1
|
Shemshadi S, Shekari F, Eslaminejad MB, Taghiyar L. Extracellular vesicles derived from Msh homeobox 1 (Msx1)-overexpressing mesenchymal stem cells improve digit tip regeneration in an amputee mice model. Sci Rep 2024; 14:23538. [PMID: 39384602 PMCID: PMC11464676 DOI: 10.1038/s41598-024-72647-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 09/09/2024] [Indexed: 10/11/2024] Open
Abstract
In adult mammals, limb regeneration is limited by the absence of blastemal cells (BCs) and the lack of the regenerative signaling cascade. The utilization of transgenic cells circumvents the limitations associated with the absence of BCs. In a previous investigation, we successfully regenerated mouse phalanx amputations using blastema-like cells (BlCs) generated from bone marrow-derived mesenchymal stem cells (mBMSCs) overexpressing Msx1 and Msx2 genes. Recently, extracellular vesicles (EVs) have emerged as potent biological tools, offering a promising alternative to manipulated cells for clinical applications. This research focuses on utilizing BlCs-derived extracellular vesicles (BlCs-EVs) for regenerating mouse digit tips. The BlCs were cultured and expanded, and then EVs were isolated via ultracentrifugation. The size, morphology, and CD81 marker expression of the EVs were confirmed through Dynamic Light Scattering (DLS), Scanning Electron Microscope (SEM), and Western Blot (WB) analyses. Additionally, WB analysis demonstrated the presence of MSX1, MSX2, FGF8, and BMP4 proteins. The uptake of EVs by mBMSCs was shown through immunostaining. Effects on cell proliferation, migration, and osteogenic activity post-treatment with BlCs-EVs were assessed through MTT assay, scratch assay, and Real-time PCR. The regenerative potential of BlCs-EVs was evaluated in a mouse digit tip amputation model using histological assessments. Results indicated that BlCs-EVs enhanced several abilities of mBMSCs, such as migration, proliferation, and osteogenesis in vitro. Notably, BlCs-EVs significantly improved digit tip regeneration in mice, promoting the formation of new bone and nails, which was absent in control groups. In summary, BlCs-EVs are promising tools for digit tip regeneration, avoiding the ethical concerns associated with using genetically modified cells.
Collapse
Affiliation(s)
- Sahar Shemshadi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Developmental Biology, University of Science and Culture, Tehran, Iran
| | - Faezeh Shekari
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mohamadreza Baghaban Eslaminejad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Leila Taghiyar
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|
2
|
Poss KD, Tanaka EM. Hallmarks of regeneration. Cell Stem Cell 2024; 31:1244-1261. [PMID: 39163854 PMCID: PMC11410156 DOI: 10.1016/j.stem.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/12/2024] [Accepted: 07/24/2024] [Indexed: 08/22/2024]
Abstract
Regeneration is a heroic biological process that restores tissue architecture and function in the face of day-to-day cell loss or the aftershock of injury. Capacities and mechanisms for regeneration can vary widely among species, organs, and injury contexts. Here, we describe "hallmarks" of regeneration found in diverse settings of the animal kingdom, including activation of a cell source, initiation of regenerative programs in the source, interplay with supporting cell types, and control of tissue size and function. We discuss these hallmarks with an eye toward major challenges and applications of regenerative biology.
Collapse
Affiliation(s)
- Kenneth D Poss
- Duke Regeneration Center and Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA.
| | - Elly M Tanaka
- Institute of Molecular Biotechnology (IMBA), Austrian Academy of Sciences, Vienna Biocenter (VBC), 1030 Vienna, Austria.
| |
Collapse
|
3
|
Kawaguchi A, Wang J, Knapp D, Murawala P, Nowoshilow S, Masselink W, Taniguchi-Sugiura Y, Fei JF, Tanaka EM. A chromatin code for limb segment identity in axolotl limb regeneration. Dev Cell 2024; 59:2239-2253.e9. [PMID: 38788714 DOI: 10.1016/j.devcel.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 07/25/2023] [Accepted: 05/03/2024] [Indexed: 05/26/2024]
Abstract
The salamander limb correctly regenerates missing limb segments because connective tissue cells have segment-specific identities, termed "positional information". How positional information is molecularly encoded at the chromatin level has been unknown. Here, we performed genome-wide chromatin profiling in mature and regenerating axolotl limb connective tissue cells. We find segment-specific levels of histone H3K27me3 as the major positional mark, especially at limb homeoprotein gene loci but not their upstream regulators, constituting an intrinsic segment information code. During regeneration, regeneration-specific regulatory elements became active prior to the re-appearance of developmental regulatory elements. In the hand, the permissive chromatin state of the homeoprotein gene HoxA13 engages with the regeneration program bypassing the upper limb program. Comparison of regeneration regulatory elements with those found in other regenerative animals identified a core shared set of transcription factors, supporting an ancient, conserved regeneration program.
Collapse
Affiliation(s)
- Akane Kawaguchi
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Jingkui Wang
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Dunja Knapp
- DFG Research Center for Regenerative Therapies, Technische Universität Dresden, 01307 Dresden, Germany
| | - Prayag Murawala
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), 1030 Vienna, Austria; DFG Research Center for Regenerative Therapies, Technische Universität Dresden, 01307 Dresden, Germany
| | - Sergej Nowoshilow
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), 1030 Vienna, Austria; DFG Research Center for Regenerative Therapies, Technische Universität Dresden, 01307 Dresden, Germany
| | - Wouter Masselink
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Yuka Taniguchi-Sugiura
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Ji-Feng Fei
- Department of Pathology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Elly M Tanaka
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), 1030 Vienna, Austria.
| |
Collapse
|
4
|
Huang L, Ho C, Ye X, Gao Y, Guo W, Chen J, Sun J, Wen D, Liu Y, Liu Y, Zhang Y, Li Q. Mechanisms and translational applications of regeneration in limbs: From renewable animals to humans. Ann Anat 2024; 255:152288. [PMID: 38823491 DOI: 10.1016/j.aanat.2024.152288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 04/08/2024] [Accepted: 05/27/2024] [Indexed: 06/03/2024]
Abstract
BACKGROUND The regenerative capacity of organisms declines throughout evolution, and mammals lack the ability to regenerate limbs after injury. Past approaches to achieving successful restoration through pharmacological intervention, tissue engineering, and cell therapies have faced significant challenges. OBJECTIVES This review aims to provide an overview of the current understanding of the mechanisms behind animal limb regeneration and the successful translation of these mechanisms for human tissue regeneration. RESULTS Particular attention was paid to the Mexican axolotl (Ambystoma mexicanum), the only adult tetrapod capable of limb regeneration. We will explore fundamental questions surrounding limb regeneration, such as how amputation initiates regeneration, how the limb knows when to stop and which parts to regenerate, and how these findings can apply to mammalian systems. CONCLUSIONS Given the urgent need for regenerative therapies to treat conditions like diabetic foot ulcers and trauma survivors, this review provides valuable insights and ideas for researchers, clinicians, and biomedical engineers seeking to facilitate the regeneration process or elicit full regeneration from partial regeneration events.
Collapse
Affiliation(s)
- Lu Huang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China; Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA.
| | - Chiakang Ho
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China
| | - Xinran Ye
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China
| | - Ya Gao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China
| | - Weiming Guo
- Shanghai Key Laboratory of Stomatology, 639 Zhizaoju Road, Shanghai 200011, China; National Clinical Research Center for Oral Diseases, Shanghai 200011, China; National Center for Stomatology, Shanghai 200011, China; College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China; Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China
| | - Julie Chen
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Jiaming Sun
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China
| | - Dongsheng Wen
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China
| | - Yangdan Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China
| | - Yuxin Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China
| | - Yifan Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China.
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China.
| |
Collapse
|
5
|
Shi X, Hu X, Jiang N, Mao J. Regenerative endodontic therapy: From laboratory bench to clinical practice. J Adv Res 2024:S2090-1232(24)00267-4. [PMID: 38969092 DOI: 10.1016/j.jare.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/16/2024] [Accepted: 07/01/2024] [Indexed: 07/07/2024] Open
Abstract
BACKGROUND Maintaining the vitality and functionality of dental pulp is paramount for tooth integrity, longevity, and homeostasis. Aiming to treat irreversible pulpitis and necrosis, there has been a paradigm shift from conventional root canal treatment towards regenerative endodontic therapy. AIM OF REVIEW This extensive and multipart review presents crucial laboratory and practical issues related to pulp-dentin complex regeneration aimed towards advancing clinical translation of regenerative endodontic therapy and enhancing human life quality. KEY SCIENTIFIC CONCEPTS OF REVIEW In this multipart review paper, we first present a panorama of emerging potential tissue engineering strategies for pulp-dentin complex regeneration from cell transplantation and cell homing perspectives, emphasizing the critical regenerative components of stem cells, biomaterials, and conducive microenvironments. Then, this review provides details about current clinically practiced pulp regenerative/reparative approaches, including direct pulp capping and root revascularization, with a specific focus on the remaining hurdles and bright prospects in developing such therapies. Next, special attention was devoted to discussing the innovative biomimetic perspectives opened in establishing functional tissues by employing exosomes and cell aggregates, which will benefit the clinical translation of dental pulp engineering protocols. Finally, we summarize careful consideration that should be given to basic research and clinical applications of regenerative endodontics. In particular, this review article highlights significant challenges associated with residual infection and inflammation and identifies future insightful directions in creating antibacterial and immunomodulatory microenvironments so that clinicians and researchers can comprehensively understand crucial clinical aspects of regenerative endodontic procedures.
Collapse
Affiliation(s)
- Xin Shi
- Center of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Xiaohan Hu
- Outpatient Department Office, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Nan Jiang
- Central Laboratory, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing 100081, China.
| | - Jing Mao
- Center of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China.
| |
Collapse
|
6
|
Suzuki M, Okumura A, Chihara A, Shibata Y, Endo T, Teramoto M, Agata K, Bronner ME, Suzuki KIT. Fgf10 mutant newts regenerate normal hindlimbs despite severe developmental defects. Proc Natl Acad Sci U S A 2024; 121:e2314911121. [PMID: 38442169 PMCID: PMC10945807 DOI: 10.1073/pnas.2314911121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 02/02/2024] [Indexed: 03/07/2024] Open
Abstract
In amniote limbs, Fibroblast Growth Factor 10 (FGF10) is essential for limb development, but whether this function is broadly conserved in tetrapods and/or involved in adult limb regeneration remains unknown. To tackle this question, we established Fgf10 mutant lines in the newt Pleurodeles waltl which has amazing regenerative ability. While Fgf10 mutant forelimbs develop normally, the hindlimbs fail to develop and downregulate FGF target genes. Despite these developmental defects, Fgf10 mutants were able to regenerate normal hindlimbs rather than recapitulating the embryonic phenotype. Together, our results demonstrate an important role for FGF10 in hindlimb formation, but little or no function in regeneration, suggesting that different mechanisms operate during limb regeneration versus development.
Collapse
Affiliation(s)
- Miyuki Suzuki
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA91125
| | - Akinori Okumura
- Emerging Model Organisms Facility, Trans-Scale Biology Center, National Institute for Basic Biology, Okazaki444-8585, Japan
| | - Akane Chihara
- Emerging Model Organisms Facility, Trans-Scale Biology Center, National Institute for Basic Biology, Okazaki444-8585, Japan
| | - Yuki Shibata
- Emerging Model Organisms Facility, Trans-Scale Biology Center, National Institute for Basic Biology, Okazaki444-8585, Japan
| | - Tetsuya Endo
- Division of Liberal Arts and Sciences, Aichi Gakuin University, Nisshin470-0195, Japan
| | - Machiko Teramoto
- Laboratory of Regeneration Biology, National Institute for Basic Biology, Okazaki444-8585, Japan
| | - Kiyokazu Agata
- Laboratory of Regeneration Biology, National Institute for Basic Biology, Okazaki444-8585, Japan
| | - Marianne E. Bronner
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA91125
| | - Ken-ichi T. Suzuki
- Emerging Model Organisms Facility, Trans-Scale Biology Center, National Institute for Basic Biology, Okazaki444-8585, Japan
| |
Collapse
|
7
|
Nakamura M, Kyoda T, Yoshida H, Takebayashi-Suzuki K, Koike R, Takahashi E, Moriyama Y, Wlizla M, Horb ME, Suzuki A. Injury-induced cooperation of InhibinβA and JunB is essential for cell proliferation in Xenopus tadpole tail regeneration. Sci Rep 2024; 14:3679. [PMID: 38355764 PMCID: PMC10867027 DOI: 10.1038/s41598-024-54280-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 02/10/2024] [Indexed: 02/16/2024] Open
Abstract
In animal species that have the capability of regenerating tissues and limbs, cell proliferation is enhanced after wound healing and is essential for the reconstruction of injured tissue. Although the ability to induce cell proliferation is a common feature of such species, the molecular mechanisms that regulate the transition from wound healing to regenerative cell proliferation remain unclear. Here, we show that upon injury, InhibinβA and JunB cooperatively function for this transition during Xenopus tadpole tail regeneration. We found that the expression of inhibin subunit beta A (inhba) and junB proto-oncogene (junb) is induced by injury-activated TGF-β/Smad and MEK/ERK signaling in regenerating tails. Similarly to junb knockout (KO) tadpoles, inhba KO tadpoles show a delay in tail regeneration, and inhba/junb double KO (DKO) tadpoles exhibit severe impairment of tail regeneration compared with either inhba KO or junb KO tadpoles. Importantly, this impairment is associated with a significant reduction of cell proliferation in regenerating tissue. Moreover, JunB regulates tail regeneration via FGF signaling, while InhibinβA likely acts through different mechanisms. These results demonstrate that the cooperation of injury-induced InhibinβA and JunB is critical for regenerative cell proliferation, which is necessary for re-outgrowth of regenerating Xenopus tadpole tails.
Collapse
Affiliation(s)
- Makoto Nakamura
- Amphibian Research Center, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
- Cardiovascular Research Institute, University of California San Francisco, 555 Mission Bay Boulevard South, San Francisco, CA, 94158, USA
| | - Tatsuya Kyoda
- Amphibian Research Center, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| | - Hitoshi Yoshida
- National Xenopus Resource and Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, MA, 02543, USA
| | - Kimiko Takebayashi-Suzuki
- Amphibian Research Center, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| | - Ryota Koike
- Amphibian Research Center, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| | - Eri Takahashi
- Amphibian Research Center, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| | - Yuka Moriyama
- Amphibian Research Center, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| | - Marcin Wlizla
- National Xenopus Resource and Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, MA, 02543, USA
- Embryology, Charles River Laboratories, Wilmington, MA, 01887, USA
| | - Marko E Horb
- National Xenopus Resource and Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, MA, 02543, USA
| | - Atsushi Suzuki
- Amphibian Research Center, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan.
| |
Collapse
|
8
|
Raymond MJ, McCusker CD. Making a new limb out of old cells: exploring endogenous cell reprogramming and its role during limb regeneration. Am J Physiol Cell Physiol 2024; 326:C505-C512. [PMID: 38105753 PMCID: PMC11192473 DOI: 10.1152/ajpcell.00233.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 12/19/2023]
Abstract
Cellular reprogramming is characterized by the induced dedifferentiation of mature cells into a more plastic and potent state. This process can occur through artificial reprogramming manipulations in the laboratory such as nuclear reprogramming and induced pluripotent stem cell (iPSC) generation, and endogenously in vivo during amphibian limb regeneration. In amphibians such as the Mexican axolotl, a regeneration permissive environment is formed by nerve-dependent signaling in the wounded limb tissue. When exposed to these signals, limb connective tissue cells dedifferentiate into a limb progenitor-like state. This state allows the cells to acquire new pattern information, a property called positional plasticity. Here, we review our current understanding of endogenous reprogramming and why it is important for successful regeneration. We will also explore how naturally induced dedifferentiation and plasticity were leveraged to study how the missing pattern is established in the regenerating limb tissue.
Collapse
Affiliation(s)
- Michael J Raymond
- Department of Biology, University of Massachusetts Boston, Boston, Massachusetts, United States
| | - Catherine D McCusker
- Department of Biology, University of Massachusetts Boston, Boston, Massachusetts, United States
| |
Collapse
|
9
|
Yu Q, Walters HE, Pasquini G, Pal Singh S, Lachnit M, Oliveira CR, León-Periñán D, Petzold A, Kesavan P, Subiran Adrados C, Garteizgogeascoa I, Knapp D, Wagner A, Bernardos A, Alfonso M, Nadar G, Graf AM, Troyanovskiy KE, Dahl A, Busskamp V, Martínez-Máñez R, Yun MH. Cellular senescence promotes progenitor cell expansion during axolotl limb regeneration. Dev Cell 2023; 58:2416-2427.e7. [PMID: 37879337 DOI: 10.1016/j.devcel.2023.09.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 04/25/2023] [Accepted: 09/29/2023] [Indexed: 10/27/2023]
Abstract
Axolotl limb regeneration is accompanied by the transient induction of cellular senescence within the blastema, the structure that nucleates regeneration. The precise role of this blastemal senescent cell (bSC) population, however, remains unknown. Here, through a combination of gain- and loss-of-function assays, we elucidate the functions and molecular features of cellular senescence in vivo. We demonstrate that cellular senescence plays a positive role during axolotl regeneration by creating a pro-proliferative niche that supports progenitor cell expansion and blastema outgrowth. Senescent cells impact their microenvironment via Wnt pathway modulation. Further, we identify a link between Wnt signaling and senescence induction and propose that bSC-derived Wnt signals facilitate the proliferation of neighboring cells in part by preventing their induction into senescence. This work defines the roles of cellular senescence in the regeneration of complex structures.
Collapse
Affiliation(s)
- Qinghao Yu
- Technische Universität Dresden, CRTD/Center for Regenerative Therapies Dresden, Dresden, Germany
| | - Hannah E Walters
- Technische Universität Dresden, CRTD/Center for Regenerative Therapies Dresden, Dresden, Germany
| | - Giovanni Pasquini
- Department of Ophthalmology, Medical Faculty, University of Bonn, Bonn, Germany
| | | | - Martina Lachnit
- Technische Universität Dresden, CRTD/Center for Regenerative Therapies Dresden, Dresden, Germany
| | - Catarina R Oliveira
- Technische Universität Dresden, CRTD/Center for Regenerative Therapies Dresden, Dresden, Germany
| | - Daniel León-Periñán
- Technische Universität Dresden, Center for Information Services and High Performance Computing (ZIH), Technische Universität Dresden, Dresden, Germany
| | - Andreas Petzold
- DRESDEN-Concept Genome Center (DcGC), Center for Molecular and Cellular Bioengineering, TU Dresden, Dresden, Germany
| | - Preethi Kesavan
- Technische Universität Dresden, CRTD/Center for Regenerative Therapies Dresden, Dresden, Germany
| | - Cristina Subiran Adrados
- Technische Universität Dresden, CRTD/Center for Regenerative Therapies Dresden, Dresden, Germany
| | | | - Dunja Knapp
- Technische Universität Dresden, CRTD/Center for Regenerative Therapies Dresden, Dresden, Germany
| | - Anne Wagner
- Technische Universität Dresden, CRTD/Center for Regenerative Therapies Dresden, Dresden, Germany
| | - Andrea Bernardos
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Valencia, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain; Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - María Alfonso
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Valencia, Spain
| | - Gayathri Nadar
- Max Planck Institute of Molecular Cellular Biology and Genetics, Dresden, Germany
| | - Alwin M Graf
- Technische Universität Dresden, CRTD/Center for Regenerative Therapies Dresden, Dresden, Germany
| | | | - Andreas Dahl
- DRESDEN-Concept Genome Center (DcGC), Center for Molecular and Cellular Bioengineering, TU Dresden, Dresden, Germany
| | - Volker Busskamp
- Department of Ophthalmology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Ramón Martínez-Máñez
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Valencia, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain; Unidad Mixta de Investigación en Nanomedicina y Sensores, Universitat Politècnica de València, IIS La Fe, Valencia, Spain; Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Maximina H Yun
- Technische Universität Dresden, CRTD/Center for Regenerative Therapies Dresden, Dresden, Germany; Max Planck Institute of Molecular Cellular Biology and Genetics, Dresden, Germany; Physics of Life Excellence Cluster, Dresden, Germany.
| |
Collapse
|
10
|
Zhong J, Aires R, Tsissios G, Skoufa E, Brandt K, Sandoval-Guzmán T, Aztekin C. Multi-species atlas resolves an axolotl limb development and regeneration paradox. Nat Commun 2023; 14:6346. [PMID: 37816738 PMCID: PMC10564727 DOI: 10.1038/s41467-023-41944-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 09/22/2023] [Indexed: 10/12/2023] Open
Abstract
Humans and other tetrapods are considered to require apical-ectodermal-ridge (AER) cells for limb development, and AER-like cells are suggested to be re-formed to initiate limb regeneration. Paradoxically, the presence of AER in the axolotl, a primary model organism for regeneration, remains controversial. Here, by leveraging a single-cell transcriptomics-based multi-species atlas, composed of axolotl, human, mouse, chicken, and frog cells, we first establish that axolotls contain cells with AER characteristics. Further analyses and spatial transcriptomics reveal that axolotl limbs do not fully re-form AER cells during regeneration. Moreover, the axolotl mesoderm displays part of the AER machinery, revealing a program for limb (re)growth. These results clarify the debate about the axolotl AER and the extent to which the limb developmental program is recapitulated during regeneration.
Collapse
Affiliation(s)
- Jixing Zhong
- School of Life Sciences, Swiss Federal Institute of Technology Lausanne, EPFL, 1015, Lausanne, Switzerland
| | - Rita Aires
- Department of Internal Medicine III, Center for Healthy Aging, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Georgios Tsissios
- School of Life Sciences, Swiss Federal Institute of Technology Lausanne, EPFL, 1015, Lausanne, Switzerland
| | - Evangelia Skoufa
- School of Life Sciences, Swiss Federal Institute of Technology Lausanne, EPFL, 1015, Lausanne, Switzerland
| | - Kerstin Brandt
- Paul Langerhans Institute Dresden, Helmholtz Centre Munich, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Tatiana Sandoval-Guzmán
- Department of Internal Medicine III, Center for Healthy Aging, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
- Paul Langerhans Institute Dresden, Helmholtz Centre Munich, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
| | - Can Aztekin
- School of Life Sciences, Swiss Federal Institute of Technology Lausanne, EPFL, 1015, Lausanne, Switzerland.
| |
Collapse
|
11
|
Vieira WA, Raymond M, Kelley K, Cherubino MA, Sahin H, McCusker CD. Integration failure of regenerated limb tissue is associated with incongruencies in positional information in the Mexican axolotl. Front Cell Dev Biol 2023; 11:1152510. [PMID: 37333984 PMCID: PMC10272535 DOI: 10.3389/fcell.2023.1152510] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 05/15/2023] [Indexed: 06/20/2023] Open
Abstract
Introduction: Little is known about how the newly regenerated limb tissues in the Mexican axolotl seamlessly integrate with the remaining stump tissues to form a functional structure, and why this doesn't occur in some regenerative scenarios. In this study, we evaluate the phenomenological and transcriptional characteristics associated with integration failure in ectopic limb structures generated by treating anterior-located ectopic blastemas with Retinoic Acid (RA) and focusing on the "bulbus mass" tissue that forms between the ectopic limb and the host site. We additionally test the hypothesis that the posterior portion of the limb base contains anterior positional identities. Methods: The positional identity of the bulbus mass was evaluated by assaying regenerative competency, the ability to induce new pattern in the Accessory Limb Model (ALM) assay, and by using qRTPCR to quantify the relative expression of patterning genes as the bulbus mass deintegrates from the host site. We additionally use the ALM and qRTPCR to analyze the distribution of anterior and posterior positional identities along the proximal/distal limb axis of uninjured and regenerating limbs. Results: The bulbus mass regenerates limb structures with decreased complexity when amputated and is able to induce complex ectopic limb structure only when grafted into posterior-located ALMs. Expressional analysis shows significant differences in FGF8, BMP2, TBX5, Chrdl1, HoxA9, and HoxA11 expression between the bulbus mass and the host site when deintegration is occuring. Grafts of posterior skin from the distal limb regions into posterior ALMs at the base of the limb induce ectopic limb structures. Proximally-located blastemas express significantly less HoxA13 and Ptch1, and significantly more Alx4 and Grem1 than distally located blastemas. Discussion: These findings show that the bulbus mass has an anterior-limb identity and that the expression of limb patterning genes is mismatched between the bulbus mass and the host limb. Our findings additionally show that anterior positional information is more abundant at the limb base, and that anterior patterning genes are more abundantly expressed in proximally located blastemas compared to blastemas in the more distal regions of the limb. These experiments provide valuable insight into the underlying causes of integration failure and further map the distribution of positional identities in the mature limb.
Collapse
|
12
|
Tada R, Higashidate T, Amano T, Ishikawa S, Yokoyama C, Kobari S, Nara S, Ishida K, Kawaguchi A, Ochi H, Ogino H, Yakushiji-Kaminatsui N, Sakamoto J, Kamei Y, Tamura K, Yokoyama H. The shh limb enhancer is activated in patterned limb regeneration but not in hypomorphic limb regeneration in Xenopus laevis. Dev Biol 2023:S0012-1606(23)00093-3. [PMID: 37247832 DOI: 10.1016/j.ydbio.2023.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 05/16/2023] [Accepted: 05/26/2023] [Indexed: 05/31/2023]
Abstract
Xenopus young tadpoles regenerate a limb with the anteroposterior (AP) pattern, but metamorphosed froglets regenerate a hypomorphic limb after amputation. The key gene for AP patterning, shh, is expressed in a regenerating limb of the tadpole but not in that of the froglet. Genomic DNA in the shh limb-specific enhancer, MFCS1 (ZRS), is hypermethylated in froglets but hypomethylated in tadpoles: shh expression may be controlled by epigenetic regulation of MFCS1. Is MFCS1 specifically activated for regenerating the AP-patterned limb? We generated transgenic Xenopus laevis lines that visualize the MFCS1 enhancer activity with a GFP reporter. The transgenic tadpoles showed GFP expression in hoxd13-and shh-expressing domains of developing and regenerating limbs, whereas the froglets showed no GFP expression in the regenerating limbs despite having hoxd13 expression. Genome sequence analysis and co-transfection assays using cultured cells revealed that Hoxd13 can activate Xenopus MFCS1. These results suggest that MFCS1 activation correlates with regeneration of AP-patterned limbs and that re-activation of epigenetically inactivated MFCS1 would be crucial to confer the ability to non-regenerative animals for regenerating a properly patterned limb.
Collapse
Affiliation(s)
- Reimi Tada
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori, 036-8561, Japan
| | - Takuya Higashidate
- Department of Ecological Developmental Adaptability Life Sciences, Graduate School of Life Sciences, Tohoku University, Aramaki-Aza-Aoba 6-3, Aoba-ku, Sendai, 980-8578, Japan
| | - Takanori Amano
- Next Generation Human Disease Model Team, RIKEN BioResource Research Center, 3-1-1 Koyadai, Tsukuba, Ibaraki, 305-0074, Japan
| | - Shoma Ishikawa
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori, 036-8561, Japan
| | - Chifuyu Yokoyama
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori, 036-8561, Japan
| | - Suzu Kobari
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori, 036-8561, Japan
| | - Saki Nara
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori, 036-8561, Japan
| | - Koshiro Ishida
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori, 036-8561, Japan
| | - Akane Kawaguchi
- Graduate School of Biological Sciences, Nara Institute of Science and Technology (NAIST), Ikoma, Nara, Japan
| | - Haruki Ochi
- Institute for Promotion of Medical Science Research, Faculty of Medicine, Yamagata University, Yamagata, 990-9585, Japan
| | - Hajime Ogino
- Amphibian Research Center / Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagami-yama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| | - Nayuta Yakushiji-Kaminatsui
- RIKEN Center for Integrative Medical Sciences (IMS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Joe Sakamoto
- Laboratory for Biothermology, National Institute for Basic, Biology, Myodaiji, Okazaki, Aichi, 444-8585, Japan; Biophotonics Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institute for Physiological Sciences, Higashiyama Myodaiji, Okazaki, Aichi, 444-8787, Japan
| | - Yasuhiro Kamei
- Laboratory for Biothermology, National Institute for Basic, Biology, Myodaiji, Okazaki, Aichi, 444-8585, Japan; Department of Basic Biology in the School of Life Science of the Graduate University for Advanced Studies (SOKENDAI), Okazaki, Aichi, 444-8585, Japan
| | - Koji Tamura
- Department of Ecological Developmental Adaptability Life Sciences, Graduate School of Life Sciences, Tohoku University, Aramaki-Aza-Aoba 6-3, Aoba-ku, Sendai, 980-8578, Japan
| | - Hitoshi Yokoyama
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori, 036-8561, Japan.
| |
Collapse
|
13
|
Tsutsumi R, Eiraku M. How might we build limbs in vitro informed by the modular aspects and tissue-dependency in limb development? Front Cell Dev Biol 2023; 11:1135784. [PMID: 37283945 PMCID: PMC10241304 DOI: 10.3389/fcell.2023.1135784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 05/10/2023] [Indexed: 06/08/2023] Open
Abstract
Building limb morphogenesis in vitro would substantially open up avenues for research and applications of appendage development. Recently, advances in stem cell engineering to differentiate desired cell types and produce multicellular structures in vitro have enabled the derivation of limb-like tissues from pluripotent stem cells. However, in vitro recapitulation of limb morphogenesis is yet to be achieved. To formulate a method of building limbs in vitro, it is critically important to understand developmental mechanisms, especially the modularity and the dependency of limb development on the external tissues, as those would help us to postulate what can be self-organized and what needs to be externally manipulated when reconstructing limb development in vitro. Although limbs are formed on the designated limb field on the flank of embryo in the normal developmental context, limbs can also be regenerated on the amputated stump in some animals and experimentally induced at ectopic locations, which highlights the modular aspects of limb morphogenesis. The forelimb-hindlimb identity and the dorsal-ventral, proximal-distal, and anterior-posterior axes are initially instructed by the body axis of the embryo, and maintained in the limb domain once established. In contrast, the aspects of dependency on the external tissues are especially underscored by the contribution of incoming tissues, such as muscles, blood vessels, and peripheral nerves, to developing limbs. Together, those developmental mechanisms explain how limb-like tissues could be derived from pluripotent stem cells. Prospectively, the higher complexity of limb morphologies is expected to be recapitulated by introducing the morphogen gradient and the incoming tissues in the culture environment. Those technological developments would dramatically enhance experimental accessibility and manipulability for elucidating the mechanisms of limb morphogenesis and interspecies differences. Furthermore, if human limb development can be modeled, drug development would be benefited by in vitro assessment of prenatal toxicity on congenital limb deficiencies. Ultimately, we might even create a future in which the lost appendage would be recovered by transplanting artificially grown human limbs.
Collapse
Affiliation(s)
- Rio Tsutsumi
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan
- Laboratory of Developmental Systems, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Mototsugu Eiraku
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan
- Laboratory of Developmental Systems, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
14
|
Murawala P, Oliveira CR, Okulski H, Yun MH, Tanaka EM. Baculovirus Production and Infection in Axolotls. Methods Mol Biol 2023; 2562:369-387. [PMID: 36272088 PMCID: PMC9665047 DOI: 10.1007/978-1-0716-2659-7_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Salamanders have served as an excellent model for developmental and tissue regeneration studies. While transgenic approaches are available for various salamander species, their long generation time and expensive maintenance have driven the development of alternative gene delivery methods for functional studies. We have previously developed pseudotyped baculovirus (BV) as a tool for gene delivery in the axolotl (Oliveira et al. Dev Biol 433(2):262-275, 2018). Since its initial conception, we have refined our protocol of BV production and usage in salamander models. In this chapter, we describe a detailed and versatile protocol for BV-mediated transduction in urodeles.
Collapse
Affiliation(s)
- Prayag Murawala
- Mount Desert Island Biological Laboratory (MDIBL), Salisbury Cove, ME, USA.
- Clinic for Kidney and Hypertension Diseases, Hannover Medical School, Hannover, Germany.
| | - Catarina R Oliveira
- Center for Regenerative Therapies (CRTD), Technische Universität Dresden, Dresden, Germany
- Graduate Program in Areas of Basic and Applied Biology (GABBA), University of Porto, Porto, Portugal
| | - Helena Okulski
- Research - Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Maximina H Yun
- Center for Regenerative Therapies (CRTD), Technische Universität Dresden, Dresden, Germany
| | - Elly M Tanaka
- Research - Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria.
| |
Collapse
|
15
|
Abstract
When the Accessory Limb Model (ALM) regenerative assay was first published by Endo, Bryant, and Gardiner in 2004, it provided a robust system for testing the cellular and molecular contributions during each of the basic steps of regeneration: the formation of the wound epithelium, neural induction of the apical epithelial cap, and the formation of a positional disparity between blastema cells. The basic ALM procedure was developed in the axolotl and involves deviating a limb nerve into a lateral wound and grafting skin from the opposing side of the limb axis into the site of injury. In this chapter, we will review the studies that lead to the conception of the ALM, as well as the studies that have followed the development of this assay. We will additionally describe in detail the standard ALM surgery and how to perform this surgery on different limb positions.
Collapse
Affiliation(s)
- Michael Raymond
- Department of Biology, University of Massachusetts, Boston, MA, USA
| | | |
Collapse
|
16
|
Mahmud N, Eisner C, Purushothaman S, Storer MA, Kaplan DR, Miller FD. Nail-associated mesenchymal cells contribute to and are essential for dorsal digit tip regeneration. Cell Rep 2022; 41:111853. [PMID: 36543145 DOI: 10.1016/j.celrep.2022.111853] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 10/05/2022] [Accepted: 11/28/2022] [Indexed: 12/24/2022] Open
Abstract
Here, we ask why the nail base is essential for mammalian digit tip regeneration, focusing on the inductive nail mesenchyme. We identify a transcriptional signature for these cells that includes Lmx1b and show that the Lmx1b-expressing nail mesenchyme is essential for blastema formation. We use a combination of Lmx1bCreERT2-based lineage-tracing and single-cell transcriptional analyses to show that the nail mesenchyme contributes cells for two pro-regenerative mechanisms. One group of cells maintains their identity and regenerates the new nail mesenchyme. A second group contributes specifically to the dorsal blastema, loses their nail mesenchyme phenotype, acquires a blastema transcriptional state that is highly similar to blastema cells of other origins, and ultimately contributes to regeneration of the dorsal but not ventral dermis and bone. Thus, the regenerative necessity for an intact nail base is explained, at least in part, by a requirement for the inductive nail mesenchyme.
Collapse
Affiliation(s)
- Neemat Mahmud
- Program in Neuroscience and Mental Health, Hospital for Sick Children, Toronto, ON M5G 1L7, Canada; Department of Physiology, University of Toronto, Toronto, ON M5G 1A8, Canada
| | - Christine Eisner
- Program in Neuroscience and Mental Health, Hospital for Sick Children, Toronto, ON M5G 1L7, Canada; Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Sruthi Purushothaman
- Program in Neuroscience and Mental Health, Hospital for Sick Children, Toronto, ON M5G 1L7, Canada; Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Mekayla A Storer
- Program in Neuroscience and Mental Health, Hospital for Sick Children, Toronto, ON M5G 1L7, Canada
| | - David R Kaplan
- Program in Neuroscience and Mental Health, Hospital for Sick Children, Toronto, ON M5G 1L7, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1A8, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z, Canada
| | - Freda D Miller
- Program in Neuroscience and Mental Health, Hospital for Sick Children, Toronto, ON M5G 1L7, Canada; Department of Physiology, University of Toronto, Toronto, ON M5G 1A8, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1A8, Canada; Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z, Canada.
| |
Collapse
|
17
|
Bölük A, Yavuz M, Demircan T. Axolotl: A resourceful vertebrate model for regeneration and beyond. Dev Dyn 2022; 251:1914-1933. [PMID: 35906989 DOI: 10.1002/dvdy.520] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/04/2022] [Accepted: 07/21/2022] [Indexed: 01/30/2023] Open
Abstract
The regenerative capacity varies significantly among the animal kingdom. Successful regeneration program in some animals results in the functional restoration of tissues and lost structures. Among the highly regenerative animals, axolotl provides multiple experimental advantages with its many extraordinary characteristics. It has been positioned as a regeneration model organism due to its exceptional renewal capacity, including the internal organs, central nervous system, and appendages, in a scar-free manner. In addition to this unique regeneration ability, the observed low cancer incidence, its resistance to carcinogens, and the reversing effect of its cell extract on neoplasms strongly suggest its usability in cancer research. Axolotl's longevity and efficient utilization of several anti-aging mechanisms underline its potential to be employed in aging studies.
Collapse
Affiliation(s)
- Aydın Bölük
- School of Medicine, Muğla Sıtkı Koçman University, Muğla, Turkey
| | - Mervenur Yavuz
- Institute of Health Sciences, Muğla Sıtkı Koçman University, Muğla, Turkey
| | - Turan Demircan
- Department of Medical Biology, School of Medicine, Muğla Sıtkı Koçman University, Muğla, Turkey
| |
Collapse
|
18
|
Wei X, Li H, Du J, Zeng X, Xu X, Chen L, Gu Y. Re-exploring tissue regeneration by novel spatial transcriptomics technologies. Clin Transl Med 2022; 12:e1127. [PMID: 36424769 PMCID: PMC9691901 DOI: 10.1002/ctm2.1127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/10/2022] [Accepted: 11/14/2022] [Indexed: 11/27/2022] Open
Affiliation(s)
- Xiaoyu Wei
- BGI‐HangzhouHangzhouChina,BGI‐ShenzhenShenzhenChina
| | - Hanbo Li
- BGI‐ShenzhenShenzhenChina,BGI‐QingdaoQingdaoChina,Lars Bolund Institute of Regenerative MedicineQingdao‐Europe Advanced Institute for Life SciencesBGI‐QingdaoQingdaoChina
| | - Jiaxin Du
- BGI‐ShenzhenShenzhenChina,College of Life SciencesUniversity of Chinese Academy of SciencesBeijingChina
| | - Xiaoqi Zeng
- BGI‐ShenzhenShenzhenChina,College of Life SciencesUniversity of Chinese Academy of SciencesBeijingChina
| | - Xun Xu
- BGI‐ShenzhenShenzhenChina,Guangdong Provincial Key Laboratory of Genome Read and WriteBGI‐ShenzhenShenzhenChina
| | - Liang Chen
- Hubei Key Laboratory of Cell HomeostasisRNA InstituteCollege of Life SciencesWuhan UniversityWuhanChina
| | - Ying Gu
- BGI‐HangzhouHangzhouChina,BGI‐ShenzhenShenzhenChina,College of Life SciencesUniversity of Chinese Academy of SciencesBeijingChina,Guangdong Provincial Key Laboratory of Genome Read and WriteBGI‐ShenzhenShenzhenChina
| |
Collapse
|
19
|
Wang Q, Mao Z, Liu Z, Xu M, Huang S, Wang Y, Xu Y, Qi L, Liu M, Liu Y. Akt/mTOR integrate energy metabolism with Wnt signal to influence wound epithelium growth in Gekko Japonicus. Commun Biol 2022; 5:1018. [PMID: 36167813 PMCID: PMC9515156 DOI: 10.1038/s42003-022-04004-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 09/15/2022] [Indexed: 11/25/2022] Open
Abstract
The formation of wound epithelium initiates regeneration of amputated tail in Gekko japonicus. Energy metabolism is indispensable for the growth of living creatures and typically influenced by temperature. In this study, we reveal that low temperature lowers energy metabolism level and inhibits the regeneration of amputated tails of Gekko japonicus. We further find that low temperature attenuates the activation of protein kinase B (Akt) and mammalian target of rapamycin (mTOR) in regenerated tissues upon injury signals, and the inhibition of Akt hinders proliferation of the wound epithelium. Additionally, wingless/integrated (Wnt) inhibition suppresses epithelium proliferation and formation by inhibiting Akt activation. Finally, low temperature elevates the activity of adenylate-activated kinase (AMPK) pathway and in turn attenuates wound epithelium formation. Meanwhile, either mTOR downregulation or AMPK upregulation is associated with worse wound epithelium formation. Summarily, low temperature restricts wound epithelium formation by influencing energy sensory pathways including Akt/mTOR and AMPK signaling, which is also modulated by injury induced Wnt signal. Our results provide a mechanism that incorporates the injury signals with metabolic pathway to facilitate regeneration. Low temperature inhibits the regeneration of amputated tails of Gekko japonicus by influencing the energy sensory Akt/mTOR pathway, which is also modulated by injury-induced Wnt signal.
Collapse
Affiliation(s)
- Qinghua Wang
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China.,Comparative Medicine Research Institution, Nantong University, Nantong, 226001, China
| | - Zuming Mao
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Zhuang Liu
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Man Xu
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Shuai Huang
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Yin Wang
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Yanran Xu
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Longju Qi
- Affiliated Nantong Hospital 3 of Nantong University, Nantong University, Nantong, 226001, China
| | - Mei Liu
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Yan Liu
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China.
| |
Collapse
|
20
|
Zhu J, Patel R, Trofka A, Harfe BD, Mackem S. Sonic hedgehog is not a limb morphogen but acts as a trigger to specify all digits in mice. Dev Cell 2022; 57:2048-2062.e4. [PMID: 35977544 PMCID: PMC9709693 DOI: 10.1016/j.devcel.2022.07.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 06/03/2022] [Accepted: 07/26/2022] [Indexed: 11/03/2022]
Abstract
Limb patterning by Sonic hedgehog (Shh), via either graded spatial or temporal signal integration, is a paradigm for "morphogen" function, yet how Shh instructs distinct digit identities remains controversial. Here, we bypass the Shh requirement in cell survival during outgrowth and demonstrate that a transient, early Shh pulse is both necessary and sufficient for normal mouse limb development. Shh response is only short range and is limited to the Shh-expressing zone during this time window. Shh patterns digits 1-3, anterior to this zone, by an indirect mechanism rather than direct spatial or temporal signal integration. Using a genetic relay-signaling assay, we discover that Shh also specifies digit 1/thumb (thought to be exclusively Shh independent) indirectly, and this finding implicates Shh in a unique regulatory hierarchy for digit 1 evolutionary adaptations such as opposable thumbs. This study illuminates Shh as a trigger for an indirect downstream network that becomes rapidly self-sustaining, with mechanistic relevance for limb development, regeneration, and evolution.
Collapse
Affiliation(s)
- Jianjian Zhu
- Cancer and Developmental Biology Laboratory, Center for Cancer Research, NCI, Frederick, MD, USA
| | - Rashmi Patel
- Cancer and Developmental Biology Laboratory, Center for Cancer Research, NCI, Frederick, MD, USA
| | - Anna Trofka
- Cancer and Developmental Biology Laboratory, Center for Cancer Research, NCI, Frederick, MD, USA
| | - Brian D Harfe
- College of Medicine, Department of Molecular Genetics and Microbiology and the Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Susan Mackem
- Cancer and Developmental Biology Laboratory, Center for Cancer Research, NCI, Frederick, MD, USA.
| |
Collapse
|
21
|
Carbonell-M B, Zapata Cardona J, Delgado JP. Post-amputation reactive oxygen species production is necessary for axolotls limb regeneration. Front Cell Dev Biol 2022; 10:921520. [PMID: 36092695 PMCID: PMC9458980 DOI: 10.3389/fcell.2022.921520] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 07/28/2022] [Indexed: 11/26/2022] Open
Abstract
Introduction: Reactive oxygen species (ROS) represent molecules of great interest in the field of regenerative biology since several animal models require their production to promote and favor tissue, organ, and appendage regeneration. Recently, it has been shown that the production of ROS such as hydrogen peroxide (H2O2) is required for tail regeneration in Ambystoma mexicanum. However, to date, it is unknown whether ROS production is necessary for limb regeneration in this animal model. Methods: forelimbs of juvenile animals were amputated proximally and the dynamics of ROS production was determined using 2′7- dichlorofluorescein diacetate (DCFDA) during the regeneration process. Inhibition of ROS production was performed using the NADPH oxidase inhibitor apocynin. Subsequently, a rescue assay was performed using exogenous hydrogen peroxide (H2O2). The effect of these treatments on the size and skeletal structures of the regenerated limb was evaluated by staining with alcian blue and alizarin red, as well as the effect on blastema formation, cell proliferation, immune cell recruitment, and expression of genes related to proximal-distal identity. Results: our results show that inhibition of post-amputation limb ROS production in the A. mexicanum salamander model results in the regeneration of a miniature limb with a significant reduction in the size of skeletal elements such as the ulna, radius, and overall autopod. Additionally, other effects such as decrease in the number of carpals, defective joint morphology, and failure of integrity between the regenerated structure and the remaining tissue were identified. In addition, this treatment affected blastema formation and induced a reduction in the levels of cell proliferation in this structure, as well as a reduction in the number of CD45+ and CD11b + immune system cells. On the other hand, blocking ROS production affected the expression of proximo-distal identity genes such as Aldha1a1, Rarβ, Prod1, Meis1, Hoxa13, and other genes such as Agr2 and Yap1 in early/mid blastema. Of great interest, the failure in blastema formation, skeletal alterations, as well as the expression of the genes evaluated were rescued by the application of exogenous H2O2, suggesting that ROS/H2O2 production is necessary from the early stages for proper regeneration and patterning of the limb.
Collapse
Affiliation(s)
- Belfran Carbonell-M
- Grupo de Genética, Regeneración y Cáncer, Universidad de Antioquia, Sede de Investigación Universitaria, Medellín, Colombia
- Departamento de Estudios Básicos Integrados, Facultad de Odontología, Universidad de Antioquia, Medellín, Colombia
- *Correspondence: Belfran Carbonell-M, ; Jean Paul Delgado,
| | - Juliana Zapata Cardona
- Grupo de Investigación en Patobiología Quiron, Escuela de MedicinaVeterinaria, Universidad de Antioquia, Medellín, Colombia
| | - Jean Paul Delgado
- Grupo de Genética, Regeneración y Cáncer, Universidad de Antioquia, Sede de Investigación Universitaria, Medellín, Colombia
- *Correspondence: Belfran Carbonell-M, ; Jean Paul Delgado,
| |
Collapse
|
22
|
Dickmann JEM, Rink JC, Jülicher F. Long-range morphogen gradient formation by cell-to-cell signal propagation. Phys Biol 2022; 19. [PMID: 35921820 DOI: 10.1088/1478-3975/ac86b4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 08/03/2022] [Indexed: 11/12/2022]
Abstract
Morphogen gradients are a central concept in developmental biology. Their formation often involves the secretion of morphogens from a local source, that spread by diffusion in the cell field, where molecules eventually get degraded. This implies limits to both the time and length scales over which morphogen gradients can form which are set by diffusion coefficients and degradation rates. Towards the goal of identifying plausible mechanisms capable of extending the gradient range, we here use theory to explore properties of a cell-to-cell signaling relay. Inspired by the millimeter-scale Wnt-expression and signaling gradients in flatworms, we consider morphogen-mediated morphogen production in the cell field. We show that such a relay can generate stable morphogen and signaling gradients that are oriented by a local, morphogen-independent source of morphogen at a boundary. This gradient formation can be related to an effective diffusion and an effective degradation that result from morphogen production due to signaling relay. If the secretion of morphogen produced in response to the relay is polarized, it further gives rise to an effective drift. We find that signaling relay can generate long-ranged gradients in relevant times without relying on extreme choices of diffusion coefficients or degradation rates, thus exceeding the limits set by physiological diffusion coefficients and degradation rates. A signaling relay is hence an attractive principle to conceptualize long-range gradient formation by slowly diffusing morphogens that are relevant for patterning in adult contexts such as regeneration and tissue turn-over.
Collapse
Affiliation(s)
- Johanna E M Dickmann
- Max-Planck-Institute for the Physics of Complex Systems, Nöthnitzer Straße 38, Dresden, Sachsen, 01187, GERMANY
| | - Jochen C Rink
- Max Planck Institute for Multidisciplinary Sciences, Am Faßberg 11, Gottingen, Niedersachsen, 37077, GERMANY
| | - Frank Jülicher
- Max-Planck-Institut fuer Physik komplexer Systeme, Nöthnitzer Strasse 38, 01187 Dresden, Dresden, 01187, GERMANY
| |
Collapse
|
23
|
Ornitz DM, Itoh N. New developments in the biology of fibroblast growth factors. WIREs Mech Dis 2022; 14:e1549. [PMID: 35142107 PMCID: PMC10115509 DOI: 10.1002/wsbm.1549] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 01/28/2023]
Abstract
The fibroblast growth factor (FGF) family is composed of 18 secreted signaling proteins consisting of canonical FGFs and endocrine FGFs that activate four receptor tyrosine kinases (FGFRs 1-4) and four intracellular proteins (intracellular FGFs or iFGFs) that primarily function to regulate the activity of voltage-gated sodium channels and other molecules. The canonical FGFs, endocrine FGFs, and iFGFs have been reviewed extensively by us and others. In this review, we briefly summarize past reviews and then focus on new developments in the FGF field since our last review in 2015. Some of the highlights in the past 6 years include the use of optogenetic tools, viral vectors, and inducible transgenes to experimentally modulate FGF signaling, the clinical use of small molecule FGFR inhibitors, an expanded understanding of endocrine FGF signaling, functions for FGF signaling in stem cell pluripotency and differentiation, roles for FGF signaling in tissue homeostasis and regeneration, a continuing elaboration of mechanisms of FGF signaling in development, and an expanding appreciation of roles for FGF signaling in neuropsychiatric diseases. This article is categorized under: Cardiovascular Diseases > Molecular and Cellular Physiology Neurological Diseases > Molecular and Cellular Physiology Congenital Diseases > Stem Cells and Development Cancer > Stem Cells and Development.
Collapse
Affiliation(s)
- David M Ornitz
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Nobuyuki Itoh
- Kyoto University Graduate School of Pharmaceutical Sciences, Sakyo, Kyoto, Japan
| |
Collapse
|
24
|
Otsuki L, Tanaka EM. Positional Memory in Vertebrate Regeneration: A Century's Insights from the Salamander Limb. Cold Spring Harb Perspect Biol 2022; 14:a040899. [PMID: 34607829 PMCID: PMC9248832 DOI: 10.1101/cshperspect.a040899] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Salamanders, such as axolotls and newts, can regenerate complex tissues including entire limbs. But what mechanisms ensure that an amputated limb regenerates a limb, and not a tail or unpatterned tissue? An important concept in regeneration is positional memory-the notion that adult cells "remember" spatial identities assigned to them during embryogenesis (e.g., "head" or "hand") and use this information to restore the correct body parts after injury. Although positional memory is well documented at a phenomenological level, the underlying cellular and molecular bases are just beginning to be decoded. Herein, we review how major principles in positional memory were established in the salamander limb model, enabling the discovery of positional memory-encoding molecules, and advancing insights into their pattern-forming logic during regeneration. We explore findings in other amphibians, fish, reptiles, and mammals and speculate on conserved aspects of positional memory. We consider the possibility that manipulating positional memory in human cells could represent one route toward improved tissue repair or engineering of patterned tissues for therapeutic purposes.
Collapse
Affiliation(s)
- Leo Otsuki
- Research Institute of Molecular Pathology, 1030 Vienna, Austria
| | - Elly M Tanaka
- Research Institute of Molecular Pathology, 1030 Vienna, Austria
| |
Collapse
|
25
|
Glotzer GL, Tardivo P, Tanaka EM. Canonical Wnt signaling and the regulation of divergent mesenchymal Fgf8 expression in axolotl limb development and regeneration. eLife 2022; 11:e79762. [PMID: 35587651 PMCID: PMC9154742 DOI: 10.7554/elife.79762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 05/06/2022] [Indexed: 11/30/2022] Open
Abstract
The expression of fibroblast growth factors (Fgf) ligands in a specialized epithelial compartment, the Apical Ectodermal Ridge (AER), is a conserved feature of limb development across vertebrate species. In vertebrates, Fgf 4, 8, 9, and 17 are all expressed in the AER. An exception to this paradigm is the salamander (axolotl) developing and regenerating limb, where key Fgf ligands are expressed in the mesenchyme. The mesenchymal expression of Amex.Fgf8 in axolotl has been suggested to be critical for regeneration. To date, there is little knowledge regarding what controls Amex.Fgf8 expression in the axolotl limb mesenchyme. A large body of mouse and chick studies have defined a set of transcription factors and canonical Wnt signaling as the main regulators of epidermal Fgf8 expression in these organisms. In this study, we address the hypothesis that alterations to one or more of these components during evolution has resulted in mesenchymal Amex.Fgf8 expression in the axolotl. To sensitively quantify gene expression with spatial precision, we combined optical clearing of whole-mount axolotl limb tissue with single molecule fluorescent in situ hybridization and a semiautomated quantification pipeline. Several candidate upstream components were found expressed in the axolotl ectoderm, indicating that they are not direct regulators of Amex.Fgf8 expression. We found that Amex.Wnt3a is expressed in axolotl limb epidermis, similar to chicken and mouse. However, unlike in amniotes, Wnt target genes are activated preferentially in limb mesenchyme rather than in epidermis. Inhibition and activation of Wnt signaling results in downregulation and upregulation of mesenchymal Amex.Fgf8 expression, respectively. These results implicate a shift in tissue responsiveness to canonical Wnt signaling from epidermis to mesenchyme as one step contributing to the unique mesenchymal Amex.Fgf8 expression seen in the axolotl.
Collapse
Affiliation(s)
- Giacomo L Glotzer
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus- Vienna-Biocenter 1ViennaAustria
| | - Pietro Tardivo
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus- Vienna-Biocenter 1ViennaAustria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of ViennaViennaAustria
| | - Elly M Tanaka
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus- Vienna-Biocenter 1ViennaAustria
| |
Collapse
|
26
|
Lovely AM, Duerr TJ, Qiu Q, Galvan S, Voss SR, Monaghan JR. Wnt Signaling Coordinates the Expression of Limb Patterning Genes During Axolotl Forelimb Development and Regeneration. Front Cell Dev Biol 2022; 10:814250. [PMID: 35531102 PMCID: PMC9068880 DOI: 10.3389/fcell.2022.814250] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Abstract
After amputation, axolotl salamanders can regenerate their limbs, but the degree to which limb regeneration recapitulates limb development remains unclear. One limitation in answering this question is our lack of knowledge about salamander limb development. Here, we address this question by studying expression patterns of genes important for limb patterning during axolotl salamander limb development and regeneration. We focus on the Wnt signaling pathway because it regulates multiple functions during tetrapod limb development, including limb bud initiation, outgrowth, patterning, and skeletal differentiation. We use fluorescence in situ hybridization to show the expression of Wnt ligands, Wnt receptors, and limb patterning genes in developing and regenerating limbs. Inhibition of Wnt ligand secretion permanently blocks limb bud outgrowth when treated early in limb development. Inhibiting Wnt signaling during limb outgrowth decreases the expression of critical signaling genes, including Fgf10, Fgf8, and Shh, leading to the reduced outgrowth of the limb. Patterns of gene expression are similar between developing and regenerating limbs. Inhibition of Wnt signaling during regeneration impacted patterning gene expression similarly. Overall, our findings suggest that limb development and regeneration utilize Wnt signaling similarly. It also provides new insights into the interaction of Wnt signaling with other signaling pathways during salamander limb development and regeneration.
Collapse
Affiliation(s)
| | - Timothy J. Duerr
- Department of Biology, Northeastern University, Boston, MA, United States
| | - Qingchao Qiu
- Department of Neuroscience, Spinal Cord and Brain Injury Research Center, and Ambystoma Genetic Stock Center, University of Kentucky, Lexington, KY, United States
| | | | - S. Randal Voss
- Department of Neuroscience, Spinal Cord and Brain Injury Research Center, and Ambystoma Genetic Stock Center, University of Kentucky, Lexington, KY, United States
| | - James R. Monaghan
- Department of Biology, Northeastern University, Boston, MA, United States
- Institute for Chemical Imaging of Living Systems, Northeastern University, Boston, MA, United States
| |
Collapse
|
27
|
Yamamoto S, Kashimoto R, Furukawa S, Ohashi A, Satoh A. Lmx1b activation in axolotl limb regeneration. Dev Dyn 2022; 251:1509-1523. [PMID: 35403281 DOI: 10.1002/dvdy.476] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 03/28/2022] [Accepted: 04/06/2022] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Axolotls can regenerate their limbs. In their limb regeneration process, developmental genes are re-expressed and reorganize the developmental axes, in which the position-specific genes are properly re-expressed. However, how such position specificity is reorganized in the regeneration processes has not been clarified. To address this issue, we focused on the reactivation process of Lmx1b, which determines the limb dorsal identity in many animals. RESULTS Here, we show that Lmx1b expression is maintained in the dorsal skin before amputation and is activated after amputation. Furthermore, we demonstrate that only cells located in the dorsal side prior to limb amputation could reactivate Lmx1b after limb amputation. We also found that Lmx1b activation was achieved by nerve presence. The nerve factors, BMP2 + FGF2 + FGF8 (B2FF), consistently reactivate Lmx1b when applied to the dorsal skin. CONCLUSIONS These results imply that the retained Lmx1b expression in the intact skin plays a role in positional memory, which instruct cells about the spatial positioning before amputation. This memory is reactivated by nerves or nerve factors that can trigger the entire limb regeneration process. Our findings highlight the role of nerves in amphibian limb regeneration, including both the initiation of limb regeneration and the reactivation of position-specific gene expression. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Sakiya Yamamoto
- Department of Biological Sciences, Okayama University, Faculty of Science, Okayama, Japan
| | - Rena Kashimoto
- Okayama University, Graduate School of Natural Science and Technology, Okayama, Japan
| | - Saya Furukawa
- Department of Biological Sciences, Okayama University, Faculty of Science, Okayama, Japan
| | - Ayaka Ohashi
- Okayama University, Graduate School of Natural Science and Technology, Okayama, Japan
| | - Akira Satoh
- Okayama University, Graduate School of Natural Science and Technology, Okayama, Japan.,Research Core for Interdisciplinary Sciences (RCIS), Okayama University, Okayama, Japan
| |
Collapse
|
28
|
Purushothaman S, Lopez Aviña BB, Seifert AW. Sonic hedgehog is Essential for Proximal-Distal Outgrowth of the Limb Bud in Salamanders. Front Cell Dev Biol 2022; 10:797352. [PMID: 35433673 PMCID: PMC9010949 DOI: 10.3389/fcell.2022.797352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 01/24/2022] [Indexed: 11/20/2022] Open
Abstract
The developing forelimb has been a foundational model to understand how specified progenitor cells integrate genetic information to produce the tetrapod limb bauplan. Although the reigning hypothesis is that all tetrapods develop limbs in a similar manner, recent work suggests that urodeles have evolved a derived mode of limb dvelopment. Here, we demonstrate through pharmacological and genetic inactivation of Sonic hedgehog (Shh) signaling in axolotls that Shh directs expansion and survival of limb progenitor cells in addition to patterning the limb across the proximodistal and antero-posterior axis. In contrast to inactivation of Shh in mouse or chick embryos where a humerus, radius, and single digit develop, Shh crispant axolotls completely lack forelimbs. In rescuing limb development by implanting SHH-N protein beads into the nascent limb field of Shh crispants, we show that the limb field is specified in the absence of Shh and that hedgehog pathway activation is required to initiate proximodistal outgrowth. When our results are examined alongside other derived aspects of salamander limb development and placed in a phylogenetic context, a new hypothesis emerges whereby the ability for cells at an amputation plane to activate morphogenesis and regenerate a limb may have evolved uniquely in urodeles.
Collapse
|
29
|
Dolan CP, Imholt F, Yan M, Yang TJ, Gregory J, Qureshi O, Zimmel K, Sherman KM, Smith HM, Falck A, Leininger E, Yu L, Brunauer R, Suva LJ, Gaddy D, Dawson LA, Muneoka K. Digit specific denervation does not inhibit mouse digit tip regeneration. Dev Biol 2022; 486:71-80. [DOI: 10.1016/j.ydbio.2022.03.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/26/2022] [Accepted: 03/17/2022] [Indexed: 11/24/2022]
|
30
|
Leigh ND, Currie JD. Re-building limbs, one cell at a time. Dev Dyn 2022; 251:1389-1403. [PMID: 35170828 PMCID: PMC9545806 DOI: 10.1002/dvdy.463] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 01/23/2022] [Accepted: 01/25/2022] [Indexed: 11/24/2022] Open
Abstract
New techniques for visualizing and interrogating single cells hold the key to unlocking the underlying mechanisms of salamander limb regeneration.
Collapse
Affiliation(s)
- Nicholas D Leigh
- Molecular Medicine and Gene Therapy, Wallenberg Centre for Molecular Medicine, Lund Stem Cell Center, Lund University, Sweden
| | - Joshua D Currie
- Department of Biology, Wake Forest University, 455 Vine Street, Winston-Salem, USA
| |
Collapse
|
31
|
Chen H, Cui Y, Zhang D, Xie J, Zhou X. The role of fibroblast growth factor 8 in cartilage development and disease. J Cell Mol Med 2022; 26:990-999. [PMID: 35001536 PMCID: PMC8831980 DOI: 10.1111/jcmm.17174] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/22/2021] [Accepted: 12/28/2021] [Indexed: 02/05/2023] Open
Abstract
Fibroblast growth factor 8 (FGF‐8), also known as androgen‐induced growth factor (AIGF), is presumed to be a potent mitogenic cytokine that plays important roles in early embryonic development, brain formation and limb development. In the bone environment, FGF‐8 produced or received by chondrocyte precursor cells binds to fibroblast growth factor receptor (FGFR), causing different levels of activation of downstream signalling pathways, such as phospholipase C gamma (PLCγ)/Ca2+, RAS/mitogen‐activated protein kinase‐extracellular regulated protein kinases (RAS/MAPK‐MEK‐ERK), and Wnt‐β‐catenin‐Axin2 signalling, and ultimately controlling chondrocyte proliferation, differentiation, cell survival and migration. However, the molecular mechanism of FGF‐8 in normal or pathological cartilage remains unclear, and thus, FGF‐8 represents a novel exploratory target for studies of chondrocyte development and cartilage disease progression. In this review, studies assessing the relationship between FGF‐8 and chondrocytes that have been published in the past 5 years are systematically summarized to determine the probable mechanism and physiological effect of FGF‐8 on chondrocytes. Based on the existing research results, a therapeutic regimen targeting FGF‐8 is proposed to explore the possibility of treating chondrocyte‐related diseases.
Collapse
Affiliation(s)
- Haoran Chen
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yujia Cui
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Demao Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jing Xie
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
32
|
Boilly B, Hondermarck H, Boilly‐Marer Y. Neural regulation of body polarities in nereid worm regeneration. FASEB Bioadv 2022; 4:22-28. [PMID: 35024570 PMCID: PMC8728106 DOI: 10.1096/fba.2021-00116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/08/2021] [Accepted: 12/10/2021] [Indexed: 11/25/2022] Open
Abstract
Nerve dependence in regeneration has been established more than 200 years ago but the mechanisms by which nerves are necessary to regeneration remain to be fully elucidated. Aside from their direct impact in stimulating cellular growth, nerves also have a role on the establishment of body polarities (antero-posterior and dorso-ventral patterns) and this has been particularly well studied in nereid annelid worms. Nereids can regenerate appendages (parapodia) and the tail (body segments). In both parapodia and tail regeneration, the presence of the nerve cord is necessary to the establishment of body polarities. In this review, we will detail the experimental procedures which have been conducted in nereids to elucidate the role of the nerve cord in the establishment of the antero-posterior and dorso-ventral polarities. Most of the studies reported here were published several decades ago and based on anatomical and histological analyses; this review should constitute a knowledgebase and an inspiration for needed modern-time explorations at the molecular levels to elucidate the impact of the nervous system in the acquisition of body polarities.
Collapse
Affiliation(s)
- Benoni Boilly
- Département de BiologieUniversité de LilleVilleneuve d’AscqFrance
| | - Hubert Hondermarck
- School of Biomedical Sciences & Pharmacy and Hunter Medical Research InstituteCollege of Health, Medicine and WellbeingUniversity of NewcastleCallaghanNew South WalesAustralia
| | | |
Collapse
|
33
|
Abstract
The salamander Ambystoma mexicanum, commonly called "the axolotl" has a long, illustrious history as a model organism, perhaps with one of the longest track records as a laboratory-bred vertebrate, yet it also holds a prominent place among the emerging model organisms. Or rather it is by now an "emerged" model organism, boasting a full cohort molecular genetic tools that allows an expanding community of researchers in the field to explore the remarkable traits of this animal including regeneration, at cellular and molecular precision-which had been a dream for researchers over the years. This chapter describes the journey to this status, that could be helpful for those developing their respective animal or plant models.
Collapse
Affiliation(s)
- Karen Echeverri
- Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, MA, United States
| | - Jifeng Fei
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Elly M Tanaka
- Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria.
| |
Collapse
|
34
|
Aztekin C. Tissues and Cell Types of Appendage Regeneration: A Detailed Look at the Wound Epidermis and Its Specialized Forms. Front Physiol 2021; 12:771040. [PMID: 34887777 PMCID: PMC8649801 DOI: 10.3389/fphys.2021.771040] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 10/25/2021] [Indexed: 11/13/2022] Open
Abstract
Therapeutic implementation of human limb regeneration is a daring aim. Studying species that can regrow their lost appendages provides clues on how such a feat can be achieved in mammals. One of the unique features of regeneration-competent species lies in their ability to seal the amputation plane with a scar-free wound epithelium. Subsequently, this wound epithelium advances and becomes a specialized wound epidermis (WE) which is hypothesized to be the essential component of regenerative success. Recently, the WE and specialized WE terminologies have been used interchangeably. However, these tissues were historically separated, and contemporary limb regeneration studies have provided critical new information which allows us to distinguish them. Here, I will summarize tissue-level observations and recently identified cell types of WE and their specialized forms in different regeneration models.
Collapse
Affiliation(s)
- Can Aztekin
- Swiss Federal Institute of Technology Lausanne, EPFL, School of Life Sciences, Lausanne, Switzerland
| |
Collapse
|
35
|
Wells KM, Kelley K, Baumel M, Vieira WA, McCusker CD. Neural control of growth and size in the axolotl limb regenerate. eLife 2021; 10:68584. [PMID: 34779399 PMCID: PMC8716110 DOI: 10.7554/elife.68584] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 11/13/2021] [Indexed: 11/29/2022] Open
Abstract
The mechanisms that regulate growth and size of the regenerating limb in tetrapods such as the Mexican axolotl are unknown. Upon the completion of the developmental stages of regeneration, when the regenerative organ known as the blastema completes patterning and differentiation, the limb regenerate is proportionally small in size. It then undergoes a phase of regeneration that we have called the ‘tiny-limb’ stage, which is defined by rapid growth until the regenerate reaches the proportionally appropriate size. In the current study we have characterized this growth and have found that signaling from the limb nerves is required for its maintenance. Using the regenerative assay known as the accessory limb model (ALM), we have found that growth and size of the limb positively correlates with nerve abundance. We have additionally developed a new regenerative assay called the neural modified-ALM (NM-ALM), which decouples the source of the nerves from the regenerating host environment. Using the NM-ALM we discovered that non-neural extrinsic factors from differently sized host animals do not play a prominent role in determining the size of the regenerating limb. We have also discovered that the regulation of limb size is not autonomously regulated by the limb nerves. Together, these observations show that the limb nerves provide essential cues to regulate ontogenetic allometric growth and the final size of the regenerating limb. Humans’ ability to regrow lost or damaged body parts is relatively limited, but some animals, such as the axolotl (a Mexican salamander), can regenerate complex body parts, like legs, many times over their lives. Studying regeneration in these animals could help researchers enhance humans’ abilities to heal. One way to do this is using the Accessory Limb Model (ALM), where scientists wound an axolotl’s leg, and study the additional leg that grows from the wound. The first stage of limb regeneration creates a new leg that has the right structure and shape. The new leg is very small so the next phase involves growing the leg until its size matches the rest of the animal. This phase must be controlled so that the limb stops growing when it reaches the right size, but how this regulation works is unclear. Previous research suggests that the number of nerves in the new leg could be important. Wells et al. used a ALM to study how the size of regenerating limbs is controlled. They found that changing the number of nerves connected to the new leg altered its size, with more nerves leading to a larger leg. Next, Wells et al. created a system that used transplanted nerve bundles of different sizes to grow new legs in different sized axolotls. This showed that the size of the resulting leg is controlled by the number of nerves connecting it to the CNS. Wells et al. also showed that nerves can only control regeneration if they remain connected to the central nervous system. These results explain how size is controlled during limb regeneration in axolotls, highlighting the fact that regrowth is directly controlled by the number of nerves connected to a regenerating leg. Much more work is needed to reveal the details of this process and the signals nerves use to control growth. It will also be important to determine whether this control system is exclusive to axolotls, or whether other animals also use it.
Collapse
Affiliation(s)
- Kaylee M Wells
- Biology Department, University of Massachusetts Boston, Boston, United States
| | - Kristina Kelley
- Biology Department, University of Massachusetts Boston, Boston, United States
| | - Mary Baumel
- Biology Department, University of Massachusetts Boston, Boston, United States
| | - Warren A Vieira
- Biology Department, University of Massachusetts Boston, Boston, United States
| | | |
Collapse
|
36
|
Sasidharan V, Sánchez Alvarado A. The Diverse Manifestations of Regeneration and Why We Need to Study Them. Cold Spring Harb Perspect Biol 2021; 14:a040931. [PMID: 34750171 PMCID: PMC9438785 DOI: 10.1101/cshperspect.a040931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
For hundreds of years, the question of why some organisms can regenerate missing body parts while others cannot has remained poorly understood. This has been due in great part to the inability to genetically, molecularly, and cellularly dissect this problem for most of the history of the field. It has only been in the past 20-30 years that important mechanistic advances have been made in methodologies that introduce loss and gain of gene function in animals that can regenerate. However, we still have a very incomplete understanding of how broadly regenerative abilities may be dispersed across species and whether or not such properties share a common evolutionary origin, which may have emerged independently or both. Understanding regeneration, therefore, will require rigorously practiced fundamental, curiosity-driven, discovery research. Expanding the number of research organisms used to study regeneration allows us to uncover aspects of this problem we may not yet know exist and simultaneously increases our chances of solving this long-standing problem of biology.
Collapse
|
37
|
Reviewing the Effects of Skin Manipulations on Adult Newt Limb Regeneration: Implications for the Subcutaneous Origin of Axial Pattern Formation. Biomedicines 2021; 9:biomedicines9101426. [PMID: 34680543 PMCID: PMC8533417 DOI: 10.3390/biomedicines9101426] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/05/2021] [Accepted: 10/07/2021] [Indexed: 11/16/2022] Open
Abstract
Newts are unique salamanders that can regenerate their limbs as postmetamorphic adults. In order to regenerate human limbs as newts do, it is necessary to determine whether the cells homologous to those contributing to the limb regeneration of adult newts also exist in humans. Previous skin manipulation studies in larval amphibians have suggested that stump skin plays a pivotal role in the axial patterning of regenerating limbs. However, in adult newts such studies are limited, though they are informative. Therefore, in this article we have conducted skin manipulation experiments such as rotating the skin 180° around the proximodistal axis of the limb and replacing half of the skin with that of another location on the limb or body. We found that, contrary to our expectations, adult newts robustly regenerated limbs with a normal axial pattern regardless of skin manipulation, and that the appearance of abnormalities was stochastic. Our results suggest that the tissue under the skin, rather than the skin itself, in the intact limb is of primary importance in ensuring the normal axial pattern formation in adult newt limb regeneration. We propose that the important tissues are located in small areas underlying the ventral anterior and ventral posterior skin.
Collapse
|
38
|
Abstract
Species that can regrow their lost appendages have been studied with the ultimate aim of developing methods to enable human limb regeneration. These examinations highlight that appendage regeneration progresses through shared tissue stages and gene activities, leading to the assumption that appendage regeneration paradigms (e.g. tails and limbs) are the same or similar. However, recent research suggests these paradigms operate differently at the cellular level, despite sharing tissue descriptions and gene expressions. Here, collecting the findings from disparate studies, I argue appendage regeneration is context dependent at the cellular level; nonetheless, it requires (i) signalling centres, (ii) stem/progenitor cell types and (iii) a regeneration-permissive environment, and these three common cellular principles could be more suitable for cross-species/paradigm/age comparisons.
Collapse
Affiliation(s)
- Can Aztekin
- School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|
39
|
Qiu Y, Fung L, Schilling TF, Nie Q. Multiple morphogens and rapid elongation promote segmental patterning during development. PLoS Comput Biol 2021; 17:e1009077. [PMID: 34161317 PMCID: PMC8259987 DOI: 10.1371/journal.pcbi.1009077] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 07/06/2021] [Accepted: 05/13/2021] [Indexed: 12/21/2022] Open
Abstract
The vertebrate hindbrain is segmented into rhombomeres (r) initially defined by distinct domains of gene expression. Previous studies have shown that noise-induced gene regulation and cell sorting are critical for the sharpening of rhombomere boundaries, which start out rough in the forming neural plate (NP) and sharpen over time. However, the mechanisms controlling simultaneous formation of multiple rhombomeres and accuracy in their sizes are unclear. We have developed a stochastic multiscale cell-based model that explicitly incorporates dynamic morphogenetic changes (i.e. convergent-extension of the NP), multiple morphogens, and gene regulatory networks to investigate the formation of rhombomeres and their corresponding boundaries in the zebrafish hindbrain. During pattern initiation, the short-range signal, fibroblast growth factor (FGF), works together with the longer-range morphogen, retinoic acid (RA), to specify all of these boundaries and maintain accurately sized segments with sharp boundaries. At later stages of patterning, we show a nonlinear change in the shape of rhombomeres with rapid left-right narrowing of the NP followed by slower dynamics. Rapid initial convergence improves boundary sharpness and segment size by regulating cell sorting and cell fate both independently and coordinately. Overall, multiple morphogens and tissue dynamics synergize to regulate the sizes and boundaries of multiple segments during development. In segmental pattern formation, chemical gradients control gene expression in a concentration-dependent manner to specify distinct gene expression domains. Despite the stochasticity inherent to such biological processes, precise and accurate borders form between segmental gene expression domains. Previous work has revealed synergy between gene regulation and cell sorting in sharpening borders that are initially rough. However, it is still poorly understood how size and boundary sharpness of multiple segments are regulated in a tissue that changes dramatically in its morphology as the embryo develops. Here we develop a stochastic multiscale cell-base model to investigate these questions. Two novel strategies synergize to promote accurate segment formation, a combination of long- and short-range morphogens plus rapid tissue convergence, with one responsible for pattern initiation and the other enabling pattern refinement.
Collapse
Affiliation(s)
- Yuchi Qiu
- Department of Mathematics, University of California, Irvine, California, United States of America
| | - Lianna Fung
- Department of Developmental and Cell Biology, University of California, Irvine, California, United States of America
- The NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, California, United States of America
| | - Thomas F. Schilling
- Department of Developmental and Cell Biology, University of California, Irvine, California, United States of America
- The NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, California, United States of America
- * E-mail: (TFS); (QN)
| | - Qing Nie
- Department of Mathematics, University of California, Irvine, California, United States of America
- Department of Developmental and Cell Biology, University of California, Irvine, California, United States of America
- The NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, California, United States of America
- * E-mail: (TFS); (QN)
| |
Collapse
|
40
|
Aztekin C, Hiscock TW, Gurdon J, Jullien J, Marioni J, Simons BD. Secreted inhibitors drive the loss of regeneration competence in Xenopus limbs. Development 2021; 148:269060. [PMID: 34105722 PMCID: PMC8217717 DOI: 10.1242/dev.199158] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 05/05/2021] [Indexed: 12/18/2022]
Abstract
Absence of a specialized wound epidermis is hypothesized to block limb regeneration in higher vertebrates. However, the factors preventing its formation in regeneration-incompetent animals are poorly understood. To characterize the endogenous molecular and cellular regulators of specialized wound epidermis formation in Xenopus laevis tadpoles, and the loss of their regeneration competency during development, we used single-cell transcriptomics and ex vivo regenerating limb cultures. Transcriptomic analysis revealed that the specialized wound epidermis is not a novel cell state, but a re-deployment of the apical-ectodermal-ridge (AER) programme underlying limb development. Enrichment of secreted inhibitory factors, including Noggin, a morphogen expressed in developing cartilage/bone progenitor cells, are identified as key inhibitors of AER cell formation in regeneration-incompetent tadpoles. These factors can be overridden by Fgf10, which operates upstream of Noggin and blocks chondrogenesis. These results indicate that manipulation of the extracellular environment and/or chondrogenesis may provide a strategy to restore regeneration potential in higher vertebrates. Summary: Secreted inhibitors associated with chondrogenic progression inhibit AER cell formation and restrict limb regeneration potential.
Collapse
Affiliation(s)
- Can Aztekin
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK.,Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Tom W Hiscock
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK.,Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, UK.,Institute of Medical Sciences, Foresterhill Health Campus, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - John Gurdon
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK.,Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Jerome Jullien
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK.,Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK.,Nantes Université, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, F-44000 Nantes, France
| | - John Marioni
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, UK.,EMBL-European Bioinformatics Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK.,Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | - Benjamin David Simons
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK.,Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Cambridge CB3 0WA, UK.,Wellcome Trust Centre for Stem Cell Research, University of Cambridge, Cambridge CB2 0AW, UK
| |
Collapse
|
41
|
Structural and Functional Characterization of the FGF Signaling Pathway in Regeneration of the Polychaete Worm Alitta virens (Annelida, Errantia). Genes (Basel) 2021; 12:genes12060788. [PMID: 34063978 PMCID: PMC8224027 DOI: 10.3390/genes12060788] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 05/13/2021] [Accepted: 05/14/2021] [Indexed: 12/16/2022] Open
Abstract
Epimorphic regeneration of lost body segments is a widespread phenomenon across annelids. However, the molecular inducers of the cell sources for this reparative morphogenesis have not been identified. In this study, we focused on the role of fibroblast growth factor (FGF) signaling in the posterior regeneration of Alitta virens. For the first time, we showed an early activation of FGF ligands and receptor expression in an annelid regenerating after amputation. The expression patterns indicate that the entire regenerative bud is competent to FGFs, whose activity precedes the initiation of cell proliferation. The critical requirement of FGF signaling, especially at early stages, is also supported by inhibitor treatments followed by proliferation assay, demonstrating that induction of blastemal cells depends on FGFs. Our results show that FGF signaling pathway is a key player in regenerative response, while the FGF-positive wound epithelium, ventral nerve cord and some mesodermal cells around the gut could be the inducing tissues. This mechanism resembles reparative regeneration of vertebrate appendages suggesting such a response to the injury may be ancestral for all bilaterians.
Collapse
|
42
|
Calcineurin controls proximodistal blastema polarity in zebrafish fin regeneration. Proc Natl Acad Sci U S A 2021; 118:2009539118. [PMID: 33376206 DOI: 10.1073/pnas.2009539118] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Planarian flatworms regenerate their heads and tails from anterior or posterior wounds and this regenerative blastema polarity is controlled by Wnt/β-catenin signaling. It is well known that a regeneration blastema of appendages of vertebrates such as fish and amphibians grows distally. However, it remains unclear whether a regeneration blastema in vertebrate appendages can grow proximally. Here, we show that a regeneration blastema in zebrafish fins can grow proximally along the proximodistal axis by calcineurin inhibition. We used fin excavation in adult zebrafish to observe unidirectional regeneration from the anterior cut edge (ACE) to the posterior cut edge (PCE) of the cavity and this unidirectional regeneration polarity occurs as the PCE fails to build blastemas. Furthermore, we found that calcineurin activities in the ACE were greater than in the PCE. Calcineurin inhibition induced PCE blastemas, and calcineurin hyperactivation suppressed fin regeneration. Collectively, these findings identify calcineurin as a molecular switch to specify the PCE blastema of the proximodistal axis and regeneration polarity in zebrafish fin.
Collapse
|
43
|
The giant axolotl genome uncovers the evolution, scaling, and transcriptional control of complex gene loci. Proc Natl Acad Sci U S A 2021; 118:2017176118. [PMID: 33827918 PMCID: PMC8053990 DOI: 10.1073/pnas.2017176118] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The axolotl is an important model organism because it is a tetrapod with a similar body plan to humans. Unlike humans, the axolotl regenerates limbs and other complex tissues. Therefore, the axolotl contributes to understanding evolution, development, and regeneration. With sophisticated tools for gene modification and tissue labeling, a fully assembled genome sequence was a sorely missing resource. Assembly was difficult because the genome size is 10× that of humans. Here, we use a cross-linking strategy called Hi-C to link together fragmented genome sequences to chromosome scale. We show that gene regulation occurs over very large genomic distances and that mitotic chromosomes are packaged efficiently. Vertebrates harbor recognizably orthologous gene complements but vary 100-fold in genome size. How chromosomal organization scales with genome expansion is unclear, and how acute changes in gene regulation, as during axolotl limb regeneration, occur in the context of a vast genome has remained a riddle. Here, we describe the chromosome-scale assembly of the giant, 32 Gb axolotl genome. Hi-C contact data revealed the scaling properties of interphase and mitotic chromosome organization. Analysis of the assembly yielded understanding of the evolution of large, syntenic multigene clusters, including the Major Histocompatibility Complex (MHC) and the functional regulatory landscape of the Fibroblast Growth Factor 8 (Axfgf8) region. The axolotl serves as a primary model for studying successful regeneration.
Collapse
|
44
|
Liu Y, Lou WPK, Fei JF. The engine initiating tissue regeneration: does a common mechanism exist during evolution? CELL REGENERATION (LONDON, ENGLAND) 2021; 10:12. [PMID: 33817749 PMCID: PMC8019671 DOI: 10.1186/s13619-020-00073-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/29/2020] [Indexed: 12/16/2022]
Abstract
A successful tissue regeneration is a very complex process that requires a precise coordination of many molecular, cellular and physiological events. One of the critical steps is to convert the injury signals into regeneration signals to initiate tissue regeneration. Although many efforts have been made to investigate the mechanisms triggering tissue regeneration, the fundamental questions remain unresolved. One of the major obstacles is that the injury and the initiation of regeneration are two highly coupled processes and hard to separate from one another. In this article, we review the major events occurring at the early injury/regeneration stage in a range of species, and discuss the possible common mechanisms during initiation of tissue regeneration.
Collapse
Affiliation(s)
- Yanmei Liu
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education; Institute for Brain Research and Rehabilitation, South China Normal University, 510631, Guangzhou, China
| | - Wilson Pak-Kin Lou
- School of Life Sciences, South China Normal University, 510631, Guangzhou, China.,Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Ji-Feng Fei
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 510080, Guangzhou, China.
| |
Collapse
|
45
|
Ding X, Kakanj P, Leptin M, Eming SA. Regulation of the Wound Healing Response during Aging. J Invest Dermatol 2021; 141:1063-1070. [DOI: 10.1016/j.jid.2020.11.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/30/2020] [Accepted: 11/16/2020] [Indexed: 12/20/2022]
|
46
|
Arenas Gómez CM, Echeverri K. Salamanders: The molecular basis of tissue regeneration and its relevance to human disease. Curr Top Dev Biol 2021; 145:235-275. [PMID: 34074531 PMCID: PMC8186737 DOI: 10.1016/bs.ctdb.2020.11.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Salamanders are recognized for their ability to regenerate a broad range of tissues. They have also have been used for hundreds of years for classical developmental biology studies because of their large accessible embryos. The range of tissues these animals can regenerate is fascinating, from full limbs to parts of the brain or heart, a potential that is missing in humans. Many promising research efforts are working to decipher the molecular blueprints shared across the organisms that naturally have the capacity to regenerate different tissues and organs. Salamanders are an excellent example of a vertebrate that can functionally regenerate a wide range of tissue types. In this review, we outline some of the significant insights that have been made that are aiding in understanding the cellular and molecular mechanisms of tissue regeneration in salamanders and discuss why salamanders are a worthy model in which to study regenerative biology and how this may benefit research fields like regenerative medicine to develop therapies for humans in the future.
Collapse
Affiliation(s)
- Claudia Marcela Arenas Gómez
- Marine Biological Laboratory, Eugene Bell Center for Regenerative Biology and Tissue Engineering, University of Chicago, Woods Hole, MA, United States
| | - Karen Echeverri
- Marine Biological Laboratory, Eugene Bell Center for Regenerative Biology and Tissue Engineering, University of Chicago, Woods Hole, MA, United States.
| |
Collapse
|
47
|
Vieira WA, Goren S, McCusker CD. ECM-mediated positional cues are able to induce pattern, but not new positional information, during axolotl limb regeneration. PLoS One 2021; 16:e0248051. [PMID: 33667253 PMCID: PMC7935289 DOI: 10.1371/journal.pone.0248051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/18/2021] [Indexed: 11/18/2022] Open
Abstract
The Mexican Axolotl is able to regenerate missing limb structures in any position along the limb axis throughout its life and serves as an excellent model to understand the basic mechanisms of endogenous regeneration. How the new pattern of the regenerating axolotl limb is established has not been completely resolved. An accumulating body of evidence indicates that pattern formation occurs in a hierarchical fashion, which consists of two different types of positional communications. The first type (Type 1) of communication occurs between connective tissue cells, which retain memory of their original pattern information and use this memory to generate the pattern of the regenerate. The second type (Type 2) of communication occurs from connective tissue cells to other cell types in the regenerate, which don’t retain positional memory themselves and arrange themselves according to these positional cues. Previous studies suggest that molecules within the extracellular matrix (ECM) participate in pattern formation in developing and regenerating limbs. However, it is unclear whether these molecules play a role in Type 1 or Type 2 positional communications. Utilizing the Accessory Limb Model, a regenerative assay, and transcriptomic analyses in regenerates that have been reprogrammed by treatment with Retinoic Acid, our data indicates that the ECM likely facilities Type-2 positional communications during limb regeneration.
Collapse
Affiliation(s)
- Warren A. Vieira
- Department of Biology, University of Massachusetts, Boston, MA, United States of America
| | - Shira Goren
- Department of Biology, University of Massachusetts, Boston, MA, United States of America
| | - Catherine D. McCusker
- Department of Biology, University of Massachusetts, Boston, MA, United States of America
- * E-mail:
| |
Collapse
|
48
|
Single-cell RNA-seq reveals novel mitochondria-related musculoskeletal cell populations during adult axolotl limb regeneration process. Cell Death Differ 2021; 28:1110-1125. [PMID: 33116295 PMCID: PMC7937690 DOI: 10.1038/s41418-020-00640-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 09/24/2020] [Accepted: 10/06/2020] [Indexed: 01/30/2023] Open
Abstract
While the capacity to regenerate tissues or limbs is limited in mammals, including humans, axolotls are able to regrow entire limbs and major organs after incurring a wound. The wound blastema has been extensively studied in limb regeneration. However, due to the inadequate characterization of ECM and cell subpopulations involved in the regeneration process, the discovery of the key drivers for human limb regeneration remains unknown. In this study, we applied large-scale single-cell RNA sequencing to classify cells throughout the adult axolotl limb regeneration process, uncovering a novel regeneration-specific mitochondria-related cluster supporting regeneration through energy providing and the ECM secretion (COL2+) cluster contributing to regeneration through cell-cell interactions signals. We also discovered the dedifferentiation and re-differentiation of the COL1+/COL2+ cellular subpopulation and exposed a COL2-mitochondria subcluster supporting the musculoskeletal system regeneration. On the basis of these findings, we reconstructed the dynamic single-cell transcriptome of adult axolotl limb regenerative process, and identified the novel regenerative mitochondria-related musculoskeletal populations, which yielded deeper insights into the crucial interactions between cell clusters within the regenerative microenvironment.
Collapse
|
49
|
Otsuka T, Mengsteab PY, Laurencin CT. Control of mesenchymal cell fate via application of FGF-8b in vitro. Stem Cell Res 2021; 51:102155. [PMID: 33445073 PMCID: PMC8027992 DOI: 10.1016/j.scr.2021.102155] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/30/2020] [Accepted: 01/01/2021] [Indexed: 12/29/2022] Open
Abstract
In order to develop strategies to regenerate complex tissues in mammals, understanding the role of signaling in regeneration competent species and mammalian development is of critical importance. Fibroblast growth factor 8 (FGF-8) signaling has an essential role in limb morphogenesis and blastema outgrowth. Therefore, we aimed to study the effect of FGF-8b on the proliferation and differentiation of mesenchymal stem cells (MSCs), which have tremendous potential for therapeutic use of cell-based therapy. Rat adipose derived stem cells (ADSCs) and muscle progenitor cells (MPCs) were isolated and cultured in growth medium and various types of differentiation medium (osteogenic, chondrogenic, adipogenic, tenogenic, and myogenic medium) with or without FGF-8b supplementation. We found that FGF-8b induced robust proliferation regardless of culture medium. Genes related to limb development were upregulated in ADSCs by FGF-8b supplementation. Moreover, FGF-8b enhanced chondrogenic differentiation and suppressed adipogenic and tenogenic differentiation in ADSCs. Osteogenic differentiation was not affected by FGF-8b supplementation. FGF-8b was found to enhance myofiber formation in rat MPCs. Overall, this study provides foundational knowledge on the effect of FGF-8b in the proliferation and fate determination of MSCs and provides insight in its potential efficacy for musculoskeletal therapies.
Collapse
Affiliation(s)
- Takayoshi Otsuka
- Connecticut Convergence Institute for Translation in Regenerative Engineering, University of Connecticut Health, Farmington, CT 06030, USA; Raymond and Beverly Sackler Center for Biological, Physical and Engineering Sciences, University of Connecticut Health, CT 06030, USA; Department of Orthopedic Surgery, University of Connecticut Health, Farmington, CT 06030, USA
| | - Paulos Y Mengsteab
- Connecticut Convergence Institute for Translation in Regenerative Engineering, University of Connecticut Health, Farmington, CT 06030, USA; Raymond and Beverly Sackler Center for Biological, Physical and Engineering Sciences, University of Connecticut Health, CT 06030, USA; Department of Orthopedic Surgery, University of Connecticut Health, Farmington, CT 06030, USA; Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Cato T Laurencin
- Connecticut Convergence Institute for Translation in Regenerative Engineering, University of Connecticut Health, Farmington, CT 06030, USA; Raymond and Beverly Sackler Center for Biological, Physical and Engineering Sciences, University of Connecticut Health, CT 06030, USA; Department of Orthopedic Surgery, University of Connecticut Health, Farmington, CT 06030, USA; Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA; Department of Materials Science and Engineering, University of Connecticut, Storrs, CT 06269, USA; Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT 06269, USA.
| |
Collapse
|
50
|
Zhou H, Ma Z, Wang Z, Yan S, Wang D, Shen J. Hedgehog signaling regulates regenerative patterning and growth in Harmonia axyridis leg. Cell Mol Life Sci 2021; 78:2185-2197. [PMID: 32909120 PMCID: PMC11071721 DOI: 10.1007/s00018-020-03631-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 08/07/2020] [Accepted: 08/26/2020] [Indexed: 10/23/2022]
Abstract
Appendage regeneration has been widely studied in many species. Compared to other animal models, Harmonia axyridis has the advantage of a short life cycle, is easily reared, has strong regeneration capacity and contains systemic RNAi, making it a model organism for research on appendage regeneration. Here, we performed transcriptome analysis, followed by gene functional assays to reveal the molecular mechanism of H. axyridis leg regenerative growth process. Signaling pathways including Decapentaplegic (Dpp), Wingless (Wg), Ds/Ft/Hippo, Notch, Egfr, and Hedgehog (Hh) were all upregulated during the leg regenerative patterning and growth. Among these, Hh and its auxiliary receptor Lrp2 were required for the proper patterning and growth of the regenerative leg. The targets of canonical Hh signaling were required for the regenerative growth which contributes to the leg length, but were not essential for the pattern formation of the regenerative leg. dpp, wg and leg developmental-related genes including rn, dac and Dll were all regulated by hh and lrp2 and may play an essential role in the regenerative patterning of the leg.
Collapse
Affiliation(s)
- Hang Zhou
- Department of Entomology and MOA Lab for Pest Monitoring and Green Management, China Agricultural University, Beijing, 100193, China
| | - Zhongzheng Ma
- Department of Entomology and MOA Lab for Pest Monitoring and Green Management, China Agricultural University, Beijing, 100193, China
| | - Zhiqi Wang
- Department of Entomology and MOA Lab for Pest Monitoring and Green Management, China Agricultural University, Beijing, 100193, China
| | - Shuo Yan
- Department of Entomology and MOA Lab for Pest Monitoring and Green Management, China Agricultural University, Beijing, 100193, China
| | - Dan Wang
- Department of Entomology and MOA Lab for Pest Monitoring and Green Management, China Agricultural University, Beijing, 100193, China.
| | - Jie Shen
- Department of Entomology and MOA Lab for Pest Monitoring and Green Management, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|