1
|
Logsdon DM, Ming H, Ezashi T, West RC, Schoolcraft WB, Roberts RM, Jiang Z, Yuan Y. Transcriptome comparisons of trophoblasts from regenerative cell models with peri-implantation human embryos†. Biol Reprod 2024; 111:1000-1016. [PMID: 39109839 DOI: 10.1093/biolre/ioae120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 06/21/2024] [Accepted: 08/06/2024] [Indexed: 11/16/2024] Open
Abstract
Mechanisms controlling trophoblast (TB) proliferation and differentiation during embryo implantation are poorly understood. Human trophoblast stem cells (TSC) and BMP4/A83-01/PD173074-treated pluripotent stem cell-derived trophoblast cells (BAP) are two widely employed, contemporary models to study TB development and function, but how faithfully they mimic early TB cells has not been fully examined. We evaluated the transcriptomes of TB cells from BAP and TSC and directly compared them with those from peri-implantation human embryos during extended embryo culture (EEC) between embryonic days 8 to 12. The BAP and TSC grouped closely with TB cells from EEC within each TB sublineage following dimensional analysis and unsupervised hierarchical clustering. However, subtle differences in transcriptional programs existed within each TB sublineage. We also validated the presence of six genes in peri-implantation human embryos by immunolocalization. Our analysis reveals that both BAP and TSC models have features of peri-implantation TB s, while maintaining minor transcriptomic differences, and thus serve as valuable tools for studying implantation in lieu of human embryos.
Collapse
Affiliation(s)
- Deirdre M Logsdon
- Colorado Center for Reproductive Medicine, 10290 RidgeGate Circle, Lone Tree, CO 80124, USA
| | - Hao Ming
- Department of Animal Sciences, Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| | - Toshihiko Ezashi
- Colorado Center for Reproductive Medicine, 10290 RidgeGate Circle, Lone Tree, CO 80124, USA
| | - Rachel C West
- Department of Anatomy, Physiology, and Pharmacology, Auburn University, Auburn, AL 36849, USA
| | - William B Schoolcraft
- Colorado Center for Reproductive Medicine, 10290 RidgeGate Circle, Lone Tree, CO 80124, USA
| | - R Michael Roberts
- Division of Animal Sciences, University of Missouri-Columbia, MO 65211, USA
| | - Zongliang Jiang
- Department of Animal Sciences, Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| | - Ye Yuan
- Colorado Center for Reproductive Medicine, 10290 RidgeGate Circle, Lone Tree, CO 80124, USA
| |
Collapse
|
2
|
Sozen B. Navigating human embryogenesis through tailored model selection. Nat Cell Biol 2024; 26:1819-1821. [PMID: 39528699 DOI: 10.1038/s41556-024-01525-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Affiliation(s)
- Berna Sozen
- Department of Genetics, Yale School of Medicine, Yale University, New Haven, CT, USA.
- Yale Stem Cell Center, Yale University, New Haven, CT, USA.
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, Yale University, New Haven, CT, USA.
| |
Collapse
|
3
|
Pennings G, Dondorp W, Popovic M, Chuva de Sousa Lopes S, Mertes H. Ethical considerations on the moral status of the embryo and embryo-like structures†. Hum Reprod 2024; 39:2387-2391. [PMID: 39344432 PMCID: PMC11532601 DOI: 10.1093/humrep/deae228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Indexed: 10/01/2024] Open
Abstract
The current article provides an ethical reflection on the moral status of the human embryo, which is a crucial factor in determining permissible actions involving embryos and the extent of their protection. It advocates for the extension of the research period for embryos to 28-days post fertilization. It also states that integrated embryo-like structures (ELSs) should not currently be given the same moral status as natural embryos. However, if they pass the relevant tests, they should be subject to the same rules as natural embryos.
Collapse
Affiliation(s)
| | - Guido Pennings
- Department of Philosophy and Moral Science, Ghent University, Ghent, Belgium
| | - Wybo Dondorp
- Department of Health, Ethics and Society, GROW Research Institute for Oncology and Reproduction, Maastricht University Medical Centre, Maastricht University, Maastricht, the Netherlands
| | | | - Susana Chuva de Sousa Lopes
- Department for Reproductive Medicine, Ghent Fertility and Stem Cell Team (G-FaST), Universitair Ziekenhuis Gent, Ghent, Belgium
- Department of Anatomy and Embryology and The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leids Universitair Medisch Centrum, Leiden, The Netherlands
| | - Heidi Mertes
- Department of Philosophy and Moral Science, Ghent University, Ghent, Belgium
- Department of Public Health and Primary Care, Ghent University, Ghent, Belgium
| |
Collapse
|
4
|
Slamecka J, Ryu S, Tristan CA, Chu PH, Weber C, Deng T, Gedik Y, Ormanoglu P, Voss TC, Simeonov A, Singeç I. Highly efficient generation of self-renewing trophoblast from human pluripotent stem cells. iScience 2024; 27:110874. [PMID: 39386760 PMCID: PMC11462042 DOI: 10.1016/j.isci.2024.110874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 06/02/2024] [Accepted: 08/30/2024] [Indexed: 10/12/2024] Open
Abstract
Human pluripotent stem cells (hPSCs) represent a powerful model system to study early developmental processes. However, lineage specification into trophectoderm (TE) and trophoblast (TB) differentiation remains poorly understood, and access to well-characterized placental cells for biomedical research is limited, largely depending on fetal tissues or cancer cell lines. Here, we developed novel strategies enabling highly efficient TE specification that generates cytotrophoblast (CTB) and multinucleated syncytiotrophoblast (STB), followed by the establishment of trophoblast stem cells (TSCs) capable of differentiating into extravillous trophoblast (EVT) and STB after long-term expansion. We confirmed stepwise and controlled induction of lineage- and cell-type-specific genes consistent with developmental biology principles and benchmarked typical features of placental cells using morphological, biochemical, genomics, epigenomics, and single-cell analyses. Charting a well-defined roadmap from hPSCs to distinct placental phenotypes provides invaluable opportunities for studying early human development, infertility, and pregnancy-associated diseases.
Collapse
Affiliation(s)
- Jaroslav Slamecka
- National Center for Advancing Translational Sciences (NCATS), Division of Preclinical Innovation, Stem Cell Translation Laboratory (SCTL), National Institutes of Health (NIH), Rockville, MD 20850, USA
| | - Seungmi Ryu
- National Center for Advancing Translational Sciences (NCATS), Division of Preclinical Innovation, Stem Cell Translation Laboratory (SCTL), National Institutes of Health (NIH), Rockville, MD 20850, USA
| | - Carlos A. Tristan
- National Center for Advancing Translational Sciences (NCATS), Division of Preclinical Innovation, Stem Cell Translation Laboratory (SCTL), National Institutes of Health (NIH), Rockville, MD 20850, USA
| | - Pei-Hsuan Chu
- National Center for Advancing Translational Sciences (NCATS), Division of Preclinical Innovation, Stem Cell Translation Laboratory (SCTL), National Institutes of Health (NIH), Rockville, MD 20850, USA
| | - Claire Weber
- National Center for Advancing Translational Sciences (NCATS), Division of Preclinical Innovation, Stem Cell Translation Laboratory (SCTL), National Institutes of Health (NIH), Rockville, MD 20850, USA
| | - Tao Deng
- National Center for Advancing Translational Sciences (NCATS), Division of Preclinical Innovation, Stem Cell Translation Laboratory (SCTL), National Institutes of Health (NIH), Rockville, MD 20850, USA
| | - Yeliz Gedik
- National Center for Advancing Translational Sciences (NCATS), Division of Preclinical Innovation, Stem Cell Translation Laboratory (SCTL), National Institutes of Health (NIH), Rockville, MD 20850, USA
| | - Pinar Ormanoglu
- National Center for Advancing Translational Sciences (NCATS), Division of Preclinical Innovation, Stem Cell Translation Laboratory (SCTL), National Institutes of Health (NIH), Rockville, MD 20850, USA
| | - Ty C. Voss
- National Center for Advancing Translational Sciences (NCATS), Division of Preclinical Innovation, Stem Cell Translation Laboratory (SCTL), National Institutes of Health (NIH), Rockville, MD 20850, USA
| | - Anton Simeonov
- National Center for Advancing Translational Sciences (NCATS), Division of Preclinical Innovation, Stem Cell Translation Laboratory (SCTL), National Institutes of Health (NIH), Rockville, MD 20850, USA
| | - Ilyas Singeç
- National Center for Advancing Translational Sciences (NCATS), Division of Preclinical Innovation, Stem Cell Translation Laboratory (SCTL), National Institutes of Health (NIH), Rockville, MD 20850, USA
| |
Collapse
|
5
|
Zhou W, Van Sinderen M, Rainczuk K, Menkhorst E, Sorby K, Osianlis T, Pangestu M, Santos L, Rombauts L, Rosello-Diez A, Dimitriadis E. Dysregulated miR-124-3p in endometrial epithelial cells reduces endometrial receptivity by altering polarity and adhesion. Proc Natl Acad Sci U S A 2024; 121:e2401071121. [PMID: 39365817 PMCID: PMC11474043 DOI: 10.1073/pnas.2401071121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 09/05/2024] [Indexed: 10/06/2024] Open
Abstract
The endometrium undergoes substantial remodeling in each menstrual cycle to become receptive to an implanting embryo. Abnormal endometrial receptivity is one of the major causes of embryo implantation failure and infertility. MicroRNA-124-3p is elevated in both the serum and endometrial tissue of women with chronic endometritis, a condition associated with infertility. MicroRNA-124-3p also has a role in cell adhesion, a key function during receptivity to allow blastocysts to adhere and implant. In this study, we aimed to determine the function of microRNA-124-3p on endometrial epithelial adhesive capacity during receptivity and effect on embryo implantation. Using a unique inducible, uterine epithelial-specific microRNA overexpression mouse model, we demonstrated that elevated uterine epithelial microRNA-124-3p impaired endometrial receptivity by altering genes associated with cell adhesion and polarity. This resulted in embryo implantation failure. Similarly in a second mouse model, increasing microRNA-124-3p expression only in mouse uterine surface (luminal) epithelium impaired receptivity and led to implantation failure. In humans, we demonstrated that microRNA-124-3p was abnormally increased in the endometrial epithelium of women with unexplained infertility during the receptive window. MicroRNA-124-3p overexpression in primary human endometrial epithelial cells (HEECs) impaired primary human embryo trophectoderm attachment in a 3-dimensional culture model of endometrium. Reduction of microRNA-124-3p in HEECs from infertile women normalized HEEC adhesive capacity. Overexpression of microRNA-124-3p or knockdown of its direct target IQGAP1 reduced fertile HEEC adhesion and its ability to lose polarity. Collectively, our data highlight that microRNA-124-3p and its protein targets contribute to endometrial receptivity by altering cell polarity and adhesion.
Collapse
Affiliation(s)
- Wei Zhou
- Department of Obstetrics, Gynaecology and Newborn Health, University of Melbourne, Parkville, VIC3010, Australia
- Gynaecology Research Centre, Royal Women’s Hospital, Parkville, VIC3052, Australia
| | - Michelle Van Sinderen
- Centre for Reproductive Health, The Hudson Institute of Medical Research, Clayton, VIC3168, Australia
| | - Katarzyna Rainczuk
- Centre for Reproductive Health, The Hudson Institute of Medical Research, Clayton, VIC3168, Australia
| | - Ellen Menkhorst
- Department of Obstetrics, Gynaecology and Newborn Health, University of Melbourne, Parkville, VIC3010, Australia
- Gynaecology Research Centre, Royal Women’s Hospital, Parkville, VIC3052, Australia
- Centre for Reproductive Health, The Hudson Institute of Medical Research, Clayton, VIC3168, Australia
| | - Kelli Sorby
- Centre for Reproductive Health, The Hudson Institute of Medical Research, Clayton, VIC3168, Australia
- Department of Anatomy and Developmental Biology, University of Monash, Clayton, VIC3800, Australia
| | - Tiki Osianlis
- Department of Obstetrics and Gynaecology, University of Monash, Clayton, Victoria3800, Australia
| | - Mulyoto Pangestu
- Department of Obstetrics and Gynaecology, University of Monash, Clayton, Victoria3800, Australia
- Faculty of Animal Husbandry, Jenderal Soedirman University, Purwokerto53122, Indonesia
| | - Leilani Santos
- Department of Obstetrics, Gynaecology and Newborn Health, University of Melbourne, Parkville, VIC3010, Australia
- Gynaecology Research Centre, Royal Women’s Hospital, Parkville, VIC3052, Australia
| | - Luk Rombauts
- Department of Obstetrics and Gynaecology, University of Monash, Clayton, Victoria3800, Australia
- Monash In Vitro Fertilisation, Clayton, VIC3168, Australia
| | - Alberto Rosello-Diez
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC3800, Australia
- Department of Physiology, Development and Neuroscience, The Centre for Trophoblast Research, University of Cambridge, CambridgeCB2 3EL, United Kingdom
- Department of Genetics, University of Cambridge, CambridgeCB2 3EH, United Kingdom
| | - Evdokia Dimitriadis
- Department of Obstetrics, Gynaecology and Newborn Health, University of Melbourne, Parkville, VIC3010, Australia
- Gynaecology Research Centre, Royal Women’s Hospital, Parkville, VIC3052, Australia
- Centre for Reproductive Health, The Hudson Institute of Medical Research, Clayton, VIC3168, Australia
| |
Collapse
|
6
|
Shahbazi MN, Pasque V. Early human development and stem cell-based human embryo models. Cell Stem Cell 2024; 31:1398-1418. [PMID: 39366361 DOI: 10.1016/j.stem.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/18/2024] [Accepted: 09/02/2024] [Indexed: 10/06/2024]
Abstract
The use of stem cells to model the early human embryo promises to transform our understanding of developmental biology and human reproduction. In this review, we present our current knowledge of the first 2 weeks of human embryo development. We first focus on the distinct cell lineages of the embryo and the derivation of stem cell lines. We then discuss the intercellular crosstalk that guides early embryo development and how this crosstalk is recapitulated in vitro to generate stem cell-based embryo models. We highlight advances in this fast-developing field, discuss current limitations, and provide a vision for the future.
Collapse
Affiliation(s)
| | - Vincent Pasque
- Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium; Leuven Stem Cell Institute & Leuven Institute for Single-Cell Omics (LISCO), Leuven, Belgium.
| |
Collapse
|
7
|
Martinez Arias A, Rivron N, Moris N, Tam P, Alev C, Fu J, Hadjantonakis AK, Hanna JH, Minchiotti G, Pourquie O, Sheng G, Solnica Krezel L, Veenvliet JV, Warmflash A. Criteria for the standardization of stem-cell-based embryo models. Nat Cell Biol 2024; 26:1625-1628. [PMID: 39223372 DOI: 10.1038/s41556-024-01492-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Affiliation(s)
| | - Nicolas Rivron
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter, Vienna, Austria
| | | | - Patrick Tam
- Embryology Research Unit, Children's Medical Research Institute, and School of Medical Science, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Cantas Alev
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan
| | - Jianping Fu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
- Department of Cell & Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Anna-Katerina Hadjantonakis
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jacob H Hanna
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | | | | | - Guojun Sheng
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Liliana Solnica Krezel
- Department of Developmental Biology, Washington University School of Medicine in St Louis, St Louis, MO, USA
| | - Jesse V Veenvliet
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Cluster of Excellence Physics of Life, Technische Universität Dresden, Dresden, Germany
- Center for Systems Biology Dresden, Dresden, Germany
| | - Aryeh Warmflash
- Department of Biosciences, Rice University, Houston, TX, USA
- Department of Bioengineering, Rice University, Houston, TX, USA
| |
Collapse
|
8
|
Hamazaki N, Yang W, Kubo CA, Qiu C, Martin BK, Garge RK, Regalado SG, Nichols EK, Pendyala S, Bradley N, Fowler DM, Lee C, Daza RM, Srivatsan S, Shendure J. Retinoic acid induces human gastruloids with posterior embryo-like structures. Nat Cell Biol 2024; 26:1790-1803. [PMID: 39164488 PMCID: PMC11469962 DOI: 10.1038/s41556-024-01487-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 07/17/2024] [Indexed: 08/22/2024]
Abstract
Gastruloids are a powerful in vitro model of early human development. However, although elongated and composed of all three germ layers, human gastruloids do not morphologically resemble post-implantation human embryos. Here we show that an early pulse of retinoic acid (RA), together with later Matrigel, robustly induces human gastruloids with posterior embryo-like morphological structures, including a neural tube flanked by segmented somites and diverse cell types, including neural crest, neural progenitors, renal progenitors and myocytes. Through in silico staging based on single-cell RNA sequencing, we find that human RA-gastruloids progress further than other human or mouse embryo models, aligning to E9.5 mouse and CS11 cynomolgus monkey embryos. We leverage chemical and genetic perturbations of RA-gastruloids to confirm that WNT and BMP signalling regulate somite formation and neural tube length in the human context, while transcription factors TBX6 and PAX3 underpin presomitic mesoderm and neural crest, respectively. Looking forward, RA-gastruloids are a robust, scalable model for decoding early human embryogenesis.
Collapse
Affiliation(s)
- Nobuhiko Hamazaki
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
- Department of Obstetrics & Gynecology, University of Washington, Seattle, WA, USA.
- Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, WA, USA.
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA.
- Seattle Hub for Synthetic Biology, Seattle, WA, USA.
| | - Wei Yang
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Seattle Hub for Synthetic Biology, Seattle, WA, USA
| | - Connor A Kubo
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Seattle Hub for Synthetic Biology, Seattle, WA, USA
| | - Chengxiang Qiu
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Seattle Hub for Synthetic Biology, Seattle, WA, USA
| | - Beth K Martin
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Seattle Hub for Synthetic Biology, Seattle, WA, USA
| | - Riddhiman K Garge
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
| | - Samuel G Regalado
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Seattle Hub for Synthetic Biology, Seattle, WA, USA
- Medical Scientist Training Program, University of Washington, Seattle, WA, USA
| | - Eva K Nichols
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Sriram Pendyala
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Nicholas Bradley
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Douglas M Fowler
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Choli Lee
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Seattle Hub for Synthetic Biology, Seattle, WA, USA
| | - Riza M Daza
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Seattle Hub for Synthetic Biology, Seattle, WA, USA
| | - Sanjay Srivatsan
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
- Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
- Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, WA, USA.
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA.
- Seattle Hub for Synthetic Biology, Seattle, WA, USA.
- Howard Hughes Medical Institute, Seattle, WA, USA.
- Allen Discovery Center for Cell Lineage Tracing, Seattle, WA, USA.
| |
Collapse
|
9
|
Appleton E, Mehdipour N, Daifuku T, Briers D, Haghighi I, Moret M, Chao G, Wannier T, Chiappino-Pepe A, Huang J, Belta C, Church GM. Algorithms for Autonomous Formation of Multicellular Shapes from Single Cells. ACS Synth Biol 2024; 13:2753-2763. [PMID: 39194023 DOI: 10.1021/acssynbio.4c00037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Multicellular organisms originate from a single cell, ultimately giving rise to mature organisms of heterogeneous cell type composition in complex structures. Recent work in the areas of stem cell biology and tissue engineering has laid major groundwork in the ability to convert certain types of cells into other types, but there has been limited progress in the ability to control the morphology of cellular masses as they grow. Contemporary approaches to this problem have included the use of artificial scaffolds, 3D bioprinting, and complex media formulations; however, there are no existing approaches to controlling this process purely through genetics and from a single-cell starting point. Here we describe a computer-aided design approach, called CellArchitect, for designing recombinase-based genetic circuits for controlling the formation of multicellular masses into arbitrary shapes in human cells.
Collapse
Affiliation(s)
- Evan Appleton
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts 02115, United States
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Noushin Mehdipour
- Department of Systems Engineering, Boston University, Boston, Massachusetts 02215, United States
| | - Tristan Daifuku
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts 02115, United States
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Demarcus Briers
- Department of Systems Engineering, Boston University, Boston, Massachusetts 02215, United States
- Bioinformatics Program, Boston University, Boston, Massachusetts 02215, United States
| | - Iman Haghighi
- Department of Systems Engineering, Boston University, Boston, Massachusetts 02215, United States
| | - Michaël Moret
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts 02115, United States
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - George Chao
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts 02115, United States
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Timothy Wannier
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts 02115, United States
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Anush Chiappino-Pepe
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts 02115, United States
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Jeremy Huang
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts 02115, United States
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Calin Belta
- Department of Systems Engineering, Boston University, Boston, Massachusetts 02215, United States
| | - George M Church
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts 02115, United States
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, United States
| |
Collapse
|
10
|
Wang C, Wang X, Wang W, Chen Y, Chen H, Wang W, Ye T, Dong J, Sun C, Li X, Li C, Li J, Wang Y, Feng X, Ding H, Xu D, Shi J. Single‑cell RNA sequencing analysis of human embryos from the late Carnegie to fetal development. Cell Biosci 2024; 14:118. [PMID: 39267141 PMCID: PMC11395182 DOI: 10.1186/s13578-024-01302-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 09/03/2024] [Indexed: 09/14/2024] Open
Abstract
BACKGROUND The cell development atlas of transition stage from late Carnegie to fetal development (7-9 weeks) remain unclear. It can be seen that the early period of human embryos (7-9 weeks) is a critical research gap. Therefore, we employed single‑cell RNA sequencing to identify cell types and elucidate differentiation relationships. RESULTS The single‑cell RNA sequencing analysis determines eighteen cell clusters in human embryos during the 7-9 weeks period. We uncover two distinct pathways of cellular development and differentiation. Initially, mesenchymal progenitor cells differentiated into osteoblast progenitor cells and neural stem cells, respectively. Neural stem cells further differentiated into neurons. Alternatively, multipotential stem cells differentiated into adipocyte, hematopoietic stem cells and neutrophil, respectively. Additionally, COL1A2-(ITGA1 + ITGB1) mediated the cell communication between mesenchymal progenitor cells and osteoblast progenitor cells. NCAM1-FGFR1 facilitated the cell communication between mesenchymal progenitor cells and neural stem cells. Notably, NCAM1-NCAM1 as a major contributor mediated the cell communication between neural stem cells and neurons. Moreover, CGA-FSHR simultaneously mediated the communication between multipotential stem cells, adipocyte, hematopoietic stem cells and neutrophil. Distinct cell clusters activated specific transcription factors such as HIC1, LMX1B, TWIST1, and et al., which were responsible for their specific functions. These coregulators, such as HOXB13, VSX2, PAX5, and et al., may mediate cell development and differentiation in human embryos. CONCLUSIONS We provide the cell development atlas for human embryos (7-9 weeks). Two distinct cell development and differentiation pathways are revealed.
Collapse
Affiliation(s)
- Chengniu Wang
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, 226001, Jiangsu, China
| | - Xiaorong Wang
- Center for Reproductive Medicine, Affiliated Maternity and Child Health Care Hospital of Nantong University, Nantong, 226018, Jiangsu, China
- Nantong Institute of Genetics and Reproductive Medicine, Affiliated Maternity and Child Healthcare Hospital of Nantong University, Nantong, 226018, Jiangsu, China
- Nantong Key Laboratory of Genetics and Reproductive Medicine, Nantong, 226018, Jiangsu, China
| | - Wenran Wang
- Blood Purification Centre, Third People's Hospital of Rugao, Nantong, 226531, Jiangsu, China
| | - Yufei Chen
- Basic Medical Research Centre, Medical School, Nantong University, Nantong, 226001, Jiangsu, China
| | - Hanqing Chen
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, 226001, Jiangsu, China
| | - Weizhen Wang
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, 226001, Jiangsu, China
| | - Taowen Ye
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, 226001, Jiangsu, China
| | - Jin Dong
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, 226001, Jiangsu, China
| | - Chenliang Sun
- Department of Critical Care Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, Jiangsu, China
| | - Xiaoran Li
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, 226001, Jiangsu, China
| | - Chunhong Li
- Blood Purification Centre, Third People's Hospital of Rugao, Nantong, 226531, Jiangsu, China
| | - Jiaying Li
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, 226001, Jiangsu, China
| | - Yong Wang
- Department of Neurosurgery, Affiliated Hospital 2 of Nantong University, Nantong, 226006, Jiangsu, China
| | - Xingmei Feng
- Department of Stomatology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, Jiangsu, China.
| | - Hongping Ding
- Blood Purification Centre, Third People's Hospital of Rugao, Nantong, 226531, Jiangsu, China.
| | - Dawei Xu
- Department of Orthopedics, Affiliated Hospital 2 of Nantong University, Nantong, 226000, Jiangsu, China.
| | - Jianwu Shi
- Basic Medical Research Centre, Medical School, Nantong University, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
11
|
Gantner CW, Weatherbee BAT, Wang Y, Zernicka-Goetz M. Assembly of a stem cell-derived human postimplantation embryo model. Nat Protoc 2024:10.1038/s41596-024-01042-7. [PMID: 39261744 DOI: 10.1038/s41596-024-01042-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 06/24/2024] [Indexed: 09/13/2024]
Abstract
The embryonic and extraembryonic tissue interactions underlying human embryogenesis at implantation stages are not currently understood. We have generated a pluripotent stem cell-derived model that mimics aspects of peri-implantation development, allowing tractable experimentation otherwise impossible in the human embryo. Activation of the extraembryonic lineage-specific transcription factors GATA6 and SOX17 (hypoblast factors) or GATA3 and TFAP2C (encoding AP2γ; trophoblast factors) in human embryonic stem (ES) cells drive conversion to extraembryonic-like cells. When combined with wild-type ES cells, self-organized embryo-like structures form in the absence of exogenous factors, termed human inducible embryoids (hiEmbryoids). The epiblast-like domain of hiEmbryoids polarizes and differentiates in response to extraembryonic-secreted extracellular matrix and morphogen cues. Extraembryonic mesenchyme, amnion and primordial germ cells are specified in hiEmbryoids in a stepwise fashion. After establishing stable inducible ES lines and converting ES cells to RSeT culture media, the protocol takes 7-10 d to generate hiEmbryoids. Generation of hiEmbryoids can be performed by researchers with basic expertise in stem cell culture.
Collapse
Affiliation(s)
- Carlos W Gantner
- Mammalian Embryo and Stem Cell Group, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Bailey A T Weatherbee
- Mammalian Embryo and Stem Cell Group, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Yuntao Wang
- Mammalian Embryo and Stem Cell Group, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Magdalena Zernicka-Goetz
- Mammalian Embryo and Stem Cell Group, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.
- Stem Cell Embryo Models Group, Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
12
|
Turner DA, Martinez Arias A. Three-dimensional stem cell models of mammalian gastrulation. Bioessays 2024:e2400123. [PMID: 39194406 DOI: 10.1002/bies.202400123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/24/2024] [Accepted: 08/06/2024] [Indexed: 08/29/2024]
Abstract
Gastrulation is a key milestone in the development of an organism. It is a period of cell proliferation and coordinated cellular rearrangement, that creates an outline of the body plan. Our current understanding of mammalian gastrulation has been improved by embryo culture, but there are still many open questions that are difficult to address because of the intrauterine development of the embryos and the low number of specimens. In the case of humans, there are additional difficulties associated with technical and ethical challenges. Over the last few years, pluripotent stem cell models are being developed that have the potential to become useful tools to understand the mammalian gastrulation. Here we review these models with a special emphasis on gastruloids and provide a survey of the methods to produce them robustly, their uses, relationship to embryos, and their prospects as well as their limitations.
Collapse
Affiliation(s)
- David A Turner
- Institute of Life Course and Medical Sciences, William Henry Duncan Building, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK
| | | |
Collapse
|
13
|
Tan JP, Liu X, Polo JM. Reprogramming fibroblast into human iBlastoids. Nat Protoc 2024; 19:2298-2316. [PMID: 38632379 DOI: 10.1038/s41596-024-00984-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 02/12/2024] [Indexed: 04/19/2024]
Abstract
The study of early human embryogenesis has relied on the use of blastocysts donated to research or simple stem cell culture systems such as pluripotent and trophoblast stem cells, which have been seminal in shedding light on many key developmental processes. However, simple culture systems lack the necessary complexity to adequately model the spatiotemporal, cellular and molecular dynamics occurring during the early phases of embryonic development. As such, an in vitro model of the human blastocyst is advantageous in many aspects to decipher human embryogenesis. Here we describe a step-by-step protocol for the generation of induced blastoids (iBlastoids), an in vitro integrated model of the human blastocyst derived via somatic reprogramming. This protocol details the workflow for reprogramming of human dermal fibroblasts and subsequent generation of iBlastoids using the reprogramming intermediates, which together takes ~27 days (21 days for reprogramming and 6 days for iBlastoid generation). We also discuss several characterization/functional assays that can be used on the iBlastoids. We believe that a person trained in cell culture with ~1 year of experience with human somatic cell and reprogramming/cell differentiation assays would be able to perform this protocol. In short, the iBlastoids present an alternative tool as a model to the blastocyst to facilitate the scientific community in the exploration of early human development.
Collapse
Affiliation(s)
- Jia Ping Tan
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, Victoria, Australia
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
| | - Xiaodong Liu
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
- Research Center for Industries of the Future, Westlake University, Hangzhou, China.
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China.
- Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China.
| | - Jose M Polo
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia.
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, Victoria, Australia.
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia.
- Adelaide Centre for Epigenetics, School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia.
- The South Australian Immunogenomics Cancer Institute, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia.
| |
Collapse
|
14
|
Xu Y, Zhai J, Wu H, Wang H. In vitro culture of cynomolgus monkey embryos from blastocyst to early organogenesis. Nat Protoc 2024:10.1038/s41596-024-01025-8. [PMID: 39060382 DOI: 10.1038/s41596-024-01025-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 05/20/2024] [Indexed: 07/28/2024]
Abstract
Human early embryonic development is the cornerstone of a healthy baby. Abnormal early embryonic development may lead to developmental and pregnancy-related disorders. Accordingly, understanding the developmental events and mechanisms of human early embryonic development is very important. However, attempts to reveal these events and mechanisms are greatly hindered by the extreme inaccessibility of in vivo early human embryos. Fortunately, the emergence of in vitro culture (IVC) systems for mammalian embryos provides an alternative strategy. In recent years, different two-dimensional and three-dimensional IVC systems have been developed for human embryos. Ethical limitations restrict the IVC of human embryos beyond 14 days, which makes non-human primate embryos an ideal model for studying primate developmental events. Different culture systems have supported the development of monkey embryos to days postfertilization 14 and 25, respectively. The successful recapitulation of in vivo developmental events by these IVC embryos has greatly enriched our understanding of human early embryonic development, which undoubtedly helps us to develop possible strategies to predict or treat various gestation-related diseases and birth defects. In this protocol, we establish different two-dimensional and three-dimensional IVC systems for primate embryos, provide step-by-step culture procedures and notes, and summarize the advantages and limitations of different culture systems. Replicating this protocol requires a moderate level of experience in mammalian embryo IVC, and the embryo culture requires strict adherence to the procedures we have described.
Collapse
Affiliation(s)
- Yanhong Xu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Jinglei Zhai
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Hao Wu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Hongmei Wang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.
| |
Collapse
|
15
|
Seitz M, Song Y, Lian XL, Ma Z, Jain E. Soft Polyethylene Glycol Hydrogels Support Human PSC Pluripotency and Morphogenesis. ACS Biomater Sci Eng 2024; 10:4525-4540. [PMID: 38973308 PMCID: PMC11234337 DOI: 10.1021/acsbiomaterials.4c00923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/05/2024] [Accepted: 06/05/2024] [Indexed: 07/09/2024]
Abstract
Lumenogenesis within the epiblast represents a critical step in early human development, priming the embryo for future specification and patterning events. However, little is known about the specific mechanisms that drive this process due to the inability to study the early embryo in vivo. While human pluripotent stem cell (hPSC)-based models recapitulate many aspects of the human epiblast, most approaches for generating these 3D structures rely on ill-defined, reconstituted basement membrane matrices. Here, we designed synthetic, nonadhesive polyethylene glycol (PEG) hydrogel matrices to better understand the role of matrix mechanical cues in iPSC morphogenesis, specifically elastic modulus. First, we identified a narrow range of hydrogel moduli that were conducive to the hPSC viability, pluripotency, and differentiation. We then used this platform to investigate the effects of the hydrogel modulus on lumenogenesis, finding that matrices of intermediate stiffness yielded the most epiblast-like aggregates. Conversely, stiffer matrices impeded lumen formation and apico-basal polarization, while the softest matrices yielded polarized but aberrant structures. Our approach offers a simple, modular platform for modeling the human epiblast and investigating the role of matrix cues in its morphogenesis.
Collapse
Affiliation(s)
- Michael
P. Seitz
- Department
of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York 13244, United States
- Bioinspired
Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, New York 13244, United States
| | - Yuanhui Song
- Department
of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York 13244, United States
- Bioinspired
Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, New York 13244, United States
| | - Xiaojun Lance Lian
- Department
of Biomedical Engineering, The Huck Institutes of the Life Sciences,
Department of Biology, Pennsylvania State
University, University
Park, Pennsylvania 16802, United States
| | - Zhen Ma
- Department
of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York 13244, United States
- Bioinspired
Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, New York 13244, United States
| | - Era Jain
- Department
of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York 13244, United States
- Bioinspired
Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, New York 13244, United States
| |
Collapse
|
16
|
Wu J, Fu J. Toward developing human organs via embryo models and chimeras. Cell 2024; 187:3194-3219. [PMID: 38906095 PMCID: PMC11239105 DOI: 10.1016/j.cell.2024.05.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 02/02/2024] [Accepted: 05/14/2024] [Indexed: 06/23/2024]
Abstract
Developing functional organs from stem cells remains a challenging goal in regenerative medicine. Existing methodologies, such as tissue engineering, bioprinting, and organoids, only offer partial solutions. This perspective focuses on two promising approaches emerging for engineering human organs from stem cells: stem cell-based embryo models and interspecies organogenesis. Both approaches exploit the premise of guiding stem cells to mimic natural development. We begin by summarizing what is known about early human development as a blueprint for recapitulating organogenesis in both embryo models and interspecies chimeras. The latest advances in both fields are discussed before highlighting the technological and knowledge gaps to be addressed before the goal of developing human organs could be achieved using the two approaches. We conclude by discussing challenges facing embryo modeling and interspecies organogenesis and outlining future prospects for advancing both fields toward the generation of human tissues and organs for basic research and translational applications.
Collapse
Affiliation(s)
- Jun Wu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Jianping Fu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Department of Cell & Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| |
Collapse
|
17
|
Rosner M, Hengstschläger M. Oct4 controls basement membrane development during human embryogenesis. Dev Cell 2024; 59:1439-1456.e7. [PMID: 38579716 DOI: 10.1016/j.devcel.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 01/02/2024] [Accepted: 03/08/2024] [Indexed: 04/07/2024]
Abstract
Basement membranes (BMs) are sheet-like structures of extracellular matrix (ECM) that provide structural support for many tissues and play a central role in signaling. They are key regulators of cell behavior and tissue functions, and defects in their assembly or composition are involved in numerous human diseases. Due to the differences between human and animal embryogenesis, ethical concerns, legal constraints, the scarcity of human tissue material, and the inaccessibility of the in vivo condition, BM regulation during human embryo development has remained elusive. Using the post-implantation amniotic sac embryoid (PASE), we delineate BM assembly upon post-implantation development and BM disassembly during primitive streak (PS) cell dissemination. Further, we show that the transcription factor Oct4 regulates the expression of BM structural components and receptors and controls BM development by regulating Akt signaling and the small GTPase Rac1. These results represent a relevant step toward a more comprehensive understanding of early human development.
Collapse
Affiliation(s)
- Margit Rosner
- Institute of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna 1090, Austria
| | - Markus Hengstschläger
- Institute of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna 1090, Austria.
| |
Collapse
|
18
|
Hopwood N. Species Choice and Model Use: Reviving Research on Human Development. JOURNAL OF THE HISTORY OF BIOLOGY 2024; 57:231-279. [PMID: 39075321 PMCID: PMC11341657 DOI: 10.1007/s10739-024-09775-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/13/2024] [Indexed: 07/31/2024]
Abstract
While model organisms have had many historians, this article places studies of humans, and particularly our development, in the politics of species choice. Human embryos, investigated directly rather than via animal surrogates, have gone through cycles of attention and neglect. In the past 60 years they moved from the sidelines to center stage. Research was resuscitated in anatomy, launched in reproductive biomedicine, molecular genetics, and stem-cell science, and made attractive in developmental biology. I explain this surge of interest in terms of rivalry with models and reliance on them. The greater involvement of medicine in human reproduction, especially through in vitro fertilization, gave access to fresh sources of material that fed critiques of extrapolation from mice and met demands for clinical relevance or "translation." Yet much of the revival depended on models. Supply infrastructures and digital standards, including biobanks and virtual atlases, emulated community resources for model organisms. Novel culture, imaging, molecular, and postgenomic methods were perfected on less precious samples. Toing and froing from the mouse affirmed the necessity of the exemplary mammal and its insufficiency justified inquiries into humans. Another kind of model-organoids and embryo-like structures derived from stem cells-enabled experiments that encouraged the organization of a new field, human developmental biology. Research on humans has competed with and counted on models.
Collapse
Affiliation(s)
- Nick Hopwood
- Department of History and Philosophy of Science, University of Cambridge, Free School Lane, Cambridge, CB2 3RH, UK.
| |
Collapse
|
19
|
Kiya Y, Watanabe S, Harada K, Yui H, Yashiro Y, Muto K. Attitudes of patients with IVF/ICSI toward human embryo in vitro culture beyond 14 days. Regen Ther 2024; 26:831-836. [PMID: 39345906 PMCID: PMC11439407 DOI: 10.1016/j.reth.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/17/2024] [Accepted: 09/11/2024] [Indexed: 10/01/2024] Open
Abstract
When the International Society for Stem Cell Research revised its 2021 guidelines, it reversed its ban on the in vitro culture of human embryos beyond 14 days. However, despite widespread recognition of the importance of public debate on embryo research, it remains unclear how patients who have undergone in vitro fertilization (IVF) and/or intracytoplasmic sperm injection (ICSI) perceive this change in the guidelines. Three focus group interviews were conducted with IVF/ICSI patients to understand their opinions on extending the in vitro culture of human embryos beyond 14 days. Thematic analysis revealed a primarily favorable attitude toward the extension of in vitro embryo culture, identifying six reasons for this positive perspective. However, two reasons for negative attitudes were identified, along with some concerns that need to be addressed. To facilitate an open discussion, the following suggestions were made to the government and scientific community. The government and scientific community should provide sufficient knowledge to IVF/ICSI patients about research before discussions. It's important to consider diverse views on embryo models, including distrust and resistance. Ensuring IVF/ICSI patients' psychological safety is essential. "Public conversations" with citizens, including IVF/ICSI patients, should be promoted, and their opinions should be considered as part of a broader public spectrum.
Collapse
Affiliation(s)
- Yukitaka Kiya
- Department of Public Policy, Institute of Medical Science, University of Tokyo, Japan
| | - Saori Watanabe
- Department of Public Policy, Institute of Medical Science, University of Tokyo, Japan
| | | | - Hideki Yui
- RIKEN Center for Integrative Medical Sciences, Japan
- Center for Birth Cohort Studies, University of Yamanashi, Japan
| | | | - Kaori Muto
- Department of Public Policy, Institute of Medical Science, University of Tokyo, Japan
- RIKEN Center for Integrative Medical Sciences, Japan
| |
Collapse
|
20
|
Xiao Z, Cui L, Yuan Y, He N, Xie X, Lin S, Yang X, Zhang X, Shi P, Wei Z, Li Y, Wang H, Wang X, Wei Y, Guo J, Yu L. 3D reconstruction of a gastrulating human embryo. Cell 2024; 187:2855-2874.e19. [PMID: 38657603 DOI: 10.1016/j.cell.2024.03.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/17/2024] [Accepted: 03/26/2024] [Indexed: 04/26/2024]
Abstract
Progress in understanding early human development has been impeded by the scarcity of reference datasets from natural embryos, particularly those with spatial information during crucial stages like gastrulation. We conducted high-resolution spatial transcriptomics profiling on 38,562 spots from 62 transverse sections of an intact Carnegie stage (CS) 8 human embryo. From this spatial transcriptomic dataset, we constructed a 3D model of the CS8 embryo, in which a range of cell subtypes are identified, based on gene expression patterns and positional register, along the anterior-posterior, medial-lateral, and dorsal-ventral axis in the embryo. We further characterized the lineage trajectories of embryonic and extra-embryonic tissues and associated regulons and the regionalization of signaling centers and signaling activities that underpin lineage progression and tissue patterning during gastrulation. Collectively, the findings of this study provide insights into gastrulation and post-gastrulation development of the human embryo.
Collapse
Affiliation(s)
- Zhenyu Xiao
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; School of Life Science, Beijing Institute of Technology, Beijing 100081, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Lina Cui
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Yang Yuan
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Nannan He
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Xinwei Xie
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Sirui Lin
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xiaolong Yang
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Xin Zhang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Peifu Shi
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Zhifeng Wei
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Yang Li
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Hongmei Wang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; School of Life Science, Beijing Institute of Technology, Beijing 100081, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Xiaoyan Wang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China.
| | - Yulei Wei
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| | - Jingtao Guo
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China.
| | - Leqian Yu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China.
| |
Collapse
|
21
|
Loseva PA, Gladyshev VN. The beginning of becoming a human. Aging (Albany NY) 2024; 16:8378-8395. [PMID: 38713165 PMCID: PMC11131989 DOI: 10.18632/aging.205824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/27/2024] [Indexed: 05/08/2024]
Abstract
According to birth certificates, the life of a child begins once their body comes out of the mother's womb. But when does their organismal life begin? Science holds a palette of answers-depending on how one defines a human life. In 1984, a commission on the regulatory framework for human embryo experimentation opted not to answer this question, instead setting a boundary, 14 days post-fertilization, beyond which any experiments were forbidden. Recently, as the reproductive technologies developed and the demand for experimentation grew stronger, this boundary may be set aside leaving the ultimate decision to local oversight committees. While science has not come closer to setting a zero point for human life, there has been significant progress in our understanding of early mammalian embryogenesis. It has become clear that the 14-day stage does in fact possess features, which make it a foundational time point for a developing human. Importantly, this stage defines the separation of soma from the germline and marks the boundary between rejuvenation and aging. We explore how different levels of life organization emerge during human development and suggest a new meaning for the 14-day stage in organismal life that is grounded in recent mechanistic advances and insights from aging studies.
Collapse
Affiliation(s)
- Polina A. Loseva
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Vadim N. Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
22
|
Indana D, Zakharov A, Lim Y, Dunn AR, Bhutani N, Shenoy VB, Chaudhuri O. Lumen expansion is initially driven by apical actin polymerization followed by osmotic pressure in a human epiblast model. Cell Stem Cell 2024; 31:640-656.e8. [PMID: 38701758 PMCID: PMC11323070 DOI: 10.1016/j.stem.2024.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 02/08/2024] [Accepted: 03/27/2024] [Indexed: 05/05/2024]
Abstract
Post-implantation, the pluripotent epiblast in a human embryo forms a central lumen, paving the way for gastrulation. Osmotic pressure gradients are considered the drivers of lumen expansion across development, but their role in human epiblasts is unknown. Here, we study lumenogenesis in a pluripotent-stem-cell-based epiblast model using engineered hydrogels. We find that leaky junctions prevent osmotic pressure gradients in early epiblasts and, instead, forces from apical actin polymerization drive lumen expansion. Once the lumen reaches a radius of ∼12 μm, tight junctions mature, and osmotic pressure gradients develop to drive further growth. Computational modeling indicates that apical actin polymerization into a stiff network mediates initial lumen expansion and predicts a transition to pressure-driven growth in larger epiblasts to avoid buckling. Human epiblasts show transcriptional signatures consistent with these mechanisms. Thus, actin polymerization drives lumen expansion in the human epiblast and may serve as a general mechanism of early lumenogenesis.
Collapse
Affiliation(s)
- Dhiraj Indana
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Andrei Zakharov
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Youngbin Lim
- Cell Sciences Imaging Facility (CSIF), Beckman Center, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Alexander R Dunn
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Nidhi Bhutani
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Vivek B Shenoy
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ovijit Chaudhuri
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA; Chemistry, Engineering, and Medicine for Human Health (ChEM-H), Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
23
|
Rossant J. Why study human embryo development? Dev Biol 2024; 509:43-50. [PMID: 38325560 DOI: 10.1016/j.ydbio.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/31/2023] [Accepted: 02/01/2024] [Indexed: 02/09/2024]
Abstract
Understanding the processes and mechanisms underlying early human embryo development has become an increasingly active and important area of research. It has potential for insights into important clinical issues such as early pregnancy loss, origins of congenital anomalies and developmental origins of adult disease, as well as fundamental insights into human biology. Improved culture systems for preimplantation embryos, combined with the new tools of single cell genomics and live imaging, are providing new insights into the similarities and differences between human and mouse development. However, access to human embryo material is still restricted and extended culture of early embryos has regulatory and ethical concerns. Stem cell-derived models of different phases of human development can potentially overcome these limitations and provide a scalable source of material to explore the early postimplantation stages of human development. To date, such models are clearly incomplete replicas of normal development but future technological improvements can be envisaged. The ethical and regulatory environment for such studies remains to be fully resolved.
Collapse
Affiliation(s)
- Janet Rossant
- The Gairdner Foundation and the Hospital for Sick Children, University of Toronto, MaRS Centre, Heritage Building, 101 College Street, Suite 335, Toronto, Ontario, M5G 1L7, Canada.
| |
Collapse
|
24
|
Azagury M, Buganim Y. Unlocking trophectoderm mysteries: In vivo and in vitro perspectives on human and mouse trophoblast fate induction. Dev Cell 2024; 59:941-960. [PMID: 38653193 DOI: 10.1016/j.devcel.2024.03.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/10/2023] [Accepted: 03/18/2024] [Indexed: 04/25/2024]
Abstract
In recent years, the pursuit of inducing the trophoblast stem cell (TSC) state has gained prominence as a compelling research objective, illuminating the establishment of the trophoblast lineage and unlocking insights into early embryogenesis. In this review, we examine how advancements in diverse technologies, including in vivo time course transcriptomics, cellular reprogramming to TSC state, chemical induction of totipotent stem-cell-like state, and stem-cell-based embryo-like structures, have enriched our insights into the intricate molecular mechanisms and signaling pathways that define the mouse and human trophectoderm/TSC states. We delve into disparities between mouse and human trophectoderm/TSC fate establishment, with a special emphasis on the intriguing role of pluripotency in this context. Additionally, we re-evaluate recent findings concerning the potential of totipotent-stem-like cells and embryo-like structures to fully manifest the trophectoderm/trophoblast lineage's capabilities. Lastly, we briefly discuss the potential applications of induced TSCs in pregnancy-related disease modeling.
Collapse
Affiliation(s)
- Meir Azagury
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Yosef Buganim
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel.
| |
Collapse
|
25
|
Gleicher N. Peripartum Cardiomyopathy. N Engl J Med 2024; 390:1443. [PMID: 38631014 DOI: 10.1056/nejmc2401629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
|
26
|
Du P, Wu J. Hallmarks of totipotent and pluripotent stem cell states. Cell Stem Cell 2024; 31:312-333. [PMID: 38382531 PMCID: PMC10939785 DOI: 10.1016/j.stem.2024.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/18/2024] [Accepted: 01/26/2024] [Indexed: 02/23/2024]
Abstract
Though totipotency and pluripotency are transient during early embryogenesis, they establish the foundation for the development of all mammals. Studying these in vivo has been challenging due to limited access and ethical constraints, particularly in humans. Recent progress has led to diverse culture adaptations of epiblast cells in vitro in the form of totipotent and pluripotent stem cells, which not only deepen our understanding of embryonic development but also serve as invaluable resources for animal reproduction and regenerative medicine. This review delves into the hallmarks of totipotent and pluripotent stem cells, shedding light on their key molecular and functional features.
Collapse
Affiliation(s)
- Peng Du
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China.
| | - Jun Wu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
27
|
Weatherbee BAT, Weberling A, Gantner CW, Iwamoto-Stohl LK, Barnikel Z, Barrie A, Campbell A, Cunningham P, Drezet C, Efstathiou P, Fishel S, Vindel SG, Lockwood M, Oakley R, Pretty C, Chowdhury N, Richardson L, Mania A, Weavers L, Christie L, Elder K, Snell P, Zernicka-Goetz M. Distinct pathways drive anterior hypoblast specification in the implanting human embryo. Nat Cell Biol 2024; 26:353-365. [PMID: 38443567 PMCID: PMC10940163 DOI: 10.1038/s41556-024-01367-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/24/2024] [Indexed: 03/07/2024]
Abstract
Development requires coordinated interactions between the epiblast, which generates the embryo proper; the trophectoderm, which generates the placenta; and the hypoblast, which forms both the anterior signalling centre and the yolk sac. These interactions remain poorly understood in human embryogenesis because mechanistic studies have only recently become possible. Here we examine signalling interactions post-implantation using human embryos and stem cell models of the epiblast and hypoblast. We find anterior hypoblast specification is NODAL dependent, as in the mouse. However, while BMP inhibits anterior signalling centre specification in the mouse, it is essential for its maintenance in human. We also find contrasting requirements for BMP in the naive pre-implantation epiblast of mouse and human embryos. Finally, we show that NOTCH signalling is important for human epiblast survival. Our findings of conserved and species-specific factors that drive these early stages of embryonic development highlight the strengths of comparative species studies.
Collapse
Affiliation(s)
- Bailey A T Weatherbee
- Mammalian Embryo and Stem Cell Group, Department of Physiology, Development and Neuroscience, Mammalian Embryo and Stem Cell Group, University of Cambridge, Cambridge, UK
- Center for Stem Cell and Organoid Medicine, Perinatal Institute, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Antonia Weberling
- Mammalian Embryo and Stem Cell Group, Department of Physiology, Development and Neuroscience, Mammalian Embryo and Stem Cell Group, University of Cambridge, Cambridge, UK
- All Souls College, Oxford, UK
- Nuffield Department of Women's and Reproductive Health, Women's Centre, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Carlos W Gantner
- Mammalian Embryo and Stem Cell Group, Department of Physiology, Development and Neuroscience, Mammalian Embryo and Stem Cell Group, University of Cambridge, Cambridge, UK
| | - Lisa K Iwamoto-Stohl
- Mammalian Embryo and Stem Cell Group, Department of Physiology, Development and Neuroscience, Mammalian Embryo and Stem Cell Group, University of Cambridge, Cambridge, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | - Lucy Richardson
- Herts & Essex Fertility Centre, Bishops College, Cheshunt, UK
| | | | | | | | - Kay Elder
- Bourn Hall Fertility Clinic, Bourn, UK
| | | | - Magdalena Zernicka-Goetz
- Mammalian Embryo and Stem Cell Group, Department of Physiology, Development and Neuroscience, Mammalian Embryo and Stem Cell Group, University of Cambridge, Cambridge, UK.
- Stem Cells Self-Organization Group, Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
28
|
Chousal JN, Morey R, Srinivasan S, Lee K, Zhang W, Yeo AL, To C, Cho K, Garzo VG, Parast MM, Laurent LC, Cook-Andersen H. Molecular profiling of human blastocysts reveals primitive endoderm defects among embryos of decreased implantation potential. Cell Rep 2024; 43:113701. [PMID: 38277271 DOI: 10.1016/j.celrep.2024.113701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 12/12/2023] [Accepted: 01/05/2024] [Indexed: 01/28/2024] Open
Abstract
Human embryo implantation is remarkably inefficient, and implantation failure remains among the greatest obstacles in treating infertility. Gene expression data from human embryos have accumulated rapidly in recent years; however, identification of the subset of genes that determine successful implantation remains a challenge. We leverage clinical morphologic grading-known for decades to correlate with implantation potential-and transcriptome analyses of matched embryonic and abembryonic samples to identify factors and pathways enriched and depleted in human blastocysts of good and poor morphology. Unexpectedly, we discovered that the greatest difference was in the state of extraembryonic primitive endoderm (PrE) development, with relative deficiencies in poor morphology blastocysts. Our results suggest that implantation success is most strongly influenced by the embryonic compartment and that deficient PrE development is common among embryos with decreased implantation potential. Our study provides a valuable resource for those investigating the markers and mechanisms of human embryo implantation.
Collapse
Affiliation(s)
- Jennifer N Chousal
- Department of Pathology, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Robert Morey
- Department of Pathology, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Srimeenakshi Srinivasan
- Department of Obstetrics, Gynecology, and Reproductive Sciences, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Katherine Lee
- Department of Obstetrics, Gynecology, and Reproductive Sciences, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Department of Molecular Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Wei Zhang
- Reproductive Partners Fertility Center - San Diego, La Jolla, CA 92037, USA
| | - Ana Lisa Yeo
- Reproductive Partners Fertility Center - San Diego, La Jolla, CA 92037, USA
| | - Cuong To
- Department of Obstetrics, Gynecology, and Reproductive Sciences, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kyucheol Cho
- Department of Obstetrics, Gynecology, and Reproductive Sciences, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - V Gabriel Garzo
- Reproductive Partners Fertility Center - San Diego, La Jolla, CA 92037, USA
| | - Mana M Parast
- Department of Pathology, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Louise C Laurent
- Department of Obstetrics, Gynecology, and Reproductive Sciences, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Heidi Cook-Andersen
- Department of Obstetrics, Gynecology, and Reproductive Sciences, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Department of Molecular Biology, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
29
|
Shibata S, Endo S, Nagai LAE, H. Kobayashi E, Oike A, Kobayashi N, Kitamura A, Hori T, Nashimoto Y, Nakato R, Hamada H, Kaji H, Kikutake C, Suyama M, Saito M, Yaegashi N, Okae H, Arima T. Modeling embryo-endometrial interface recapitulating human embryo implantation. SCIENCE ADVANCES 2024; 10:eadi4819. [PMID: 38394208 PMCID: PMC10889356 DOI: 10.1126/sciadv.adi4819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 01/23/2024] [Indexed: 02/25/2024]
Abstract
The initiation of human pregnancy is marked by the implantation of an embryo into the uterine environment; however, the underlying mechanisms remain largely elusive. To address this knowledge gap, we developed hormone-responsive endometrial organoids (EMO), termed apical-out (AO)-EMO, which emulate the in vivo architecture of endometrial tissue. The AO-EMO comprise an exposed apical epithelium surface, dense stromal cells, and a self-formed endothelial network. When cocultured with human embryonic stem cell-derived blastoids, the three-dimensional feto-maternal assembloid system recapitulates critical implantation stages, including apposition, adhesion, and invasion. Endometrial epithelial cells were subsequently disrupted by syncytial cells, which invade and fuse with endometrial stromal cells. We validated this fusion of syncytiotrophoblasts and stromal cells using human blastocysts. Our model provides a foundation for investigating embryo implantation and feto-maternal interactions, offering valuable insights for advancing reproductive medicine.
Collapse
Affiliation(s)
- Shun Shibata
- Department of Informative Genetics, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
- Research and Development Division, Rohto Pharmaceutical Co. Ltd., Osaka 544-8666, Japan
| | - Shun Endo
- Department of Informative Genetics, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Luis A. E. Nagai
- Laboratory of Computational Genomics, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo 113-0032, Japan
| | - Eri H. Kobayashi
- Department of Informative Genetics, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Akira Oike
- Department of Informative Genetics, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
- Department of Trophoblast Research, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 862-0973, Japan
| | - Norio Kobayashi
- Department of Informative Genetics, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Akane Kitamura
- Department of Informative Genetics, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Takeshi Hori
- Department of Diagnostic and Therapeutic Systems Engineering, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo 101-0062, Japan
| | - Yuji Nashimoto
- Department of Diagnostic and Therapeutic Systems Engineering, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo 101-0062, Japan
| | - Ryuichiro Nakato
- Laboratory of Computational Genomics, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo 113-0032, Japan
| | - Hirotaka Hamada
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Hirokazu Kaji
- Department of Diagnostic and Therapeutic Systems Engineering, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo 101-0062, Japan
| | - Chie Kikutake
- Division of Bioinformatics, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Mikita Suyama
- Division of Bioinformatics, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Masatoshi Saito
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Nobuo Yaegashi
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Hiroaki Okae
- Department of Informative Genetics, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
- Department of Trophoblast Research, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 862-0973, Japan
| | - Takahiro Arima
- Department of Informative Genetics, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| |
Collapse
|
30
|
Hamazaki N, Yang W, Kubo C, Qiu C, Martin BK, Garge RK, Regalado SG, Nichols E, Lee C, Daza RM, Srivatsan S, Shendure J. Induction and in silico staging of human gastruloids with neural tube, segmented somites & advanced cell types. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.10.579769. [PMID: 38405970 PMCID: PMC10888963 DOI: 10.1101/2024.02.10.579769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Embryonic organoids are emerging as powerful models for studying early mammalian development. For example, stem cell-derived 'gastruloids' form elongating structures containing all three germ layers1-4. However, although elongated, human gastruloids do not morphologically resemble post-implantation embryos. Here we show that a specific, discontinuous regimen of retinoic acid (RA) robustly induces human gastruloids with embryo-like morphological structures, including a neural tube and segmented somites. Single cell RNA-seq (sc-RNA-seq) further reveals that these human 'RA-gastruloids' contain more advanced cell types than conventional gastruloids, including neural crest cells, renal progenitor cells, skeletal muscle cells, and, rarely, neural progenitor cells. We apply a new approach to computationally stage human RA-gastruloids relative to somite-resolved mouse embryos, early human embryos and other gastruloid models, and find that the developmental stage of human RA-gastruloids is comparable to that of E9.5 mouse embryos, although some cell types show greater or lesser progression. We chemically perturb WNT and BMP signaling in human RA-gastruloids and find that these signaling pathways regulate somite patterning and neural tube length, respectively, while genetic perturbation of the transcription factors PAX3 and TBX6 markedly compromises the formation of neural crest and somites/renal cells, respectively. Human RA-gastruloids complement other embryonic organoids in serving as a simple, robust and screenable model for decoding early human embryogenesis.
Collapse
Affiliation(s)
- Nobuhiko Hamazaki
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
- Howard Hughes Medical Institute, Seattle, WA 98195, USA
| | - Wei Yang
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Connor Kubo
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Chengxiang Qiu
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Beth K. Martin
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Riddhiman K. Garge
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA 98195, USA
| | - Samuel G. Regalado
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
- Medical Scientist Training Program, University of Washington, Seattle, WA, 98195, USA
| | - Eva Nichols
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Choli Lee
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Riza M. Daza
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Sanjay Srivatsan
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
- Medical Scientist Training Program, University of Washington, Seattle, WA, 98195, USA
| | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
- Howard Hughes Medical Institute, Seattle, WA 98195, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA 98195, USA
- Allen Discovery Center for Cell Lineage Tracing, Seattle, WA 98195, USA
| |
Collapse
|
31
|
Liu X, Polo JM. Human blastoid as an in vitro model of human blastocysts. Curr Opin Genet Dev 2024; 84:102135. [PMID: 38052115 DOI: 10.1016/j.gde.2023.102135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/23/2023] [Accepted: 11/03/2023] [Indexed: 12/07/2023]
Abstract
Human development is a highly coordinated process, with any abnormalities during the early embryonic stages that can often have detrimental consequences. The complexity and nuances of human development underpin its significance in embryo research. However, this research is often hindered by limited availability and ethical considerations associated with the use of donated blastocysts from in vitro fertilization (IVF) surplus. Human blastoids offer promising alternatives as they can be easily generated and manipulated in the laboratory while preserving key characteristics of human blastocysts. In this way, they hold the potential to serve as a scalable and ethically permissible resource in embryology research. By utilizing such human embryo models, we can establish a transformative platform that complements the study with IVF embryos, ultimately enhancing our understanding of human embryogenesis.
Collapse
Affiliation(s)
- Xiaodong Liu
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Research Center for Industries of the Future, Westlake University, Hangzhou, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China.
| | - Jose M Polo
- Adelaide Centre for Epigenetics, School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, South Australia, Australia; The South Australian Immunogenomics Cancer Institute, Faculty of Health and Medical Sciences, The University of Adelaide, South Australia, Australia; Department of Anatomy and Developmental Biology, Monash University, Victoria, Australia; Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Victoria, Australia.
| |
Collapse
|
32
|
Okubo T, Rivron N, Kabata M, Masaki H, Kishimoto K, Semi K, Nakajima-Koyama M, Kunitomi H, Kaswandy B, Sato H, Nakauchi H, Woltjen K, Saitou M, Sasaki E, Yamamoto T, Takashima Y. Hypoblast from human pluripotent stem cells regulates epiblast development. Nature 2024; 626:357-366. [PMID: 38052228 PMCID: PMC10849967 DOI: 10.1038/s41586-023-06871-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 11/15/2023] [Indexed: 12/07/2023]
Abstract
Recently, several studies using cultures of human embryos together with single-cell RNA-seq analyses have revealed differences between humans and mice, necessitating the study of human embryos1-8. Despite the importance of human embryology, ethical and legal restrictions have limited post-implantation-stage studies. Thus, recent efforts have focused on developing in vitro self-organizing models using human stem cells9-17. Here, we report genetic and non-genetic approaches to generate authentic hypoblast cells (naive hPSC-derived hypoblast-like cells (nHyCs))-known to give rise to one of the two extraembryonic tissues essential for embryonic development-from naive human pluripotent stem cells (hPSCs). Our nHyCs spontaneously assemble with naive hPSCs to form a three-dimensional bilaminar structure (bilaminoids) with a pro-amniotic-like cavity. In the presence of additional naive hPSC-derived analogues of the second extraembryonic tissue, the trophectoderm, the efficiency of bilaminoid formation increases from 20% to 40%, and the epiblast within the bilaminoids continues to develop in response to trophectoderm-secreted IL-6. Furthermore, we show that bilaminoids robustly recapitulate the patterning of the anterior-posterior axis and the formation of cells reflecting the pregastrula stage, the emergence of which can be shaped by genetically manipulating the DKK1/OTX2 hypoblast-like domain. We have therefore successfully modelled and identified the mechanisms by which the two extraembryonic tissues efficiently guide the stage-specific growth and progression of the epiblast as it establishes the post-implantation landmarks of human embryogenesis.
Collapse
Affiliation(s)
- Takumi Okubo
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Nicolas Rivron
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria
| | - Mio Kabata
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Hideki Masaki
- Institute of Medical Science, University of Tokyo, Tokyo, Japan
- Advanced Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | | | - Katsunori Semi
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - May Nakajima-Koyama
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Haruko Kunitomi
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Belinda Kaswandy
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Hideyuki Sato
- Institute of Medical Science, University of Tokyo, Tokyo, Japan
- Advanced Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiromitsu Nakauchi
- Institute of Medical Science, University of Tokyo, Tokyo, Japan
- Advanced Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Knut Woltjen
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Mitinori Saitou
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Erika Sasaki
- Central Institute for Experimental Animals, Kawasaki, Japan
| | - Takuya Yamamoto
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan.
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan.
- Medical-risk Avoidance Based on iPS Cells Team, RIKEN Center for Advanced Intelligence Project (AIP), Kyoto, Japan.
| | - Yasuhiro Takashima
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan.
| |
Collapse
|
33
|
Cucinella G, Gullo G, Catania E, Perino A, Billone V, Marinelli S, Napoletano G, Zaami S. Stem Cells and Infertility: A Review of Clinical Applications and Legal Frameworks. J Pers Med 2024; 14:135. [PMID: 38392569 PMCID: PMC10890184 DOI: 10.3390/jpm14020135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/24/2024] Open
Abstract
Infertility is a condition defined by the failure to establish a clinical pregnancy after 12 months of regular, unprotected sexual intercourse or due to an impairment of a person's capacity to reproduce either as an individual or with their partner. The authors have set out to succinctly investigate, explore, and assess infertility treatments, harnessing the potential of stem cells to effectively and safely treat infertility; in addition, this paper will present the legal and regulatory complexities at the heart of stem cell research, with an overview of the legislative state of affairs in six major European countries. For couples who cannot benefit from assisted reproductive technologies (ART) to treat their infertility, stem-cells-based approaches have been shown to be a highly promising approach. Nonetheless, lingering ethical and immunological uncertainties require more conclusive findings and data before such treatment avenues can become mainstream and be applied on a large scale. The isolation of human embryonic stem cells (ESCs) is ethically controversial, since their collection involves the destruction of human embryonic tissue. Overall, stem cell research has resulted in important new breakthroughs in the treatment of infertility. The effort to untangle the complex web of ethical and legal issues associated with such therapeutic approaches will have to rely on evidence-based, broadly shared standards, guidelines, and best practices to make sure that the procreative rights of patients can be effectively reconciled with the core values at the heart of medical ethics.
Collapse
Affiliation(s)
- Gaspare Cucinella
- IVF Unit, Department of Obstetrics and Gynecology, Villa Sofia Cervello Hospital, University of Palermo, 90146 Palermo, Italy
| | - Giuseppe Gullo
- IVF Unit, Department of Obstetrics and Gynecology, Villa Sofia Cervello Hospital, University of Palermo, 90146 Palermo, Italy
| | - Erika Catania
- IVF Unit, Department of Obstetrics and Gynecology, Villa Sofia Cervello Hospital, University of Palermo, 90146 Palermo, Italy
| | - Antonio Perino
- IVF Unit, Department of Obstetrics and Gynecology, Villa Sofia Cervello Hospital, University of Palermo, 90146 Palermo, Italy
| | - Valentina Billone
- IVF Unit, Department of Obstetrics and Gynecology, Villa Sofia Cervello Hospital, University of Palermo, 90146 Palermo, Italy
| | | | - Gabriele Napoletano
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, "Sapienza" University of Rome, 00161 Rome, Italy
| | - Simona Zaami
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, "Sapienza" University of Rome, 00161 Rome, Italy
| |
Collapse
|
34
|
Guo M, Wu J, Chen C, Wang X, Gong A, Guan W, Karvas RM, Wang K, Min M, Wang Y, Theunissen TW, Gao S, Silva JCR. Self-renewing human naïve pluripotent stem cells dedifferentiate in 3D culture and form blastoids spontaneously. Nat Commun 2024; 15:668. [PMID: 38253551 PMCID: PMC10803796 DOI: 10.1038/s41467-024-44969-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Human naïve pluripotent stem cells (hnPSCs) can generate integrated models of blastocysts termed blastoids upon switch to inductive medium. However, the underlying mechanisms remain obscure. Here we report that self-renewing hnPSCs spontaneously and efficiently give rise to blastoids upon three dimensional (3D) suspension culture. The spontaneous blastoids mimic early stage human blastocysts in terms of structure, size, and transcriptome characteristics and are capable of progressing to post-implantation stages. This property is conferred by the glycogen synthase kinase-3 (GSK3) signalling inhibitor IM-12 present in 5iLAF self-renewing medium. IM-12 upregulates oxidative phosphorylation-associated genes that underly the capacity of hnPSCs to generate blastoids spontaneously. Starting from day one of self-organization, hnPSCs at the boundary of all 3D aggregates dedifferentiate into E5 embryo-like intermediates. Intermediates co-express SOX2/OCT4 and GATA6 and by day 3 specify trophoblast fate, which coincides with cavity and blastoid formation. In summary, spontaneous blastoid formation results from 3D culture triggering dedifferentiation of hnPSCs into earlier embryo-like intermediates which are then competent to segregate blastocyst fates.
Collapse
Affiliation(s)
- Mingyue Guo
- Guangzhou Medical University, Guangzhou, Guangdong, China.
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, 510005, Guangdong, China.
- Bioland Laboratory, Guangzhou International Bio Island, Guangzhou, 510005, Guangdong, China.
- The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510700, China.
| | - Jinyi Wu
- Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, 510005, Guangdong, China
- Bioland Laboratory, Guangzhou International Bio Island, Guangzhou, 510005, Guangdong, China
| | - Chuanxin Chen
- Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, 510005, Guangdong, China
- Bioland Laboratory, Guangzhou International Bio Island, Guangzhou, 510005, Guangdong, China
- The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510700, China
| | - Xinggu Wang
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, 510005, Guangdong, China
| | - An Gong
- Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, 510005, Guangdong, China
- Bioland Laboratory, Guangzhou International Bio Island, Guangzhou, 510005, Guangdong, China
- The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510700, China
| | - Wei Guan
- Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, 510005, Guangdong, China
| | - Rowan M Karvas
- Department of Developmental Biology and Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Kexin Wang
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, 510005, Guangdong, China
| | - Mingwei Min
- Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, 510005, Guangdong, China
| | - Yixuan Wang
- Shanghai Key Laboratory of Maternal and Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Thorold W Theunissen
- Department of Developmental Biology and Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Shaorong Gao
- Shanghai Key Laboratory of Maternal and Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - José C R Silva
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, 510005, Guangdong, China.
| |
Collapse
|
35
|
De Santis R, Rice E, Croft G, Yang M, Rosado-Olivieri EA, Brivanlou AH. The emergence of human gastrulation upon in vitro attachment. Stem Cell Reports 2024; 19:41-53. [PMID: 38101401 PMCID: PMC10828709 DOI: 10.1016/j.stemcr.2023.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 12/17/2023] Open
Abstract
While studied extensively in model systems, human gastrulation remains obscure. The scarcity of fetal biological material as well as ethical considerations limit our understanding of this process. In vitro attachment of natural blastocysts shed light on aspects of the second week of human development in the absence of the morphological manifestation of gastrulation. Stem cell-derived blastocyst models, blastoids, provide the opportunity to reconstitute pre- to post-implantation development in vitro. Here we show that upon in vitro attachment, human blastoids self-organize a BRA+ population and undergo gastrulation. Single-cell RNA sequencing of these models replicates the transcriptomic signature of the human gastrula. Analysis of developmental timing reveals that in both blastoid models and natural human embryos, the onset of gastrulation as defined by molecular markers, can be traced to timescales equivalent to 12 days post fertilization. In all, natural human embryos and blastoid models self-organize primitive streak and mesoderm derivatives upon in vitro attachment.
Collapse
Affiliation(s)
- Riccardo De Santis
- Laboratory of Stem Cell Biology and Molecular Embryology, The Rockefeller University, New York, NY, USA
| | - Eleni Rice
- Laboratory of Stem Cell Biology and Molecular Embryology, The Rockefeller University, New York, NY, USA
| | - Gist Croft
- The New York Stem Cell Foundation Research Institute, New York, NY, USA
| | - Min Yang
- Laboratory of Stem Cell Biology and Molecular Embryology, The Rockefeller University, New York, NY, USA
| | - Edwin A Rosado-Olivieri
- Laboratory of Stem Cell Biology and Molecular Embryology, The Rockefeller University, New York, NY, USA
| | - Ali H Brivanlou
- Laboratory of Stem Cell Biology and Molecular Embryology, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
36
|
Venkatesh A, Iltis AS, Matthews KRW. Transparency in controversial research: A review of human embryo research publication ethical disclosure statements. Stem Cell Reports 2024; 19:28-36. [PMID: 38134926 PMCID: PMC10828690 DOI: 10.1016/j.stemcr.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 12/24/2023] Open
Abstract
In 2021, the International Society for Stem Cell Research (ISSCR) released updated guidelines that included human embryo research guidance. Requiring ethics statements in publications using human embryos is one way to verify adherence to these guidelines. A review of top-tier biomedical journal requirements identified only one publisher that requires a human embryo statement. A review of articles using human embryos from top-tier biomedical journals found that all contain some form of ethics statement, but they differ in content and location. Requiring ethics statements with specific elements could improve transparency and adherence to research guidelines.
Collapse
Affiliation(s)
- Akshaya Venkatesh
- Baker Institute of Public Policy, Rice University, Houston, TX 77005, USA
| | - Ana S Iltis
- Baker Institute of Public Policy, Rice University, Houston, TX 77005, USA; Department of Philosophy and Center for Bioethics, Health and Society, Wake Forest University, Winston-Salem, NC 27109, USA
| | | |
Collapse
|
37
|
Zheng Y. Stem Cell-Derived Microfluidic Amniotic Sac Embryoid (μPASE). Methods Mol Biol 2024; 2767:75-84. [PMID: 36749485 DOI: 10.1007/7651_2022_470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The microfluidic amniotic sac embryoid (μPASE) is a human pluripotent stem cell (hPSC)-derived multicellular human embryo-like structure with molecular and morphological features resembling the progressive development of the early post-implantation human embryonic sac. The microfluidic device is specifically designed to control the formation of hPSC clusters and expose the clusters to different morphogen environments, allowing the development of μPASEs in a highly controllable, reproducible, and scalable fashion. The μPASE model displays human embryonic developmental landmarks such as lumenogenesis of the epiblast, amniotic cavity formation, and the specification of primordial germ cells and gastrulating cells (or mesendoderm cells). Here, we provide detailed instructions needed to reproduce μPASEs, including the immunofluorescence staining and cell retrieval protocols for characterizing μPASEs obtained under different experimental conditions.
Collapse
Affiliation(s)
- Yi Zheng
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY, USA
- BioInspired Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, NY, USA
| |
Collapse
|
38
|
Xiang L, Yin Y, Shi G, Li T. Human Pre-gastrulation Embryo Culture in 3D Condition. Methods Mol Biol 2024; 2767:19-25. [PMID: 36515895 DOI: 10.1007/7651_2022_466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The development process of human embryo until blastocyst is well understood during the past 30 years, however, embryogenesis from blastocyst to pre-gastrulation was still remained a "black box". Limited by research materials and culture technologies, the "black box" is still unopened. We recently established an extended three-dimensional (3D) culture system of human blastocysts (Xiang et al., Nature 577(7791):537-542, 2020). The 3D embryo culture system could enable human blastocyst growing up to early primitive streak anlage stage in vitro. Here, we introduce the detail protocol and notes of culturing human 3D embryos.
Collapse
Affiliation(s)
- Lifeng Xiang
- Department of Reproductive Medicine, The First People's Hospital of Yunnan Province, Kunming, China
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Yu Yin
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Gaohui Shi
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Tianqing Li
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
| |
Collapse
|
39
|
Baverstock K. The Gene: An appraisal. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2024; 186:e73-e88. [PMID: 38044248 DOI: 10.1016/j.pbiomolbio.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
The gene can be described as the foundational concept of modern biology. As such, it has spilled over into daily discourse, yet it is acknowledged among biologists to be ill-defined. Here, following a short history of the gene, I analyse critically its role in inheritance, evolution, development, and morphogenesis. Wilhelm Johannsen's genotype-conception, formulated in 1910, has been adopted as the foundation stone of genetics, giving the gene a higher degree of prominence than is justified by the evidence. An analysis of the results of the Long-Term Evolution Experiment (LTEE) with E. coli bacteria, grown over 60,000 generations, does not support spontaneous gene mutation as the source of variance for natural selection. From this it follows that the gene is not Mendel's unit of inheritance: that must be Johannsen's transmission-conception at the gamete phenotype level, a form of inheritance that Johannsen did not consider. Alternatively, I contend that biology viewed on the bases of thermodynamics, complex system dynamics, and self-organisation, provides a new framework for the foundations of biology. In this framework, the gene plays a passive role as a vital information store: it is the phenotype that plays the active role in inheritance, evolution, development, and morphogenesis.
Collapse
Affiliation(s)
- Keith Baverstock
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio Campus, Kuopio, Finland.
| |
Collapse
|
40
|
Logsdon DM, Ezashi T, Yuan Y. Enzymatic Digestion and Single Cell Isolation of Peri-implantation Stage Human Trophoblast Cells. Methods Mol Biol 2024; 2728:25-34. [PMID: 38019389 DOI: 10.1007/978-1-0716-3495-0_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Recent developments in the in vitro culture of peri-implantation stage human embryos have expanded opportunities to investigate implantation stage human development and trophoblast differentiation in the absence of maternal tissues. Emerging single cell omics analyses have offered researchers new tools to explore unanswered biological questions to new depths. In order to investigate the dynamics of human trophoblast cell differentiation during implantation at the single-cell resolution, efficient cell dissociation approaches of trophoblasts from embryos are necessary. Here, we describe the protocol for extended culture of peri-implantation stage human embryos with enzymatic digestion and manual collection of individual cells for downstream assays.
Collapse
Affiliation(s)
| | - Toshihko Ezashi
- Colorado Centre for Reproductive Medicine, Lone Tree, CO, USA
| | - Ye Yuan
- Colorado Centre for Reproductive Medicine, Lone Tree, CO, USA.
| |
Collapse
|
41
|
Panda A, Pham TXA, Khodeer S, Pasque V. Induction of Human Extraembryonic Mesoderm Cells from Naive Pluripotent Stem Cells. Methods Mol Biol 2024; 2767:105-113. [PMID: 37243859 DOI: 10.1007/7651_2023_483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The human extraembryonic mesoderm (EXM) is an important tissue in the postimplantation embryo which is specified before gastrulation in primates but not in rodents. EXM is mesenchymal and plays an important role in embryogenesis, including early erythropoiesis, and provides mechanical support to the developing embryo. Recently, it has been shown that self-renewing extraembryonic mesoderm cells (EXMCs) can be modeled in vitro by using human naive pluripotent stem cells. Here, we present a detailed step-by-step protocol to induce EXMCs from naive pluripotent stem cells in vitro.
Collapse
Affiliation(s)
- Amitesh Panda
- Department of Development and Regeneration, Leuven Stem Cell Institute, Leuven Institute for Single-Cell Omics (LISCO), Leuven Cancer Institute, KU Leuven - University of Leuven, Leuven, Belgium
| | - Thi Xuan Ai Pham
- Department of Development and Regeneration, Leuven Stem Cell Institute, Leuven Institute for Single-Cell Omics (LISCO), Leuven Cancer Institute, KU Leuven - University of Leuven, Leuven, Belgium
| | - Sherif Khodeer
- Department of Development and Regeneration, Leuven Stem Cell Institute, Leuven Institute for Single-Cell Omics (LISCO), Leuven Cancer Institute, KU Leuven - University of Leuven, Leuven, Belgium
| | - Vincent Pasque
- Department of Development and Regeneration, Leuven Stem Cell Institute, Leuven Institute for Single-Cell Omics (LISCO), Leuven Cancer Institute, KU Leuven - University of Leuven, Leuven, Belgium
| |
Collapse
|
42
|
Denker HW. Embryoids, models, embryos? We need to take a new look at legal norms concerning the beginning of organismic development. Mol Hum Reprod 2023; 30:gaad047. [PMID: 38113415 DOI: 10.1093/molehr/gaad047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/24/2023] [Indexed: 12/21/2023] Open
|
43
|
Blain R, Couly G, Shotar E, Blévinal J, Toupin M, Favre A, Abjaghou A, Inoue M, Hernández-Garzón E, Clarençon F, Chalmel F, Mazaud-Guittot S, Giacobini P, Gitton Y, Chédotal A. A tridimensional atlas of the developing human head. Cell 2023; 186:5910-5924.e17. [PMID: 38070509 PMCID: PMC10783631 DOI: 10.1016/j.cell.2023.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/01/2023] [Accepted: 11/09/2023] [Indexed: 12/24/2023]
Abstract
The evolution and development of the head have long captivated researchers due to the crucial role of the head as the gateway for sensory stimuli and the intricate structural complexity of the head. Although significant progress has been made in understanding head development in various vertebrate species, our knowledge of early human head ontogeny remains limited. Here, we used advanced whole-mount immunostaining and 3D imaging techniques to generate a comprehensive 3D cellular atlas of human head embryogenesis. We present detailed developmental series of diverse head tissues and cell types, including muscles, vasculature, cartilage, peripheral nerves, and exocrine glands. These datasets, accessible through a dedicated web interface, provide insights into human embryogenesis. We offer perspectives on the branching morphogenesis of human exocrine glands and unknown features of the development of neurovascular and skeletomuscular structures. These insights into human embryology have important implications for understanding craniofacial defects and neurological disorders and advancing diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Raphael Blain
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Gérard Couly
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Eimad Shotar
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France; Department of Interventional Neuroradiology, Pitié-Salpêtrière Hospital, Sorbonne Université, Paris, France
| | | | - Maryne Toupin
- INSERM, EHESP, Univ Rennes, Institut de recherche en santé, environnement et travail (Irset), UMR_S 1085, Rennes, France
| | - Anais Favre
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Ali Abjaghou
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Megumi Inoue
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | | | - Frédéric Clarençon
- Department of Interventional Neuroradiology, Pitié-Salpêtrière Hospital, Sorbonne Université, Paris, France
| | - Frédéric Chalmel
- INSERM, EHESP, Univ Rennes, Institut de recherche en santé, environnement et travail (Irset), UMR_S 1085, Rennes, France
| | - Séverine Mazaud-Guittot
- INSERM, EHESP, Univ Rennes, Institut de recherche en santé, environnement et travail (Irset), UMR_S 1085, Rennes, France
| | - Paolo Giacobini
- University of Lille, INSERM, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, 59000 Lille, France
| | - Yorick Gitton
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France.
| | - Alain Chédotal
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France; Institut de pathologie, Groupe Hospitalier Est, Hospices Civils de Lyon, Lyon, France; University Claude Bernard Lyon 1, MeLiS, CNRS UMR 5284, INSERM U1314, 69008 Lyon, France.
| |
Collapse
|
44
|
Stringa B, Solnica-Krezel L. Signaling mechanisms that direct cell fate specification and morphogenesis in human embryonic stem cells-based models of human gastrulation. Emerg Top Life Sci 2023; 7:383-396. [PMID: 38087898 DOI: 10.1042/etls20230084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 12/19/2023]
Abstract
During mammalian gastrulation, a mass of pluripotent cells surrounded by extraembryonic tissues differentiates into germ layers, mesoderm, endoderm, and ectoderm. The three germ layers are then organized into a body plan with organ rudiments via morphogenetic gastrulation movements of emboly, epiboly, convergence, and extension. Emboly is the most conserved gastrulation movement, whereby mesodermal and endodermal progenitors undergo epithelial-to-mesenchymal transition (EMT) and move via a blastopore/primitive streak beneath the ectoderm. Decades of embryologic, genetic, and molecular studies in invertebrates and vertebrates, delineated a BMP > WNT > NODAL signaling cascade underlying mesoderm and endoderm specification. Advances have been made in the research animals in understanding the cellular and molecular mechanisms underlying gastrulation morphogenesis. In contrast, little is known about human gastrulation, which occurs in utero during the third week of gestation and its investigations face ethical and methodological limitations. This is changing with the unprecedented progress in modeling aspects of human development, using human pluripotent stem cells (hPSCs), including embryonic stem cells (hESC)-based embryo-like models (SCEMs). In one approach, hESCs of various pluripotency are aggregated to self-assemble into structures that resemble pre-implantation or post-implantation embryo-like structures that progress to early gastrulation, and some even reach segmentation and neurulation stages. Another approach entails coaxing hESCs with biochemical signals to generate germ layers and model aspects of gastrulation morphogenesis, such as EMT. Here, we review the recent advances in understanding signaling cascades that direct germ layers specification and the early stages of gastrulation morphogenesis in these models. We discuss outstanding questions, challenges, and opportunities for this promising area of developmental biology.
Collapse
Affiliation(s)
- Blerta Stringa
- Department of Developmental Biology and Center of Regenerative Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, U.S.A
| | - Lilianna Solnica-Krezel
- Department of Developmental Biology and Center of Regenerative Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, U.S.A
| |
Collapse
|
45
|
Wilkinson AL, Zorzan I, Rugg-Gunn PJ. Epigenetic regulation of early human embryo development. Cell Stem Cell 2023; 30:1569-1584. [PMID: 37858333 DOI: 10.1016/j.stem.2023.09.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/18/2023] [Accepted: 09/25/2023] [Indexed: 10/21/2023]
Abstract
Studies of mammalian development have advanced our understanding of the genetic, epigenetic, and cellular processes that orchestrate embryogenesis and have uncovered new insights into the unique aspects of human embryogenesis. Recent studies have now produced the first epigenetic maps of early human embryogenesis, stimulating new ideas about epigenetic reprogramming, cell fate control, and the potential mechanisms underpinning developmental plasticity in human embryos. In this review, we discuss these new insights into the epigenetic regulation of early human development and the importance of these processes for safeguarding development. We also highlight unanswered questions and key challenges that remain to be addressed.
Collapse
Affiliation(s)
| | - Irene Zorzan
- Epigenetics Programme, Babraham Institute, Cambridge, UK
| | - Peter J Rugg-Gunn
- Epigenetics Programme, Babraham Institute, Cambridge, UK; Centre for Trophoblast Research, University of Cambridge, Cambridge, UK; Wellcome-MRC Cambridge Stem Cell Institute, Cambridge, UK.
| |
Collapse
|
46
|
Perera M, Brickman JM. In vitro models of human hypoblast and mouse primitive endoderm. Curr Opin Genet Dev 2023; 83:102115. [PMID: 37783145 DOI: 10.1016/j.gde.2023.102115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/28/2023] [Accepted: 08/24/2023] [Indexed: 10/04/2023]
Abstract
The primitive endoderm (PrE, also named hypoblast), a predominantly extraembryonic epithelium that arises from the inner cell mass (ICM) of the mammalian pre-implantation blastocyst, plays a fundamental role in embryonic development, giving rise to the yolk sac, establishing the anterior-posterior axis and contributing to the gut. PrE is specified from the ICM at the same time as the epiblast (Epi) that will form the embryo proper. While in vitro cell lines resembling the pluripotent Epi have been derived from a variety of conditions, only one model system currently exists for the PrE, naïve extraembryonic endoderm (nEnd). As a result, considerably more is known about the gene regulatory networks and signalling requirements of pluripotent stem cells than nEnd. In this review, we describe the ontogeny and differentiation of the PrE or hypoblast in mouse and primate and then discuss in vitro cell culture models for different extraembryonic endodermal cell types.
Collapse
Affiliation(s)
- Marta Perera
- reNEW UCPH - The Novo Nordisk Foundation Center for Stem Cell Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark. https://twitter.com/@MartaPrera
| | - Joshua M Brickman
- reNEW UCPH - The Novo Nordisk Foundation Center for Stem Cell Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark.
| |
Collapse
|
47
|
|
48
|
Affiliation(s)
- Xulun Wu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jinglei Zhai
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Qian Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Hongmei Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
49
|
Albertini DF. Self-organization defines some of the earliest determinants of embryonic development. J Assist Reprod Genet 2023; 40:2499-2500. [PMID: 37796418 PMCID: PMC10643637 DOI: 10.1007/s10815-023-02963-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023] Open
|
50
|
Torre D, Francoeur NJ, Kalma Y, Gross Carmel I, Melo BS, Deikus G, Allette K, Flohr R, Fridrikh M, Vlachos K, Madrid K, Shah H, Wang YC, Sridhar SH, Smith ML, Eliyahu E, Azem F, Amir H, Mayshar Y, Marazzi I, Guccione E, Schadt E, Ben-Yosef D, Sebra R. Isoform-resolved transcriptome of the human preimplantation embryo. Nat Commun 2023; 14:6902. [PMID: 37903791 PMCID: PMC10616205 DOI: 10.1038/s41467-023-42558-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 10/15/2023] [Indexed: 11/01/2023] Open
Abstract
Human preimplantation development involves extensive remodeling of RNA expression and splicing. However, its transcriptome has been compiled using short-read sequencing data, which fails to capture most full-length mRNAs. Here, we generate an isoform-resolved transcriptome of early human development by performing long- and short-read RNA sequencing on 73 embryos spanning the zygote to blastocyst stages. We identify 110,212 unannotated isoforms transcribed from known genes, including highly conserved protein-coding loci and key developmental regulators. We further identify 17,964 isoforms from 5,239 unannotated genes, which are largely non-coding, primate-specific, and highly associated with transposable elements. These isoforms are widely supported by the integration of published multi-omics datasets, including single-cell 8CLC and blastoid studies. Alternative splicing and gene co-expression network analyses further reveal that embryonic genome activation is associated with splicing disruption and transient upregulation of gene modules. Together, these findings show that the human embryo transcriptome is far more complex than currently known, and will act as a valuable resource to empower future studies exploring development.
Collapse
Affiliation(s)
- Denis Torre
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | | | - Yael Kalma
- Fertility and IVF Institute, Tel-Aviv Sourasky Medical Center, Affiliated to Tel Aviv University, Tel Aviv, 64239, Israel
| | - Ilana Gross Carmel
- Fertility and IVF Institute, Tel-Aviv Sourasky Medical Center, Affiliated to Tel Aviv University, Tel Aviv, 64239, Israel
| | - Betsaida S Melo
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Center for Advanced Genomics Technology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Gintaras Deikus
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Center for Advanced Genomics Technology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Kimaada Allette
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Ron Flohr
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, 69978, Israel
- CORAL - Center Of Regeneration and Longevity, Tel-Aviv Sourasky Medical Center, Tel Aviv, 64239, Israel
| | - Maya Fridrikh
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Center for Advanced Genomics Technology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | | | - Kent Madrid
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Center for Advanced Genomics Technology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Hardik Shah
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Center for Advanced Genomics Technology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Ying-Chih Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Center for Advanced Genomics Technology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Shwetha H Sridhar
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Center for Advanced Genomics Technology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Melissa L Smith
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY, 40202, USA
| | - Efrat Eliyahu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Foad Azem
- Fertility and IVF Institute, Tel-Aviv Sourasky Medical Center, Affiliated to Tel Aviv University, Tel Aviv, 64239, Israel
| | - Hadar Amir
- Fertility and IVF Institute, Tel-Aviv Sourasky Medical Center, Affiliated to Tel Aviv University, Tel Aviv, 64239, Israel
| | - Yoav Mayshar
- Department of Molecular Cell Biology, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Ivan Marazzi
- Department of Biological Chemistry, Center for Epigenetics and Metabolism, University of California, Irvine, CA, 92697, USA
| | - Ernesto Guccione
- Center for OncoGenomics and Innovative Therapeutics (COGIT); Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Eric Schadt
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Dalit Ben-Yosef
- Fertility and IVF Institute, Tel-Aviv Sourasky Medical Center, Affiliated to Tel Aviv University, Tel Aviv, 64239, Israel.
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, 69978, Israel.
- CORAL - Center Of Regeneration and Longevity, Tel-Aviv Sourasky Medical Center, Tel Aviv, 64239, Israel.
| | - Robert Sebra
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Center for Advanced Genomics Technology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|