable human genome editing: Research progress, ethical considerations, and hurdles to clinical practice. Cell 2021; 184:1561-1574. [PMID: 33740453 DOI: 10.1016/j.cell.2021.02.036] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/29/2021] [Accepted: 02/17/2021] [Indexed: 12/14/2022]
Abstract
Our genome at conception determines much of our health as an adult. Most human diseases have a heritable component and thus may be preventable through heritable genome editing. Preventing disease from the beginning of life before irreversible damage has occurred is an admirable goal, but the path to fruition remains unclear. Here, we review the significant scientific contributions to the field of human heritable genome editing, the unique ethical challenges that cannot be overlooked, and the hurdles that must be overcome prior to translating these technologies into clinical practice.
Collapse
Affiliation(s)
- Jenna Turocy
- Department of Obstetrics and Gynecology, Columbia University, New York, NY 10032, USA
| | - Eli Y Adashi
- Professor of Medical Science, Brown University, Providence, RI, USA
| | - Dieter Egli
- Department of Obstetrics and Gynecology, Columbia University, New York, NY 10032, USA; Department of Pediatrics and Naomi Berrie Diabetes Center, Columbia University, New York, NY 10032, USA; Columbia University Stem Cell Initiative, New York, NY 10032, USA.
| |
Collapse
|
43
|
Sabouri E, Rajabzadeh A, Enderami SE, Saburi E, Soleimanifar F, Barati G, Rahmati M, Khamisipour G, Enderami SE. The Role of MicroRNAs in the Induction of Pancreatic Differentiation. Curr Stem Cell Res Ther 2021; 16:145-154. [PMID: 32564764 DOI: 10.2174/1574888x15666200621173607] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 04/15/2020] [Accepted: 04/20/2020] [Indexed: 11/22/2022]
Abstract
Stem cell-based therapy is one of the therapeutic options with promising results in the treatment of diabetes. Stem cells from various sources are expanded and induced to generate the cells capable of secreting insulin. These insulin-producing cells [IPCs] could be used as an alternative to islets in the treatment of patients with diabetes. Soluble growth factors, small molecules, geneencoding transcription factors, and microRNAs [miRNAs] are commonly used for the induction of stem cell differentiation. MiRNAs are small non-coding RNAs with 21-23 nucleotides that are involved in the regulation of gene expression by targeting multiple mRNA targets. Studies have shown the dynamic expression of miRNAs during pancreatic development and stem cell differentiation. MiR- 7 and miR-375 are the most abundant miRNAs in pancreatic islet cells and play key roles in pancreatic development as well as islet cell functions. Some studies have tried to use these small RNAs for the induction of pancreatic differentiation. This review focuses on the miRNAs used in the induction of stem cells into IPCs and discusses their functions in pancreatic β-cells.
Collapse
Affiliation(s)
- Elham Sabouri
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Rajabzadeh
- Applied Cell Sciences and Tissue Engineering Department, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyedeh Elnaz Enderami
- Department of Stem Cell and Regenerative Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology [NIGEB], Tehran, Iran
| | - Ehsan Saburi
- Medical Genetics and Molecular Medicine Department, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Soleimanifar
- Department of Medical Biotechnology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | | | | | - Gholamreza Khamisipour
- Department of Hematology, School of Allied Medical Sciences, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Seyed Ehsan Enderami
- Diabetes Research Center, Department of Medical Biotechnology, Faculty of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
44
|
Gao Q, Zhang W, Zhao Y, Tian Y, Wang Y, Zhang J, Geng M, Xu M, Yao C, Wang H, Li L, Liu Y, Shuai L. High-throughput screening in postimplantation haploid epiblast stem cells reveals Hs3st3b1 as a modulator for reprogramming. Stem Cells Transl Med 2021; 10:743-755. [PMID: 33511777 PMCID: PMC8046116 DOI: 10.1002/sctm.20-0468] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/12/2020] [Accepted: 01/03/2021] [Indexed: 12/15/2022] Open
Abstract
Epiblast stem cells (EpiSCs) derived from postimplantation epiblast are pluripotent stem cells, epigenetically distinct from embryonic stem cells (ESCs), which are widely used in reprogramming studies. Recent achieved haploid cell lines in mammalian species open a new era for high-throughput genetic screening, due to their homozygous phenotypes. Here, we report the generation of mouse haploid EpiSCs (haEpiSCs) from postimplantation chimeric embryos at embryonic day 6.5 (E6.5). These cells maintain one set of chromosomes, express EpiSC-specific genes, and have potentials to differentiate into three germ layers. We also develop a massive mutagenesis protocol with haEpiSCs, and subsequently perform reprogramming selection using this genome-wide mutation library. Multiple modules related to various pathways are implicated. The validation experiments prove that knockout of Hst3st3b1 (one of the candidates) can promote reprogramming of EpiSCs to the ground state efficiently. Our results open the feasibility of utilizing haEpiSCs to elucidate fundamental biological processes including cell fate alternations.
Collapse
Affiliation(s)
- Qian Gao
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, People's Republic of China
| | - Wenhao Zhang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, People's Republic of China
| | - Yiding Zhao
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, People's Republic of China
| | - Yaru Tian
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, People's Republic of China
| | - Yuna Wang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, People's Republic of China
| | - Jinxin Zhang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, People's Republic of China
| | - Mengyang Geng
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, People's Republic of China
| | - Mei Xu
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, People's Republic of China
| | - Chunmeng Yao
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, People's Republic of China
| | - Haoyu Wang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, People's Republic of China
| | - Luyuan Li
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, People's Republic of China
| | - Yan Liu
- Department of Obstetrics, Tianjin First Central Hospital, Nankai University, Tianjin, People's Republic of China
| | - Ling Shuai
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, People's Republic of China.,Nankai Animal Resource Center, Nankai University, Tianjin, People's Republic of China.,Tianjin Central Hospital of Gynecology Obstetrics/Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin, People's Republic of China
| |
Collapse
|
45
|
Zhang G, Li X, Sun Y, Wang X, Liu G, Huang Y. A Genetic Screen Identifies Etl4-Deficiency Capable of Stabilizing the Haploidy in Embryonic Stem Cells. Stem Cell Reports 2021; 16:29-38. [PMID: 33440180 PMCID: PMC7815943 DOI: 10.1016/j.stemcr.2020.11.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 01/05/2023] Open
Abstract
Mammalian haploid embryonic stem cells (haESCs) hold great promise for functional genetic studies and forward screening. However, all established haploid cells are prone to spontaneous diploidization during long-term culture, rendering application challenging. Here, we report a genome-wide loss-of-function screening that identified gene mutations that could significantly reduce the rate of self-diploidization in haESCs. We further demonstrated that CRISPR/Cas9-mediated Etl4 knockout (KO) stabilizes the haploid state in different haESC lines. More interestingly, Etl4 deficiency increases mitochondrial oxidative phosphorylation (OXPHOS) capacity and decreases glycolysis in haESCs. Mimicking this effect by regulating the energy metabolism with drugs decreased the rate of self-diploidization. Collectively, our study identified Etl4 as a novel haploidy-related factor linked to an energy metabolism transition occurring during self-diploidization of haESCs. A genome-wide genetic screen identifies several haploidy-related factors in haESCs Etl4-deficiency stabilizes the haploid state in different haESC lines Etl4-deficiency increases mitochondrial OXPHOS and decrease glycolysis in haESCs Energy metabolism regulation with drugs decreased the rate of self-diploidization
Collapse
Affiliation(s)
- Guozhong Zhang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China; Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Xiaowen Li
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China; Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Yi Sun
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China; Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Xue Wang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China; Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Guang Liu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China; Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China.
| | - Yue Huang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China; Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China.
| |
Collapse
|
46
|
Priester C, MacDonald A, Dhar M, Bow A. Examining the Characteristics and Applications of Mesenchymal, Induced Pluripotent, and Embryonic Stem Cells for Tissue Engineering Approaches across the Germ Layers. Pharmaceuticals (Basel) 2020; 13:E344. [PMID: 33114710 PMCID: PMC7692540 DOI: 10.3390/ph13110344] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/15/2020] [Accepted: 10/20/2020] [Indexed: 12/13/2022] Open
Abstract
The field of regenerative medicine utilizes a wide array of technologies and techniques for repairing and restoring function to damaged tissues. Among these, stem cells offer one of the most potent and promising biological tools to facilitate such goals. Implementation of mesenchymal stem cells (MSCs), induced pluripotent stem cells (iPSCs), and embryonic stem cells (ESCs) offer varying advantages based on availability and efficacy in the target tissue. The focus of this review is to discuss characteristics of these three subset stem cell populations and examine their utility in tissue engineering. In particular, the development of therapeutics that utilize cell-based approaches, divided by germinal layer to further assess research targeting specific tissues of the mesoderm, ectoderm, and endoderm. The combinatorial application of MSCs, iPSCs, and ESCs with natural and synthetic scaffold technologies can enhance the reparative capacity and survival of implanted cells. Continued efforts to generate more standardized approaches for these cells may provide improved study-to-study variations on implementation, thereby increasing the clinical translatability of cell-based therapeutics. Coupling clinically translatable research with commercially oriented methods offers the potential to drastically advance medical treatments for multiple diseases and injuries, improving the quality of life for many individuals.
Collapse
Affiliation(s)
- Caitlin Priester
- Department of Animal Science, University of Tennessee, Knoxville, TN 37998, USA;
| | - Amber MacDonald
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, 2407 River Drive, Knoxville, TN 37996, USA; (A.M.); (M.D.)
| | - Madhu Dhar
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, 2407 River Drive, Knoxville, TN 37996, USA; (A.M.); (M.D.)
| | - Austin Bow
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, 2407 River Drive, Knoxville, TN 37996, USA; (A.M.); (M.D.)
| |
Collapse
|
47
|
Adashi EY, Cohen IG. Assisted Same-Sex Reproduction: The Promise of Haploid Stem Cells? Stem Cells Dev 2020; 29:1417-1419. [PMID: 32967574 DOI: 10.1089/scd.2020.0146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Same-sex couples, not unlike their heterosexual counterparts, would prefer having a genetically related child. However, assisted same-sex human reproduction has heretofore been deemed infeasible absent haploid cellular analogs of human gametes. Recent developments, however, may have overcome this limitation through the derivation of haploid embryonic stem cells (hapESCs). Undifferentiated, pluripotent, self-renewing, and stably haploid, hESCs have also displayed germline competence. It is in this capacity that murine hESCs, doubling up as de facto gametes, gave rise to bimaternal and bipaternal progeny. Herein we argue that assisted same-sex human reproduction, although potentially attainable at this time, is still years away from the clinic. In support of this perspective, we note the significant technical, regulatory, statutory, and societal hurdles that stand in the way of near-term implementation.
Collapse
Affiliation(s)
- Eli Y Adashi
- Medical Science, The Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | - I Glenn Cohen
- Petrie-Flom Center for Health Law Policy, Biotechnology, and Bioethics, Harvard Law School, Harvard University, Cambridge, Massachusetts, USA
| |
Collapse
|
48
|
Pourakbari R, Ahmadi H, Yousefi M, Aghebati-Maleki L. Cell therapy in female infertility-related diseases: Emphasis on recurrent miscarriage and repeated implantation failure. Life Sci 2020; 258:118181. [DOI: 10.1016/j.lfs.2020.118181] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/19/2020] [Accepted: 07/28/2020] [Indexed: 12/25/2022]
|
49
|
Wang L, Li J. 'Artificial spermatid'-mediated genome editing†. Biol Reprod 2020; 101:538-548. [PMID: 31077288 DOI: 10.1093/biolre/ioz087] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/27/2019] [Accepted: 05/10/2019] [Indexed: 12/12/2022] Open
Abstract
For years, extensive efforts have been made to use mammalian sperm as the mediator to generate genetically modified animals; however, the strategy of sperm-mediated gene transfer (SMGT) is unable to produce stable and diversified modifications in descendants. Recently, haploid embryonic stem cells (haESCs) have been successfully derived from haploid embryos carrying the genome of highly specialized gametes, and can stably maintain haploidy (through periodic cell sorting based on DNA quantity) and both self-renewal and pluripotency in long-term cell culture. In particular, haESCs derived from androgenetic haploid blastocysts (AG-haESCs), carrying only the sperm genome, can support the generation of live mice (semi-cloned, SC mice) through oocyte injection. Remarkably, after removal of the imprinted control regions H19-DMR (differentially methylated region of DNA) and IG-DMR in AG-haESCs, the double knockout (DKO)-AG-haESCs can stably produce SC animals with high efficiency, and so can serve as a sperm equivalent. Importantly, DKO-AG-haESCs can be used for multiple rounds of gene modifications in vitro, followed by efficient generation of live and fertile mice with the expected genetic traits. Thus, DKO-AG-haESCs (referred to as 'artificial spermatids') combed with CRISPR-Cas technology can be used as the genetically tractable fertilization agent, to efficiently create genetically modified offspring, and is a versatile genetic tool for in vivo analyses of gene function.
Collapse
Affiliation(s)
- Lingbo Wang
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.,Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), School of Life Sciences, Fudan University, Shanghai, China
| | - Jinsong Li
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
50
|
Sun S, Zhao Y, Shuai L. The milestone of genetic screening: Mammalian haploid cells. Comput Struct Biotechnol J 2020; 18:2471-2479. [PMID: 33005309 PMCID: PMC7509586 DOI: 10.1016/j.csbj.2020.09.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 09/04/2020] [Accepted: 09/05/2020] [Indexed: 12/30/2022] Open
Abstract
Mammalian haploid cells provide insights into multiple genetics approaches as have been proved by advances in homozygous phenotypes and function as gametes. Recent achievements make ploidy of mammalian haploid cells stable and improve the developmental efficiency of embryos derived from mammalian haploid cells intracytoplasmic microinjection, which promise great potentials for using mammalian haploid cells in forward and reverse genetic screening. In this review, we introduce breakthroughs of mammalian haploid cells involving in mechanisms of self-diploidization, forward genetics for various targeting genes and imprinted genes related development.
Collapse
Affiliation(s)
- Shengyi Sun
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300350, China
| | - Yiding Zhao
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300350, China
| | - Ling Shuai
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300350, China
- Tate Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Tianjin Central Hospital of Gynecology Obstetrics / Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin 300052, China
| |
Collapse
|